]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/resource.c
Change copyright header to refer to version 3 of the GNU General Public License and...
[thirdparty/gcc.git] / gcc / resource.c
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "function.h"
30 #include "regs.h"
31 #include "flags.h"
32 #include "output.h"
33 #include "resource.h"
34 #include "except.h"
35 #include "insn-attr.h"
36 #include "params.h"
37 #include "df.h"
38
39 /* This structure is used to record liveness information at the targets or
40 fallthrough insns of branches. We will most likely need the information
41 at targets again, so save them in a hash table rather than recomputing them
42 each time. */
43
44 struct target_info
45 {
46 int uid; /* INSN_UID of target. */
47 struct target_info *next; /* Next info for same hash bucket. */
48 HARD_REG_SET live_regs; /* Registers live at target. */
49 int block; /* Basic block number containing target. */
50 int bb_tick; /* Generation count of basic block info. */
51 };
52
53 #define TARGET_HASH_PRIME 257
54
55 /* Indicates what resources are required at the beginning of the epilogue. */
56 static struct resources start_of_epilogue_needs;
57
58 /* Indicates what resources are required at function end. */
59 static struct resources end_of_function_needs;
60
61 /* Define the hash table itself. */
62 static struct target_info **target_hash_table = NULL;
63
64 /* For each basic block, we maintain a generation number of its basic
65 block info, which is updated each time we move an insn from the
66 target of a jump. This is the generation number indexed by block
67 number. */
68
69 static int *bb_ticks;
70
71 /* Marks registers possibly live at the current place being scanned by
72 mark_target_live_regs. Also used by update_live_status. */
73
74 static HARD_REG_SET current_live_regs;
75
76 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
77 Also only used by the next two functions. */
78
79 static HARD_REG_SET pending_dead_regs;
80 \f
81 static void update_live_status (rtx, rtx, void *);
82 static int find_basic_block (rtx, int);
83 static rtx next_insn_no_annul (rtx);
84 static rtx find_dead_or_set_registers (rtx, struct resources*,
85 rtx*, int, struct resources,
86 struct resources);
87 \f
88 /* Utility function called from mark_target_live_regs via note_stores.
89 It deadens any CLOBBERed registers and livens any SET registers. */
90
91 static void
92 update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
93 {
94 int first_regno, last_regno;
95 int i;
96
97 if (!REG_P (dest)
98 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
99 return;
100
101 if (GET_CODE (dest) == SUBREG)
102 {
103 first_regno = subreg_regno (dest);
104 last_regno = first_regno + subreg_nregs (dest);
105
106 }
107 else
108 {
109 first_regno = REGNO (dest);
110 last_regno = END_HARD_REGNO (dest);
111 }
112
113 if (GET_CODE (x) == CLOBBER)
114 for (i = first_regno; i < last_regno; i++)
115 CLEAR_HARD_REG_BIT (current_live_regs, i);
116 else
117 for (i = first_regno; i < last_regno; i++)
118 {
119 SET_HARD_REG_BIT (current_live_regs, i);
120 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
121 }
122 }
123
124 /* Find the number of the basic block with correct live register
125 information that starts closest to INSN. Return -1 if we couldn't
126 find such a basic block or the beginning is more than
127 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
128 an unlimited search.
