]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/resource.c
c++: Handle multiple aggregate overloads [PR95319].
[thirdparty/gcc.git] / gcc / resource.c
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "memmodel.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "emit-rtl.h"
31 #include "resource.h"
32 #include "insn-attr.h"
33 #include "function-abi.h"
34
35 /* This structure is used to record liveness information at the targets or
36 fallthrough insns of branches. We will most likely need the information
37 at targets again, so save them in a hash table rather than recomputing them
38 each time. */
39
40 struct target_info
41 {
42 int uid; /* INSN_UID of target. */
43 struct target_info *next; /* Next info for same hash bucket. */
44 HARD_REG_SET live_regs; /* Registers live at target. */
45 int block; /* Basic block number containing target. */
46 int bb_tick; /* Generation count of basic block info. */
47 };
48
49 #define TARGET_HASH_PRIME 257
50
51 /* Indicates what resources are required at the beginning of the epilogue. */
52 static struct resources start_of_epilogue_needs;
53
54 /* Indicates what resources are required at function end. */
55 static struct resources end_of_function_needs;
56
57 /* Define the hash table itself. */
58 static struct target_info **target_hash_table = NULL;
59
60 /* For each basic block, we maintain a generation number of its basic
61 block info, which is updated each time we move an insn from the
62 target of a jump. This is the generation number indexed by block
63 number. */
64
65 static int *bb_ticks;
66
67 /* Marks registers possibly live at the current place being scanned by
68 mark_target_live_regs. Also used by update_live_status. */
69
70 static HARD_REG_SET current_live_regs;
71
72 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
73 Also only used by the next two functions. */
74
75 static HARD_REG_SET pending_dead_regs;
76 \f
77 static void update_live_status (rtx, const_rtx, void *);
78 static int find_basic_block (rtx_insn *, int);
79 static rtx_insn *next_insn_no_annul (rtx_insn *);
80 static rtx_insn *find_dead_or_set_registers (rtx_insn *, struct resources*,
81 rtx *, int, struct resources,
82 struct resources);
83 \f
84 /* Utility function called from mark_target_live_regs via note_stores.
85 It deadens any CLOBBERed registers and livens any SET registers. */
86
87 static void
88 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
89 {
90 int first_regno, last_regno;
91 int i;
92
93 if (!REG_P (dest)
94 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
95 return;
96
97 if (GET_CODE (dest) == SUBREG)
98 {
99 first_regno = subreg_regno (dest);
100 last_regno = first_regno + subreg_nregs (dest);
101
102 }
103 else
104 {
105 first_regno = REGNO (dest);
106 last_regno = END_REGNO (dest);
107 }
108
109 if (GET_CODE (x) == CLOBBER)
110 for (i = first_regno; i < last_regno; i++)
111 CLEAR_HARD_REG_BIT (current_live_regs, i);
112 else
113 for (i = first_regno; i < last_regno; i++)
114 {
115 SET_HARD_REG_BIT (current_live_regs, i);
116 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
117 }
118 }
119
120 /* Find the number of the basic block with correct live register
121 information that starts closest to INSN. Return -1 if we couldn't
122 find such a basic block or the beginning is more than
123 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
124 an unlimited search.
125
126 The delay slot filling code destroys the control-flow graph so,
127 instead of finding the basic block containing INSN, we search
128 backwards toward a BARRIER where the live register information is
129 correct. */
130
131 static int
132 find_basic_block (rtx_insn *insn, int search_limit)
133 {
134 /* Scan backwards to the previous BARRIER. Then see if we can find a
135 label that starts a basic block. Return the basic block number. */
136 for (insn = prev_nonnote_insn (insn);
137 insn && !BARRIER_P (insn) && search_limit != 0;
138 insn = prev_nonnote_insn (insn), --search_limit)
139 ;
140
141 /* The closest BARRIER is too far away. */
142 if (search_limit == 0)
143 return -1;
144
145 /* The start of the function. */
146 else if (insn == 0)
147 return ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index;
148
149 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
150 anything other than a CODE_LABEL or note, we can't find this code. */
151 for (insn = next_nonnote_insn (insn);
152 insn && LABEL_P (insn);
153 insn = next_nonnote_insn (insn))
154 if (BLOCK_FOR_INSN (insn))
155 return BLOCK_FOR_INSN (insn)->index;
156
157 return -1;
158 }
159 \f
160 /* Similar to next_insn, but ignores insns in the delay slots of
161 an annulled branch. */
162
163 static rtx_insn *
164 next_insn_no_annul (rtx_insn *insn)
165 {
166 if (insn)
167 {
168 /* If INSN is an annulled branch, skip any insns from the target
169 of the branch. */
170 if (JUMP_P (insn)
