]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/rtlanal.c
rtl.h (for_each_inc_dec_fn): Remove special case for -1.
[thirdparty/gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "target.h"
31 #include "output.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "df.h"
37 #include "tree.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
39 #include "addresses.h"
40 #include "rtl-iter.h"
41
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int computed_jump_p_1 (const_rtx);
47 static void parms_set (rtx, const_rtx, void *);
48
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
50 const_rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
53 const_rtx, enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
59 enum machine_mode, unsigned int);
60
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
64
65 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
66 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
67
68 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
69 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
70 SIGN_EXTEND then while narrowing we also have to enforce the
71 representation and sign-extend the value to mode DESTINATION_REP.
72
73 If the value is already sign-extended to DESTINATION_REP mode we
74 can just switch to DESTINATION mode on it. For each pair of
75 integral modes SOURCE and DESTINATION, when truncating from SOURCE
76 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
77 contains the number of high-order bits in SOURCE that have to be
78 copies of the sign-bit so that we can do this mode-switch to
79 DESTINATION. */
80
81 static unsigned int
82 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
83 \f
84 /* Store X into index I of ARRAY. ARRAY is known to have at least I
85 elements. Return the new base of ARRAY. */
86
87 template <typename T>
88 typename T::value_type *
89 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
90 value_type *base,
91 size_t i, value_type x)
92 {
93 if (base == array.stack)
94 {
95 if (i < LOCAL_ELEMS)
96 {
97 base[i] = x;
98 return base;
99 }
100 gcc_checking_assert (i == LOCAL_ELEMS);
101 vec_safe_grow (array.heap, i + 1);
102 base = array.heap->address ();
103 memcpy (base, array.stack, sizeof (array.stack));
104 base[LOCAL_ELEMS] = x;
105 return base;
106 }
107 unsigned int length = array.heap->length ();
108 if (length > i)
109 {
110 gcc_checking_assert (base == array.heap->address ());
111 base[i] = x;
112 return base;
113 }
114 else
115 {
116 gcc_checking_assert (i == length);
117 vec_safe_push (array.heap, x);
118 return array.heap->address ();
119 }
120 }
121
122 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
123 number of elements added to the worklist. */
124
125 template <typename T>
126 size_t
127 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
128 value_type *base,
129 size_t end, rtx_type x)
130 {
131 const char *format = GET_RTX_FORMAT (GET_CODE (x));
132 size_t orig_end = end;
133 for (int i = 0; format[i]; ++i)
134 if (format[i] == 'e')
135 {
136 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
137 if (__builtin_expect (end < LOCAL_ELEMS, true))
138 base[end++] = subx;
139 else
140 base = add_single_to_queue (array, base, end++, subx);
141 }
142 else if (format[i] == 'E')
143 {
144 int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
145 rtx *vec = x->u.fld[i].rt_rtvec->elem;
146 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
147 for (int j = 0; j < length; j++)
148 base[end++] = T::get_value (vec[j]);
149 else
150 for (int j = 0; j < length; j++)
151 base = add_single_to_queue (array, base, end++,
152 T::get_value (vec[j]));
153 }
154 return end - orig_end;
155 }
156
157 template <typename T>
158 void
159 generic_subrtx_iterator <T>::free_array (array_type &array)
160 {
161 vec_free (array.heap);
162 }
163
164 template <typename T>
165 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
166
167 template class generic_subrtx_iterator <const_rtx_accessor>;
168 template class generic_subrtx_iterator <rtx_var_accessor>;
169 template class generic_subrtx_iterator <rtx_ptr_accessor>;
170
171 /* Return 1 if the value of X is unstable
172 (would be different at a different point in the program).
173 The frame pointer, arg pointer, etc. are considered stable
174 (within one function) and so is anything marked `unchanging'. */
175
176 int
177 rtx_unstable_p (const_rtx x)
178 {
179 const RTX_CODE code = GET_CODE (x);
180 int i;
181 const char *fmt;
182
183 switch (code)
184 {
185 case MEM:
186 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
187
188 case CONST:
189 CASE_CONST_ANY:
190 case SYMBOL_REF:
191 case LABEL_REF:
192 return 0;
193
194 case REG:
195 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
196 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
197 /* The arg pointer varies if it is not a fixed register. */
198 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
199 return 0;
200 /* ??? When call-clobbered, the value is stable modulo the restore
201 that must happen after a call. This currently screws up local-alloc
202 into believing that the restore is not needed. */
203 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
204 return 0;
205 return 1;
206
207 case ASM_OPERANDS:
208 if (MEM_VOLATILE_P (x))
209 return 1;
210
211 /* Fall through. */
212
213 default:
214 break;
215 }
216
217 fmt = GET_RTX_FORMAT (code);
218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
219 if (fmt[i] == 'e')
220 {
221 if (rtx_unstable_p (XEXP (x, i)))
222 return 1;
223 }
224 else if (fmt[i] == 'E')
225 {
226 int j;
227 for (j = 0; j < XVECLEN (x, i); j++)
228 if (rtx_unstable_p (XVECEXP (x, i, j)))
229 return 1;
230 }
231
232 return 0;
233 }
234
235 /* Return 1 if X has a value that can vary even between two
236 executions of the program. 0 means X can be compared reliably
237 against certain constants or near-constants.
238 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
239 zero, we are slightly more conservative.
240 The frame pointer and the arg pointer are considered constant. */
241
242 bool
243 rtx_varies_p (const_rtx x, bool for_alias)
244 {
245 RTX_CODE code;
246 int i;
247 const char *fmt;
248
249 if (!x)
250 return 0;
251
252 code = GET_CODE (x);
253 switch (code)
254 {
255 case MEM:
256 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
257
258 case CONST:
259 CASE_CONST_ANY:
260 case SYMBOL_REF:
261 case LABEL_REF:
262 return 0;
263
264 case REG:
265 /* Note that we have to test for the actual rtx used for the frame
266 and arg pointers and not just the register number in case we have
267 eliminated the frame and/or arg pointer and are using it
268 for pseudos. */
269 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
270 /* The arg pointer varies if it is not a fixed register. */
271 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
272 return 0;
273 if (x == pic_offset_table_rtx
274 /* ??? When call-clobbered, the value is stable modulo the restore
275 that must happen after a call. This currently screws up
276 local-alloc into believing that the restore is not needed, so we
277 must return 0 only if we are called from alias analysis. */
278 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
279 return 0;
280 return 1;
281
282 case LO_SUM:
283 /* The operand 0 of a LO_SUM is considered constant
284 (in fact it is related specifically to operand 1)
285 during alias analysis. */
286 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
287 || rtx_varies_p (XEXP (x, 1), for_alias);
288
289 case ASM_OPERANDS:
290 if (MEM_VOLATILE_P (x))
291 return 1;
292
293 /* Fall through. */
294
295 default:
296 break;
297 }
298
299 fmt = GET_RTX_FORMAT (code);
300 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
301 if (fmt[i] == 'e')
302 {
303 if (rtx_varies_p (XEXP (x, i), for_alias))
304 return 1;
305 }
306 else if (fmt[i] == 'E')
307 {
308 int j;
309 for (j = 0; j < XVECLEN (x, i); j++)
310 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
311 return 1;
312 }
313
314 return 0;
315 }
316
317 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
318 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
319 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
320 references on strict alignment machines. */
321
322 static int
323 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
324 enum machine_mode mode, bool unaligned_mems)
325 {
326 enum rtx_code code = GET_CODE (x);
327
328 /* The offset must be a multiple of the mode size if we are considering
329 unaligned memory references on strict alignment machines. */
330 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
331 {
332 HOST_WIDE_INT actual_offset = offset;
333
334 #ifdef SPARC_STACK_BOUNDARY_HACK
335 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
336 the real alignment of %sp. However, when it does this, the
337 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
338 if (SPARC_STACK_BOUNDARY_HACK
339 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
340 actual_offset -= STACK_POINTER_OFFSET;
341 #endif
342
343 if (actual_offset % GET_MODE_SIZE (mode) != 0)
344 return 1;
345 }
346
347 switch (code)
348 {
349 case SYMBOL_REF:
350 if (SYMBOL_REF_WEAK (x))
351 return 1;
352 if (!CONSTANT_POOL_ADDRESS_P (x))
353 {
354 tree decl;
355 HOST_WIDE_INT decl_size;
356
357 if (offset < 0)
358 return 1;
359 if (size == 0)
360 size = GET_MODE_SIZE (mode);
361 if (size == 0)
362 return offset != 0;
363
364 /* If the size of the access or of the symbol is unknown,
365 assume the worst. */
366 decl = SYMBOL_REF_DECL (x);
367
368 /* Else check that the access is in bounds. TODO: restructure
369 expr_size/tree_expr_size/int_expr_size and just use the latter. */
370 if (!decl)
371 decl_size = -1;
372 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
373 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
374 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
375 : -1);
376 else if (TREE_CODE (decl) == STRING_CST)
377 decl_size = TREE_STRING_LENGTH (decl);
378 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
379 decl_size = int_size_in_bytes (TREE_TYPE (decl));
380 else
381 decl_size = -1;
382
383 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
384 }
385
386 return 0;
387
388 case LABEL_REF:
389 return 0;
390
391 case REG:
392 /* Stack references are assumed not to trap, but we need to deal with
393 nonsensical offsets. */
394 if (x == frame_pointer_rtx)
395 {
396 HOST_WIDE_INT adj_offset = offset - STARTING_FRAME_OFFSET;
397 if (size == 0)
398 size = GET_MODE_SIZE (mode);
399 if (FRAME_GROWS_DOWNWARD)
400 {
401 if (adj_offset < frame_offset || adj_offset + size - 1 >= 0)
402 return 1;
403 }
404 else
405 {
406 if (adj_offset < 0 || adj_offset + size - 1 >= frame_offset)
407 return 1;
408 }
409 return 0;
410 }
411 /* ??? Need to add a similar guard for nonsensical offsets. */
412 if (x == hard_frame_pointer_rtx
413 || x == stack_pointer_rtx
414 /* The arg pointer varies if it is not a fixed register. */
415 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
416 return 0;
417 /* All of the virtual frame registers are stack references. */
418 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
419 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
420 return 0;
421 return 1;
422
423 case CONST:
424 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
425 mode, unaligned_mems);
426
427 case PLUS:
428 /* An address is assumed not to trap if:
429 - it is the pic register plus a constant. */
430 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
431 return 0;
432
433 /* - or it is an address that can't trap plus a constant integer. */
434 if (CONST_INT_P (XEXP (x, 1))
435 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
436 size, mode, unaligned_mems))
437 return 0;
438
439 return 1;
440
441 case LO_SUM:
442 case PRE_MODIFY:
443 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
444 mode, unaligned_mems);
445
446 case PRE_DEC:
447 case PRE_INC:
448 case POST_DEC:
449 case POST_INC:
450 case POST_MODIFY:
451 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
452 mode, unaligned_mems);
453
454 default:
455 break;
456 }
457
458 /* If it isn't one of the case above, it can cause a trap. */
459 return 1;
460 }
461
462 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
463
464 int
465 rtx_addr_can_trap_p (const_rtx x)
466 {
467 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
468 }
469
470 /* Return true if X is an address that is known to not be zero. */
471
472 bool
473 nonzero_address_p (const_rtx x)
474 {
475 const enum rtx_code code = GET_CODE (x);
476
477 switch (code)
478 {
479 case SYMBOL_REF:
480 return !SYMBOL_REF_WEAK (x);
481
482 case LABEL_REF:
483 return true;
484
485 case REG:
486 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
487 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
488 || x == stack_pointer_rtx
489 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
490 return true;
491 /* All of the virtual frame registers are stack references. */
492 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
493 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
494 return true;
495 return false;
496
497 case CONST:
498 return nonzero_address_p (XEXP (x, 0));
499
500 case PLUS:
501 /* Handle PIC references. */
502 if (XEXP (x, 0) == pic_offset_table_rtx
503 && CONSTANT_P (XEXP (x, 1)))
504 return true;
505 return false;
506
507 case PRE_MODIFY:
508 /* Similar to the above; allow positive offsets. Further, since
509 auto-inc is only allowed in memories, the register must be a
510 pointer. */
511 if (CONST_INT_P (XEXP (x, 1))
512 && INTVAL (XEXP (x, 1)) > 0)
513 return true;
514 return nonzero_address_p (XEXP (x, 0));
515
516 case PRE_INC:
517 /* Similarly. Further, the offset is always positive. */
518 return true;
519
520 case PRE_DEC:
521 case POST_DEC:
522 case POST_INC:
523 case POST_MODIFY:
524 return nonzero_address_p (XEXP (x, 0));
525
526 case LO_SUM:
527 return nonzero_address_p (XEXP (x, 1));
528
529 default:
530 break;
531 }
532
533 /* If it isn't one of the case above, might be zero. */
534 return false;
535 }
536
537 /* Return 1 if X refers to a memory location whose address
538 cannot be compared reliably with constant addresses,
539 or if X refers to a BLKmode memory object.