129
130 The delay slot filling code destroys the control-flow graph so,
131 instead of finding the basic block containing INSN, we search
132 backwards toward a BARRIER where the live register information is
133 correct. */
134
135 static int
136 find_basic_block (rtx insn, int search_limit)
137 {
138 basic_block bb;
139
140 /* Scan backwards to the previous BARRIER. Then see if we can find a
141 label that starts a basic block. Return the basic block number. */
142 for (insn = prev_nonnote_insn (insn);
143 insn && !BARRIER_P (insn) && search_limit != 0;
144 insn = prev_nonnote_insn (insn), --search_limit)
145 ;
146
147 /* The closest BARRIER is too far away. */
148 if (search_limit == 0)
149 return -1;
150
151 /* The start of the function. */
152 else if (insn == 0)
153 return ENTRY_BLOCK_PTR->next_bb->index;
154
155 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
156 anything other than a CODE_LABEL or note, we can't find this code. */
157 for (insn = next_nonnote_insn (insn);
158 insn && LABEL_P (insn);
159 insn = next_nonnote_insn (insn))
160 {
161 FOR_EACH_BB (bb)
162 if (insn == BB_HEAD (bb))
163 return bb->index;
164 }
165
166 return -1;
167 }
168 \f
169 /* Similar to next_insn, but ignores insns in the delay slots of
170 an annulled branch. */
171
172 static rtx
173 next_insn_no_annul (rtx insn)
174 {
175 if (insn)
176 {
177 /* If INSN is an annulled branch, skip any insns from the target
178 of the branch. */
179 if (INSN_P (insn)
180 && INSN_ANNULLED_BRANCH_P (insn)
181 && NEXT_INSN (PREV_INSN (insn)) != insn)
182 {
183 rtx next = NEXT_INSN (insn);
184 enum rtx_code code = GET_CODE (next);
185
186 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
187 && INSN_FROM_TARGET_P (next))
188 {
189 insn = next;
190 next = NEXT_INSN (insn);
191 code = GET_CODE (next);
192 }
193 }
194
195 insn = NEXT_INSN (insn);
196 if (insn && NONJUMP_INSN_P (insn)
197 && GET_CODE (PATTERN (insn)) == SEQUENCE)
198 insn = XVECEXP (PATTERN (insn), 0, 0);
199 }
200
201 return insn;
202 }
203 \f
204 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
205 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
206 is TRUE, resources used by the called routine will be included for
207 CALL_INSNs. */
208
209 void
210 mark_referenced_resources (rtx x, struct resources *res,
211 int include_delayed_effects)
212 {
213 enum rtx_code code = GET_CODE (x);
214 int i, j;
215 unsigned int r;
216 const char *format_ptr;
217
218 /* Handle leaf items for which we set resource flags. Also, special-case
219 CALL, SET and CLOBBER operators. */
220 switch (code)
221 {
222 case CONST:
223 case CONST_INT:
224 case CONST_DOUBLE:
225 case CONST_VECTOR:
226 case PC:
227 case SYMBOL_REF:
228 case LABEL_REF:
229 return;
230
231 case SUBREG:
232 if (!REG_P (SUBREG_REG (x)))
233 mark_referenced_resources (SUBREG_REG (x), res, 0);
234 else
235 {
236 unsigned int regno = subreg_regno (x);
237 unsigned int last_regno = regno + subreg_nregs (x);
238
239 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
240 for (r = regno; r < last_regno; r++)
241 SET_HARD_REG_BIT (res->regs, r);
242 }
243 return;
244
245 case REG:
246 gcc_assert (HARD_REGISTER_P (x));
247 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
248 return;
249
250 case MEM:
251 /* If this memory shouldn't change, it really isn't referencing
252 memory. */
253 if (MEM_READONLY_P (x))
254 res->unch_memory = 1;
255 else
256 res->memory = 1;
257 res->volatil |= MEM_VOLATILE_P (x);
258
259 /* Mark registers used to access memory. */
260 mark_referenced_resources (XEXP (x, 0), res, 0);
261 return;
262
263 case CC0:
264 res->cc = 1;
265 return;
266
267 case UNSPEC_VOLATILE:
268 case ASM_INPUT:
269 /* Traditional asm's are always volatile. */
270 res->volatil = 1;
271 return;
272
273 case TRAP_IF:
274 res->volatil = 1;
275 break;
276
277 case ASM_OPERANDS:
278 res->volatil |= MEM_VOLATILE_P (x);
279
280 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
281 We can not just fall through here since then we would be confused
282 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
283 traditional asms unlike their normal usage. */
284
285 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
286 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
287 return;
288
289 case CALL:
290 /* The first operand will be a (MEM (xxx)) but doesn't really reference
291 memory. The second operand may be referenced, though. */
292 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
293 mark_referenced_resources (XEXP (x, 1), res, 0);
294 return;
295
296 case SET:
297 /* Usually, the first operand of SET is set, not referenced. But
298 registers used to access memory are referenced. SET_DEST is
299 also referenced if it is a ZERO_EXTRACT. */
300
301 mark_referenced_resources (SET_SRC (x), res, 0);
302
303 x = SET_DEST (x);
304 if (GET_CODE (x) == ZERO_EXTRACT
305 || GET_CODE (x) == STRICT_LOW_PART)
306 mark_referenced_resources (x, res, 0);
307 else if (GET_CODE (x) == SUBREG)
308 x = SUBREG_REG (x);
309 if (MEM_P (x))
310 mark_referenced_resources (XEXP (x, 0), res, 0);
311 return;
312
313 case CLOBBER:
314 return;
315
316 case CALL_INSN:
317 if (include_delayed_effects)