171 && INSN_ANNULLED_BRANCH_P (insn)
172 && NEXT_INSN (PREV_INSN (insn)) != insn)
173 {
174 rtx_insn *next = NEXT_INSN (insn);
175
176 while ((NONJUMP_INSN_P (next) || JUMP_P (next) || CALL_P (next))
177 && INSN_FROM_TARGET_P (next))
178 {
179 insn = next;
180 next = NEXT_INSN (insn);
181 }
182 }
183
184 insn = NEXT_INSN (insn);
185 if (insn && NONJUMP_INSN_P (insn)
186 && GET_CODE (PATTERN (insn)) == SEQUENCE)
187 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
188 }
189
190 return insn;
191 }
192 \f
193 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
194 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
195 is TRUE, resources used by the called routine will be included for
196 CALL_INSNs. */
197
198 void
199 mark_referenced_resources (rtx x, struct resources *res,
200 bool include_delayed_effects)
201 {
202 enum rtx_code code = GET_CODE (x);
203 int i, j;
204 unsigned int r;
205 const char *format_ptr;
206
207 /* Handle leaf items for which we set resource flags. Also, special-case
208 CALL, SET and CLOBBER operators. */
209 switch (code)
210 {
211 case CONST:
212 CASE_CONST_ANY:
213 case PC:
214 case SYMBOL_REF:
215 case LABEL_REF:
216 case DEBUG_INSN:
217 return;
218
219 case SUBREG:
220 if (!REG_P (SUBREG_REG (x)))
221 mark_referenced_resources (SUBREG_REG (x), res, false);
222 else
223 {
224 unsigned int regno = subreg_regno (x);
225 unsigned int last_regno = regno + subreg_nregs (x);
226
227 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
228 for (r = regno; r < last_regno; r++)
229 SET_HARD_REG_BIT (res->regs, r);
230 }
231 return;
232
233 case REG:
234 gcc_assert (HARD_REGISTER_P (x));
235 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
236 return;
237
238 case MEM:
239 /* If this memory shouldn't change, it really isn't referencing
240 memory. */
241 if (! MEM_READONLY_P (x))
242 res->memory = 1;
243 res->volatil |= MEM_VOLATILE_P (x);
244
245 /* Mark registers used to access memory. */
246 mark_referenced_resources (XEXP (x, 0), res, false);
247 return;
248
249 case CC0:
250 res->cc = 1;
251 return;
252
253 case UNSPEC_VOLATILE:
254 case TRAP_IF:
255 case ASM_INPUT:
256 /* Traditional asm's are always volatile. */
257 res->volatil = 1;
258 break;
259
260 case ASM_OPERANDS:
261 res->volatil |= MEM_VOLATILE_P (x);
262
263 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
264 We cannot just fall through here since then we would be confused
265 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
266 traditional asms unlike their normal usage. */
267
268 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
269 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
270 return;
271
272 case CALL:
273 /* The first operand will be a (MEM (xxx)) but doesn't really reference
274 memory. The second operand may be referenced, though. */
275 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
276 mark_referenced_resources (XEXP (x, 1), res, false);
277 return;
278
279 case SET:
280 /* Usually, the first operand of SET is set, not referenced. But
281 registers used to access memory are referenced. SET_DEST is
282 also referenced if it is a ZERO_EXTRACT. */
283
284 mark_referenced_resources (SET_SRC (x), res, false);
285
286 x = SET_DEST (x);
287 if (GET_CODE (x) == ZERO_EXTRACT
288 || GET_CODE (x) == STRICT_LOW_PART)
289 mark_referenced_resources (x, res, false);
290 else if (GET_CODE (x) == SUBREG)
291 x = SUBREG_REG (x);
292 if (MEM_P (x))
293 mark_referenced_resources (XEXP (x, 0), res, false);
294 return;
295
296 case CLOBBER:
297 return;
298
299 case CALL_INSN:
300 if (include_delayed_effects)
301 {
302 /* A CALL references memory, the frame pointer if it exists, the
303 stack pointer, any global registers and any registers given in
304 USE insns immediately in front of the CALL.
305
306 However, we may have moved some of the parameter loading insns
307 into the delay slot of this CALL. If so, the USE's for them
308 don't count and should be skipped. */
309 rtx_insn *insn = PREV_INSN (as_a <rtx_insn *> (x));
310 rtx_sequence *sequence = 0;
311 int seq_size = 0;
312 int i;
313
314 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
315 if (NEXT_INSN (insn) != x)
316 {
317 sequence = as_a <rtx_sequence *> (PATTERN (NEXT_INSN (insn)));
318 seq_size = sequence->len ();
319 gcc_assert (GET_CODE (sequence) == SEQUENCE);
320 }
321
322 res->memory = 1;
323 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
324 if (frame_pointer_needed)
325 {
326 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
327 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
328 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
329 }
330
331 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
332 if (global_regs[i])
333 SET_HARD_REG_BIT (res->regs, i);
334
335 /* Check for a REG_SETJMP. If it exists, then we must
336 assume that this call can need any register.
