]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/rtl.h
Allow automatics in equivalences
[thirdparty/gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
36
37 #include "hard-reg-set.h"
38
39 /* Value used by some passes to "recognize" noop moves as valid
40 instructions. */
41 #define NOOP_MOVE_INSN_CODE INT_MAX
42
43 /* Register Transfer Language EXPRESSIONS CODES */
44
45 #define RTX_CODE enum rtx_code
46 enum rtx_code {
47
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49 #include "rtl.def" /* rtl expressions are documented here */
50 #undef DEF_RTL_EXPR
51
52 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
53 NUM_RTX_CODE.
54 Assumes default enum value assignment. */
55
56 /* The cast here, saves many elsewhere. */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
58
59 /* Similar, but since generator files get more entries... */
60 #ifdef GENERATOR_FILE
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
62 #endif
63
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
65
66 enum rtx_class {
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
68
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
71 RTX_COMPARE, /* 0 */
72 RTX_COMM_COMPARE,
73 RTX_BIN_ARITH,
74 RTX_COMM_ARITH,
75
76 /* Must follow the four preceding values. */
77 RTX_UNARY, /* 4 */
78
79 RTX_EXTRA,
80 RTX_MATCH,
81 RTX_INSN,
82
83 /* Bit 0 = 1 if constant. */
84 RTX_OBJ, /* 8 */
85 RTX_CONST_OBJ,
86
87 RTX_TERNARY,
88 RTX_BITFIELD_OPS,
89 RTX_AUTOINC
90 };
91
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
103
104 extern const unsigned char rtx_length[NUM_RTX_CODE];
105 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
106
107 extern const char * const rtx_name[NUM_RTX_CODE];
108 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
109
110 extern const char * const rtx_format[NUM_RTX_CODE];
111 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
112
113 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
114 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
115
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
119
120 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
121 extern const unsigned char rtx_next[NUM_RTX_CODE];
122 \f
123 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125 struct addr_diff_vec_flags
126 {
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align: 8;
129 /* Flags: */
130 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base: 1; /* minimum address target label is
136 after BASE. */
137 unsigned max_after_base: 1; /* maximum address target label is
138 after BASE. */
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
141 unsigned : 2;
142 unsigned scale : 8;
143 };
144
145 /* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148 class GTY(()) mem_attrs
149 {
150 public:
151 mem_attrs ();
152
153 /* The expression that the MEM accesses, or null if not known.
154 This expression might be larger than the memory reference itself.
155 (In other words, the MEM might access only part of the object.) */
156 tree expr;
157
158 /* The offset of the memory reference from the start of EXPR.
159 Only valid if OFFSET_KNOWN_P. */
160 poly_int64 offset;
161
162 /* The size of the memory reference in bytes. Only valid if
163 SIZE_KNOWN_P. */
164 poly_int64 size;
165
166 /* The alias set of the memory reference. */
167 alias_set_type alias;
168
169 /* The alignment of the reference in bits. Always a multiple of
170 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
171 than the memory reference itself. */
172 unsigned int align;
173
174 /* The address space that the memory reference uses. */
175 unsigned char addrspace;
176
177 /* True if OFFSET is known. */
178 bool offset_known_p;
179
180 /* True if SIZE is known. */
181 bool size_known_p;
182 };
183
184 /* Structure used to describe the attributes of a REG in similar way as
185 mem_attrs does for MEM above. Note that the OFFSET field is calculated
186 in the same way as for mem_attrs, rather than in the same way as a
187 SUBREG_BYTE. For example, if a big-endian target stores a byte
188 object in the low part of a 4-byte register, the OFFSET field
189 will be -3 rather than 0. */
190
191 class GTY((for_user)) reg_attrs {
192 public:
193 tree decl; /* decl corresponding to REG. */
194 poly_int64 offset; /* Offset from start of DECL. */
195 };
196
197 /* Common union for an element of an rtx. */
198
199 union rtunion
200 {
201 int rt_int;
202 unsigned int rt_uint;
203 poly_uint16_pod rt_subreg;
204 const char *rt_str;
205 rtx rt_rtx;
206 rtvec rt_rtvec;
207 machine_mode rt_type;
208 addr_diff_vec_flags rt_addr_diff_vec_flags;
209 struct cselib_val *rt_cselib;
210 tree rt_tree;
211 basic_block rt_bb;
212 mem_attrs *rt_mem;
213 class constant_descriptor_rtx *rt_constant;
214 struct dw_cfi_node *rt_cfi;
215 };
216
217 /* Describes the properties of a REG. */
218 struct GTY(()) reg_info {
219 /* The value of REGNO. */
220 unsigned int regno;
221
222 /* The value of REG_NREGS. */
223 unsigned int nregs : 8;
224 unsigned int unused : 24;
225
226 /* The value of REG_ATTRS. */
227 reg_attrs *attrs;
228 };
229
230 /* This structure remembers the position of a SYMBOL_REF within an
231 object_block structure. A SYMBOL_REF only provides this information
232 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
233 struct GTY(()) block_symbol {
234 /* The usual SYMBOL_REF fields. */
235 rtunion GTY ((skip)) fld[2];
236
237 /* The block that contains this object. */
238 struct object_block *block;
239
240 /* The offset of this object from the start of its block. It is negative
241 if the symbol has not yet been assigned an offset. */
242 HOST_WIDE_INT offset;
243 };
244
245 /* Describes a group of objects that are to be placed together in such
246 a way that their relative positions are known. */
247 struct GTY((for_user)) object_block {
248 /* The section in which these objects should be placed. */
249 section *sect;
250
251 /* The alignment of the first object, measured in bits. */
252 unsigned int alignment;
253
254 /* The total size of the objects, measured in bytes. */
255 HOST_WIDE_INT size;
256
257 /* The SYMBOL_REFs for each object. The vector is sorted in
258 order of increasing offset and the following conditions will
259 hold for each element X:
260
261 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
262 !SYMBOL_REF_ANCHOR_P (X)
263 SYMBOL_REF_BLOCK (X) == [address of this structure]
264 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
265 vec<rtx, va_gc> *objects;
266
267 /* All the anchor SYMBOL_REFs used to address these objects, sorted
268 in order of increasing offset, and then increasing TLS model.
269 The following conditions will hold for each element X in this vector:
270
271 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
272 SYMBOL_REF_ANCHOR_P (X)
273 SYMBOL_REF_BLOCK (X) == [address of this structure]
274 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
275 vec<rtx, va_gc> *anchors;
276 };
277
278 struct GTY((variable_size)) hwivec_def {
279 HOST_WIDE_INT elem[1];
280 };
281
282 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
283 #define CWI_GET_NUM_ELEM(RTX) \
284 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
285 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
286 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
287
288 struct GTY((variable_size)) const_poly_int_def {
289 trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
290 };
291
292 /* RTL expression ("rtx"). */
293
294 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
295 field for gengtype to recognize that inheritance is occurring,
296 so that all subclasses are redirected to the traversal hook for the
297 base class.
298 However, all of the fields are in the base class, and special-casing
299 is at work. Hence we use desc and tag of 0, generating a switch
300 statement of the form:
301 switch (0)
302 {
303 case 0: // all the work happens here
304 }
305 in order to work with the existing special-casing in gengtype. */
306
307 struct GTY((desc("0"), tag("0"),
308 chain_next ("RTX_NEXT (&%h)"),
309 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
310 /* The kind of expression this is. */
311 ENUM_BITFIELD(rtx_code) code: 16;
312
313 /* The kind of value the expression has. */
314 ENUM_BITFIELD(machine_mode) mode : 8;
315
316 /* 1 in a MEM if we should keep the alias set for this mem unchanged
317 when we access a component.
318 1 in a JUMP_INSN if it is a crossing jump.
319 1 in a CALL_INSN if it is a sibling call.
320 1 in a SET that is for a return.
321 In a CODE_LABEL, part of the two-bit alternate entry field.
322 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
323 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
324 1 in a SUBREG generated by LRA for reload insns.
325 1 in a REG if this is a static chain register.
326 Dumped as "/j" in RTL dumps. */
327 unsigned int jump : 1;
328 /* In a CODE_LABEL, part of the two-bit alternate entry field.
329 1 in a MEM if it cannot trap.
330 1 in a CALL_INSN logically equivalent to
331 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
332 Dumped as "/c" in RTL dumps. */
333 unsigned int call : 1;
334 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
335 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
336 1 in a SYMBOL_REF if it addresses something in the per-function
337 constants pool.
338 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
339 1 in a NOTE, or EXPR_LIST for a const call.
340 1 in a JUMP_INSN of an annulling branch.
341 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
342 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
343 1 in a clobber temporarily created for LRA.
344 Dumped as "/u" in RTL dumps. */
345 unsigned int unchanging : 1;
346 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
347 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
348 if it has been deleted.
349 1 in a REG expression if corresponds to a variable declared by the user,
350 0 for an internally generated temporary.
351 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
352 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
353 non-local label.
354 In a SYMBOL_REF, this flag is used for machine-specific purposes.
355 In a PREFETCH, this flag indicates that it should be considered a
356 scheduling barrier.
357 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
358 Dumped as "/v" in RTL dumps. */
359 unsigned int volatil : 1;
360 /* 1 in a REG if the register is used only in exit code a loop.
361 1 in a SUBREG expression if was generated from a variable with a
362 promoted mode.
363 1 in a CODE_LABEL if the label is used for nonlocal gotos
364 and must not be deleted even if its count is zero.
365 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
366 together with the preceding insn. Valid only within sched.
367 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
368 from the target of a branch. Valid from reorg until end of compilation;
369 cleared before used.
370
371 The name of the field is historical. It used to be used in MEMs
372 to record whether the MEM accessed part of a structure.
373 Dumped as "/s" in RTL dumps. */
374 unsigned int in_struct : 1;
375 /* At the end of RTL generation, 1 if this rtx is used. This is used for
376 copying shared structure. See `unshare_all_rtl'.
377 In a REG, this is not needed for that purpose, and used instead
378 in `leaf_renumber_regs_insn'.
379 1 in a SYMBOL_REF, means that emit_library_call
380 has used it as the function.
381 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
382 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
383 unsigned int used : 1;
384 /* 1 in an INSN or a SET if this rtx is related to the call frame,
385 either changing how we compute the frame address or saving and
386 restoring registers in the prologue and epilogue.
387 1 in a REG or MEM if it is a pointer.
388 1 in a SYMBOL_REF if it addresses something in the per-function
389 constant string pool.
390 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
391 Dumped as "/f" in RTL dumps. */
392 unsigned frame_related : 1;
393 /* 1 in a REG or PARALLEL that is the current function's return value.
394 1 in a SYMBOL_REF for a weak symbol.
395 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
396 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
397 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
398 Dumped as "/i" in RTL dumps. */
399 unsigned return_val : 1;
400
401 union {
402 /* The final union field is aligned to 64 bits on LP64 hosts,
403 giving a 32-bit gap after the fields above. We optimize the
404 layout for that case and use the gap for extra code-specific
405 information. */
406
407 /* The ORIGINAL_REGNO of a REG. */
408 unsigned int original_regno;
409
410 /* The INSN_UID of an RTX_INSN-class code. */
411 int insn_uid;
412
413 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
414 unsigned int symbol_ref_flags;
415
416 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
417 enum var_init_status var_location_status;
418
419 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
420 HOST_WIDE_INTs in the hwivec_def. */
421 unsigned int num_elem;
422
423 /* Information about a CONST_VECTOR. */
424 struct
425 {
426 /* The value of CONST_VECTOR_NPATTERNS. */
427 unsigned int npatterns : 16;
428
429 /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */
430 unsigned int nelts_per_pattern : 8;
431
432 /* For future expansion. */
433 unsigned int unused : 8;
434 } const_vector;
435 } GTY ((skip)) u2;
436
437 /* The first element of the operands of this rtx.
438 The number of operands and their types are controlled
439 by the `code' field, according to rtl.def. */
440 union u {
441 rtunion fld[1];
442 HOST_WIDE_INT hwint[1];
443 struct reg_info reg;
444 struct block_symbol block_sym;
445 struct real_value rv;
446 struct fixed_value fv;
447 struct hwivec_def hwiv;
448 struct const_poly_int_def cpi;
449 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
450 };
451
452 /* A node for constructing singly-linked lists of rtx. */
453
454 struct GTY(()) rtx_expr_list : public rtx_def
455 {
456 private:
457 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
458
459 public:
460 /* Get next in list. */
461 rtx_expr_list *next () const;
462
463 /* Get at the underlying rtx. */
464 rtx element () const;
465 };
466
467 template <>
468 template <>
469 inline bool
470 is_a_helper <rtx_expr_list *>::test (rtx rt)
471 {
472 return rt->code == EXPR_LIST;
473 }
474
475 struct GTY(()) rtx_insn_list : public rtx_def
476 {
477 private:
478 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
479
480 This is an instance of:
481
482 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
483
484 i.e. a node for constructing singly-linked lists of rtx_insn *, where
485 the list is "external" to the insn (as opposed to the doubly-linked
486 list embedded within rtx_insn itself). */
487
488 public:
489 /* Get next in list. */
490 rtx_insn_list *next () const;
491
492 /* Get at the underlying instruction. */
493 rtx_insn *insn () const;
494
495 };
496
497 template <>
498 template <>
499 inline bool
500 is_a_helper <rtx_insn_list *>::test (rtx rt)
501 {
502 return rt->code == INSN_LIST;
503 }
504
505 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
506 typically (but not always) of rtx_insn *, used in the late passes. */
507
508 struct GTY(()) rtx_sequence : public rtx_def
509 {
510 private:
511 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
512
513 public:
514 /* Get number of elements in sequence. */
515 int len () const;
516
517 /* Get i-th element of the sequence. */
518 rtx element (int index) const;
519
520 /* Get i-th element of the sequence, with a checked cast to
521 rtx_insn *. */
522 rtx_insn *insn (int index) const;
523 };
524
525 template <>
526 template <>
527 inline bool
528 is_a_helper <rtx_sequence *>::test (rtx rt)
529 {
530 return rt->code == SEQUENCE;
531 }
532
533 template <>
534 template <>
535 inline bool
536 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
537 {
538 return rt->code == SEQUENCE;
539 }
540
541 struct GTY(()) rtx_insn : public rtx_def
542 {
543 public:
544 /* No extra fields, but adds the invariant:
545
546 (INSN_P (X)
547 || NOTE_P (X)
548 || JUMP_TABLE_DATA_P (X)
549 || BARRIER_P (X)
550 || LABEL_P (X))
551
552 i.e. that we must be able to use the following:
553 INSN_UID ()
554 NEXT_INSN ()
555 PREV_INSN ()
556 i.e. we have an rtx that has an INSN_UID field and can be part of
557 a linked list of insns.
558 */
559
560 /* Returns true if this insn has been deleted. */
561
562 bool deleted () const { return volatil; }
563
564 /* Mark this insn as deleted. */
565
566 void set_deleted () { volatil = true; }
567
568 /* Mark this insn as not deleted. */
569
570 void set_undeleted () { volatil = false; }
571 };
572
573 /* Subclasses of rtx_insn. */
574
575 struct GTY(()) rtx_debug_insn : public rtx_insn
576 {
577 /* No extra fields, but adds the invariant:
578 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
579 i.e. an annotation for tracking variable assignments.
580
581 This is an instance of:
582 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
583 from rtl.def. */
584 };
585
586 struct GTY(()) rtx_nonjump_insn : public rtx_insn
587 {
588 /* No extra fields, but adds the invariant:
589 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
590 i.e an instruction that cannot jump.
591
592 This is an instance of:
593 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
594 from rtl.def. */
595 };
596
597 struct GTY(()) rtx_jump_insn : public rtx_insn
598 {
599 public:
600 /* No extra fields, but adds the invariant:
601 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
602 i.e. an instruction that can possibly jump.
