]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reorg.cc
PR middle-end/105604 - ICE: in tree_to_shwi with vla in struct and sprintf
[thirdparty/gcc.git] / gcc / reorg.cc
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992-2022 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
4 Hacked by Michael Tiemann (tiemann@cygnus.com).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Instruction reorganization pass.
23
24 This pass runs after register allocation and final jump
25 optimization. It should be the last pass to run before peephole.
26 It serves primarily to fill delay slots of insns, typically branch
27 and call insns. Other insns typically involve more complicated
28 interactions of data dependencies and resource constraints, and
29 are better handled by scheduling before register allocation (by the
30 function `schedule_insns').
31
32 The Branch Penalty is the number of extra cycles that are needed to
33 execute a branch insn. On an ideal machine, branches take a single
34 cycle, and the Branch Penalty is 0. Several RISC machines approach
35 branch delays differently:
36
37 The MIPS has a single branch delay slot. Most insns
38 (except other branches) can be used to fill this slot. When the
39 slot is filled, two insns execute in two cycles, reducing the
40 branch penalty to zero.
41
42 The SPARC always has a branch delay slot, but its effects can be
43 annulled when the branch is not taken. This means that failing to
44 find other sources of insns, we can hoist an insn from the branch
45 target that would only be safe to execute knowing that the branch
46 is taken.
47
48 The HP-PA always has a branch delay slot. For unconditional branches
49 its effects can be annulled when the branch is taken. The effects
50 of the delay slot in a conditional branch can be nullified for forward
51 taken branches, or for untaken backward branches. This means
52 we can hoist insns from the fall-through path for forward branches or
53 steal insns from the target of backward branches.
54
55 The TMS320C3x and C4x have three branch delay slots. When the three
56 slots are filled, the branch penalty is zero. Most insns can fill the
57 delay slots except jump insns.
58
59 Three techniques for filling delay slots have been implemented so far:
60
61 (1) `fill_simple_delay_slots' is the simplest, most efficient way
62 to fill delay slots. This pass first looks for insns which come
63 from before the branch and which are safe to execute after the
64 branch. Then it searches after the insn requiring delay slots or,
65 in the case of a branch, for insns that are after the point at
66 which the branch merges into the fallthrough code, if such a point
67 exists. When such insns are found, the branch penalty decreases
68 and no code expansion takes place.
69
70 (2) `fill_eager_delay_slots' is more complicated: it is used for
71 scheduling conditional jumps, or for scheduling jumps which cannot
72 be filled using (1). A machine need not have annulled jumps to use
73 this strategy, but it helps (by keeping more options open).
74 `fill_eager_delay_slots' tries to guess the direction the branch
75 will go; if it guesses right 100% of the time, it can reduce the
76 branch penalty as much as `fill_simple_delay_slots' does. If it
77 guesses wrong 100% of the time, it might as well schedule nops. When
78 `fill_eager_delay_slots' takes insns from the fall-through path of
79 the jump, usually there is no code expansion; when it takes insns
80 from the branch target, there is code expansion if it is not the
81 only way to reach that target.
82
83 (3) `relax_delay_slots' uses a set of rules to simplify code that
84 has been reorganized by (1) and (2). It finds cases where
85 conditional test can be eliminated, jumps can be threaded, extra
86 insns can be eliminated, etc. It is the job of (1) and (2) to do a
87 good job of scheduling locally; `relax_delay_slots' takes care of
88 making the various individual schedules work well together. It is
89 especially tuned to handle the control flow interactions of branch
90 insns. It does nothing for insns with delay slots that do not
91 branch. */
92
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "backend.h"
97 #include "target.h"
98 #include "rtl.h"
99 #include "tree.h"
100 #include "predict.h"
101 #include "memmodel.h"
102 #include "tm_p.h"
103 #include "expmed.h"
104 #include "insn-config.h"
105 #include "emit-rtl.h"
106 #include "recog.h"
107 #include "insn-attr.h"
108 #include "resource.h"
109 #include "tree-pass.h"
110
111 \f
112 /* First, some functions that were used before GCC got a control flow graph.
113 These functions are now only used here in reorg.cc, and have therefore
114 been moved here to avoid inadvertent misuse elsewhere in the compiler. */
115
116 /* Return the last label to mark the same position as LABEL. Return LABEL
117 itself if it is null or any return rtx. */
118
119 static rtx
120 skip_consecutive_labels (rtx label_or_return)
121 {
122 rtx_insn *insn;
123
124 if (label_or_return && ANY_RETURN_P (label_or_return))
125 return label_or_return;
126
127 rtx_insn *label = as_a <rtx_insn *> (label_or_return);
128
129 /* __builtin_unreachable can create a CODE_LABEL followed by a BARRIER.
130
131 Since reaching the CODE_LABEL is undefined behavior, we can return
132 any code label and we're OK at run time.
133
134 However, if we return a CODE_LABEL which leads to a shrink-wrapped
135 epilogue, but the path does not have a prologue, then we will trip
136 a sanity check in the dwarf2 cfi code which wants to verify that
137 the CFIs are all the same on the traces leading to the epilogue.
138
139 So we explicitly disallow looking through BARRIERS here. */
140 for (insn = label;
141 insn != 0 && !INSN_P (insn) && !BARRIER_P (insn);
142 insn = NEXT_INSN (insn))
143 if (LABEL_P (insn))
144 label = insn;
145
146 return label;
147 }
148 \f
149 /* Insns which have delay slots that have not yet been filled. */
150
151 static struct obstack unfilled_slots_obstack;
152 static rtx *unfilled_firstobj;
153
154 /* Define macros to refer to the first and last slot containing unfilled
155 insns. These are used because the list may move and its address
156 should be recomputed at each use. */
157
158 #define unfilled_slots_base \
159 ((rtx_insn **) obstack_base (&unfilled_slots_obstack))
160
161 #define unfilled_slots_next \
162 ((rtx_insn **) obstack_next_free (&unfilled_slots_obstack))
163
164 /* Points to the label before the end of the function, or before a
165 return insn. */
166 static rtx_code_label *function_return_label;
167 /* Likewise for a simple_return. */
168 static rtx_code_label *function_simple_return_label;
169
170 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
171 not always monotonically increase. */
172 static int *uid_to_ruid;
173
174 /* Highest valid index in `uid_to_ruid'. */
175 static int max_uid;
176
177 static int stop_search_p (rtx_insn *, int);
178 static int resource_conflicts_p (struct resources *, struct resources *);
179 static int insn_references_resource_p (rtx, struct resources *, bool);
180 static int insn_sets_resource_p (rtx, struct resources *, bool);
181 static rtx_code_label *find_end_label (rtx);
182 static rtx_insn *emit_delay_sequence (rtx_insn *, const vec<rtx_insn *> &,
183 int);
184 static void add_to_delay_list (rtx_insn *, vec<rtx_insn *> *);
185 static rtx_insn *delete_from_delay_slot (rtx_insn *);
186 static void delete_scheduled_jump (rtx_insn *);
187 static void note_delay_statistics (int, int);
188 static int get_jump_flags (const rtx_insn *, rtx);
189 static int mostly_true_jump (rtx);
190 static rtx get_branch_condition (const rtx_insn *, rtx);
191 static int condition_dominates_p (rtx, const rtx_insn *);
192 static int redirect_with_delay_slots_safe_p (rtx_insn *, rtx, rtx);
193 static int redirect_with_delay_list_safe_p (rtx_insn *, rtx,
194 const vec<rtx_insn *> &);
195 static int check_annul_list_true_false (int, const vec<rtx_insn *> &);
196 static void steal_delay_list_from_target (rtx_insn *, rtx, rtx_sequence *,
197 vec<rtx_insn *> *,
198 struct resources *,
199 struct resources *,
200 struct resources *,
201 int, int *, int *,
202 rtx *);
203 static void steal_delay_list_from_fallthrough (rtx_insn *, rtx, rtx_sequence *,
204 vec<rtx_insn *> *,
205 struct resources *,
206 struct resources *,
207 struct resources *,
208 int, int *, int *);
209 static void try_merge_delay_insns (rtx_insn *, rtx_insn *);
210 static rtx_insn *redundant_insn (rtx, rtx_insn *, const vec<rtx_insn *> &);
211 static int own_thread_p (rtx, rtx, int);
212 static void update_block (rtx_insn *, rtx_insn *);
213 static int reorg_redirect_jump (rtx_jump_insn *, rtx);
214 static void update_reg_dead_notes (rtx_insn *, rtx_insn *);
215 static void fix_reg_dead_note (rtx_insn *, rtx);
216 static void update_reg_unused_notes (rtx_insn *, rtx);
217 static void fill_simple_delay_slots (int);
218 static void fill_slots_from_thread (rtx_jump_insn *, rtx, rtx, rtx,
219 int, int, int, int,
220 int *, vec<rtx_insn *> *);
221 static void fill_eager_delay_slots (void);
222 static void relax_delay_slots (rtx_insn *);
223 static void make_return_insns (rtx_insn *);
224 \f
225 /* A wrapper around next_active_insn which takes care to return ret_rtx
226 unchanged. */
227
228 static rtx
229 first_active_target_insn (rtx insn)
230 {
231 if (ANY_RETURN_P (insn))
232 return insn;
233 return next_active_insn (as_a <rtx_insn *> (insn));
234 }
235 \f
236 /* Return true iff INSN is a simplejump, or any kind of return insn. */
237
238 static bool
239 simplejump_or_return_p (rtx insn)
240 {
241 return (JUMP_P (insn)
242 && (simplejump_p (as_a <rtx_insn *> (insn))
243 || ANY_RETURN_P (PATTERN (insn))));
244 }
245 \f
246 /* Return TRUE if this insn should stop the search for insn to fill delay
247 slots. LABELS_P indicates that labels should terminate the search.
248 In all cases, jumps terminate the search. */
249
250 static int
251 stop_search_p (rtx_insn *insn, int labels_p)
252 {
253 if (insn == 0)
254 return 1;
255
256 /* If the insn can throw an exception that is caught within the function,
257 it may effectively perform a jump from the viewpoint of the function.
258 Therefore act like for a jump. */
259 if (can_throw_internal (insn))
260 return 1;
261
262 switch (GET_CODE (insn))
263 {
264 case NOTE:
265 case CALL_INSN:
266 case DEBUG_INSN:
267 return 0;
268
269 case CODE_LABEL:
270 return labels_p;
271
272 case JUMP_INSN:
273 case BARRIER:
274 return 1;
275
276 case INSN:
277 /* OK unless it contains a delay slot or is an `asm' insn of some type.
278 We don't know anything about these. */
279 return (GET_CODE (PATTERN (insn)) == SEQUENCE
280 || GET_CODE (PATTERN (insn)) == ASM_INPUT
281 || asm_noperands (PATTERN (insn)) >= 0);
282
283 default:
284 gcc_unreachable ();
285 }
286 }
287 \f
288 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
289 resource set contains a volatile memory reference. Otherwise, return FALSE. */
290
291 static int
292 resource_conflicts_p (struct resources *res1, struct resources *res2)
293 {
294 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
295 || res1->volatil || res2->volatil)
296 return 1;
297
298 return hard_reg_set_intersect_p (res1->regs, res2->regs);
299 }
300
301 /* Return TRUE if any resource marked in RES, a `struct resources', is
302 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
303 routine is using those resources.
304
305 We compute this by computing all the resources referenced by INSN and
306 seeing if this conflicts with RES. It might be faster to directly check
307 ourselves, and this is the way it used to work, but it means duplicating
308 a large block of complex code. */
309
310 static int
311 insn_references_resource_p (rtx insn, struct resources *res,
312 bool include_delayed_effects)
313 {
314 struct resources insn_res;
315
316 CLEAR_RESOURCE (&insn_res);
317 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
318 return resource_conflicts_p (&insn_res, res);
319 }
320
321 /* Return TRUE if INSN modifies resources that are marked in RES.
322 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
323 included. */
324
325 static int
326 insn_sets_resource_p (rtx insn, struct resources *res,
327 bool include_delayed_effects)
328 {
329 struct resources insn_sets;
330
331 CLEAR_RESOURCE (&insn_sets);
332 mark_set_resources (insn, &insn_sets, 0,
333 (include_delayed_effects
334 ? MARK_SRC_DEST_CALL
335 : MARK_SRC_DEST));
336 return resource_conflicts_p (&insn_sets, res);
337 }
338 \f
339 /* Find a label at the end of the function or before a RETURN. If there
340 is none, try to make one. If that fails, returns 0.
341
342 The property of such a label is that it is placed just before the
343 epilogue or a bare RETURN insn, so that another bare RETURN can be
344 turned into a jump to the label unconditionally. In particular, the
345 label cannot be placed before a RETURN insn with a filled delay slot.
346
347 ??? There may be a problem with the current implementation. Suppose
348 we start with a bare RETURN insn and call find_end_label. It may set
349 function_return_label just before the RETURN. Suppose the machinery
350 is able to fill the delay slot of the RETURN insn afterwards. Then
351 function_return_label is no longer valid according to the property
352 described above and find_end_label will still return it unmodified.
353 Note that this is probably mitigated by the following observation:
354 once function_return_label is made, it is very likely the target of
355 a jump, so filling the delay slot of the RETURN will be much more
356 difficult.
357 KIND is either simple_return_rtx or ret_rtx, indicating which type of
358 return we're looking for. */
359
360 static rtx_code_label *
361 find_end_label (rtx kind)
362 {
363 rtx_insn *insn;
364 rtx_code_label **plabel;
365
366 if (kind == ret_rtx)
367 plabel = &function_return_label;
368 else
369 {
370 gcc_assert (kind == simple_return_rtx);
371 plabel = &function_simple_return_label;
372 }
373
374 /* If we found one previously, return it. */
375 if (*plabel)
376 return *plabel;
377
378 /* Otherwise, see if there is a label at the end of the function. If there
379 is, it must be that RETURN insns aren't needed, so that is our return
380 label and we don't have to do anything else. */
381
382 insn = get_last_insn ();
383 while (NOTE_P (insn)
384 || (NONJUMP_INSN_P (insn)
385 && (GET_CODE (PATTERN (insn)) == USE
386 || GET_CODE (PATTERN (insn)) == CLOBBER)))
387 insn = PREV_INSN (insn);
388
389 /* When a target threads its epilogue we might already have a
390 suitable return insn. If so put a label before it for the
391 function_return_label. */
392 if (BARRIER_P (insn)
393 && JUMP_P (PREV_INSN (insn))
394 && PATTERN (PREV_INSN (insn)) == kind)
395 {
396 rtx_insn *temp = PREV_INSN (PREV_INSN (insn));
397 rtx_code_label *label = gen_label_rtx ();
398 LABEL_NUSES (label) = 0;
399
400 /* Put the label before any USE insns that may precede the RETURN
401 insn. */
402 while (GET_CODE (temp) == USE)
403 temp = PREV_INSN (temp);
404
405 emit_label_after (label, temp);
406 *plabel = label;
407 }
408
409 else if (LABEL_P (insn))
410 *plabel = as_a <rtx_code_label *> (insn);
411 else
412 {
413 rtx_code_label *label = gen_label_rtx ();
414 LABEL_NUSES (label) = 0;
415 /* If the basic block reorder pass moves the return insn to
416 some other place try to locate it again and put our
417 function_return_label there. */
418 while (insn && ! (JUMP_P (insn) && (PATTERN (insn) == kind)))
419 insn = PREV_INSN (insn);
420 if (insn)
421 {
422 insn = PREV_INSN (insn);
423
424 /* Put the label before any USE insns that may precede the
425 RETURN insn. */
426 while (GET_CODE (insn) == USE)
427 insn = PREV_INSN (insn);
428
429 emit_label_after (label, insn);
430 }
431 else
432 {
433 if (targetm.have_epilogue () && ! targetm.have_return ())
434 /* The RETURN insn has its delay slot filled so we cannot
435 emit the label just before it. Since we already have
436 an epilogue and cannot emit a new RETURN, we cannot
437 emit the label at all. */
438 return NULL;
439
440 /* Otherwise, make a new label and emit a RETURN and BARRIER,
441 if needed. */
442 emit_label (label);
443 if (targetm.have_return ())
444 {
445 /* The return we make may have delay slots too. */
446 rtx_insn *pat = targetm.gen_return ();
447 rtx_insn *insn = emit_jump_insn (pat);
448 set_return_jump_label (insn);
449 emit_barrier ();
450 if (num_delay_slots (insn) > 0)
451 obstack_ptr_grow (&unfilled_slots_obstack, insn);
452 }
453 }
454 *plabel = label;
455 }
456
457 /* Show one additional use for this label so it won't go away until
458 we are done. */
459 ++LABEL_NUSES (*plabel);
460
461 return *plabel;
462 }
463 \f
464 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
465 the pattern of INSN with the SEQUENCE.
