]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/rtl.h
Add more subreg offset helpers
[thirdparty/gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "machmode.h"
28 #include "signop.h"
29 #include "wide-int.h"
30 #include "double-int.h"
31 #include "real.h"
32 #include "fixed-value.h"
33 #include "statistics.h"
34 #include "vec.h"
35 #include "hash-table.h"
36 #include "hash-set.h"
37 #include "input.h"
38 #include "is-a.h"
39 #endif /* GENERATOR_FILE */
40
41 #include "hard-reg-set.h"
42
43 /* Value used by some passes to "recognize" noop moves as valid
44 instructions. */
45 #define NOOP_MOVE_INSN_CODE INT_MAX
46
47 /* Register Transfer Language EXPRESSIONS CODES */
48
49 #define RTX_CODE enum rtx_code
50 enum rtx_code {
51
52 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
53 #include "rtl.def" /* rtl expressions are documented here */
54 #undef DEF_RTL_EXPR
55
56 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
57 NUM_RTX_CODE.
58 Assumes default enum value assignment. */
59
60 /* The cast here, saves many elsewhere. */
61 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
62
63 /* Similar, but since generator files get more entries... */
64 #ifdef GENERATOR_FILE
65 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
66 #endif
67
68 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
69
70 enum rtx_class {
71 /* We check bit 0-1 of some rtx class codes in the predicates below. */
72
73 /* Bit 0 = comparison if 0, arithmetic is 1
74 Bit 1 = 1 if commutative. */
75 RTX_COMPARE, /* 0 */
76 RTX_COMM_COMPARE,
77 RTX_BIN_ARITH,
78 RTX_COMM_ARITH,
79
80 /* Must follow the four preceding values. */
81 RTX_UNARY, /* 4 */
82
83 RTX_EXTRA,
84 RTX_MATCH,
85 RTX_INSN,
86
87 /* Bit 0 = 1 if constant. */
88 RTX_OBJ, /* 8 */
89 RTX_CONST_OBJ,
90
91 RTX_TERNARY,
92 RTX_BITFIELD_OPS,
93 RTX_AUTOINC
94 };
95
96 #define RTX_OBJ_MASK (~1)
97 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
98 #define RTX_COMPARE_MASK (~1)
99 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
100 #define RTX_ARITHMETIC_MASK (~1)
101 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
102 #define RTX_BINARY_MASK (~3)
103 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
104 #define RTX_COMMUTATIVE_MASK (~2)
105 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
106 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
107
108 extern const unsigned char rtx_length[NUM_RTX_CODE];
109 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
110
111 extern const char * const rtx_name[NUM_RTX_CODE];
112 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
113
114 extern const char * const rtx_format[NUM_RTX_CODE];
115 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
116
117 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
118 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
119
120 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
121 and NEXT_INSN fields). */
122 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
123
124 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
125 extern const unsigned char rtx_next[NUM_RTX_CODE];
126 \f
127 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
128 relative to which the offsets are calculated, as explained in rtl.def. */
129 struct addr_diff_vec_flags
130 {
131 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
132 unsigned min_align: 8;
133 /* Flags: */
134 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
135 unsigned min_after_vec: 1; /* minimum address target label is
136 after the ADDR_DIFF_VEC. */
137 unsigned max_after_vec: 1; /* maximum address target label is
138 after the ADDR_DIFF_VEC. */
139 unsigned min_after_base: 1; /* minimum address target label is
140 after BASE. */
141 unsigned max_after_base: 1; /* maximum address target label is
142 after BASE. */
143 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
144 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
145 unsigned : 2;
146 unsigned scale : 8;
147 };
148
149 /* Structure used to describe the attributes of a MEM. These are hashed
150 so MEMs that the same attributes share a data structure. This means
151 they cannot be modified in place. */
152 struct GTY(()) mem_attrs
153 {
154 /* The expression that the MEM accesses, or null if not known.
155 This expression might be larger than the memory reference itself.
156 (In other words, the MEM might access only part of the object.) */
157 tree expr;
158
159 /* The offset of the memory reference from the start of EXPR.
160 Only valid if OFFSET_KNOWN_P. */
161 HOST_WIDE_INT offset;
162
163 /* The size of the memory reference in bytes. Only valid if
164 SIZE_KNOWN_P. */
165 HOST_WIDE_INT size;
166
167 /* The alias set of the memory reference. */
168 alias_set_type alias;
169
170 /* The alignment of the reference in bits. Always a multiple of
171 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
172 than the memory reference itself. */
173 unsigned int align;
174
175 /* The address space that the memory reference uses. */
176 unsigned char addrspace;
177
178 /* True if OFFSET is known. */
179 bool offset_known_p;
180
181 /* True if SIZE is known. */
182 bool size_known_p;
183 };
184
185 /* Structure used to describe the attributes of a REG in similar way as
186 mem_attrs does for MEM above. Note that the OFFSET field is calculated
187 in the same way as for mem_attrs, rather than in the same way as a
188 SUBREG_BYTE. For example, if a big-endian target stores a byte
189 object in the low part of a 4-byte register, the OFFSET field
190 will be -3 rather than 0. */
191
192 struct GTY((for_user)) reg_attrs {
193 tree decl; /* decl corresponding to REG. */
194 HOST_WIDE_INT offset; /* Offset from start of DECL. */
195 };
196
197 /* Common union for an element of an rtx. */
198
199 union rtunion
200 {
201 int rt_int;
202 unsigned int rt_uint;
203 const char *rt_str;
204 rtx rt_rtx;
205 rtvec rt_rtvec;
206 machine_mode rt_type;
207 addr_diff_vec_flags rt_addr_diff_vec_flags;
208 struct cselib_val *rt_cselib;
209 tree rt_tree;
210 basic_block rt_bb;
211 mem_attrs *rt_mem;
212 struct constant_descriptor_rtx *rt_constant;
213 struct dw_cfi_node *rt_cfi;
214 };
215
216 /* Describes the properties of a REG. */
217 struct GTY(()) reg_info {
218 /* The value of REGNO. */
219 unsigned int regno;
220
221 /* The value of REG_NREGS. */
222 unsigned int nregs : 8;
223 unsigned int unused : 24;
224
225 /* The value of REG_ATTRS. */
226 reg_attrs *attrs;
227 };
228
229 /* This structure remembers the position of a SYMBOL_REF within an
230 object_block structure. A SYMBOL_REF only provides this information
231 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
232 struct GTY(()) block_symbol {
233 /* The usual SYMBOL_REF fields. */
234 rtunion GTY ((skip)) fld[2];
235
236 /* The block that contains this object. */
237 struct object_block *block;
238
239 /* The offset of this object from the start of its block. It is negative
240 if the symbol has not yet been assigned an offset. */
241 HOST_WIDE_INT offset;
242 };
243
244 /* Describes a group of objects that are to be placed together in such
245 a way that their relative positions are known. */
246 struct GTY((for_user)) object_block {
247 /* The section in which these objects should be placed. */
248 section *sect;
249
250 /* The alignment of the first object, measured in bits. */
251 unsigned int alignment;
252
253 /* The total size of the objects, measured in bytes. */
254 HOST_WIDE_INT size;
255
256 /* The SYMBOL_REFs for each object. The vector is sorted in
257 order of increasing offset and the following conditions will
258 hold for each element X:
259
260 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
261 !SYMBOL_REF_ANCHOR_P (X)
262 SYMBOL_REF_BLOCK (X) == [address of this structure]
263 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
264 vec<rtx, va_gc> *objects;
265
266 /* All the anchor SYMBOL_REFs used to address these objects, sorted
267 in order of increasing offset, and then increasing TLS model.
268 The following conditions will hold for each element X in this vector:
269
270 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
271 SYMBOL_REF_ANCHOR_P (X)
272 SYMBOL_REF_BLOCK (X) == [address of this structure]
273 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
274 vec<rtx, va_gc> *anchors;
275 };
276
277 struct GTY((variable_size)) hwivec_def {
278 HOST_WIDE_INT elem[1];
279 };
280
281 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
282 #define CWI_GET_NUM_ELEM(RTX) \
283 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
284 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
285 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
286
287 /* RTL expression ("rtx"). */
288
289 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
290 field for gengtype to recognize that inheritance is occurring,
291 so that all subclasses are redirected to the traversal hook for the
292 base class.
293 However, all of the fields are in the base class, and special-casing
294 is at work. Hence we use desc and tag of 0, generating a switch
295 statement of the form:
296 switch (0)
297 {
298 case 0: // all the work happens here
299 }
300 in order to work with the existing special-casing in gengtype. */
301
302 struct GTY((desc("0"), tag("0"),
303 chain_next ("RTX_NEXT (&%h)"),
304 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
305 /* The kind of expression this is. */
306 ENUM_BITFIELD(rtx_code) code: 16;
307
308 /* The kind of value the expression has. */
309 ENUM_BITFIELD(machine_mode) mode : 8;
310
311 /* 1 in a MEM if we should keep the alias set for this mem unchanged
312 when we access a component.
313 1 in a JUMP_INSN if it is a crossing jump.
314 1 in a CALL_INSN if it is a sibling call.
315 1 in a SET that is for a return.
316 In a CODE_LABEL, part of the two-bit alternate entry field.
317 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
318 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
319 1 in a SUBREG generated by LRA for reload insns.
320 1 in a REG if this is a static chain register.
321 1 in a CALL for calls instrumented by Pointer Bounds Checker.
322 Dumped as "/j" in RTL dumps. */
323 unsigned int jump : 1;
324 /* In a CODE_LABEL, part of the two-bit alternate entry field.
325 1 in a MEM if it cannot trap.
326 1 in a CALL_INSN logically equivalent to
327 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
328 Dumped as "/c" in RTL dumps. */
329 unsigned int call : 1;
330 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
331 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
332 1 in a SYMBOL_REF if it addresses something in the per-function
333 constants pool.
334 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
335 1 in a NOTE, or EXPR_LIST for a const call.
336 1 in a JUMP_INSN of an annulling branch.
337 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
338 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
339 1 in a clobber temporarily created for LRA.
340 Dumped as "/u" in RTL dumps. */
341 unsigned int unchanging : 1;
342 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
343 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
344 if it has been deleted.
345 1 in a REG expression if corresponds to a variable declared by the user,
346 0 for an internally generated temporary.
347 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
348 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
349 non-local label.
350 In a SYMBOL_REF, this flag is used for machine-specific purposes.
351 In a PREFETCH, this flag indicates that it should be considered a
352 scheduling barrier.
353 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
354 Dumped as "/v" in RTL dumps. */
355 unsigned int volatil : 1;
356 /* 1 in a REG if the register is used only in exit code a loop.
357 1 in a SUBREG expression if was generated from a variable with a
358 promoted mode.
359 1 in a CODE_LABEL if the label is used for nonlocal gotos
360 and must not be deleted even if its count is zero.
361 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
362 together with the preceding insn. Valid only within sched.
363 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
364 from the target of a branch. Valid from reorg until end of compilation;
365 cleared before used.
366
367 The name of the field is historical. It used to be used in MEMs
368 to record whether the MEM accessed part of a structure.
369 Dumped as "/s" in RTL dumps. */
370 unsigned int in_struct : 1;
371 /* At the end of RTL generation, 1 if this rtx is used. This is used for
372 copying shared structure. See `unshare_all_rtl'.
373 In a REG, this is not needed for that purpose, and used instead
374 in `leaf_renumber_regs_insn'.
375 1 in a SYMBOL_REF, means that emit_library_call
376 has used it as the function.
377 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
378 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
379 unsigned int used : 1;
380 /* 1 in an INSN or a SET if this rtx is related to the call frame,
381 either changing how we compute the frame address or saving and
382 restoring registers in the prologue and epilogue.
383 1 in a REG or MEM if it is a pointer.
384 1 in a SYMBOL_REF if it addresses something in the per-function
385 constant string pool.
386 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
387 Dumped as "/f" in RTL dumps. */
388 unsigned frame_related : 1;
389 /* 1 in a REG or PARALLEL that is the current function's return value.
390 1 in a SYMBOL_REF for a weak symbol.
391 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
392 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
393 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
394 Dumped as "/i" in RTL dumps. */
395 unsigned return_val : 1;
396
397 union {
398 /* The final union field is aligned to 64 bits on LP64 hosts,
399 giving a 32-bit gap after the fields above. We optimize the
400 layout for that case and use the gap for extra code-specific
401 information. */
402
403 /* The ORIGINAL_REGNO of a REG. */
404 unsigned int original_regno;
405
406 /* The INSN_UID of an RTX_INSN-class code. */
407 int insn_uid;
408
409 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
410 unsigned int symbol_ref_flags;
411
412 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
413 enum var_init_status var_location_status;
414
415 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
416 HOST_WIDE_INTs in the hwivec_def. */
417 unsigned int num_elem;
418 } GTY ((skip)) u2;
419
420 /* The first element of the operands of this rtx.