603
604 This is an instance of:
605 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
606 from rtl.def. */
607
608 /* Returns jump target of this instruction. The returned value is not
609 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
610 expression. Also, when the code label is marked "deleted", it is
611 replaced by a NOTE. In some cases the value is NULL_RTX. */
612
613 inline rtx jump_label () const;
614
615 /* Returns jump target cast to rtx_code_label *. */
616
617 inline rtx_code_label *jump_target () const;
618
619 /* Set jump target. */
620
621 inline void set_jump_target (rtx_code_label *);
622 };
623
624 struct GTY(()) rtx_call_insn : public rtx_insn
625 {
626 /* No extra fields, but adds the invariant:
627 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
628 i.e. an instruction that can possibly call a subroutine
629 but which will not change which instruction comes next
630 in the current function.
631
632 This is an instance of:
633 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
634 from rtl.def. */
635 };
636
637 struct GTY(()) rtx_jump_table_data : public rtx_insn
638 {
639 /* No extra fields, but adds the invariant:
640 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
641 i.e. a data for a jump table, considered an instruction for
642 historical reasons.
643
644 This is an instance of:
645 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
646 from rtl.def. */
647
648 /* This can be either:
649
650 (a) a table of absolute jumps, in which case PATTERN (this) is an
651 ADDR_VEC with arg 0 a vector of labels, or
652
653 (b) a table of relative jumps (e.g. for -fPIC), in which case
654 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
655 arg 1 the vector of labels.
656
657 This method gets the underlying vec. */
658
659 inline rtvec get_labels () const;
660 inline scalar_int_mode get_data_mode () const;
661 };
662
663 struct GTY(()) rtx_barrier : public rtx_insn
664 {
665 /* No extra fields, but adds the invariant:
666 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
667 i.e. a marker that indicates that control will not flow through.
668
669 This is an instance of:
670 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
671 from rtl.def. */
672 };
673
674 struct GTY(()) rtx_code_label : public rtx_insn
675 {
676 /* No extra fields, but adds the invariant:
677 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
678 i.e. a label in the assembler.
679
680 This is an instance of:
681 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
682 from rtl.def. */
683 };
684
685 struct GTY(()) rtx_note : public rtx_insn
686 {
687 /* No extra fields, but adds the invariant:
688 NOTE_P(X) aka (GET_CODE (X) == NOTE)
689 i.e. a note about the corresponding source code.
690
691 This is an instance of:
692 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
693 from rtl.def. */
694 };
695
696 /* The size in bytes of an rtx header (code, mode and flags). */
697 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
698
699 /* The size in bytes of an rtx with code CODE. */
700 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
701
702 #define NULL_RTX (rtx) 0
703
704 /* The "next" and "previous" RTX, relative to this one. */
705
706 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
707 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
708
709 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
710 */
711 #define RTX_PREV(X) ((INSN_P (X) \
712 || NOTE_P (X) \
713 || JUMP_TABLE_DATA_P (X) \
714 || BARRIER_P (X) \
715 || LABEL_P (X)) \
716 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
717 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
718 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
719
720 /* Define macros to access the `code' field of the rtx. */
721
722 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
723 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
724
725 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
726 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
727
728 /* RTL vector. These appear inside RTX's when there is a need
729 for a variable number of things. The principle use is inside
730 PARALLEL expressions. */
731
732 struct GTY(()) rtvec_def {
733 int num_elem; /* number of elements */
734 rtx GTY ((length ("%h.num_elem"))) elem[1];
735 };
736
737 #define NULL_RTVEC (rtvec) 0
738
739 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
740 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
741
742 /* Predicate yielding nonzero iff X is an rtx for a register. */
743 #define REG_P(X) (GET_CODE (X) == REG)
744
745 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
746 #define MEM_P(X) (GET_CODE (X) == MEM)
747
748 #if TARGET_SUPPORTS_WIDE_INT
749
750 /* Match CONST_*s that can represent compile-time constant integers. */
751 #define CASE_CONST_SCALAR_INT \
752 case CONST_INT: \
753 case CONST_WIDE_INT
754
755 /* Match CONST_*s for which pointer equality corresponds to value
756 equality. */
757 #define CASE_CONST_UNIQUE \
758 case CONST_INT: \
759 case CONST_WIDE_INT: \
760 case CONST_POLY_INT: \
761 case CONST_DOUBLE: \
762 case CONST_FIXED
763
764 /* Match all CONST_* rtxes. */
765 #define CASE_CONST_ANY \
766 case CONST_INT: \
767 case CONST_WIDE_INT: \
768 case CONST_POLY_INT: \
769 case CONST_DOUBLE: \
770 case CONST_FIXED: \
771 case CONST_VECTOR
772
773 #else
774
775 /* Match CONST_*s that can represent compile-time constant integers. */
776 #define CASE_CONST_SCALAR_INT \
777 case CONST_INT: \
778 case CONST_DOUBLE
779
780 /* Match CONST_*s for which pointer equality corresponds to value
781 equality. */
782 #define CASE_CONST_UNIQUE \
783 case CONST_INT: \
784 case CONST_DOUBLE: \
785 case CONST_FIXED
786
787 /* Match all CONST_* rtxes. */
788 #define CASE_CONST_ANY \
789 case CONST_INT: \
790 case CONST_DOUBLE: \
791 case CONST_FIXED: \
792 case CONST_VECTOR
793 #endif
794
795 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
796 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
797
798 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
799 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
800
801 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
802 integer. */
803 #define CONST_POLY_INT_P(X) \
804 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
805
806 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
807 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
808
809 /* Predicate yielding true iff X is an rtx for a double-int
810 or floating point constant. */
811 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
812
813 /* Predicate yielding true iff X is an rtx for a double-int. */
814 #define CONST_DOUBLE_AS_INT_P(X) \
815 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
816
817 /* Predicate yielding true iff X is an rtx for a integer const. */
818 #if TARGET_SUPPORTS_WIDE_INT
819 #define CONST_SCALAR_INT_P(X) \
820 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
821 #else
822 #define CONST_SCALAR_INT_P(X) \
823 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
824 #endif
825
826 /* Predicate yielding true iff X is an rtx for a double-int. */
827 #define CONST_DOUBLE_AS_FLOAT_P(X) \
828 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
829
830 /* Predicate yielding nonzero iff X is a label insn. */
831 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
832
833 /* Predicate yielding nonzero iff X is a jump insn. */
834 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
835
836 /* Predicate yielding nonzero iff X is a call insn. */
837 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
838
839 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
840 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
841
842 /* Predicate yielding nonzero iff X is a debug note/insn. */
843 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
844
845 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
846 #define NONDEBUG_INSN_P(X) (NONJUMP_INSN_P (X) || JUMP_P (X) || CALL_P (X))
847
848 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
849 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
850 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
851 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
852 /* Nonzero if DEBUG_INSN_P may possibly hold. */
853 #define MAY_HAVE_DEBUG_INSNS \
854 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
855
856 /* Predicate yielding nonzero iff X is a real insn. */
857 #define INSN_P(X) (NONDEBUG_INSN_P (X) || DEBUG_INSN_P (X))
858
859 /* Predicate yielding nonzero iff X is a note insn. */
860 #define NOTE_P(X) (GET_CODE (X) == NOTE)
861
862 /* Predicate yielding nonzero iff X is a barrier insn. */
863 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
864
865 /* Predicate yielding nonzero iff X is a data for a jump table. */
866 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
867
868 /* Predicate yielding nonzero iff RTX is a subreg. */
869 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
870
871 /* Predicate yielding true iff RTX is a symbol ref. */
872 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
873
874 template <>
875 template <>
876 inline bool
877 is_a_helper <rtx_insn *>::test (rtx rt)
878 {
879 return (INSN_P (rt)
880 || NOTE_P (rt)
881 || JUMP_TABLE_DATA_P (rt)
882 || BARRIER_P (rt)
883 || LABEL_P (rt));
884 }
885
886 template <>
887 template <>
888 inline bool
889 is_a_helper <const rtx_insn *>::test (const_rtx rt)
890 {
891 return (INSN_P (rt)
892 || NOTE_P (rt)
893 || JUMP_TABLE_DATA_P (rt)
894 || BARRIER_P (rt)
895 || LABEL_P (rt));
896 }
897
898 template <>
899 template <>
900 inline bool
901 is_a_helper <rtx_debug_insn *>::test (rtx rt)
902 {
903 return DEBUG_INSN_P (rt);
904 }
905
906 template <>
907 template <>
908 inline bool
909 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
910 {
911 return NONJUMP_INSN_P (rt);
912 }
913
914 template <>
915 template <>
916 inline bool
917 is_a_helper <rtx_jump_insn *>::test (rtx rt)
918 {
919 return JUMP_P (rt);
920 }
921
922 template <>
923 template <>
924 inline bool
925 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
926 {
927 return JUMP_P (insn);
928 }
929
930 template <>
931 template <>
932 inline bool
933 is_a_helper <rtx_call_insn *>::test (rtx rt)
934 {
935 return CALL_P (rt);
936 }
937
938 template <>
939 template <>
940 inline bool
941 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
942 {
943 return CALL_P (insn);
944 }
945
946 template <>
947 template <>
948 inline bool
949 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
950 {
951 return JUMP_TABLE_DATA_P (rt);
952 }
953
954 template <>
955 template <>
956 inline bool
957 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
958 {
959 return JUMP_TABLE_DATA_P (insn);
960 }
961
962 template <>
963 template <>
964 inline bool
965 is_a_helper <rtx_barrier *>::test (rtx rt)
966 {
967 return BARRIER_P (rt);
968 }
969
970 template <>
971 template <>
972 inline bool
973 is_a_helper <rtx_code_label *>::test (rtx rt)
974 {
975 return LABEL_P (rt);
976 }
977
978 template <>
979 template <>
980 inline bool
981 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
982 {
983 return LABEL_P (insn);
984 }
985
986 template <>
987 template <>
988 inline bool
989 is_a_helper <rtx_note *>::test (rtx rt)
990 {
991 return NOTE_P (rt);
992 }
993
994 template <>
995 template <>
996 inline bool
997 is_a_helper <rtx_note *>::test (rtx_insn *insn)
998 {
999 return NOTE_P (insn);
1000 }
1001
1002 /* Predicate yielding nonzero iff X is a return or simple_return. */
1003 #define ANY_RETURN_P(X) \
1004 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1005
1006 /* 1 if X is a unary operator. */
1007
1008 #define UNARY_P(X) \
1009 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1010
1011 /* 1 if X is a binary operator. */
1012
1013 #define BINARY_P(X) \
1014 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1015
1016 /* 1 if X is an arithmetic operator. */
1017
1018 #define ARITHMETIC_P(X) \
1019 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1020 == RTX_ARITHMETIC_RESULT)
1021
1022 /* 1 if X is an arithmetic operator. */
1023
1024 #define COMMUTATIVE_ARITH_P(X) \
1025 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1026
1027 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1028 These two are sometimes selected together because it is possible to
1029 swap the two operands. */
1030
1031 #define SWAPPABLE_OPERANDS_P(X) \
1032 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1033 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1034 | (1 << RTX_COMPARE)))
1035
1036 /* 1 if X is a non-commutative operator. */
1037
1038 #define NON_COMMUTATIVE_P(X) \
1039 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1040 == RTX_NON_COMMUTATIVE_RESULT)
1041
1042 /* 1 if X is a commutative operator on integers. */
1043
1044 #define COMMUTATIVE_P(X) \
1045 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1046 == RTX_COMMUTATIVE_RESULT)
1047
1048 /* 1 if X is a relational operator. */
1049
1050 #define COMPARISON_P(X) \
1051 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1052
1053 /* 1 if X is a constant value that is an integer. */
1054
1055 #define CONSTANT_P(X) \
1056 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1057
1058 /* 1 if X is a LABEL_REF. */
1059 #define LABEL_REF_P(X) \
1060 (GET_CODE (X) == LABEL_REF)
1061
1062 /* 1 if X can be used to represent an object. */
1063 #define OBJECT_P(X) \
1064 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1065
1066 /* General accessor macros for accessing the fields of an rtx. */
1067
1068 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1069 /* The bit with a star outside the statement expr and an & inside is
1070 so that N can be evaluated only once. */
1071 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1072 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1073 const enum rtx_code _code = GET_CODE (_rtx); \
1074 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1075 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1076 __FUNCTION__); \
1077 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1078 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1079 __FUNCTION__); \
1080 &_rtx->u.fld[_n]; }))
1081
1082 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1083 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1084 const enum rtx_code _code = GET_CODE (_rtx); \
1085 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1086 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1087 __FUNCTION__); \
1088 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1089 && GET_RTX_FORMAT (_code)[_n] != C2) \
1090 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1091 __FUNCTION__); \
1092 &_rtx->u.fld[_n]; }))
1093
1094 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1095 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1096 if (GET_CODE (_rtx) != (C)) \
1097 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1098 __FUNCTION__); \
1099 &_rtx->u.fld[_n]; }))
1100
1101 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1102 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1103 const enum rtx_code _code = GET_CODE (_rtx); \
1104 if (_code != (C1) && _code != (C2)) \
1105 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1106 __FUNCTION__); \
1107 &_rtx->u.fld[_n]; }))
1108
1109 #define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__ \
1110 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1111 const enum rtx_code _code = GET_CODE (_rtx); \
1112 if (_code != (C1) && _code != (C2) && _code != (C3)) \
1113 rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__, \
1114 __LINE__, __FUNCTION__); \
1115 &_rtx->u.fld[_n]; }))
1116
1117 #define RTVEC_ELT(RTVEC, I) __extension__ \
1118 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1119 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1120 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1121 __FUNCTION__); \
1122 &_rtvec->elem[_i]; }))
1123
1124 #define XWINT(RTX, N) __extension__ \
1125 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1126 const enum rtx_code _code = GET_CODE (_rtx); \
1127 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1128 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1129 __FUNCTION__); \
1130 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1131 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1132 __FUNCTION__); \
1133 &_rtx->u.hwint[_n]; }))
1134
1135 #define CWI_ELT(RTX, I) __extension__ \
1136 (*({ __typeof (RTX) const _cwi = (RTX); \
1137 int _max = CWI_GET_NUM_ELEM (_cwi); \
1138 const int _i = (I); \
1139 if (_i < 0 || _i >= _max) \
1140 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1141 __FUNCTION__); \
1142 &_cwi->u.hwiv.elem[_i]; }))
1143
1144 #define XCWINT(RTX, N, C) __extension__ \
1145 (*({ __typeof (RTX) const _rtx = (RTX); \
1146 if (GET_CODE (_rtx) != (C)) \
1147 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1148 __FUNCTION__); \
1149 &_rtx->u.hwint[N]; }))
1150
1151 #define XCMWINT(RTX, N, C, M) __extension__ \
1152 (*({ __typeof (RTX) const _rtx = (RTX); \
1153 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1154 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1155 __LINE__, __FUNCTION__); \
1156 &_rtx->u.hwint[N]; }))
1157
1158 #define XCNMPRV(RTX, C, M) __extension__ \
1159 ({ __typeof (RTX) const _rtx = (RTX); \
1160 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1161 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1162 __LINE__, __FUNCTION__); \
1163 &_rtx->u.rv; })
1164
1165 #define XCNMPFV(RTX, C, M) __extension__ \
1166 ({ __typeof (RTX) const _rtx = (RTX); \
1167 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1168 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1169 __LINE__, __FUNCTION__); \
1170 &_rtx->u.fv; })
1171
1172 #define REG_CHECK(RTX) __extension__ \
1173 ({ __typeof (RTX) const _rtx = (RTX); \
1174 if (GET_CODE (_rtx) != REG) \
1175 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1176 __FUNCTION__); \
1177 &_rtx->u.reg; })
1178
1179 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1180 ({ __typeof (RTX) const _symbol = (RTX); \
1181 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1182 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1183 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1184 __FUNCTION__); \
1185 &_symbol->u.block_sym; })
1186
1187 #define HWIVEC_CHECK(RTX,C) __extension__ \
1188 ({ __typeof (RTX) const _symbol = (RTX); \
1189 RTL_CHECKC1 (_symbol, 0, C); \
1190 &_symbol->u.hwiv; })
1191
1192 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1193 const char *)
1194 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1195 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1196 const char *)
1197 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1198 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1199 int, const char *)
1200 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1201 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1202 int, const char *)
1203 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1204 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1205 const char *, int, const char *)
1206 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1207 extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code,
1208 enum rtx_code, const char *, int,
1209 const char *)
1210 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1211 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1212 bool, const char *, int, const char *)
1213 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1214 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1215 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1216 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1217 const char *)
1218 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1219 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1220 const char *)
1221 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1222
1223 #else /* not ENABLE_RTL_CHECKING */
1224
1225 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1226 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1227 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1228 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1229 #define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N])
1230 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1231 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1232 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1233 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1234 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1235 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1236 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1237 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1238 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1239 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1240 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1241
1242 #endif
1243
1244 /* General accessor macros for accessing the flags of an rtx. */
1245
1246 /* Access an individual rtx flag, with no checking of any kind. */
1247 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1248
1249 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1250 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1251 ({ __typeof (RTX) const _rtx = (RTX); \
1252 if (GET_CODE (_rtx) != C1) \
1253 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1254 __FUNCTION__); \
1255 _rtx; })
1256
1257 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1258 ({ __typeof (RTX) const _rtx = (RTX); \
1259 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1260 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1261 __FUNCTION__); \
1262 _rtx; })
1263
1264 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1265 ({ __typeof (RTX) const _rtx = (RTX); \
1266 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1267 && GET_CODE (_rtx) != C3) \
1268 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1269 __FUNCTION__); \
1270 _rtx; })
1271
1272 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1273 ({ __typeof (RTX) const _rtx = (RTX); \
1274 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1275 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1276 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1277 __FUNCTION__); \
1278 _rtx; })
1279
1280 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1281 ({ __typeof (RTX) const _rtx = (RTX); \
1282 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1283 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1284 && GET_CODE (_rtx) != C5) \
1285 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1286 __FUNCTION__); \
1287 _rtx; })
1288
1289 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1290 __extension__ \
1291 ({ __typeof (RTX) const _rtx = (RTX); \
1292 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1293 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1294 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1295 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1296 __FUNCTION__); \
1297 _rtx; })
1298
1299 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1300 __extension__ \
1301 ({ __typeof (RTX) const _rtx = (RTX); \
1302 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1303 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1304 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1305 && GET_CODE (_rtx) != C7) \
1306 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1307 __FUNCTION__); \
1308 _rtx; })
1309
1310 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1311 __extension__ \
1312 ({ __typeof (RTX) const _rtx = (RTX); \
1313 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1314 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1315 __FUNCTION__); \
1316 _rtx; })
1317
1318 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1319 int, const char *)
1320 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1321 ;
1322
1323 #else /* not ENABLE_RTL_FLAG_CHECKING */
1324
1325 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1326 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1327 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1328 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1329 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1330 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1331 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1332 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1333 #endif
1334
1335 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1336 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1337 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1338 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1339 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1340 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1341 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1342 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1343 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1344 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1345
1346 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1347 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1348
1349 /* These are like XINT, etc. except that they expect a '0' field instead
1350 of the normal type code. */
1351
1352 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1353 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1354 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1355 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1356 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1357 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1358 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1359 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1360 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1361 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1362 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1363 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1364
1365 /* Access a '0' field with any type. */
1366 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1367
1368 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1369 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1370 #define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1371 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1372 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1373 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1374 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1375 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1376 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1377 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1378 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1379
1380 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1381 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1382
1383 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1384 #define XC3EXP(RTX, N, C1, C2, C3) (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx)
1385 \f
1386
1387 /* Methods of rtx_expr_list. */
1388
1389 inline rtx_expr_list *rtx_expr_list::next () const
1390 {
1391 rtx tmp = XEXP (this, 1);
1392 return safe_as_a <rtx_expr_list *> (tmp);
1393 }
1394
1395 inline rtx rtx_expr_list::element () const
1396 {
1397 return XEXP (this, 0);
1398 }
1399
1400 /* Methods of rtx_insn_list. */
1401
1402 inline rtx_insn_list *rtx_insn_list::next () const
1403 {
1404 rtx tmp = XEXP (this, 1);
1405 return safe_as_a <rtx_insn_list *> (tmp);
1406 }
1407
1408 inline rtx_insn *rtx_insn_list::insn () const
1409 {
1410 rtx tmp = XEXP (this, 0);
1411 return safe_as_a <rtx_insn *> (tmp);
1412 }
1413
1414 /* Methods of rtx_sequence. */
1415
1416 inline int rtx_sequence::len () const
1417 {
1418 return XVECLEN (this, 0);
1419 }
1420
1421 inline rtx rtx_sequence::element (int index) const
1422 {
1423 return XVECEXP (this, 0, index);
1424 }
1425
1426 inline rtx_insn *rtx_sequence::insn (int index) const
1427 {
1428 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1429 }
1430
1431 /* ACCESS MACROS for particular fields of insns. */
1432
1433 /* Holds a unique number for each insn.