540 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
541 zero, we are slightly more conservative. */
542
543 bool
544 rtx_addr_varies_p (const_rtx x, bool for_alias)
545 {
546 enum rtx_code code;
547 int i;
548 const char *fmt;
549
550 if (x == 0)
551 return 0;
552
553 code = GET_CODE (x);
554 if (code == MEM)
555 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
556
557 fmt = GET_RTX_FORMAT (code);
558 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
559 if (fmt[i] == 'e')
560 {
561 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
562 return 1;
563 }
564 else if (fmt[i] == 'E')
565 {
566 int j;
567 for (j = 0; j < XVECLEN (x, i); j++)
568 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
569 return 1;
570 }
571 return 0;
572 }
573 \f
574 /* Return the CALL in X if there is one. */
575
576 rtx
577 get_call_rtx_from (rtx x)
578 {
579 if (INSN_P (x))
580 x = PATTERN (x);
581 if (GET_CODE (x) == PARALLEL)
582 x = XVECEXP (x, 0, 0);
583 if (GET_CODE (x) == SET)
584 x = SET_SRC (x);
585 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
586 return x;
587 return NULL_RTX;
588 }
589 \f
590 /* Return the value of the integer term in X, if one is apparent;
591 otherwise return 0.
592 Only obvious integer terms are detected.
593 This is used in cse.c with the `related_value' field. */
594
595 HOST_WIDE_INT
596 get_integer_term (const_rtx x)
597 {
598 if (GET_CODE (x) == CONST)
599 x = XEXP (x, 0);
600
601 if (GET_CODE (x) == MINUS
602 && CONST_INT_P (XEXP (x, 1)))
603 return - INTVAL (XEXP (x, 1));
604 if (GET_CODE (x) == PLUS
605 && CONST_INT_P (XEXP (x, 1)))
606 return INTVAL (XEXP (x, 1));
607 return 0;
608 }
609
610 /* If X is a constant, return the value sans apparent integer term;
611 otherwise return 0.
612 Only obvious integer terms are detected. */
613
614 rtx
615 get_related_value (const_rtx x)
616 {
617 if (GET_CODE (x) != CONST)
618 return 0;
619 x = XEXP (x, 0);
620 if (GET_CODE (x) == PLUS
621 && CONST_INT_P (XEXP (x, 1)))
622 return XEXP (x, 0);
623 else if (GET_CODE (x) == MINUS
624 && CONST_INT_P (XEXP (x, 1)))
625 return XEXP (x, 0);
626 return 0;
627 }
628 \f
629 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
630 to somewhere in the same object or object_block as SYMBOL. */
631
632 bool
633 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
634 {
635 tree decl;
636
637 if (GET_CODE (symbol) != SYMBOL_REF)
638 return false;
639
640 if (offset == 0)
641 return true;
642
643 if (offset > 0)
644 {
645 if (CONSTANT_POOL_ADDRESS_P (symbol)
646 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
647 return true;
648
649 decl = SYMBOL_REF_DECL (symbol);
650 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
651 return true;
652 }
653
654 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
655 && SYMBOL_REF_BLOCK (symbol)
656 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
657 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
658 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
659 return true;
660
661 return false;
662 }
663
664 /* Split X into a base and a constant offset, storing them in *BASE_OUT
665 and *OFFSET_OUT respectively. */
666
667 void
668 split_const (rtx x, rtx *base_out, rtx *offset_out)
669 {
670 if (GET_CODE (x) == CONST)
671 {
672 x = XEXP (x, 0);
673 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
674 {
675 *base_out = XEXP (x, 0);
676 *offset_out = XEXP (x, 1);
677 return;
678 }
679 }
680 *base_out = x;
681 *offset_out = const0_rtx;
682 }
683 \f
684 /* Return the number of places FIND appears within X. If COUNT_DEST is
685 zero, we do not count occurrences inside the destination of a SET. */
686
687 int
688 count_occurrences (const_rtx x, const_rtx find, int count_dest)
689 {
690 int i, j;
691 enum rtx_code code;
692 const char *format_ptr;
693 int count;
694
695 if (x == find)
696 return 1;
697
698 code = GET_CODE (x);
699
700 switch (code)
701 {
702 case REG:
703 CASE_CONST_ANY:
704 case SYMBOL_REF:
705 case CODE_LABEL:
706 case PC:
707 case CC0:
708 return 0;
709
710 case EXPR_LIST:
711 count = count_occurrences (XEXP (x, 0), find, count_dest);
712 if (XEXP (x, 1))
713 count += count_occurrences (XEXP (x, 1), find, count_dest);
714 return count;
715
716 case MEM:
717 if (MEM_P (find) && rtx_equal_p (x, find))
718 return 1;
719 break;
720
721 case SET:
722 if (SET_DEST (x) == find && ! count_dest)
723 return count_occurrences (SET_SRC (x), find, count_dest);
724 break;
725
726 default:
727 break;
728 }
729
730 format_ptr = GET_RTX_FORMAT (code);
731 count = 0;
732
733 for (i = 0; i < GET_RTX_LENGTH (code); i++)
734 {
735 switch (*format_ptr++)
736 {
737 case 'e':
738 count += count_occurrences (XEXP (x, i), find, count_dest);
739 break;
740
741 case 'E':
742 for (j = 0; j < XVECLEN (x, i); j++)
743 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
744 break;
745 }
746 }
747 return count;
748 }
749
750 \f
751 /* Return TRUE if OP is a register or subreg of a register that
752 holds an unsigned quantity. Otherwise, return FALSE. */
753
754 bool
755 unsigned_reg_p (rtx op)
756 {
757 if (REG_P (op)
758 && REG_EXPR (op)
759 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
760 return true;
761
762 if (GET_CODE (op) == SUBREG
763 && SUBREG_PROMOTED_SIGN (op))
764 return true;
765
766 return false;
767 }
768
769 \f
770 /* Nonzero if register REG appears somewhere within IN.
771 Also works if REG is not a register; in this case it checks
772 for a subexpression of IN that is Lisp "equal" to REG. */
773
774 int
775 reg_mentioned_p (const_rtx reg, const_rtx in)
776 {
777 const char *fmt;
778 int i;
779 enum rtx_code code;
780
781 if (in == 0)
782 return 0;
783
784 if (reg == in)
785 return 1;
786
787 if (GET_CODE (in) == LABEL_REF)
788 return reg == XEXP (in, 0);
789
790 code = GET_CODE (in);
791
792 switch (code)
793 {
794 /* Compare registers by number. */
795 case REG:
796 return REG_P (reg) && REGNO (in) == REGNO (reg);
797
798 /* These codes have no constituent expressions
799 and are unique. */
800 case SCRATCH:
801 case CC0:
802 case PC:
803 return 0;
804
805 CASE_CONST_ANY:
806 /* These are kept unique for a given value. */
807 return 0;
808
809 default:
810 break;
811 }
812
813 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
814 return 1;
815
816 fmt = GET_RTX_FORMAT (code);
817
818 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
819 {
820 if (fmt[i] == 'E')
821 {
822 int j;
823 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
824 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
825 return 1;
826 }
827 else if (fmt[i] == 'e'
828 && reg_mentioned_p (reg, XEXP (in, i)))
829 return 1;
830 }
831 return 0;
832 }
833 \f
834 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
835 no CODE_LABEL insn. */
836
837 int
838 no_labels_between_p (const_rtx beg, const_rtx end)
839 {
840 rtx p;
841 if (beg == end)
842 return 0;
843 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
844 if (LABEL_P (p))
845 return 0;
846 return 1;
847 }
848
849 /* Nonzero if register REG is used in an insn between
850 FROM_INSN and TO_INSN (exclusive of those two). */
851
852 int
853 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
854 {
855 rtx_insn *insn;
856
857 if (from_insn == to_insn)
858 return 0;
859
860 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
861 if (NONDEBUG_INSN_P (insn)
862 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
863 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
864 return 1;
865 return 0;
866 }
867 \f
868 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
869 is entirely replaced by a new value and the only use is as a SET_DEST,
870 we do not consider it a reference. */
871
872 int
873 reg_referenced_p (const_rtx x, const_rtx body)
874 {
875 int i;
876
877 switch (GET_CODE (body))
878 {
879 case SET:
880 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
881 return 1;
882
883 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
884 of a REG that occupies all of the REG, the insn references X if
885 it is mentioned in the destination. */
886 if (GET_CODE (SET_DEST (body)) != CC0
887 && GET_CODE (SET_DEST (body)) != PC
888 && !REG_P (SET_DEST (body))
889 && ! (GET_CODE (SET_DEST (body)) == SUBREG
890 && REG_P (SUBREG_REG (SET_DEST (body)))
891 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
892 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
893 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
894 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
895 && reg_overlap_mentioned_p (x, SET_DEST (body)))
896 return 1;
897 return 0;
898
899 case ASM_OPERANDS:
900 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
901 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
902 return 1;
903 return 0;
904
905 case CALL:
906 case USE:
907 case IF_THEN_ELSE:
908 return reg_overlap_mentioned_p (x, body);
909
910 case TRAP_IF:
911 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
912
913 case PREFETCH:
914 return reg_overlap_mentioned_p (x, XEXP (body, 0));
915
916 case UNSPEC:
917 case UNSPEC_VOLATILE:
918 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
919 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
920 return 1;
921 return 0;
922
923 case PARALLEL:
924 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
925 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
926 return 1;
927 return 0;
928
929 case CLOBBER:
930 if (MEM_P (XEXP (body, 0)))
931 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
932 return 1;
933 return 0;
934
935 case COND_EXEC:
936 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
937 return 1;
938 return reg_referenced_p (x, COND_EXEC_CODE (body));
939
940 default:
941 return 0;
942 }
943 }
944 \f
945 /* Nonzero if register REG is set or clobbered in an insn between
946 FROM_INSN and TO_INSN (exclusive of those two). */
947
948 int
949 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
950 {
951 const rtx_insn *insn;
952
953 if (from_insn == to_insn)
954 return 0;
955
956 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
957 if (INSN_P (insn) && reg_set_p (reg, insn))
958 return 1;
959 return 0;
960 }
961
962 /* Internals of reg_set_between_p. */
963 int
964 reg_set_p (const_rtx reg, const_rtx insn)
965 {
966 /* We can be passed an insn or part of one. If we are passed an insn,
967 check if a side-effect of the insn clobbers REG. */
968 if (INSN_P (insn)
969 && (FIND_REG_INC_NOTE (insn, reg)
970 || (CALL_P (insn)
971 && ((REG_P (reg)
972 && REGNO (reg) < FIRST_PSEUDO_REGISTER
973 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
974 GET_MODE (reg), REGNO (reg)))
975 || MEM_P (reg)
976 || find_reg_fusage (insn, CLOBBER, reg)))))
977 return 1;
978
979 return set_of (reg, insn) != NULL_RTX;
980 }
981
982 /* Similar to reg_set_between_p, but check all registers in X. Return 0
983 only if none of them are modified between START and END. Return 1 if
984 X contains a MEM; this routine does use memory aliasing. */
985
986 int
987 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