421 The number of operands and their types are controlled
422 by the `code' field, according to rtl.def. */
423 union u {
424 rtunion fld[1];
425 HOST_WIDE_INT hwint[1];
426 struct reg_info reg;
427 struct block_symbol block_sym;
428 struct real_value rv;
429 struct fixed_value fv;
430 struct hwivec_def hwiv;
431 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
432 };
433
434 /* A node for constructing singly-linked lists of rtx. */
435
436 class GTY(()) rtx_expr_list : public rtx_def
437 {
438 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
439
440 public:
441 /* Get next in list. */
442 rtx_expr_list *next () const;
443
444 /* Get at the underlying rtx. */
445 rtx element () const;
446 };
447
448 template <>
449 template <>
450 inline bool
451 is_a_helper <rtx_expr_list *>::test (rtx rt)
452 {
453 return rt->code == EXPR_LIST;
454 }
455
456 class GTY(()) rtx_insn_list : public rtx_def
457 {
458 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
459
460 This is an instance of:
461
462 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
463
464 i.e. a node for constructing singly-linked lists of rtx_insn *, where
465 the list is "external" to the insn (as opposed to the doubly-linked
466 list embedded within rtx_insn itself). */
467
468 public:
469 /* Get next in list. */
470 rtx_insn_list *next () const;
471
472 /* Get at the underlying instruction. */
473 rtx_insn *insn () const;
474
475 };
476
477 template <>
478 template <>
479 inline bool
480 is_a_helper <rtx_insn_list *>::test (rtx rt)
481 {
482 return rt->code == INSN_LIST;
483 }
484
485 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
486 typically (but not always) of rtx_insn *, used in the late passes. */
487
488 class GTY(()) rtx_sequence : public rtx_def
489 {
490 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
491
492 public:
493 /* Get number of elements in sequence. */
494 int len () const;
495
496 /* Get i-th element of the sequence. */
497 rtx element (int index) const;
498
499 /* Get i-th element of the sequence, with a checked cast to
500 rtx_insn *. */
501 rtx_insn *insn (int index) const;
502 };
503
504 template <>
505 template <>
506 inline bool
507 is_a_helper <rtx_sequence *>::test (rtx rt)
508 {
509 return rt->code == SEQUENCE;
510 }
511
512 template <>
513 template <>
514 inline bool
515 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
516 {
517 return rt->code == SEQUENCE;
518 }
519
520 class GTY(()) rtx_insn : public rtx_def
521 {
522 public:
523 /* No extra fields, but adds the invariant:
524
525 (INSN_P (X)
526 || NOTE_P (X)
527 || JUMP_TABLE_DATA_P (X)
528 || BARRIER_P (X)
529 || LABEL_P (X))
530
531 i.e. that we must be able to use the following:
532 INSN_UID ()
533 NEXT_INSN ()
534 PREV_INSN ()
535 i.e. we have an rtx that has an INSN_UID field and can be part of
536 a linked list of insns.
537 */
538
539 /* Returns true if this insn has been deleted. */
540
541 bool deleted () const { return volatil; }
542
543 /* Mark this insn as deleted. */
544
545 void set_deleted () { volatil = true; }
546
547 /* Mark this insn as not deleted. */
548
549 void set_undeleted () { volatil = false; }
550 };
551
552 /* Subclasses of rtx_insn. */
553
554 class GTY(()) rtx_debug_insn : public rtx_insn
555 {
556 /* No extra fields, but adds the invariant:
557 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
558 i.e. an annotation for tracking variable assignments.
559
560 This is an instance of:
561 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
562 from rtl.def. */
563 };
564
565 class GTY(()) rtx_nonjump_insn : public rtx_insn
566 {
567 /* No extra fields, but adds the invariant:
568 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
569 i.e an instruction that cannot jump.
570
571 This is an instance of:
572 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
573 from rtl.def. */
574 };
575
576 class GTY(()) rtx_jump_insn : public rtx_insn
577 {
578 public:
579 /* No extra fields, but adds the invariant:
580 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
581 i.e. an instruction that can possibly jump.
582
583 This is an instance of:
584 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
585 from rtl.def. */
586
587 /* Returns jump target of this instruction. The returned value is not
588 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
589 expression. Also, when the code label is marked "deleted", it is
590 replaced by a NOTE. In some cases the value is NULL_RTX. */
591
592 inline rtx jump_label () const;
593
594 /* Returns jump target cast to rtx_code_label *. */
595
596 inline rtx_code_label *jump_target () const;
597
598 /* Set jump target. */
599
600 inline void set_jump_target (rtx_code_label *);
601 };
602
603 class GTY(()) rtx_call_insn : public rtx_insn
604 {
605 /* No extra fields, but adds the invariant:
606 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
607 i.e. an instruction that can possibly call a subroutine
608 but which will not change which instruction comes next
609 in the current function.
610
611 This is an instance of:
612 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
613 from rtl.def. */
614 };
615
616 class GTY(()) rtx_jump_table_data : public rtx_insn
617 {
618 /* No extra fields, but adds the invariant:
619 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
620 i.e. a data for a jump table, considered an instruction for
621 historical reasons.
622
623 This is an instance of:
624 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
625 from rtl.def. */
626
627 public:
628
629 /* This can be either:
630
631 (a) a table of absolute jumps, in which case PATTERN (this) is an
632 ADDR_VEC with arg 0 a vector of labels, or
633
634 (b) a table of relative jumps (e.g. for -fPIC), in which case
635 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
636 arg 1 the vector of labels.
637
638 This method gets the underlying vec. */
639
640 inline rtvec get_labels () const;
641 };
642
643 class GTY(()) rtx_barrier : public rtx_insn
644 {
645 /* No extra fields, but adds the invariant:
646 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
647 i.e. a marker that indicates that control will not flow through.
648
649 This is an instance of:
650 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
651 from rtl.def. */
652 };
653
654 class GTY(()) rtx_code_label : public rtx_insn
655 {
656 /* No extra fields, but adds the invariant:
657 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
658 i.e. a label in the assembler.
659
660 This is an instance of:
661 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
662 from rtl.def. */
663 };
664
665 class GTY(()) rtx_note : public rtx_insn
666 {
667 /* No extra fields, but adds the invariant:
668 NOTE_P(X) aka (GET_CODE (X) == NOTE)
669 i.e. a note about the corresponding source code.
670
671 This is an instance of:
672 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
673 from rtl.def. */
674 };
675
676 /* The size in bytes of an rtx header (code, mode and flags). */
677 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
678
679 /* The size in bytes of an rtx with code CODE. */
680 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
681
682 #define NULL_RTX (rtx) 0
683
684 /* The "next" and "previous" RTX, relative to this one. */
685
686 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
687 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
688
689 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
690 */
691 #define RTX_PREV(X) ((INSN_P (X) \
692 || NOTE_P (X) \
693 || JUMP_TABLE_DATA_P (X) \
694 || BARRIER_P (X) \
695 || LABEL_P (X)) \
696 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
697 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
698 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
699
700 /* Define macros to access the `code' field of the rtx. */
701
702 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
703 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
704
705 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
706 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
707
708 /* RTL vector. These appear inside RTX's when there is a need
709 for a variable number of things. The principle use is inside
710 PARALLEL expressions. */
711
712 struct GTY(()) rtvec_def {
713 int num_elem; /* number of elements */
714 rtx GTY ((length ("%h.num_elem"))) elem[1];
715 };
716
717 #define NULL_RTVEC (rtvec) 0
718
719 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
720 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
721
722 /* Predicate yielding nonzero iff X is an rtx for a register. */
723 #define REG_P(X) (GET_CODE (X) == REG)
724
725 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
726 #define MEM_P(X) (GET_CODE (X) == MEM)
727
728 #if TARGET_SUPPORTS_WIDE_INT
729
730 /* Match CONST_*s that can represent compile-time constant integers. */
731 #define CASE_CONST_SCALAR_INT \
732 case CONST_INT: \
733 case CONST_WIDE_INT
734
735 /* Match CONST_*s for which pointer equality corresponds to value
736 equality. */
737 #define CASE_CONST_UNIQUE \
738 case CONST_INT: \
739 case CONST_WIDE_INT: \
740 case CONST_DOUBLE: \
741 case CONST_FIXED
742
743 /* Match all CONST_* rtxes. */
744 #define CASE_CONST_ANY \
745 case CONST_INT: \
746 case CONST_WIDE_INT: \
747 case CONST_DOUBLE: \
748 case CONST_FIXED: \
749 case CONST_VECTOR
750
751 #else
752
753 /* Match CONST_*s that can represent compile-time constant integers. */
754 #define CASE_CONST_SCALAR_INT \
755 case CONST_INT: \
756 case CONST_DOUBLE
757
758 /* Match CONST_*s for which pointer equality corresponds to value
759 equality. */
760 #define CASE_CONST_UNIQUE \
761 case CONST_INT: \
762 case CONST_DOUBLE: \
763 case CONST_FIXED
764
765 /* Match all CONST_* rtxes. */
766 #define CASE_CONST_ANY \
767 case CONST_INT: \
768 case CONST_DOUBLE: \
769 case CONST_FIXED: \
770 case CONST_VECTOR
771 #endif
772
773 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
774 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
775
776 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
777 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
778
779 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
780 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
781
782 /* Predicate yielding true iff X is an rtx for a double-int
783 or floating point constant. */
784 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
785
786 /* Predicate yielding true iff X is an rtx for a double-int. */
787 #define CONST_DOUBLE_AS_INT_P(X) \
788 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
789
790 /* Predicate yielding true iff X is an rtx for a integer const. */
791 #if TARGET_SUPPORTS_WIDE_INT
792 #define CONST_SCALAR_INT_P(X) \
793 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
794 #else
795 #define CONST_SCALAR_INT_P(X) \
796 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
797 #endif
798
799 /* Predicate yielding true iff X is an rtx for a double-int. */
800 #define CONST_DOUBLE_AS_FLOAT_P(X) \
801 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
802
803 /* Predicate yielding nonzero iff X is a label insn. */
804 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
805
806 /* Predicate yielding nonzero iff X is a jump insn. */
807 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
808
809 /* Predicate yielding nonzero iff X is a call insn. */
810 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
811
812 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
813 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
814
815 /* Predicate yielding nonzero iff X is a debug note/insn. */
816 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
817
818 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
819 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
820
821 /* Nonzero if DEBUG_INSN_P may possibly hold. */
822 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
823
824 /* Predicate yielding nonzero iff X is a real insn. */
825 #define INSN_P(X) \
826 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
827
828 /* Predicate yielding nonzero iff X is a note insn. */
829 #define NOTE_P(X) (GET_CODE (X) == NOTE)
830
831 /* Predicate yielding nonzero iff X is a barrier insn. */
832 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
833
834 /* Predicate yielding nonzero iff X is a data for a jump table. */
835 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
836
837 /* Predicate yielding nonzero iff RTX is a subreg. */
838 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
839
840 /* Predicate yielding true iff RTX is a symbol ref. */
841 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
842
843 template <>
844 template <>
845 inline bool
846 is_a_helper <rtx_insn *>::test (rtx rt)
847 {
848 return (INSN_P (rt)
849 || NOTE_P (rt)
850 || JUMP_TABLE_DATA_P (rt)
851 || BARRIER_P (rt)
852 || LABEL_P (rt));
853 }
854
855 template <>
856 template <>
857 inline bool
858 is_a_helper <const rtx_insn *>::test (const_rtx rt)
859 {
860 return (INSN_P (rt)
861 || NOTE_P (rt)
862 || JUMP_TABLE_DATA_P (rt)
863 || BARRIER_P (rt)
864 || LABEL_P (rt));
865 }
866
867 template <>
868 template <>
869 inline bool
870 is_a_helper <rtx_debug_insn *>::test (rtx rt)
871 {
872 return DEBUG_INSN_P (rt);
873 }
874
875 template <>
876 template <>
877 inline bool
878 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
879 {
880 return NONJUMP_INSN_P (rt);
881 }
882
883 template <>
884 template <>
885 inline bool
886 is_a_helper <rtx_jump_insn *>::test (rtx rt)
887 {
888 return JUMP_P (rt);
889 }
890
891 template <>
892 template <>
893 inline bool
894 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
895 {
896 return JUMP_P (insn);
897 }
898
899 template <>
900 template <>
901 inline bool
902 is_a_helper <rtx_call_insn *>::test (rtx rt)
903 {
904 return CALL_P (rt);
905 }
906
907 template <>
908 template <>
909 inline bool
910 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
911 {
912 return CALL_P (insn);
913 }
914
915 template <>
916 template <>
917 inline bool
918 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
919 {
920 return JUMP_TABLE_DATA_P (rt);
921 }
922
923 template <>
924 template <>
925 inline bool
926 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
927 {
928 return JUMP_TABLE_DATA_P (insn);
929 }
930
931 template <>
932 template <>
933 inline bool
934 is_a_helper <rtx_barrier *>::test (rtx rt)
935 {
936 return BARRIER_P (rt);
937 }
938
939 template <>
940 template <>
941 inline bool
942 is_a_helper <rtx_code_label *>::test (rtx rt)
943 {
944 return LABEL_P (rt);
945 }
946
947 template <>
948 template <>
949 inline bool
950 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
951 {
952 return LABEL_P (insn);
953 }
954
955 template <>
956 template <>
957 inline bool
958 is_a_helper <rtx_note *>::test (rtx rt)
959 {
960 return NOTE_P (rt);
961 }
962
963 template <>
964 template <>
965 inline bool
966 is_a_helper <rtx_note *>::test (rtx_insn *insn)
967 {
968 return NOTE_P (insn);
969 }
970
971 /* Predicate yielding nonzero iff X is a return or simple_return. */
972 #define ANY_RETURN_P(X) \
973 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
974
975 /* 1 if X is a unary operator. */
976
977 #define UNARY_P(X) \
978 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
979
980 /* 1 if X is a binary operator. */
981
982 #define BINARY_P(X) \
983 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
984
985 /* 1 if X is an arithmetic operator. */
986
987 #define ARITHMETIC_P(X) \
988 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
989 == RTX_ARITHMETIC_RESULT)
990
991 /* 1 if X is an arithmetic operator. */
992
993 #define COMMUTATIVE_ARITH_P(X) \
994 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
995
996 /* 1 if X is a commutative arithmetic operator or a comparison operator.