1434 These are not necessarily sequentially increasing. */
1435 inline int INSN_UID (const_rtx insn)
1436 {
1437 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1438 (insn))->u2.insn_uid;
1439 }
1440 inline int& INSN_UID (rtx insn)
1441 {
1442 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1443 (insn))->u2.insn_uid;
1444 }
1445
1446 /* Chain insns together in sequence. */
1447
1448 /* For now these are split in two: an rvalue form:
1449 PREV_INSN/NEXT_INSN
1450 and an lvalue form:
1451 SET_NEXT_INSN/SET_PREV_INSN. */
1452
1453 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1454 {
1455 rtx prev = XEXP (insn, 0);
1456 return safe_as_a <rtx_insn *> (prev);
1457 }
1458
1459 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1460 {
1461 return XEXP (insn, 0);
1462 }
1463
1464 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1465 {
1466 rtx next = XEXP (insn, 1);
1467 return safe_as_a <rtx_insn *> (next);
1468 }
1469
1470 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1471 {
1472 return XEXP (insn, 1);
1473 }
1474
1475 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1476 {
1477 return XBBDEF (insn, 2);
1478 }
1479
1480 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1481 {
1482 return XBBDEF (insn, 2);
1483 }
1484
1485 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1486 {
1487 BLOCK_FOR_INSN (insn) = bb;
1488 }
1489
1490 /* The body of an insn. */
1491 inline rtx PATTERN (const_rtx insn)
1492 {
1493 return XEXP (insn, 3);
1494 }
1495
1496 inline rtx& PATTERN (rtx insn)
1497 {
1498 return XEXP (insn, 3);
1499 }
1500
1501 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1502 {
1503 return XUINT (insn, 4);
1504 }
1505
1506 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1507 {
1508 return XUINT (insn, 4);
1509 }
1510
1511 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1512 {
1513 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1514 }
1515
1516 /* LOCATION of an RTX if relevant. */
1517 #define RTL_LOCATION(X) (INSN_P (X) ? \
1518 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1519 : UNKNOWN_LOCATION)
1520
1521 /* Code number of instruction, from when it was recognized.
1522 -1 means this instruction has not been recognized yet. */
1523 #define INSN_CODE(INSN) XINT (INSN, 5)
1524
1525 inline rtvec rtx_jump_table_data::get_labels () const
1526 {
1527 rtx pat = PATTERN (this);
1528 if (GET_CODE (pat) == ADDR_VEC)
1529 return XVEC (pat, 0);
1530 else
1531 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1532 }
1533
1534 /* Return the mode of the data in the table, which is always a scalar
1535 integer. */
1536
1537 inline scalar_int_mode
1538 rtx_jump_table_data::get_data_mode () const
1539 {
1540 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1541 }
1542
1543 /* If LABEL is followed by a jump table, return the table, otherwise
1544 return null. */
1545
1546 inline rtx_jump_table_data *
1547 jump_table_for_label (const rtx_code_label *label)
1548 {
1549 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1550 }
1551
1552 #define RTX_FRAME_RELATED_P(RTX) \
1553 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1554 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1555
1556 /* 1 if JUMP RTX is a crossing jump. */
1557 #define CROSSING_JUMP_P(RTX) \
1558 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1559
1560 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1561 TREE_READONLY. */
1562 #define RTL_CONST_CALL_P(RTX) \
1563 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1564
1565 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1566 DECL_PURE_P. */
1567 #define RTL_PURE_CALL_P(RTX) \
1568 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1569
1570 /* 1 if RTX is a call to a const or pure function. */
1571 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1572 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1573
1574 /* 1 if RTX is a call to a looping const or pure function. Built from
1575 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1576 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1577 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1578
1579 /* 1 if RTX is a call_insn for a sibling call. */
1580 #define SIBLING_CALL_P(RTX) \
1581 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1582
1583 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1584 #define INSN_ANNULLED_BRANCH_P(RTX) \
1585 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1586
1587 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1588 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1589 executed if the branch is taken. For annulled branches with this bit
1590 clear, the insn should be executed only if the branch is not taken. */
1591 #define INSN_FROM_TARGET_P(RTX) \
1592 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1593 CALL_INSN)->in_struct)
1594
1595 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1596 See the comments for ADDR_DIFF_VEC in rtl.def. */
1597 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1598
1599 /* In a VALUE, the value cselib has assigned to RTX.
1600 This is a "struct cselib_val", see cselib.h. */
1601 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1602
1603 /* Holds a list of notes on what this insn does to various REGs.
1604 It is a chain of EXPR_LIST rtx's, where the second operand is the
1605 chain pointer and the first operand is the REG being described.
1606 The mode field of the EXPR_LIST contains not a real machine mode
1607 but a value from enum reg_note. */
1608 #define REG_NOTES(INSN) XEXP(INSN, 6)
1609
1610 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1611 question. */
1612 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1613
1614 enum reg_note
1615 {
1616 #define DEF_REG_NOTE(NAME) NAME,
1617 #include "reg-notes.def"
1618 #undef DEF_REG_NOTE
1619 REG_NOTE_MAX
1620 };
1621
1622 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1623 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1624 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1625 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1626
1627 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1628
1629 extern const char * const reg_note_name[];
1630 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1631
1632 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1633 USE and CLOBBER expressions.
1634 USE expressions list the registers filled with arguments that
1635 are passed to the function.
1636 CLOBBER expressions document the registers explicitly clobbered
1637 by this CALL_INSN.
1638 Pseudo registers cannot be mentioned in this list. */
1639 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1640
1641 /* The label-number of a code-label. The assembler label
1642 is made from `L' and the label-number printed in decimal.
1643 Label numbers are unique in a compilation. */
1644 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1645
1646 /* In a NOTE that is a line number, this is a string for the file name that the
1647 line is in. We use the same field to record block numbers temporarily in
1648 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1649 between ints and pointers if we use a different macro for the block number.)
1650 */
1651
1652 /* Opaque data. */
1653 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1654 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1655 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1656 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1657 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1658 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1659 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1660 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1661 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1662 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1663
1664 /* In a NOTE that is a line number, this is the line number.
1665 Other kinds of NOTEs are identified by negative numbers here. */
1666 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1667
1668 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1669 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1670 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1671
1672 /* Nonzero if INSN is a debug nonbind marker note,
1673 for which NOTE_MARKER_LOCATION can be used. */
1674 #define NOTE_MARKER_P(INSN) \
1675 (NOTE_P (INSN) && \
1676 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT \
1677 || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))
1678
1679 /* Variable declaration and the location of a variable. */
1680 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1681 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1682
1683 /* Initialization status of the variable in the location. Status
1684 can be unknown, uninitialized or initialized. See enumeration
1685 type below. */
1686 #define PAT_VAR_LOCATION_STATUS(PAT) \
1687 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1688 ->u2.var_location_status)
1689
1690 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1691 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1692 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1693 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1694 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1695 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1696 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1697
1698 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1699 location/value tracking annotation. */
1700 #define DEBUG_BIND_INSN_P(INSN) \
1701 (DEBUG_INSN_P (INSN) \
1702 && (GET_CODE (PATTERN (INSN)) \
1703 == VAR_LOCATION))
1704 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1705 source location marker. */
1706 #define DEBUG_MARKER_INSN_P(INSN) \
1707 (DEBUG_INSN_P (INSN) \
1708 && (GET_CODE (PATTERN (INSN)) \
1709 != VAR_LOCATION))
1710 /* Evaluate to the marker kind. */
1711 #define INSN_DEBUG_MARKER_KIND(INSN) \
1712 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1713 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1714 ? NOTE_INSN_BEGIN_STMT \
1715 : GET_MODE (PATTERN (INSN)) == BLKmode \
1716 ? NOTE_INSN_INLINE_ENTRY \
1717 : (enum insn_note)-1) \
1718 : (enum insn_note)-1)
1719 /* Create patterns for debug markers. These and the above abstract
1720 the representation, so that it's easier to get rid of the abuse of
1721 the mode to hold the marker kind. Other marker types are
1722 envisioned, so a single bit flag won't do; maybe separate RTL codes
1723 wouldn't be a problem. */
1724 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1725 gen_rtx_DEBUG_MARKER (VOIDmode)
1726 #define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
1727 gen_rtx_DEBUG_MARKER (BLKmode)
1728
1729 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1730 #define INSN_VAR_LOCATION(INSN) \
1731 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1732 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1733 #define INSN_VAR_LOCATION_PTR(INSN) \
1734 (&PATTERN (INSN))
1735
1736 /* Accessors for a tree-expanded var location debug insn. */
1737 #define INSN_VAR_LOCATION_DECL(INSN) \
1738 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1739 #define INSN_VAR_LOCATION_LOC(INSN) \
1740 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1741 #define INSN_VAR_LOCATION_STATUS(INSN) \
1742 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1743
1744 /* Expand to the RTL that denotes an unknown variable location in a
1745 DEBUG_INSN. */
1746 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1747
1748 /* Determine whether X is such an unknown location. */
1749 #define VAR_LOC_UNKNOWN_P(X) \
1750 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1751
1752 /* 1 if RTX is emitted after a call, but it should take effect before
1753 the call returns. */
1754 #define NOTE_DURING_CALL_P(RTX) \
1755 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1756
1757 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1758 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1759
1760 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1761 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1762
1763 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1764 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1765
1766 /* Codes that appear in the NOTE_KIND field for kinds of notes
1767 that are not line numbers. These codes are all negative.