988 {
989 const enum rtx_code code = GET_CODE (x);
990 const char *fmt;
991 int i, j;
992 rtx_insn *insn;
993
994 if (start == end)
995 return 0;
996
997 switch (code)
998 {
999 CASE_CONST_ANY:
1000 case CONST:
1001 case SYMBOL_REF:
1002 case LABEL_REF:
1003 return 0;
1004
1005 case PC:
1006 case CC0:
1007 return 1;
1008
1009 case MEM:
1010 if (modified_between_p (XEXP (x, 0), start, end))
1011 return 1;
1012 if (MEM_READONLY_P (x))
1013 return 0;
1014 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1015 if (memory_modified_in_insn_p (x, insn))
1016 return 1;
1017 return 0;
1018 break;
1019
1020 case REG:
1021 return reg_set_between_p (x, start, end);
1022
1023 default:
1024 break;
1025 }
1026
1027 fmt = GET_RTX_FORMAT (code);
1028 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1029 {
1030 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1031 return 1;
1032
1033 else if (fmt[i] == 'E')
1034 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1035 if (modified_between_p (XVECEXP (x, i, j), start, end))
1036 return 1;
1037 }
1038
1039 return 0;
1040 }
1041
1042 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1043 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1044 does use memory aliasing. */
1045
1046 int
1047 modified_in_p (const_rtx x, const_rtx insn)
1048 {
1049 const enum rtx_code code = GET_CODE (x);
1050 const char *fmt;
1051 int i, j;
1052
1053 switch (code)
1054 {
1055 CASE_CONST_ANY:
1056 case CONST:
1057 case SYMBOL_REF:
1058 case LABEL_REF:
1059 return 0;
1060
1061 case PC:
1062 case CC0:
1063 return 1;
1064
1065 case MEM:
1066 if (modified_in_p (XEXP (x, 0), insn))
1067 return 1;
1068 if (MEM_READONLY_P (x))
1069 return 0;
1070 if (memory_modified_in_insn_p (x, insn))
1071 return 1;
1072 return 0;
1073 break;
1074
1075 case REG:
1076 return reg_set_p (x, insn);
1077
1078 default:
1079 break;
1080 }
1081
1082 fmt = GET_RTX_FORMAT (code);
1083 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1084 {
1085 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1086 return 1;
1087
1088 else if (fmt[i] == 'E')
1089 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1090 if (modified_in_p (XVECEXP (x, i, j), insn))
1091 return 1;
1092 }
1093
1094 return 0;
1095 }
1096 \f
1097 /* Helper function for set_of. */
1098 struct set_of_data
1099 {
1100 const_rtx found;
1101 const_rtx pat;
1102 };
1103
1104 static void
1105 set_of_1 (rtx x, const_rtx pat, void *data1)
1106 {
1107 struct set_of_data *const data = (struct set_of_data *) (data1);
1108 if (rtx_equal_p (x, data->pat)
1109 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1110 data->found = pat;
1111 }
1112
1113 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1114 (either directly or via STRICT_LOW_PART and similar modifiers). */
1115 const_rtx
1116 set_of (const_rtx pat, const_rtx insn)
1117 {
1118 struct set_of_data data;
1119 data.found = NULL_RTX;
1120 data.pat = pat;
1121 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1122 return data.found;
1123 }
1124
1125 /* Add all hard register in X to *PSET. */
1126 void
1127 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1128 {
1129 subrtx_iterator::array_type array;
1130 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1131 {
1132 const_rtx x = *iter;
1133 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1134 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1135 }
1136 }
1137
1138 /* This function, called through note_stores, collects sets and
1139 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1140 by DATA. */
1141 void
1142 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1143 {
1144 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1145 if (REG_P (x) && HARD_REGISTER_P (x))
1146 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1147 }
1148
1149 /* Examine INSN, and compute the set of hard registers written by it.
1150 Store it in *PSET. Should only be called after reload. */
1151 void
1152 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset, bool implicit)
1153 {
1154 rtx link;
1155
1156 CLEAR_HARD_REG_SET (*pset);
1157 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1158 if (CALL_P (insn))
1159 {
1160 if (implicit)
1161 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1162
1163 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1164 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1165 }
1166 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1167 if (REG_NOTE_KIND (link) == REG_INC)
1168 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1169 }
1170
1171 /* Like record_hard_reg_sets, but called through note_uses. */
1172 void
1173 record_hard_reg_uses (rtx *px, void *data)
1174 {
1175 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1176 }
1177 \f
1178 /* Given an INSN, return a SET expression if this insn has only a single SET.
1179 It may also have CLOBBERs, USEs, or SET whose output
1180 will not be used, which we ignore. */
1181
1182 rtx
1183 single_set_2 (const_rtx insn, const_rtx pat)
1184 {
1185 rtx set = NULL;
1186 int set_verified = 1;
1187 int i;
1188
1189 if (GET_CODE (pat) == PARALLEL)
1190 {
1191 for (i = 0; i < XVECLEN (pat, 0); i++)
1192 {
1193 rtx sub = XVECEXP (pat, 0, i);
1194 switch (GET_CODE (sub))
1195 {
1196 case USE:
1197 case CLOBBER:
1198 break;
1199
1200 case SET:
1201 /* We can consider insns having multiple sets, where all
1202 but one are dead as single set insns. In common case
1203 only single set is present in the pattern so we want
1204 to avoid checking for REG_UNUSED notes unless necessary.
1205
1206 When we reach set first time, we just expect this is
1207 the single set we are looking for and only when more
1208 sets are found in the insn, we check them. */
1209 if (!set_verified)
1210 {
1211 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1212 && !side_effects_p (set))
1213 set = NULL;
1214 else
1215 set_verified = 1;
1216 }
1217 if (!set)
1218 set = sub, set_verified = 0;
1219 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1220 || side_effects_p (sub))
1221 return NULL_RTX;
1222 break;
1223
1224 default:
1225 return NULL_RTX;
1226 }
1227 }
1228 }
1229 return set;
1230 }
1231
1232 /* Given an INSN, return nonzero if it has more than one SET, else return
1233 zero. */
1234
1235 int
1236 multiple_sets (const_rtx insn)
1237 {
1238 int found;
1239 int i;
1240
1241 /* INSN must be an insn. */
1242 if (! INSN_P (insn))
1243 return 0;
1244
1245 /* Only a PARALLEL can have multiple SETs. */
1246 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1247 {
1248 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1249 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1250 {
1251 /* If we have already found a SET, then return now. */
1252 if (found)
1253 return 1;
1254 else
1255 found = 1;
1256 }
1257 }
1258
1259 /* Either zero or one SET. */
1260 return 0;
1261 }
1262 \f
1263 /* Return nonzero if the destination of SET equals the source
1264 and there are no side effects. */
1265
1266 int
1267 set_noop_p (const_rtx set)
1268 {
1269 rtx src = SET_SRC (set);
1270 rtx dst = SET_DEST (set);
1271
1272 if (dst == pc_rtx && src == pc_rtx)
1273 return 1;
1274
1275 if (MEM_P (dst) && MEM_P (src))
1276 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1277
1278 if (GET_CODE (dst) == ZERO_EXTRACT)
1279 return rtx_equal_p (XEXP (dst, 0), src)
1280 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1281 && !side_effects_p (src);
1282
1283 if (GET_CODE (dst) == STRICT_LOW_PART)
1284 dst = XEXP (dst, 0);
1285
1286 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1287 {
1288 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1289 return 0;
1290 src = SUBREG_REG (src);
1291 dst = SUBREG_REG (dst);
1292 }
1293
1294 /* It is a NOOP if destination overlaps with selected src vector
1295 elements. */
1296 if (GET_CODE (src) == VEC_SELECT
1297 && REG_P (XEXP (src, 0)) && REG_P (dst)
1298 && HARD_REGISTER_P (XEXP (src, 0))
1299 && HARD_REGISTER_P (dst))
1300 {
1301 int i;
1302 rtx par = XEXP (src, 1);
1303 rtx src0 = XEXP (src, 0);
1304 int c0 = INTVAL (XVECEXP (par, 0, 0));
1305 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1306
1307 for (i = 1; i < XVECLEN (par, 0); i++)
1308 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1309 return 0;
1310 return
1311 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1312 offset, GET_MODE (dst)) == (int) REGNO (dst);
1313 }
1314
1315 return (REG_P (src) && REG_P (dst)
1316 && REGNO (src) == REGNO (dst));
1317 }
1318 \f
1319 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1320 value to itself. */
1321
1322 int
1323 noop_move_p (const_rtx insn)
1324 {
1325 rtx pat = PATTERN (insn);
1326
1327 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1328 return 1;
1329
1330 /* Insns carrying these notes are useful later on. */
1331 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1332 return 0;
1333
1334 /* Check the code to be executed for COND_EXEC. */
1335 if (GET_CODE (pat) == COND_EXEC)
1336 pat = COND_EXEC_CODE (pat);
1337
1338 if (GET_CODE (pat) == SET && set_noop_p (pat))
1339 return 1;
1340
1341 if (GET_CODE (pat) == PARALLEL)
1342 {
1343 int i;
1344 /* If nothing but SETs of registers to themselves,
1345 this insn can also be deleted. */
1346 for (i = 0; i < XVECLEN (pat, 0); i++)
1347 {
1348 rtx tem = XVECEXP (pat, 0, i);
1349
1350 if (GET_CODE (tem) == USE
1351 || GET_CODE (tem) == CLOBBER)
1352 continue;
1353
1354 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1355 return 0;
1356 }
1357
1358 return 1;
1359 }
1360 return 0;
1361 }
1362 \f
1363
1364 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1365 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1366 If the object was modified, if we hit a partial assignment to X, or hit a
1367 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1368 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1369 be the src. */
1370
1371 rtx
1372 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1373 {
1374 rtx p;
1375
1376 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1377 p = PREV_INSN (p))
1378 if (INSN_P (p))
1379 {
1380 rtx set = single_set (p);
1381 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1382
1383 if (set && rtx_equal_p (x, SET_DEST (set)))
1384 {
1385 rtx src = SET_SRC (set);
1386
1387 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1388 src = XEXP (note, 0);
1389
1390 if ((valid_to == NULL_RTX
1391 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1392 /* Reject hard registers because we don't usually want
1393 to use them; we'd rather use a pseudo. */
1394 && (! (REG_P (src)
1395 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1396 {
1397 *pinsn = p;
1398 return src;
1399 }
1400 }
1401
1402 /* If set in non-simple way, we don't have a value. */
1403 if (reg_set_p (x, p))
1404 break;
1405 }
1406
1407 return x;
1408 }
1409 \f
1410 /* Return nonzero if register in range [REGNO, ENDREGNO)
1411 appears either explicitly or implicitly in X
1412 other than being stored into.