997 These two are sometimes selected together because it is possible to
998 swap the two operands. */
999
1000 #define SWAPPABLE_OPERANDS_P(X) \
1001 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1002 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1003 | (1 << RTX_COMPARE)))
1004
1005 /* 1 if X is a non-commutative operator. */
1006
1007 #define NON_COMMUTATIVE_P(X) \
1008 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1009 == RTX_NON_COMMUTATIVE_RESULT)
1010
1011 /* 1 if X is a commutative operator on integers. */
1012
1013 #define COMMUTATIVE_P(X) \
1014 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1015 == RTX_COMMUTATIVE_RESULT)
1016
1017 /* 1 if X is a relational operator. */
1018
1019 #define COMPARISON_P(X) \
1020 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1021
1022 /* 1 if X is a constant value that is an integer. */
1023
1024 #define CONSTANT_P(X) \
1025 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1026
1027 /* 1 if X can be used to represent an object. */
1028 #define OBJECT_P(X) \
1029 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1030
1031 /* General accessor macros for accessing the fields of an rtx. */
1032
1033 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1034 /* The bit with a star outside the statement expr and an & inside is
1035 so that N can be evaluated only once. */
1036 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1037 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1038 const enum rtx_code _code = GET_CODE (_rtx); \
1039 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1040 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1041 __FUNCTION__); \
1042 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1043 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1044 __FUNCTION__); \
1045 &_rtx->u.fld[_n]; }))
1046
1047 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1048 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1049 const enum rtx_code _code = GET_CODE (_rtx); \
1050 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1051 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1052 __FUNCTION__); \
1053 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1054 && GET_RTX_FORMAT (_code)[_n] != C2) \
1055 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1056 __FUNCTION__); \
1057 &_rtx->u.fld[_n]; }))
1058
1059 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1060 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1061 if (GET_CODE (_rtx) != (C)) \
1062 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1063 __FUNCTION__); \
1064 &_rtx->u.fld[_n]; }))
1065
1066 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1067 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1068 const enum rtx_code _code = GET_CODE (_rtx); \
1069 if (_code != (C1) && _code != (C2)) \
1070 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1071 __FUNCTION__); \
1072 &_rtx->u.fld[_n]; }))
1073
1074 #define RTVEC_ELT(RTVEC, I) __extension__ \
1075 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1076 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1077 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1078 __FUNCTION__); \
1079 &_rtvec->elem[_i]; }))
1080
1081 #define XWINT(RTX, N) __extension__ \
1082 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1083 const enum rtx_code _code = GET_CODE (_rtx); \
1084 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1085 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1086 __FUNCTION__); \
1087 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1088 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1089 __FUNCTION__); \
1090 &_rtx->u.hwint[_n]; }))
1091
1092 #define CWI_ELT(RTX, I) __extension__ \
1093 (*({ __typeof (RTX) const _cwi = (RTX); \
1094 int _max = CWI_GET_NUM_ELEM (_cwi); \
1095 const int _i = (I); \
1096 if (_i < 0 || _i >= _max) \
1097 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1098 __FUNCTION__); \
1099 &_cwi->u.hwiv.elem[_i]; }))
1100
1101 #define XCWINT(RTX, N, C) __extension__ \
1102 (*({ __typeof (RTX) const _rtx = (RTX); \
1103 if (GET_CODE (_rtx) != (C)) \
1104 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1105 __FUNCTION__); \
1106 &_rtx->u.hwint[N]; }))
1107
1108 #define XCMWINT(RTX, N, C, M) __extension__ \
1109 (*({ __typeof (RTX) const _rtx = (RTX); \
1110 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1111 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1112 __LINE__, __FUNCTION__); \
1113 &_rtx->u.hwint[N]; }))
1114
1115 #define XCNMPRV(RTX, C, M) __extension__ \
1116 ({ __typeof (RTX) const _rtx = (RTX); \
1117 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1118 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1119 __LINE__, __FUNCTION__); \
1120 &_rtx->u.rv; })
1121
1122 #define XCNMPFV(RTX, C, M) __extension__ \
1123 ({ __typeof (RTX) const _rtx = (RTX); \
1124 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1125 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1126 __LINE__, __FUNCTION__); \
1127 &_rtx->u.fv; })
1128
1129 #define REG_CHECK(RTX) __extension__ \
1130 ({ __typeof (RTX) const _rtx = (RTX); \
1131 if (GET_CODE (_rtx) != REG) \
1132 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1133 __FUNCTION__); \
1134 &_rtx->u.reg; })
1135
1136 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1137 ({ __typeof (RTX) const _symbol = (RTX); \
1138 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1139 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1140 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1141 __FUNCTION__); \
1142 &_symbol->u.block_sym; })
1143
1144 #define HWIVEC_CHECK(RTX,C) __extension__ \
1145 ({ __typeof (RTX) const _symbol = (RTX); \
1146 RTL_CHECKC1 (_symbol, 0, C); \
1147 &_symbol->u.hwiv; })
1148
1149 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1150 const char *)
1151 ATTRIBUTE_NORETURN;
1152 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1153 const char *)
1154 ATTRIBUTE_NORETURN;
1155 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1156 int, const char *)
1157 ATTRIBUTE_NORETURN;
1158 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1159 int, const char *)
1160 ATTRIBUTE_NORETURN;
1161 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1162 const char *, int, const char *)
1163 ATTRIBUTE_NORETURN;
1164 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1165 bool, const char *, int, const char *)
1166 ATTRIBUTE_NORETURN;
1167 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1168 ATTRIBUTE_NORETURN;
1169 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1170 const char *)
1171 ATTRIBUTE_NORETURN;
1172 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1173 const char *)
1174 ATTRIBUTE_NORETURN;
1175
1176 #else /* not ENABLE_RTL_CHECKING */
1177
1178 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1179 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1180 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1181 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1182 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1183 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1184 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1185 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1186 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1187 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1188 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1189 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1190 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1191 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1192 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1193
1194 #endif
1195
1196 /* General accessor macros for accessing the flags of an rtx. */
1197
1198 /* Access an individual rtx flag, with no checking of any kind. */
1199 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1200
1201 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1202 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1203 ({ __typeof (RTX) const _rtx = (RTX); \
1204 if (GET_CODE (_rtx) != C1) \
1205 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1206 __FUNCTION__); \
1207 _rtx; })
1208
1209 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1210 ({ __typeof (RTX) const _rtx = (RTX); \
1211 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1212 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1213 __FUNCTION__); \
1214 _rtx; })
1215
1216 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1217 ({ __typeof (RTX) const _rtx = (RTX); \
1218 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1219 && GET_CODE (_rtx) != C3) \
1220 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1221 __FUNCTION__); \
1222 _rtx; })
1223
1224 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1225 ({ __typeof (RTX) const _rtx = (RTX); \
1226 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1227 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1228 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1229 __FUNCTION__); \
1230 _rtx; })
1231
1232 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1233 ({ __typeof (RTX) const _rtx = (RTX); \
1234 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1235 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1236 && GET_CODE (_rtx) != C5) \
1237 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1238 __FUNCTION__); \
1239 _rtx; })
1240
1241 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1242 __extension__ \
1243 ({ __typeof (RTX) const _rtx = (RTX); \
1244 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1245 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1246 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1247 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1248 __FUNCTION__); \
1249 _rtx; })
1250
1251 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1252 __extension__ \
1253 ({ __typeof (RTX) const _rtx = (RTX); \
1254 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1255 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1256 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1257 && GET_CODE (_rtx) != C7) \
1258 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1259 __FUNCTION__); \
1260 _rtx; })
1261
1262 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1263 __extension__ \
1264 ({ __typeof (RTX) const _rtx = (RTX); \
1265 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1266 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1267 __FUNCTION__); \
1268 _rtx; })
1269
1270 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1271 int, const char *)
1272 ATTRIBUTE_NORETURN
1273 ;
1274
1275 #else /* not ENABLE_RTL_FLAG_CHECKING */
1276
1277 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1278 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1279 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1280 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1281 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1282 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1283 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1284 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1285 #endif
1286
1287 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1288 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1289 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1290 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1291 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1292 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1293 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1294 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1295 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1296 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1297
1298 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1299 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1300
1301 /* These are like XINT, etc. except that they expect a '0' field instead
1302 of the normal type code. */
1303
1304 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1305 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1306 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1307 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1308 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1309 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1310 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1311 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1312 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1313 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1314 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1315 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1316
1317 /* Access a '0' field with any type. */
1318 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1319
1320 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1321 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1322 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1323 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1324 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1325 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1326 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1327 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1328 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1329 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1330
1331 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1332 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1333
1334 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1335 \f
1336
1337 /* Methods of rtx_expr_list. */
1338
1339 inline rtx_expr_list *rtx_expr_list::next () const
1340 {
1341 rtx tmp = XEXP (this, 1);
1342 return safe_as_a <rtx_expr_list *> (tmp);
1343 }
1344
1345 inline rtx rtx_expr_list::element () const
1346 {
1347 return XEXP (this, 0);
1348 }
1349
1350 /* Methods of rtx_insn_list. */
1351
1352 inline rtx_insn_list *rtx_insn_list::next () const
1353 {
1354 rtx tmp = XEXP (this, 1);
1355 return safe_as_a <rtx_insn_list *> (tmp);
1356 }
1357
1358 inline rtx_insn *rtx_insn_list::insn () const
1359 {
1360 rtx tmp = XEXP (this, 0);
1361 return safe_as_a <rtx_insn *> (tmp);
1362 }
1363
1364 /* Methods of rtx_sequence. */
1365
1366 inline int rtx_sequence::len () const
1367 {
1368 return XVECLEN (this, 0);
1369 }
1370
1371 inline rtx rtx_sequence::element (int index) const
1372 {
1373 return XVECEXP (this, 0, index);
1374 }
1375
1376 inline rtx_insn *rtx_sequence::insn (int index) const
1377 {
1378 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1379 }
1380
1381 /* ACCESS MACROS for particular fields of insns. */
1382
1383 /* Holds a unique number for each insn.
1384 These are not necessarily sequentially increasing. */
1385 inline int INSN_UID (const_rtx insn)
1386 {
1387 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1388 (insn))->u2.insn_uid;
1389 }
1390 inline int& INSN_UID (rtx insn)
1391 {
1392 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1393 (insn))->u2.insn_uid;
1394 }
1395
1396 /* Chain insns together in sequence. */
1397
1398 /* For now these are split in two: an rvalue form:
1399 PREV_INSN/NEXT_INSN
1400 and an lvalue form:
1401 SET_NEXT_INSN/SET_PREV_INSN. */
1402
1403 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1404 {
1405 rtx prev = XEXP (insn, 0);
1406 return safe_as_a <rtx_insn *> (prev);
1407 }
1408
1409 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1410 {
1411 return XEXP (insn, 0);
1412 }
1413
1414 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1415 {
1416 rtx next = XEXP (insn, 1);
1417 return safe_as_a <rtx_insn *> (next);
1418 }
1419
1420 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1421 {
1422 return XEXP (insn, 1);
1423 }
1424
1425 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1426 {
1427 return XBBDEF (insn, 2);
1428 }
1429
1430 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1431 {
1432 return XBBDEF (insn, 2);
1433 }
1434
1435 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1436 {
1437 BLOCK_FOR_INSN (insn) = bb;
1438 }
1439
1440 /* The body of an insn. */
1441 inline rtx PATTERN (const_rtx insn)
1442 {
1443 return XEXP (insn, 3);
1444 }
1445
1446 inline rtx& PATTERN (rtx insn)
1447 {
1448 return XEXP (insn, 3);
1449 }
1450
1451 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1452 {
1453 return XUINT (insn, 4);
1454 }
1455
1456 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1457 {
1458 return XUINT (insn, 4);
1459 }
1460
1461 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1462 {
1463 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1464 }
1465
1466 /* LOCATION of an RTX if relevant. */
1467 #define RTL_LOCATION(X) (INSN_P (X) ? \
1468 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1469 : UNKNOWN_LOCATION)
1470
1471 /* Code number of instruction, from when it was recognized.
1472 -1 means this instruction has not been recognized yet. */
1473 #define INSN_CODE(INSN) XINT (INSN, 5)
1474
1475 inline rtvec rtx_jump_table_data::get_labels () const
1476 {
1477 rtx pat = PATTERN (this);
1478 if (GET_CODE (pat) == ADDR_VEC)
1479 return XVEC (pat, 0);
1480 else
1481 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1482 }
1483
1484 #define RTX_FRAME_RELATED_P(RTX) \
1485 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1486 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1487
1488 /* 1 if JUMP RTX is a crossing jump. */
1489 #define CROSSING_JUMP_P(RTX) \
1490 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1491
1492 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1493 TREE_READONLY. */
1494 #define RTL_CONST_CALL_P(RTX) \
1495 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1496
1497 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1498 DECL_PURE_P. */
1499 #define RTL_PURE_CALL_P(RTX) \
1500 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1501
1502 /* 1 if RTX is a call to a const or pure function. */
1503 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1504 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1505
1506 /* 1 if RTX is a call to a looping const or pure function. Built from
1507 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1508 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1509 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1510
1511 /* 1 if RTX is a call_insn for a sibling call. */
1512 #define SIBLING_CALL_P(RTX) \
1513 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1514
1515 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1516 #define INSN_ANNULLED_BRANCH_P(RTX) \
1517 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1518
1519 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1520 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1521 executed if the branch is taken. For annulled branches with this bit
1522 clear, the insn should be executed only if the branch is not taken. */
1523 #define INSN_FROM_TARGET_P(RTX) \
1524 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1525 CALL_INSN)->in_struct)
1526
1527 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1528 See the comments for ADDR_DIFF_VEC in rtl.def. */
1529 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1530
1531 /* In a VALUE, the value cselib has assigned to RTX.
1532 This is a "struct cselib_val", see cselib.h. */
1533 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1534
1535 /* Holds a list of notes on what this insn does to various REGs.
1536 It is a chain of EXPR_LIST rtx's, where the second operand is the
1537 chain pointer and the first operand is the REG being described.
1538 The mode field of the EXPR_LIST contains not a real machine mode
1539 but a value from enum reg_note. */
1540 #define REG_NOTES(INSN) XEXP(INSN, 6)
1541
1542 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1543 question. */
1544 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1545
1546 enum reg_note
1547 {
1548 #define DEF_REG_NOTE(NAME) NAME,
1549 #include "reg-notes.def"
1550 #undef DEF_REG_NOTE
1551 REG_NOTE_MAX
1552 };
1553
1554 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1555 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1556 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1557 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1558
1559 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1560
1561 extern const char * const reg_note_name[];
1562 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1563
1564 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1565 USE and CLOBBER expressions.
1566 USE expressions list the registers filled with arguments that
1567 are passed to the function.
1568 CLOBBER expressions document the registers explicitly clobbered
1569 by this CALL_INSN.
1570 Pseudo registers can not be mentioned in this list. */
1571 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1572
1573 /* The label-number of a code-label. The assembler label
1574 is made from `L' and the label-number printed in decimal.
1575 Label numbers are unique in a compilation. */
1576 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1577
1578 /* In a NOTE that is a line number, this is a string for the file name that the
1579 line is in. We use the same field to record block numbers temporarily in
1580 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1581 between ints and pointers if we use a different macro for the block number.)