318 {
319 /* A CALL references memory, the frame pointer if it exists, the
320 stack pointer, any global registers and any registers given in
321 USE insns immediately in front of the CALL.
322
323 However, we may have moved some of the parameter loading insns
324 into the delay slot of this CALL. If so, the USE's for them
325 don't count and should be skipped. */
326 rtx insn = PREV_INSN (x);
327 rtx sequence = 0;
328 int seq_size = 0;
329 int i;
330
331 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
332 if (NEXT_INSN (insn) != x)
333 {
334 sequence = PATTERN (NEXT_INSN (insn));
335 seq_size = XVECLEN (sequence, 0);
336 gcc_assert (GET_CODE (sequence) == SEQUENCE);
337 }
338
339 res->memory = 1;
340 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
341 if (frame_pointer_needed)
342 {
343 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
344 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
345 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
346 #endif
347 }
348
349 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
350 if (global_regs[i])
351 SET_HARD_REG_BIT (res->regs, i);
352
353 /* Check for a REG_SETJMP. If it exists, then we must
354 assume that this call can need any register.
355
356 This is done to be more conservative about how we handle setjmp.
357 We assume that they both use and set all registers. Using all
358 registers ensures that a register will not be considered dead
359 just because it crosses a setjmp call. A register should be
360 considered dead only if the setjmp call returns nonzero. */
361 if (find_reg_note (x, REG_SETJMP, NULL))
362 SET_HARD_REG_SET (res->regs);
363
364 {
365 rtx link;
366
367 for (link = CALL_INSN_FUNCTION_USAGE (x);
368 link;
369 link = XEXP (link, 1))
370 if (GET_CODE (XEXP (link, 0)) == USE)
371 {
372 for (i = 1; i < seq_size; i++)
373 {
374 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
375 if (GET_CODE (slot_pat) == SET
376 && rtx_equal_p (SET_DEST (slot_pat),
377 XEXP (XEXP (link, 0), 0)))
378 break;
379 }
380 if (i >= seq_size)
381 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
382 res, 0);
383 }
384 }
385 }
386
387 /* ... fall through to other INSN processing ... */
388
389 case INSN:
390 case JUMP_INSN:
391
392 #ifdef INSN_REFERENCES_ARE_DELAYED
393 if (! include_delayed_effects
394 && INSN_REFERENCES_ARE_DELAYED (x))
395 return;
396 #endif
397
398 /* No special processing, just speed up. */
399 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
400 return;
401
402 default:
403 break;
404 }
405
406 /* Process each sub-expression and flag what it needs. */
407 format_ptr = GET_RTX_FORMAT (code);
408 for (i = 0; i < GET_RTX_LENGTH (code); i++)
409 switch (*format_ptr++)
410 {
411 case 'e':
412 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
413 break;
414
415 case 'E':
416 for (j = 0; j < XVECLEN (x, i); j++)
417 mark_referenced_resources (XVECEXP (x, i, j), res,
418 include_delayed_effects);
419 break;
420 }
421 }
422 \f
423 /* A subroutine of mark_target_live_regs. Search forward from TARGET
424 looking for registers that are set before they are used. These are dead.
425 Stop after passing a few conditional jumps, and/or a small
426 number of unconditional branches. */
427
428 static rtx
429 find_dead_or_set_registers (rtx target, struct resources *res,
430 rtx *jump_target, int jump_count,
431 struct resources set, struct resources needed)
432 {
433 HARD_REG_SET scratch;
434 rtx insn, next;
435 rtx jump_insn = 0;
436 int i;
437
438 for (insn = target; insn; insn = next)
439 {
440 rtx this_jump_insn = insn;
441
442 next = NEXT_INSN (insn);
443
444 /* If this instruction can throw an exception, then we don't
445 know where we might end up next. That means that we have to
446 assume that whatever we have already marked as live really is
447 live. */
448 if (can_throw_internal (insn))
449 break;
450
451 switch (GET_CODE (insn))
452 {
453 case CODE_LABEL:
454 /* After a label, any pending dead registers that weren't yet
455 used can be made dead. */
456 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
457 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
458 CLEAR_HARD_REG_SET (pending_dead_regs);
459
460 continue;
461
462 case BARRIER:
463 case NOTE:
464 continue;
465
466 case INSN:
467 if (GET_CODE (PATTERN (insn)) == USE)
468 {
469 /* If INSN is a USE made by update_block, we care about the
470 underlying insn. Any registers set by the underlying insn
471 are live since the insn is being done somewhere else. */
472 if (INSN_P (XEXP (PATTERN (insn), 0)))
473 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