1768
1769 Notice that we do not try to use zero here for any of
1770 the special note codes because sometimes the source line
1771 actually can be zero! This happens (for example) when we
1772 are generating code for the per-translation-unit constructor
1773 and destructor routines for some C++ translation unit. */
1774
1775 enum insn_note
1776 {
1777 #define DEF_INSN_NOTE(NAME) NAME,
1778 #include "insn-notes.def"
1779 #undef DEF_INSN_NOTE
1780
1781 NOTE_INSN_MAX
1782 };
1783
1784 /* Names for NOTE insn's other than line numbers. */
1785
1786 extern const char * const note_insn_name[NOTE_INSN_MAX];
1787 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1788 (note_insn_name[(NOTE_CODE)])
1789
1790 /* The name of a label, in case it corresponds to an explicit label
1791 in the input source code. */
1792 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1793
1794 /* In jump.c, each label contains a count of the number
1795 of LABEL_REFs that point at it, so unused labels can be deleted. */
1796 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1797
1798 /* Labels carry a two-bit field composed of the ->jump and ->call
1799 bits. This field indicates whether the label is an alternate
1800 entry point, and if so, what kind. */
1801 enum label_kind
1802 {
1803 LABEL_NORMAL = 0, /* ordinary label */
1804 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1805 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1806 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1807 };
1808
1809 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1810
1811 /* Retrieve the kind of LABEL. */
1812 #define LABEL_KIND(LABEL) __extension__ \
1813 ({ __typeof (LABEL) const _label = (LABEL); \
1814 if (! LABEL_P (_label)) \
1815 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1816 __FUNCTION__); \
1817 (enum label_kind) ((_label->jump << 1) | _label->call); })
1818
1819 /* Set the kind of LABEL. */
1820 #define SET_LABEL_KIND(LABEL, KIND) do { \
1821 __typeof (LABEL) const _label = (LABEL); \
1822 const unsigned int _kind = (KIND); \
1823 if (! LABEL_P (_label)) \
1824 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1825 __FUNCTION__); \
1826 _label->jump = ((_kind >> 1) & 1); \
1827 _label->call = (_kind & 1); \
1828 } while (0)
1829
1830 #else
1831
1832 /* Retrieve the kind of LABEL. */
1833 #define LABEL_KIND(LABEL) \
1834 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1835
1836 /* Set the kind of LABEL. */
1837 #define SET_LABEL_KIND(LABEL, KIND) do { \
1838 rtx const _label = (LABEL); \
1839 const unsigned int _kind = (KIND); \
1840 _label->jump = ((_kind >> 1) & 1); \
1841 _label->call = (_kind & 1); \
1842 } while (0)
1843
1844 #endif /* rtl flag checking */
1845
1846 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1847
1848 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1849 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1850 be decremented and possibly the label can be deleted. */
1851 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1852
1853 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1854 {
1855 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1856 }
1857
1858 /* Methods of rtx_jump_insn. */
1859
1860 inline rtx rtx_jump_insn::jump_label () const
1861 {
1862 return JUMP_LABEL (this);
1863 }
1864
1865 inline rtx_code_label *rtx_jump_insn::jump_target () const
1866 {
1867 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1868 }
1869
1870 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1871 {
1872 JUMP_LABEL (this) = target;
1873 }
1874
1875 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1876 goes through all the LABEL_REFs that jump to that label. The chain
1877 eventually winds up at the CODE_LABEL: it is circular. */
1878 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1879
1880 /* Get the label that a LABEL_REF references. */
1881 static inline rtx_insn *
1882 label_ref_label (const_rtx ref)
1883 {
1884 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1885 }
1886
1887 /* Set the label that LABEL_REF ref refers to. */
1888
1889 static inline void
1890 set_label_ref_label (rtx ref, rtx_insn *label)
1891 {
1892 XCEXP (ref, 0, LABEL_REF) = label;
1893 }
1894 \f
1895 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1896 be used on RHS. Use SET_REGNO to change the value. */
1897 #define REGNO(RTX) (rhs_regno(RTX))
1898 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1899
1900 /* Return the number of consecutive registers in a REG. This is always
1901 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1902 hard registers. */
1903 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1904
1905 /* ORIGINAL_REGNO holds the number the register originally had; for a
1906 pseudo register turned into a hard reg this will hold the old pseudo
1907 register number. */
1908 #define ORIGINAL_REGNO(RTX) \
1909 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1910
1911 /* Force the REGNO macro to only be used on the lhs. */
1912 static inline unsigned int
1913 rhs_regno (const_rtx x)
1914 {
1915 return REG_CHECK (x)->regno;
1916 }
1917
1918 /* Return the final register in REG X plus one. */
1919 static inline unsigned int
1920 END_REGNO (const_rtx x)
1921 {
1922 return REGNO (x) + REG_NREGS (x);
1923 }
1924
1925 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1926 bypassing the df machinery. */
1927 static inline void
1928 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1929 {
1930 reg_info *reg = REG_CHECK (x);
1931 reg->regno = regno;
1932 reg->nregs = nregs;
1933 }
1934
1935 /* 1 if RTX is a reg or parallel that is the current function's return
1936 value. */
1937 #define REG_FUNCTION_VALUE_P(RTX) \
1938 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1939
1940 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1941 #define REG_USERVAR_P(RTX) \
1942 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1943
1944 /* 1 if RTX is a reg that holds a pointer value. */
1945 #define REG_POINTER(RTX) \
1946 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1947
1948 /* 1 if RTX is a mem that holds a pointer value. */
1949 #define MEM_POINTER(RTX) \
1950 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1951
1952 /* 1 if the given register REG corresponds to a hard register. */
1953 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1954
1955 /* 1 if the given register number REG_NO corresponds to a hard register. */
1956 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1957
1958 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1959 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1960 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1961
1962 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1963 elements actually needed to represent the constant.
1964 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1965 significant HOST_WIDE_INT. */
1966 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1967 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1968 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1969
1970 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1971 individual coefficients, in the form of a trailing_wide_ints structure. */
1972 #define CONST_POLY_INT_COEFFS(RTX) \
1973 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
1974 CONST_POLY_INT)->u.cpi.coeffs)
1975
1976 /* For a CONST_DOUBLE:
1977 #if TARGET_SUPPORTS_WIDE_INT == 0
1978 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1979 low-order word and ..._HIGH the high-order.
1980 #endif
1981 For a float, there is a REAL_VALUE_TYPE structure, and
1982 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1983 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1984 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1985 #define CONST_DOUBLE_REAL_VALUE(r) \
1986 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1987
1988 #define CONST_FIXED_VALUE(r) \
1989 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1990 #define CONST_FIXED_VALUE_HIGH(r) \
1991 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1992 #define CONST_FIXED_VALUE_LOW(r) \
1993 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1994
1995 /* For a CONST_VECTOR, return element #n. */
1996 #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
1997
1998 /* See rtl.texi for a description of these macros. */
1999 #define CONST_VECTOR_NPATTERNS(RTX) \
2000 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
2001 ->u2.const_vector.npatterns)
2002
2003 #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
2004 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
2005 ->u2.const_vector.nelts_per_pattern)
2006
2007 #define CONST_VECTOR_DUPLICATE_P(RTX) \
2008 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
2009
2010 #define CONST_VECTOR_STEPPED_P(RTX) \
2011 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
2012
2013 #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
2014
2015 /* Return the number of elements encoded directly in a CONST_VECTOR. */
2016
2017 inline unsigned int
2018 const_vector_encoded_nelts (const_rtx x)
2019 {
2020 return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x);
2021 }
2022
2023 /* For a CONST_VECTOR, return the number of elements in a vector. */
2024 #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2025
2026 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2027 SUBREG_BYTE extracts the byte-number. */
2028
2029 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2030 #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2031
2032 /* in rtlanal.c */
2033 /* Return the right cost to give to an operation
2034 to make the cost of the corresponding register-to-register instruction
2035 N times that of a fast register-to-register instruction. */
2036 #define COSTS_N_INSNS(N) ((N) * 4)
2037
2038 /* Maximum cost of an rtl expression. This value has the special meaning
2039 not to use an rtx with this cost under any circumstances. */
2040 #define MAX_COST INT_MAX
2041
2042 /* Return true if CODE always has VOIDmode. */
2043
2044 static inline bool
2045 always_void_p (enum rtx_code code)
2046 {
2047 return code == SET;
2048 }
2049
2050 /* A structure to hold all available cost information about an rtl
2051 expression. */
2052 struct full_rtx_costs
2053 {
2054 int speed;
2055 int size;
2056 };
2057
2058 /* Initialize a full_rtx_costs structure C to the maximum cost. */
2059 static inline void
2060 init_costs_to_max (struct full_rtx_costs *c)
2061 {
2062 c->speed = MAX_COST;
2063 c->size = MAX_COST;
2064 }
2065
2066 /* Initialize a full_rtx_costs structure C to zero cost. */
2067 static inline void
2068 init_costs_to_zero (struct full_rtx_costs *c)
2069 {
2070 c->speed = 0;
2071 c->size = 0;
2072 }
2073
2074 /* Compare two full_rtx_costs structures A and B, returning true
2075 if A < B when optimizing for speed. */
2076 static inline bool
2077 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2078 bool speed)
2079 {
2080 if (speed)
2081 return (a->speed < b->speed
2082 || (a->speed == b->speed && a->size < b->size));
2083 else
2084 return (a->size < b->size
2085 || (a->size == b->size && a->speed < b->speed));
2086 }
2087
2088 /* Increase both members of the full_rtx_costs structure C by the
2089 cost of N insns. */
2090 static inline void
2091 costs_add_n_insns (struct full_rtx_costs *c, int n)
2092 {
2093 c->speed += COSTS_N_INSNS (n);
2094 c->size += COSTS_N_INSNS (n);
2095 }
2096
2097 /* Describes the shape of a subreg:
2098
2099 inner_mode == the mode of the SUBREG_REG
2100 offset == the SUBREG_BYTE
2101 outer_mode == the mode of the SUBREG itself. */
2102 class subreg_shape {
2103 public:
2104 subreg_shape (machine_mode, poly_uint16, machine_mode);
2105 bool operator == (const subreg_shape &) const;
2106 bool operator != (const subreg_shape &) const;
2107 unsigned HOST_WIDE_INT unique_id () const;
2108
2109 machine_mode inner_mode;
2110 poly_uint16 offset;
2111 machine_mode outer_mode;
2112 };
2113
2114 inline
2115 subreg_shape::subreg_shape (machine_mode inner_mode_in,
2116 poly_uint16 offset_in,
2117 machine_mode outer_mode_in)
2118 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2119 {}
2120
2121 inline bool
2122 subreg_shape::operator == (const subreg_shape &other) const
2123 {
2124 return (inner_mode == other.inner_mode
2125 && known_eq (offset, other.offset)
2126 && outer_mode == other.outer_mode);
2127 }
2128
2129 inline bool
2130 subreg_shape::operator != (const subreg_shape &other) const
2131 {
2132 return !operator == (other);
2133 }
2134
2135 /* Return an integer that uniquely identifies this shape. Structures
2136 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2137 current mode is anywhere near being 65536 bytes in size, so the
2138 id comfortably fits in an int. */
2139
2140 inline unsigned HOST_WIDE_INT
2141 subreg_shape::unique_id () const
2142 {
2143 { STATIC_ASSERT (MAX_MACHINE_MODE <= 256); }
2144 { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); }
2145 { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
2146 int res = (int) inner_mode + ((int) outer_mode << 8);
2147 for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2148 res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
2149 return res;
2150 }
2151
2152 /* Return the shape of a SUBREG rtx. */
2153
2154 static inline subreg_shape
2155 shape_of_subreg (const_rtx x)
2156 {
2157 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2158 SUBREG_BYTE (x), GET_MODE (x));
2159 }
2160
2161 /* Information about an address. This structure is supposed to be able
2162 to represent all supported target addresses. Please extend it if it
2163 is not yet general enough. */
2164 struct address_info {
2165 /* The mode of the value being addressed, or VOIDmode if this is
2166 a load-address operation with no known address mode. */
2167 machine_mode mode;
2168
2169 /* The address space. */
2170 addr_space_t as;
2171
2172 /* True if this is an RTX_AUTOINC address. */
2173 bool autoinc_p;
2174
2175 /* A pointer to the top-level address. */
2176 rtx *outer;
2177
2178 /* A pointer to the inner address, after all address mutations
2179 have been stripped from the top-level address. It can be one
2180 of the following:
2181
2182 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2183
2184 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2185 points to the step value, depending on whether the step is variable
2186 or constant respectively. SEGMENT is null.
2187
2188 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2189 with null fields evaluating to 0. */
2190 rtx *inner;
2191
2192 /* Components that make up *INNER. Each one may be null or nonnull.
2193 When nonnull, their meanings are as follows:
2194
2195 - *SEGMENT is the "segment" of memory to which the address refers.
2196 This value is entirely target-specific and is only called a "segment"
2197 because that's its most typical use. It contains exactly one UNSPEC,
2198 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2199 reloading.
2200
2201 - *BASE is a variable expression representing a base address.
2202 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2203
2204 - *INDEX is a variable expression representing an index value.
2205 It may be a scaled expression, such as a MULT. It has exactly
2206 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2207
2208 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2209 unmutated RTX_CONST_OBJ. */
2210 rtx *segment;
2211 rtx *base;
2212 rtx *index;
2213 rtx *disp;
2214
2215 rtx *segment_term;
2216 rtx *base_term;
2217 rtx *index_term;
2218 rtx *disp_term;
2219
2220 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2221 of BASE_TERM, otherwise it is null. */
2222 rtx *base_term2;
2223
2224 /* ADDRESS if this structure describes an address operand, MEM if
2225 it describes a MEM address. */
2226 enum rtx_code addr_outer_code;
2227
2228 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2229 enum rtx_code base_outer_code;
2230 };
2231
2232 /* This is used to bundle an rtx and a mode together so that the pair
2233 can be used with the wi:: routines. If we ever put modes into rtx
2234 integer constants, this should go away and then just pass an rtx in. */
2235 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2236
2237 namespace wi
2238 {
2239 template <>
2240 struct int_traits <rtx_mode_t>
2241 {
2242 static const enum precision_type precision_type = VAR_PRECISION;
2243 static const bool host_dependent_precision = false;
2244 /* This ought to be true, except for the special case that BImode
2245 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2246 static const bool is_sign_extended = false;
2247 static unsigned int get_precision (const rtx_mode_t &);
2248 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2249 const rtx_mode_t &);
2250 };
2251 }
2252
2253 inline unsigned int
2254 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2255 {
2256 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2257 }
2258
2259 inline wi::storage_ref
2260 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2261 unsigned int precision,
2262 const rtx_mode_t &x)
2263 {
2264 gcc_checking_assert (precision == get_precision (x));
2265 switch (GET_CODE (x.first))
2266 {
2267 case CONST_INT:
2268 if (precision < HOST_BITS_PER_WIDE_INT)
2269 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2270 targets is 1 rather than -1. */
2271 gcc_checking_assert (INTVAL (x.first)
2272 == sext_hwi (INTVAL (x.first), precision)
2273 || (x.second == BImode && INTVAL (x.first) == 1));
2274
2275 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2276
2277 case CONST_WIDE_INT:
2278 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2279 CONST_WIDE_INT_NUNITS (x.first), precision);
2280
2281 #if TARGET_SUPPORTS_WIDE_INT == 0
2282 case CONST_DOUBLE:
2283 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2284 #endif
2285
2286 default:
2287 gcc_unreachable ();
2288 }
2289 }
2290
2291 namespace wi
2292 {
2293 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2294 wide_int min_value (machine_mode, signop);
2295 wide_int max_value (machine_mode, signop);
2296 }
2297
2298 inline wi::hwi_with_prec
2299 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2300 {
2301 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2302 }
2303
2304 /* Produce the smallest number that is represented in MODE. The precision
2305 is taken from MODE and the sign from SGN. */
2306 inline wide_int
2307 wi::min_value (machine_mode mode, signop sgn)
2308 {
2309 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2310 }
2311
2312 /* Produce the largest number that is represented in MODE. The precision
2313 is taken from MODE and the sign from SGN. */
2314 inline wide_int
2315 wi::max_value (machine_mode mode, signop sgn)
2316 {
2317 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2318 }
2319
2320 namespace wi
2321 {
2322 typedef poly_int<NUM_POLY_INT_COEFFS,
2323 generic_wide_int <wide_int_ref_storage <false, false> > >
2324 rtx_to_poly_wide_ref;
2325 rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
2326 }
2327
2328 /* Return the value of a CONST_POLY_INT in its native precision. */
2329
2330 inline wi::rtx_to_poly_wide_ref
2331 const_poly_int_value (const_rtx x)
2332 {
2333 poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
2334 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2335 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2336 return res;
2337 }
2338
2339 /* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2340 can then be extracted using wi::to_poly_wide. */
2341
2342 inline bool
2343 poly_int_rtx_p (const_rtx x)
2344 {
2345 return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2346 }
2347
2348 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2349 MODE is the mode of X. */
2350
2351 inline wi::rtx_to_poly_wide_ref
2352 wi::to_poly_wide (const_rtx x, machine_mode mode)
2353 {
2354 if (CONST_POLY_INT_P (x))
2355 return const_poly_int_value (x);
2356 return rtx_mode_t (const_cast<rtx> (x), mode);
2357 }
2358
2359 /* Return the value of X as a poly_int64. */
2360
2361 inline poly_int64
2362 rtx_to_poly_int64 (const_rtx x)
2363 {
2364 if (CONST_POLY_INT_P (x))
2365 {
2366 poly_int64 res;
2367 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2368 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2369 return res;
2370 }
2371 return INTVAL (x);
2372 }
2373
2374 /* Return true if arbitrary value X is an integer constant that can
2375 be represented as a poly_int64. Store the value in *RES if so,
2376 otherwise leave it unmodified. */
2377
2378 inline bool
2379 poly_int_rtx_p (const_rtx x, poly_int64_pod *res)
2380 {
2381 if (CONST_INT_P (x))
2382 {
2383 *res = INTVAL (x);
2384 return true;
2385 }
2386 if (CONST_POLY_INT_P (x))
2387 {
2388 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2389 if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
2390 return false;
2391 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2392 res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2393 return true;
2394 }
2395 return false;
2396 }
2397
2398 extern void init_rtlanal (void);
2399 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2400 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2401 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2402 struct full_rtx_costs *);
2403 extern poly_uint64 subreg_lsb (const_rtx);
2404 extern poly_uint64 subreg_lsb_1 (machine_mode, machine_mode, poly_uint64);
2405 extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64,
2406 poly_uint64);
2407 extern bool read_modify_subreg_p (const_rtx);
2408
2409 /* Return the subreg byte offset for a subreg whose outer mode is
2410 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2411 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2412 the inner value. This is the inverse of subreg_lsb_1 (which converts
2413 byte offsets to bit shifts). */
2414
2415 inline poly_uint64
2416 subreg_offset_from_lsb (machine_mode outer_mode,
2417 machine_mode inner_mode,
2418 poly_uint64 lsb_shift)
2419 {
2420 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2421 GET_MODE_SIZE (inner_mode), lsb_shift);
2422 }
2423
2424 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2425 poly_uint64, machine_mode);
2426 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2427 poly_uint64, machine_mode);
2428 extern unsigned int subreg_regno (const_rtx);
2429 extern int simplify_subreg_regno (unsigned int, machine_mode,
2430 poly_uint64, machine_mode);
2431 extern unsigned int subreg_nregs (const_rtx);
2432 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2433 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2434 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2435 extern bool constant_pool_constant_p (rtx);
2436 extern bool truncated_to_mode (machine_mode, const_rtx);
2437 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2438 extern void split_double (rtx, rtx *, rtx *);
2439 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2440 extern void decompose_address (struct address_info *, rtx *,
2441 machine_mode, addr_space_t, enum rtx_code);
2442 extern void decompose_lea_address (struct address_info *, rtx *);
2443 extern void decompose_mem_address (struct address_info *, rtx);
2444 extern void update_address (struct address_info *);
2445 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2446 extern enum rtx_code get_index_code (const struct address_info *);
2447
2448 /* 1 if RTX is a subreg containing a reg that is already known to be
2449 sign- or zero-extended from the mode of the subreg to the mode of
2450 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2451 extension.