337
338 This is done to be more conservative about how we handle setjmp.
339 We assume that they both use and set all registers. Using all
340 registers ensures that a register will not be considered dead
341 just because it crosses a setjmp call. A register should be
342 considered dead only if the setjmp call returns nonzero. */
343 if (find_reg_note (x, REG_SETJMP, NULL))
344 SET_HARD_REG_SET (res->regs);
345
346 {
347 rtx link;
348
349 for (link = CALL_INSN_FUNCTION_USAGE (x);
350 link;
351 link = XEXP (link, 1))
352 if (GET_CODE (XEXP (link, 0)) == USE)
353 {
354 for (i = 1; i < seq_size; i++)
355 {
356 rtx slot_pat = PATTERN (sequence->element (i));
357 if (GET_CODE (slot_pat) == SET
358 && rtx_equal_p (SET_DEST (slot_pat),
359 XEXP (XEXP (link, 0), 0)))
360 break;
361 }
362 if (i >= seq_size)
363 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
364 res, false);
365 }
366 }
367 }
368
369 /* ... fall through to other INSN processing ... */
370 gcc_fallthrough ();
371
372 case INSN:
373 case JUMP_INSN:
374
375 if (GET_CODE (PATTERN (x)) == COND_EXEC)
376 /* In addition to the usual references, also consider all outputs
377 as referenced, to compensate for mark_set_resources treating
378 them as killed. This is similar to ZERO_EXTRACT / STRICT_LOW_PART
379 handling, execpt that we got a partial incidence instead of a partial
380 width. */
381 mark_set_resources (x, res, 0,
382 include_delayed_effects
383 ? MARK_SRC_DEST_CALL : MARK_SRC_DEST);
384
385 if (! include_delayed_effects
386 && INSN_REFERENCES_ARE_DELAYED (as_a <rtx_insn *> (x)))
387 return;
388
389 /* No special processing, just speed up. */
390 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
391 return;
392
393 default:
394 break;
395 }
396
397 /* Process each sub-expression and flag what it needs. */
398 format_ptr = GET_RTX_FORMAT (code);
399 for (i = 0; i < GET_RTX_LENGTH (code); i++)
400 switch (*format_ptr++)
401 {
402 case 'e':
403 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
404 break;
405
406 case 'E':
407 for (j = 0; j < XVECLEN (x, i); j++)
408 mark_referenced_resources (XVECEXP (x, i, j), res,
409 include_delayed_effects);
410 break;
411 }
412 }
413 \f
414 /* A subroutine of mark_target_live_regs. Search forward from TARGET
415 looking for registers that are set before they are used. These are dead.
416 Stop after passing a few conditional jumps, and/or a small
417 number of unconditional branches. */
418
419 static rtx_insn *
420 find_dead_or_set_registers (rtx_insn *target, struct resources *res,
421 rtx *jump_target, int jump_count,
422 struct resources set, struct resources needed)
423 {
424 HARD_REG_SET scratch;
425 rtx_insn *insn;
426 rtx_insn *next_insn;
427 rtx_insn *jump_insn = 0;
428 int i;
429
430 for (insn = target; insn; insn = next_insn)
431 {
432 rtx_insn *this_insn = insn;
433
434 next_insn = NEXT_INSN (insn);
435
436 /* If this instruction can throw an exception, then we don't
437 know where we might end up next. That means that we have to
438 assume that whatever we have already marked as live really is
439 live. */
440 if (can_throw_internal (insn))
441 break;
442
443 switch (GET_CODE (insn))
444 {
445 case CODE_LABEL:
446 /* After a label, any pending dead registers that weren't yet
447 used can be made dead. */
448 pending_dead_regs &= ~needed.regs;
449 res->regs &= ~pending_dead_regs;
450 CLEAR_HARD_REG_SET (pending_dead_regs);
451
452 continue;
453
454 case BARRIER:
455 case NOTE:
456 case DEBUG_INSN:
457 continue;
458
459 case INSN:
460 if (GET_CODE (PATTERN (insn)) == USE)
461 {
462 /* If INSN is a USE made by update_block, we care about the
463 underlying insn. Any registers set by the underlying insn
464 are live since the insn is being done somewhere else. */
465 if (INSN_P (XEXP (PATTERN (insn), 0)))
466 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
467 MARK_SRC_DEST_CALL);
468
469 /* All other USE insns are to be ignored. */
470 continue;
471 }
472 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
473 continue;
474 else if (rtx_sequence *seq =
475 dyn_cast <rtx_sequence *> (PATTERN (insn)))
476 {
477 /* An unconditional jump can be used to fill the delay slot
478 of a call, so search for a JUMP_INSN in any position. */
479 for (i = 0; i < seq->len (); i++)
480 {
481 this_insn = seq->insn (i);
482 if (JUMP_P (this_insn))
483 break;
484 }
485 }
486
487 default:
488 break;
489 }
490
491 if (rtx_jump_insn *this_jump_insn =
492 dyn_cast <rtx_jump_insn *> (this_insn))
493 {
494 if (jump_count++ < 10)
495 {
496 if (any_uncondjump_p (this_jump_insn)
497 || ANY_RETURN_P (PATTERN (this_jump_insn)))
498 {
499 rtx lab_or_return = this_jump_insn->jump_label ();
500 if (ANY_RETURN_P (lab_or_return))
501 next_insn = NULL;
502 else
503 next_insn = as_a <rtx_insn *> (lab_or_return);
504 if (jump_insn == 0)
505 {
506 jump_insn = insn;
507 if (jump_target)
508 *jump_target = JUMP_LABEL (this_jump_insn);
509 }
510 }
511 else if (any_condjump_p (this_jump_insn))
512 {
513 struct resources target_set, target_res;
514 struct resources fallthrough_res;
515
516 /* We can handle conditional branches here by following
517 both paths, and then IOR the results of the two paths
518 together, which will give us registers that are dead
519 on both paths. Since this is expensive, we give it