466
467 Returns the insn containing the SEQUENCE that replaces INSN. */
468
469 static rtx_insn *
470 emit_delay_sequence (rtx_insn *insn, const vec<rtx_insn *> &list, int length)
471 {
472 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
473 rtvec seqv = rtvec_alloc (length + 1);
474 rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
475 rtx_insn *seq_insn = make_insn_raw (seq);
476
477 /* If DELAY_INSN has a location, use it for SEQ_INSN. If DELAY_INSN does
478 not have a location, but one of the delayed insns does, we pick up a
479 location from there later. */
480 INSN_LOCATION (seq_insn) = INSN_LOCATION (insn);
481
482 /* Unlink INSN from the insn chain, so that we can put it into
483 the SEQUENCE. Remember where we want to emit SEQUENCE in AFTER. */
484 rtx_insn *after = PREV_INSN (insn);
485 remove_insn (insn);
486 SET_NEXT_INSN (insn) = SET_PREV_INSN (insn) = NULL;
487
488 /* Build our SEQUENCE and rebuild the insn chain. */
489 start_sequence ();
490 XVECEXP (seq, 0, 0) = emit_insn (insn);
491
492 unsigned int delay_insns = list.length ();
493 gcc_assert (delay_insns == (unsigned int) length);
494 for (unsigned int i = 0; i < delay_insns; i++)
495 {
496 rtx_insn *tem = list[i];
497 rtx note, next;
498
499 /* Show that this copy of the insn isn't deleted. */
500 tem->set_undeleted ();
501
502 /* Unlink insn from its original place, and re-emit it into
503 the sequence. */
504 SET_NEXT_INSN (tem) = SET_PREV_INSN (tem) = NULL;
505 XVECEXP (seq, 0, i + 1) = emit_insn (tem);
506
507 /* SPARC assembler, for instance, emit warning when debug info is output
508 into the delay slot. */
509 if (INSN_LOCATION (tem) && !INSN_LOCATION (seq_insn))
510 INSN_LOCATION (seq_insn) = INSN_LOCATION (tem);
511 INSN_LOCATION (tem) = 0;
512
513 for (note = REG_NOTES (tem); note; note = next)
514 {
515 next = XEXP (note, 1);
516 switch (REG_NOTE_KIND (note))
517 {
518 case REG_DEAD:
519 /* Remove any REG_DEAD notes because we can't rely on them now
520 that the insn has been moved. */
521 remove_note (tem, note);
522 break;
523
524 case REG_LABEL_OPERAND:
525 case REG_LABEL_TARGET:
526 /* Keep the label reference count up to date. */
527 if (LABEL_P (XEXP (note, 0)))
528 LABEL_NUSES (XEXP (note, 0)) ++;
529 break;
530
531 default:
532 break;
533 }
534 }
535 }
536 end_sequence ();
537
538 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
539 add_insn_after (seq_insn, after, NULL);
540
541 return seq_insn;
542 }
543
544 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
545 be in the order in which the insns are to be executed. */
546
547 static void
548 add_to_delay_list (rtx_insn *insn, vec<rtx_insn *> *delay_list)
549 {
550 /* If INSN has its block number recorded, clear it since we may
551 be moving the insn to a new block. */
552 clear_hashed_info_for_insn (insn);
553
554 delay_list->safe_push (insn);
555 }
556 \f
557 /* Delete INSN from the delay slot of the insn that it is in, which may
558 produce an insn with no delay slots. Return the new insn. */
559
560 static rtx_insn *
561 delete_from_delay_slot (rtx_insn *insn)
562 {
563 rtx_insn *trial, *seq_insn, *prev;
564 rtx_sequence *seq;
565 int i;
566 int had_barrier = 0;
567
568 /* We first must find the insn containing the SEQUENCE with INSN in its
569 delay slot. Do this by finding an insn, TRIAL, where
570 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
571
572 for (trial = insn;
573 PREV_INSN (NEXT_INSN (trial)) == trial;
574 trial = NEXT_INSN (trial))
575 ;
576
577 seq_insn = PREV_INSN (NEXT_INSN (trial));
578 seq = as_a <rtx_sequence *> (PATTERN (seq_insn));
579
580 if (NEXT_INSN (seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
581 had_barrier = 1;
582
583 /* Create a delay list consisting of all the insns other than the one
584 we are deleting (unless we were the only one). */
585 auto_vec<rtx_insn *, 5> delay_list;
586 if (seq->len () > 2)
587 for (i = 1; i < seq->len (); i++)
588 if (seq->insn (i) != insn)
589 add_to_delay_list (seq->insn (i), &delay_list);
590
591 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
592 list, and rebuild the delay list if non-empty. */
593 prev = PREV_INSN (seq_insn);
594 trial = seq->insn (0);
595 delete_related_insns (seq_insn);
596 add_insn_after (trial, prev, NULL);
597
598 /* If there was a barrier after the old SEQUENCE, remit it. */
599 if (had_barrier)
600 emit_barrier_after (trial);
601
602 /* If there are any delay insns, remit them. Otherwise clear the
603 annul flag. */
604 if (!delay_list.is_empty ())
605 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
606 else if (JUMP_P (trial))
607 INSN_ANNULLED_BRANCH_P (trial) = 0;
608
609 INSN_FROM_TARGET_P (insn) = 0;
610
611 /* Show we need to fill this insn again. */
612 obstack_ptr_grow (&unfilled_slots_obstack, trial);
613
614 return trial;
615 }
616 \f
617 /* Delete INSN, a JUMP_INSN. */
618
619 static void
620 delete_scheduled_jump (rtx_insn *insn)
621 {
622 delete_related_insns (insn);
623 }
624 \f
625 /* Counters for delay-slot filling. */
626
627 #define NUM_REORG_FUNCTIONS 2
628 #define MAX_DELAY_HISTOGRAM 3
629 #define MAX_REORG_PASSES 2
630
631 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
632
633 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
634
635 static int reorg_pass_number;
636
637 static void
638 note_delay_statistics (int slots_filled, int index)
639 {
640 num_insns_needing_delays[index][reorg_pass_number]++;
641 if (slots_filled > MAX_DELAY_HISTOGRAM)
642 slots_filled = MAX_DELAY_HISTOGRAM;
643 num_filled_delays[index][slots_filled][reorg_pass_number]++;
644 }
645 \f
646 /* Optimize the following cases:
647
648 1. When a conditional branch skips over only one instruction,
649 use an annulling branch and put that insn in the delay slot.
650 Use either a branch that annuls when the condition if true or
651 invert the test with a branch that annuls when the condition is
652 false. This saves insns, since otherwise we must copy an insn
653 from the L1 target.
654
655 (orig) (skip) (otherwise)
656 Bcc.n L1 Bcc',a L1 Bcc,a L1'
657 insn insn insn2
658 L1: L1: L1:
659 insn2 insn2 insn2
660 insn3 insn3 L1':
661 insn3
662
663 2. When a conditional branch skips over only one instruction,
664 and after that, it unconditionally branches somewhere else,
665 perform the similar optimization. This saves executing the
666 second branch in the case where the inverted condition is true.
667
668 Bcc.n L1 Bcc',a L2
669 insn insn
670 L1: L1:
671 Bra L2 Bra L2
672
673 INSN is a JUMP_INSN.
674
675 This should be expanded to skip over N insns, where N is the number
676 of delay slots required. */
677
678 static void
679 optimize_skip (rtx_jump_insn *insn, vec<rtx_insn *> *delay_list)
680 {
681 rtx_insn *trial = next_nonnote_insn (insn);
682 rtx_insn *next_trial = next_active_insn (trial);
683 int flags;
684
685 flags = get_jump_flags (insn, JUMP_LABEL (insn));
686
687 if (trial == 0
688 || !NONJUMP_INSN_P (trial)
689 || GET_CODE (PATTERN (trial)) == SEQUENCE
690 || recog_memoized (trial) < 0
691 || (! eligible_for_annul_false (insn, 0, trial, flags)
692 && ! eligible_for_annul_true (insn, 0, trial, flags))
693 || RTX_FRAME_RELATED_P (trial)
694 || can_throw_internal (trial))
695 return;
696
697 /* There are two cases where we are just executing one insn (we assume
698 here that a branch requires only one insn; this should be generalized
699 at some point): Where the branch goes around a single insn or where
700 we have one insn followed by a branch to the same label we branch to.
701 In both of these cases, inverting the jump and annulling the delay
702 slot give the same effect in fewer insns. */
703 if (next_trial == next_active_insn (JUMP_LABEL_AS_INSN (insn))
704 || (next_trial != 0
705 && simplejump_or_return_p (next_trial)
706 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)))
707 {
708 if (eligible_for_annul_false (insn, 0, trial, flags))
709 {
710 if (invert_jump (insn, JUMP_LABEL (insn), 1))
711 INSN_FROM_TARGET_P (trial) = 1;
712 else if (! eligible_for_annul_true (insn, 0, trial, flags))
713 return;
714 }
715
716 add_to_delay_list (trial, delay_list);
717 next_trial = next_active_insn (trial);
718 update_block (trial, trial);
719 delete_related_insns (trial);
720
721 /* Also, if we are targeting an unconditional
722 branch, thread our jump to the target of that branch. Don't
723 change this into a RETURN here, because it may not accept what
724 we have in the delay slot. We'll fix this up later. */
725 if (next_trial && simplejump_or_return_p (next_trial))
726 {
727 rtx target_label = JUMP_LABEL (next_trial);
728 if (ANY_RETURN_P (target_label))
729 target_label = find_end_label (target_label);
730
731 if (target_label)
732 {
733 /* Recompute the flags based on TARGET_LABEL since threading
734 the jump to TARGET_LABEL may change the direction of the
735 jump (which may change the circumstances in which the
736 delay slot is nullified). */
737 flags = get_jump_flags (insn, target_label);
738 if (eligible_for_annul_true (insn, 0, trial, flags))
739 reorg_redirect_jump (insn, target_label);
740 }
741 }
742
743 INSN_ANNULLED_BRANCH_P (insn) = 1;
744 }
745 }
746 \f
747 /* Encode and return branch direction and prediction information for
748 INSN assuming it will jump to LABEL.
749
750 Non conditional branches return no direction information and
751 are predicted as very likely taken. */
752
753 static int
754 get_jump_flags (const rtx_insn *insn, rtx label)
755 {
756 int flags;
757
758 /* get_jump_flags can be passed any insn with delay slots, these may
759 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
760 direction information, and only if they are conditional jumps.
761
762 If LABEL is a return, then there is no way to determine the branch
763 direction. */
764 if (JUMP_P (insn)
765 && (condjump_p (insn) || condjump_in_parallel_p (insn))
766 && !ANY_RETURN_P (label)
767 && INSN_UID (insn) <= max_uid
768 && INSN_UID (label) <= max_uid)
769 flags
770 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
771 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
772 /* No valid direction information. */
773 else
774 flags = 0;
775
776 return flags;
777 }
778
779 /* Return truth value of the statement that this branch
780 is mostly taken. If we think that the branch is extremely likely
781 to be taken, we return 2. If the branch is slightly more likely to be
782 taken, return 1. If the branch is slightly less likely to be taken,
783 return 0 and if the branch is highly unlikely to be taken, return -1. */
784
785 static int
786 mostly_true_jump (rtx jump_insn)
787 {
788 /* If branch probabilities are available, then use that number since it
789 always gives a correct answer. */
790 rtx note = find_reg_note (jump_insn, REG_BR_PROB, 0);
791 if (note)
792 {
793 int prob = profile_probability::from_reg_br_prob_note (XINT (note, 0))
794 .to_reg_br_prob_base ();
795
796 if (prob >= REG_BR_PROB_BASE * 9 / 10)
797 return 2;
798 else if (prob >= REG_BR_PROB_BASE / 2)
799 return 1;
800 else if (prob >= REG_BR_PROB_BASE / 10)
801 return 0;
802 else
803 return -1;
804 }
805
806 /* If there is no note, assume branches are not taken.
807 This should be rare. */
808 return 0;
809 }
810
811 /* Return the condition under which INSN will branch to TARGET. If TARGET
812 is zero, return the condition under which INSN will return. If INSN is
813 an unconditional branch, return const_true_rtx. If INSN isn't a simple
814 type of jump, or it doesn't go to TARGET, return 0. */
815
816 static rtx
817 get_branch_condition (const rtx_insn *insn, rtx target)
818 {
819 rtx pat = PATTERN (insn);
820 rtx src;
821
822 if (condjump_in_parallel_p (insn))
823 pat = XVECEXP (pat, 0, 0);
824
825 if (ANY_RETURN_P (pat) && pat == target)
826 return const_true_rtx;
827
828 if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
829 return 0;
830
831 src = SET_SRC (pat);
832 if (GET_CODE (src) == LABEL_REF && label_ref_label (src) == target)
833 return const_true_rtx;
834
835 else if (GET_CODE (src) == IF_THEN_ELSE
836 && XEXP (src, 2) == pc_rtx
837 && ((GET_CODE (XEXP (src, 1)) == LABEL_REF
838 && label_ref_label (XEXP (src, 1)) == target)
839 || (ANY_RETURN_P (XEXP (src, 1)) && XEXP (src, 1) == target)))
840 return XEXP (src, 0);
841
842 else if (GET_CODE (src) == IF_THEN_ELSE
843 && XEXP (src, 1) == pc_rtx
844 && ((GET_CODE (XEXP (src, 2)) == LABEL_REF
845 && label_ref_label (XEXP (src, 2)) == target)
846 || (ANY_RETURN_P (XEXP (src, 2)) && XEXP (src, 2) == target)))
847 {
848 enum rtx_code rev;
849 rev = reversed_comparison_code (XEXP (src, 0), insn);
850 if (rev != UNKNOWN)
851 return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
852 XEXP (XEXP (src, 0), 0),
853 XEXP (XEXP (src, 0), 1));
854 }
855
856 return 0;
857 }
858
859 /* Return nonzero if CONDITION is more strict than the condition of
860 INSN, i.e., if INSN will always branch if CONDITION is true. */
861
862 static int
863 condition_dominates_p (rtx condition, const rtx_insn *insn)
864 {
865 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
866 enum rtx_code code = GET_CODE (condition);
867 enum rtx_code other_code;
868
869 if (rtx_equal_p (condition, other_condition)
870 || other_condition == const_true_rtx)
871 return 1;
872
873 else if (condition == const_true_rtx || other_condition == 0)
874 return 0;
875
876 other_code = GET_CODE (other_condition);
877 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
878 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
879 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
880 return 0;
881
882 return comparison_dominates_p (code, other_code);
883 }
884
885 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
886 any insns already in the delay slot of JUMP. */
887
888 static int
889 redirect_with_delay_slots_safe_p (rtx_insn *jump, rtx newlabel, rtx seq)
890 {
891 int flags, i;
892 rtx_sequence *pat = as_a <rtx_sequence *> (PATTERN (seq));
893
894 /* Make sure all the delay slots of this jump would still
895 be valid after threading the jump. If they are still
896 valid, then return nonzero. */
897
898 flags = get_jump_flags (jump, newlabel);
899 for (i = 1; i < pat->len (); i++)
900 if (! (
901 #if ANNUL_IFFALSE_SLOTS
902 (INSN_ANNULLED_BRANCH_P (jump)
903 && INSN_FROM_TARGET_P (pat->insn (i)))
904 ? eligible_for_annul_false (jump, i - 1, pat->insn (i), flags) :
905 #endif
906 #if ANNUL_IFTRUE_SLOTS
907 (INSN_ANNULLED_BRANCH_P (jump)
908 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
909 ? eligible_for_annul_true (jump, i - 1, pat->insn (i), flags) :
910 #endif
911 eligible_for_delay (jump, i - 1, pat->insn (i), flags)))
912 break;
913
914 return (i == pat->len ());
915 }
916
917 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
918 any insns we wish to place in the delay slot of JUMP. */
919
920 static int
921 redirect_with_delay_list_safe_p (rtx_insn *jump, rtx newlabel,
922 const vec<rtx_insn *> &delay_list)
923 {
924 /* Make sure all the insns in DELAY_LIST would still be
925 valid after threading the jump. If they are still
926 valid, then return nonzero. */
927
928 int flags = get_jump_flags (jump, newlabel);
929 unsigned int delay_insns = delay_list.length ();
930 unsigned int i = 0;
931 for (; i < delay_insns; i++)
932 if (! (
933 #if ANNUL_IFFALSE_SLOTS
934 (INSN_ANNULLED_BRANCH_P (jump)
935 && INSN_FROM_TARGET_P (delay_list[i]))
936 ? eligible_for_annul_false (jump, i, delay_list[i], flags) :
937 #endif
938 #if ANNUL_IFTRUE_SLOTS
939 (INSN_ANNULLED_BRANCH_P (jump)
940 && ! INSN_FROM_TARGET_P (delay_list[i]))
941 ? eligible_for_annul_true (jump, i, delay_list[i], flags) :
942 #endif
943 eligible_for_delay (jump, i, delay_list[i], flags)))
944 break;
945
946 return i == delay_insns;
947 }
948
949 /* DELAY_LIST is a list of insns that have already been placed into delay
950 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
951 If not, return 0; otherwise return 1. */
952
953 static int
954 check_annul_list_true_false (int annul_true_p,
955 const vec<rtx_insn *> &delay_list)
956 {
957 rtx_insn *trial;
958 unsigned int i;
959 FOR_EACH_VEC_ELT (delay_list, i, trial)
960 if ((annul_true_p && INSN_FROM_TARGET_P (trial))
961 || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
962 return 0;
963
964 return 1;
965 }
966 \f
967 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
968 the condition tested by INSN is CONDITION and the resources shown in
969 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
970 from SEQ's delay list, in addition to whatever insns it may execute
971 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
972 needed while searching for delay slot insns. Return the concatenated
973 delay list if possible, otherwise, return 0.
974
975 SLOTS_TO_FILL is the total number of slots required by INSN, and
976 PSLOTS_FILLED points to the number filled so far (also the number of
977 insns in DELAY_LIST). It is updated with the number that have been
978 filled from the SEQUENCE, if any.
979
980 PANNUL_P points to a nonzero value if we already know that we need
981 to annul INSN. If this routine determines that annulling is needed,
982 it may set that value nonzero.
983
984 PNEW_THREAD points to a location that is to receive the place at which
985 execution should continue. */
986
987 static void
988 steal_delay_list_from_target (rtx_insn *insn, rtx condition, rtx_sequence *seq,
989 vec<rtx_insn *> *delay_list,
990 struct resources *sets,
991 struct resources *needed,
992 struct resources *other_needed,
993 int slots_to_fill, int *pslots_filled,
994 int *pannul_p, rtx *pnew_thread)
995 {
996 int slots_remaining = slots_to_fill - *pslots_filled;
997 int total_slots_filled = *pslots_filled;
998 auto_vec<rtx_insn *, 5> new_delay_list;
999 int must_annul = *pannul_p;
1000 int used_annul = 0;
1001 int i;
1002 struct resources cc_set;
1003 rtx_insn **redundant;
1004
1005 /* We can't do anything if there are more delay slots in SEQ than we
1006 can handle, or if we don't know that it will be a taken branch.