474 MARK_SRC_DEST_CALL);
475
476 /* All other USE insns are to be ignored. */
477 continue;
478 }
479 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
480 continue;
481 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
482 {
483 /* An unconditional jump can be used to fill the delay slot
484 of a call, so search for a JUMP_INSN in any position. */
485 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
486 {
487 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
488 if (JUMP_P (this_jump_insn))
489 break;
490 }
491 }
492
493 default:
494 break;
495 }
496
497 if (JUMP_P (this_jump_insn))
498 {
499 if (jump_count++ < 10)
500 {
501 if (any_uncondjump_p (this_jump_insn)
502 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
503 {
504 next = JUMP_LABEL (this_jump_insn);
505 if (jump_insn == 0)
506 {
507 jump_insn = insn;
508 if (jump_target)
509 *jump_target = JUMP_LABEL (this_jump_insn);
510 }
511 }
512 else if (any_condjump_p (this_jump_insn))
513 {
514 struct resources target_set, target_res;
515 struct resources fallthrough_res;
516
517 /* We can handle conditional branches here by following
518 both paths, and then IOR the results of the two paths
519 together, which will give us registers that are dead
520 on both paths. Since this is expensive, we give it
521 a much higher cost than unconditional branches. The
522 cost was chosen so that we will follow at most 1
523 conditional branch. */
524
525 jump_count += 4;
526 if (jump_count >= 10)
527 break;
528
529 mark_referenced_resources (insn, &needed, 1);
530
531 /* For an annulled branch, mark_set_resources ignores slots
532 filled by instructions from the target. This is correct
533 if the branch is not taken. Since we are following both
534 paths from the branch, we must also compute correct info
535 if the branch is taken. We do this by inverting all of
536 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
537 and then inverting the INSN_FROM_TARGET_P bits again. */
538
539 if (GET_CODE (PATTERN (insn)) == SEQUENCE
540 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
541 {
542 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
543 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
544 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
545
546 target_set = set;
547 mark_set_resources (insn, &target_set, 0,
548 MARK_SRC_DEST_CALL);
549
550 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
551 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
552 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
553
554 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
555 }
556 else
557 {
558 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
559 target_set = set;
560 }
561
562 target_res = *res;
563 COPY_HARD_REG_SET (scratch, target_set.regs);
564 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
565 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
566
567 fallthrough_res = *res;
568 COPY_HARD_REG_SET (scratch, set.regs);
569 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
570 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
571
572 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
573 &target_res, 0, jump_count,
574 target_set, needed);
575 find_dead_or_set_registers (next,
576 &fallthrough_res, 0, jump_count,
577 set, needed);
578 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
579 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
580 break;
581 }
582 else
583 break;
584 }
585 else
586 {
587 /* Don't try this optimization if we expired our jump count
588 above, since that would mean there may be an infinite loop
589 in the function being compiled. */
590 jump_insn = 0;
591 break;
592 }
593 }
594
595 mark_referenced_resources (insn, &needed, 1);
596 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
597
598 COPY_HARD_REG_SET (scratch, set.regs);
599 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
600 AND_COMPL_HARD_REG_SET (res->regs, scratch);
601 }
602
603 return jump_insn;
604 }
605 \f
606 /* Given X, a part of an insn, and a pointer to a `struct resource',
607 RES, indicate which resources are modified by the insn. If
608 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
609 set by the called routine.
610
611 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
612 objects are being referenced instead of set.
613
614 We never mark the insn as modifying the condition code unless it explicitly
615 SETs CC0 even though this is not totally correct. The reason for this is
616 that we require a SET of CC0 to immediately precede the reference to CC0.