1582 */
1583
1584 /* Opaque data. */
1585 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1586 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1587 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1588 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1589 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1590 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1591 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1592 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1593 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1594
1595 /* In a NOTE that is a line number, this is the line number.
1596 Other kinds of NOTEs are identified by negative numbers here. */
1597 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1598
1599 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1600 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1601 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1602
1603 /* Variable declaration and the location of a variable. */
1604 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1605 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1606
1607 /* Initialization status of the variable in the location. Status
1608 can be unknown, uninitialized or initialized. See enumeration
1609 type below. */
1610 #define PAT_VAR_LOCATION_STATUS(PAT) \
1611 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1612 ->u2.var_location_status)
1613
1614 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1615 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1616 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1617 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1618 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1619 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1620 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1621
1622 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1623 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1624
1625 /* Accessors for a tree-expanded var location debug insn. */
1626 #define INSN_VAR_LOCATION_DECL(INSN) \
1627 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1628 #define INSN_VAR_LOCATION_LOC(INSN) \
1629 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1630 #define INSN_VAR_LOCATION_STATUS(INSN) \
1631 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1632
1633 /* Expand to the RTL that denotes an unknown variable location in a
1634 DEBUG_INSN. */
1635 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1636
1637 /* Determine whether X is such an unknown location. */
1638 #define VAR_LOC_UNKNOWN_P(X) \
1639 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1640
1641 /* 1 if RTX is emitted after a call, but it should take effect before
1642 the call returns. */
1643 #define NOTE_DURING_CALL_P(RTX) \
1644 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1645
1646 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1647 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1648
1649 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1650 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1651
1652 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1653 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1654
1655 /* Codes that appear in the NOTE_KIND field for kinds of notes
1656 that are not line numbers. These codes are all negative.
1657
1658 Notice that we do not try to use zero here for any of
1659 the special note codes because sometimes the source line
1660 actually can be zero! This happens (for example) when we
1661 are generating code for the per-translation-unit constructor
1662 and destructor routines for some C++ translation unit. */
1663
1664 enum insn_note
1665 {
1666 #define DEF_INSN_NOTE(NAME) NAME,
1667 #include "insn-notes.def"
1668 #undef DEF_INSN_NOTE
1669
1670 NOTE_INSN_MAX
1671 };
1672
1673 /* Names for NOTE insn's other than line numbers. */
1674
1675 extern const char * const note_insn_name[NOTE_INSN_MAX];
1676 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1677 (note_insn_name[(NOTE_CODE)])
1678
1679 /* The name of a label, in case it corresponds to an explicit label
1680 in the input source code. */
1681 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1682
1683 /* In jump.c, each label contains a count of the number
1684 of LABEL_REFs that point at it, so unused labels can be deleted. */
1685 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1686
1687 /* Labels carry a two-bit field composed of the ->jump and ->call
1688 bits. This field indicates whether the label is an alternate
1689 entry point, and if so, what kind. */
1690 enum label_kind
1691 {
1692 LABEL_NORMAL = 0, /* ordinary label */
1693 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1694 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1695 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1696 };
1697
1698 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1699
1700 /* Retrieve the kind of LABEL. */
1701 #define LABEL_KIND(LABEL) __extension__ \
1702 ({ __typeof (LABEL) const _label = (LABEL); \
1703 if (! LABEL_P (_label)) \
1704 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1705 __FUNCTION__); \
1706 (enum label_kind) ((_label->jump << 1) | _label->call); })
1707
1708 /* Set the kind of LABEL. */
1709 #define SET_LABEL_KIND(LABEL, KIND) do { \
1710 __typeof (LABEL) const _label = (LABEL); \
1711 const unsigned int _kind = (KIND); \
1712 if (! LABEL_P (_label)) \
1713 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1714 __FUNCTION__); \
1715 _label->jump = ((_kind >> 1) & 1); \
1716 _label->call = (_kind & 1); \
1717 } while (0)
1718
1719 #else
1720
1721 /* Retrieve the kind of LABEL. */
1722 #define LABEL_KIND(LABEL) \
1723 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1724
1725 /* Set the kind of LABEL. */
1726 #define SET_LABEL_KIND(LABEL, KIND) do { \
1727 rtx const _label = (LABEL); \
1728 const unsigned int _kind = (KIND); \
1729 _label->jump = ((_kind >> 1) & 1); \
1730 _label->call = (_kind & 1); \
1731 } while (0)
1732
1733 #endif /* rtl flag checking */
1734
1735 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1736
1737 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1738 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1739 be decremented and possibly the label can be deleted. */
1740 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1741
1742 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1743 {
1744 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1745 }
1746
1747 /* Methods of rtx_jump_insn. */
1748
1749 inline rtx rtx_jump_insn::jump_label () const
1750 {
1751 return JUMP_LABEL (this);
1752 }
1753
1754 inline rtx_code_label *rtx_jump_insn::jump_target () const
1755 {
1756 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1757 }
1758
1759 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1760 {
1761 JUMP_LABEL (this) = target;
1762 }
1763
1764 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1765 goes through all the LABEL_REFs that jump to that label. The chain
1766 eventually winds up at the CODE_LABEL: it is circular. */
1767 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1768
1769 /* Get the label that a LABEL_REF references. */
1770 static inline rtx_insn *
1771 label_ref_label (const_rtx ref)
1772 {
1773 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1774 }
1775
1776 /* Set the label that LABEL_REF ref refers to. */
1777
1778 static inline void
1779 set_label_ref_label (rtx ref, rtx_insn *label)
1780 {
1781 XCEXP (ref, 0, LABEL_REF) = label;
1782 }
1783 \f
1784 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1785 be used on RHS. Use SET_REGNO to change the value. */
1786 #define REGNO(RTX) (rhs_regno(RTX))
1787 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1788
1789 /* Return the number of consecutive registers in a REG. This is always
1790 1 for pseudo registers and is determined by HARD_REGNO_NREGS for
1791 hard registers. */
1792 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1793
1794 /* ORIGINAL_REGNO holds the number the register originally had; for a
1795 pseudo register turned into a hard reg this will hold the old pseudo
1796 register number. */
1797 #define ORIGINAL_REGNO(RTX) \
1798 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1799
1800 /* Force the REGNO macro to only be used on the lhs. */
1801 static inline unsigned int
1802 rhs_regno (const_rtx x)
1803 {
1804 return REG_CHECK (x)->regno;
1805 }
1806
1807 /* Return the final register in REG X plus one. */
1808 static inline unsigned int
1809 END_REGNO (const_rtx x)
1810 {
1811 return REGNO (x) + REG_NREGS (x);
1812 }
1813
1814 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1815 bypassing the df machinery. */
1816 static inline void
1817 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1818 {
1819 reg_info *reg = REG_CHECK (x);
1820 reg->regno = regno;
1821 reg->nregs = nregs;
1822 }
1823
1824 /* 1 if RTX is a reg or parallel that is the current function's return
1825 value. */
1826 #define REG_FUNCTION_VALUE_P(RTX) \
1827 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1828
1829 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1830 #define REG_USERVAR_P(RTX) \
1831 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1832
1833 /* 1 if RTX is a reg that holds a pointer value. */
1834 #define REG_POINTER(RTX) \
1835 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1836
1837 /* 1 if RTX is a mem that holds a pointer value. */
1838 #define MEM_POINTER(RTX) \
1839 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1840
1841 /* 1 if the given register REG corresponds to a hard register. */
1842 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1843
1844 /* 1 if the given register number REG_NO corresponds to a hard register. */
1845 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1846
1847 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1848 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1849 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1850
1851 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1852 elements actually needed to represent the constant.
1853 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1854 significant HOST_WIDE_INT. */
1855 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1856 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1857 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1858
1859 /* For a CONST_DOUBLE:
1860 #if TARGET_SUPPORTS_WIDE_INT == 0
1861 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1862 low-order word and ..._HIGH the high-order.
1863 #endif
1864 For a float, there is a REAL_VALUE_TYPE structure, and
1865 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1866 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1867 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1868 #define CONST_DOUBLE_REAL_VALUE(r) \
1869 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1870
1871 #define CONST_FIXED_VALUE(r) \
1872 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1873 #define CONST_FIXED_VALUE_HIGH(r) \
1874 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1875 #define CONST_FIXED_VALUE_LOW(r) \
1876 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1877
1878 /* For a CONST_VECTOR, return element #n. */
1879 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1880
1881 /* For a CONST_VECTOR, return the number of elements in a vector. */
1882 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1883
1884 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1885 SUBREG_BYTE extracts the byte-number. */
1886
1887 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1888 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1889
1890 /* in rtlanal.c */
1891 /* Return the right cost to give to an operation
1892 to make the cost of the corresponding register-to-register instruction
1893 N times that of a fast register-to-register instruction. */
1894 #define COSTS_N_INSNS(N) ((N) * 4)
1895
1896 /* Maximum cost of an rtl expression. This value has the special meaning
1897 not to use an rtx with this cost under any circumstances. */
1898 #define MAX_COST INT_MAX
1899
1900 /* Return true if CODE always has VOIDmode. */
1901
1902 static inline bool
1903 always_void_p (enum rtx_code code)
1904 {
1905 return code == SET;
1906 }
1907
1908 /* A structure to hold all available cost information about an rtl
1909 expression. */
1910 struct full_rtx_costs
1911 {
1912 int speed;
1913 int size;
1914 };
1915
1916 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1917 static inline void
1918 init_costs_to_max (struct full_rtx_costs *c)
1919 {
1920 c->speed = MAX_COST;
1921 c->size = MAX_COST;
1922 }
1923
1924 /* Initialize a full_rtx_costs structure C to zero cost. */
1925 static inline void
1926 init_costs_to_zero (struct full_rtx_costs *c)
1927 {
1928 c->speed = 0;
1929 c->size = 0;
1930 }
1931
1932 /* Compare two full_rtx_costs structures A and B, returning true
1933 if A < B when optimizing for speed. */
1934 static inline bool
1935 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1936 bool speed)
1937 {
1938 if (speed)
1939 return (a->speed < b->speed
1940 || (a->speed == b->speed && a->size < b->size));
1941 else
1942 return (a->size < b->size
1943 || (a->size == b->size && a->speed < b->speed));
1944 }
1945
1946 /* Increase both members of the full_rtx_costs structure C by the
1947 cost of N insns. */
1948 static inline void
1949 costs_add_n_insns (struct full_rtx_costs *c, int n)
1950 {
1951 c->speed += COSTS_N_INSNS (n);
1952 c->size += COSTS_N_INSNS (n);
1953 }
1954
1955 /* Describes the shape of a subreg:
1956
1957 inner_mode == the mode of the SUBREG_REG
1958 offset == the SUBREG_BYTE
1959 outer_mode == the mode of the SUBREG itself. */
1960 struct subreg_shape {
1961 subreg_shape (machine_mode, unsigned int, machine_mode);
1962 bool operator == (const subreg_shape &) const;
1963 bool operator != (const subreg_shape &) const;
1964 unsigned int unique_id () const;
1965
1966 machine_mode inner_mode;
1967 unsigned int offset;
1968 machine_mode outer_mode;
1969 };
1970
1971 inline
1972 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1973 unsigned int offset_in,
1974 machine_mode outer_mode_in)
1975 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1976 {}
1977
1978 inline bool
1979 subreg_shape::operator == (const subreg_shape &other) const
1980 {
1981 return (inner_mode == other.inner_mode
1982 && offset == other.offset
1983 && outer_mode == other.outer_mode);
1984 }
1985
1986 inline bool
1987 subreg_shape::operator != (const subreg_shape &other) const
1988 {
1989 return !operator == (other);
1990 }
1991
1992 /* Return an integer that uniquely identifies this shape. Structures
1993 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1994 current mode is anywhere near being 65536 bytes in size, so the
1995 id comfortably fits in an int. */
1996
1997 inline unsigned int
1998 subreg_shape::unique_id () const
1999 {
2000 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
2001 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
2002 }
2003
2004 /* Return the shape of a SUBREG rtx. */
2005
2006 static inline subreg_shape
2007 shape_of_subreg (const_rtx x)
2008 {
2009 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2010 SUBREG_BYTE (x), GET_MODE (x));
2011 }
2012
2013 /* Information about an address. This structure is supposed to be able
2014 to represent all supported target addresses. Please extend it if it
2015 is not yet general enough. */
2016 struct address_info {
2017 /* The mode of the value being addressed, or VOIDmode if this is
2018 a load-address operation with no known address mode. */
2019 machine_mode mode;
2020
2021 /* The address space. */
2022 addr_space_t as;
2023
2024 /* A pointer to the top-level address. */
2025 rtx *outer;
2026
2027 /* A pointer to the inner address, after all address mutations
2028 have been stripped from the top-level address. It can be one
2029 of the following:
2030
2031 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2032
2033 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2034 points to the step value, depending on whether the step is variable
2035 or constant respectively. SEGMENT is null.
2036
2037 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2038 with null fields evaluating to 0. */
2039 rtx *inner;
2040
2041 /* Components that make up *INNER. Each one may be null or nonnull.
2042 When nonnull, their meanings are as follows:
2043
2044 - *SEGMENT is the "segment" of memory to which the address refers.
2045 This value is entirely target-specific and is only called a "segment"
2046 because that's its most typical use. It contains exactly one UNSPEC,
2047 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2048 reloading.
2049
2050 - *BASE is a variable expression representing a base address.
2051 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2052
2053 - *INDEX is a variable expression representing an index value.