1413
1414 References contained within the substructure at LOC do not count.
1415 LOC may be zero, meaning don't ignore anything. */
1416
1417 int
1418 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1419 rtx *loc)
1420 {
1421 int i;
1422 unsigned int x_regno;
1423 RTX_CODE code;
1424 const char *fmt;
1425
1426 repeat:
1427 /* The contents of a REG_NONNEG note is always zero, so we must come here
1428 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1429 if (x == 0)
1430 return 0;
1431
1432 code = GET_CODE (x);
1433
1434 switch (code)
1435 {
1436 case REG:
1437 x_regno = REGNO (x);
1438
1439 /* If we modifying the stack, frame, or argument pointer, it will
1440 clobber a virtual register. In fact, we could be more precise,
1441 but it isn't worth it. */
1442 if ((x_regno == STACK_POINTER_REGNUM
1443 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1444 || x_regno == ARG_POINTER_REGNUM
1445 #endif
1446 || x_regno == FRAME_POINTER_REGNUM)
1447 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1448 return 1;
1449
1450 return endregno > x_regno && regno < END_REGNO (x);
1451
1452 case SUBREG:
1453 /* If this is a SUBREG of a hard reg, we can see exactly which
1454 registers are being modified. Otherwise, handle normally. */
1455 if (REG_P (SUBREG_REG (x))
1456 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1457 {
1458 unsigned int inner_regno = subreg_regno (x);
1459 unsigned int inner_endregno
1460 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1461 ? subreg_nregs (x) : 1);
1462
1463 return endregno > inner_regno && regno < inner_endregno;
1464 }
1465 break;
1466
1467 case CLOBBER:
1468 case SET:
1469 if (&SET_DEST (x) != loc
1470 /* Note setting a SUBREG counts as referring to the REG it is in for
1471 a pseudo but not for hard registers since we can
1472 treat each word individually. */
1473 && ((GET_CODE (SET_DEST (x)) == SUBREG
1474 && loc != &SUBREG_REG (SET_DEST (x))
1475 && REG_P (SUBREG_REG (SET_DEST (x)))
1476 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1477 && refers_to_regno_p (regno, endregno,
1478 SUBREG_REG (SET_DEST (x)), loc))
1479 || (!REG_P (SET_DEST (x))
1480 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1481 return 1;
1482
1483 if (code == CLOBBER || loc == &SET_SRC (x))
1484 return 0;
1485 x = SET_SRC (x);
1486 goto repeat;
1487
1488 default:
1489 break;
1490 }
1491
1492 /* X does not match, so try its subexpressions. */
1493
1494 fmt = GET_RTX_FORMAT (code);
1495 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1496 {
1497 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1498 {
1499 if (i == 0)
1500 {
1501 x = XEXP (x, 0);
1502 goto repeat;
1503 }
1504 else
1505 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1506 return 1;
1507 }
1508 else if (fmt[i] == 'E')
1509 {
1510 int j;
1511 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1512 if (loc != &XVECEXP (x, i, j)
1513 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1514 return 1;
1515 }
1516 }
1517 return 0;
1518 }
1519
1520 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1521 we check if any register number in X conflicts with the relevant register
1522 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1523 contains a MEM (we don't bother checking for memory addresses that can't
1524 conflict because we expect this to be a rare case. */
1525
1526 int
1527 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1528 {
1529 unsigned int regno, endregno;
1530
1531 /* If either argument is a constant, then modifying X can not
1532 affect IN. Here we look at IN, we can profitably combine
1533 CONSTANT_P (x) with the switch statement below. */
1534 if (CONSTANT_P (in))
1535 return 0;
1536
1537 recurse:
1538 switch (GET_CODE (x))
1539 {
1540 case STRICT_LOW_PART:
1541 case ZERO_EXTRACT:
1542 case SIGN_EXTRACT:
1543 /* Overly conservative. */
1544 x = XEXP (x, 0);
1545 goto recurse;
1546
1547 case SUBREG:
1548 regno = REGNO (SUBREG_REG (x));
1549 if (regno < FIRST_PSEUDO_REGISTER)
1550 regno = subreg_regno (x);
1551 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1552 ? subreg_nregs (x) : 1);
1553 goto do_reg;
1554
1555 case REG:
1556 regno = REGNO (x);
1557 endregno = END_REGNO (x);
1558 do_reg:
1559 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1560
1561 case MEM:
1562 {
1563 const char *fmt;
1564 int i;
1565
1566 if (MEM_P (in))
1567 return 1;
1568
1569 fmt = GET_RTX_FORMAT (GET_CODE (in));
1570 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1571 if (fmt[i] == 'e')
1572 {
1573 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1574 return 1;
1575 }
1576 else if (fmt[i] == 'E')
1577 {
1578 int j;
1579 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1580 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1581 return 1;
1582 }
1583
1584 return 0;
1585 }
1586
1587 case SCRATCH:
1588 case PC:
1589 case CC0:
1590 return reg_mentioned_p (x, in);
1591
1592 case PARALLEL:
1593 {
1594 int i;
1595
1596 /* If any register in here refers to it we return true. */
1597 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1598 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1599 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1600 return 1;
1601 return 0;
1602 }
1603
1604 default:
1605 gcc_assert (CONSTANT_P (x));
1606 return 0;
1607 }
1608 }
1609 \f
1610 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1611 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1612 ignored by note_stores, but passed to FUN.
1613
1614 FUN receives three arguments:
1615 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1616 2. the SET or CLOBBER rtx that does the store,
1617 3. the pointer DATA provided to note_stores.
1618
1619 If the item being stored in or clobbered is a SUBREG of a hard register,
1620 the SUBREG will be passed. */
1621
1622 void
1623 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1624 {
1625 int i;
1626
1627 if (GET_CODE (x) == COND_EXEC)
1628 x = COND_EXEC_CODE (x);
1629
1630 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1631 {
1632 rtx dest = SET_DEST (x);
1633
1634 while ((GET_CODE (dest) == SUBREG
1635 && (!REG_P (SUBREG_REG (dest))
1636 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1637 || GET_CODE (dest) == ZERO_EXTRACT
1638 || GET_CODE (dest) == STRICT_LOW_PART)
1639 dest = XEXP (dest, 0);
1640
1641 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1642 each of whose first operand is a register. */
1643 if (GET_CODE (dest) == PARALLEL)
1644 {
1645 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1646 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1647 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1648 }
1649 else
1650 (*fun) (dest, x, data);
1651 }
1652
1653 else if (GET_CODE (x) == PARALLEL)
1654 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1655 note_stores (XVECEXP (x, 0, i), fun, data);
1656 }
1657 \f
1658 /* Like notes_stores, but call FUN for each expression that is being
1659 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1660 FUN for each expression, not any interior subexpressions. FUN receives a
1661 pointer to the expression and the DATA passed to this function.
1662
1663 Note that this is not quite the same test as that done in reg_referenced_p
1664 since that considers something as being referenced if it is being
1665 partially set, while we do not. */
1666
1667 void
1668 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1669 {
1670 rtx body = *pbody;
1671 int i;
1672
1673 switch (GET_CODE (body))
1674 {
1675 case COND_EXEC:
1676 (*fun) (&COND_EXEC_TEST (body), data);
1677 note_uses (&COND_EXEC_CODE (body), fun, data);
1678 return;
1679
1680 case PARALLEL:
1681 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1682 note_uses (&XVECEXP (body, 0, i), fun, data);
1683 return;
1684
1685 case SEQUENCE:
1686 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1687 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1688 return;
1689
1690 case USE:
1691 (*fun) (&XEXP (body, 0), data);
1692 return;
1693
1694 case ASM_OPERANDS:
1695 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1696 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1697 return;
1698
1699 case TRAP_IF:
1700 (*fun) (&TRAP_CONDITION (body), data);
1701 return;
1702
1703 case PREFETCH:
1704 (*fun) (&XEXP (body, 0), data);
1705 return;
1706
1707 case UNSPEC:
1708 case UNSPEC_VOLATILE:
1709 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1710 (*fun) (&XVECEXP (body, 0, i), data);
1711 return;
1712
1713 case CLOBBER:
1714 if (MEM_P (XEXP (body, 0)))
1715 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1716 return;
1717
1718 case SET:
1719 {
1720 rtx dest = SET_DEST (body);
1721
1722 /* For sets we replace everything in source plus registers in memory
1723 expression in store and operands of a ZERO_EXTRACT. */
1724 (*fun) (&SET_SRC (body), data);
1725
1726 if (GET_CODE (dest) == ZERO_EXTRACT)
1727 {
1728 (*fun) (&XEXP (dest, 1), data);
1729 (*fun) (&XEXP (dest, 2), data);
1730 }
1731
1732 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1733 dest = XEXP (dest, 0);
1734
1735 if (MEM_P (dest))
1736 (*fun) (&XEXP (dest, 0), data);
1737 }
1738 return;
1739
1740 default:
1741 /* All the other possibilities never store. */
1742 (*fun) (pbody, data);
1743 return;
1744 }
1745 }
1746 \f
1747 /* Return nonzero if X's old contents don't survive after INSN.
1748 This will be true if X is (cc0) or if X is a register and
1749 X dies in INSN or because INSN entirely sets X.
1750
1751 "Entirely set" means set directly and not through a SUBREG, or
1752 ZERO_EXTRACT, so no trace of the old contents remains.
1753 Likewise, REG_INC does not count.
1754
1755 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1756 but for this use that makes no difference, since regs don't overlap
1757 during their lifetimes. Therefore, this function may be used
1758 at any time after deaths have been computed.