2452
2453 When used as a LHS, is means that this extension must be done
2454 when assigning to SUBREG_REG. */
2455
2456 #define SUBREG_PROMOTED_VAR_P(RTX) \
2457 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2458
2459 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2460 this gives the necessary extensions:
2461 0 - signed (SPR_SIGNED)
2462 1 - normal unsigned (SPR_UNSIGNED)
2463 2 - value is both sign and unsign extended for mode
2464 (SPR_SIGNED_AND_UNSIGNED).
2465 -1 - pointer unsigned, which most often can be handled like unsigned
2466 extension, except for generating instructions where we need to
2467 emit special code (ptr_extend insns) on some architectures
2468 (SPR_POINTER). */
2469
2470 const int SRP_POINTER = -1;
2471 const int SRP_SIGNED = 0;
2472 const int SRP_UNSIGNED = 1;
2473 const int SRP_SIGNED_AND_UNSIGNED = 2;
2474
2475 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2476 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2477 do { \
2478 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2479 (RTX), SUBREG); \
2480 switch (VAL) \
2481 { \
2482 case SRP_POINTER: \
2483 _rtx->volatil = 0; \
2484 _rtx->unchanging = 0; \
2485 break; \
2486 case SRP_SIGNED: \
2487 _rtx->volatil = 0; \
2488 _rtx->unchanging = 1; \
2489 break; \
2490 case SRP_UNSIGNED: \
2491 _rtx->volatil = 1; \
2492 _rtx->unchanging = 0; \
2493 break; \
2494 case SRP_SIGNED_AND_UNSIGNED: \
2495 _rtx->volatil = 1; \
2496 _rtx->unchanging = 1; \
2497 break; \
2498 } \
2499 } while (0)
2500
2501 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2502 including SRP_SIGNED_AND_UNSIGNED if promoted for
2503 both signed and unsigned. */
2504 #define SUBREG_PROMOTED_GET(RTX) \
2505 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2506 + (RTX)->unchanging - 1)
2507
2508 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2509 #define SUBREG_PROMOTED_SIGN(RTX) \
2510 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2511 : (RTX)->unchanging - 1)
2512
2513 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2514 for SIGNED type. */
2515 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2516 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2517
2518 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2519 for UNSIGNED type. */
2520 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2521 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2522
2523 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2524 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2525 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2526 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2527 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2528
2529 /* True if the REG is the static chain register for some CALL_INSN. */
2530 #define STATIC_CHAIN_REG_P(RTX) \
2531 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2532
2533 /* True if the subreg was generated by LRA for reload insns. Such
2534 subregs are valid only during LRA. */
2535 #define LRA_SUBREG_P(RTX) \
2536 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2537
2538 /* Access various components of an ASM_OPERANDS rtx. */
2539
2540 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2541 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2542 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2543 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2544 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2545 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2546 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2547 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2548 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2549 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2550 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2551 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2552 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2553 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2554 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2555 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2556 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2557 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2558
2559 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2560 #define MEM_READONLY_P(RTX) \
2561 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2562
2563 /* 1 if RTX is a mem and we should keep the alias set for this mem
2564 unchanged when we access a component. Set to 1, or example, when we
2565 are already in a non-addressable component of an aggregate. */
2566 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2567 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2568
2569 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2570 #define MEM_VOLATILE_P(RTX) \
2571 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2572 ASM_INPUT)->volatil)
2573
2574 /* 1 if RTX is a mem that cannot trap. */
2575 #define MEM_NOTRAP_P(RTX) \
2576 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2577
2578 /* The memory attribute block. We provide access macros for each value
2579 in the block and provide defaults if none specified. */
2580 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2581
2582 /* The register attribute block. We provide access macros for each value
2583 in the block and provide defaults if none specified. */
2584 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2585
2586 #ifndef GENERATOR_FILE
2587 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2588 set, and may alias anything. Otherwise, the MEM can only alias
2589 MEMs in a conflicting alias set. This value is set in a
2590 language-dependent manner in the front-end, and should not be
2591 altered in the back-end. These set numbers are tested with
2592 alias_sets_conflict_p. */
2593 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2594
2595 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2596 refer to part of a DECL. It may also be a COMPONENT_REF. */
2597 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2598
2599 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2600 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2601
2602 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2603 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2604
2605 /* For a MEM rtx, the address space. */
2606 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2607
2608 /* For a MEM rtx, true if its MEM_SIZE is known. */
2609 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2610
2611 /* For a MEM rtx, the size in bytes of the MEM. */
2612 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2613
2614 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2615 mode as a default when STRICT_ALIGNMENT, but not if not. */
2616 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2617 #else
2618 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2619 #endif
2620
2621 /* For a REG rtx, the decl it is known to refer to, if it is known to
2622 refer to part of a DECL. */
2623 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2624
2625 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2626 HOST_WIDE_INT. */
2627 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2628
2629 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2630 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2631 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2632 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2633 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2634 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2635 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2636 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2637
2638 /* 1 if RTX is a label_ref for a nonlocal label. */
2639 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2640 REG_LABEL_TARGET note. */
2641 #define LABEL_REF_NONLOCAL_P(RTX) \
2642 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2643
2644 /* 1 if RTX is a code_label that should always be considered to be needed. */
2645 #define LABEL_PRESERVE_P(RTX) \
2646 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2647
2648 /* During sched, 1 if RTX is an insn that must be scheduled together
2649 with the preceding insn. */
2650 #define SCHED_GROUP_P(RTX) \
2651 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2652 JUMP_INSN, CALL_INSN)->in_struct)
2653
2654 /* For a SET rtx, SET_DEST is the place that is set
2655 and SET_SRC is the value it is set to. */
2656 #define SET_DEST(RTX) XC3EXP (RTX, 0, SET, CLOBBER, CLOBBER_HIGH)
2657 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2658 #define SET_IS_RETURN_P(RTX) \
2659 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2660
2661 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2662 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2663 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2664
2665 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2666 conditionally executing the code on, COND_EXEC_CODE is the code
2667 to execute if the condition is true. */
2668 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2669 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2670
2671 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2672 constants pool. */
2673 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2674 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2675
2676 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2677 tree constant pool. This information is private to varasm.c. */
2678 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2679 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2680 (RTX), SYMBOL_REF)->frame_related)
2681
2682 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2683 #define SYMBOL_REF_FLAG(RTX) \
2684 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2685
2686 /* 1 if RTX is a symbol_ref that has been the library function in
2687 emit_library_call. */
2688 #define SYMBOL_REF_USED(RTX) \
2689 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2690
2691 /* 1 if RTX is a symbol_ref for a weak symbol. */
2692 #define SYMBOL_REF_WEAK(RTX) \
2693 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2694
2695 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2696 SYMBOL_REF_CONSTANT. */
2697 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2698
2699 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2700 pool symbol. */
2701 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2702 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2703
2704 /* The tree (decl or constant) associated with the symbol, or null. */
2705 #define SYMBOL_REF_DECL(RTX) \
2706 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2707
2708 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2709 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2710 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2711
2712 /* The rtx constant pool entry for a symbol, or null. */
2713 #define SYMBOL_REF_CONSTANT(RTX) \
2714 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2715
2716 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2717 information derivable from the tree decl associated with this symbol.
2718 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2719 decl. In some cases this is a bug. But beyond that, it's nice to cache
2720 this information to avoid recomputing it. Finally, this allows space for
2721 the target to store more than one bit of information, as with
2722 SYMBOL_REF_FLAG. */
2723 #define SYMBOL_REF_FLAGS(RTX) \
2724 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2725 ->u2.symbol_ref_flags)
2726
2727 /* These flags are common enough to be defined for all targets. They
2728 are computed by the default version of targetm.encode_section_info. */
2729
2730 /* Set if this symbol is a function. */
2731 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2732 #define SYMBOL_REF_FUNCTION_P(RTX) \
2733 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2734 /* Set if targetm.binds_local_p is true. */
2735 #define SYMBOL_FLAG_LOCAL (1 << 1)
2736 #define SYMBOL_REF_LOCAL_P(RTX) \
2737 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2738 /* Set if targetm.in_small_data_p is true. */
2739 #define SYMBOL_FLAG_SMALL (1 << 2)
2740 #define SYMBOL_REF_SMALL_P(RTX) \
2741 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2742 /* The three-bit field at [5:3] is true for TLS variables; use
2743 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2744 #define SYMBOL_FLAG_TLS_SHIFT 3
2745 #define SYMBOL_REF_TLS_MODEL(RTX) \
2746 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2747 /* Set if this symbol is not defined in this translation unit. */
2748 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2749 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2750 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2751 /* Set if this symbol has a block_symbol structure associated with it. */
2752 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2753 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2754 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2755 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2756 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2757 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2758 #define SYMBOL_REF_ANCHOR_P(RTX) \
2759 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2760
2761 /* Subsequent bits are available for the target to use. */
2762 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2763 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2764
2765 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2766 structure to which the symbol belongs, or NULL if it has not been
2767 assigned a block. */
2768 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2769
2770 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2771 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2772 RTX has not yet been assigned to a block, or it has not been given an
2773 offset within that block. */
2774 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2775
2776 /* True if RTX is flagged to be a scheduling barrier. */
2777 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2778 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2779
2780 /* Indicate whether the machine has any sort of auto increment addressing.
2781 If not, we can avoid checking for REG_INC notes. */
2782
2783 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2784 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2785 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2786 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2787 #define AUTO_INC_DEC 1
2788 #else
2789 #define AUTO_INC_DEC 0
2790 #endif
2791
2792 /* Define a macro to look for REG_INC notes,
2793 but save time on machines where they never exist. */
2794
2795 #if AUTO_INC_DEC
2796 #define FIND_REG_INC_NOTE(INSN, REG) \
2797 ((REG) != NULL_RTX && REG_P ((REG)) \
2798 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2799 : find_reg_note ((INSN), REG_INC, (REG)))
2800 #else
2801 #define FIND_REG_INC_NOTE(INSN, REG) 0
2802 #endif
2803
2804 #ifndef HAVE_PRE_INCREMENT
2805 #define HAVE_PRE_INCREMENT 0
2806 #endif
2807
2808 #ifndef HAVE_PRE_DECREMENT
2809 #define HAVE_PRE_DECREMENT 0
2810 #endif
2811
2812 #ifndef HAVE_POST_INCREMENT
2813 #define HAVE_POST_INCREMENT 0
2814 #endif
2815
2816 #ifndef HAVE_POST_DECREMENT
2817 #define HAVE_POST_DECREMENT 0
2818 #endif
2819
2820 #ifndef HAVE_POST_MODIFY_DISP
2821 #define HAVE_POST_MODIFY_DISP 0
2822 #endif
2823
2824 #ifndef HAVE_POST_MODIFY_REG
2825 #define HAVE_POST_MODIFY_REG 0
2826 #endif
2827
2828 #ifndef HAVE_PRE_MODIFY_DISP
2829 #define HAVE_PRE_MODIFY_DISP 0
2830 #endif
2831
2832 #ifndef HAVE_PRE_MODIFY_REG
2833 #define HAVE_PRE_MODIFY_REG 0
2834 #endif
2835
2836
2837 /* Some architectures do not have complete pre/post increment/decrement
2838 instruction sets, or only move some modes efficiently. These macros
2839 allow us to tune autoincrement generation. */
2840
2841 #ifndef USE_LOAD_POST_INCREMENT
2842 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2843 #endif
2844
2845 #ifndef USE_LOAD_POST_DECREMENT
2846 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2847 #endif
2848
2849 #ifndef USE_LOAD_PRE_INCREMENT
2850 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2851 #endif
2852
2853 #ifndef USE_LOAD_PRE_DECREMENT
2854 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2855 #endif
2856
2857 #ifndef USE_STORE_POST_INCREMENT
2858 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2859 #endif
2860
2861 #ifndef USE_STORE_POST_DECREMENT
2862 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2863 #endif
2864
2865 #ifndef USE_STORE_PRE_INCREMENT
2866 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2867 #endif
2868
2869 #ifndef USE_STORE_PRE_DECREMENT
2870 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2871 #endif
2872 \f
2873 /* Nonzero when we are generating CONCATs. */
2874 extern int generating_concat_p;
2875
2876 /* Nonzero when we are expanding trees to RTL. */
2877 extern int currently_expanding_to_rtl;
2878
2879 /* Generally useful functions. */
2880
2881 #ifndef GENERATOR_FILE
2882 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2883 rather than size. */
2884
2885 static inline int
2886 set_rtx_cost (rtx x, bool speed_p)
2887 {
2888 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2889 }
2890
2891 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2892
2893 static inline void
2894 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2895 {
2896 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2897 }
2898
2899 /* Return the cost of moving X into a register, relative to the cost
2900 of a register move. SPEED_P is true if optimizing for speed rather
2901 than size. */
2902
2903 static inline int
2904 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2905 {
2906 return rtx_cost (x, mode, SET, 1, speed_p);
2907 }
2908
2909 /* Like set_src_cost, but return both the speed and size costs in C. */
2910
2911 static inline void
2912 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2913 {
2914 get_full_rtx_cost (x, mode, SET, 1, c);
2915 }
2916 #endif
2917
2918 /* A convenience macro to validate the arguments of a zero_extract
2919 expression. It determines whether SIZE lies inclusively within
2920 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2921 and the sum lies inclusively within [1, RANGE]. RANGE must be
2922 >= 1, but SIZE and POS may be negative. */
2923 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2924 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2925 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2926 - (unsigned HOST_WIDE_INT)(POS)))
2927
2928 /* In explow.c */
2929 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2930 extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
2931 extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
2932 extern HOST_WIDE_INT get_stack_check_protect (void);
2933
2934 /* In rtl.c */
2935 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2936 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2937 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2938 #define const_wide_int_alloc(NWORDS) \
2939 rtx_alloc_v (CONST_WIDE_INT, \
2940 (sizeof (struct hwivec_def) \
2941 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2942
2943 extern rtvec rtvec_alloc (int);
2944 extern rtvec shallow_copy_rtvec (rtvec);
2945 extern bool shared_const_p (const_rtx);
2946 extern rtx copy_rtx (rtx);
2947 extern enum rtx_code classify_insn (rtx);
2948 extern void dump_rtx_statistics (void);
2949
2950 /* In emit-rtl.c */
2951 extern rtx copy_rtx_if_shared (rtx);
2952
2953 /* In rtl.c */
2954 extern unsigned int rtx_size (const_rtx);
2955 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2956 extern int rtx_equal_p (const_rtx, const_rtx);
2957 extern bool rtvec_all_equal_p (const_rtvec);
2958
2959 /* Return true if X is a vector constant with a duplicated element value. */
2960
2961 inline bool
2962 const_vec_duplicate_p (const_rtx x)
2963 {
2964 return (GET_CODE (x) == CONST_VECTOR
2965 && CONST_VECTOR_NPATTERNS (x) == 1
2966 && CONST_VECTOR_DUPLICATE_P (x));
2967 }
2968
2969 /* Return true if X is a vector constant with a duplicated element value.