520 a much higher cost than unconditional branches. The
521 cost was chosen so that we will follow at most 1
522 conditional branch. */
523
524 jump_count += 4;
525 if (jump_count >= 10)
526 break;
527
528 mark_referenced_resources (insn, &needed, true);
529
530 /* For an annulled branch, mark_set_resources ignores slots
531 filled by instructions from the target. This is correct
532 if the branch is not taken. Since we are following both
533 paths from the branch, we must also compute correct info
534 if the branch is taken. We do this by inverting all of
535 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
536 and then inverting the INSN_FROM_TARGET_P bits again. */
537
538 if (GET_CODE (PATTERN (insn)) == SEQUENCE
539 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
540 {
541 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
542 for (i = 1; i < seq->len (); i++)
543 INSN_FROM_TARGET_P (seq->element (i))
544 = ! INSN_FROM_TARGET_P (seq->element (i));
545
546 target_set = set;
547 mark_set_resources (insn, &target_set, 0,
548 MARK_SRC_DEST_CALL);
549
550 for (i = 1; i < seq->len (); i++)
551 INSN_FROM_TARGET_P (seq->element (i))
552 = ! INSN_FROM_TARGET_P (seq->element (i));
553
554 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
555 }
556 else
557 {
558 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
559 target_set = set;
560 }
561
562 target_res = *res;
563 scratch = target_set.regs & ~needed.regs;
564 target_res.regs &= ~scratch;
565
566 fallthrough_res = *res;
567 scratch = set.regs & ~needed.regs;
568 fallthrough_res.regs &= ~scratch;
569
570 if (!ANY_RETURN_P (this_jump_insn->jump_label ()))
571 find_dead_or_set_registers
572 (this_jump_insn->jump_target (),
573 &target_res, 0, jump_count, target_set, needed);
574 find_dead_or_set_registers (next_insn,
575 &fallthrough_res, 0, jump_count,
576 set, needed);
577 fallthrough_res.regs |= target_res.regs;
578 res->regs &= fallthrough_res.regs;
579 break;
580 }
581 else
582 break;
583 }
584 else
585 {
586 /* Don't try this optimization if we expired our jump count
587 above, since that would mean there may be an infinite loop
588 in the function being compiled. */
589 jump_insn = 0;
590 break;
591 }
592 }
593
594 mark_referenced_resources (insn, &needed, true);
595 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
596
597 scratch = set.regs & ~needed.regs;
598 res->regs &= ~scratch;
599 }
600
601 return jump_insn;
602 }
603 \f
604 /* Given X, a part of an insn, and a pointer to a `struct resource',
605 RES, indicate which resources are modified by the insn. If
606 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
607 set by the called routine.
608
609 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
610 objects are being referenced instead of set.
611
612 We never mark the insn as modifying the condition code unless it explicitly
613 SETs CC0 even though this is not totally correct. The reason for this is
614 that we require a SET of CC0 to immediately precede the reference to CC0.
615 So if some other insn sets CC0 as a side-effect, we know it cannot affect
616 our computation and thus may be placed in a delay slot. */
617
618 void
619 mark_set_resources (rtx x, struct resources *res, int in_dest,
620 enum mark_resource_type mark_type)
621 {
622 enum rtx_code code;
623 int i, j;
624 unsigned int r;
625 const char *format_ptr;
626
627 restart:
628
629 code = GET_CODE (x);
630
631 switch (code)
632 {
633 case NOTE:
634 case BARRIER:
635 case CODE_LABEL:
636 case USE:
637 CASE_CONST_ANY:
638 case LABEL_REF:
639 case SYMBOL_REF:
640 case CONST:
641 case PC:
642 case DEBUG_INSN:
643 /* These don't set any resources. */
644 return;
645
646 case CC0:
647 if (in_dest)
648 res->cc = 1;
649 return;
650
651 case CALL_INSN:
652 /* Called routine modifies the condition code, memory, any registers
653 that aren't saved across calls, global registers and anything
654 explicitly CLOBBERed immediately after the CALL_INSN. */
655
656 if (mark_type == MARK_SRC_DEST_CALL)
657 {
658 rtx_call_insn *call_insn = as_a <rtx_call_insn *> (x);
659 rtx link;
660
661 res->cc = res->memory = 1;
662
663 res->regs |= insn_callee_abi (call_insn).full_reg_clobbers ();
664
665 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
666 link; link = XEXP (link, 1))
667 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
668 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
669 MARK_SRC_DEST);
670
671 /* Check for a REG_SETJMP. If it exists, then we must
672 assume that this call can clobber any register. */
673 if (find_reg_note (call_insn, REG_SETJMP, NULL))
674 SET_HARD_REG_SET (res->regs);
675 }
676
677 /* ... and also what its RTL says it modifies, if anything. */
678 gcc_fallthrough ();
679
680 case JUMP_INSN:
681 case INSN:
682
683 /* An insn consisting of just a CLOBBER (or USE) is just for flow
684 and doesn't actually do anything, so we ignore it. */
685
686 if (mark_type != MARK_SRC_DEST_CALL
687 && INSN_SETS_ARE_DELAYED (as_a <rtx_insn *> (x)))
688 return;
689
690 x = PATTERN (x);
691 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
692 goto restart;
693 return;
694
695 case SET:
696 /* If the source of a SET is a CALL, this is actually done by
697 the called routine. So only include it if we are to include the