1007 We know that it will be a taken branch if it is either an unconditional
1008 branch or a conditional branch with a stricter branch condition.
1009
1010 Also, exit if the branch has more than one set, since then it is computing
1011 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1012 ??? It may be possible to move other sets into INSN in addition to
1013 moving the instructions in the delay slots.
1014
1015 We cannot steal the delay list if one of the instructions in the
1016 current delay_list modifies the condition codes and the jump in the
1017 sequence is a conditional jump. We cannot do this because we cannot
1018 change the direction of the jump because the condition codes
1019 will effect the direction of the jump in the sequence. */
1020
1021 CLEAR_RESOURCE (&cc_set);
1022
1023 rtx_insn *trial;
1024 FOR_EACH_VEC_ELT (*delay_list, i, trial)
1025 {
1026 mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
1027 if (insn_references_resource_p (seq->insn (0), &cc_set, false))
1028 return;
1029 }
1030
1031 if (XVECLEN (seq, 0) - 1 > slots_remaining
1032 || ! condition_dominates_p (condition, seq->insn (0))
1033 || ! single_set (seq->insn (0)))
1034 return;
1035
1036 /* On some targets, branches with delay slots can have a limited
1037 displacement. Give the back end a chance to tell us we can't do
1038 this. */
1039 if (! targetm.can_follow_jump (insn, seq->insn (0)))
1040 return;
1041
1042 redundant = XALLOCAVEC (rtx_insn *, XVECLEN (seq, 0));
1043 for (i = 1; i < seq->len (); i++)
1044 {
1045 rtx_insn *trial = seq->insn (i);
1046 int flags;
1047
1048 if (insn_references_resource_p (trial, sets, false)
1049 || insn_sets_resource_p (trial, needed, false)
1050 || insn_sets_resource_p (trial, sets, false)
1051 /* If TRIAL is from the fallthrough code of an annulled branch insn
1052 in SEQ, we cannot use it. */
1053 || (INSN_ANNULLED_BRANCH_P (seq->insn (0))
1054 && ! INSN_FROM_TARGET_P (trial)))
1055 return;
1056
1057 /* If this insn was already done (usually in a previous delay slot),
1058 pretend we put it in our delay slot. */
1059 redundant[i] = redundant_insn (trial, insn, new_delay_list);
1060 if (redundant[i])
1061 continue;
1062
1063 /* We will end up re-vectoring this branch, so compute flags
1064 based on jumping to the new label. */
1065 flags = get_jump_flags (insn, JUMP_LABEL (seq->insn (0)));
1066
1067 if (! must_annul
1068 && ((condition == const_true_rtx
1069 || (! insn_sets_resource_p (trial, other_needed, false)
1070 && ! may_trap_or_fault_p (PATTERN (trial)))))
1071 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1072 : (must_annul || (delay_list->is_empty () && new_delay_list.is_empty ()))
1073 && (must_annul = 1,
1074 check_annul_list_true_false (0, *delay_list)
1075 && check_annul_list_true_false (0, new_delay_list)
1076 && eligible_for_annul_false (insn, total_slots_filled,
1077 trial, flags)))
1078 {
1079 if (must_annul)
1080 {
1081 /* Frame related instructions cannot go into annulled delay
1082 slots, it messes up the dwarf info. */
1083 if (RTX_FRAME_RELATED_P (trial))
1084 return;
1085 used_annul = 1;
1086 }
1087 rtx_insn *temp = copy_delay_slot_insn (trial);
1088 INSN_FROM_TARGET_P (temp) = 1;
1089 add_to_delay_list (temp, &new_delay_list);
1090 total_slots_filled++;
1091
1092 if (--slots_remaining == 0)
1093 break;
1094 }
1095 else
1096 return;
1097 }
1098
1099 /* Record the effect of the instructions that were redundant and which
1100 we therefore decided not to copy. */
1101 for (i = 1; i < seq->len (); i++)
1102 if (redundant[i])
1103 {
1104 fix_reg_dead_note (redundant[i], insn);
1105 update_block (seq->insn (i), insn);
1106 }
1107
1108 /* Show the place to which we will be branching. */
1109 *pnew_thread = first_active_target_insn (JUMP_LABEL (seq->insn (0)));
1110
1111 /* Add any new insns to the delay list and update the count of the
1112 number of slots filled. */
1113 *pslots_filled = total_slots_filled;
1114 if (used_annul)
1115 *pannul_p = 1;
1116
1117 rtx_insn *temp;
1118 FOR_EACH_VEC_ELT (new_delay_list, i, temp)
1119 add_to_delay_list (temp, delay_list);
1120 }
1121 \f
1122 /* Similar to steal_delay_list_from_target except that SEQ is on the
1123 fallthrough path of INSN. Here we only do something if the delay insn
1124 of SEQ is an unconditional branch. In that case we steal its delay slot
1125 for INSN since unconditional branches are much easier to fill. */
1126
1127 static void
1128 steal_delay_list_from_fallthrough (rtx_insn *insn, rtx condition,
1129 rtx_sequence *seq,
1130 vec<rtx_insn *> *delay_list,
1131 struct resources *sets,
1132 struct resources *needed,
1133 struct resources *other_needed,
1134 int slots_to_fill, int *pslots_filled,
1135 int *pannul_p)
1136 {
1137 int i;
1138 int flags;
1139 int must_annul = *pannul_p;
1140 int used_annul = 0;
1141
1142 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1143
1144 /* We can't do anything if SEQ's delay insn isn't an
1145 unconditional branch. */
1146
1147 if (! simplejump_or_return_p (seq->insn (0)))
1148 return;
1149
1150 for (i = 1; i < seq->len (); i++)
1151 {
1152 rtx_insn *trial = seq->insn (i);
1153 rtx_insn *prior_insn;
1154
1155 if (insn_references_resource_p (trial, sets, false)
1156 || insn_sets_resource_p (trial, needed, false)
1157 || insn_sets_resource_p (trial, sets, false))
1158 break;
1159
1160 /* If this insn was already done, we don't need it. */
1161 if ((prior_insn = redundant_insn (trial, insn, *delay_list)))
1162 {
1163 fix_reg_dead_note (prior_insn, insn);
1164 update_block (trial, insn);
1165 delete_from_delay_slot (trial);
1166 continue;
1167 }
1168
1169 if (! must_annul
1170 && ((condition == const_true_rtx
1171 || (! insn_sets_resource_p (trial, other_needed, false)
1172 && ! may_trap_or_fault_p (PATTERN (trial)))))
1173 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1174 : (must_annul || delay_list->is_empty ()) && (must_annul = 1,
1175 check_annul_list_true_false (1, *delay_list)
1176 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1177 {
1178 if (must_annul)
1179 used_annul = 1;
1180 delete_from_delay_slot (trial);
1181 add_to_delay_list (trial, delay_list);
1182
1183 if (++(*pslots_filled) == slots_to_fill)
1184 break;
1185 }
1186 else
1187 break;
1188 }
1189
1190 if (used_annul)
1191 *pannul_p = 1;
1192 }
1193 \f
1194 /* Try merging insns starting at THREAD which match exactly the insns in
1195 INSN's delay list.
1196
1197 If all insns were matched and the insn was previously annulling, the
1198 annul bit will be cleared.
1199
1200 For each insn that is merged, if the branch is or will be non-annulling,
1201 we delete the merged insn. */
1202
1203 static void
1204 try_merge_delay_insns (rtx_insn *insn, rtx_insn *thread)
1205 {
1206 rtx_insn *trial, *next_trial;
1207 rtx_insn *delay_insn = as_a <rtx_insn *> (XVECEXP (PATTERN (insn), 0, 0));
1208 int annul_p = JUMP_P (delay_insn) && INSN_ANNULLED_BRANCH_P (delay_insn);
1209 int slot_number = 1;
1210 int num_slots = XVECLEN (PATTERN (insn), 0);
1211 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1212 struct resources set, needed, modified;
1213 auto_vec<std::pair<rtx_insn *, bool>, 10> merged_insns;
1214 int flags;
1215
1216 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1217
1218 CLEAR_RESOURCE (&needed);
1219 CLEAR_RESOURCE (&set);
1220
1221 /* If this is not an annulling branch, take into account anything needed in
1222 INSN's delay slot. This prevents two increments from being incorrectly
1223 folded into one. If we are annulling, this would be the correct
1224 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1225 will essentially disable this optimization. This method is somewhat of
1226 a kludge, but I don't see a better way.) */
1227 if (! annul_p)
1228 for (int i = 1; i < num_slots; i++)
1229 if (XVECEXP (PATTERN (insn), 0, i))
1230 mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed,
1231 true);
1232
1233 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1234 {
1235 rtx pat = PATTERN (trial);
1236 rtx oldtrial = trial;
1237
1238 next_trial = next_nonnote_insn (trial);
1239
1240 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1241 if (NONJUMP_INSN_P (trial)
1242 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1243 continue;
1244
1245 if (GET_CODE (next_to_match) == GET_CODE (trial)
1246 && ! insn_references_resource_p (trial, &set, true)
1247 && ! insn_sets_resource_p (trial, &set, true)
1248 && ! insn_sets_resource_p (trial, &needed, true)
1249 && (trial = try_split (pat, trial, 0)) != 0
1250 /* Update next_trial, in case try_split succeeded. */
1251 && (next_trial = next_nonnote_insn (trial))
1252 /* Likewise THREAD. */
1253 && (thread = oldtrial == thread ? trial : thread)
1254 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1255 /* Have to test this condition if annul condition is different
1256 from (and less restrictive than) non-annulling one. */
1257 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1258 {
1259
1260 if (! annul_p)
1261 {
1262 update_block (trial, thread);
1263 if (trial == thread)
1264 thread = next_active_insn (thread);
1265
1266 delete_related_insns (trial);
1267 INSN_FROM_TARGET_P (next_to_match) = 0;
1268 }
1269 else
1270 merged_insns.safe_push (std::pair<rtx_insn *, bool> (trial, false));
1271
1272 if (++slot_number == num_slots)
1273 break;
1274
1275 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1276 }
1277
1278 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
1279 mark_referenced_resources (trial, &needed, true);
1280 }
1281
1282 /* See if we stopped on a filled insn. If we did, try to see if its
1283 delay slots match. */
1284 if (slot_number != num_slots
1285 && trial && NONJUMP_INSN_P (trial)
1286 && GET_CODE (PATTERN (trial)) == SEQUENCE
1287 && !(JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
1288 && INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0))))
1289 {
1290 rtx_sequence *pat = as_a <rtx_sequence *> (PATTERN (trial));
1291 rtx filled_insn = XVECEXP (pat, 0, 0);
1292
1293 /* Account for resources set/needed by the filled insn. */
1294 mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
1295 mark_referenced_resources (filled_insn, &needed, true);
1296
1297 for (int i = 1; i < pat->len (); i++)
1298 {
1299 rtx_insn *dtrial = pat->insn (i);
1300
1301 CLEAR_RESOURCE (&modified);
1302 /* Account for resources set by the insn following NEXT_TO_MATCH
1303 inside INSN's delay list. */
1304 for (int j = 1; slot_number + j < num_slots; j++)
1305 mark_set_resources (XVECEXP (PATTERN (insn), 0, slot_number + j),
1306 &modified, 0, MARK_SRC_DEST_CALL);
1307 /* Account for resources set by the insn before DTRIAL and inside
1308 TRIAL's delay list. */
1309 for (int j = 1; j < i; j++)
1310 mark_set_resources (XVECEXP (pat, 0, j),
1311 &modified, 0, MARK_SRC_DEST_CALL);
1312 if (! insn_references_resource_p (dtrial, &set, true)
1313 && ! insn_sets_resource_p (dtrial, &set, true)
1314 && ! insn_sets_resource_p (dtrial, &needed, true)
1315 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1316 /* Check that DTRIAL and NEXT_TO_MATCH does not reference a
1317 resource modified between them (only dtrial is checked because
1318 next_to_match and dtrial shall to be equal in order to hit
1319 this line) */
1320 && ! insn_references_resource_p (dtrial, &modified, true)
1321 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1322 {
1323 if (! annul_p)
1324 {
1325 rtx_insn *new_rtx;
1326
1327 update_block (dtrial, thread);
1328 new_rtx = delete_from_delay_slot (dtrial);
1329 if (thread->deleted ())
1330 thread = new_rtx;
1331 INSN_FROM_TARGET_P (next_to_match) = 0;
1332 }
1333 else
1334 merged_insns.safe_push (std::pair<rtx_insn *, bool> (dtrial,
1335 true));
1336
1337 if (++slot_number == num_slots)
1338 break;
1339
1340 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1341 }
1342 else
1343 {
1344 /* Keep track of the set/referenced resources for the delay
1345 slots of any trial insns we encounter. */
1346 mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
1347 mark_referenced_resources (dtrial, &needed, true);
1348 }
1349 }
1350 }
1351
1352 /* If all insns in the delay slot have been matched and we were previously
1353 annulling the branch, we need not any more. In that case delete all the
1354 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1355 the delay list so that we know that it isn't only being used at the
1356 target. */
1357 if (slot_number == num_slots && annul_p)
1358 {
1359 unsigned int len = merged_insns.length ();
1360 for (unsigned int i = len - 1; i < len; i--)
1361 if (merged_insns[i].second)
1362 {
1363 update_block (merged_insns[i].first, thread);
1364 rtx_insn *new_rtx = delete_from_delay_slot (merged_insns[i].first);
1365 if (thread->deleted ())
1366 thread = new_rtx;
1367 }
1368 else
1369 {
1370 update_block (merged_insns[i].first, thread);
1371 delete_related_insns (merged_insns[i].first);
1372 }
1373
1374 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1375
1376 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1377 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1378 }
1379 }
1380 \f
1381 /* See if INSN is redundant with an insn in front of TARGET. Often this
1382 is called when INSN is a candidate for a delay slot of TARGET.
1383 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1384 of INSN. Often INSN will be redundant with an insn in a delay slot of
1385 some previous insn. This happens when we have a series of branches to the
1386 same label; in that case the first insn at the target might want to go
1387 into each of the delay slots.
1388
1389 If we are not careful, this routine can take up a significant fraction
1390 of the total compilation time (4%), but only wins rarely. Hence we
1391 speed this routine up by making two passes. The first pass goes back
1392 until it hits a label and sees if it finds an insn with an identical
1393 pattern. Only in this (relatively rare) event does it check for
1394 data conflicts.
1395
1396 We do not split insns we encounter. This could cause us not to find a
1397 redundant insn, but the cost of splitting seems greater than the possible
1398 gain in rare cases. */
1399
1400 static rtx_insn *
1401 redundant_insn (rtx insn, rtx_insn *target, const vec<rtx_insn *> &delay_list)
1402 {
1403 rtx target_main = target;
1404 rtx ipat = PATTERN (insn);
1405 rtx_insn *trial;
1406 rtx pat;
1407 struct resources needed, set;
1408 int i;
1409 unsigned insns_to_search;
1410
1411 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1412 are allowed to not actually assign to such a register. */
1413 if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
1414 return 0;
1415
1416 /* Scan backwards looking for a match. */
1417 for (trial = PREV_INSN (target),
1418 insns_to_search = param_max_delay_slot_insn_search;
1419 trial && insns_to_search > 0;
1420 trial = PREV_INSN (trial))
1421 {
1422 /* (use (insn))s can come immediately after a barrier if the
1423 label that used to precede them has been deleted as dead.