617 So if some other insn sets CC0 as a side-effect, we know it cannot affect
618 our computation and thus may be placed in a delay slot. */
619
620 void
621 mark_set_resources (rtx x, struct resources *res, int in_dest,
622 enum mark_resource_type mark_type)
623 {
624 enum rtx_code code;
625 int i, j;
626 unsigned int r;
627 const char *format_ptr;
628
629 restart:
630
631 code = GET_CODE (x);
632
633 switch (code)
634 {
635 case NOTE:
636 case BARRIER:
637 case CODE_LABEL:
638 case USE:
639 case CONST_INT:
640 case CONST_DOUBLE:
641 case CONST_VECTOR:
642 case LABEL_REF:
643 case SYMBOL_REF:
644 case CONST:
645 case PC:
646 /* These don't set any resources. */
647 return;
648
649 case CC0:
650 if (in_dest)
651 res->cc = 1;
652 return;
653
654 case CALL_INSN:
655 /* Called routine modifies the condition code, memory, any registers
656 that aren't saved across calls, global registers and anything
657 explicitly CLOBBERed immediately after the CALL_INSN. */
658
659 if (mark_type == MARK_SRC_DEST_CALL)
660 {
661 rtx link;
662
663 res->cc = res->memory = 1;
664 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
665 if (call_used_regs[r] || global_regs[r])
666 SET_HARD_REG_BIT (res->regs, r);
667
668 for (link = CALL_INSN_FUNCTION_USAGE (x);
669 link; link = XEXP (link, 1))
670 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
671 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
672 MARK_SRC_DEST);
673
674 /* Check for a REG_SETJMP. If it exists, then we must
675 assume that this call can clobber any register. */
676 if (find_reg_note (x, REG_SETJMP, NULL))
677 SET_HARD_REG_SET (res->regs);
678 }
679
680 /* ... and also what its RTL says it modifies, if anything. */
681
682 case JUMP_INSN:
683 case INSN:
684
685 /* An insn consisting of just a CLOBBER (or USE) is just for flow
686 and doesn't actually do anything, so we ignore it. */
687
688 #ifdef INSN_SETS_ARE_DELAYED
689 if (mark_type != MARK_SRC_DEST_CALL
690 && INSN_SETS_ARE_DELAYED (x))
691 return;
692 #endif
693
694 x = PATTERN (x);
695 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
696 goto restart;
697 return;
698
699 case SET:
700 /* If the source of a SET is a CALL, this is actually done by
701 the called routine. So only include it if we are to include the
702 effects of the calling routine. */
703
704 mark_set_resources (SET_DEST (x), res,
705 (mark_type == MARK_SRC_DEST_CALL
706 || GET_CODE (SET_SRC (x)) != CALL),
707 mark_type);
708
709 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
710 return;
711
712 case CLOBBER:
713 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
714 return;
715
716 case SEQUENCE:
717 for (i = 0; i < XVECLEN (x, 0); i++)
718 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
719 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
720 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
721 return;
722
723 case POST_INC:
724 case PRE_INC:
725 case POST_DEC:
726 case PRE_DEC:
727 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
728 return;
729
730 case PRE_MODIFY:
731 case POST_MODIFY:
732 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
733 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
734 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
735 return;
736
737 case SIGN_EXTRACT:
738 case ZERO_EXTRACT:
739 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
740 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
741 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
742 return;
743
744 case MEM:
745 if (in_dest)
746 {
747 res->memory = 1;
748 res->unch_memory |= MEM_READONLY_P (x);
749 res->volatil |= MEM_VOLATILE_P (x);
750 }
751
752 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
753 return;
754
755 case SUBREG:
756 if (in_dest)
757 {
758 if (!REG_P (SUBREG_REG (x)))
759 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
760 else
761 {
762 unsigned int regno = subreg_regno (x);
763 unsigned int last_regno = regno + subreg_nregs (x);
764
765 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
766 for (r = regno; r < last_regno; r++)
767 SET_HARD_REG_BIT (res->regs, r);
768 }
769 }
770 return;
771
772 case REG:
773 if (in_dest)
774 {
775 gcc_assert (HARD_REGISTER_P (x));
776 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
777 }
778 return;
779
780 case UNSPEC_VOLATILE:
781 case ASM_INPUT:
782 /* Traditional asm's are always volatile. */
783 res->volatil = 1;
784 return;
785
786 case TRAP_IF:
787 res->volatil = 1;
788 break;
789
790 case ASM_OPERANDS:
791 res->volatil |= MEM_VOLATILE_P (x);
792
793 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
794 We can not just fall through here since then we would be confused
795 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
796 traditional asms unlike their normal usage. */
797
798 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
799 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
800 MARK_SRC_DEST);
801 return;
802
803 default:
804 break;
805 }
806
807 /* Process each sub-expression and flag what it needs. */
808 format_ptr = GET_RTX_FORMAT (code);
809 for (i = 0; i < GET_RTX_LENGTH (code); i++)
810 switch (*format_ptr++)
811 {
812 case 'e':
813 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
814 break;
815
816 case 'E':
817 for (j = 0; j < XVECLEN (x, i); j++)
818 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
819 break;
820 }
821 }
822 \f
823 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
824
825 static bool
826 return_insn_p (rtx insn)
827 {
828 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
829 return true;
830
831 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
832 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
833
834 return false;
835 }
836
837 /* Set the resources that are live at TARGET.
838
839 If TARGET is zero, we refer to the end of the current function and can
840 return our precomputed value.
841
842 Otherwise, we try to find out what is live by consulting the basic block
843 information. This is tricky, because we must consider the actions of
844 reload and jump optimization, which occur after the basic block information
845 has been computed.