698 effects of the calling routine. */
699
700 mark_set_resources (SET_DEST (x), res,
701 (mark_type == MARK_SRC_DEST_CALL
702 || GET_CODE (SET_SRC (x)) != CALL),
703 mark_type);
704
705 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
706 return;
707
708 case CLOBBER:
709 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
710 return;
711
712 case SEQUENCE:
713 {
714 rtx_sequence *seq = as_a <rtx_sequence *> (x);
715 rtx control = seq->element (0);
716 bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control);
717
718 mark_set_resources (control, res, 0, mark_type);
719 for (i = seq->len () - 1; i >= 0; --i)
720 {
721 rtx elt = seq->element (i);
722 if (!annul_p && INSN_FROM_TARGET_P (elt))
723 mark_set_resources (elt, res, 0, mark_type);
724 }
725 }
726 return;
727
728 case POST_INC:
729 case PRE_INC:
730 case POST_DEC:
731 case PRE_DEC:
732 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
733 return;
734
735 case PRE_MODIFY:
736 case POST_MODIFY:
737 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
738 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
739 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
740 return;
741
742 case SIGN_EXTRACT:
743 case ZERO_EXTRACT:
744 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
745 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
746 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
747 return;
748
749 case MEM:
750 if (in_dest)
751 {
752 res->memory = 1;
753 res->volatil |= MEM_VOLATILE_P (x);
754 }
755
756 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
757 return;
758
759 case SUBREG:
760 if (in_dest)
761 {
762 if (!REG_P (SUBREG_REG (x)))
763 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
764 else
765 {
766 unsigned int regno = subreg_regno (x);
767 unsigned int last_regno = regno + subreg_nregs (x);
768
769 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
770 for (r = regno; r < last_regno; r++)
771 SET_HARD_REG_BIT (res->regs, r);
772 }
773 }
774 return;
775
776 case REG:
777 if (in_dest)
778 {
779 gcc_assert (HARD_REGISTER_P (x));
780 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
781 }
782 return;
783
784 case UNSPEC_VOLATILE:
785 case ASM_INPUT:
786 /* Traditional asm's are always volatile. */
787 res->volatil = 1;
788 return;
789
790 case TRAP_IF:
791 res->volatil = 1;
792 break;
793
794 case ASM_OPERANDS:
795 res->volatil |= MEM_VOLATILE_P (x);
796
797 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
798 We cannot just fall through here since then we would be confused
799 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
800 traditional asms unlike their normal usage. */
801
802 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
803 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
804 MARK_SRC_DEST);
805 return;
806
807 default:
808 break;
809 }
810
811 /* Process each sub-expression and flag what it needs. */
812 format_ptr = GET_RTX_FORMAT (code);
813 for (i = 0; i < GET_RTX_LENGTH (code); i++)
814 switch (*format_ptr++)
815 {
816 case 'e':
817 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
818 break;
819
820 case 'E':
821 for (j = 0; j < XVECLEN (x, i); j++)
822 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
823 break;
824 }
825 }
826 \f
827 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
828
829 static bool
830 return_insn_p (const_rtx insn)
831 {
832 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
833 return true;
834
835 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
836 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
837
838 return false;
839 }
840
841 /* Set the resources that are live at TARGET.
842
843 If TARGET is zero, we refer to the end of the current function and can
844 return our precomputed value.
845
846 Otherwise, we try to find out what is live by consulting the basic block
847 information. This is tricky, because we must consider the actions of
848 reload and jump optimization, which occur after the basic block information
849 has been computed.
850
851 Accordingly, we proceed as follows::
852
853 We find the previous BARRIER and look at all immediately following labels
854 (with no intervening active insns) to see if any of them start a basic
855 block. If we hit the start of the function first, we use block 0.
856
857 Once we have found a basic block and a corresponding first insn, we can
858 accurately compute the live status (by starting at a label following a
859 BARRIER, we are immune to actions taken by reload and jump.) Then we
860 scan all insns between that point and our target. For each CLOBBER (or
861 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
862 registers are dead. For a SET, mark them as live.
863
864 We have to be careful when using REG_DEAD notes because they are not
865 updated by such things as find_equiv_reg. So keep track of registers
866 marked as dead that haven't been assigned to, and mark them dead at the
867 next CODE_LABEL since reload and jump won't propagate values across labels.
868
869 If we cannot find the start of a basic block (should be a very rare
870 case, if it can happen at all), mark everything as potentially live.
871
872 Next, scan forward from TARGET looking for things set or clobbered
873 before they are used. These are not live.