1759
1760 If REG is a hard reg that occupies multiple machine registers, this
1761 function will only return 1 if each of those registers will be replaced
1762 by INSN. */
1763
1764 int
1765 dead_or_set_p (const_rtx insn, const_rtx x)
1766 {
1767 unsigned int regno, end_regno;
1768 unsigned int i;
1769
1770 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1771 if (GET_CODE (x) == CC0)
1772 return 1;
1773
1774 gcc_assert (REG_P (x));
1775
1776 regno = REGNO (x);
1777 end_regno = END_REGNO (x);
1778 for (i = regno; i < end_regno; i++)
1779 if (! dead_or_set_regno_p (insn, i))
1780 return 0;
1781
1782 return 1;
1783 }
1784
1785 /* Return TRUE iff DEST is a register or subreg of a register and
1786 doesn't change the number of words of the inner register, and any
1787 part of the register is TEST_REGNO. */
1788
1789 static bool
1790 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1791 {
1792 unsigned int regno, endregno;
1793
1794 if (GET_CODE (dest) == SUBREG
1795 && (((GET_MODE_SIZE (GET_MODE (dest))
1796 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1797 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1798 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1799 dest = SUBREG_REG (dest);
1800
1801 if (!REG_P (dest))
1802 return false;
1803
1804 regno = REGNO (dest);
1805 endregno = END_REGNO (dest);
1806 return (test_regno >= regno && test_regno < endregno);
1807 }
1808
1809 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1810 any member matches the covers_regno_no_parallel_p criteria. */
1811
1812 static bool
1813 covers_regno_p (const_rtx dest, unsigned int test_regno)
1814 {
1815 if (GET_CODE (dest) == PARALLEL)
1816 {
1817 /* Some targets place small structures in registers for return
1818 values of functions, and those registers are wrapped in
1819 PARALLELs that we may see as the destination of a SET. */
1820 int i;
1821
1822 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1823 {
1824 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1825 if (inner != NULL_RTX
1826 && covers_regno_no_parallel_p (inner, test_regno))
1827 return true;
1828 }
1829
1830 return false;
1831 }
1832 else
1833 return covers_regno_no_parallel_p (dest, test_regno);
1834 }
1835
1836 /* Utility function for dead_or_set_p to check an individual register. */
1837
1838 int
1839 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1840 {
1841 const_rtx pattern;
1842
1843 /* See if there is a death note for something that includes TEST_REGNO. */
1844 if (find_regno_note (insn, REG_DEAD, test_regno))
1845 return 1;
1846
1847 if (CALL_P (insn)
1848 && find_regno_fusage (insn, CLOBBER, test_regno))
1849 return 1;
1850
1851 pattern = PATTERN (insn);
1852
1853 /* If a COND_EXEC is not executed, the value survives. */
1854 if (GET_CODE (pattern) == COND_EXEC)
1855 return 0;
1856
1857 if (GET_CODE (pattern) == SET)
1858 return covers_regno_p (SET_DEST (pattern), test_regno);
1859 else if (GET_CODE (pattern) == PARALLEL)
1860 {
1861 int i;
1862
1863 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1864 {
1865 rtx body = XVECEXP (pattern, 0, i);
1866
1867 if (GET_CODE (body) == COND_EXEC)
1868 body = COND_EXEC_CODE (body);
1869
1870 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1871 && covers_regno_p (SET_DEST (body), test_regno))
1872 return 1;
1873 }
1874 }
1875
1876 return 0;
1877 }
1878
1879 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1880 If DATUM is nonzero, look for one whose datum is DATUM. */
1881
1882 rtx
1883 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1884 {
1885 rtx link;
1886
1887 gcc_checking_assert (insn);
1888
1889 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1890 if (! INSN_P (insn))
1891 return 0;
1892 if (datum == 0)
1893 {
1894 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1895 if (REG_NOTE_KIND (link) == kind)
1896 return link;
1897 return 0;
1898 }
1899
1900 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1901 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1902 return link;
1903 return 0;
1904 }
1905
1906 /* Return the reg-note of kind KIND in insn INSN which applies to register
1907 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1908 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1909 it might be the case that the note overlaps REGNO. */
1910
1911 rtx
1912 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1913 {
1914 rtx link;
1915
1916 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1917 if (! INSN_P (insn))
1918 return 0;
1919
1920 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1921 if (REG_NOTE_KIND (link) == kind
1922 /* Verify that it is a register, so that scratch and MEM won't cause a
1923 problem here. */
1924 && REG_P (XEXP (link, 0))
1925 && REGNO (XEXP (link, 0)) <= regno
1926 && END_REGNO (XEXP (link, 0)) > regno)
1927 return link;
1928 return 0;
1929 }
1930
1931 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1932 has such a note. */
1933
1934 rtx
1935 find_reg_equal_equiv_note (const_rtx insn)
1936 {
1937 rtx link;
1938
1939 if (!INSN_P (insn))
1940 return 0;
1941
1942 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1943 if (REG_NOTE_KIND (link) == REG_EQUAL
1944 || REG_NOTE_KIND (link) == REG_EQUIV)
1945 {
1946 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1947 insns that have multiple sets. Checking single_set to
1948 make sure of this is not the proper check, as explained
1949 in the comment in set_unique_reg_note.
1950
1951 This should be changed into an assert. */
1952 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1953 return 0;
1954 return link;
1955 }
1956 return NULL;
1957 }
1958
1959 /* Check whether INSN is a single_set whose source is known to be
1960 equivalent to a constant. Return that constant if so, otherwise
1961 return null. */
1962
1963 rtx
1964 find_constant_src (const_rtx insn)
1965 {
1966 rtx note, set, x;
1967
1968 set = single_set (insn);
1969 if (set)
1970 {
1971 x = avoid_constant_pool_reference (SET_SRC (set));
1972 if (CONSTANT_P (x))
1973 return x;
1974 }
1975
1976 note = find_reg_equal_equiv_note (insn);
1977 if (note && CONSTANT_P (XEXP (note, 0)))
1978 return XEXP (note, 0);
1979
1980 return NULL_RTX;
1981 }
1982
1983 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1984 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1985
1986 int
1987 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1988 {
1989 /* If it's not a CALL_INSN, it can't possibly have a
1990 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1991 if (!CALL_P (insn))
1992 return 0;
1993
1994 gcc_assert (datum);
1995
1996 if (!REG_P (datum))
1997 {
1998 rtx link;
1999
2000 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2001 link;
2002 link = XEXP (link, 1))
2003 if (GET_CODE (XEXP (link, 0)) == code
2004 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2005 return 1;
2006 }
2007 else
2008 {
2009 unsigned int regno = REGNO (datum);
2010
2011 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2012 to pseudo registers, so don't bother checking. */
2013
2014 if (regno < FIRST_PSEUDO_REGISTER)
2015 {
2016 unsigned int end_regno = END_HARD_REGNO (datum);
2017 unsigned int i;
2018
2019 for (i = regno; i < end_regno; i++)
2020 if (find_regno_fusage (insn, code, i))
2021 return 1;
2022 }
2023 }
2024
2025 return 0;
2026 }
2027
2028 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2029 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2030
2031 int
2032 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2033 {
2034 rtx link;
2035
2036 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2037 to pseudo registers, so don't bother checking. */
2038
2039 if (regno >= FIRST_PSEUDO_REGISTER
2040 || !CALL_P (insn) )
2041 return 0;
2042
2043 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2044 {
2045 rtx op, reg;
2046
2047 if (GET_CODE (op = XEXP (link, 0)) == code
2048 && REG_P (reg = XEXP (op, 0))
2049 && REGNO (reg) <= regno
2050 && END_HARD_REGNO (reg) > regno)
2051 return 1;
2052 }
2053
2054 return 0;
2055 }
2056
2057 \f
2058 /* Return true if KIND is an integer REG_NOTE. */
2059
2060 static bool
2061 int_reg_note_p (enum reg_note kind)
2062 {
2063 return kind == REG_BR_PROB;
2064 }
2065
2066 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2067 stored as the pointer to the next register note. */
2068
2069 rtx
2070 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2071 {
2072 rtx note;
2073
2074 gcc_checking_assert (!int_reg_note_p (kind));
2075 switch (kind)
2076 {
2077 case REG_CC_SETTER:
2078 case REG_CC_USER:
2079 case REG_LABEL_TARGET:
2080 case REG_LABEL_OPERAND:
2081 case REG_TM:
2082 /* These types of register notes use an INSN_LIST rather than an
2083 EXPR_LIST, so that copying is done right and dumps look
2084 better. */
2085 note = alloc_INSN_LIST (datum, list);
2086 PUT_REG_NOTE_KIND (note, kind);
2087 break;
2088
2089 default:
2090 note = alloc_EXPR_LIST (kind, datum, list);
2091 break;
2092 }
2093
2094 return note;
2095 }
2096
2097 /* Add register note with kind KIND and datum DATUM to INSN. */
2098
2099 void
2100 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2101 {
2102 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2103 }
2104
2105 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2106
2107 void
2108 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2109 {
2110 gcc_checking_assert (int_reg_note_p (kind));
2111 REG_NOTES (insn) = gen_rtx_INT_LIST ((enum machine_mode) kind,
2112 datum, REG_NOTES (insn));
2113 }
2114
2115 /* Add a register note like NOTE to INSN. */
2116
2117 void
2118 add_shallow_copy_of_reg_note (rtx insn, rtx note)
2119 {
2120 if (GET_CODE (note) == INT_LIST)
2121 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2122 else
2123 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2124 }
2125
2126 /* Remove register note NOTE from the REG_NOTES of INSN. */
2127
2128 void
2129 remove_note (rtx insn, const_rtx note)
2130 {
2131 rtx link;
2132
2133 if (note == NULL_RTX)
2134 return;
2135
2136 if (REG_NOTES (insn) == note)
2137 REG_NOTES (insn) = XEXP (note, 1);
2138 else
2139 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2140 if (XEXP (link, 1) == note)
2141 {
2142 XEXP (link, 1) = XEXP (note, 1);
2143 break;
2144 }
2145
2146 switch (REG_NOTE_KIND (note))
2147 {
2148 case REG_EQUAL:
2149 case REG_EQUIV:
2150 df_notes_rescan (as_a <rtx_insn *> (insn));
2151 break;
2152 default:
2153 break;
2154 }
2155 }
2156
2157 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2158
2159 void
2160 remove_reg_equal_equiv_notes (rtx insn)
2161 {
2162 rtx *loc;
2163
2164 loc = &REG_NOTES (insn);
2165 while (*loc)
2166 {
2167 enum reg_note kind = REG_NOTE_KIND (*loc);
2168 if (kind == REG_EQUAL || kind == REG_EQUIV)
2169 *loc = XEXP (*loc, 1);
2170 else
2171 loc = &XEXP (*loc, 1);
2172 }
2173 }
2174
2175 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2176
2177 void
2178 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2179 {
2180 df_ref eq_use;
2181
2182 if (!df)
2183 return;
2184
2185 /* This loop is a little tricky. We cannot just go down the chain because
2186 it is being modified by some actions in the loop. So we just iterate
2187 over the head. We plan to drain the list anyway. */
2188 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2189 {
2190 rtx_insn *insn = DF_REF_INSN (eq_use);
2191 rtx note = find_reg_equal_equiv_note (insn);
2192
2193 /* This assert is generally triggered when someone deletes a REG_EQUAL
2194 or REG_EQUIV note by hacking the list manually rather than calling
2195 remove_note. */
2196 gcc_assert (note);
2197
2198 remove_note (insn, note);
2199 }
2200 }
2201
2202 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2203 return 1 if it is found. A simple equality test is used to determine if
2204 NODE matches. */
2205
2206 int
2207 in_expr_list_p (const_rtx listp, const_rtx node)
2208 {
2209 const_rtx x;
2210
2211 for (x = listp; x; x = XEXP (x, 1))
2212 if (node == XEXP (x, 0))
2213 return 1;
2214
2215 return 0;
2216 }
2217
2218 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2219 remove that entry from the list if it is found.
2220
2221 A simple equality test is used to determine if NODE matches. */
2222
2223 void
2224 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2225 {
2226 rtx_expr_list *temp = *listp;
2227 rtx prev = NULL_RTX;
2228
2229 while (temp)
2230 {
2231 if (node == temp->element ())
2232 {
2233 /* Splice the node out of the list. */
2234 if (prev)
2235 XEXP (prev, 1) = temp->next ();
2236 else
2237 *listp = temp->next ();
2238
2239 return;
2240 }
2241
2242 prev = temp;
2243 temp = temp->next ();
2244 }
2245 }
2246 \f
2247 /* Nonzero if X contains any volatile instructions. These are instructions
2248 which may cause unpredictable machine state instructions, and thus no
2249 instructions or register uses should be moved or combined across them.