2054 It may be a scaled expression, such as a MULT. It has exactly
2055 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2056
2057 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2058 unmutated RTX_CONST_OBJ. */
2059 rtx *segment;
2060 rtx *base;
2061 rtx *index;
2062 rtx *disp;
2063
2064 rtx *segment_term;
2065 rtx *base_term;
2066 rtx *index_term;
2067 rtx *disp_term;
2068
2069 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2070 of BASE_TERM, otherwise it is null. */
2071 rtx *base_term2;
2072
2073 /* ADDRESS if this structure describes an address operand, MEM if
2074 it describes a MEM address. */
2075 enum rtx_code addr_outer_code;
2076
2077 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2078 enum rtx_code base_outer_code;
2079
2080 /* True if this is an RTX_AUTOINC address. */
2081 bool autoinc_p;
2082 };
2083
2084 /* This is used to bundle an rtx and a mode together so that the pair
2085 can be used with the wi:: routines. If we ever put modes into rtx
2086 integer constants, this should go away and then just pass an rtx in. */
2087 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2088
2089 namespace wi
2090 {
2091 template <>
2092 struct int_traits <rtx_mode_t>
2093 {
2094 static const enum precision_type precision_type = VAR_PRECISION;
2095 static const bool host_dependent_precision = false;
2096 /* This ought to be true, except for the special case that BImode
2097 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2098 static const bool is_sign_extended = false;
2099 static unsigned int get_precision (const rtx_mode_t &);
2100 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2101 const rtx_mode_t &);
2102 };
2103 }
2104
2105 inline unsigned int
2106 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2107 {
2108 gcc_checking_assert (x.second != BLKmode && x.second != VOIDmode);
2109 return GET_MODE_PRECISION (x.second);
2110 }
2111
2112 inline wi::storage_ref
2113 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2114 unsigned int precision,
2115 const rtx_mode_t &x)
2116 {
2117 gcc_checking_assert (precision == get_precision (x));
2118 switch (GET_CODE (x.first))
2119 {
2120 case CONST_INT:
2121 if (precision < HOST_BITS_PER_WIDE_INT)
2122 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2123 targets is 1 rather than -1. */
2124 gcc_checking_assert (INTVAL (x.first)
2125 == sext_hwi (INTVAL (x.first), precision)
2126 || (x.second == BImode && INTVAL (x.first) == 1));
2127
2128 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2129
2130 case CONST_WIDE_INT:
2131 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2132 CONST_WIDE_INT_NUNITS (x.first), precision);
2133
2134 #if TARGET_SUPPORTS_WIDE_INT == 0
2135 case CONST_DOUBLE:
2136 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2137 #endif
2138
2139 default:
2140 gcc_unreachable ();
2141 }
2142 }
2143
2144 namespace wi
2145 {
2146 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2147 wide_int min_value (machine_mode, signop);
2148 wide_int max_value (machine_mode, signop);
2149 }
2150
2151 inline wi::hwi_with_prec
2152 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2153 {
2154 return shwi (val, GET_MODE_PRECISION (mode));
2155 }
2156
2157 /* Produce the smallest number that is represented in MODE. The precision
2158 is taken from MODE and the sign from SGN. */
2159 inline wide_int
2160 wi::min_value (machine_mode mode, signop sgn)
2161 {
2162 return min_value (GET_MODE_PRECISION (mode), sgn);
2163 }
2164
2165 /* Produce the largest number that is represented in MODE. The precision
2166 is taken from MODE and the sign from SGN. */
2167 inline wide_int
2168 wi::max_value (machine_mode mode, signop sgn)
2169 {
2170 return max_value (GET_MODE_PRECISION (mode), sgn);
2171 }
2172
2173 extern void init_rtlanal (void);
2174 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2175 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2176 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2177 struct full_rtx_costs *);
2178 extern unsigned int subreg_lsb (const_rtx);
2179 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2180 unsigned int);
2181 extern unsigned int subreg_size_offset_from_lsb (unsigned int, unsigned int,
2182 unsigned int);
2183
2184 /* Return the subreg byte offset for a subreg whose outer mode is
2185 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2186 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2187 the inner value. This is the inverse of subreg_lsb_1 (which converts
2188 byte offsets to bit shifts). */
2189
2190 inline unsigned int
2191 subreg_offset_from_lsb (machine_mode outer_mode,
2192 machine_mode inner_mode,
2193 unsigned int lsb_shift)
2194 {
2195 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2196 GET_MODE_SIZE (inner_mode), lsb_shift);
2197 }
2198
2199 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2200 unsigned int, machine_mode);
2201 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2202 unsigned int, machine_mode);
2203 extern unsigned int subreg_regno (const_rtx);
2204 extern int simplify_subreg_regno (unsigned int, machine_mode,
2205 unsigned int, machine_mode);
2206 extern unsigned int subreg_nregs (const_rtx);
2207 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2208 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2209 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2210 extern bool constant_pool_constant_p (rtx);
2211 extern bool truncated_to_mode (machine_mode, const_rtx);
2212 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2213 extern void split_double (rtx, rtx *, rtx *);
2214 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2215 extern void decompose_address (struct address_info *, rtx *,
2216 machine_mode, addr_space_t, enum rtx_code);
2217 extern void decompose_lea_address (struct address_info *, rtx *);
2218 extern void decompose_mem_address (struct address_info *, rtx);
2219 extern void update_address (struct address_info *);
2220 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2221 extern enum rtx_code get_index_code (const struct address_info *);
2222
2223 /* 1 if RTX is a subreg containing a reg that is already known to be
2224 sign- or zero-extended from the mode of the subreg to the mode of
2225 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2226 extension.
2227
2228 When used as a LHS, is means that this extension must be done
2229 when assigning to SUBREG_REG. */
2230
2231 #define SUBREG_PROMOTED_VAR_P(RTX) \
2232 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2233
2234 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2235 this gives the necessary extensions:
2236 0 - signed (SPR_SIGNED)
2237 1 - normal unsigned (SPR_UNSIGNED)
2238 2 - value is both sign and unsign extended for mode
2239 (SPR_SIGNED_AND_UNSIGNED).
2240 -1 - pointer unsigned, which most often can be handled like unsigned
2241 extension, except for generating instructions where we need to
2242 emit special code (ptr_extend insns) on some architectures
2243 (SPR_POINTER). */
2244
2245 const int SRP_POINTER = -1;
2246 const int SRP_SIGNED = 0;
2247 const int SRP_UNSIGNED = 1;
2248 const int SRP_SIGNED_AND_UNSIGNED = 2;
2249
2250 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2251 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2252 do { \
2253 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2254 (RTX), SUBREG); \
2255 switch (VAL) \
2256 { \
2257 case SRP_POINTER: \
2258 _rtx->volatil = 0; \
2259 _rtx->unchanging = 0; \
2260 break; \
2261 case SRP_SIGNED: \
2262 _rtx->volatil = 0; \
2263 _rtx->unchanging = 1; \
2264 break; \
2265 case SRP_UNSIGNED: \
2266 _rtx->volatil = 1; \
2267 _rtx->unchanging = 0; \
2268 break; \
2269 case SRP_SIGNED_AND_UNSIGNED: \
2270 _rtx->volatil = 1; \
2271 _rtx->unchanging = 1; \
2272 break; \
2273 } \
2274 } while (0)
2275
2276 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2277 including SRP_SIGNED_AND_UNSIGNED if promoted for
2278 both signed and unsigned. */
2279 #define SUBREG_PROMOTED_GET(RTX) \
2280 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2281 + (RTX)->unchanging - 1)
2282
2283 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2284 #define SUBREG_PROMOTED_SIGN(RTX) \
2285 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2286 : (RTX)->unchanging - 1)
2287
2288 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2289 for SIGNED type. */
2290 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2291 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2292
2293 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2294 for UNSIGNED type. */
2295 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2296 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2297
2298 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2299 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2300 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2301 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2302 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2303
2304 /* True if the REG is the static chain register for some CALL_INSN. */
2305 #define STATIC_CHAIN_REG_P(RTX) \
2306 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2307
2308 /* True if the subreg was generated by LRA for reload insns. Such
2309 subregs are valid only during LRA. */
2310 #define LRA_SUBREG_P(RTX) \
2311 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2312
2313 /* True if call is instrumented by Pointer Bounds Checker. */
2314 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2315 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2316
2317 /* Access various components of an ASM_OPERANDS rtx. */
2318
2319 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2320 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2321 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2322 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2323 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2324 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2325 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2326 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2327 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2328 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2329 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2330 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2331 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2332 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2333 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2334 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2335 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2336 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2337
2338 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2339 #define MEM_READONLY_P(RTX) \
2340 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2341
2342 /* 1 if RTX is a mem and we should keep the alias set for this mem
2343 unchanged when we access a component. Set to 1, or example, when we
2344 are already in a non-addressable component of an aggregate. */
2345 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2346 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2347
2348 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2349 #define MEM_VOLATILE_P(RTX) \
2350 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2351 ASM_INPUT)->volatil)
2352
2353 /* 1 if RTX is a mem that cannot trap. */
2354 #define MEM_NOTRAP_P(RTX) \
2355 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2356
2357 /* The memory attribute block. We provide access macros for each value
2358 in the block and provide defaults if none specified. */
2359 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2360
2361 /* The register attribute block. We provide access macros for each value
2362 in the block and provide defaults if none specified. */
2363 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2364
2365 #ifndef GENERATOR_FILE
2366 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2367 set, and may alias anything. Otherwise, the MEM can only alias
2368 MEMs in a conflicting alias set. This value is set in a
2369 language-dependent manner in the front-end, and should not be
2370 altered in the back-end. These set numbers are tested with
2371 alias_sets_conflict_p. */
2372 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2373
2374 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2375 refer to part of a DECL. It may also be a COMPONENT_REF. */
2376 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2377
2378 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2379 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2380
2381 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2382 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2383
2384 /* For a MEM rtx, the address space. */
2385 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2386
2387 /* For a MEM rtx, true if its MEM_SIZE is known. */
2388 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2389
2390 /* For a MEM rtx, the size in bytes of the MEM. */
2391 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2392
2393 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2394 mode as a default when STRICT_ALIGNMENT, but not if not. */
2395 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2396 #else
2397 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2398 #endif
2399
2400 /* For a REG rtx, the decl it is known to refer to, if it is known to
2401 refer to part of a DECL. */
2402 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2403
2404 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2405 HOST_WIDE_INT. */
2406 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2407
2408 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2409 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2410 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2411 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2412 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2413 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2414 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2415 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2416
2417 /* 1 if RTX is a label_ref for a nonlocal label. */
2418 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2419 REG_LABEL_TARGET note. */
2420 #define LABEL_REF_NONLOCAL_P(RTX) \
2421 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2422
2423 /* 1 if RTX is a code_label that should always be considered to be needed. */
2424 #define LABEL_PRESERVE_P(RTX) \
2425 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2426
2427 /* During sched, 1 if RTX is an insn that must be scheduled together
2428 with the preceding insn. */
2429 #define SCHED_GROUP_P(RTX) \
2430 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2431 JUMP_INSN, CALL_INSN)->in_struct)
2432
2433 /* For a SET rtx, SET_DEST is the place that is set
2434 and SET_SRC is the value it is set to. */
2435 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2436 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2437 #define SET_IS_RETURN_P(RTX) \
2438 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2439
2440 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2441 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2442 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2443
2444 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2445 conditionally executing the code on, COND_EXEC_CODE is the code
2446 to execute if the condition is true. */
2447 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2448 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2449
2450 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2451 constants pool. */
2452 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2453 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2454
2455 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2456 tree constant pool. This information is private to varasm.c. */
2457 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2458 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2459 (RTX), SYMBOL_REF)->frame_related)
2460
2461 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2462 #define SYMBOL_REF_FLAG(RTX) \
2463 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2464
2465 /* 1 if RTX is a symbol_ref that has been the library function in
2466 emit_library_call. */
2467 #define SYMBOL_REF_USED(RTX) \
2468 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2469
2470 /* 1 if RTX is a symbol_ref for a weak symbol. */
2471 #define SYMBOL_REF_WEAK(RTX) \
2472 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2473
2474 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2475 SYMBOL_REF_CONSTANT. */
2476 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2477
2478 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2479 pool symbol. */
2480 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2481 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2482
2483 /* The tree (decl or constant) associated with the symbol, or null. */
2484 #define SYMBOL_REF_DECL(RTX) \
2485 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2486
2487 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2488 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2489 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2490
2491 /* The rtx constant pool entry for a symbol, or null. */
2492 #define SYMBOL_REF_CONSTANT(RTX) \
2493 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2494
2495 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2496 information derivable from the tree decl associated with this symbol.
2497 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2498 decl. In some cases this is a bug. But beyond that, it's nice to cache
2499 this information to avoid recomputing it. Finally, this allows space for
2500 the target to store more than one bit of information, as with
2501 SYMBOL_REF_FLAG. */
2502 #define SYMBOL_REF_FLAGS(RTX) \
2503 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2504 ->u2.symbol_ref_flags)
2505
2506 /* These flags are common enough to be defined for all targets. They
2507 are computed by the default version of targetm.encode_section_info. */
2508
2509 /* Set if this symbol is a function. */
2510 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2511 #define SYMBOL_REF_FUNCTION_P(RTX) \
2512 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2513 /* Set if targetm.binds_local_p is true. */
2514 #define SYMBOL_FLAG_LOCAL (1 << 1)
2515 #define SYMBOL_REF_LOCAL_P(RTX) \
2516 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2517 /* Set if targetm.in_small_data_p is true. */
2518 #define SYMBOL_FLAG_SMALL (1 << 2)
2519 #define SYMBOL_REF_SMALL_P(RTX) \
2520 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2521 /* The three-bit field at [5:3] is true for TLS variables; use
2522 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2523 #define SYMBOL_FLAG_TLS_SHIFT 3
2524 #define SYMBOL_REF_TLS_MODEL(RTX) \
2525 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2526 /* Set if this symbol is not defined in this translation unit. */
2527 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2528 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2529 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2530 /* Set if this symbol has a block_symbol structure associated with it. */
2531 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2532 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2533 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2534 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2535 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2536 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2537 #define SYMBOL_REF_ANCHOR_P(RTX) \
2538 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2539
2540 /* Subsequent bits are available for the target to use. */
2541 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2542 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2543
2544 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2545 structure to which the symbol belongs, or NULL if it has not been
2546 assigned a block. */
2547 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2548
2549 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2550 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2551 RTX has not yet been assigned to a block, or it has not been given an
2552 offset within that block. */
2553 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2554
2555 /* True if RTX is flagged to be a scheduling barrier. */
2556 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2557 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2558
2559 /* Indicate whether the machine has any sort of auto increment addressing.