874
875 Because we can be called many times on the same target, save our results
876 in a hash table indexed by INSN_UID. This is only done if the function
877 init_resource_info () was invoked before we are called. */
878
879 void
880 mark_target_live_regs (rtx_insn *insns, rtx target_maybe_return, struct resources *res)
881 {
882 int b = -1;
883 unsigned int i;
884 struct target_info *tinfo = NULL;
885 rtx_insn *insn;
886 rtx jump_target;
887 HARD_REG_SET scratch;
888 struct resources set, needed;
889
890 /* Handle end of function. */
891 if (target_maybe_return == 0 || ANY_RETURN_P (target_maybe_return))
892 {
893 *res = end_of_function_needs;
894 return;
895 }
896
897 /* We've handled the case of RETURN/SIMPLE_RETURN; we should now have an
898 instruction. */
899 rtx_insn *target = as_a <rtx_insn *> (target_maybe_return);
900
901 /* Handle return insn. */
902 if (return_insn_p (target))
903 {
904 *res = end_of_function_needs;
905 mark_referenced_resources (target, res, false);
906 return;
907 }
908
909 /* We have to assume memory is needed, but the CC isn't. */
910 res->memory = 1;
911 res->volatil = 0;
912 res->cc = 0;
913
914 /* See if we have computed this value already. */
915 if (target_hash_table != NULL)
916 {
917 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
918 tinfo; tinfo = tinfo->next)
919 if (tinfo->uid == INSN_UID (target))
920 break;
921
922 /* Start by getting the basic block number. If we have saved
923 information, we can get it from there unless the insn at the
924 start of the basic block has been deleted. */
925 if (tinfo && tinfo->block != -1
926 && ! BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, tinfo->block))->deleted ())
927 b = tinfo->block;
928 }
929
930 if (b == -1)
931 b = find_basic_block (target, param_max_delay_slot_live_search);
932
933 if (target_hash_table != NULL)
934 {
935 if (tinfo)
936 {
937 /* If the information is up-to-date, use it. Otherwise, we will
938 update it below. */
939 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
940 {
941 res->regs = tinfo->live_regs;
942 return;
943 }
944 }
945 else
946 {
947 /* Allocate a place to put our results and chain it into the
948 hash table. */
949 tinfo = XNEW (struct target_info);
950 tinfo->uid = INSN_UID (target);
951 tinfo->block = b;
952 tinfo->next
953 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
954 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
955 }
956 }
957
958 CLEAR_HARD_REG_SET (pending_dead_regs);
959
960 /* If we found a basic block, get the live registers from it and update
961 them with anything set or killed between its start and the insn before
962 TARGET; this custom life analysis is really about registers so we need
963 to use the LR problem. Otherwise, we must assume everything is live. */
964 if (b != -1)
965 {
966 regset regs_live = DF_LR_IN (BASIC_BLOCK_FOR_FN (cfun, b));
967 rtx_insn *start_insn, *stop_insn;
968 df_ref def;
969
970 /* Compute hard regs live at start of block. */
971 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
972 FOR_EACH_ARTIFICIAL_DEF (def, b)
973 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
974 SET_HARD_REG_BIT (current_live_regs, DF_REF_REGNO (def));
975
976 /* Get starting and ending insn, handling the case where each might
977 be a SEQUENCE. */
978 start_insn = (b == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index ?
979 insns : BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, b)));
980 stop_insn = target;
981
982 if (NONJUMP_INSN_P (start_insn)
983 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
984 start_insn = as_a <rtx_sequence *> (PATTERN (start_insn))->insn (0);
985
986 if (NONJUMP_INSN_P (stop_insn)
987 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
988 stop_insn = next_insn (PREV_INSN (stop_insn));
989
990 for (insn = start_insn; insn != stop_insn;
991 insn = next_insn_no_annul (insn))
992 {
993 rtx link;
994 rtx_insn *real_insn = insn;
995 enum rtx_code code = GET_CODE (insn);
996
997 if (DEBUG_INSN_P (insn))
998 continue;
999
1000 /* If this insn is from the target of a branch, it isn't going to
1001 be used in the sequel. If it is used in both cases, this
1002 test will not be true. */
1003 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1004 && INSN_FROM_TARGET_P (insn))
1005 continue;
1006
1007 /* If this insn is a USE made by update_block, we care about the
1008 underlying insn. */
1009 if (code == INSN
1010 && GET_CODE (PATTERN (insn)) == USE
1011 && INSN_P (XEXP (PATTERN (insn), 0)))
1012 real_insn = as_a <rtx_insn *> (XEXP (PATTERN (insn), 0));
1013
1014 if (CALL_P (real_insn))
1015 {
1016 /* Values in call-clobbered registers survive a COND_EXEC CALL
1017 if that is not executed; this matters for resoure use because
1018 they may be used by a complementarily (or more strictly)
1019 predicated instruction, or if the CALL is NORETURN. */
1020 if (GET_CODE (PATTERN (real_insn)) != COND_EXEC)
1021 {
1022 HARD_REG_SET regs_invalidated_by_this_call
1023 = insn_callee_abi (real_insn).full_reg_clobbers ();
1024 /* CALL clobbers all call-used regs that aren't fixed except
1025 sp, ap, and fp. Do this before setting the result of the
1026 call live. */
1027 current_live_regs &= ~regs_invalidated_by_this_call;
1028 }
1029
1030 /* A CALL_INSN sets any global register live, since it may
1031 have been modified by the call. */
1032 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1033 if (global_regs[i])
1034 SET_HARD_REG_BIT (current_live_regs, i);
1035 }
1036
1037 /* Mark anything killed in an insn to be deadened at the next
1038 label. Ignore USE insns; the only REG_DEAD notes will be for
1039 parameters. But they might be early. A CALL_INSN will usually
1040 clobber registers used for parameters. It isn't worth bothering
1041 with the unlikely case when it won't. */
1042 if ((NONJUMP_INSN_P (real_insn)
1043 && GET_CODE (PATTERN (real_insn)) != USE
1044 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1045 || JUMP_P (real_insn)
1046 || CALL_P (real_insn))
1047 {
1048 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1049 if (REG_NOTE_KIND (link) == REG_DEAD
1050 && REG_P (XEXP (link, 0))
1051 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1052 add_to_hard_reg_set (&pending_dead_regs,
1053 GET_MODE (XEXP (link, 0)),
1054 REGNO (XEXP (link, 0)));
1055
1056 note_stores (real_insn, update_live_status, NULL);
1057
1058 /* If any registers were unused after this insn, kill them.