2970 Store the duplicated element in *ELT if so. */
2971
2972 template <typename T>
2973 inline bool
2974 const_vec_duplicate_p (T x, T *elt)
2975 {
2976 if (const_vec_duplicate_p (x))
2977 {
2978 *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
2979 return true;
2980 }
2981 return false;
2982 }
2983
2984 /* Return true if X is a vector with a duplicated element value, either
2985 constant or nonconstant. Store the duplicated element in *ELT if so. */
2986
2987 template <typename T>
2988 inline bool
2989 vec_duplicate_p (T x, T *elt)
2990 {
2991 if (GET_CODE (x) == VEC_DUPLICATE
2992 && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
2993 {
2994 *elt = XEXP (x, 0);
2995 return true;
2996 }
2997 return const_vec_duplicate_p (x, elt);
2998 }
2999
3000 /* If X is a vector constant with a duplicated element value, return that
3001 element value, otherwise return X. */
3002
3003 template <typename T>
3004 inline T
3005 unwrap_const_vec_duplicate (T x)
3006 {
3007 if (const_vec_duplicate_p (x))
3008 x = CONST_VECTOR_ELT (x, 0);
3009 return x;
3010 }
3011
3012 /* In emit-rtl.c. */
3013 extern wide_int const_vector_int_elt (const_rtx, unsigned int);
3014 extern rtx const_vector_elt (const_rtx, unsigned int);
3015 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
3016
3017 /* Return true if X is an integer constant vector that contains a linear
3018 series of the form:
3019
3020 { B, B + S, B + 2 * S, B + 3 * S, ... }
3021
3022 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
3023
3024 inline bool
3025 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3026 {
3027 if (GET_CODE (x) == CONST_VECTOR
3028 && CONST_VECTOR_NPATTERNS (x) == 1
3029 && !CONST_VECTOR_DUPLICATE_P (x))
3030 return const_vec_series_p_1 (x, base_out, step_out);
3031 return false;
3032 }
3033
3034 /* Return true if X is a vector that contains a linear series of the
3035 form:
3036
3037 { B, B + S, B + 2 * S, B + 3 * S, ... }
3038
3039 where B and S are constant or nonconstant. Store B and S in
3040 *BASE_OUT and *STEP_OUT on sucess. */
3041
3042 inline bool
3043 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3044 {
3045 if (GET_CODE (x) == VEC_SERIES)
3046 {
3047 *base_out = XEXP (x, 0);
3048 *step_out = XEXP (x, 1);
3049 return true;
3050 }
3051 return const_vec_series_p (x, base_out, step_out);
3052 }
3053
3054 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3055
3056 inline scalar_int_mode
3057 subreg_unpromoted_mode (rtx x)
3058 {
3059 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3060 return as_a <scalar_int_mode> (GET_MODE (x));
3061 }
3062
3063 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3064
3065 inline scalar_int_mode
3066 subreg_promoted_mode (rtx x)
3067 {
3068 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3069 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
3070 }
3071
3072 /* In emit-rtl.c */
3073 extern rtvec gen_rtvec_v (int, rtx *);
3074 extern rtvec gen_rtvec_v (int, rtx_insn **);
3075 extern rtx gen_reg_rtx (machine_mode);
3076 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3077 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3078 extern rtx gen_reg_rtx_and_attrs (rtx);
3079 extern rtx_code_label *gen_label_rtx (void);
3080 extern rtx gen_lowpart_common (machine_mode, rtx);
3081
3082 /* In cse.c */
3083 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3084
3085 /* In emit-rtl.c */
3086 extern rtx gen_highpart (machine_mode, rtx);
3087 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3088 extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);
3089
3090 /* In emit-rtl.c */
3091 extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
3092 extern int subreg_lowpart_p (const_rtx);
3093 extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64);
3094
3095 /* Return true if a subreg of mode OUTERMODE would only access part of
3096 an inner register with mode INNERMODE. The other bits of the inner
3097 register would then be "don't care" on read. The behavior for writes
3098 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3099 chunk would be clobbered but other bits would be preserved. */
3100
3101 inline bool
3102 partial_subreg_p (machine_mode outermode, machine_mode innermode)
3103 {
3104 /* Modes involved in a subreg must be ordered. In particular, we must
3105 always know at compile time whether the subreg is paradoxical. */
3106 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3107 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3108 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3109 return maybe_lt (outer_prec, inner_prec);
3110 }
3111
3112 /* Likewise return true if X is a subreg that is smaller than the inner
3113 register. Use read_modify_subreg_p to test whether writing to such
3114 a subreg preserves any part of the inner register. */
3115
3116 inline bool
3117 partial_subreg_p (const_rtx x)
3118 {
3119 if (GET_CODE (x) != SUBREG)
3120 return false;
3121 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3122 }
3123
3124 /* Return true if a subreg with the given outer and inner modes is
3125 paradoxical. */
3126
3127 inline bool
3128 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3129 {
3130 /* Modes involved in a subreg must be ordered. In particular, we must
3131 always know at compile time whether the subreg is paradoxical. */
3132 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3133 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3134 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3135 return maybe_gt (outer_prec, inner_prec);
3136 }
3137
3138 /* Return true if X is a paradoxical subreg, false otherwise. */
3139
3140 inline bool
3141 paradoxical_subreg_p (const_rtx x)
3142 {
3143 if (GET_CODE (x) != SUBREG)
3144 return false;
3145 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3146 }
3147
3148 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3149
3150 inline poly_uint64
3151 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3152 {
3153 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
3154 GET_MODE_SIZE (innermode));
3155 }
3156
3157 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3158 return the smaller of the two modes if they are different sizes,
3159 otherwise return the outer mode. */
3160
3161 inline machine_mode
3162 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3163 {
3164 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3165 }
3166
3167 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3168 return the mode that is big enough to hold both the outer and inner
3169 values. Prefer the outer mode in the event of a tie. */
3170
3171 inline machine_mode
3172 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3173 {
3174 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3175 }
3176
3177 /* Likewise for subreg X. */
3178
3179 inline machine_mode
3180 wider_subreg_mode (const_rtx x)
3181 {
3182 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3183 }
3184
3185 extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64);
3186
3187 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3188
3189 inline poly_uint64
3190 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3191 {
3192 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3193 GET_MODE_SIZE (innermode));
3194 }
3195
3196 extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
3197 extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
3198 poly_uint64);
3199 extern poly_int64 subreg_memory_offset (const_rtx);
3200 extern rtx make_safe_from (rtx, rtx);
3201 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3202 addr_space_t, bool, bool);
3203 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3204 addr_space_t);
3205 #define convert_memory_address(to_mode,x) \
3206 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3207 extern const char *get_insn_name (int);
3208 extern rtx_insn *get_last_insn_anywhere (void);
3209 extern rtx_insn *get_first_nonnote_insn (void);
3210 extern rtx_insn *get_last_nonnote_insn (void);
3211 extern void start_sequence (void);
3212 extern void push_to_sequence (rtx_insn *);
3213 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3214 extern void end_sequence (void);
3215 #if TARGET_SUPPORTS_WIDE_INT == 0
3216 extern double_int rtx_to_double_int (const_rtx);
3217 #endif
3218 extern void cwi_output_hex (FILE *, const_rtx);
3219 #if TARGET_SUPPORTS_WIDE_INT == 0
3220 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3221 machine_mode);
3222 #endif
3223 extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3224
3225 /* In varasm.c */
3226 extern rtx force_const_mem (machine_mode, rtx);
3227
3228 /* In varasm.c */
3229
3230 struct function;
3231 extern rtx get_pool_constant (const_rtx);
3232 extern rtx get_pool_constant_mark (rtx, bool *);
3233 extern fixed_size_mode get_pool_mode (const_rtx);
3234 extern rtx simplify_subtraction (rtx);
3235 extern void decide_function_section (tree);
3236
3237 /* In emit-rtl.c */
3238 extern rtx_insn *emit_insn_before (rtx, rtx_insn *);
3239 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3240 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t);
3241 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *);
3242 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3243 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *,
3244 location_t);
3245 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3246 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3247 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t);
3248 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3249 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *);
3250 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t);
3251 extern rtx_barrier *emit_barrier_before (rtx_insn *);
3252 extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *);
3253 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3254 extern rtx_insn *emit_insn_after (rtx, rtx_insn *);
3255 extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block);
3256 extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t);
3257 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *);
3258 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *);
3259 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t);
3260 extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *);
3261 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *);
3262 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t);
3263 extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *);
3264 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *);
3265 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t);
3266 extern rtx_barrier *emit_barrier_after (rtx_insn *);
3267 extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *);
3268 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3269 extern rtx_insn *emit_insn (rtx);
3270 extern rtx_insn *emit_debug_insn (rtx);
3271 extern rtx_insn *emit_jump_insn (rtx);
3272 extern rtx_insn *emit_call_insn (rtx);
3273 extern rtx_code_label *emit_label (rtx);
3274 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3275 extern rtx_barrier *emit_barrier (void);
3276 extern rtx_note *emit_note (enum insn_note);
3277 extern rtx_note *emit_note_copy (rtx_note *);
3278 extern rtx_insn *gen_clobber (rtx);
3279 extern rtx_insn *emit_clobber (rtx);
3280 extern rtx_insn *gen_use (rtx);
3281 extern rtx_insn *emit_use (rtx);
3282 extern rtx_insn *make_insn_raw (rtx);
3283 extern void add_function_usage_to (rtx, rtx);
3284 extern rtx_call_insn *last_call_insn (void);
3285 extern rtx_insn *previous_insn (rtx_insn *);
3286 extern rtx_insn *next_insn (rtx_insn *);
3287 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3288 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3289 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3290 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3291 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3292 extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3293 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3294 extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3295 extern rtx_insn *prev_real_insn (rtx_insn *);
3296 extern rtx_insn *next_real_insn (rtx_insn *);
3297 extern rtx_insn *prev_real_nondebug_insn (rtx_insn *);
3298 extern rtx_insn *next_real_nondebug_insn (rtx);
3299 extern rtx_insn *prev_active_insn (rtx_insn *);
3300 extern rtx_insn *next_active_insn (rtx_insn *);
3301 extern int active_insn_p (const rtx_insn *);
3302 extern rtx_insn *next_cc0_user (rtx_insn *);
3303 extern rtx_insn *prev_cc0_setter (rtx_insn *);
3304
3305 /* In emit-rtl.c */
3306 extern int insn_line (const rtx_insn *);
3307 extern const char * insn_file (const rtx_insn *);
3308 extern tree insn_scope (const rtx_insn *);
3309 extern expanded_location insn_location (const rtx_insn *);
3310 extern location_t prologue_location, epilogue_location;
3311
3312 /* In jump.c */
3313 extern enum rtx_code reverse_condition (enum rtx_code);
3314 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3315 extern enum rtx_code swap_condition (enum rtx_code);
3316 extern enum rtx_code unsigned_condition (enum rtx_code);
3317 extern enum rtx_code signed_condition (enum rtx_code);
3318 extern void mark_jump_label (rtx, rtx_insn *, int);
3319
3320 /* Return true if integer comparison operator CODE interprets its operands
3321 as unsigned. */
3322
3323 inline bool
3324 unsigned_condition_p (enum rtx_code code)
3325 {
3326 return unsigned_condition (code) == code;
3327 }
3328
3329 /* In jump.c */
3330 extern rtx_insn *delete_related_insns (rtx);
3331
3332 /* In recog.c */
3333 extern rtx *find_constant_term_loc (rtx *);
3334
3335 /* In emit-rtl.c */
3336 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3337
3338 /* In insn-recog.c (generated by genrecog). */
3339 extern rtx_insn *split_insns (rtx, rtx_insn *);
3340
3341 /* In simplify-rtx.c */
3342 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3343 rtx, machine_mode);
3344 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
3345 machine_mode);
3346 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3347 rtx, rtx);
3348 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
3349 rtx);
3350 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
3351 machine_mode, rtx, rtx, rtx);
3352 extern rtx simplify_const_relational_operation (enum rtx_code,
3353 machine_mode, rtx, rtx);
3354 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
3355 machine_mode, rtx, rtx);
3356 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
3357 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
3358 machine_mode);
3359 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
3360 machine_mode, rtx, rtx, rtx);
3361 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
3362 machine_mode, rtx, rtx);
3363 extern rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3364 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3365 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3366 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3367 rtx (*fn) (rtx, const_rtx, void *), void *);
3368 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3369 extern rtx simplify_rtx (const_rtx);
3370 extern rtx avoid_constant_pool_reference (rtx);
3371 extern rtx delegitimize_mem_from_attrs (rtx);
3372 extern bool mode_signbit_p (machine_mode, const_rtx);
3373 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3374 extern bool val_signbit_known_set_p (machine_mode,
3375 unsigned HOST_WIDE_INT);
3376 extern bool val_signbit_known_clear_p (machine_mode,
3377 unsigned HOST_WIDE_INT);
3378
3379 /* In reginfo.c */
3380 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3381 bool);
3382 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3383
3384 /* In emit-rtl.c */
3385 extern rtx set_for_reg_notes (rtx);
3386 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3387 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3388 extern void set_insn_deleted (rtx_insn *);
3389
3390 /* Functions in rtlanal.c */
3391
3392 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3393 extern bool contains_symbol_ref_p (const_rtx);
3394 extern bool contains_symbolic_reference_p (const_rtx);
3395 extern bool contains_constant_pool_address_p (const_rtx);
3396
3397 /* Handle the cheap and common cases inline for performance. */
3398
3399 inline rtx single_set (const rtx_insn *insn)
3400 {
3401 if (!INSN_P (insn))
3402 return NULL_RTX;
3403
3404 if (GET_CODE (PATTERN (insn)) == SET)
3405 return PATTERN (insn);
3406
3407 /* Defer to the more expensive case. */
3408 return single_set_2 (insn, PATTERN (insn));
3409 }
3410
3411 extern scalar_int_mode get_address_mode (rtx mem);
3412 extern int rtx_addr_can_trap_p (const_rtx);
3413 extern bool nonzero_address_p (const_rtx);
3414 extern int rtx_unstable_p (const_rtx);
3415 extern bool rtx_varies_p (const_rtx, bool);
3416 extern bool rtx_addr_varies_p (const_rtx, bool);
3417 extern rtx get_call_rtx_from (rtx);
3418 extern HOST_WIDE_INT get_integer_term (const_rtx);
3419 extern rtx get_related_value (const_rtx);
3420 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3421 extern void split_const (rtx, rtx *, rtx *);
3422 extern rtx strip_offset (rtx, poly_int64_pod *);
3423 extern poly_int64 get_args_size (const_rtx);
3424 extern bool unsigned_reg_p (rtx);
3425 extern int reg_mentioned_p (const_rtx, const_rtx);
3426 extern int count_occurrences (const_rtx, const_rtx, int);
3427 extern int reg_referenced_p (const_rtx, const_rtx);
3428 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3429 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3430 extern int commutative_operand_precedence (rtx);
3431 extern bool swap_commutative_operands_p (rtx, rtx);
3432 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3433 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3434 extern int modified_in_p (const_rtx, const_rtx);
3435 extern int reg_set_p (const_rtx, const_rtx);
3436 extern int multiple_sets (const_rtx);
3437 extern int set_noop_p (const_rtx);
3438 extern int noop_move_p (const rtx_insn *);
3439 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3440 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3441 extern const_rtx set_of (const_rtx, const_rtx);
3442 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3443 extern void record_hard_reg_uses (rtx *, void *);
3444 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3445 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3446 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3447 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3448 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3449 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3450 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3451 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3452 extern rtx find_reg_equal_equiv_note (const_rtx);