1424 See delete_related_insns. */
1425 if (LABEL_P (trial) || BARRIER_P (trial))
1426 return 0;
1427
1428 if (!INSN_P (trial))
1429 continue;
1430 --insns_to_search;
1431
1432 pat = PATTERN (trial);
1433 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1434 continue;
1435
1436 if (GET_CODE (trial) == DEBUG_INSN)
1437 continue;
1438
1439 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (pat))
1440 {
1441 /* Stop for a CALL and its delay slots because it is difficult to
1442 track its resource needs correctly. */
1443 if (CALL_P (seq->element (0)))
1444 return 0;
1445
1446 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1447 slots because it is difficult to track its resource needs
1448 correctly. */
1449
1450 if (INSN_SETS_ARE_DELAYED (seq->insn (0)))
1451 return 0;
1452
1453 if (INSN_REFERENCES_ARE_DELAYED (seq->insn (0)))
1454 return 0;
1455
1456 /* See if any of the insns in the delay slot match, updating
1457 resource requirements as we go. */
1458 for (i = seq->len () - 1; i > 0; i--)
1459 if (GET_CODE (seq->element (i)) == GET_CODE (insn)
1460 && rtx_equal_p (PATTERN (seq->element (i)), ipat)
1461 && ! find_reg_note (seq->element (i), REG_UNUSED, NULL_RTX))
1462 break;
1463
1464 /* If found a match, exit this loop early. */
1465 if (i > 0)
1466 break;
1467 }
1468
1469 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
1470 && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
1471 break;
1472 }
1473
1474 /* If we didn't find an insn that matches, return 0. */
1475 if (trial == 0)
1476 return 0;
1477
1478 /* See what resources this insn sets and needs. If they overlap, it
1479 can't be redundant. */
1480
1481 CLEAR_RESOURCE (&needed);
1482 CLEAR_RESOURCE (&set);
1483 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1484 mark_referenced_resources (insn, &needed, true);
1485
1486 /* If TARGET is a SEQUENCE, get the main insn. */
1487 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1488 target_main = XVECEXP (PATTERN (target), 0, 0);
1489
1490 if (resource_conflicts_p (&needed, &set)
1491 /* The insn requiring the delay may not set anything needed or set by
1492 INSN. */
1493 || insn_sets_resource_p (target_main, &needed, true)
1494 || insn_sets_resource_p (target_main, &set, true))
1495 return 0;
1496
1497 /* Insns we pass may not set either NEEDED or SET, so merge them for
1498 simpler tests. */
1499 needed.memory |= set.memory;
1500 needed.regs |= set.regs;
1501
1502 /* This insn isn't redundant if it conflicts with an insn that either is
1503 or will be in a delay slot of TARGET. */
1504
1505 unsigned int j;
1506 rtx_insn *temp;
1507 FOR_EACH_VEC_ELT (delay_list, j, temp)
1508 if (insn_sets_resource_p (temp, &needed, true))
1509 return 0;
1510
1511 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1512 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
1513 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed,
1514 true))
1515 return 0;
1516
1517 /* Scan backwards until we reach a label or an insn that uses something
1518 INSN sets or sets something insn uses or sets. */
1519
1520 for (trial = PREV_INSN (target),
1521 insns_to_search = param_max_delay_slot_insn_search;
1522 trial && !LABEL_P (trial) && insns_to_search > 0;
1523 trial = PREV_INSN (trial))
1524 {
1525 if (!INSN_P (trial))
1526 continue;
1527 --insns_to_search;
1528
1529 pat = PATTERN (trial);
1530 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1531 continue;
1532
1533 if (GET_CODE (trial) == DEBUG_INSN)
1534 continue;
1535
1536 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (pat))
1537 {
1538 bool annul_p = false;
1539 rtx_insn *control = seq->insn (0);
1540
1541 /* If this is a CALL_INSN and its delay slots, it is hard to track
1542 the resource needs properly, so give up. */
1543 if (CALL_P (control))
1544 return 0;
1545
1546 /* If this is an INSN or JUMP_INSN with delayed effects, it
1547 is hard to track the resource needs properly, so give up. */
1548
1549 if (INSN_SETS_ARE_DELAYED (control))
1550 return 0;
1551
1552 if (INSN_REFERENCES_ARE_DELAYED (control))
1553 return 0;
1554
1555 if (JUMP_P (control))
1556 annul_p = INSN_ANNULLED_BRANCH_P (control);
1557
1558 /* See if any of the insns in the delay slot match, updating
1559 resource requirements as we go. */
1560 for (i = seq->len () - 1; i > 0; i--)
1561 {
1562 rtx_insn *candidate = seq->insn (i);
1563
1564 /* If an insn will be annulled if the branch is false, it isn't
1565 considered as a possible duplicate insn. */
1566 if (rtx_equal_p (PATTERN (candidate), ipat)
1567 && ! (annul_p && INSN_FROM_TARGET_P (candidate)))
1568 {
1569 /* Show that this insn will be used in the sequel. */
1570 INSN_FROM_TARGET_P (candidate) = 0;
1571 return candidate;
1572 }
1573
1574 /* Unless this is an annulled insn from the target of a branch,
1575 we must stop if it sets anything needed or set by INSN. */
1576 if ((!annul_p || !INSN_FROM_TARGET_P (candidate))
1577 && insn_sets_resource_p (candidate, &needed, true))
1578 return 0;
1579 }
1580
1581 /* If the insn requiring the delay slot conflicts with INSN, we
1582 must stop. */
1583 if (insn_sets_resource_p (control, &needed, true))
1584 return 0;
1585 }
1586 else
1587 {
1588 /* See if TRIAL is the same as INSN. */
1589 pat = PATTERN (trial);
1590 if (rtx_equal_p (pat, ipat))
1591 return trial;
1592
1593 /* Can't go any further if TRIAL conflicts with INSN. */
1594 if (insn_sets_resource_p (trial, &needed, true))
1595 return 0;
1596 }
1597 }
1598
1599 return 0;
1600 }
1601 \f
1602 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1603 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1604 is nonzero, we are allowed to fall into this thread; otherwise, we are
1605 not.
1606
1607 If LABEL is used more than one or we pass a label other than LABEL before
1608 finding an active insn, we do not own this thread. */
1609
1610 static int
1611 own_thread_p (rtx thread, rtx label, int allow_fallthrough)
1612 {
1613 rtx_insn *active_insn;
1614 rtx_insn *insn;
1615
1616 /* We don't own the function end. */
1617 if (thread == 0 || ANY_RETURN_P (thread))
1618 return 0;
1619
1620 /* We have a non-NULL insn. */
1621 rtx_insn *thread_insn = as_a <rtx_insn *> (thread);
1622
1623 /* Get the first active insn, or THREAD_INSN, if it is an active insn. */
1624 active_insn = next_active_insn (PREV_INSN (thread_insn));
1625
1626 for (insn = thread_insn; insn != active_insn; insn = NEXT_INSN (insn))
1627 if (LABEL_P (insn)
1628 && (insn != label || LABEL_NUSES (insn) != 1))
1629 return 0;
1630
1631 if (allow_fallthrough)
1632 return 1;
1633
1634 /* Ensure that we reach a BARRIER before any insn or label. */
1635 for (insn = prev_nonnote_insn (thread_insn);
1636 insn == 0 || !BARRIER_P (insn);
1637 insn = prev_nonnote_insn (insn))
1638 if (insn == 0
1639 || LABEL_P (insn)
1640 || (NONJUMP_INSN_P (insn)
1641 && GET_CODE (PATTERN (insn)) != USE
1642 && GET_CODE (PATTERN (insn)) != CLOBBER))
1643 return 0;
1644
1645 return 1;
1646 }
1647 \f
1648 /* Called when INSN is being moved from a location near the target of a jump.
1649 We leave a marker of the form (use (INSN)) immediately in front of WHERE
1650 for mark_target_live_regs. These markers will be deleted at the end.
1651
1652 We used to try to update the live status of registers if WHERE is at
1653 the start of a basic block, but that can't work since we may remove a
1654 BARRIER in relax_delay_slots. */
1655
1656 static void
1657 update_block (rtx_insn *insn, rtx_insn *where)
1658 {
1659 emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
1660
1661 /* INSN might be making a value live in a block where it didn't use to
1662 be. So recompute liveness information for this block. */
1663 incr_ticks_for_insn (insn);
1664 }
1665
1666 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1667 the basic block containing the jump. */
1668
1669 static int
1670 reorg_redirect_jump (rtx_jump_insn *jump, rtx nlabel)
1671 {
1672 incr_ticks_for_insn (jump);
1673 return redirect_jump (jump, nlabel, 1);
1674 }
1675
1676 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1677 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1678 that reference values used in INSN. If we find one, then we move the
1679 REG_DEAD note to INSN.
1680
1681 This is needed to handle the case where a later insn (after INSN) has a
1682 REG_DEAD note for a register used by INSN, and this later insn subsequently
1683 gets moved before a CODE_LABEL because it is a redundant insn. In this
1684 case, mark_target_live_regs may be confused into thinking the register
1685 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1686
1687 static void
1688 update_reg_dead_notes (rtx_insn *insn, rtx_insn *delayed_insn)
1689 {
1690 rtx link, next;
1691 rtx_insn *p;
1692
1693 for (p = next_nonnote_insn (insn); p != delayed_insn;
1694 p = next_nonnote_insn (p))
1695 for (link = REG_NOTES (p); link; link = next)
1696 {
1697 next = XEXP (link, 1);
1698
1699 if (REG_NOTE_KIND (link) != REG_DEAD
1700 || !REG_P (XEXP (link, 0)))
1701 continue;
1702
1703 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
1704 {
1705 /* Move the REG_DEAD note from P to INSN. */
1706 remove_note (p, link);
1707 XEXP (link, 1) = REG_NOTES (insn);
1708 REG_NOTES (insn) = link;
1709 }
1710 }
1711 }
1712
1713 /* Called when an insn redundant with start_insn is deleted. If there
1714 is a REG_DEAD note for the target of start_insn between start_insn
1715 and stop_insn, then the REG_DEAD note needs to be deleted since the
1716 value no longer dies there.
1717
1718 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1719 confused into thinking the register is dead. */
1720
1721 static void
1722 fix_reg_dead_note (rtx_insn *start_insn, rtx stop_insn)
1723 {
1724 rtx link, next;
1725 rtx_insn *p;
1726
1727 for (p = next_nonnote_insn (start_insn); p != stop_insn;
1728 p = next_nonnote_insn (p))
1729 for (link = REG_NOTES (p); link; link = next)
1730 {
1731 next = XEXP (link, 1);
1732
1733 if (REG_NOTE_KIND (link) != REG_DEAD
1734 || !REG_P (XEXP (link, 0)))
1735 continue;
1736
1737 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
1738 {
1739 remove_note (p, link);
1740 return;
1741 }
1742 }
1743 }
1744
1745 /* Delete any REG_UNUSED notes that exist on INSN but not on OTHER_INSN.
1746
1747 This handles the case of udivmodXi4 instructions which optimize their
1748 output depending on whether any REG_UNUSED notes are present. We must
1749 make sure that INSN calculates as many results as OTHER_INSN does. */
1750
1751 static void
1752 update_reg_unused_notes (rtx_insn *insn, rtx other_insn)
1753 {
1754 rtx link, next;
1755
1756 for (link = REG_NOTES (insn); link; link = next)
1757 {
1758 next = XEXP (link, 1);
1759
1760 if (REG_NOTE_KIND (link) != REG_UNUSED
1761 || !REG_P (XEXP (link, 0)))
1762 continue;
1763
1764 if (!find_regno_note (other_insn, REG_UNUSED, REGNO (XEXP (link, 0))))
1765 remove_note (insn, link);
1766 }
1767 }
1768 \f
1769 static vec <rtx> sibling_labels;
1770
1771 /* Return the label before INSN, or put a new label there. If SIBLING is
1772 non-zero, it is another label associated with the new label (if any),
1773 typically the former target of the jump that will be redirected to
1774 the new label. */
1775
1776 static rtx_insn *
1777 get_label_before (rtx_insn *insn, rtx sibling)
1778 {
1779 rtx_insn *label;
1780
1781 /* Find an existing label at this point
1782 or make a new one if there is none. */
1783 label = prev_nonnote_insn (insn);
1784
1785 if (label == 0 || !LABEL_P (label))
1786 {
1787 rtx_insn *prev = PREV_INSN (insn);
1788
1789 label = gen_label_rtx ();
1790 emit_label_after (label, prev);
1791 LABEL_NUSES (label) = 0;
1792 if (sibling)
1793 {
1794 sibling_labels.safe_push (label);
1795 sibling_labels.safe_push (sibling);
1796 }
1797 }
1798 return label;
1799 }
1800
1801 /* Scan a function looking for insns that need a delay slot and find insns to
1802 put into the delay slot.
1803
1804 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
1805 as calls). We do these first since we don't want jump insns (that are
1806 easier to fill) to get the only insns that could be used for non-jump insns.
1807 When it is zero, only try to fill JUMP_INSNs.
1808
1809 When slots are filled in this manner, the insns (including the
1810 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
1811 it is possible to tell whether a delay slot has really been filled
1812 or not. `final' knows how to deal with this, by communicating
1813 through FINAL_SEQUENCE. */
1814
1815 static void
1816 fill_simple_delay_slots (int non_jumps_p)
1817 {
1818 rtx_insn *insn, *trial, *next_trial;
1819 rtx pat;
1820 int i;
1821 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
1822 struct resources needed, set;
1823 int slots_to_fill, slots_filled;
1824 auto_vec<rtx_insn *, 5> delay_list;
1825
1826 for (i = 0; i < num_unfilled_slots; i++)
1827 {
1828 int flags;
1829 /* Get the next insn to fill. If it has already had any slots assigned,
1830 we can't do anything with it. Maybe we'll improve this later. */
1831
1832 insn = unfilled_slots_base[i];
1833 if (insn == 0
1834 || insn->deleted ()
1835 || (NONJUMP_INSN_P (insn)
1836 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1837 || (JUMP_P (insn) && non_jumps_p)
1838 || (!JUMP_P (insn) && ! non_jumps_p))
1839 continue;
1840
1841 /* It may have been that this insn used to need delay slots, but
1842 now doesn't; ignore in that case. This can happen, for example,
1843 on the HP PA RISC, where the number of delay slots depends on
1844 what insns are nearby. */
1845 slots_to_fill = num_delay_slots (insn);
1846
1847 /* Some machine description have defined instructions to have
1848 delay slots only in certain circumstances which may depend on
1849 nearby insns (which change due to reorg's actions).
1850
1851 For example, the PA port normally has delay slots for unconditional
1852 jumps.
1853
1854 However, the PA port claims such jumps do not have a delay slot
1855 if they are immediate successors of certain CALL_INSNs. This
1856 allows the port to favor filling the delay slot of the call with
1857 the unconditional jump. */
1858 if (slots_to_fill == 0)
1859 continue;
1860
1861 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
1862 says how many. After initialization, first try optimizing
1863
1864 call _foo call _foo
1865 nop add %o7,.-L1,%o7
1866 b,a L1
1867 nop
1868
1869 If this case applies, the delay slot of the call is filled with
1870 the unconditional jump. This is done first to avoid having the
1871 delay slot of the call filled in the backward scan. Also, since
1872 the unconditional jump is likely to also have a delay slot, that
1873 insn must exist when it is subsequently scanned.
1874
1875 This is tried on each insn with delay slots as some machines
1876 have insns which perform calls, but are not represented as
1877 CALL_INSNs. */
1878
1879 slots_filled = 0;
1880 delay_list.truncate (0);
1881
1882 if (JUMP_P (insn))
1883 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1884 else
1885 flags = get_jump_flags (insn, NULL_RTX);
1886
1887 if ((trial = next_active_insn (insn))
1888 && JUMP_P (trial)
1889 && simplejump_p (trial)
1890 && eligible_for_delay (insn, slots_filled, trial, flags)
1891 && no_labels_between_p (insn, trial)
1892 && ! can_throw_internal (trial))
1893 {
1894 rtx_insn **tmp;
1895 slots_filled++;
1896 add_to_delay_list (trial, &delay_list);
1897
1898 /* TRIAL may have had its delay slot filled, then unfilled. When
1899 the delay slot is unfilled, TRIAL is placed back on the unfilled
1900 slots obstack. Unfortunately, it is placed on the end of the
1901 obstack, not in its original location. Therefore, we must search
1902 from entry i + 1 to the end of the unfilled slots obstack to
1903 try and find TRIAL. */
1904 tmp = &unfilled_slots_base[i + 1];
1905 while (*tmp != trial && tmp != unfilled_slots_next)
1906 tmp++;
1907
1908 /* Remove the unconditional jump from consideration for delay slot
1909 filling and unthread it. */
1910 if (*tmp == trial)
1911 *tmp = 0;
1912 {
1913 rtx_insn *next = NEXT_INSN (trial);
1914 rtx_insn *prev = PREV_INSN (trial);
1915 if (prev)
1916 SET_NEXT_INSN (prev) = next;
1917 if (next)
1918 SET_PREV_INSN (next) = prev;
1919 }
1920 }
1921
1922 /* Now, scan backwards from the insn to search for a potential
1923 delay-slot candidate. Stop searching when a label or jump is hit.
1924
1925 For each candidate, if it is to go into the delay slot (moved
1926 forward in execution sequence), it must not need or set any resources
1927 that were set by later insns and must not set any resources that
1928 are needed for those insns.
1929
1930 The delay slot insn itself sets resources unless it is a call
1931 (in which case the called routine, not the insn itself, is doing
1932 the setting). */
1933
1934 if (slots_filled < slots_to_fill)
1935 {
1936 /* If the flags register is dead after the insn, then we want to be
1937 able to accept a candidate that clobbers it. For this purpose,
1938 we need to filter the flags register during life analysis, so
1939 that it doesn't create RAW and WAW dependencies, while still
1940 creating the necessary WAR dependencies. */
1941 bool filter_flags
1942 = (slots_to_fill == 1
1943 && targetm.flags_regnum != INVALID_REGNUM
1944 && find_regno_note (insn, REG_DEAD, targetm.flags_regnum));
1945 struct resources fset;
1946 CLEAR_RESOURCE (&needed);
1947 CLEAR_RESOURCE (&set);
1948 mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
1949 if (filter_flags)
1950 {
1951 CLEAR_RESOURCE (&fset);
1952 mark_set_resources (insn, &fset, 0, MARK_SRC_DEST);
1953 }
1954 mark_referenced_resources (insn, &needed, false);
1955
1956 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
1957 trial = next_trial)
1958 {
1959 next_trial = prev_nonnote_insn (trial);
1960
1961 /* This must be an INSN or CALL_INSN. */
1962 pat = PATTERN (trial);
1963
1964 /* Stand-alone USE and CLOBBER are just for flow. */
1965 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1966 continue;
1967
1968 /* And DEBUG_INSNs never go into delay slots. */
1969 if (GET_CODE (trial) == DEBUG_INSN)
1970 continue;
1971
1972 /* Check for resource conflict first, to avoid unnecessary
1973 splitting. */
1974 if (! insn_references_resource_p (trial, &set, true)
1975 && ! insn_sets_resource_p (trial,
1976 filter_flags ? &fset : &set,
1977 true)
1978 && ! insn_sets_resource_p (trial, &needed, true)
1979 && ! can_throw_internal (trial))
1980 {
1981 trial = try_split (pat, trial, 1);
1982 next_trial = prev_nonnote_insn (trial);
1983 if (eligible_for_delay (insn, slots_filled, trial, flags))
1984 {
1985 /* In this case, we are searching backward, so if we
1986 find insns to put on the delay list, we want
1987 to put them at the head, rather than the
1988 tail, of the list. */
1989
1990 update_reg_dead_notes (trial, insn);
1991 delay_list.safe_insert (0, trial);
1992 update_block (trial, trial);
1993 delete_related_insns (trial);
1994 if (slots_to_fill == ++slots_filled)
1995 break;
1996 continue;
1997 }
1998 }
1999
2000 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2001 if (filter_flags)
2002 {
2003 mark_set_resources (trial, &fset, 0, MARK_SRC_DEST_CALL);
2004 /* If the flags register is set, then it doesn't create RAW
2005 dependencies any longer and it also doesn't create WAW
2006 dependencies since it's dead after the original insn. */
2007 if (TEST_HARD_REG_BIT (fset.regs, targetm.flags_regnum))
2008 {
2009 CLEAR_HARD_REG_BIT (needed.regs, targetm.flags_regnum);
2010 CLEAR_HARD_REG_BIT (fset.regs, targetm.flags_regnum);
2011 }
2012 }
2013 mark_referenced_resources (trial, &needed, true);
2014 }
2015 }
2016
2017 /* If all needed slots haven't been filled, we come here. */
2018
2019 /* Try to optimize case of jumping around a single insn. */
2020 if ((ANNUL_IFTRUE_SLOTS || ANNUL_IFFALSE_SLOTS)
2021 && slots_filled != slots_to_fill
2022 && delay_list.is_empty ()
2023 && JUMP_P (insn)
2024 && (condjump_p (insn) || condjump_in_parallel_p (insn))
2025 && !ANY_RETURN_P (JUMP_LABEL (insn)))
2026 {
2027 optimize_skip (as_a <rtx_jump_insn *> (insn), &delay_list);
2028 if (!delay_list.is_empty ())
2029 slots_filled += 1;
2030 }
2031
2032 /* Try to get insns from beyond the insn needing the delay slot.