1059 These notes will always be accurate. */
1060 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1061 if (REG_NOTE_KIND (link) == REG_UNUSED
1062 && REG_P (XEXP (link, 0))
1063 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1064 remove_from_hard_reg_set (&current_live_regs,
1065 GET_MODE (XEXP (link, 0)),
1066 REGNO (XEXP (link, 0)));
1067 }
1068
1069 else if (LABEL_P (real_insn))
1070 {
1071 basic_block bb;
1072
1073 /* A label clobbers the pending dead registers since neither
1074 reload nor jump will propagate a value across a label. */
1075 current_live_regs &= ~pending_dead_regs;
1076 CLEAR_HARD_REG_SET (pending_dead_regs);
1077
1078 /* We must conservatively assume that all registers that used
1079 to be live here still are. The fallthrough edge may have
1080 left a live register uninitialized. */
1081 bb = BLOCK_FOR_INSN (real_insn);
1082 if (bb)
1083 {
1084 HARD_REG_SET extra_live;
1085
1086 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1087 current_live_regs |= extra_live;
1088 }
1089 }
1090
1091 /* The beginning of the epilogue corresponds to the end of the
1092 RTL chain when there are no epilogue insns. Certain resources
1093 are implicitly required at that point. */
1094 else if (NOTE_P (real_insn)
1095 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1096 current_live_regs |= start_of_epilogue_needs.regs;
1097 }
1098
1099 res->regs = current_live_regs;
1100 if (tinfo != NULL)
1101 {
1102 tinfo->block = b;
1103 tinfo->bb_tick = bb_ticks[b];
1104 }
1105 }
1106 else
1107 /* We didn't find the start of a basic block. Assume everything
1108 in use. This should happen only extremely rarely. */
1109 SET_HARD_REG_SET (res->regs);
1110
1111 CLEAR_RESOURCE (&set);
1112 CLEAR_RESOURCE (&needed);
1113
1114 rtx_insn *jump_insn = find_dead_or_set_registers (target, res, &jump_target,
1115 0, set, needed);
1116
1117 /* If we hit an unconditional branch, we have another way of finding out
1118 what is live: we can see what is live at the branch target and include
1119 anything used but not set before the branch. We add the live
1120 resources found using the test below to those found until now. */
1121
1122 if (jump_insn)
1123 {
1124 struct resources new_resources;
1125 rtx_insn *stop_insn = next_active_insn (jump_insn);
1126
1127 if (!ANY_RETURN_P (jump_target))
1128 jump_target = next_active_insn (as_a<rtx_insn *> (jump_target));
1129 mark_target_live_regs (insns, jump_target, &new_resources);
1130 CLEAR_RESOURCE (&set);
1131 CLEAR_RESOURCE (&needed);
1132
1133 /* Include JUMP_INSN in the needed registers. */
1134 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1135 {
1136 mark_referenced_resources (insn, &needed, true);
1137
1138 scratch = needed.regs & ~set.regs;
1139 new_resources.regs |= scratch;
1140
1141 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1142 }
1143
1144 res->regs |= new_resources.regs;
1145 }
1146
1147 if (tinfo != NULL)
1148 tinfo->live_regs = res->regs;
1149 }
1150 \f
1151 /* Initialize the resources required by mark_target_live_regs ().
1152 This should be invoked before the first call to mark_target_live_regs. */
1153
1154 void
1155 init_resource_info (rtx_insn *epilogue_insn)
1156 {
1157 int i;
1158 basic_block bb;
1159
1160 /* Indicate what resources are required to be valid at the end of the current
1161 function. The condition code never is and memory always is.