2250 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2251
2252 int
2253 volatile_insn_p (const_rtx x)
2254 {
2255 const RTX_CODE code = GET_CODE (x);
2256 switch (code)
2257 {
2258 case LABEL_REF:
2259 case SYMBOL_REF:
2260 case CONST:
2261 CASE_CONST_ANY:
2262 case CC0:
2263 case PC:
2264 case REG:
2265 case SCRATCH:
2266 case CLOBBER:
2267 case ADDR_VEC:
2268 case ADDR_DIFF_VEC:
2269 case CALL:
2270 case MEM:
2271 return 0;
2272
2273 case UNSPEC_VOLATILE:
2274 return 1;
2275
2276 case ASM_INPUT:
2277 case ASM_OPERANDS:
2278 if (MEM_VOLATILE_P (x))
2279 return 1;
2280
2281 default:
2282 break;
2283 }
2284
2285 /* Recursively scan the operands of this expression. */
2286
2287 {
2288 const char *const fmt = GET_RTX_FORMAT (code);
2289 int i;
2290
2291 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2292 {
2293 if (fmt[i] == 'e')
2294 {
2295 if (volatile_insn_p (XEXP (x, i)))
2296 return 1;
2297 }
2298 else if (fmt[i] == 'E')
2299 {
2300 int j;
2301 for (j = 0; j < XVECLEN (x, i); j++)
2302 if (volatile_insn_p (XVECEXP (x, i, j)))
2303 return 1;
2304 }
2305 }
2306 }
2307 return 0;
2308 }
2309
2310 /* Nonzero if X contains any volatile memory references
2311 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2312
2313 int
2314 volatile_refs_p (const_rtx x)
2315 {
2316 const RTX_CODE code = GET_CODE (x);
2317 switch (code)
2318 {
2319 case LABEL_REF:
2320 case SYMBOL_REF:
2321 case CONST:
2322 CASE_CONST_ANY:
2323 case CC0:
2324 case PC:
2325 case REG:
2326 case SCRATCH:
2327 case CLOBBER:
2328 case ADDR_VEC:
2329 case ADDR_DIFF_VEC:
2330 return 0;
2331
2332 case UNSPEC_VOLATILE:
2333 return 1;
2334
2335 case MEM:
2336 case ASM_INPUT:
2337 case ASM_OPERANDS:
2338 if (MEM_VOLATILE_P (x))
2339 return 1;
2340
2341 default:
2342 break;
2343 }
2344
2345 /* Recursively scan the operands of this expression. */
2346
2347 {
2348 const char *const fmt = GET_RTX_FORMAT (code);
2349 int i;
2350
2351 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2352 {
2353 if (fmt[i] == 'e')
2354 {
2355 if (volatile_refs_p (XEXP (x, i)))
2356 return 1;
2357 }
2358 else if (fmt[i] == 'E')
2359 {
2360 int j;
2361 for (j = 0; j < XVECLEN (x, i); j++)
2362 if (volatile_refs_p (XVECEXP (x, i, j)))
2363 return 1;
2364 }
2365 }
2366 }
2367 return 0;
2368 }
2369
2370 /* Similar to above, except that it also rejects register pre- and post-
2371 incrementing. */
2372
2373 int
2374 side_effects_p (const_rtx x)
2375 {
2376 const RTX_CODE code = GET_CODE (x);
2377 switch (code)
2378 {
2379 case LABEL_REF:
2380 case SYMBOL_REF:
2381 case CONST:
2382 CASE_CONST_ANY:
2383 case CC0:
2384 case PC:
2385 case REG:
2386 case SCRATCH:
2387 case ADDR_VEC:
2388 case ADDR_DIFF_VEC:
2389 case VAR_LOCATION:
2390 return 0;
2391
2392 case CLOBBER:
2393 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2394 when some combination can't be done. If we see one, don't think
2395 that we can simplify the expression. */
2396 return (GET_MODE (x) != VOIDmode);
2397
2398 case PRE_INC:
2399 case PRE_DEC:
2400 case POST_INC:
2401 case POST_DEC:
2402 case PRE_MODIFY:
2403 case POST_MODIFY:
2404 case CALL:
2405 case UNSPEC_VOLATILE:
2406 return 1;
2407
2408 case MEM:
2409 case ASM_INPUT:
2410 case ASM_OPERANDS:
2411 if (MEM_VOLATILE_P (x))
2412 return 1;
2413
2414 default:
2415 break;
2416 }
2417
2418 /* Recursively scan the operands of this expression. */
2419
2420 {
2421 const char *fmt = GET_RTX_FORMAT (code);
2422 int i;
2423
2424 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2425 {
2426 if (fmt[i] == 'e')
2427 {
2428 if (side_effects_p (XEXP (x, i)))
2429 return 1;
2430 }
2431 else if (fmt[i] == 'E')
2432 {
2433 int j;
2434 for (j = 0; j < XVECLEN (x, i); j++)
2435 if (side_effects_p (XVECEXP (x, i, j)))
2436 return 1;
2437 }
2438 }
2439 }
2440 return 0;
2441 }
2442 \f
2443 /* Return nonzero if evaluating rtx X might cause a trap.
2444 FLAGS controls how to consider MEMs. A nonzero means the context
2445 of the access may have changed from the original, such that the
2446 address may have become invalid. */
2447
2448 int
2449 may_trap_p_1 (const_rtx x, unsigned flags)
2450 {
2451 int i;
2452 enum rtx_code code;
2453 const char *fmt;
2454
2455 /* We make no distinction currently, but this function is part of
2456 the internal target-hooks ABI so we keep the parameter as
2457 "unsigned flags". */
2458 bool code_changed = flags != 0;
2459
2460 if (x == 0)
2461 return 0;
2462 code = GET_CODE (x);
2463 switch (code)
2464 {
2465 /* Handle these cases quickly. */
2466 CASE_CONST_ANY:
2467 case SYMBOL_REF:
2468 case LABEL_REF:
2469 case CONST:
2470 case PC:
2471 case CC0:
2472 case REG:
2473 case SCRATCH:
2474 return 0;
2475
2476 case UNSPEC:
2477 return targetm.unspec_may_trap_p (x, flags);
2478
2479 case UNSPEC_VOLATILE:
2480 case ASM_INPUT:
2481 case TRAP_IF:
2482 return 1;
2483
2484 case ASM_OPERANDS:
2485 return MEM_VOLATILE_P (x);
2486
2487 /* Memory ref can trap unless it's a static var or a stack slot. */
2488 case MEM:
2489 /* Recognize specific pattern of stack checking probes. */
2490 if (flag_stack_check
2491 && MEM_VOLATILE_P (x)
2492 && XEXP (x, 0) == stack_pointer_rtx)
2493 return 1;
2494 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2495 reference; moving it out of context such as when moving code
2496 when optimizing, might cause its address to become invalid. */
2497 code_changed
2498 || !MEM_NOTRAP_P (x))
2499 {
2500 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2501 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2502 GET_MODE (x), code_changed);
2503 }
2504
2505 return 0;
2506
2507 /* Division by a non-constant might trap. */
2508 case DIV:
2509 case MOD:
2510 case UDIV:
2511 case UMOD:
2512 if (HONOR_SNANS (GET_MODE (x)))
2513 return 1;
2514 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2515 return flag_trapping_math;
2516 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2517 return 1;
2518 break;
2519
2520 case EXPR_LIST:
2521 /* An EXPR_LIST is used to represent a function call. This
2522 certainly may trap. */
2523 return 1;
2524
2525 case GE:
2526 case GT:
2527 case LE:
2528 case LT:
2529 case LTGT:
2530 case COMPARE:
2531 /* Some floating point comparisons may trap. */
2532 if (!flag_trapping_math)
2533 break;
2534 /* ??? There is no machine independent way to check for tests that trap
2535 when COMPARE is used, though many targets do make this distinction.
2536 For instance, sparc uses CCFPE for compares which generate exceptions
2537 and CCFP for compares which do not generate exceptions. */
2538 if (HONOR_NANS (GET_MODE (x)))
2539 return 1;
2540 /* But often the compare has some CC mode, so check operand
2541 modes as well. */
2542 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2543 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2544 return 1;
2545 break;
2546
2547 case EQ:
2548 case NE:
2549 if (HONOR_SNANS (GET_MODE (x)))
2550 return 1;
2551 /* Often comparison is CC mode, so check operand modes. */
2552 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2553 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2554 return 1;
2555 break;
2556
2557 case FIX:
2558 /* Conversion of floating point might trap. */
2559 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2560 return 1;
2561 break;
2562
2563 case NEG:
2564 case ABS:
2565 case SUBREG:
2566 /* These operations don't trap even with floating point. */
2567 break;
2568
2569 default:
2570 /* Any floating arithmetic may trap. */
2571 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2572 return 1;
2573 }
2574
2575 fmt = GET_RTX_FORMAT (code);
2576 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2577 {
2578 if (fmt[i] == 'e')
2579 {
2580 if (may_trap_p_1 (XEXP (x, i), flags))
2581 return 1;
2582 }
2583 else if (fmt[i] == 'E')
2584 {
2585 int j;
2586 for (j = 0; j < XVECLEN (x, i); j++)
2587 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2588 return 1;
2589 }
2590 }
2591 return 0;
2592 }
2593
2594 /* Return nonzero if evaluating rtx X might cause a trap. */
2595
2596 int
2597 may_trap_p (const_rtx x)
2598 {
2599 return may_trap_p_1 (x, 0);
2600 }
2601
2602 /* Same as above, but additionally return nonzero if evaluating rtx X might
2603 cause a fault. We define a fault for the purpose of this function as a
2604 erroneous execution condition that cannot be encountered during the normal
2605 execution of a valid program; the typical example is an unaligned memory
2606 access on a strict alignment machine. The compiler guarantees that it
2607 doesn't generate code that will fault from a valid program, but this
2608 guarantee doesn't mean anything for individual instructions. Consider
2609 the following example:
2610
2611 struct S { int d; union { char *cp; int *ip; }; };
2612
2613 int foo(struct S *s)
2614 {
2615 if (s->d == 1)
2616 return *s->ip;
2617 else
2618 return *s->cp;
2619 }
2620
2621 on a strict alignment machine. In a valid program, foo will never be
2622 invoked on a structure for which d is equal to 1 and the underlying
2623 unique field of the union not aligned on a 4-byte boundary, but the
2624 expression *s->ip might cause a fault if considered individually.
2625
2626 At the RTL level, potentially problematic expressions will almost always
2627 verify may_trap_p; for example, the above dereference can be emitted as
2628 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2629 However, suppose that foo is inlined in a caller that causes s->cp to
2630 point to a local character variable and guarantees that s->d is not set
2631 to 1; foo may have been effectively translated into pseudo-RTL as:
2632
2633 if ((reg:SI) == 1)
2634 (set (reg:SI) (mem:SI (%fp - 7)))
2635 else
2636 (set (reg:QI) (mem:QI (%fp - 7)))
2637
2638 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2639 memory reference to a stack slot, but it will certainly cause a fault
2640 on a strict alignment machine. */
2641
2642 int
2643 may_trap_or_fault_p (const_rtx x)
2644 {
2645 return may_trap_p_1 (x, 1);
2646 }
2647 \f
2648 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2649 i.e., an inequality. */
2650
2651 int
2652 inequality_comparisons_p (const_rtx x)
2653 {
2654 const char *fmt;
2655 int len, i;
2656 const enum rtx_code code = GET_CODE (x);
2657
2658 switch (code)
2659 {
2660 case REG:
2661 case SCRATCH:
2662 case PC:
2663 case CC0:
2664 CASE_CONST_ANY:
2665 case CONST:
2666 case LABEL_REF:
2667 case SYMBOL_REF:
2668 return 0;
2669
2670 case LT:
2671 case LTU:
2672 case GT:
2673 case GTU:
2674 case LE:
2675 case LEU:
2676 case GE:
2677 case GEU:
2678 return 1;
2679
2680 default:
2681 break;
2682 }
2683
2684 len = GET_RTX_LENGTH (code);
2685 fmt = GET_RTX_FORMAT (code);
2686
2687 for (i = 0; i < len; i++)
2688 {
2689 if (fmt[i] == 'e')
2690 {
2691 if (inequality_comparisons_p (XEXP (x, i)))
2692 return 1;
2693 }
2694 else if (fmt[i] == 'E')
2695 {
2696 int j;
2697 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2698 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2699 return 1;
2700 }
2701 }
2702
2703 return 0;
2704 }
2705 \f
2706 /* Replace any occurrence of FROM in X with TO. The function does
2707 not enter into CONST_DOUBLE for the replace.