3453 extern rtx find_constant_src (const rtx_insn *);
3454 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3455 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3456 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3457 extern void add_reg_note (rtx, enum reg_note, rtx);
3458 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3459 extern void add_args_size_note (rtx_insn *, poly_int64);
3460 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3461 extern rtx duplicate_reg_note (rtx);
3462 extern void remove_note (rtx_insn *, const_rtx);
3463 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3464 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3465 extern int side_effects_p (const_rtx);
3466 extern int volatile_refs_p (const_rtx);
3467 extern int volatile_insn_p (const_rtx);
3468 extern int may_trap_p_1 (const_rtx, unsigned);
3469 extern int may_trap_p (const_rtx);
3470 extern int may_trap_or_fault_p (const_rtx);
3471 extern bool can_throw_internal (const_rtx);
3472 extern bool can_throw_external (const_rtx);
3473 extern bool insn_could_throw_p (const_rtx);
3474 extern bool insn_nothrow_p (const_rtx);
3475 extern bool can_nonlocal_goto (const rtx_insn *);
3476 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3477 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3478 extern int inequality_comparisons_p (const_rtx);
3479 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3480 extern void replace_label (rtx *, rtx, rtx, bool);
3481 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3482 extern bool rtx_referenced_p (const_rtx, const_rtx);
3483 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3484 extern rtx tablejump_casesi_pattern (const rtx_insn *insn);
3485 extern int computed_jump_p (const rtx_insn *);
3486 extern bool tls_referenced_p (const_rtx);
3487 extern bool contains_mem_rtx_p (rtx x);
3488 extern bool reg_is_clobbered_by_clobber_high (unsigned int, machine_mode,
3489 const_rtx);
3490
3491 /* Convenient wrapper for reg_is_clobbered_by_clobber_high. */
3492 inline bool
3493 reg_is_clobbered_by_clobber_high (const_rtx x, const_rtx clobber_high_op)
3494 {
3495 return reg_is_clobbered_by_clobber_high (REGNO (x), GET_MODE (x),
3496 clobber_high_op);
3497 }
3498
3499 /* Overload for refers_to_regno_p for checking a single register. */
3500 inline bool
3501 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3502 {
3503 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3504 }
3505
3506 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3507 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3508 NULL. The callback is passed the same opaque ARG passed to
3509 for_each_inc_dec. Return zero to continue looking for other
3510 autoinc operations or any other value to interrupt the traversal and
3511 return that value to the caller of for_each_inc_dec. */
3512 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3513 rtx srcoff, void *arg);
3514 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3515
3516 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3517 rtx *, rtx *);
3518 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3519 rtx_equal_p_callback_function);
3520
3521 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3522 machine_mode *);
3523 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3524 bool, hash_rtx_callback_function);
3525
3526 extern rtx regno_use_in (unsigned int, rtx);
3527 extern int auto_inc_p (const_rtx);
3528 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3529 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3530 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3531 extern int loc_mentioned_in_p (rtx *, const_rtx);
3532 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3533 extern bool keep_with_call_p (const rtx_insn *);
3534 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3535 extern int pattern_cost (rtx, bool);
3536 extern int insn_cost (rtx_insn *, bool);
3537 extern unsigned seq_cost (const rtx_insn *, bool);
3538
3539 /* Given an insn and condition, return a canonical description of
3540 the test being made. */
3541 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3542 int, int);
3543
3544 /* Given a JUMP_INSN, return a canonical description of the test
3545 being made. */
3546 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3547
3548 /* Information about a subreg of a hard register. */
3549 struct subreg_info
3550 {
3551 /* Offset of first hard register involved in the subreg. */
3552 int offset;
3553 /* Number of hard registers involved in the subreg. In the case of
3554 a paradoxical subreg, this is the number of registers that would
3555 be modified by writing to the subreg; some of them may be don't-care
3556 when reading from the subreg. */
3557 int nregs;
3558 /* Whether this subreg can be represented as a hard reg with the new
3559 mode (by adding OFFSET to the original hard register). */
3560 bool representable_p;
3561 };
3562
3563 extern void subreg_get_info (unsigned int, machine_mode,
3564 poly_uint64, machine_mode,
3565 struct subreg_info *);
3566
3567 /* lists.c */
3568
3569 extern void free_EXPR_LIST_list (rtx_expr_list **);
3570 extern void free_INSN_LIST_list (rtx_insn_list **);
3571 extern void free_EXPR_LIST_node (rtx);
3572 extern void free_INSN_LIST_node (rtx);
3573 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3574 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3575 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3576 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3577 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3578 extern rtx remove_list_elem (rtx, rtx *);
3579 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3580 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3581
3582
3583 /* reginfo.c */
3584
3585 /* Resize reg info. */
3586 extern bool resize_reg_info (void);
3587 /* Free up register info memory. */
3588 extern void free_reg_info (void);
3589 extern void init_subregs_of_mode (void);
3590 extern void finish_subregs_of_mode (void);
3591
3592 /* recog.c */
3593 extern rtx extract_asm_operands (rtx);
3594 extern int asm_noperands (const_rtx);
3595 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3596 machine_mode *, location_t *);
3597 extern void get_referenced_operands (const char *, bool *, unsigned int);
3598
3599 extern enum reg_class reg_preferred_class (int);
3600 extern enum reg_class reg_alternate_class (int);
3601 extern enum reg_class reg_allocno_class (int);
3602 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3603 enum reg_class);
3604
3605 extern void split_all_insns (void);
3606 extern unsigned int split_all_insns_noflow (void);
3607
3608 #define MAX_SAVED_CONST_INT 64
3609 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3610
3611 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3612 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3613 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3614 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3615 extern GTY(()) rtx const_true_rtx;
3616
3617 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3618
3619 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3620 same as VOIDmode. */
3621
3622 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3623
3624 /* Likewise, for the constants 1 and 2 and -1. */
3625
3626 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3627 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3628 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3629
3630 extern GTY(()) rtx pc_rtx;
3631 extern GTY(()) rtx cc0_rtx;
3632 extern GTY(()) rtx ret_rtx;
3633 extern GTY(()) rtx simple_return_rtx;
3634 extern GTY(()) rtx_insn *invalid_insn_rtx;
3635
3636 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3637 is used to represent the frame pointer. This is because the
3638 hard frame pointer and the automatic variables are separated by an amount
3639 that cannot be determined until after register allocation. We can assume
3640 that in this case ELIMINABLE_REGS will be defined, one action of which
3641 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3642 #ifndef HARD_FRAME_POINTER_REGNUM
3643 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3644 #endif
3645
3646 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3647 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3648 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3649 #endif
3650
3651 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3652 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3653 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3654 #endif
3655
3656 /* Index labels for global_rtl. */
3657 enum global_rtl_index
3658 {
3659 GR_STACK_POINTER,
3660 GR_FRAME_POINTER,
3661 /* For register elimination to work properly these hard_frame_pointer_rtx,
3662 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3663 the same register. */
3664 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3665 GR_ARG_POINTER = GR_FRAME_POINTER,
3666 #endif
3667 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3668 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3669 #else
3670 GR_HARD_FRAME_POINTER,
3671 #endif
3672 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3673 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3674 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3675 #else
3676 GR_ARG_POINTER,
3677 #endif
3678 #endif
3679 GR_VIRTUAL_INCOMING_ARGS,
3680 GR_VIRTUAL_STACK_ARGS,
3681 GR_VIRTUAL_STACK_DYNAMIC,
3682 GR_VIRTUAL_OUTGOING_ARGS,
3683 GR_VIRTUAL_CFA,
3684 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3685
3686 GR_MAX
3687 };
3688
3689 /* Target-dependent globals. */
3690 struct GTY(()) target_rtl {
3691 /* All references to the hard registers in global_rtl_index go through
3692 these unique rtl objects. On machines where the frame-pointer and
3693 arg-pointer are the same register, they use the same unique object.
3694
3695 After register allocation, other rtl objects which used to be pseudo-regs
3696 may be clobbered to refer to the frame-pointer register.
3697 But references that were originally to the frame-pointer can be
3698 distinguished from the others because they contain frame_pointer_rtx.
3699
3700 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3701 tricky: until register elimination has taken place hard_frame_pointer_rtx
3702 should be used if it is being set, and frame_pointer_rtx otherwise. After
3703 register elimination hard_frame_pointer_rtx should always be used.
3704 On machines where the two registers are same (most) then these are the
3705 same. */
3706 rtx x_global_rtl[GR_MAX];
3707
3708 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3709 rtx x_pic_offset_table_rtx;
3710
3711 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3712 This is used to implement __builtin_return_address for some machines;
3713 see for instance the MIPS port. */
3714 rtx x_return_address_pointer_rtx;
3715
3716 /* Commonly used RTL for hard registers. These objects are not
3717 necessarily unique, so we allocate them separately from global_rtl.
3718 They are initialized once per compilation unit, then copied into
3719 regno_reg_rtx at the beginning of each function. */
3720 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3721
3722 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3723 rtx x_top_of_stack[MAX_MACHINE_MODE];
3724
3725 /* Static hunks of RTL used by the aliasing code; these are treated
3726 as persistent to avoid unnecessary RTL allocations. */
3727 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3728
3729 /* The default memory attributes for each mode. */
3730 class mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3731
3732 /* Track if RTL has been initialized. */
3733 bool target_specific_initialized;
3734 };
3735
3736 extern GTY(()) struct target_rtl default_target_rtl;
3737 #if SWITCHABLE_TARGET
3738 extern struct target_rtl *this_target_rtl;
3739 #else
3740 #define this_target_rtl (&default_target_rtl)
3741 #endif
3742
3743 #define global_rtl \
3744 (this_target_rtl->x_global_rtl)
3745 #define pic_offset_table_rtx \
3746 (this_target_rtl->x_pic_offset_table_rtx)
3747 #define return_address_pointer_rtx \
3748 (this_target_rtl->x_return_address_pointer_rtx)
3749 #define top_of_stack \
3750 (this_target_rtl->x_top_of_stack)
3751 #define mode_mem_attrs \
3752 (this_target_rtl->x_mode_mem_attrs)
3753
3754 /* All references to certain hard regs, except those created
3755 by allocating pseudo regs into them (when that's possible),
3756 go through these unique rtx objects. */
3757 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3758 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3759 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3760 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3761
3762 #ifndef GENERATOR_FILE
3763 /* Return the attributes of a MEM rtx. */
3764 static inline const class mem_attrs *
3765 get_mem_attrs (const_rtx x)
3766 {
3767 class mem_attrs *attrs;
3768
3769 attrs = MEM_ATTRS (x);
3770 if (!attrs)
3771 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3772 return attrs;
3773 }
3774 #endif
3775
3776 /* Include the RTL generation functions. */
3777
3778 #ifndef GENERATOR_FILE
3779 #include "genrtl.h"
3780 #undef gen_rtx_ASM_INPUT
3781 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3782 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3783 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3784 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3785 #endif
3786
3787 /* There are some RTL codes that require special attention; the
3788 generation functions included above do the raw handling. If you
3789 add to this list, modify special_rtx in gengenrtl.c as well. */
3790
3791 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3792 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3793 extern rtx_insn *
3794 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3795 basic_block bb, rtx pattern, int location, int code,
3796 rtx reg_notes);
3797 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3798 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3799 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3800 extern rtx gen_raw_REG (machine_mode, unsigned int);
3801 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3802 extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
3803 extern rtx gen_rtx_MEM (machine_mode, rtx);
3804 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3805 enum var_init_status);
3806
3807 #ifdef GENERATOR_FILE
3808 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3809 #else
3810 static inline void
3811 PUT_MODE (rtx x, machine_mode mode)
3812 {
3813 if (REG_P (x))
3814 set_mode_and_regno (x, mode, REGNO (x));
3815 else
3816 PUT_MODE_RAW (x, mode);
3817 }
3818 #endif
3819
3820 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3821
3822 /* Virtual registers are used during RTL generation to refer to locations into
3823 the stack frame when the actual location isn't known until RTL generation
3824 is complete. The routine instantiate_virtual_regs replaces these with
3825 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3826 a constant. */
3827
3828 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3829
3830 /* This points to the first word of the incoming arguments passed on the stack,
3831 either by the caller or by the callee when pretending it was passed by the
3832 caller. */
3833
3834 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3835
3836 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3837
3838 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3839 variable on the stack. Otherwise, it points to the first variable on
3840 the stack. */
3841
3842 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3843
3844 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3845
3846 /* This points to the location of dynamically-allocated memory on the stack
3847 immediately after the stack pointer has been adjusted by the amount
3848 desired. */
3849
3850 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3851
3852 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3853
3854 /* This points to the location in the stack at which outgoing arguments should
3855 be written when the stack is pre-pushed (arguments pushed using push
3856 insns always use sp). */
3857
3858 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3859
3860 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3861
3862 /* This points to the Canonical Frame Address of the function. This
3863 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3864 but is calculated relative to the arg pointer for simplicity; the
3865 frame pointer nor stack pointer are necessarily fixed relative to
3866 the CFA until after reload. */
3867
3868 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3869
3870 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3871
3872 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3873
3874 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3875 when finalized. */
3876
3877 #define virtual_preferred_stack_boundary_rtx \
3878 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3879
3880 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3881 ((FIRST_VIRTUAL_REGISTER) + 5)
3882
3883 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3884
3885 /* Nonzero if REGNUM is a pointer into the stack frame. */
3886 #define REGNO_PTR_FRAME_P(REGNUM) \
3887 ((REGNUM) == STACK_POINTER_REGNUM \
3888 || (REGNUM) == FRAME_POINTER_REGNUM \
3889 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3890 || (REGNUM) == ARG_POINTER_REGNUM \
3891 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3892 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3893
3894 /* REGNUM never really appearing in the INSN stream. */
3895 #define INVALID_REGNUM (~(unsigned int) 0)
3896
3897 /* REGNUM for which no debug information can be generated. */
3898 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3899
3900 extern rtx output_constant_def (tree, int);
3901 extern rtx lookup_constant_def (tree);
3902
3903 /* Nonzero after end of reload pass.
3904 Set to 1 or 0 by reload1.c. */
3905
3906 extern int reload_completed;
3907
3908 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3909 extern int epilogue_completed;
3910
3911 /* Set to 1 while reload_as_needed is operating.
3912 Required by some machines to handle any generated moves differently. */
3913
3914 extern int reload_in_progress;
3915
3916 /* Set to 1 while in lra. */
3917 extern int lra_in_progress;
3918
3919 /* This macro indicates whether you may create a new
3920 pseudo-register. */
3921
3922 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3923
3924 #ifdef STACK_REGS
3925 /* Nonzero after end of regstack pass.