846
847 Accordingly, we proceed as follows::
848
849 We find the previous BARRIER and look at all immediately following labels
850 (with no intervening active insns) to see if any of them start a basic
851 block. If we hit the start of the function first, we use block 0.
852
853 Once we have found a basic block and a corresponding first insns, we can
854 accurately compute the live status from basic_block_live_regs and
855 reg_renumber. (By starting at a label following a BARRIER, we are immune
856 to actions taken by reload and jump.) Then we scan all insns between
857 that point and our target. For each CLOBBER (or for call-clobbered regs
858 when we pass a CALL_INSN), mark the appropriate registers are dead. For
859 a SET, mark them as live.
860
861 We have to be careful when using REG_DEAD notes because they are not
862 updated by such things as find_equiv_reg. So keep track of registers
863 marked as dead that haven't been assigned to, and mark them dead at the
864 next CODE_LABEL since reload and jump won't propagate values across labels.
865
866 If we cannot find the start of a basic block (should be a very rare
867 case, if it can happen at all), mark everything as potentially live.
868
869 Next, scan forward from TARGET looking for things set or clobbered
870 before they are used. These are not live.
871
872 Because we can be called many times on the same target, save our results
873 in a hash table indexed by INSN_UID. This is only done if the function
874 init_resource_info () was invoked before we are called. */
875
876 void
877 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
878 {
879 int b = -1;
880 unsigned int i;
881 struct target_info *tinfo = NULL;
882 rtx insn;
883 rtx jump_insn = 0;
884 rtx jump_target;
885 HARD_REG_SET scratch;
886 struct resources set, needed;
887
888 /* Handle end of function. */
889 if (target == 0)
890 {
891 *res = end_of_function_needs;
892 return;
893 }
894
895 /* Handle return insn. */
896 else if (return_insn_p (target))
897 {
898 *res = end_of_function_needs;
899 mark_referenced_resources (target, res, 0);
900 return;
901 }
902
903 /* We have to assume memory is needed, but the CC isn't. */
904 res->memory = 1;
905 res->volatil = res->unch_memory = 0;
906 res->cc = 0;
907
908 /* See if we have computed this value already. */
909 if (target_hash_table != NULL)
910 {
911 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
912 tinfo; tinfo = tinfo->next)
913 if (tinfo->uid == INSN_UID (target))
914 break;
915
916 /* Start by getting the basic block number. If we have saved
917 information, we can get it from there unless the insn at the
918 start of the basic block has been deleted. */
919 if (tinfo && tinfo->block != -1
920 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
921 b = tinfo->block;
922 }
923
924 if (b == -1)
925 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
926
927 if (target_hash_table != NULL)
928 {
929 if (tinfo)
930 {
931 /* If the information is up-to-date, use it. Otherwise, we will
932 update it below. */
933 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
934 {
935 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
936 return;
937 }
938 }
939 else
940 {
941 /* Allocate a place to put our results and chain it into the
942 hash table. */
943 tinfo = XNEW (struct target_info);
944 tinfo->uid = INSN_UID (target);
945 tinfo->block = b;
946 tinfo->next
947 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
948 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
949 }
950 }
951
952 CLEAR_HARD_REG_SET (pending_dead_regs);
953
954 /* If we found a basic block, get the live registers from it and update
955 them with anything set or killed between its start and the insn before
956 TARGET. Otherwise, we must assume everything is live. */
957 if (b != -1)
958 {
959 regset regs_live = df_get_live_in (BASIC_BLOCK (b));
960 rtx start_insn, stop_insn;
961 reg_set_iterator rsi;
962
963 /* Compute hard regs live at start of block -- this is the real hard regs
964 marked live, plus live pseudo regs that have been renumbered to
965 hard regs. */
966
967 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
968
969 EXECUTE_IF_SET_IN_REG_SET (regs_live, FIRST_PSEUDO_REGISTER, i, rsi)
970 {
971 if (reg_renumber[i] >= 0)
972 add_to_hard_reg_set (&current_live_regs, PSEUDO_REGNO_MODE (i),
973 reg_renumber[i]);
974 }
975
976 /* Get starting and ending insn, handling the case where each might
977 be a SEQUENCE. */
978 start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
979 insns : BB_HEAD (BASIC_BLOCK (b)));
980 stop_insn = target;
981
982 if (NONJUMP_INSN_P (start_insn)
983 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
984 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
985
986 if (NONJUMP_INSN_P (stop_insn)
987 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
988 stop_insn = next_insn (PREV_INSN (stop_insn));