2033 These insns can neither set or reference resources set in insns being
2034 skipped, cannot set resources in the insn being skipped, and, if this
2035 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2036 call might not return).
2037
2038 There used to be code which continued past the target label if
2039 we saw all uses of the target label. This code did not work,
2040 because it failed to account for some instructions which were
2041 both annulled and marked as from the target. This can happen as a
2042 result of optimize_skip. Since this code was redundant with
2043 fill_eager_delay_slots anyways, it was just deleted. */
2044
2045 if (slots_filled != slots_to_fill
2046 /* If this instruction could throw an exception which is
2047 caught in the same function, then it's not safe to fill
2048 the delay slot with an instruction from beyond this
2049 point. For example, consider:
2050
2051 int i = 2;
2052
2053 try {
2054 f();
2055 i = 3;
2056 } catch (...) {}
2057
2058 return i;
2059
2060 Even though `i' is a local variable, we must be sure not
2061 to put `i = 3' in the delay slot if `f' might throw an
2062 exception.
2063
2064 Presumably, we should also check to see if we could get
2065 back to this function via `setjmp'. */
2066 && ! can_throw_internal (insn)
2067 && !JUMP_P (insn))
2068 {
2069 int maybe_never = 0;
2070 rtx pat, trial_delay;
2071
2072 CLEAR_RESOURCE (&needed);
2073 CLEAR_RESOURCE (&set);
2074 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2075 mark_referenced_resources (insn, &needed, true);
2076
2077 if (CALL_P (insn))
2078 maybe_never = 1;
2079
2080 for (trial = next_nonnote_insn (insn); !stop_search_p (trial, 1);
2081 trial = next_trial)
2082 {
2083 next_trial = next_nonnote_insn (trial);
2084
2085 /* This must be an INSN or CALL_INSN. */
2086 pat = PATTERN (trial);
2087
2088 /* Stand-alone USE and CLOBBER are just for flow. */
2089 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2090 continue;
2091
2092 /* And DEBUG_INSNs do not go in delay slots. */
2093 if (GET_CODE (trial) == DEBUG_INSN)
2094 continue;
2095
2096 /* If this already has filled delay slots, get the insn needing
2097 the delay slots. */
2098 if (GET_CODE (pat) == SEQUENCE)
2099 trial_delay = XVECEXP (pat, 0, 0);
2100 else
2101 trial_delay = trial;
2102
2103 /* Stop our search when seeing a jump. */
2104 if (JUMP_P (trial_delay))
2105 break;
2106
2107 /* See if we have a resource problem before we try to split. */
2108 if (GET_CODE (pat) != SEQUENCE
2109 && ! insn_references_resource_p (trial, &set, true)
2110 && ! insn_sets_resource_p (trial, &set, true)
2111 && ! insn_sets_resource_p (trial, &needed, true)
2112 && ! (maybe_never && may_trap_or_fault_p (pat))
2113 && (trial = try_split (pat, trial, 0))
2114 && eligible_for_delay (insn, slots_filled, trial, flags)
2115 && ! can_throw_internal (trial))
2116 {
2117 next_trial = next_nonnote_insn (trial);
2118 add_to_delay_list (trial, &delay_list);
2119
2120 delete_related_insns (trial);
2121 if (slots_to_fill == ++slots_filled)
2122 break;
2123 continue;
2124 }
2125
2126 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2127 mark_referenced_resources (trial, &needed, true);
2128
2129 /* Ensure we don't put insns between the setting of cc and the
2130 comparison by moving a setting of cc into an earlier delay
2131 slot since these insns could clobber the condition code. */
2132 set.cc = 1;
2133
2134 /* If this is a call, we might not get here. */
2135 if (CALL_P (trial_delay))
2136 maybe_never = 1;
2137 }
2138
2139 /* If there are slots left to fill and our search was stopped by an
2140 unconditional branch, try the insn at the branch target. We can
2141 redirect the branch if it works.
2142
2143 Don't do this if the insn at the branch target is a branch. */
2144 if (slots_to_fill != slots_filled
2145 && trial
2146 && jump_to_label_p (trial)
2147 && simplejump_p (trial)
2148 && (next_trial = next_active_insn (JUMP_LABEL_AS_INSN (trial))) != 0
2149 && ! (NONJUMP_INSN_P (next_trial)
2150 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
2151 && !JUMP_P (next_trial)
2152 && ! insn_references_resource_p (next_trial, &set, true)
2153 && ! insn_sets_resource_p (next_trial, &set, true)
2154 && ! insn_sets_resource_p (next_trial, &needed, true)
2155 && ! (maybe_never && may_trap_or_fault_p (PATTERN (next_trial)))
2156 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
2157 && eligible_for_delay (insn, slots_filled, next_trial, flags)
2158 && ! can_throw_internal (trial))
2159 {
2160 /* See comment in relax_delay_slots about necessity of using
2161 next_real_nondebug_insn here. */
2162 rtx_insn *new_label = next_real_nondebug_insn (next_trial);
2163
2164 if (new_label != 0)
2165 new_label = get_label_before (new_label, JUMP_LABEL (trial));
2166 else
2167 new_label = find_end_label (simple_return_rtx);
2168
2169 if (new_label)
2170 {
2171 add_to_delay_list (copy_delay_slot_insn (next_trial),
2172 &delay_list);
2173 slots_filled++;
2174 reorg_redirect_jump (as_a <rtx_jump_insn *> (trial),
2175 new_label);
2176 }
2177 }
2178 }
2179
2180 /* If this is an unconditional jump, then try to get insns from the
2181 target of the jump. */
2182 rtx_jump_insn *jump_insn;
2183 if ((jump_insn = dyn_cast <rtx_jump_insn *> (insn))
2184 && simplejump_p (jump_insn)
2185 && slots_filled != slots_to_fill)
2186 fill_slots_from_thread (jump_insn, const_true_rtx,
2187 next_active_insn (JUMP_LABEL_AS_INSN (insn)),
2188 NULL, 1, 1, own_thread_p (JUMP_LABEL (insn),
2189 JUMP_LABEL (insn), 0),
2190 slots_to_fill, &slots_filled, &delay_list);
2191
2192 if (!delay_list.is_empty ())
2193 unfilled_slots_base[i]
2194 = emit_delay_sequence (insn, delay_list, slots_filled);
2195
2196 if (slots_to_fill == slots_filled)
2197 unfilled_slots_base[i] = 0;
2198
2199 note_delay_statistics (slots_filled, 0);
2200 }
2201 }
2202 \f
2203 /* Follow any unconditional jump at LABEL, for the purpose of redirecting JUMP;
2204 return the ultimate label reached by any such chain of jumps.
2205 Return a suitable return rtx if the chain ultimately leads to a
2206 return instruction.
2207 If LABEL is not followed by a jump, return LABEL.
2208 If the chain loops or we can't find end, return LABEL,
2209 since that tells caller to avoid changing the insn.
2210 If the returned label is obtained by following a crossing jump,
2211 set *CROSSING to true, otherwise set it to false. */
2212
2213 static rtx
2214 follow_jumps (rtx label, rtx_insn *jump, bool *crossing)
2215 {
2216 rtx_insn *insn;
2217 rtx_insn *next;
2218 int depth;
2219
2220 *crossing = false;
2221 if (ANY_RETURN_P (label))
2222 return label;
2223
2224 rtx_insn *value = as_a <rtx_insn *> (label);
2225
2226 for (depth = 0;
2227 (depth < 10
2228 && (insn = next_active_insn (value)) != 0
2229 && JUMP_P (insn)
2230 && JUMP_LABEL (insn) != NULL_RTX
2231 && ((any_uncondjump_p (insn) && onlyjump_p (insn))
2232 || ANY_RETURN_P (PATTERN (insn)))
2233 && (next = NEXT_INSN (insn))
2234 && BARRIER_P (next));
2235 depth++)
2236 {
2237 rtx this_label_or_return = JUMP_LABEL (insn);
2238
2239 /* If we have found a cycle, make the insn jump to itself. */
2240 if (this_label_or_return == label)
2241 return label;
2242
2243 /* Cannot follow returns and cannot look through tablejumps. */
2244 if (ANY_RETURN_P (this_label_or_return))
2245 return this_label_or_return;
2246
2247 rtx_insn *this_label = as_a <rtx_insn *> (this_label_or_return);
2248 if (NEXT_INSN (this_label)
2249 && JUMP_TABLE_DATA_P (NEXT_INSN (this_label)))
2250 break;
2251
2252 if (!targetm.can_follow_jump (jump, insn))
2253 break;
2254 if (!*crossing)
2255 *crossing = CROSSING_JUMP_P (jump);
2256 value = this_label;
2257 }
2258 if (depth == 10)
2259 return label;
2260 return value;
2261 }
2262
2263 /* Try to find insns to place in delay slots.
2264
2265 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2266 or is an unconditional branch if CONDITION is const_true_rtx.
2267 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2268
2269 THREAD is a flow-of-control, either the insns to be executed if the
2270 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2271
2272 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2273 to see if any potential delay slot insns set things needed there.
2274
2275 LIKELY is nonzero if it is extremely likely that the branch will be
2276 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2277 end of a loop back up to the top.
2278
2279 OWN_THREAD is true if we are the only user of the thread, i.e. it is
2280 the target of the jump when we are the only jump going there.
2281
2282 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2283 case, we can only take insns from the head of the thread for our delay
2284 slot. We then adjust the jump to point after the insns we have taken. */
2285
2286 static void
2287 fill_slots_from_thread (rtx_jump_insn *insn, rtx condition,
2288 rtx thread_or_return, rtx opposite_thread, int likely,
2289 int thread_if_true, int own_thread, int slots_to_fill,
2290 int *pslots_filled, vec<rtx_insn *> *delay_list)
2291 {
2292 rtx new_thread;
2293 struct resources opposite_needed, set, needed;
2294 rtx_insn *trial;
2295 int lose = 0;
2296 int must_annul = 0;
2297 int flags;
2298
2299 /* Validate our arguments. */
2300 gcc_assert (condition != const_true_rtx || thread_if_true);
2301 gcc_assert (own_thread || thread_if_true);
2302
2303 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2304
2305 /* If our thread is the end of subroutine, we can't get any delay
2306 insns from that. */
2307 if (thread_or_return == NULL_RTX || ANY_RETURN_P (thread_or_return))
2308 return;
2309
2310 rtx_insn *thread = as_a <rtx_insn *> (thread_or_return);
2311
2312 /* If this is an unconditional branch, nothing is needed at the
2313 opposite thread. Otherwise, compute what is needed there. */
2314 if (condition == const_true_rtx)
2315 CLEAR_RESOURCE (&opposite_needed);
2316 else
2317 mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
2318
2319 /* If the insn at THREAD can be split, do it here to avoid having to
2320 update THREAD and NEW_THREAD if it is done in the loop below. Also
2321 initialize NEW_THREAD. */
2322
2323 new_thread = thread = try_split (PATTERN (thread), thread, 0);
2324
2325 /* Scan insns at THREAD. We are looking for an insn that can be removed
2326 from THREAD (it neither sets nor references resources that were set
2327 ahead of it and it doesn't set anything needs by the insns ahead of
2328 it) and that either can be placed in an annulling insn or aren't
2329 needed at OPPOSITE_THREAD. */
2330
2331 CLEAR_RESOURCE (&needed);
2332 CLEAR_RESOURCE (&set);
2333
2334 /* Handle the flags register specially, to be able to accept a
2335 candidate that clobbers it. See also fill_simple_delay_slots. */
2336 bool filter_flags
2337 = (slots_to_fill == 1
2338 && targetm.flags_regnum != INVALID_REGNUM
2339 && find_regno_note (insn, REG_DEAD, targetm.flags_regnum));
2340 struct resources fset;
2341 struct resources flags_res;
2342 if (filter_flags)
2343 {
2344 CLEAR_RESOURCE (&fset);
2345 CLEAR_RESOURCE (&flags_res);
2346 SET_HARD_REG_BIT (flags_res.regs, targetm.flags_regnum);
2347 }
2348
2349 /* If we do not own this thread, we must stop as soon as we find
2350 something that we can't put in a delay slot, since all we can do
2351 is branch into THREAD at a later point. Therefore, labels stop
2352 the search if this is not the `true' thread. */
2353
2354 for (trial = thread;
2355 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
2356 trial = next_nonnote_insn (trial))
2357 {
2358 rtx pat, old_trial;
2359
2360 /* If we have passed a label, we no longer own this thread. */
2361 if (LABEL_P (trial))
2362 {
2363 own_thread = 0;
2364 continue;
2365 }
2366
2367 pat = PATTERN (trial);
2368 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2369 continue;
2370
2371 if (GET_CODE (trial) == DEBUG_INSN)
2372 continue;
2373
2374 /* If TRIAL conflicts with the insns ahead of it, we lose. */
2375 if (! insn_references_resource_p (trial, &set, true)
2376 && ! insn_sets_resource_p (trial, filter_flags ? &fset : &set, true)
2377 && ! insn_sets_resource_p (trial, &needed, true)
2378 /* If we're handling sets to the flags register specially, we
2379 only allow an insn into a delay-slot, if it either:
2380 - doesn't set the flags register,
2381 - the "set" of the flags register isn't used (clobbered),
2382 - insns between the delay-slot insn and the trial-insn
2383 as accounted in "set", have not affected the flags register. */
2384 && (! filter_flags
2385 || ! insn_sets_resource_p (trial, &flags_res, true)
2386 || find_regno_note (trial, REG_UNUSED, targetm.flags_regnum)
2387 || ! TEST_HARD_REG_BIT (set.regs, targetm.flags_regnum))
2388 && ! can_throw_internal (trial))
2389 {
2390 rtx_insn *prior_insn;
2391
2392 /* If TRIAL is redundant with some insn before INSN, we don't
2393 actually need to add it to the delay list; we can merely pretend
2394 we did. */
2395 if ((prior_insn = redundant_insn (trial, insn, *delay_list)))
2396 {
2397 fix_reg_dead_note (prior_insn, insn);
2398 if (own_thread)
2399 {
2400 update_block (trial, thread);
2401 if (trial == thread)
2402 {
2403 thread = next_active_insn (thread);
2404 if (new_thread == trial)
2405 new_thread = thread;
2406 }
2407
2408 delete_related_insns (trial);
2409 }
2410 else
2411 {
2412 update_reg_unused_notes (prior_insn, trial);
2413 new_thread = next_active_insn (trial);
2414 }
2415
2416 continue;
2417 }
2418
2419 /* There are two ways we can win: If TRIAL doesn't set anything
2420 needed at the opposite thread and can't trap, or if it can
2421 go into an annulled delay slot. But we want neither to copy
2422 nor to speculate frame-related insns. */
2423 if (!must_annul
2424 && ((condition == const_true_rtx
2425 && (own_thread || !RTX_FRAME_RELATED_P (trial)))
2426 || (! insn_sets_resource_p (trial, &opposite_needed, true)
2427 && ! may_trap_or_fault_p (pat)
2428 && ! RTX_FRAME_RELATED_P (trial))))
2429 {
2430 old_trial = trial;
2431 trial = try_split (pat, trial, 0);
2432 if (new_thread == old_trial)
2433 new_thread = trial;
2434 if (thread == old_trial)
2435 thread = trial;
2436 pat = PATTERN (trial);
2437 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
2438 goto winner;
2439 }
2440 else if (!RTX_FRAME_RELATED_P (trial)
2441 && ((ANNUL_IFTRUE_SLOTS && ! thread_if_true)
2442 || (ANNUL_IFFALSE_SLOTS && thread_if_true)))
2443 {
2444 old_trial = trial;
2445 trial = try_split (pat, trial, 0);
2446 if (new_thread == old_trial)
2447 new_thread = trial;
2448 if (thread == old_trial)
2449 thread = trial;
2450 pat = PATTERN (trial);
2451 if ((must_annul || delay_list->is_empty ()) && (thread_if_true
2452 ? check_annul_list_true_false (0, *delay_list)
2453 && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
2454 : check_annul_list_true_false (1, *delay_list)
2455 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
2456 {
2457 rtx_insn *temp;
2458
2459 must_annul = 1;
2460 winner:
2461
2462 /* If we own this thread, delete the insn. If this is the
2463 destination of a branch, show that a basic block status
2464 may have been updated. In any case, mark the new
2465 starting point of this thread. */
2466 if (own_thread)
2467 {
2468 rtx note;
2469
2470 update_block (trial, thread);
2471 if (trial == thread)
2472 {
2473 thread = next_active_insn (thread);
2474 if (new_thread == trial)
2475 new_thread = thread;
2476 }
2477
2478 /* We are moving this insn, not deleting it. We must
2479 temporarily increment the use count on any referenced
2480 label lest it be deleted by delete_related_insns. */
2481 for (note = REG_NOTES (trial);
2482 note != NULL_RTX;
2483 note = XEXP (note, 1))
2484 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2485 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2486 {
2487 /* REG_LABEL_OPERAND could be
2488 NOTE_INSN_DELETED_LABEL too. */
2489 if (LABEL_P (XEXP (note, 0)))
2490 LABEL_NUSES (XEXP (note, 0))++;
2491 else
2492 gcc_assert (REG_NOTE_KIND (note)
2493 == REG_LABEL_OPERAND);
2494 }
2495 if (jump_to_label_p (trial))
2496 LABEL_NUSES (JUMP_LABEL (trial))++;
2497
2498 delete_related_insns (trial);
2499
2500 for (note = REG_NOTES (trial);
2501 note != NULL_RTX;
2502 note = XEXP (note, 1))
2503 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2504 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2505 {
2506 /* REG_LABEL_OPERAND could be
2507 NOTE_INSN_DELETED_LABEL too. */
2508 if (LABEL_P (XEXP (note, 0)))
2509 LABEL_NUSES (XEXP (note, 0))--;
2510 else
2511 gcc_assert (REG_NOTE_KIND (note)
2512 == REG_LABEL_OPERAND);
2513 }
2514 if (jump_to_label_p (trial))
2515 LABEL_NUSES (JUMP_LABEL (trial))--;
2516 }
2517 else
2518 new_thread = next_active_insn (trial);
2519
2520 temp = own_thread ? trial : copy_delay_slot_insn (trial);
2521 if (thread_if_true)
2522 INSN_FROM_TARGET_P (temp) = 1;
2523
2524 add_to_delay_list (temp, delay_list);
2525
2526 if (slots_to_fill == ++(*pslots_filled))
2527 {
2528 /* Even though we have filled all the slots, we
2529 may be branching to a location that has a
2530 redundant insn. Skip any if so. */
2531 while (new_thread && ! own_thread
2532 && ! insn_sets_resource_p (new_thread, &set, true)
2533 && ! insn_sets_resource_p (new_thread, &needed,
2534 true)
2535 && ! insn_references_resource_p (new_thread,
2536 &set, true)
2537 && (prior_insn
2538 = redundant_insn (new_thread, insn,
2539 *delay_list)))
2540 {
2541 /* We know we do not own the thread, so no need
2542 to call update_block and delete_insn. */
2543 fix_reg_dead_note (prior_insn, insn);
2544 update_reg_unused_notes (prior_insn, new_thread);
2545 new_thread
2546 = next_active_insn (as_a<rtx_insn *> (new_thread));
2547 }
2548 break;
2549 }
2550
2551 continue;
2552 }
2553 }
2554 }
2555
2556 /* This insn can't go into a delay slot. */
2557 lose = 1;
2558 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2559 mark_referenced_resources (trial, &needed, true);
2560 if (filter_flags)
2561 {
2562 mark_set_resources (trial, &fset, 0, MARK_SRC_DEST_CALL);
2563
2564 /* Groups of flags-register setters with users should not
2565 affect opportunities to move flags-register-setting insns
2566 (clobbers) into the delay-slot. */
2567 CLEAR_HARD_REG_BIT (needed.regs, targetm.flags_regnum);
2568 CLEAR_HARD_REG_BIT (fset.regs, targetm.flags_regnum);
2569 }
2570
2571 /* Ensure we don't put insns between the setting of cc and the comparison
2572 by moving a setting of cc into an earlier delay slot since these insns
2573 could clobber the condition code. */
2574 set.cc = 1;
2575
2576 /* If this insn is a register-register copy and the next insn has
2577 a use of our destination, change it to use our source. That way,
2578 it will become a candidate for our delay slot the next time
2579 through this loop. This case occurs commonly in loops that
2580 scan a list.