1162 The stack pointer is needed unless EXIT_IGNORE_STACK is true
1163 and there is an epilogue that restores the original stack pointer
1164 from the frame pointer. Registers used to return the function value
1165 are needed. Registers holding global variables are needed. */
1166
1167 end_of_function_needs.cc = 0;
1168 end_of_function_needs.memory = 1;
1169 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1170
1171 if (frame_pointer_needed)
1172 {
1173 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1174 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1175 SET_HARD_REG_BIT (end_of_function_needs.regs,
1176 HARD_FRAME_POINTER_REGNUM);
1177 }
1178 if (!(frame_pointer_needed
1179 && EXIT_IGNORE_STACK
1180 && epilogue_insn
1181 && !crtl->sp_is_unchanging))
1182 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1183
1184 if (crtl->return_rtx != 0)
1185 mark_referenced_resources (crtl->return_rtx,
1186 &end_of_function_needs, true);
1187
1188 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1189 if (global_regs[i] || EPILOGUE_USES (i))
1190 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1191
1192 /* The registers required to be live at the end of the function are
1193 represented in the flow information as being dead just prior to
1194 reaching the end of the function. For example, the return of a value
1195 might be represented by a USE of the return register immediately
1196 followed by an unconditional jump to the return label where the
1197 return label is the end of the RTL chain. The end of the RTL chain
1198 is then taken to mean that the return register is live.
1199
1200 This sequence is no longer maintained when epilogue instructions are
1201 added to the RTL chain. To reconstruct the original meaning, the
1202 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1203 point where these registers become live (start_of_epilogue_needs).
1204 If epilogue instructions are present, the registers set by those
1205 instructions won't have been processed by flow. Thus, those
1206 registers are additionally required at the end of the RTL chain
1207 (end_of_function_needs). */
1208
1209 start_of_epilogue_needs = end_of_function_needs;
1210
1211 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1212 {
1213 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1214 MARK_SRC_DEST_CALL);
1215 if (return_insn_p (epilogue_insn))
1216 break;
1217 }
1218
1219 /* Filter-out the flags register from those additionally required
1220 registers. */
1221 if (targetm.flags_regnum != INVALID_REGNUM)
1222 CLEAR_HARD_REG_BIT (end_of_function_needs.regs, targetm.flags_regnum);
1223
1224 /* Allocate and initialize the tables used by mark_target_live_regs. */
1225 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1226 bb_ticks = XCNEWVEC (int, last_basic_block_for_fn (cfun));
1227
1228 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1229 FOR_EACH_BB_FN (bb, cfun)
1230 if (LABEL_P (BB_HEAD (bb)))
1231 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1232 }
1233 \f
1234 /* Free up the resources allocated to mark_target_live_regs (). This
1235 should be invoked after the last call to mark_target_live_regs (). */
1236
1237 void
1238 free_resource_info (void)
1239 {
1240 basic_block bb;
1241
1242 if (target_hash_table != NULL)
1243 {
1244 int i;
1245
1246 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1247 {
1248 struct target_info *ti = target_hash_table[i];
1249
1250 while (ti)
1251 {
1252 struct target_info *next = ti->next;
1253 free (ti);
1254 ti = next;
1255 }
1256 }
1257
1258 free (target_hash_table);
1259 target_hash_table = NULL;
1260 }
1261
1262 if (bb_ticks != NULL)
1263 {
1264 free (bb_ticks);
1265 bb_ticks = NULL;
1266 }
1267
1268 FOR_EACH_BB_FN (bb, cfun)
1269 if (LABEL_P (BB_HEAD (bb)))
1270 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1271 }
1272 \f
1273 /* Clear any hashed information that we have stored for INSN. */
1274
1275 void
1276 clear_hashed_info_for_insn (rtx_insn *insn)
1277 {
1278 struct target_info *tinfo;
1279
1280 if (target_hash_table != NULL)
1281 {
1282 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1283 tinfo; tinfo = tinfo->next)
1284 if (tinfo->uid == INSN_UID (insn))
1285 break;
1286
1287 if (tinfo)
1288 tinfo->block = -1;
1289 }
1290 }
1291
1292 /* Clear any hashed information that we have stored for instructions
1293 between INSN and the next BARRIER that follow a JUMP or a LABEL. */
1294
1295 void
1296 clear_hashed_info_until_next_barrier (rtx_insn *insn)
1297 {
1298 while (insn && !BARRIER_P (insn))
1299 {
1300 if (JUMP_P (insn) || LABEL_P (insn))
1301 {
1302 rtx_insn *next = next_active_insn (insn);
1303 if (next)
1304 clear_hashed_info_for_insn (next);
1305 }
1306
1307 insn = next_nonnote_insn (insn);
1308 }
1309 }
1310
1311 /* Increment the tick count for the basic block that contains INSN. */
1312
1313 void
1314 incr_ticks_for_insn (rtx_insn *insn)
1315 {
1316 int b = find_basic_block (insn, param_max_delay_slot_live_search);
1317
1318 if (b != -1)
1319 bb_ticks[b]++;
1320 }
1321 \f
1322 /* Add TRIAL to the set of resources used at the end of the current
1323 function. */
1324 void
1325 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1326 {
1327 mark_referenced_resources (trial, &end_of_function_needs,
1328 include_delayed_effects);
1329 }