2708
2709 Note that copying is not done so X must not be shared unless all copies
2710 are to be modified. */
2711
2712 rtx
2713 replace_rtx (rtx x, rtx from, rtx to)
2714 {
2715 int i, j;
2716 const char *fmt;
2717
2718 if (x == from)
2719 return to;
2720
2721 /* Allow this function to make replacements in EXPR_LISTs. */
2722 if (x == 0)
2723 return 0;
2724
2725 if (GET_CODE (x) == SUBREG)
2726 {
2727 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2728
2729 if (CONST_INT_P (new_rtx))
2730 {
2731 x = simplify_subreg (GET_MODE (x), new_rtx,
2732 GET_MODE (SUBREG_REG (x)),
2733 SUBREG_BYTE (x));
2734 gcc_assert (x);
2735 }
2736 else
2737 SUBREG_REG (x) = new_rtx;
2738
2739 return x;
2740 }
2741 else if (GET_CODE (x) == ZERO_EXTEND)
2742 {
2743 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2744
2745 if (CONST_INT_P (new_rtx))
2746 {
2747 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2748 new_rtx, GET_MODE (XEXP (x, 0)));
2749 gcc_assert (x);
2750 }
2751 else
2752 XEXP (x, 0) = new_rtx;
2753
2754 return x;
2755 }
2756
2757 fmt = GET_RTX_FORMAT (GET_CODE (x));
2758 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2759 {
2760 if (fmt[i] == 'e')
2761 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2762 else if (fmt[i] == 'E')
2763 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2764 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2765 }
2766
2767 return x;
2768 }
2769 \f
2770 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2771 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
2772
2773 void
2774 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
2775 {
2776 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2777 rtx x = *loc;
2778 if (JUMP_TABLE_DATA_P (x))
2779 {
2780 x = PATTERN (x);
2781 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
2782 int len = GET_NUM_ELEM (vec);
2783 for (int i = 0; i < len; ++i)
2784 {
2785 rtx ref = RTVEC_ELT (vec, i);
2786 if (XEXP (ref, 0) == old_label)
2787 {
2788 XEXP (ref, 0) = new_label;
2789 if (update_label_nuses)
2790 {
2791 ++LABEL_NUSES (new_label);
2792 --LABEL_NUSES (old_label);
2793 }
2794 }
2795 }
2796 return;
2797 }
2798
2799 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2800 field. This is not handled by the iterator because it doesn't
2801 handle unprinted ('0') fields. */
2802 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
2803 JUMP_LABEL (x) = new_label;
2804
2805 subrtx_ptr_iterator::array_type array;
2806 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
2807 {
2808 rtx *loc = *iter;
2809 if (rtx x = *loc)
2810 {
2811 if (GET_CODE (x) == SYMBOL_REF
2812 && CONSTANT_POOL_ADDRESS_P (x))
2813 {
2814 rtx c = get_pool_constant (x);
2815 if (rtx_referenced_p (old_label, c))
2816 {
2817 /* Create a copy of constant C; replace the label inside
2818 but do not update LABEL_NUSES because uses in constant pool
2819 are not counted. */
2820 rtx new_c = copy_rtx (c);
2821 replace_label (&new_c, old_label, new_label, false);
2822
2823 /* Add the new constant NEW_C to constant pool and replace
2824 the old reference to constant by new reference. */
2825 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
2826 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
2827 }
2828 }
2829
2830 if ((GET_CODE (x) == LABEL_REF
2831 || GET_CODE (x) == INSN_LIST)
2832 && XEXP (x, 0) == old_label)
2833 {
2834 XEXP (x, 0) = new_label;
2835 if (update_label_nuses)
2836 {
2837 ++LABEL_NUSES (new_label);
2838 --LABEL_NUSES (old_label);
2839 }
2840 }
2841 }
2842 }
2843 }
2844
2845 void
2846 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
2847 bool update_label_nuses)
2848 {
2849 rtx insn_as_rtx = insn;
2850 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
2851 gcc_checking_assert (insn_as_rtx == insn);
2852 }
2853
2854 /* Return true if X is referenced in BODY. */
2855
2856 bool
2857 rtx_referenced_p (const_rtx x, const_rtx body)
2858 {
2859 subrtx_iterator::array_type array;
2860 FOR_EACH_SUBRTX (iter, array, body, ALL)
2861 if (const_rtx y = *iter)
2862 {
2863 /* Check if a label_ref Y refers to label X. */
2864 if (GET_CODE (y) == LABEL_REF && LABEL_P (y) && XEXP (y, 0) == x)
2865 return true;
2866
2867 if (rtx_equal_p (x, y))
2868 return true;
2869
2870 /* If Y is a reference to pool constant traverse the constant. */
2871 if (GET_CODE (y) == SYMBOL_REF
2872 && CONSTANT_POOL_ADDRESS_P (y))
2873 iter.substitute (get_pool_constant (y));
2874 }
2875 return false;
2876 }
2877
2878 /* If INSN is a tablejump return true and store the label (before jump table) to
2879 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2880
2881 bool
2882 tablejump_p (const_rtx insn, rtx *labelp, rtx_jump_table_data **tablep)
2883 {
2884 rtx label, table;
2885
2886 if (!JUMP_P (insn))
2887 return false;
2888
2889 label = JUMP_LABEL (insn);
2890 if (label != NULL_RTX && !ANY_RETURN_P (label)
2891 && (table = NEXT_INSN (label)) != NULL_RTX
2892 && JUMP_TABLE_DATA_P (table))
2893 {
2894 if (labelp)
2895 *labelp = label;
2896 if (tablep)
2897 *tablep = as_a <rtx_jump_table_data *> (table);
2898 return true;
2899 }
2900 return false;
2901 }
2902
2903 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2904 constant that is not in the constant pool and not in the condition
2905 of an IF_THEN_ELSE. */
2906
2907 static int
2908 computed_jump_p_1 (const_rtx x)
2909 {
2910 const enum rtx_code code = GET_CODE (x);
2911 int i, j;
2912 const char *fmt;
2913
2914 switch (code)
2915 {
2916 case LABEL_REF:
2917 case PC:
2918 return 0;
2919
2920 case CONST:
2921 CASE_CONST_ANY:
2922 case SYMBOL_REF:
2923 case REG:
2924 return 1;
2925
2926 case MEM:
2927 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2928 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2929
2930 case IF_THEN_ELSE:
2931 return (computed_jump_p_1 (XEXP (x, 1))
2932 || computed_jump_p_1 (XEXP (x, 2)));
2933
2934 default:
2935 break;
2936 }
2937
2938 fmt = GET_RTX_FORMAT (code);
2939 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2940 {
2941 if (fmt[i] == 'e'
2942 && computed_jump_p_1 (XEXP (x, i)))
2943 return 1;
2944
2945 else if (fmt[i] == 'E')
2946 for (j = 0; j < XVECLEN (x, i); j++)
2947 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2948 return 1;
2949 }
2950
2951 return 0;
2952 }
2953
2954 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2955
2956 Tablejumps and casesi insns are not considered indirect jumps;
2957 we can recognize them by a (use (label_ref)). */
2958
2959 int
2960 computed_jump_p (const_rtx insn)
2961 {
2962 int i;
2963 if (JUMP_P (insn))
2964 {
2965 rtx pat = PATTERN (insn);
2966
2967 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2968 if (JUMP_LABEL (insn) != NULL)
2969 return 0;
2970
2971 if (GET_CODE (pat) == PARALLEL)
2972 {
2973 int len = XVECLEN (pat, 0);
2974 int has_use_labelref = 0;
2975
2976 for (i = len - 1; i >= 0; i--)
2977 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2978 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2979 == LABEL_REF))
2980 {
2981 has_use_labelref = 1;
2982 break;
2983 }
2984
2985 if (! has_use_labelref)
2986 for (i = len - 1; i >= 0; i--)
2987 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2988 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2989 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2990 return 1;
2991 }
2992 else if (GET_CODE (pat) == SET
2993 && SET_DEST (pat) == pc_rtx
2994 && computed_jump_p_1 (SET_SRC (pat)))
2995 return 1;
2996 }
2997 return 0;
2998 }
2999
3000 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
3001 calls. Processes the subexpressions of EXP and passes them to F. */
3002 static int
3003 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
3004 {
3005 int result, i, j;
3006 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
3007 rtx *x;
3008
3009 for (; format[n] != '\0'; n++)
3010 {
3011 switch (format[n])
3012 {
3013 case 'e':
3014 /* Call F on X. */
3015 x = &XEXP (exp, n);
3016 result = (*f) (x, data);
3017 if (result == -1)
3018 /* Do not traverse sub-expressions. */
3019 continue;
3020 else if (result != 0)
3021 /* Stop the traversal. */
3022 return result;
3023
3024 if (*x == NULL_RTX)
3025 /* There are no sub-expressions. */
3026 continue;
3027
3028 i = non_rtx_starting_operands[GET_CODE (*x)];
3029 if (i >= 0)
3030 {
3031 result = for_each_rtx_1 (*x, i, f, data);
3032 if (result != 0)
3033 return result;
3034 }
3035 break;
3036
3037 case 'V':
3038 case 'E':
3039 if (XVEC (exp, n) == 0)
3040 continue;
3041 for (j = 0; j < XVECLEN (exp, n); ++j)
3042 {
3043 /* Call F on X. */
3044 x = &XVECEXP (exp, n, j);
3045 result = (*f) (x, data);
3046 if (result == -1)
3047 /* Do not traverse sub-expressions. */
3048 continue;
3049 else if (result != 0)
3050 /* Stop the traversal. */
3051 return result;
3052
3053 if (*x == NULL_RTX)
3054 /* There are no sub-expressions. */
3055 continue;
3056
3057 i = non_rtx_starting_operands[GET_CODE (*x)];
3058 if (i >= 0)
3059 {
3060 result = for_each_rtx_1 (*x, i, f, data);
3061 if (result != 0)
3062 return result;
3063 }
3064 }
3065 break;
3066
3067 default:
3068 /* Nothing to do. */
3069 break;
3070 }
3071 }
3072
3073 return 0;
3074 }
3075
3076 /* Traverse X via depth-first search, calling F for each
3077 sub-expression (including X itself). F is also passed the DATA.
3078 If F returns -1, do not traverse sub-expressions, but continue
3079 traversing the rest of the tree. If F ever returns any other
3080 nonzero value, stop the traversal, and return the value returned
3081 by F. Otherwise, return 0. This function does not traverse inside
3082 tree structure that contains RTX_EXPRs, or into sub-expressions
3083 whose format code is `0' since it is not known whether or not those
3084 codes are actually RTL.