3926 Set to 1 or 0 by reg-stack.c. */
3927 extern int regstack_completed;
3928 #endif
3929
3930 /* If this is nonzero, we do not bother generating VOLATILE
3931 around volatile memory references, and we are willing to
3932 output indirect addresses. If cse is to follow, we reject
3933 indirect addresses so a useful potential cse is generated;
3934 if it is used only once, instruction combination will produce
3935 the same indirect address eventually. */
3936 extern int cse_not_expected;
3937
3938 /* Translates rtx code to tree code, for those codes needed by
3939 real_arithmetic. The function returns an int because the caller may not
3940 know what `enum tree_code' means. */
3941
3942 extern int rtx_to_tree_code (enum rtx_code);
3943
3944 /* In cse.c */
3945 extern int delete_trivially_dead_insns (rtx_insn *, int);
3946 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3947 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3948
3949 /* In dse.c */
3950 extern bool check_for_inc_dec (rtx_insn *insn);
3951
3952 /* In jump.c */
3953 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3954 extern bool jump_to_label_p (const rtx_insn *);
3955 extern int condjump_p (const rtx_insn *);
3956 extern int any_condjump_p (const rtx_insn *);
3957 extern int any_uncondjump_p (const rtx_insn *);
3958 extern rtx pc_set (const rtx_insn *);
3959 extern rtx condjump_label (const rtx_insn *);
3960 extern int simplejump_p (const rtx_insn *);
3961 extern int returnjump_p (const rtx_insn *);
3962 extern int eh_returnjump_p (rtx_insn *);
3963 extern int onlyjump_p (const rtx_insn *);
3964 extern int only_sets_cc0_p (const_rtx);
3965 extern int sets_cc0_p (const_rtx);
3966 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3967 extern int invert_jump (rtx_jump_insn *, rtx, int);
3968 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3969 extern int true_regnum (const_rtx);
3970 extern unsigned int reg_or_subregno (const_rtx);
3971 extern int redirect_jump_1 (rtx_insn *, rtx);
3972 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3973 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3974 extern void rebuild_jump_labels (rtx_insn *);
3975 extern void rebuild_jump_labels_chain (rtx_insn *);
3976 extern rtx reversed_comparison (const_rtx, machine_mode);
3977 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3978 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3979 const_rtx, const rtx_insn *);
3980 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3981 extern int condjump_in_parallel_p (const rtx_insn *);
3982
3983 /* In emit-rtl.c. */
3984 extern int max_reg_num (void);
3985 extern int max_label_num (void);
3986 extern int get_first_label_num (void);
3987 extern void maybe_set_first_label_num (rtx_code_label *);
3988 extern void delete_insns_since (rtx_insn *);
3989 extern void mark_reg_pointer (rtx, int);
3990 extern void mark_user_reg (rtx);
3991 extern void reset_used_flags (rtx);
3992 extern void set_used_flags (rtx);
3993 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3994 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3995 extern int get_max_insn_count (void);
3996 extern int in_sequence_p (void);
3997 extern void init_emit (void);
3998 extern void init_emit_regs (void);
3999 extern void init_derived_machine_modes (void);
4000 extern void init_emit_once (void);
4001 extern void push_topmost_sequence (void);
4002 extern void pop_topmost_sequence (void);
4003 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
4004 extern unsigned int unshare_all_rtl (void);
4005 extern void unshare_all_rtl_again (rtx_insn *);
4006 extern void unshare_all_rtl_in_chain (rtx_insn *);
4007 extern void verify_rtl_sharing (void);
4008 extern void add_insn (rtx_insn *);
4009 extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block);
4010 extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block);
4011 extern void remove_insn (rtx_insn *);
4012 extern rtx_insn *emit (rtx, bool = true);
4013 extern void emit_insn_at_entry (rtx);
4014 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
4015 extern rtx gen_const_mem (machine_mode, rtx);
4016 extern rtx gen_frame_mem (machine_mode, rtx);
4017 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
4018 extern bool validate_subreg (machine_mode, machine_mode,
4019 const_rtx, poly_uint64);
4020
4021 /* In combine.c */
4022 extern unsigned int extended_count (const_rtx, machine_mode, int);
4023 extern rtx remove_death (unsigned int, rtx_insn *);
4024 extern void dump_combine_stats (FILE *);
4025 extern void dump_combine_total_stats (FILE *);
4026 extern rtx make_compound_operation (rtx, enum rtx_code);
4027
4028 /* In sched-rgn.c. */
4029 extern void schedule_insns (void);
4030
4031 /* In sched-ebb.c. */
4032 extern void schedule_ebbs (void);
4033
4034 /* In sel-sched-dump.c. */
4035 extern void sel_sched_fix_param (const char *param, const char *val);
4036
4037 /* In print-rtl.c */
4038 extern const char *print_rtx_head;
4039 extern void debug (const rtx_def &ref);
4040 extern void debug (const rtx_def *ptr);
4041 extern void debug_rtx (const_rtx);
4042 extern void debug_rtx_list (const rtx_insn *, int);
4043 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
4044 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
4045 extern void print_mem_expr (FILE *, const_tree);
4046 extern void print_rtl (FILE *, const_rtx);
4047 extern void print_simple_rtl (FILE *, const_rtx);
4048 extern int print_rtl_single (FILE *, const_rtx);
4049 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
4050 extern void print_inline_rtx (FILE *, const_rtx, int);
4051
4052 /* In stmt.c */
4053 extern void expand_null_return (void);
4054 extern void expand_naked_return (void);
4055 extern void emit_jump (rtx);
4056
4057 /* Memory operation built-ins differ by return value. Mapping
4058 of the enum values is following:
4059 - RETURN_BEGIN - return destination, e.g. memcpy
4060 - RETURN_END - return destination + n, e.g. mempcpy
4061 - RETURN_END_MINUS_ONE - return a pointer to the terminating
4062 null byte of the string, e.g. strcpy
4063 */
4064
4065 enum memop_ret
4066 {
4067 RETURN_BEGIN,
4068 RETURN_END,
4069 RETURN_END_MINUS_ONE
4070 };
4071
4072 /* In expr.c */
4073 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
4074 unsigned int, memop_ret);
4075 extern poly_int64 find_args_size_adjust (rtx_insn *);
4076 extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64);
4077
4078 /* In expmed.c */
4079 extern void init_expmed (void);
4080 extern void expand_inc (rtx, rtx);
4081 extern void expand_dec (rtx, rtx);
4082
4083 /* In lower-subreg.c */
4084 extern void init_lower_subreg (void);
4085
4086 /* In gcse.c */
4087 extern bool can_copy_p (machine_mode);
4088 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
4089 extern rtx_insn *prepare_copy_insn (rtx, rtx);
4090
4091 /* In cprop.c */
4092 extern rtx fis_get_condition (rtx_insn *);
4093
4094 /* In ira.c */
4095 extern HARD_REG_SET eliminable_regset;
4096 extern void mark_elimination (int, int);
4097
4098 /* In reginfo.c */
4099 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
4100 extern int reg_class_subset_p (reg_class_t, reg_class_t);
4101 extern void globalize_reg (tree, int);
4102 extern void init_reg_modes_target (void);
4103 extern void init_regs (void);
4104 extern void reinit_regs (void);
4105 extern void init_fake_stack_mems (void);
4106 extern void save_register_info (void);
4107 extern void init_reg_sets (void);
4108 extern void regclass (rtx, int);
4109 extern void reg_scan (rtx_insn *, unsigned int);
4110 extern void fix_register (const char *, int, int);
4111 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4112
4113 /* In reload1.c */
4114 extern int function_invariant_p (const_rtx);
4115
4116 /* In calls.c */
4117 enum libcall_type
4118 {
4119 LCT_NORMAL = 0,
4120 LCT_CONST = 1,
4121 LCT_PURE = 2,
4122 LCT_NORETURN = 3,
4123 LCT_THROW = 4,
4124 LCT_RETURNS_TWICE = 5
4125 };
4126
4127 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
4128 machine_mode, int, rtx_mode_t *);
4129
4130 /* Output a library call and discard the returned value. FUN is the
4131 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4132 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4133 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4134 another LCT_ value for other types of library calls.
4135
4136 There are different overloads of this function for different numbers
4137 of arguments. In each case the argument value is followed by its mode. */
4138
4139 inline void
4140 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4141 {
4142 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4143 }
4144
4145 inline void
4146 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4147 rtx arg1, machine_mode arg1_mode)
4148 {
4149 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4150 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4151 }
4152
4153 inline void
4154 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4155 rtx arg1, machine_mode arg1_mode,
4156 rtx arg2, machine_mode arg2_mode)
4157 {
4158 rtx_mode_t args[] = {
4159 rtx_mode_t (arg1, arg1_mode),
4160 rtx_mode_t (arg2, arg2_mode)
4161 };
4162 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4163 }
4164
4165 inline void
4166 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4167 rtx arg1, machine_mode arg1_mode,
4168 rtx arg2, machine_mode arg2_mode,
4169 rtx arg3, machine_mode arg3_mode)
4170 {
4171 rtx_mode_t args[] = {
4172 rtx_mode_t (arg1, arg1_mode),
4173 rtx_mode_t (arg2, arg2_mode),
4174 rtx_mode_t (arg3, arg3_mode)
4175 };
4176 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4177 }
4178
4179 inline void
4180 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4181 rtx arg1, machine_mode arg1_mode,
4182 rtx arg2, machine_mode arg2_mode,
4183 rtx arg3, machine_mode arg3_mode,
4184 rtx arg4, machine_mode arg4_mode)
4185 {
4186 rtx_mode_t args[] = {
4187 rtx_mode_t (arg1, arg1_mode),
4188 rtx_mode_t (arg2, arg2_mode),
4189 rtx_mode_t (arg3, arg3_mode),
4190 rtx_mode_t (arg4, arg4_mode)
4191 };
4192 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4193 }
4194
4195 /* Like emit_library_call, but return the value produced by the call.
4196 Use VALUE to store the result if it is nonnull, otherwise pick a
4197 convenient location. */
4198
4199 inline rtx
4200 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4201 machine_mode outmode)
4202 {
4203 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4204 }
4205
4206 inline rtx
4207 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4208 machine_mode outmode,
4209 rtx arg1, machine_mode arg1_mode)
4210 {
4211 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4212 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4213 }
4214
4215 inline rtx
4216 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4217 machine_mode outmode,
4218 rtx arg1, machine_mode arg1_mode,
4219 rtx arg2, machine_mode arg2_mode)
4220 {
4221 rtx_mode_t args[] = {
4222 rtx_mode_t (arg1, arg1_mode),
4223 rtx_mode_t (arg2, arg2_mode)
4224 };
4225 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4226 }
4227
4228 inline rtx
4229 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4230 machine_mode outmode,
4231 rtx arg1, machine_mode arg1_mode,
4232 rtx arg2, machine_mode arg2_mode,
4233 rtx arg3, machine_mode arg3_mode)
4234 {
4235 rtx_mode_t args[] = {
4236 rtx_mode_t (arg1, arg1_mode),
4237 rtx_mode_t (arg2, arg2_mode),
4238 rtx_mode_t (arg3, arg3_mode)
4239 };
4240 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4241 }
4242
4243 inline rtx
4244 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4245 machine_mode outmode,
4246 rtx arg1, machine_mode arg1_mode,
4247 rtx arg2, machine_mode arg2_mode,
4248 rtx arg3, machine_mode arg3_mode,
4249 rtx arg4, machine_mode arg4_mode)
4250 {
4251 rtx_mode_t args[] = {
4252 rtx_mode_t (arg1, arg1_mode),
4253 rtx_mode_t (arg2, arg2_mode),
4254 rtx_mode_t (arg3, arg3_mode),
4255 rtx_mode_t (arg4, arg4_mode)
4256 };
4257 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4258 }
4259
4260 /* In varasm.c */
4261 extern void init_varasm_once (void);
4262
4263 extern rtx make_debug_expr_from_rtl (const_rtx);
4264
4265 /* In read-rtl.c */
4266 #ifdef GENERATOR_FILE
4267 extern bool read_rtx (const char *, vec<rtx> *);
4268 #endif
4269
4270 /* In alias.c */
4271 extern rtx canon_rtx (rtx);
4272 extern int true_dependence (const_rtx, machine_mode, const_rtx);
4273 extern rtx get_addr (rtx);
4274 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
4275 const_rtx, rtx);
4276 extern int read_dependence (const_rtx, const_rtx);
4277 extern int anti_dependence (const_rtx, const_rtx);
4278 extern int canon_anti_dependence (const_rtx, bool,
4279 const_rtx, machine_mode, rtx);
4280 extern int output_dependence (const_rtx, const_rtx);
4281 extern int canon_output_dependence (const_rtx, bool,
4282 const_rtx, machine_mode, rtx);
4283 extern int may_alias_p (const_rtx, const_rtx);
4284 extern void init_alias_target (void);
4285 extern void init_alias_analysis (void);
4286 extern void end_alias_analysis (void);
4287 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4288 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4289 extern bool may_be_sp_based_p (rtx);
4290 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4291 extern rtx gen_hard_reg_clobber_high (machine_mode, unsigned int);
4292 extern rtx get_reg_known_value (unsigned int);
4293 extern bool get_reg_known_equiv_p (unsigned int);
4294 extern rtx get_reg_base_value (unsigned int);
4295
4296 #ifdef STACK_REGS
4297 extern int stack_regs_mentioned (const_rtx insn);
4298 #endif
4299
4300 /* In toplev.c */
4301 extern GTY(()) rtx stack_limit_rtx;
4302
4303 /* In var-tracking.c */
4304 extern unsigned int variable_tracking_main (void);
4305 extern void delete_vta_debug_insns (bool);
4306
4307 /* In stor-layout.c. */
4308 extern void get_mode_bounds (scalar_int_mode, int,
4309 scalar_int_mode, rtx *, rtx *);
4310
4311 /* In loop-iv.c */
4312 extern rtx canon_condition (rtx);
4313 extern void simplify_using_condition (rtx, rtx *, bitmap);
4314
4315 /* In final.c */
4316 extern unsigned int compute_alignments (void);
4317 extern void update_alignments (vec<rtx> &);
4318 extern int asm_str_count (const char *templ);
4319 \f
4320 struct rtl_hooks
4321 {
4322 rtx (*gen_lowpart) (machine_mode, rtx);
4323 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4324 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4325 unsigned HOST_WIDE_INT *);
4326 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4327 unsigned int *);
4328 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4329
4330 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4331 };
4332
4333 /* Each pass can provide its own. */
4334 extern struct rtl_hooks rtl_hooks;
4335
4336 /* ... but then it has to restore these. */
4337 extern const struct rtl_hooks general_rtl_hooks;
4338
4339 /* Keep this for the nonce. */
4340 #define gen_lowpart rtl_hooks.gen_lowpart
4341
4342 extern void insn_locations_init (void);
4343 extern void insn_locations_finalize (void);
4344 extern void set_curr_insn_location (location_t);
4345 extern location_t curr_insn_location (void);
4346 extern void set_insn_locations (rtx_insn *, location_t);
4347
4348 /* rtl-error.c */
4349 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4350 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4351 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4352 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4353
4354 #define fatal_insn(msgid, insn) \
4355 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4356 #define fatal_insn_not_found(insn) \
4357 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4358
4359 /* reginfo.c */
4360 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4361
4362 /* Information about the function that is propagated by the RTL backend.
4363 Available only for functions that has been already assembled. */
4364
4365 struct GTY(()) cgraph_rtl_info {
4366 unsigned int preferred_incoming_stack_boundary;
4367
4368 /* Call unsaved hard registers really used by the corresponding
4369 function (including ones used by functions called by the
4370 function). */
4371 HARD_REG_SET function_used_regs;
4372 /* Set if function_used_regs is valid. */
4373 unsigned function_used_regs_valid: 1;
4374 };
4375
4376 /* If loads from memories of mode MODE always sign or zero extend,
4377 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4378 otherwise. */
4379
4380 inline rtx_code
4381 load_extend_op (machine_mode mode)
4382 {
4383 scalar_int_mode int_mode;
4384 if (is_a <scalar_int_mode> (mode, &int_mode)
4385 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4386 return LOAD_EXTEND_OP (int_mode);
4387 return UNKNOWN;
4388 }
4389
4390 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4391 and return the base. Return X otherwise. */
4392
4393 inline rtx
4394 strip_offset_and_add (rtx x, poly_int64_pod *offset)
4395 {
4396 if (GET_CODE (x) == PLUS)
4397 {
4398 poly_int64 suboffset;
4399 x = strip_offset (x, &suboffset);
4400 *offset = poly_uint64 (*offset) + suboffset;
4401 }
4402 return x;
4403 }
4404
4405 /* Return true if X is an operation that always operates on the full
4406 registers for WORD_REGISTER_OPERATIONS architectures. */
4407
4408 inline bool
4409 word_register_operation_p (const_rtx x)
4410 {
4411 switch (GET_CODE (x))
4412 {
4413 case CONST_INT:
4414 case ROTATE:
4415 case ROTATERT:
4416 case SIGN_EXTRACT:
4417 case ZERO_EXTRACT:
4418 return false;
4419
4420 default:
4421 return true;
4422 }
4423 }
4424
4425 /* gtype-desc.c. */
4426 extern void gt_ggc_mx (rtx &);
4427 extern void gt_pch_nx (rtx &);
4428 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4429
4430 #endif /* ! GCC_RTL_H */