989
990 for (insn = start_insn; insn != stop_insn;
991 insn = next_insn_no_annul (insn))
992 {
993 rtx link;
994 rtx real_insn = insn;
995 enum rtx_code code = GET_CODE (insn);
996
997 /* If this insn is from the target of a branch, it isn't going to
998 be used in the sequel. If it is used in both cases, this
999 test will not be true. */
1000 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1001 && INSN_FROM_TARGET_P (insn))
1002 continue;
1003
1004 /* If this insn is a USE made by update_block, we care about the
1005 underlying insn. */
1006 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
1007 && INSN_P (XEXP (PATTERN (insn), 0)))
1008 real_insn = XEXP (PATTERN (insn), 0);
1009
1010 if (CALL_P (real_insn))
1011 {
1012 /* CALL clobbers all call-used regs that aren't fixed except
1013 sp, ap, and fp. Do this before setting the result of the
1014 call live. */
1015 AND_COMPL_HARD_REG_SET (current_live_regs,
1016 regs_invalidated_by_call);
1017
1018 /* A CALL_INSN sets any global register live, since it may
1019 have been modified by the call. */
1020 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1021 if (global_regs[i])
1022 SET_HARD_REG_BIT (current_live_regs, i);
1023 }
1024
1025 /* Mark anything killed in an insn to be deadened at the next
1026 label. Ignore USE insns; the only REG_DEAD notes will be for
1027 parameters. But they might be early. A CALL_INSN will usually
1028 clobber registers used for parameters. It isn't worth bothering
1029 with the unlikely case when it won't. */
1030 if ((NONJUMP_INSN_P (real_insn)
1031 && GET_CODE (PATTERN (real_insn)) != USE
1032 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1033 || JUMP_P (real_insn)
1034 || CALL_P (real_insn))
1035 {
1036 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1037 if (REG_NOTE_KIND (link) == REG_DEAD
1038 && REG_P (XEXP (link, 0))
1039 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1040 add_to_hard_reg_set (&pending_dead_regs,
1041 GET_MODE (XEXP (link, 0)),
1042 REGNO (XEXP (link, 0)));
1043
1044 note_stores (PATTERN (real_insn), update_live_status, NULL);
1045
1046 /* If any registers were unused after this insn, kill them.
1047 These notes will always be accurate. */
1048 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1049 if (REG_NOTE_KIND (link) == REG_UNUSED
1050 && REG_P (XEXP (link, 0))
1051 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1052 remove_from_hard_reg_set (&current_live_regs,
1053 GET_MODE (XEXP (link, 0)),
1054 REGNO (XEXP (link, 0)));
1055 }
1056
1057 else if (LABEL_P (real_insn))
1058 {
1059 /* A label clobbers the pending dead registers since neither
1060 reload nor jump will propagate a value across a label. */
1061 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1062 CLEAR_HARD_REG_SET (pending_dead_regs);
1063 }
1064
1065 /* The beginning of the epilogue corresponds to the end of the
1066 RTL chain when there are no epilogue insns. Certain resources
1067 are implicitly required at that point. */
1068 else if (NOTE_P (real_insn)
1069 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1070 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1071 }
1072
1073 COPY_HARD_REG_SET (res->regs, current_live_regs);
1074 if (tinfo != NULL)
1075 {
1076 tinfo->block = b;
1077 tinfo->bb_tick = bb_ticks[b];
1078 }
1079 }
1080 else
1081 /* We didn't find the start of a basic block. Assume everything
1082 in use. This should happen only extremely rarely. */
1083 SET_HARD_REG_SET (res->regs);
1084
1085 CLEAR_RESOURCE (&set);
1086 CLEAR_RESOURCE (&needed);
1087
1088 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1089 set, needed);
1090
1091 /* If we hit an unconditional branch, we have another way of finding out
1092 what is live: we can see what is live at the branch target and include
1093 anything used but not set before the branch. We add the live
1094 resources found using the test below to those found until now. */
1095
1096 if (jump_insn)
1097 {
1098 struct resources new_resources;
1099 rtx stop_insn = next_active_insn (jump_insn);
1100
1101 mark_target_live_regs (insns, next_active_insn (jump_target),
1102 &new_resources);
1103 CLEAR_RESOURCE (&set);
1104 CLEAR_RESOURCE (&needed);
1105
1106 /* Include JUMP_INSN in the needed registers. */
1107 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1108 {
1109 mark_referenced_resources (insn, &needed, 1);
1110
1111 COPY_HARD_REG_SET (scratch, needed.regs);
1112 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1113 IOR_HARD_REG_SET (new_resources.regs, scratch);
1114
1115 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1116 }
1117
1118 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1119 }
1120
1121 if (tinfo != NULL)
1122 {
1123 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1124 }
1125 }
1126 \f
1127 /* Initialize the resources required by mark_target_live_regs ().