2560 If not, we can avoid checking for REG_INC notes. */
2561
2562 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2563 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2564 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2565 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2566 #define AUTO_INC_DEC 1
2567 #else
2568 #define AUTO_INC_DEC 0
2569 #endif
2570
2571 /* Define a macro to look for REG_INC notes,
2572 but save time on machines where they never exist. */
2573
2574 #if AUTO_INC_DEC
2575 #define FIND_REG_INC_NOTE(INSN, REG) \
2576 ((REG) != NULL_RTX && REG_P ((REG)) \
2577 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2578 : find_reg_note ((INSN), REG_INC, (REG)))
2579 #else
2580 #define FIND_REG_INC_NOTE(INSN, REG) 0
2581 #endif
2582
2583 #ifndef HAVE_PRE_INCREMENT
2584 #define HAVE_PRE_INCREMENT 0
2585 #endif
2586
2587 #ifndef HAVE_PRE_DECREMENT
2588 #define HAVE_PRE_DECREMENT 0
2589 #endif
2590
2591 #ifndef HAVE_POST_INCREMENT
2592 #define HAVE_POST_INCREMENT 0
2593 #endif
2594
2595 #ifndef HAVE_POST_DECREMENT
2596 #define HAVE_POST_DECREMENT 0
2597 #endif
2598
2599 #ifndef HAVE_POST_MODIFY_DISP
2600 #define HAVE_POST_MODIFY_DISP 0
2601 #endif
2602
2603 #ifndef HAVE_POST_MODIFY_REG
2604 #define HAVE_POST_MODIFY_REG 0
2605 #endif
2606
2607 #ifndef HAVE_PRE_MODIFY_DISP
2608 #define HAVE_PRE_MODIFY_DISP 0
2609 #endif
2610
2611 #ifndef HAVE_PRE_MODIFY_REG
2612 #define HAVE_PRE_MODIFY_REG 0
2613 #endif
2614
2615
2616 /* Some architectures do not have complete pre/post increment/decrement
2617 instruction sets, or only move some modes efficiently. These macros
2618 allow us to tune autoincrement generation. */
2619
2620 #ifndef USE_LOAD_POST_INCREMENT
2621 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2622 #endif
2623
2624 #ifndef USE_LOAD_POST_DECREMENT
2625 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2626 #endif
2627
2628 #ifndef USE_LOAD_PRE_INCREMENT
2629 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2630 #endif
2631
2632 #ifndef USE_LOAD_PRE_DECREMENT
2633 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2634 #endif
2635
2636 #ifndef USE_STORE_POST_INCREMENT
2637 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2638 #endif
2639
2640 #ifndef USE_STORE_POST_DECREMENT
2641 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2642 #endif
2643
2644 #ifndef USE_STORE_PRE_INCREMENT
2645 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2646 #endif
2647
2648 #ifndef USE_STORE_PRE_DECREMENT
2649 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2650 #endif
2651 \f
2652 /* Nonzero when we are generating CONCATs. */
2653 extern int generating_concat_p;
2654
2655 /* Nonzero when we are expanding trees to RTL. */
2656 extern int currently_expanding_to_rtl;
2657
2658 /* Generally useful functions. */
2659
2660 #ifndef GENERATOR_FILE
2661 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2662 rather than size. */
2663
2664 static inline int
2665 set_rtx_cost (rtx x, bool speed_p)
2666 {
2667 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2668 }
2669
2670 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2671
2672 static inline void
2673 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2674 {
2675 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2676 }
2677
2678 /* Return the cost of moving X into a register, relative to the cost
2679 of a register move. SPEED_P is true if optimizing for speed rather
2680 than size. */
2681
2682 static inline int
2683 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2684 {
2685 return rtx_cost (x, mode, SET, 1, speed_p);
2686 }
2687
2688 /* Like set_src_cost, but return both the speed and size costs in C. */
2689
2690 static inline void
2691 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2692 {
2693 get_full_rtx_cost (x, mode, SET, 1, c);
2694 }
2695 #endif
2696
2697 /* In explow.c */
2698 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2699 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2700
2701 /* In rtl.c */
2702 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2703 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2704 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2705 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2706 #define const_wide_int_alloc(NWORDS) \
2707 rtx_alloc_v (CONST_WIDE_INT, \
2708 (sizeof (struct hwivec_def) \
2709 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2710
2711 extern rtvec rtvec_alloc (int);
2712 extern rtvec shallow_copy_rtvec (rtvec);
2713 extern bool shared_const_p (const_rtx);
2714 extern rtx copy_rtx (rtx);
2715 extern enum rtx_code classify_insn (rtx);
2716 extern void dump_rtx_statistics (void);
2717
2718 /* In emit-rtl.c */
2719 extern rtx copy_rtx_if_shared (rtx);
2720
2721 /* In rtl.c */
2722 extern unsigned int rtx_size (const_rtx);
2723 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2724 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2725 extern int rtx_equal_p (const_rtx, const_rtx);
2726 extern bool rtvec_all_equal_p (const_rtvec);
2727
2728 /* Return true if X is a vector constant with a duplicated element value. */
2729
2730 inline bool
2731 const_vec_duplicate_p (const_rtx x)
2732 {
2733 return GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0));
2734 }
2735
2736 /* Return true if X is a vector constant with a duplicated element value.
2737 Store the duplicated element in *ELT if so. */
2738
2739 template <typename T>
2740 inline bool
2741 const_vec_duplicate_p (T x, T *elt)
2742 {
2743 if (const_vec_duplicate_p (x))
2744 {
2745 *elt = CONST_VECTOR_ELT (x, 0);
2746 return true;
2747 }
2748 return false;
2749 }
2750
2751 /* If X is a vector constant with a duplicated element value, return that
2752 element value, otherwise return X. */
2753
2754 template <typename T>
2755 inline T
2756 unwrap_const_vec_duplicate (T x)
2757 {
2758 if (const_vec_duplicate_p (x))
2759 x = CONST_VECTOR_ELT (x, 0);
2760 return x;
2761 }
2762
2763 /* In emit-rtl.c */
2764 extern rtvec gen_rtvec_v (int, rtx *);
2765 extern rtvec gen_rtvec_v (int, rtx_insn **);
2766 extern rtx gen_reg_rtx (machine_mode);
2767 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2768 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2769 extern rtx gen_reg_rtx_and_attrs (rtx);
2770 extern rtx_code_label *gen_label_rtx (void);
2771 extern rtx gen_lowpart_common (machine_mode, rtx);
2772
2773 /* In cse.c */
2774 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2775
2776 /* In emit-rtl.c */
2777 extern rtx gen_highpart (machine_mode, rtx);
2778 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2779 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2780
2781 /* In emit-rtl.c */
2782 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2783 extern bool paradoxical_subreg_p (const_rtx);
2784 extern int subreg_lowpart_p (const_rtx);
2785 extern unsigned int subreg_size_lowpart_offset (unsigned int, unsigned int);
2786
2787 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
2788
2789 inline unsigned int
2790 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
2791 {
2792 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
2793 GET_MODE_SIZE (innermode));
2794 }
2795
2796 extern unsigned int subreg_size_highpart_offset (unsigned int, unsigned int);
2797
2798 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
2799
2800 inline unsigned int
2801 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
2802 {
2803 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
2804 GET_MODE_SIZE (innermode));
2805 }
2806
2807 extern int byte_lowpart_offset (machine_mode, machine_mode);
2808 extern rtx make_safe_from (rtx, rtx);
2809 extern rtx convert_memory_address_addr_space_1 (machine_mode, rtx,
2810 addr_space_t, bool, bool);
2811 extern rtx convert_memory_address_addr_space (machine_mode, rtx,
2812 addr_space_t);
2813 #define convert_memory_address(to_mode,x) \
2814 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2815 extern const char *get_insn_name (int);
2816 extern rtx_insn *get_last_insn_anywhere (void);
2817 extern rtx_insn *get_first_nonnote_insn (void);
2818 extern rtx_insn *get_last_nonnote_insn (void);
2819 extern void start_sequence (void);
2820 extern void push_to_sequence (rtx_insn *);
2821 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2822 extern void end_sequence (void);
2823 #if TARGET_SUPPORTS_WIDE_INT == 0
2824 extern double_int rtx_to_double_int (const_rtx);
2825 #endif
2826 extern void cwi_output_hex (FILE *, const_rtx);
2827 #ifndef GENERATOR_FILE
2828 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2829 #endif
2830 #if TARGET_SUPPORTS_WIDE_INT == 0
2831 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2832 machine_mode);
2833 #endif
2834
2835 /* In varasm.c */
2836 extern rtx force_const_mem (machine_mode, rtx);
2837
2838 /* In varasm.c */
2839
2840 struct function;
2841 extern rtx get_pool_constant (const_rtx);
2842 extern rtx get_pool_constant_mark (rtx, bool *);
2843 extern machine_mode get_pool_mode (const_rtx);
2844 extern rtx simplify_subtraction (rtx);
2845 extern void decide_function_section (tree);
2846
2847 /* In emit-rtl.c */
2848 extern rtx_insn *emit_insn_before (rtx, rtx);
2849 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2850 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2851 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx);
2852 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2853 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2854 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2855 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2856 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2857 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
2858 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2859 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2860 extern rtx_barrier *emit_barrier_before (rtx);
2861 extern rtx_code_label *emit_label_before (rtx, rtx_insn *);
2862 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
2863 extern rtx_insn *emit_insn_after (rtx, rtx);
2864 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2865 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2866 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx);
2867 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx);
2868 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2869 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2870 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2871 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2872 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2873 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2874 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2875 extern rtx_barrier *emit_barrier_after (rtx);
2876 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2877 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
2878 extern rtx_insn *emit_insn (rtx);
2879 extern rtx_insn *emit_debug_insn (rtx);
2880 extern rtx_insn *emit_jump_insn (rtx);
2881 extern rtx_insn *emit_call_insn (rtx);
2882 extern rtx_code_label *emit_label (rtx);
2883 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2884 extern rtx_barrier *emit_barrier (void);
2885 extern rtx_note *emit_note (enum insn_note);
2886 extern rtx_note *emit_note_copy (rtx_note *);
2887 extern rtx_insn *gen_clobber (rtx);
2888 extern rtx_insn *emit_clobber (rtx);
2889 extern rtx_insn *gen_use (rtx);
2890 extern rtx_insn *emit_use (rtx);
2891 extern rtx_insn *make_insn_raw (rtx);
2892 extern void add_function_usage_to (rtx, rtx);
2893 extern rtx_call_insn *last_call_insn (void);
2894 extern rtx_insn *previous_insn (rtx_insn *);
2895 extern rtx_insn *next_insn (rtx_insn *);
2896 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
2897 extern rtx_insn *prev_nonnote_insn_bb (rtx_insn *);
2898 extern rtx_insn *next_nonnote_insn (rtx_insn *);
2899 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2900 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
2901 extern rtx_insn *next_nondebug_insn (rtx_insn *);
2902 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
2903 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
2904 extern rtx_insn *prev_real_insn (rtx_insn *);
2905 extern rtx_insn *next_real_insn (rtx);
2906 extern rtx_insn *prev_active_insn (rtx_insn *);
2907 extern rtx_insn *next_active_insn (rtx_insn *);
2908 extern int active_insn_p (const rtx_insn *);
2909 extern rtx_insn *next_cc0_user (rtx_insn *);
2910 extern rtx_insn *prev_cc0_setter (rtx_insn *);
2911
2912 /* In emit-rtl.c */
2913 extern int insn_line (const rtx_insn *);
2914 extern const char * insn_file (const rtx_insn *);
2915 extern tree insn_scope (const rtx_insn *);
2916 extern expanded_location insn_location (const rtx_insn *);
2917 extern location_t prologue_location, epilogue_location;
2918
2919 /* In jump.c */
2920 extern enum rtx_code reverse_condition (enum rtx_code);
2921 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2922 extern enum rtx_code swap_condition (enum rtx_code);
2923 extern enum rtx_code unsigned_condition (enum rtx_code);
2924 extern enum rtx_code signed_condition (enum rtx_code);
2925 extern void mark_jump_label (rtx, rtx_insn *, int);
2926
2927 /* In jump.c */
2928 extern rtx_insn *delete_related_insns (rtx);
2929
2930 /* In recog.c */
2931 extern rtx *find_constant_term_loc (rtx *);
2932
2933 /* In emit-rtl.c */
2934 extern rtx_insn *try_split (rtx, rtx_insn *, int);
2935 extern int split_branch_probability;
2936
2937 /* In insn-recog.c (generated by genrecog). */
2938 extern rtx_insn *split_insns (rtx, rtx_insn *);
2939
2940 /* In simplify-rtx.c */
2941 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2942 rtx, machine_mode);
2943 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
2944 machine_mode);
2945 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
2946 rtx, rtx);
2947 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
2948 rtx);
2949 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
2950 machine_mode, rtx, rtx, rtx);
2951 extern rtx simplify_const_relational_operation (enum rtx_code,
2952 machine_mode, rtx, rtx);
2953 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
2954 machine_mode, rtx, rtx);
2955 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
2956 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
2957 machine_mode);
2958 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
2959 machine_mode, rtx, rtx, rtx);
2960 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
2961 machine_mode, rtx, rtx);
2962 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
2963 unsigned int);
2964 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
2965 unsigned int);
2966 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
2967 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2968 rtx (*fn) (rtx, const_rtx, void *), void *);
2969 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2970 extern rtx simplify_rtx (const_rtx);
2971 extern rtx avoid_constant_pool_reference (rtx);
2972 extern rtx delegitimize_mem_from_attrs (rtx);
2973 extern bool mode_signbit_p (machine_mode, const_rtx);
2974 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
2975 extern bool val_signbit_known_set_p (machine_mode,
2976 unsigned HOST_WIDE_INT);
2977 extern bool val_signbit_known_clear_p (machine_mode,
2978 unsigned HOST_WIDE_INT);
2979
2980 /* In reginfo.c */
2981 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2982 bool);
2983 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
2984
2985 /* In emit-rtl.c */
2986 extern rtx set_for_reg_notes (rtx);
2987 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2988 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2989 extern void set_insn_deleted (rtx);
2990
2991 /* Functions in rtlanal.c */
2992
2993 extern rtx single_set_2 (const rtx_insn *, const_rtx);
2994 extern bool contains_symbol_ref_p (const_rtx);
2995 extern bool contains_symbolic_reference_p (const_rtx);
2996
2997 /* Handle the cheap and common cases inline for performance. */
2998
2999 inline rtx single_set (const rtx_insn *insn)
3000 {
3001 if (!INSN_P (insn))
3002 return NULL_RTX;
3003
3004 if (GET_CODE (PATTERN (insn)) == SET)
3005 return PATTERN (insn);
3006
3007 /* Defer to the more expensive case. */
3008 return single_set_2 (insn, PATTERN (insn));
3009 }
3010
3011 extern machine_mode get_address_mode (rtx mem);
3012 extern int rtx_addr_can_trap_p (const_rtx);
3013 extern bool nonzero_address_p (const_rtx);
3014 extern int rtx_unstable_p (const_rtx);
3015 extern bool rtx_varies_p (const_rtx, bool);
3016 extern bool rtx_addr_varies_p (const_rtx, bool);
3017 extern rtx get_call_rtx_from (rtx);
3018 extern HOST_WIDE_INT get_integer_term (const_rtx);
3019 extern rtx get_related_value (const_rtx);
3020 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3021 extern void split_const (rtx, rtx *, rtx *);
3022 extern bool unsigned_reg_p (rtx);
3023 extern int reg_mentioned_p (const_rtx, const_rtx);
3024 extern int count_occurrences (const_rtx, const_rtx, int);
3025 extern int reg_referenced_p (const_rtx, const_rtx);
3026 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3027 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3028 extern int commutative_operand_precedence (rtx);
3029 extern bool swap_commutative_operands_p (rtx, rtx);
3030 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3031 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3032 extern int modified_in_p (const_rtx, const_rtx);
3033 extern int reg_set_p (const_rtx, const_rtx);
3034 extern int multiple_sets (const_rtx);
3035 extern int set_noop_p (const_rtx);
3036 extern int noop_move_p (const rtx_insn *);
3037 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3038 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3039 extern const_rtx set_of (const_rtx, const_rtx);
3040 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3041 extern void record_hard_reg_uses (rtx *, void *);