2581
2582 We could check for more complex cases than those tested below,
2583 but it doesn't seem worth it. It might also be a good idea to try
2584 to swap the two insns. That might do better.
2585
2586 We can't do this if the next insn modifies our destination, because
2587 that would make the replacement into the insn invalid. We also can't
2588 do this if it modifies our source, because it might be an earlyclobber
2589 operand. This latter test also prevents updating the contents of
2590 a PRE_INC. We also can't do this if there's overlap of source and
2591 destination. Overlap may happen for larger-than-register-size modes. */
2592
2593 if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
2594 && REG_P (SET_SRC (pat))
2595 && REG_P (SET_DEST (pat))
2596 && !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
2597 {
2598 rtx_insn *next = next_nonnote_insn (trial);
2599
2600 if (next && NONJUMP_INSN_P (next)
2601 && GET_CODE (PATTERN (next)) != USE
2602 && ! reg_set_p (SET_DEST (pat), next)
2603 && ! reg_set_p (SET_SRC (pat), next)
2604 && reg_referenced_p (SET_DEST (pat), PATTERN (next))
2605 && ! modified_in_p (SET_DEST (pat), next))
2606 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
2607 }
2608 }
2609
2610 /* If we stopped on a branch insn that has delay slots, see if we can
2611 steal some of the insns in those slots. */
2612 if (trial && NONJUMP_INSN_P (trial)
2613 && GET_CODE (PATTERN (trial)) == SEQUENCE
2614 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
2615 {
2616 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (trial));
2617 /* If this is the `true' thread, we will want to follow the jump,
2618 so we can only do this if we have taken everything up to here. */
2619 if (thread_if_true && trial == new_thread)
2620 {
2621 steal_delay_list_from_target (insn, condition, sequence,
2622 delay_list, &set, &needed,
2623 &opposite_needed, slots_to_fill,
2624 pslots_filled, &must_annul,
2625 &new_thread);
2626 /* If we owned the thread and are told that it branched
2627 elsewhere, make sure we own the thread at the new location. */
2628 if (own_thread && trial != new_thread)
2629 own_thread = own_thread_p (new_thread, new_thread, 0);
2630 }
2631 else if (! thread_if_true)
2632 steal_delay_list_from_fallthrough (insn, condition, sequence,
2633 delay_list, &set, &needed,
2634 &opposite_needed, slots_to_fill,
2635 pslots_filled, &must_annul);
2636 }
2637
2638 /* If we haven't found anything for this delay slot and it is very
2639 likely that the branch will be taken, see if the insn at our target
2640 increments or decrements a register with an increment that does not
2641 depend on the destination register. If so, try to place the opposite
2642 arithmetic insn after the jump insn and put the arithmetic insn in the
2643 delay slot. If we can't do this, return. */
2644 if (delay_list->is_empty () && likely
2645 && new_thread && !ANY_RETURN_P (new_thread)
2646 && NONJUMP_INSN_P (new_thread)
2647 && !RTX_FRAME_RELATED_P (new_thread)
2648 && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
2649 && asm_noperands (PATTERN (new_thread)) < 0)
2650 {
2651 rtx dest;
2652 rtx src;
2653
2654 /* We know "new_thread" is an insn due to NONJUMP_INSN_P (new_thread)
2655 above. */
2656 trial = as_a <rtx_insn *> (new_thread);
2657 rtx pat = PATTERN (trial);
2658
2659 if (!NONJUMP_INSN_P (trial)
2660 || GET_CODE (pat) != SET
2661 || ! eligible_for_delay (insn, 0, trial, flags)
2662 || can_throw_internal (trial))
2663 return;
2664
2665 dest = SET_DEST (pat), src = SET_SRC (pat);
2666 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
2667 && rtx_equal_p (XEXP (src, 0), dest)
2668 && (!FLOAT_MODE_P (GET_MODE (src))
2669 || flag_unsafe_math_optimizations)
2670 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
2671 && ! side_effects_p (pat))
2672 {
2673 rtx other = XEXP (src, 1);
2674 rtx new_arith;
2675 rtx_insn *ninsn;
2676
2677 /* If this is a constant adjustment, use the same code with
2678 the negated constant. Otherwise, reverse the sense of the
2679 arithmetic. */
2680 if (CONST_INT_P (other))
2681 new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
2682 negate_rtx (GET_MODE (src), other));
2683 else
2684 new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
2685 GET_MODE (src), dest, other);
2686
2687 ninsn = emit_insn_after (gen_rtx_SET (dest, new_arith), insn);
2688
2689 if (recog_memoized (ninsn) < 0
2690 || (extract_insn (ninsn),
2691 !constrain_operands (1, get_preferred_alternatives (ninsn))))
2692 {
2693 delete_related_insns (ninsn);
2694 return;
2695 }
2696
2697 if (own_thread)
2698 {
2699 update_block (trial, thread);
2700 if (trial == thread)
2701 {
2702 thread = next_active_insn (thread);
2703 if (new_thread == trial)
2704 new_thread = thread;
2705 }
2706 delete_related_insns (trial);
2707 }
2708 else
2709 new_thread = next_active_insn (trial);
2710
2711 ninsn = own_thread ? trial : copy_delay_slot_insn (trial);
2712 if (thread_if_true)
2713 INSN_FROM_TARGET_P (ninsn) = 1;
2714
2715 add_to_delay_list (ninsn, delay_list);
2716 (*pslots_filled)++;
2717 }
2718 }
2719
2720 if (!delay_list->is_empty () && must_annul)
2721 INSN_ANNULLED_BRANCH_P (insn) = 1;
2722
2723 /* If we are to branch into the middle of this thread, find an appropriate
2724 label or make a new one if none, and redirect INSN to it. If we hit the
2725 end of the function, use the end-of-function label. */
2726 if (new_thread != thread)
2727 {
2728 rtx label;
2729 bool crossing = false;
2730
2731 gcc_assert (thread_if_true);
2732
2733 if (new_thread && simplejump_or_return_p (new_thread)
2734 && redirect_with_delay_list_safe_p (insn,
2735 JUMP_LABEL (new_thread),
2736 *delay_list))
2737 new_thread = follow_jumps (JUMP_LABEL (new_thread), insn,
2738 &crossing);
2739
2740 if (ANY_RETURN_P (new_thread))
2741 label = find_end_label (new_thread);
2742 else if (LABEL_P (new_thread))
2743 label = new_thread;
2744 else
2745 label = get_label_before (as_a <rtx_insn *> (new_thread),
2746 JUMP_LABEL (insn));
2747
2748 if (label)
2749 {
2750 reorg_redirect_jump (insn, label);
2751 if (crossing)
2752 CROSSING_JUMP_P (insn) = 1;
2753 }
2754 }
2755 }
2756 \f
2757 /* Make another attempt to find insns to place in delay slots.
2758
2759 We previously looked for insns located in front of the delay insn
2760 and, for non-jump delay insns, located behind the delay insn.
2761
2762 Here only try to schedule jump insns and try to move insns from either
2763 the target or the following insns into the delay slot. If annulling is
2764 supported, we will be likely to do this. Otherwise, we can do this only
2765 if safe. */
2766
2767 static void
2768 fill_eager_delay_slots (void)
2769 {
2770 rtx_insn *insn;
2771 int i;
2772 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2773
2774 for (i = 0; i < num_unfilled_slots; i++)
2775 {
2776 rtx condition;
2777 rtx target_label, insn_at_target;
2778 rtx_insn *fallthrough_insn;
2779 auto_vec<rtx_insn *, 5> delay_list;
2780 rtx_jump_insn *jump_insn;
2781 int own_target;
2782 int own_fallthrough;
2783 int prediction, slots_to_fill, slots_filled;
2784
2785 insn = unfilled_slots_base[i];
2786 if (insn == 0
2787 || insn->deleted ()
2788 || ! (jump_insn = dyn_cast <rtx_jump_insn *> (insn))
2789 || ! (condjump_p (jump_insn) || condjump_in_parallel_p (jump_insn)))
2790 continue;
2791
2792 slots_to_fill = num_delay_slots (jump_insn);
2793 /* Some machine description have defined instructions to have
2794 delay slots only in certain circumstances which may depend on
2795 nearby insns (which change due to reorg's actions).
2796
2797 For example, the PA port normally has delay slots for unconditional
2798 jumps.
2799
2800 However, the PA port claims such jumps do not have a delay slot
2801 if they are immediate successors of certain CALL_INSNs. This
2802 allows the port to favor filling the delay slot of the call with
2803 the unconditional jump. */
2804 if (slots_to_fill == 0)
2805 continue;
2806
2807 slots_filled = 0;
2808 target_label = JUMP_LABEL (jump_insn);
2809 condition = get_branch_condition (jump_insn, target_label);
2810
2811 if (condition == 0)
2812 continue;
2813
2814 /* Get the next active fallthrough and target insns and see if we own
2815 them. Then see whether the branch is likely true. We don't need
2816 to do a lot of this for unconditional branches. */
2817
2818 insn_at_target = first_active_target_insn (target_label);
2819 own_target = own_thread_p (target_label, target_label, 0);
2820
2821 if (condition == const_true_rtx)
2822 {
2823 own_fallthrough = 0;
2824 fallthrough_insn = 0;
2825 prediction = 2;
2826 }
2827 else
2828 {
2829 fallthrough_insn = next_active_insn (jump_insn);
2830 own_fallthrough = own_thread_p (NEXT_INSN (jump_insn), NULL_RTX, 1);
2831 prediction = mostly_true_jump (jump_insn);
2832 }
2833
2834 /* If this insn is expected to branch, first try to get insns from our
2835 target, then our fallthrough insns. If it is not expected to branch,
2836 try the other order. */
2837
2838 if (prediction > 0)
2839 {
2840 fill_slots_from_thread (jump_insn, condition, insn_at_target,
2841 fallthrough_insn, prediction == 2, 1,
2842 own_target,
2843 slots_to_fill, &slots_filled, &delay_list);
2844
2845 if (delay_list.is_empty () && own_fallthrough)
2846 {
2847 /* Even though we didn't find anything for delay slots,
2848 we might have found a redundant insn which we deleted
2849 from the thread that was filled. So we have to recompute
2850 the next insn at the target. */
2851 target_label = JUMP_LABEL (jump_insn);
2852 insn_at_target = first_active_target_insn (target_label);
2853
2854 fill_slots_from_thread (jump_insn, condition, fallthrough_insn,
2855 insn_at_target, 0, 0, own_fallthrough,
2856 slots_to_fill, &slots_filled,
2857 &delay_list);
2858 }
2859 }
2860 else
2861 {
2862 if (own_fallthrough)
2863 fill_slots_from_thread (jump_insn, condition, fallthrough_insn,
2864 insn_at_target, 0, 0, own_fallthrough,
2865 slots_to_fill, &slots_filled, &delay_list);
2866
2867 if (delay_list.is_empty ())
2868 fill_slots_from_thread (jump_insn, condition, insn_at_target,
2869 next_active_insn (insn), 0, 1, own_target,
2870 slots_to_fill, &slots_filled, &delay_list);
2871 }
2872
2873 if (!delay_list.is_empty ())
2874 unfilled_slots_base[i]
2875 = emit_delay_sequence (jump_insn, delay_list, slots_filled);
2876
2877 if (slots_to_fill == slots_filled)
2878 unfilled_slots_base[i] = 0;
2879
2880 note_delay_statistics (slots_filled, 1);
2881 }
2882 }
2883 \f
2884 static void delete_computation (rtx_insn *insn);
2885
2886 /* Recursively delete prior insns that compute the value (used only by INSN
2887 which the caller is deleting) stored in the register mentioned by NOTE
2888 which is a REG_DEAD note associated with INSN. */
2889
2890 static void
2891 delete_prior_computation (rtx note, rtx_insn *insn)
2892 {
2893 rtx_insn *our_prev;
2894 rtx reg = XEXP (note, 0);
2895
2896 for (our_prev = prev_nonnote_insn (insn);
2897 our_prev && (NONJUMP_INSN_P (our_prev)
2898 || CALL_P (our_prev));
2899 our_prev = prev_nonnote_insn (our_prev))
2900 {
2901 rtx pat = PATTERN (our_prev);
2902
2903 /* If we reach a CALL which is not calling a const function
2904 or the callee pops the arguments, then give up. */
2905 if (CALL_P (our_prev)
2906 && (! RTL_CONST_CALL_P (our_prev)
2907 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2908 break;
2909
2910 /* If we reach a SEQUENCE, it is too complex to try to
2911 do anything with it, so give up. We can be run during
2912 and after reorg, so SEQUENCE rtl can legitimately show
2913 up here. */
2914 if (GET_CODE (pat) == SEQUENCE)
2915 break;
2916
2917 if (GET_CODE (pat) == USE
2918 && NONJUMP_INSN_P (XEXP (pat, 0)))
2919 /* reorg creates USEs that look like this. We leave them
2920 alone because reorg needs them for its own purposes. */
2921 break;
2922
2923 if (reg_set_p (reg, pat))
2924 {
2925 if (side_effects_p (pat) && !CALL_P (our_prev))
2926 break;
2927
2928 if (GET_CODE (pat) == PARALLEL)
2929 {
2930 /* If we find a SET of something else, we can't
2931 delete the insn. */
2932
2933 int i;
2934
2935 for (i = 0; i < XVECLEN (pat, 0); i++)
2936 {
2937 rtx part = XVECEXP (pat, 0, i);
2938
2939 if (GET_CODE (part) == SET
2940 && SET_DEST (part) != reg)
2941 break;
2942 }
2943
2944 if (i == XVECLEN (pat, 0))
2945 delete_computation (our_prev);
2946 }
2947 else if (GET_CODE (pat) == SET
2948 && REG_P (SET_DEST (pat)))
2949 {
2950 int dest_regno = REGNO (SET_DEST (pat));
2951 int dest_endregno = END_REGNO (SET_DEST (pat));
2952 int regno = REGNO (reg);
2953 int endregno = END_REGNO (reg);
2954
2955 if (dest_regno >= regno
2956 && dest_endregno <= endregno)
2957 delete_computation (our_prev);
2958
2959 /* We may have a multi-word hard register and some, but not
2960 all, of the words of the register are needed in subsequent
2961 insns. Write REG_UNUSED notes for those parts that were not
2962 needed. */
2963 else if (dest_regno <= regno
2964 && dest_endregno >= endregno)
2965 {
2966 int i;
2967
2968 add_reg_note (our_prev, REG_UNUSED, reg);
2969
2970 for (i = dest_regno; i < dest_endregno; i++)
2971 if (! find_regno_note (our_prev, REG_UNUSED, i))
2972 break;
2973
2974 if (i == dest_endregno)
2975 delete_computation (our_prev);
2976 }
2977 }
2978
2979 break;
2980 }
2981
2982 /* If PAT references the register that dies here, it is an
2983 additional use. Hence any prior SET isn't dead. However, this
2984 insn becomes the new place for the REG_DEAD note. */
2985 if (reg_overlap_mentioned_p (reg, pat))
2986 {
2987 XEXP (note, 1) = REG_NOTES (our_prev);
2988 REG_NOTES (our_prev) = note;
2989 break;
2990 }
2991 }
2992 }
2993
2994 /* Delete INSN and recursively delete insns that compute values used only
2995 by INSN. This uses the REG_DEAD notes computed during flow analysis.