1128 This should be invoked before the first call to mark_target_live_regs. */
1129
1130 void
1131 init_resource_info (rtx epilogue_insn)
1132 {
1133 int i;
1134
1135 /* Indicate what resources are required to be valid at the end of the current
1136 function. The condition code never is and memory always is. If the
1137 frame pointer is needed, it is and so is the stack pointer unless
1138 EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
1139 stack pointer is. Registers used to return the function value are
1140 needed. Registers holding global variables are needed. */
1141
1142 end_of_function_needs.cc = 0;
1143 end_of_function_needs.memory = 1;
1144 end_of_function_needs.unch_memory = 0;
1145 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1146
1147 if (frame_pointer_needed)
1148 {
1149 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1150 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1151 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1152 #endif
1153 if (! EXIT_IGNORE_STACK
1154 || current_function_sp_is_unchanging)
1155 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1156 }
1157 else
1158 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1159
1160 if (current_function_return_rtx != 0)
1161 mark_referenced_resources (current_function_return_rtx,
1162 &end_of_function_needs, 1);
1163
1164 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1165 if (global_regs[i]
1166 #ifdef EPILOGUE_USES
1167 || EPILOGUE_USES (i)
1168 #endif
1169 )
1170 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1171
1172 /* The registers required to be live at the end of the function are
1173 represented in the flow information as being dead just prior to
1174 reaching the end of the function. For example, the return of a value
1175 might be represented by a USE of the return register immediately
1176 followed by an unconditional jump to the return label where the
1177 return label is the end of the RTL chain. The end of the RTL chain
1178 is then taken to mean that the return register is live.
1179
1180 This sequence is no longer maintained when epilogue instructions are
1181 added to the RTL chain. To reconstruct the original meaning, the
1182 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1183 point where these registers become live (start_of_epilogue_needs).
1184 If epilogue instructions are present, the registers set by those
1185 instructions won't have been processed by flow. Thus, those
1186 registers are additionally required at the end of the RTL chain
1187 (end_of_function_needs). */
1188
1189 start_of_epilogue_needs = end_of_function_needs;
1190
1191 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1192 {
1193 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1194 MARK_SRC_DEST_CALL);
1195 if (return_insn_p (epilogue_insn))
1196 break;
1197 }
1198
1199 /* Allocate and initialize the tables used by mark_target_live_regs. */
1200 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1201 bb_ticks = XCNEWVEC (int, last_basic_block);
1202 }
1203 \f
1204 /* Free up the resources allocated to mark_target_live_regs (). This
1205 should be invoked after the last call to mark_target_live_regs (). */
1206
1207 void
1208 free_resource_info (void)
1209 {
1210 if (target_hash_table != NULL)
1211 {
1212 int i;
1213
1214 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1215 {
1216 struct target_info *ti = target_hash_table[i];
1217
1218 while (ti)
1219 {
1220 struct target_info *next = ti->next;
1221 free (ti);
1222 ti = next;
1223 }
1224 }
1225
1226 free (target_hash_table);
1227 target_hash_table = NULL;
1228 }
1229
1230 if (bb_ticks != NULL)
1231 {
1232 free (bb_ticks);
1233 bb_ticks = NULL;
1234 }
1235 }
1236 \f
1237 /* Clear any hashed information that we have stored for INSN. */
1238
1239 void
1240 clear_hashed_info_for_insn (rtx insn)
1241 {
1242 struct target_info *tinfo;
1243
1244 if (target_hash_table != NULL)
1245 {
1246 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1247 tinfo; tinfo = tinfo->next)
1248 if (tinfo->uid == INSN_UID (insn))
1249 break;
1250
1251 if (tinfo)
1252 tinfo->block = -1;
1253 }
1254 }
1255 \f
1256 /* Increment the tick count for the basic block that contains INSN. */
1257
1258 void
1259 incr_ticks_for_insn (rtx insn)
1260 {
1261 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1262
1263 if (b != -1)
1264 bb_ticks[b]++;
1265 }
1266 \f
1267 /* Add TRIAL to the set of resources used at the end of the current
1268 function. */
1269 void
1270 mark_end_of_function_resources (rtx trial, int include_delayed_effects)
1271 {
1272 mark_referenced_resources (trial, &end_of_function_needs,
1273 include_delayed_effects);
1274 }