3042 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3043 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3044 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3045 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3046 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3047 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3048 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3049 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3050 extern rtx find_reg_equal_equiv_note (const_rtx);
3051 extern rtx find_constant_src (const rtx_insn *);
3052 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3053 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3054 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3055 extern void add_reg_note (rtx, enum reg_note, rtx);
3056 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3057 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3058 extern rtx duplicate_reg_note (rtx);
3059 extern void remove_note (rtx_insn *, const_rtx);
3060 extern void remove_reg_equal_equiv_notes (rtx_insn *);
3061 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3062 extern int side_effects_p (const_rtx);
3063 extern int volatile_refs_p (const_rtx);
3064 extern int volatile_insn_p (const_rtx);
3065 extern int may_trap_p_1 (const_rtx, unsigned);
3066 extern int may_trap_p (const_rtx);
3067 extern int may_trap_or_fault_p (const_rtx);
3068 extern bool can_throw_internal (const_rtx);
3069 extern bool can_throw_external (const_rtx);
3070 extern bool insn_could_throw_p (const_rtx);
3071 extern bool insn_nothrow_p (const_rtx);
3072 extern bool can_nonlocal_goto (const rtx_insn *);
3073 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3074 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3075 extern int inequality_comparisons_p (const_rtx);
3076 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3077 extern void replace_label (rtx *, rtx, rtx, bool);
3078 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3079 extern bool rtx_referenced_p (const_rtx, const_rtx);
3080 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3081 extern int computed_jump_p (const rtx_insn *);
3082 extern bool tls_referenced_p (const_rtx);
3083
3084 /* Overload for refers_to_regno_p for checking a single register. */
3085 inline bool
3086 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3087 {
3088 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3089 }
3090
3091 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3092 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3093 NULL. The callback is passed the same opaque ARG passed to
3094 for_each_inc_dec. Return zero to continue looking for other
3095 autoinc operations or any other value to interrupt the traversal and
3096 return that value to the caller of for_each_inc_dec. */
3097 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3098 rtx srcoff, void *arg);
3099 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3100
3101 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3102 rtx *, rtx *);
3103 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3104 rtx_equal_p_callback_function);
3105
3106 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3107 machine_mode *);
3108 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3109 bool, hash_rtx_callback_function);
3110
3111 extern rtx regno_use_in (unsigned int, rtx);
3112 extern int auto_inc_p (const_rtx);
3113 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3114 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3115 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3116 extern int loc_mentioned_in_p (rtx *, const_rtx);
3117 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3118 extern bool keep_with_call_p (const rtx_insn *);
3119 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3120 extern int insn_rtx_cost (rtx, bool);
3121 extern unsigned seq_cost (const rtx_insn *, bool);
3122
3123 /* Given an insn and condition, return a canonical description of
3124 the test being made. */
3125 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3126 int, int);
3127
3128 /* Given a JUMP_INSN, return a canonical description of the test
3129 being made. */
3130 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3131
3132 /* Information about a subreg of a hard register. */
3133 struct subreg_info
3134 {
3135 /* Offset of first hard register involved in the subreg. */
3136 int offset;
3137 /* Number of hard registers involved in the subreg. In the case of
3138 a paradoxical subreg, this is the number of registers that would
3139 be modified by writing to the subreg; some of them may be don't-care
3140 when reading from the subreg. */
3141 int nregs;
3142 /* Whether this subreg can be represented as a hard reg with the new
3143 mode (by adding OFFSET to the original hard register). */
3144 bool representable_p;
3145 };
3146
3147 extern void subreg_get_info (unsigned int, machine_mode,
3148 unsigned int, machine_mode,
3149 struct subreg_info *);
3150
3151 /* lists.c */
3152
3153 extern void free_EXPR_LIST_list (rtx_expr_list **);
3154 extern void free_INSN_LIST_list (rtx_insn_list **);
3155 extern void free_EXPR_LIST_node (rtx);
3156 extern void free_INSN_LIST_node (rtx);
3157 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3158 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3159 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3160 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3161 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3162 extern rtx remove_list_elem (rtx, rtx *);
3163 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3164 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3165
3166
3167 /* reginfo.c */
3168
3169 /* Resize reg info. */
3170 extern bool resize_reg_info (void);
3171 /* Free up register info memory. */
3172 extern void free_reg_info (void);
3173 extern void init_subregs_of_mode (void);
3174 extern void finish_subregs_of_mode (void);
3175
3176 /* recog.c */
3177 extern rtx extract_asm_operands (rtx);
3178 extern int asm_noperands (const_rtx);
3179 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3180 machine_mode *, location_t *);
3181 extern void get_referenced_operands (const char *, bool *, unsigned int);
3182
3183 extern enum reg_class reg_preferred_class (int);
3184 extern enum reg_class reg_alternate_class (int);
3185 extern enum reg_class reg_allocno_class (int);
3186 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3187 enum reg_class);
3188
3189 extern void split_all_insns (void);
3190 extern unsigned int split_all_insns_noflow (void);
3191
3192 #define MAX_SAVED_CONST_INT 64
3193 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3194
3195 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3196 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3197 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3198 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3199 extern GTY(()) rtx const_true_rtx;
3200
3201 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3202
3203 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3204 same as VOIDmode. */
3205
3206 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3207
3208 /* Likewise, for the constants 1 and 2 and -1. */
3209
3210 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3211 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3212 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3213
3214 extern GTY(()) rtx pc_rtx;
3215 extern GTY(()) rtx cc0_rtx;
3216 extern GTY(()) rtx ret_rtx;
3217 extern GTY(()) rtx simple_return_rtx;
3218 extern GTY(()) rtx_insn *invalid_insn_rtx;
3219
3220 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3221 is used to represent the frame pointer. This is because the
3222 hard frame pointer and the automatic variables are separated by an amount
3223 that cannot be determined until after register allocation. We can assume
3224 that in this case ELIMINABLE_REGS will be defined, one action of which
3225 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3226 #ifndef HARD_FRAME_POINTER_REGNUM
3227 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3228 #endif
3229
3230 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3231 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3232 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3233 #endif
3234
3235 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3236 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3237 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3238 #endif
3239
3240 /* Index labels for global_rtl. */
3241 enum global_rtl_index
3242 {
3243 GR_STACK_POINTER,
3244 GR_FRAME_POINTER,
3245 /* For register elimination to work properly these hard_frame_pointer_rtx,
3246 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3247 the same register. */
3248 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3249 GR_ARG_POINTER = GR_FRAME_POINTER,
3250 #endif
3251 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3252 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3253 #else
3254 GR_HARD_FRAME_POINTER,
3255 #endif
3256 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3257 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3258 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3259 #else
3260 GR_ARG_POINTER,
3261 #endif
3262 #endif
3263 GR_VIRTUAL_INCOMING_ARGS,
3264 GR_VIRTUAL_STACK_ARGS,
3265 GR_VIRTUAL_STACK_DYNAMIC,
3266 GR_VIRTUAL_OUTGOING_ARGS,
3267 GR_VIRTUAL_CFA,
3268 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3269
3270 GR_MAX
3271 };
3272
3273 /* Target-dependent globals. */
3274 struct GTY(()) target_rtl {
3275 /* All references to the hard registers in global_rtl_index go through
3276 these unique rtl objects. On machines where the frame-pointer and
3277 arg-pointer are the same register, they use the same unique object.
3278
3279 After register allocation, other rtl objects which used to be pseudo-regs
3280 may be clobbered to refer to the frame-pointer register.
3281 But references that were originally to the frame-pointer can be
3282 distinguished from the others because they contain frame_pointer_rtx.
3283
3284 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3285 tricky: until register elimination has taken place hard_frame_pointer_rtx
3286 should be used if it is being set, and frame_pointer_rtx otherwise. After
3287 register elimination hard_frame_pointer_rtx should always be used.
3288 On machines where the two registers are same (most) then these are the
3289 same. */
3290 rtx x_global_rtl[GR_MAX];
3291
3292 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3293 rtx x_pic_offset_table_rtx;
3294
3295 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3296 This is used to implement __builtin_return_address for some machines;
3297 see for instance the MIPS port. */
3298 rtx x_return_address_pointer_rtx;
3299
3300 /* Commonly used RTL for hard registers. These objects are not
3301 necessarily unique, so we allocate them separately from global_rtl.
3302 They are initialized once per compilation unit, then copied into
3303 regno_reg_rtx at the beginning of each function. */
3304 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3305
3306 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3307 rtx x_top_of_stack[MAX_MACHINE_MODE];
3308
3309 /* Static hunks of RTL used by the aliasing code; these are treated
3310 as persistent to avoid unnecessary RTL allocations. */
3311 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3312
3313 /* The default memory attributes for each mode. */
3314 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3315
3316 /* Track if RTL has been initialized. */
3317 bool target_specific_initialized;
3318 };
3319
3320 extern GTY(()) struct target_rtl default_target_rtl;
3321 #if SWITCHABLE_TARGET
3322 extern struct target_rtl *this_target_rtl;
3323 #else
3324 #define this_target_rtl (&default_target_rtl)
3325 #endif
3326
3327 #define global_rtl \
3328 (this_target_rtl->x_global_rtl)
3329 #define pic_offset_table_rtx \
3330 (this_target_rtl->x_pic_offset_table_rtx)
3331 #define return_address_pointer_rtx \
3332 (this_target_rtl->x_return_address_pointer_rtx)
3333 #define top_of_stack \
3334 (this_target_rtl->x_top_of_stack)
3335 #define mode_mem_attrs \
3336 (this_target_rtl->x_mode_mem_attrs)
3337
3338 /* All references to certain hard regs, except those created
3339 by allocating pseudo regs into them (when that's possible),
3340 go through these unique rtx objects. */
3341 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3342 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3343 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3344 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3345
3346 #ifndef GENERATOR_FILE
3347 /* Return the attributes of a MEM rtx. */
3348 static inline struct mem_attrs *
3349 get_mem_attrs (const_rtx x)
3350 {
3351 struct mem_attrs *attrs;
3352
3353 attrs = MEM_ATTRS (x);
3354 if (!attrs)
3355 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3356 return attrs;
3357 }
3358 #endif
3359
3360 /* Include the RTL generation functions. */
3361
3362 #ifndef GENERATOR_FILE
3363 #include "genrtl.h"
3364 #undef gen_rtx_ASM_INPUT
3365 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3366 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3367 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3368 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3369 #endif
3370
3371 /* There are some RTL codes that require special attention; the
3372 generation functions included above do the raw handling. If you
3373 add to this list, modify special_rtx in gengenrtl.c as well. */
3374
3375 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3376 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3377 extern rtx_insn *
3378 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3379 basic_block bb, rtx pattern, int location, int code,
3380 rtx reg_notes);
3381 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3382 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3383 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3384 extern rtx gen_raw_REG (machine_mode, unsigned int);
3385 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3386 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3387 extern rtx gen_rtx_MEM (machine_mode, rtx);
3388 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3389 enum var_init_status);
3390
3391 #ifdef GENERATOR_FILE
3392 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3393 #else
3394 static inline void
3395 PUT_MODE (rtx x, machine_mode mode)
3396 {
3397 if (REG_P (x))
3398 set_mode_and_regno (x, mode, REGNO (x));
3399 else
3400 PUT_MODE_RAW (x, mode);
3401 }
3402 #endif
3403
3404 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3405
3406 /* Virtual registers are used during RTL generation to refer to locations into
3407 the stack frame when the actual location isn't known until RTL generation
3408 is complete. The routine instantiate_virtual_regs replaces these with
3409 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3410 a constant. */
3411
3412 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3413
3414 /* This points to the first word of the incoming arguments passed on the stack,
3415 either by the caller or by the callee when pretending it was passed by the
3416 caller. */
3417
3418 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3419
3420 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3421
3422 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3423 variable on the stack. Otherwise, it points to the first variable on
3424 the stack. */
3425
3426 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3427
3428 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3429
3430 /* This points to the location of dynamically-allocated memory on the stack
3431 immediately after the stack pointer has been adjusted by the amount
3432 desired. */
3433
3434 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3435
3436 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3437
3438 /* This points to the location in the stack at which outgoing arguments should
3439 be written when the stack is pre-pushed (arguments pushed using push
3440 insns always use sp). */
3441
3442 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3443
3444 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3445
3446 /* This points to the Canonical Frame Address of the function. This
3447 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3448 but is calculated relative to the arg pointer for simplicity; the
3449 frame pointer nor stack pointer are necessarily fixed relative to
3450 the CFA until after reload. */
3451
3452 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3453
3454 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3455
3456 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3457
3458 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3459 when finalized. */
3460
3461 #define virtual_preferred_stack_boundary_rtx \
3462 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3463
3464 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3465 ((FIRST_VIRTUAL_REGISTER) + 5)
3466
3467 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3468
3469 /* Nonzero if REGNUM is a pointer into the stack frame. */
3470 #define REGNO_PTR_FRAME_P(REGNUM) \
3471 ((REGNUM) == STACK_POINTER_REGNUM \
3472 || (REGNUM) == FRAME_POINTER_REGNUM \
3473 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3474 || (REGNUM) == ARG_POINTER_REGNUM \
3475 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3476 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3477
3478 /* REGNUM never really appearing in the INSN stream. */
3479 #define INVALID_REGNUM (~(unsigned int) 0)
3480
3481 /* REGNUM for which no debug information can be generated. */
3482 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3483
3484 extern rtx output_constant_def (tree, int);
3485 extern rtx lookup_constant_def (tree);
3486
3487 /* Nonzero after end of reload pass.