2996
2997 Look at all our REG_DEAD notes. If a previous insn does nothing other
2998 than set a register that dies in this insn, we can delete that insn
2999 as well. */
3000
3001 static void
3002 delete_computation (rtx_insn *insn)
3003 {
3004 rtx note, next;
3005
3006 for (note = REG_NOTES (insn); note; note = next)
3007 {
3008 next = XEXP (note, 1);
3009
3010 if (REG_NOTE_KIND (note) != REG_DEAD
3011 /* Verify that the REG_NOTE is legitimate. */
3012 || !REG_P (XEXP (note, 0)))
3013 continue;
3014
3015 delete_prior_computation (note, insn);
3016 }
3017
3018 delete_related_insns (insn);
3019 }
3020
3021 /* If all INSN does is set the pc, delete it,
3022 and delete the insn that set the condition codes for it
3023 if that's what the previous thing was. */
3024
3025 static void
3026 delete_jump (rtx_insn *insn)
3027 {
3028 rtx set = single_set (insn);
3029
3030 if (set && GET_CODE (SET_DEST (set)) == PC)
3031 delete_computation (insn);
3032 }
3033
3034 static rtx_insn *
3035 label_before_next_insn (rtx_insn *x, rtx scan_limit)
3036 {
3037 rtx_insn *insn = next_active_insn (x);
3038 while (insn)
3039 {
3040 insn = PREV_INSN (insn);
3041 if (insn == scan_limit || insn == NULL_RTX)
3042 return NULL;
3043 if (LABEL_P (insn))
3044 break;
3045 }
3046 return insn;
3047 }
3048
3049 /* Return TRUE if there is a NOTE_INSN_SWITCH_TEXT_SECTIONS note in between
3050 BEG and END. */
3051
3052 static bool
3053 switch_text_sections_between_p (const rtx_insn *beg, const rtx_insn *end)
3054 {
3055 const rtx_insn *p;
3056 for (p = beg; p != end; p = NEXT_INSN (p))
3057 if (NOTE_P (p) && NOTE_KIND (p) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
3058 return true;
3059 return false;
3060 }
3061
3062 \f
3063 /* Once we have tried two ways to fill a delay slot, make a pass over the
3064 code to try to improve the results and to do such things as more jump
3065 threading. */
3066
3067 static void
3068 relax_delay_slots (rtx_insn *first)
3069 {
3070 rtx_insn *insn, *next;
3071 rtx_sequence *pat;
3072 rtx_insn *delay_insn;
3073 rtx target_label;
3074
3075 /* Look at every JUMP_INSN and see if we can improve it. */
3076 for (insn = first; insn; insn = next)
3077 {
3078 rtx_insn *other, *prior_insn;
3079 bool crossing;
3080
3081 next = next_active_insn (insn);
3082
3083 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3084 the next insn, or jumps to a label that is not the last of a
3085 group of consecutive labels. */
3086 if (is_a <rtx_jump_insn *> (insn)
3087 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3088 && !ANY_RETURN_P (target_label = JUMP_LABEL (insn)))
3089 {
3090 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (insn);
3091 target_label
3092 = skip_consecutive_labels (follow_jumps (target_label, jump_insn,
3093 &crossing));
3094 if (ANY_RETURN_P (target_label))
3095 target_label = find_end_label (target_label);
3096
3097 if (target_label
3098 && next_active_insn (as_a<rtx_insn *> (target_label)) == next
3099 && ! condjump_in_parallel_p (jump_insn)
3100 && ! (next && switch_text_sections_between_p (jump_insn, next)))
3101 {
3102 rtx_insn *direct_label = as_a<rtx_insn *> (JUMP_LABEL (insn));
3103 rtx_insn *prev = prev_nonnote_insn (direct_label);
3104
3105 /* If the insn jumps over a BARRIER and is the only way to reach
3106 its target, then we need to delete the BARRIER before the jump
3107 because, otherwise, the target may end up being considered as
3108 unreachable and thus also deleted. */
3109 if (BARRIER_P (prev) && LABEL_NUSES (direct_label) == 1)
3110 {
3111 delete_related_insns (prev);
3112
3113 /* We have just removed a BARRIER, which means that the block
3114 number of the next insns has effectively been changed (see
3115 find_basic_block in resource.cc), so clear it. */
3116 clear_hashed_info_until_next_barrier (direct_label);
3117 }
3118
3119 delete_jump (jump_insn);
3120 continue;
3121 }
3122
3123 if (target_label && target_label != JUMP_LABEL (jump_insn))
3124 {
3125 reorg_redirect_jump (jump_insn, target_label);
3126 if (crossing)
3127 CROSSING_JUMP_P (jump_insn) = 1;
3128 }
3129
3130 /* See if this jump conditionally branches around an unconditional
3131 jump. If so, invert this jump and point it to the target of the
3132 second jump. Check if it's possible on the target. */
3133 if (next && simplejump_or_return_p (next)
3134 && any_condjump_p (jump_insn)
3135 && target_label
3136 && (next_active_insn (as_a<rtx_insn *> (target_label))
3137 == next_active_insn (next))
3138 && no_labels_between_p (jump_insn, next)
3139 && targetm.can_follow_jump (jump_insn, next))
3140 {
3141 rtx label = JUMP_LABEL (next);
3142
3143 /* Be careful how we do this to avoid deleting code or
3144 labels that are momentarily dead. See similar optimization
3145 in jump.cc.
3146
3147 We also need to ensure we properly handle the case when
3148 invert_jump fails. */
3149
3150 ++LABEL_NUSES (target_label);
3151 if (!ANY_RETURN_P (label))
3152 ++LABEL_NUSES (label);
3153
3154 if (invert_jump (jump_insn, label, 1))
3155 {
3156 rtx_insn *from = delete_related_insns (next);
3157
3158 /* We have just removed a BARRIER, which means that the block
3159 number of the next insns has effectively been changed (see
3160 find_basic_block in resource.cc), so clear it. */
3161 if (from)
3162 clear_hashed_info_until_next_barrier (from);
3163
3164 next = jump_insn;
3165 }
3166
3167 if (!ANY_RETURN_P (label))
3168 --LABEL_NUSES (label);
3169
3170 if (--LABEL_NUSES (target_label) == 0)
3171 delete_related_insns (target_label);
3172
3173 continue;
3174 }
3175 }
3176
3177 /* If this is an unconditional jump and the previous insn is a
3178 conditional jump, try reversing the condition of the previous
3179 insn and swapping our targets. The next pass might be able to
3180 fill the slots.
3181
3182 Don't do this if we expect the conditional branch to be true, because
3183 we would then be making the more common case longer. */
3184
3185 if (simplejump_or_return_p (insn)
3186 && (other = prev_active_insn (insn)) != 0
3187 && any_condjump_p (other)
3188 && no_labels_between_p (other, insn)
3189 && mostly_true_jump (other) < 0)
3190 {
3191 rtx other_target = JUMP_LABEL (other);
3192 target_label = JUMP_LABEL (insn);
3193
3194 if (invert_jump (as_a <rtx_jump_insn *> (other), target_label, 0))
3195 reorg_redirect_jump (as_a <rtx_jump_insn *> (insn), other_target);
3196 }
3197
3198 /* Now look only at cases where we have a filled delay slot. */
3199 if (!NONJUMP_INSN_P (insn) || GET_CODE (PATTERN (insn)) != SEQUENCE)
3200 continue;
3201
3202 pat = as_a <rtx_sequence *> (PATTERN (insn));
3203 delay_insn = pat->insn (0);
3204
3205 /* See if the first insn in the delay slot is redundant with some
3206 previous insn. Remove it from the delay slot if so; then set up
3207 to reprocess this insn. */
3208 if ((prior_insn = redundant_insn (pat->insn (1), delay_insn, vNULL)))
3209 {
3210 fix_reg_dead_note (prior_insn, insn);
3211 update_block (pat->insn (1), insn);
3212 delete_from_delay_slot (pat->insn (1));
3213 next = prev_active_insn (next);
3214 continue;
3215 }
3216
3217 /* See if we have a RETURN insn with a filled delay slot followed
3218 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3219 the first RETURN (but not its delay insn). This gives the same
3220 effect in fewer instructions.
3221
3222 Only do so if optimizing for size since this results in slower, but
3223 smaller code. */
3224 if (optimize_function_for_size_p (cfun)
3225 && ANY_RETURN_P (PATTERN (delay_insn))
3226 && next
3227 && JUMP_P (next)
3228 && PATTERN (next) == PATTERN (delay_insn))
3229 {
3230 rtx_insn *after;
3231 int i;
3232
3233 /* Delete the RETURN and just execute the delay list insns.
3234
3235 We do this by deleting the INSN containing the SEQUENCE, then
3236 re-emitting the insns separately, and then deleting the RETURN.
3237 This allows the count of the jump target to be properly
3238 decremented.
3239
3240 Note that we need to change the INSN_UID of the re-emitted insns
3241 since it is used to hash the insns for mark_target_live_regs and
3242 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3243
3244 Clear the from target bit, since these insns are no longer
3245 in delay slots. */
3246 for (i = 0; i < XVECLEN (pat, 0); i++)
3247 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3248
3249 rtx_insn *prev = PREV_INSN (insn);
3250 delete_related_insns (insn);
3251 gcc_assert (GET_CODE (pat) == SEQUENCE);
3252 add_insn_after (delay_insn, prev, NULL);
3253 after = delay_insn;
3254 for (i = 1; i < pat->len (); i++)
3255 after = emit_copy_of_insn_after (pat->insn (i), after);
3256 delete_scheduled_jump (delay_insn);
3257 continue;
3258 }
3259
3260 /* Now look only at the cases where we have a filled JUMP_INSN. */
3261 rtx_jump_insn *delay_jump_insn =
3262 dyn_cast <rtx_jump_insn *> (delay_insn);
3263 if (! delay_jump_insn || !(condjump_p (delay_jump_insn)
3264 || condjump_in_parallel_p (delay_jump_insn)))
3265 continue;
3266
3267 target_label = JUMP_LABEL (delay_jump_insn);
3268 if (target_label && ANY_RETURN_P (target_label))
3269 continue;
3270
3271 /* If this jump goes to another unconditional jump, thread it, but
3272 don't convert a jump into a RETURN here. */
3273 rtx trial = skip_consecutive_labels (follow_jumps (target_label,
3274 delay_jump_insn,
3275 &crossing));
3276 if (ANY_RETURN_P (trial))
3277 trial = find_end_label (trial);
3278
3279 if (trial && trial != target_label
3280 && redirect_with_delay_slots_safe_p (delay_jump_insn, trial, insn))
3281 {
3282 reorg_redirect_jump (delay_jump_insn, trial);
3283 target_label = trial;
3284 if (crossing)
3285 CROSSING_JUMP_P (delay_jump_insn) = 1;
3286 }
3287
3288 /* If the first insn at TARGET_LABEL is redundant with a previous
3289 insn, redirect the jump to the following insn and process again.
3290 We use next_real_nondebug_insn instead of next_active_insn so we
3291 don't skip USE-markers, or we'll end up with incorrect
3292 liveness info. */
3293 trial = next_real_nondebug_insn (target_label);
3294 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
3295 && redundant_insn (trial, insn, vNULL)
3296 && ! can_throw_internal (trial))
3297 {
3298 /* Figure out where to emit the special USE insn so we don't
3299 later incorrectly compute register live/death info. */
3300 rtx_insn *tmp = next_active_insn (as_a<rtx_insn *> (trial));
3301 if (tmp == 0)
3302 tmp = find_end_label (simple_return_rtx);
3303
3304 if (tmp)
3305 {
3306 /* Insert the special USE insn and update dataflow info.
3307 We know "trial" is an insn here as it is the output of
3308 next_real_nondebug_insn () above. */
3309 update_block (as_a <rtx_insn *> (trial), tmp);
3310
3311 /* Now emit a label before the special USE insn, and
3312 redirect our jump to the new label. */
3313 target_label = get_label_before (PREV_INSN (tmp), target_label);
3314 reorg_redirect_jump (delay_jump_insn, target_label);
3315 next = insn;
3316 continue;
3317 }
3318 }
3319
3320 /* Similarly, if it is an unconditional jump with one insn in its
3321 delay list and that insn is redundant, thread the jump. */
3322 rtx_sequence *trial_seq =
3323 trial ? dyn_cast <rtx_sequence *> (PATTERN (trial)) : NULL;
3324 if (trial_seq
3325 && trial_seq->len () == 2
3326 && JUMP_P (trial_seq->insn (0))
3327 && simplejump_or_return_p (trial_seq->insn (0))
3328 && redundant_insn (trial_seq->insn (1), insn, vNULL))
3329 {
3330 rtx temp_label = JUMP_LABEL (trial_seq->insn (0));
3331 if (ANY_RETURN_P (temp_label))
3332 temp_label = find_end_label (temp_label);
3333
3334 if (temp_label
3335 && redirect_with_delay_slots_safe_p (delay_jump_insn,
3336 temp_label, insn))
3337 {
3338 update_block (trial_seq->insn (1), insn);
3339 reorg_redirect_jump (delay_jump_insn, temp_label);
3340 next = insn;
3341 continue;
3342 }
3343 }
3344
3345 /* See if we have a simple (conditional) jump that is useless. */
3346 if (!CROSSING_JUMP_P (delay_jump_insn)
3347 && !INSN_ANNULLED_BRANCH_P (delay_jump_insn)
3348 && !condjump_in_parallel_p (delay_jump_insn)
3349 && prev_active_insn (as_a<rtx_insn *> (target_label)) == insn
3350 && !BARRIER_P (prev_nonnote_insn (as_a<rtx_insn *> (target_label))))
3351 {
3352 rtx_insn *after;
3353 int i;
3354
3355 /* All this insn does is execute its delay list and jump to the
3356 following insn. So delete the jump and just execute the delay
3357 list insns.
3358
3359 We do this by deleting the INSN containing the SEQUENCE, then
3360 re-emitting the insns separately, and then deleting the jump.
3361 This allows the count of the jump target to be properly
3362 decremented.
3363
3364 Note that we need to change the INSN_UID of the re-emitted insns
3365 since it is used to hash the insns for mark_target_live_regs and
3366 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3367
3368 Clear the from target bit, since these insns are no longer
3369 in delay slots. */
3370 for (i = 0; i < XVECLEN (pat, 0); i++)
3371 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3372
3373 rtx_insn *prev = PREV_INSN (insn);
3374 delete_related_insns (insn);
3375 gcc_assert (GET_CODE (pat) == SEQUENCE);
3376 add_insn_after (delay_jump_insn, prev, NULL);
3377 after = delay_jump_insn;
3378 for (i = 1; i < pat->len (); i++)
3379 after = emit_copy_of_insn_after (pat->insn (i), after);
3380 delete_scheduled_jump (delay_jump_insn);
3381 continue;
3382 }
3383
3384 /* See if this is an unconditional jump around a single insn which is
3385 identical to the one in its delay slot. In this case, we can just
3386 delete the branch and the insn in its delay slot. */
3387 if (next && NONJUMP_INSN_P (next)
3388 && label_before_next_insn (next, insn) == target_label
3389 && simplejump_p (insn)
3390 && XVECLEN (pat, 0) == 2
3391 && rtx_equal_p (PATTERN (next), PATTERN (pat->insn (1))))
3392 {
3393 delete_related_insns (insn);
3394 continue;
3395 }
3396
3397 /* See if this jump (with its delay slots) conditionally branches
3398 around an unconditional jump (without delay slots). If so, invert
3399 this jump and point it to the target of the second jump. We cannot
3400 do this for annulled jumps, though. Again, don't convert a jump to
3401 a RETURN here. */
3402 if (! INSN_ANNULLED_BRANCH_P (delay_jump_insn)
3403 && any_condjump_p (delay_jump_insn)
3404 && next && simplejump_or_return_p (next)
3405 && (next_active_insn (as_a<rtx_insn *> (target_label))
3406 == next_active_insn (next))
3407 && no_labels_between_p (insn, next))
3408 {
3409 rtx label = JUMP_LABEL (next);
3410 rtx old_label = JUMP_LABEL (delay_jump_insn);
3411
3412 if (ANY_RETURN_P (label))
3413 label = find_end_label (label);
3414
3415 /* find_end_label can generate a new label. Check this first. */
3416 if (label
3417 && no_labels_between_p (insn, next)
3418 && redirect_with_delay_slots_safe_p (delay_jump_insn,
3419 label, insn))
3420 {
3421 /* Be careful how we do this to avoid deleting code or labels
3422 that are momentarily dead. See similar optimization in
3423 jump.cc */
3424 if (old_label)
3425 ++LABEL_NUSES (old_label);
3426
3427 if (invert_jump (delay_jump_insn, label, 1))
3428 {
3429 /* Must update the INSN_FROM_TARGET_P bits now that
3430 the branch is reversed, so that mark_target_live_regs
3431 will handle the delay slot insn correctly. */
3432 for (int i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
3433 {
3434 rtx slot = XVECEXP (PATTERN (insn), 0, i);
3435 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
3436 }
3437
3438 /* We have just removed a BARRIER, which means that the block
3439 number of the next insns has effectively been changed (see
3440 find_basic_block in resource.cc), so clear it. */
3441 rtx_insn *from = delete_related_insns (next);
3442 if (from)
3443 clear_hashed_info_until_next_barrier (from);
3444
3445 next = insn;
3446 }
3447
3448 if (old_label && --LABEL_NUSES (old_label) == 0)
3449 delete_related_insns (old_label);
3450 continue;
3451 }
3452 }
3453
3454 /* If we own the thread opposite the way this insn branches, see if we
3455 can merge its delay slots with following insns. */
3456 if (INSN_FROM_TARGET_P (pat->insn (1))
3457 && own_thread_p (NEXT_INSN (insn), 0, 1))
3458 try_merge_delay_insns (insn, next);
3459 else if (! INSN_FROM_TARGET_P (pat->insn (1))
3460 && own_thread_p (target_label, target_label, 0))
3461 try_merge_delay_insns (insn,
3462 next_active_insn (as_a<rtx_insn *> (target_label)));
3463
3464 /* If we get here, we haven't deleted INSN. But we may have deleted
3465 NEXT, so recompute it. */
3466 next = next_active_insn (insn);
3467 }
3468 }
3469 \f
3470
3471 /* Look for filled jumps to the end of function label. We can try to convert
3472 them into RETURN insns if the insns in the delay slot are valid for the
3473 RETURN as well. */
3474
3475 static void
3476 make_return_insns (rtx_insn *first)
3477 {
3478 rtx_insn *insn;
3479 rtx_jump_insn *jump_insn;
3480 rtx real_return_label = function_return_label;
3481 rtx real_simple_return_label = function_simple_return_label;
3482 int slots, i;
3483
3484 /* See if there is a RETURN insn in the function other than the one we
3485 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3486 into a RETURN to jump to it. */
3487 for (insn = first; insn; insn = NEXT_INSN (insn))
3488 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
3489 {
3490 rtx t = get_label_before (insn, NULL_RTX);
3491 if (PATTERN (insn) == ret_rtx)
3492 real_return_label = t;
3493 else
3494 real_simple_return_label = t;
3495 break;
3496 }
3497
3498 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3499 was equal to END_OF_FUNCTION_LABEL. */
3500 if (real_return_label)
3501 LABEL_NUSES (real_return_label)++;
3502 if (real_simple_return_label)
3503 LABEL_NUSES (real_simple_return_label)++;
3504
3505 /* Clear the list of insns to fill so we can use it. */
3506 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3507
3508 for (insn = first; insn; insn = NEXT_INSN (insn))
3509 {
3510 int flags;
3511 rtx kind, real_label;
3512
3513 /* Only look at filled JUMP_INSNs that go to the end of function
3514 label. */
3515 if (!NONJUMP_INSN_P (insn))
3516 continue;
3517
3518 if (GET_CODE (PATTERN (insn)) != SEQUENCE)
3519 continue;
3520
3521 rtx_sequence *pat = as_a <rtx_sequence *> (PATTERN (insn));
3522
3523 if (!jump_to_label_p (pat->insn (0)))
3524 continue;
3525
3526 if (JUMP_LABEL (pat->insn (0)) == function_return_label)
3527 {
3528 kind = ret_rtx;
3529 real_label = real_return_label;
3530 }
3531 else if (JUMP_LABEL (pat->insn (0)) == function_simple_return_label)
3532 {
3533 kind = simple_return_rtx;
3534 real_label = real_simple_return_label;
3535 }
3536 else
3537 continue;
3538
3539 jump_insn = as_a <rtx_jump_insn *> (pat->insn (0));
3540
3541 /* If we can't make the jump into a RETURN, try to redirect it to the best
3542 RETURN and go on to the next insn. */
3543 if (!reorg_redirect_jump (jump_insn, kind))
3544 {
3545 /* Make sure redirecting the jump will not invalidate the delay
3546 slot insns. */
3547 if (redirect_with_delay_slots_safe_p (jump_insn, real_label, insn))
3548 reorg_redirect_jump (jump_insn, real_label);
3549 continue;
3550 }
3551
3552 /* See if this RETURN can accept the insns current in its delay slot.
3553 It can if it has more or an equal number of slots and the contents
3554 of each is valid. */
3555
3556 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
3557 slots = num_delay_slots (jump_insn);
3558 if (slots >= XVECLEN (pat, 0) - 1)
3559 {
3560 for (i = 1; i < XVECLEN (pat, 0); i++)
3561 if (! (
3562 #if ANNUL_IFFALSE_SLOTS
3563 (INSN_ANNULLED_BRANCH_P (jump_insn)
3564 && INSN_FROM_TARGET_P (pat->insn (i)))
3565 ? eligible_for_annul_false (jump_insn, i - 1,
3566 pat->insn (i), flags) :
3567 #endif
3568 #if ANNUL_IFTRUE_SLOTS
3569 (INSN_ANNULLED_BRANCH_P (jump_insn)
3570 && ! INSN_FROM_TARGET_P (pat->insn (i)))
3571 ? eligible_for_annul_true (jump_insn, i - 1,
3572 pat->insn (i), flags) :
3573 #endif
3574 eligible_for_delay (jump_insn, i - 1,
3575 pat->insn (i), flags)))
3576 break;
3577 }
3578 else
3579 i = 0;
3580
3581 if (i == XVECLEN (pat, 0))
3582 continue;
3583
3584 /* We have to do something with this insn. If it is an unconditional
3585 RETURN, delete the SEQUENCE and output the individual insns,
3586 followed by the RETURN. Then set things up so we try to find
3587 insns for its delay slots, if it needs some. */
3588 if (ANY_RETURN_P (PATTERN (jump_insn)))
3589 {
3590 rtx_insn *after = PREV_INSN (insn);
3591
3592 delete_related_insns (insn);
3593 insn = jump_insn;
3594 for (i = 1; i < pat->len (); i++)
3595 after = emit_copy_of_insn_after (pat->insn (i), after);
3596 add_insn_after (insn, after, NULL);
3597 emit_barrier_after (insn);
3598
3599 if (slots)
3600 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3601 }
3602 else
3603 /* It is probably more efficient to keep this with its current
3604 delay slot as a branch to a RETURN. */
3605 reorg_redirect_jump (jump_insn, real_label);
3606 }
3607
3608 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3609 new delay slots we have created. */
3610 if (real_return_label != NULL_RTX && --LABEL_NUSES (real_return_label) == 0)
3611 delete_related_insns (real_return_label);
3612 if (real_simple_return_label != NULL_RTX
3613 && --LABEL_NUSES (real_simple_return_label) == 0)
3614 delete_related_insns (real_simple_return_label);
3615
3616 fill_simple_delay_slots (1);
3617 fill_simple_delay_slots (0);
3618 }
3619 \f
3620 /* Try to find insns to place in delay slots. */
3621
3622 static void
3623 dbr_schedule (rtx_insn *first)
3624 {
3625 rtx_insn *insn, *next, *epilogue_insn = 0;
3626 int i;
3627 bool need_return_insns;
3628
3629 /* If the current function has no insns other than the prologue and
3630 epilogue, then do not try to fill any delay slots. */
3631 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
3632 return;
3633
3634 /* Find the highest INSN_UID and allocate and initialize our map from
3635 INSN_UID's to position in code. */
3636 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
3637 {
3638 if (INSN_UID (insn) > max_uid)
3639 max_uid = INSN_UID (insn);
3640 if (NOTE_P (insn)
3641 && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
3642 epilogue_insn = insn;
3643 }
3644
3645 uid_to_ruid = XNEWVEC (int, max_uid + 1);
3646 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
3647 uid_to_ruid[INSN_UID (insn)] = i;
3648
3649 /* Initialize the list of insns that need filling. */
3650 if (unfilled_firstobj == 0)
3651 {
3652 gcc_obstack_init (&unfilled_slots_obstack);
3653 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3654 }
3655
3656 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
3657 {
3658 rtx target;
3659
3660 /* Skip vector tables. We can't get attributes for them. */
3661 if (JUMP_TABLE_DATA_P (insn))
3662 continue;
3663
3664 if (JUMP_P (insn))
3665 INSN_ANNULLED_BRANCH_P (insn) = 0;
3666 INSN_FROM_TARGET_P (insn) = 0;
3667
3668 if (num_delay_slots (insn) > 0)
3669 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3670
3671 /* Ensure all jumps go to the last of a set of consecutive labels. */
3672 if (JUMP_P (insn)
3673 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3674 && !ANY_RETURN_P (JUMP_LABEL (insn))
3675 && ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
3676 != JUMP_LABEL (insn)))
3677 redirect_jump (as_a <rtx_jump_insn *> (insn), target, 1);
3678 }
3679
3680 init_resource_info (epilogue_insn);
3681
3682 /* Show we haven't computed an end-of-function label yet. */
3683 function_return_label = function_simple_return_label = NULL;
3684
3685 /* Initialize the statistics for this function. */
3686 memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
3687 memset (num_filled_delays, 0, sizeof num_filled_delays);
3688
3689 /* Now do the delay slot filling. Try everything twice in case earlier
3690 changes make more slots fillable. */
3691
3692 for (reorg_pass_number = 0;
3693 reorg_pass_number < MAX_REORG_PASSES;
3694 reorg_pass_number++)
3695 {
3696 fill_simple_delay_slots (1);
3697 fill_simple_delay_slots (0);
3698 if (!targetm.no_speculation_in_delay_slots_p ())
3699 fill_eager_delay_slots ();
3700 relax_delay_slots (first);
3701 }
3702
3703 /* If we made an end of function label, indicate that it is now
3704 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3705 If it is now unused, delete it. */
3706 if (function_return_label && --LABEL_NUSES (function_return_label) == 0)
3707 delete_related_insns (function_return_label);
3708 if (function_simple_return_label
3709 && --LABEL_NUSES (function_simple_return_label) == 0)
3710 delete_related_insns (function_simple_return_label);
3711
3712 need_return_insns = false;
3713 need_return_insns |= targetm.have_return () && function_return_label != 0;
3714 need_return_insns |= (targetm.have_simple_return ()
3715 && function_simple_return_label != 0);
3716 if (need_return_insns)
3717 make_return_insns (first);
3718
3719 /* Delete any USE insns made by update_block; subsequent passes don't need
3720 them or know how to deal with them. */
3721 for (insn = first; insn; insn = next)
3722 {
3723 next = NEXT_INSN (insn);
3724
3725 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
3726 && INSN_P (XEXP (PATTERN (insn), 0)))
3727 next = delete_related_insns (insn);
3728 }
3729
3730 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3731
3732 /* It is not clear why the line below is needed, but it does seem to be. */
3733 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3734
3735 if (dump_file)
3736 {
3737 int i, j, need_comma;
3738 int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
3739 int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
3740
3741 for (reorg_pass_number = 0;
3742 reorg_pass_number < MAX_REORG_PASSES;
3743 reorg_pass_number++)
3744 {
3745 fprintf (dump_file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
3746 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
3747 {
3748 need_comma = 0;
3749 fprintf (dump_file, ";; Reorg function #%d\n", i);
3750
3751 fprintf (dump_file, ";; %d insns needing delay slots\n;; ",
3752 num_insns_needing_delays[i][reorg_pass_number]);
3753
3754 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3755 if (num_filled_delays[i][j][reorg_pass_number])
3756 {
3757 if (need_comma)
3758 fprintf (dump_file, ", ");
3759 need_comma = 1;
3760 fprintf (dump_file, "%d got %d delays",
3761 num_filled_delays[i][j][reorg_pass_number], j);
3762 }
3763 fprintf (dump_file, "\n");
3764 }
3765 }
3766 memset (total_delay_slots, 0, sizeof total_delay_slots);
3767 memset (total_annul_slots, 0, sizeof total_annul_slots);
3768 for (insn = first; insn; insn = NEXT_INSN (insn))
3769 {
3770 if (! insn->deleted ()
3771 && NONJUMP_INSN_P (insn)
3772 && GET_CODE (PATTERN (insn)) != USE
3773 && GET_CODE (PATTERN (insn)) != CLOBBER)
3774 {
3775 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
3776 {
3777 rtx control;
3778 j = XVECLEN (PATTERN (insn), 0) - 1;
3779 if (j > MAX_DELAY_HISTOGRAM)
3780 j = MAX_DELAY_HISTOGRAM;
3781 control = XVECEXP (PATTERN (insn), 0, 0);
3782 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
3783 total_annul_slots[j]++;
3784 else
3785 total_delay_slots[j]++;
3786 }
3787 else if (num_delay_slots (insn) > 0)
3788 total_delay_slots[0]++;
3789 }
3790 }
3791 fprintf (dump_file, ";; Reorg totals: ");
3792 need_comma = 0;
3793 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3794 {
3795 if (total_delay_slots[j])
3796 {
3797 if (need_comma)
3798 fprintf (dump_file, ", ");
3799 need_comma = 1;
3800 fprintf (dump_file, "%d got %d delays", total_delay_slots[j], j);
3801 }
3802 }
3803 fprintf (dump_file, "\n");
3804
3805 if (ANNUL_IFTRUE_SLOTS || ANNUL_IFFALSE_SLOTS)
3806 {
3807 fprintf (dump_file, ";; Reorg annuls: ");
3808 need_comma = 0;
3809 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3810 {
3811 if (total_annul_slots[j])
3812 {
3813 if (need_comma)
3814 fprintf (dump_file, ", ");
3815 need_comma = 1;
3816 fprintf (dump_file, "%d got %d delays", total_annul_slots[j], j);
3817 }
3818 }
3819 fprintf (dump_file, "\n");
3820 }
3821
3822 fprintf (dump_file, "\n");
3823 }
3824
3825 if (!sibling_labels.is_empty ())
3826 {
3827 update_alignments (sibling_labels);
3828 sibling_labels.release ();
3829 }
3830
3831 free_resource_info ();
3832 free (uid_to_ruid);
3833 crtl->dbr_scheduled_p = true;
3834 }
3835 \f
3836 /* Run delay slot optimization. */
3837 static unsigned int
3838 rest_of_handle_delay_slots (void)
3839 {
3840 if (DELAY_SLOTS)
3841 dbr_schedule (get_insns ());
3842
3843 return 0;
3844 }
3845
3846 namespace {
3847
3848 const pass_data pass_data_delay_slots =
3849 {
3850 RTL_PASS, /* type */
3851 "dbr", /* name */
3852 OPTGROUP_NONE, /* optinfo_flags */
3853 TV_DBR_SCHED, /* tv_id */
3854 0, /* properties_required */
3855 0, /* properties_provided */
3856 0, /* properties_destroyed */
3857 0, /* todo_flags_start */
3858 0, /* todo_flags_finish */
3859 };
3860
3861 class pass_delay_slots : public rtl_opt_pass
3862 {
3863 public:
3864 pass_delay_slots (gcc::context *ctxt)
3865 : rtl_opt_pass (pass_data_delay_slots, ctxt)
3866 {}
3867
3868 /* opt_pass methods: */
3869 virtual bool gate (function *);
3870 virtual unsigned int execute (function *)
3871 {
3872 return rest_of_handle_delay_slots ();
3873 }
3874
3875 }; // class pass_delay_slots
3876
3877 bool
3878 pass_delay_slots::gate (function *)
3879 {
3880 /* At -O0 dataflow info isn't updated after RA. */
3881 if (DELAY_SLOTS)
3882 return optimize > 0 && flag_delayed_branch && !crtl->dbr_scheduled_p;
3883
3884 return false;
3885 }
3886
3887 } // anon namespace
3888
3889 rtl_opt_pass *
3890 make_pass_delay_slots (gcc::context *ctxt)
3891 {
3892 return new pass_delay_slots (ctxt);
3893 }
3894
3895 /* Machine dependent reorg pass. */
3896
3897 namespace {
3898
3899 const pass_data pass_data_machine_reorg =
3900 {
3901 RTL_PASS, /* type */
3902 "mach", /* name */
3903 OPTGROUP_NONE, /* optinfo_flags */
3904 TV_MACH_DEP, /* tv_id */
3905 0, /* properties_required */
3906 0, /* properties_provided */
3907 0, /* properties_destroyed */
3908 0, /* todo_flags_start */
3909 0, /* todo_flags_finish */
3910 };
3911
3912 class pass_machine_reorg : public rtl_opt_pass
3913 {
3914 public:
3915 pass_machine_reorg (gcc::context *ctxt)
3916 : rtl_opt_pass (pass_data_machine_reorg, ctxt)
3917 {}
3918
3919 /* opt_pass methods: */
3920 virtual bool gate (function *)
3921 {
3922 return targetm.machine_dependent_reorg != 0;
3923 }
3924
3925 virtual unsigned int execute (function *)
3926 {
3927 targetm.machine_dependent_reorg ();
3928 return 0;
3929 }
3930
3931 }; // class pass_machine_reorg
3932
3933 } // anon namespace
3934
3935 rtl_opt_pass *
3936 make_pass_machine_reorg (gcc::context *ctxt)
3937 {
3938 return new pass_machine_reorg (ctxt);
3939 }