3488 Set to 1 or 0 by reload1.c. */
3489
3490 extern int reload_completed;
3491
3492 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3493 extern int epilogue_completed;
3494
3495 /* Set to 1 while reload_as_needed is operating.
3496 Required by some machines to handle any generated moves differently. */
3497
3498 extern int reload_in_progress;
3499
3500 /* Set to 1 while in lra. */
3501 extern int lra_in_progress;
3502
3503 /* This macro indicates whether you may create a new
3504 pseudo-register. */
3505
3506 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3507
3508 #ifdef STACK_REGS
3509 /* Nonzero after end of regstack pass.
3510 Set to 1 or 0 by reg-stack.c. */
3511 extern int regstack_completed;
3512 #endif
3513
3514 /* If this is nonzero, we do not bother generating VOLATILE
3515 around volatile memory references, and we are willing to
3516 output indirect addresses. If cse is to follow, we reject
3517 indirect addresses so a useful potential cse is generated;
3518 if it is used only once, instruction combination will produce
3519 the same indirect address eventually. */
3520 extern int cse_not_expected;
3521
3522 /* Translates rtx code to tree code, for those codes needed by
3523 real_arithmetic. The function returns an int because the caller may not
3524 know what `enum tree_code' means. */
3525
3526 extern int rtx_to_tree_code (enum rtx_code);
3527
3528 /* In cse.c */
3529 extern int delete_trivially_dead_insns (rtx_insn *, int);
3530 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3531 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3532
3533 /* In dse.c */
3534 extern bool check_for_inc_dec (rtx_insn *insn);
3535
3536 /* In jump.c */
3537 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3538 extern bool jump_to_label_p (const rtx_insn *);
3539 extern int condjump_p (const rtx_insn *);
3540 extern int any_condjump_p (const rtx_insn *);
3541 extern int any_uncondjump_p (const rtx_insn *);
3542 extern rtx pc_set (const rtx_insn *);
3543 extern rtx condjump_label (const rtx_insn *);
3544 extern int simplejump_p (const rtx_insn *);
3545 extern int returnjump_p (const rtx_insn *);
3546 extern int eh_returnjump_p (rtx_insn *);
3547 extern int onlyjump_p (const rtx_insn *);
3548 extern int only_sets_cc0_p (const_rtx);
3549 extern int sets_cc0_p (const_rtx);
3550 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3551 extern int invert_jump (rtx_jump_insn *, rtx, int);
3552 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3553 extern int true_regnum (const_rtx);
3554 extern unsigned int reg_or_subregno (const_rtx);
3555 extern int redirect_jump_1 (rtx_insn *, rtx);
3556 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3557 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3558 extern void rebuild_jump_labels (rtx_insn *);
3559 extern void rebuild_jump_labels_chain (rtx_insn *);
3560 extern rtx reversed_comparison (const_rtx, machine_mode);
3561 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3562 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3563 const_rtx, const rtx_insn *);
3564 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3565 extern int condjump_in_parallel_p (const rtx_insn *);
3566
3567 /* In emit-rtl.c. */
3568 extern int max_reg_num (void);
3569 extern int max_label_num (void);
3570 extern int get_first_label_num (void);
3571 extern void maybe_set_first_label_num (rtx_code_label *);
3572 extern void delete_insns_since (rtx_insn *);
3573 extern void mark_reg_pointer (rtx, int);
3574 extern void mark_user_reg (rtx);
3575 extern void reset_used_flags (rtx);
3576 extern void set_used_flags (rtx);
3577 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3578 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3579 extern int get_max_insn_count (void);
3580 extern int in_sequence_p (void);
3581 extern void init_emit (void);
3582 extern void init_emit_regs (void);
3583 extern void init_derived_machine_modes (void);
3584 extern void init_emit_once (void);
3585 extern void push_topmost_sequence (void);
3586 extern void pop_topmost_sequence (void);
3587 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3588 extern unsigned int unshare_all_rtl (void);
3589 extern void unshare_all_rtl_again (rtx_insn *);
3590 extern void unshare_all_rtl_in_chain (rtx_insn *);
3591 extern void verify_rtl_sharing (void);
3592 extern void add_insn (rtx_insn *);
3593 extern void add_insn_before (rtx, rtx, basic_block);
3594 extern void add_insn_after (rtx, rtx, basic_block);
3595 extern void remove_insn (rtx);
3596 extern rtx_insn *emit (rtx, bool = true);
3597 extern void emit_insn_at_entry (rtx);
3598 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3599 extern rtx gen_const_mem (machine_mode, rtx);
3600 extern rtx gen_frame_mem (machine_mode, rtx);
3601 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3602 extern bool validate_subreg (machine_mode, machine_mode,
3603 const_rtx, unsigned int);
3604
3605 /* In combine.c */
3606 extern unsigned int extended_count (const_rtx, machine_mode, int);
3607 extern rtx remove_death (unsigned int, rtx_insn *);
3608 extern void dump_combine_stats (FILE *);
3609 extern void dump_combine_total_stats (FILE *);
3610 extern rtx make_compound_operation (rtx, enum rtx_code);
3611
3612 /* In sched-rgn.c. */
3613 extern void schedule_insns (void);
3614
3615 /* In sched-ebb.c. */
3616 extern void schedule_ebbs (void);
3617
3618 /* In sel-sched-dump.c. */
3619 extern void sel_sched_fix_param (const char *param, const char *val);
3620
3621 /* In print-rtl.c */
3622 extern const char *print_rtx_head;
3623 extern void debug (const rtx_def &ref);
3624 extern void debug (const rtx_def *ptr);
3625 extern void debug_rtx (const_rtx);
3626 extern void debug_rtx_list (const rtx_insn *, int);
3627 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3628 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
3629 extern void print_mem_expr (FILE *, const_tree);
3630 extern void print_rtl (FILE *, const_rtx);
3631 extern void print_simple_rtl (FILE *, const_rtx);
3632 extern int print_rtl_single (FILE *, const_rtx);
3633 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3634 extern void print_inline_rtx (FILE *, const_rtx, int);
3635
3636 /* In stmt.c */
3637 extern void expand_null_return (void);
3638 extern void expand_naked_return (void);
3639 extern void emit_jump (rtx);
3640
3641 /* In expr.c */
3642 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3643 unsigned int, int);
3644 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3645 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3646
3647 /* In expmed.c */
3648 extern void init_expmed (void);
3649 extern void expand_inc (rtx, rtx);
3650 extern void expand_dec (rtx, rtx);
3651
3652 /* In lower-subreg.c */
3653 extern void init_lower_subreg (void);
3654
3655 /* In gcse.c */
3656 extern bool can_copy_p (machine_mode);
3657 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
3658 extern rtx fis_get_condition (rtx_insn *);
3659
3660 /* In ira.c */
3661 extern HARD_REG_SET eliminable_regset;
3662 extern void mark_elimination (int, int);
3663
3664 /* In reginfo.c */
3665 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3666 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3667 extern void globalize_reg (tree, int);
3668 extern void init_reg_modes_target (void);
3669 extern void init_regs (void);
3670 extern void reinit_regs (void);
3671 extern void init_fake_stack_mems (void);
3672 extern void save_register_info (void);
3673 extern void init_reg_sets (void);
3674 extern void regclass (rtx, int);
3675 extern void reg_scan (rtx_insn *, unsigned int);
3676 extern void fix_register (const char *, int, int);
3677 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3678
3679 /* In reload1.c */
3680 extern int function_invariant_p (const_rtx);
3681
3682 /* In calls.c */
3683 enum libcall_type
3684 {
3685 LCT_NORMAL = 0,
3686 LCT_CONST = 1,
3687 LCT_PURE = 2,
3688 LCT_NORETURN = 3,
3689 LCT_THROW = 4,
3690 LCT_RETURNS_TWICE = 5
3691 };
3692
3693 extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3694 ...);
3695 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3696 machine_mode, int, ...);
3697
3698 /* In varasm.c */
3699 extern void init_varasm_once (void);
3700
3701 extern rtx make_debug_expr_from_rtl (const_rtx);
3702
3703 /* In read-rtl.c */
3704 extern bool read_rtx (const char *, vec<rtx> *);
3705
3706 /* In alias.c */
3707 extern rtx canon_rtx (rtx);
3708 extern int true_dependence (const_rtx, machine_mode, const_rtx);
3709 extern rtx get_addr (rtx);
3710 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3711 const_rtx, rtx);
3712 extern int read_dependence (const_rtx, const_rtx);
3713 extern int anti_dependence (const_rtx, const_rtx);
3714 extern int canon_anti_dependence (const_rtx, bool,
3715 const_rtx, machine_mode, rtx);
3716 extern int output_dependence (const_rtx, const_rtx);
3717 extern int canon_output_dependence (const_rtx, bool,
3718 const_rtx, machine_mode, rtx);
3719 extern int may_alias_p (const_rtx, const_rtx);
3720 extern void init_alias_target (void);
3721 extern void init_alias_analysis (void);
3722 extern void end_alias_analysis (void);
3723 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3724 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3725 extern bool may_be_sp_based_p (rtx);
3726 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3727 extern rtx get_reg_known_value (unsigned int);
3728 extern bool get_reg_known_equiv_p (unsigned int);
3729 extern rtx get_reg_base_value (unsigned int);
3730
3731 #ifdef STACK_REGS
3732 extern int stack_regs_mentioned (const_rtx insn);
3733 #endif
3734
3735 /* In toplev.c */
3736 extern GTY(()) rtx stack_limit_rtx;
3737
3738 /* In var-tracking.c */
3739 extern unsigned int variable_tracking_main (void);
3740
3741 /* In stor-layout.c. */
3742 extern void get_mode_bounds (machine_mode, int, machine_mode,
3743 rtx *, rtx *);
3744
3745 /* In loop-iv.c */
3746 extern rtx canon_condition (rtx);
3747 extern void simplify_using_condition (rtx, rtx *, bitmap);
3748
3749 /* In final.c */
3750 extern unsigned int compute_alignments (void);
3751 extern void update_alignments (vec<rtx> &);
3752 extern int asm_str_count (const char *templ);
3753 \f
3754 struct rtl_hooks
3755 {
3756 rtx (*gen_lowpart) (machine_mode, rtx);
3757 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3758 rtx (*reg_nonzero_bits) (const_rtx, machine_mode, const_rtx, machine_mode,
3759 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3760 rtx (*reg_num_sign_bit_copies) (const_rtx, machine_mode, const_rtx, machine_mode,
3761 unsigned int, unsigned int *);
3762 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3763
3764 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3765 };
3766
3767 /* Each pass can provide its own. */
3768 extern struct rtl_hooks rtl_hooks;
3769
3770 /* ... but then it has to restore these. */
3771 extern const struct rtl_hooks general_rtl_hooks;
3772
3773 /* Keep this for the nonce. */
3774 #define gen_lowpart rtl_hooks.gen_lowpart
3775
3776 extern void insn_locations_init (void);
3777 extern void insn_locations_finalize (void);
3778 extern void set_curr_insn_location (location_t);
3779 extern location_t curr_insn_location (void);
3780
3781 /* rtl-error.c */
3782 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3783 ATTRIBUTE_NORETURN;
3784 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3785 ATTRIBUTE_NORETURN;
3786
3787 #define fatal_insn(msgid, insn) \
3788 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3789 #define fatal_insn_not_found(insn) \
3790 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3791
3792 /* reginfo.c */
3793 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3794
3795 /* Information about the function that is propagated by the RTL backend.
3796 Available only for functions that has been already assembled. */
3797
3798 struct GTY(()) cgraph_rtl_info {
3799 unsigned int preferred_incoming_stack_boundary;
3800
3801 /* Call unsaved hard registers really used by the corresponding
3802 function (including ones used by functions called by the
3803 function). */
3804 HARD_REG_SET function_used_regs;
3805 /* Set if function_used_regs is valid. */
3806 unsigned function_used_regs_valid: 1;
3807 };
3808
3809 /* If loads from memories of mode MODE always sign or zero extend,
3810 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
3811 otherwise. */
3812
3813 inline rtx_code
3814 load_extend_op (machine_mode mode)
3815 {
3816 if (SCALAR_INT_MODE_P (mode)
3817 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
3818 return LOAD_EXTEND_OP (mode);
3819 return UNKNOWN;
3820 }
3821
3822 /* gtype-desc.c. */
3823 extern void gt_ggc_mx (rtx &);
3824 extern void gt_pch_nx (rtx &);
3825 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
3826
3827 #endif /* ! GCC_RTL_H */