3085
3086 This routine is very general, and could (should?) be used to
3087 implement many of the other routines in this file. */
3088
3089 int
3090 for_each_rtx (rtx *x, rtx_function f, void *data)
3091 {
3092 int result;
3093 int i;
3094
3095 /* Call F on X. */
3096 result = (*f) (x, data);
3097 if (result == -1)
3098 /* Do not traverse sub-expressions. */
3099 return 0;
3100 else if (result != 0)
3101 /* Stop the traversal. */
3102 return result;
3103
3104 if (*x == NULL_RTX)
3105 /* There are no sub-expressions. */
3106 return 0;
3107
3108 i = non_rtx_starting_operands[GET_CODE (*x)];
3109 if (i < 0)
3110 return 0;
3111
3112 return for_each_rtx_1 (*x, i, f, data);
3113 }
3114
3115 /* Like "for_each_rtx", but for calling on an rtx_insn **. */
3116
3117 int
3118 for_each_rtx_in_insn (rtx_insn **insn, rtx_function f, void *data)
3119 {
3120 rtx insn_as_rtx = *insn;
3121 int result;
3122
3123 result = for_each_rtx (&insn_as_rtx, f, data);
3124
3125 if (insn_as_rtx != *insn)
3126 *insn = safe_as_a <rtx_insn *> (insn_as_rtx);
3127
3128 return result;
3129 }
3130
3131 \f
3132
3133 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3134 the equivalent add insn and pass the result to FN, using DATA as the
3135 final argument. */
3136
3137 static int
3138 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3139 {
3140 rtx x = XEXP (mem, 0);
3141 switch (GET_CODE (x))
3142 {
3143 case PRE_INC:
3144 case POST_INC:
3145 {
3146 int size = GET_MODE_SIZE (GET_MODE (mem));
3147 rtx r1 = XEXP (x, 0);
3148 rtx c = gen_int_mode (size, GET_MODE (r1));
3149 return fn (mem, x, r1, r1, c, data);
3150 }
3151
3152 case PRE_DEC:
3153 case POST_DEC:
3154 {
3155 int size = GET_MODE_SIZE (GET_MODE (mem));
3156 rtx r1 = XEXP (x, 0);
3157 rtx c = gen_int_mode (-size, GET_MODE (r1));
3158 return fn (mem, x, r1, r1, c, data);
3159 }
3160
3161 case PRE_MODIFY:
3162 case POST_MODIFY:
3163 {
3164 rtx r1 = XEXP (x, 0);
3165 rtx add = XEXP (x, 1);
3166 return fn (mem, x, r1, add, NULL, data);
3167 }
3168
3169 default:
3170 gcc_unreachable ();
3171 }
3172 }
3173
3174 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3175 For each such autoinc operation found, call FN, passing it
3176 the innermost enclosing MEM, the operation itself, the RTX modified
3177 by the operation, two RTXs (the second may be NULL) that, once
3178 added, represent the value to be held by the modified RTX
3179 afterwards, and DATA. FN is to return 0 to continue the
3180 traversal or any other value to have it returned to the caller of
3181 for_each_inc_dec. */
3182
3183 int
3184 for_each_inc_dec (rtx x,
3185 for_each_inc_dec_fn fn,
3186 void *data)
3187 {
3188 subrtx_var_iterator::array_type array;
3189 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3190 {
3191 rtx mem = *iter;
3192 if (mem
3193 && MEM_P (mem)
3194 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3195 {
3196 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3197 if (res != 0)
3198 return res;
3199 iter.skip_subrtxes ();
3200 }
3201 }
3202 return 0;
3203 }
3204
3205 \f
3206 /* Searches X for any reference to REGNO, returning the rtx of the
3207 reference found if any. Otherwise, returns NULL_RTX. */
3208
3209 rtx
3210 regno_use_in (unsigned int regno, rtx x)
3211 {
3212 const char *fmt;
3213 int i, j;
3214 rtx tem;
3215
3216 if (REG_P (x) && REGNO (x) == regno)
3217 return x;
3218
3219 fmt = GET_RTX_FORMAT (GET_CODE (x));
3220 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3221 {
3222 if (fmt[i] == 'e')
3223 {
3224 if ((tem = regno_use_in (regno, XEXP (x, i))))
3225 return tem;
3226 }
3227 else if (fmt[i] == 'E')
3228 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3229 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3230 return tem;
3231 }
3232
3233 return NULL_RTX;
3234 }
3235
3236 /* Return a value indicating whether OP, an operand of a commutative
3237 operation, is preferred as the first or second operand. The higher
3238 the value, the stronger the preference for being the first operand.
3239 We use negative values to indicate a preference for the first operand
3240 and positive values for the second operand. */
3241
3242 int
3243 commutative_operand_precedence (rtx op)
3244 {
3245 enum rtx_code code = GET_CODE (op);
3246
3247 /* Constants always come the second operand. Prefer "nice" constants. */
3248 if (code == CONST_INT)
3249 return -8;
3250 if (code == CONST_WIDE_INT)
3251 return -8;
3252 if (code == CONST_DOUBLE)
3253 return -7;
3254 if (code == CONST_FIXED)
3255 return -7;
3256 op = avoid_constant_pool_reference (op);
3257 code = GET_CODE (op);
3258
3259 switch (GET_RTX_CLASS (code))
3260 {
3261 case RTX_CONST_OBJ:
3262 if (code == CONST_INT)
3263 return -6;
3264 if (code == CONST_WIDE_INT)
3265 return -6;
3266 if (code == CONST_DOUBLE)
3267 return -5;
3268 if (code == CONST_FIXED)
3269 return -5;
3270 return -4;
3271
3272 case RTX_EXTRA:
3273 /* SUBREGs of objects should come second. */
3274 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3275 return -3;
3276 return 0;
3277
3278 case RTX_OBJ:
3279 /* Complex expressions should be the first, so decrease priority
3280 of objects. Prefer pointer objects over non pointer objects. */
3281 if ((REG_P (op) && REG_POINTER (op))
3282 || (MEM_P (op) && MEM_POINTER (op)))
3283 return -1;
3284 return -2;
3285
3286 case RTX_COMM_ARITH:
3287 /* Prefer operands that are themselves commutative to be first.
3288 This helps to make things linear. In particular,
3289 (and (and (reg) (reg)) (not (reg))) is canonical. */
3290 return 4;
3291
3292 case RTX_BIN_ARITH:
3293 /* If only one operand is a binary expression, it will be the first
3294 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3295 is canonical, although it will usually be further simplified. */
3296 return 2;
3297
3298 case RTX_UNARY:
3299 /* Then prefer NEG and NOT. */
3300 if (code == NEG || code == NOT)
3301 return 1;
3302
3303 default:
3304 return 0;
3305 }
3306 }
3307
3308 /* Return 1 iff it is necessary to swap operands of commutative operation
3309 in order to canonicalize expression. */
3310
3311 bool
3312 swap_commutative_operands_p (rtx x, rtx y)
3313 {
3314 return (commutative_operand_precedence (x)
3315 < commutative_operand_precedence (y));
3316 }
3317
3318 /* Return 1 if X is an autoincrement side effect and the register is
3319 not the stack pointer. */
3320 int
3321 auto_inc_p (const_rtx x)
3322 {
3323 switch (GET_CODE (x))
3324 {
3325 case PRE_INC:
3326 case POST_INC:
3327 case PRE_DEC:
3328 case POST_DEC:
3329 case PRE_MODIFY:
3330 case POST_MODIFY:
3331 /* There are no REG_INC notes for SP. */
3332 if (XEXP (x, 0) != stack_pointer_rtx)
3333 return 1;
3334 default:
3335 break;
3336 }
3337 return 0;
3338 }
3339
3340 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3341 int
3342 loc_mentioned_in_p (rtx *loc, const_rtx in)
3343 {
3344 enum rtx_code code;
3345 const char *fmt;
3346 int i, j;
3347
3348 if (!in)
3349 return 0;
3350
3351 code = GET_CODE (in);
3352 fmt = GET_RTX_FORMAT (code);
3353 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3354 {
3355 if (fmt[i] == 'e')
3356 {
3357 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3358 return 1;
3359 }
3360 else if (fmt[i] == 'E')
3361 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3362 if (loc == &XVECEXP (in, i, j)
3363 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3364 return 1;
3365 }
3366 return 0;
3367 }
3368
3369 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3370 and SUBREG_BYTE, return the bit offset where the subreg begins
3371 (counting from the least significant bit of the operand). */
3372
3373 unsigned int
3374 subreg_lsb_1 (enum machine_mode outer_mode,
3375 enum machine_mode inner_mode,
3376 unsigned int subreg_byte)
3377 {
3378 unsigned int bitpos;
3379 unsigned int byte;
3380 unsigned int word;
3381
3382 /* A paradoxical subreg begins at bit position 0. */
3383 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3384 return 0;
3385
3386 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3387 /* If the subreg crosses a word boundary ensure that
3388 it also begins and ends on a word boundary. */
3389 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3390 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3391 && (subreg_byte % UNITS_PER_WORD
3392 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3393
3394 if (WORDS_BIG_ENDIAN)
3395 word = (GET_MODE_SIZE (inner_mode)
3396 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3397 else
3398 word = subreg_byte / UNITS_PER_WORD;
3399 bitpos = word * BITS_PER_WORD;
3400
3401 if (BYTES_BIG_ENDIAN)
3402 byte = (GET_MODE_SIZE (inner_mode)
3403 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3404 else
3405 byte = subreg_byte % UNITS_PER_WORD;
3406 bitpos += byte * BITS_PER_UNIT;
3407
3408 return bitpos;
3409 }
3410
3411 /* Given a subreg X, return the bit offset where the subreg begins
3412 (counting from the least significant bit of the reg). */
3413
3414 unsigned int
3415 subreg_lsb (const_rtx x)
3416 {
3417 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3418 SUBREG_BYTE (x));
3419 }
3420
3421 /* Fill in information about a subreg of a hard register.
3422 xregno - A regno of an inner hard subreg_reg (or what will become one).
3423 xmode - The mode of xregno.
3424 offset - The byte offset.
3425 ymode - The mode of a top level SUBREG (or what may become one).
3426 info - Pointer to structure to fill in. */
3427 void
3428 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3429 unsigned int offset, enum machine_mode ymode,
3430 struct subreg_info *info)
3431 {
3432 int nregs_xmode, nregs_ymode;
3433 int mode_multiple, nregs_multiple;
3434 int offset_adj, y_offset, y_offset_adj;
3435 int regsize_xmode, regsize_ymode;
3436 bool rknown;
3437
3438 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3439
3440 rknown = false;
3441
3442 /* If there are holes in a non-scalar mode in registers, we expect
3443 that it is made up of its units concatenated together. */
3444 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3445 {
3446 enum machine_mode xmode_unit;
3447
3448 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3449 if (GET_MODE_INNER (xmode) == VOIDmode)
3450 xmode_unit = xmode;
3451 else
3452 xmode_unit = GET_MODE_INNER (xmode);
3453 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3454 gcc_assert (nregs_xmode
3455 == (GET_MODE_NUNITS (xmode)
3456 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3457 gcc_assert (hard_regno_nregs[xregno][xmode]
3458 == (hard_regno_nregs[xregno][xmode_unit]
3459 * GET_MODE_NUNITS (xmode)));
3460
3461 /* You can only ask for a SUBREG of a value with holes in the middle
3462 if you don't cross the holes. (Such a SUBREG should be done by
3463 picking a different register class, or doing it in memory if
3464 necessary.) An example of a value with holes is XCmode on 32-bit
3465 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3466 3 for each part, but in memory it's two 128-bit parts.
3467 Padding is assumed to be at the end (not necessarily the 'high part')
3468 of each unit. */
3469 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3470 < GET_MODE_NUNITS (xmode))
3471 && (offset / GET_MODE_SIZE (xmode_unit)
3472 != ((offset + GET_MODE_SIZE (ymode) - 1)
3473 / GET_MODE_SIZE (xmode_unit))))
3474 {
3475 info->representable_p = false;
3476 rknown = true;
3477 }
3478 }
3479 else
3480 nregs_xmode = hard_regno_nregs[xregno][xmode];
3481
3482 nregs_ymode = hard_regno_nregs[xregno][ymode];
3483
3484 /* Paradoxical subregs are otherwise valid. */
3485 if (!rknown
3486 && offset == 0
3487 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3488 {
3489 info->representable_p = true;
3490 /* If this is a big endian paradoxical subreg, which uses more
3491 actual hard registers than the original register, we must
3492 return a negative offset so that we find the proper highpart
3493 of the register. */
3494 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3495 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3496 info->offset = nregs_xmode - nregs_ymode;
3497 else
3498 info->offset = 0;
3499 info->nregs = nregs_ymode;
3500 return;
3501 }
3502
3503 /* If registers store different numbers of bits in the different
3504 modes, we cannot generally form this subreg. */
3505 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3506 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3507 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3508 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3509 {
3510 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3511 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3512 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3513 {
3514 info->representable_p = false;
3515 info->nregs
3516 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3517 info->offset = offset / regsize_xmode;
3518 return;
3519 }
3520 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3521 {
3522 info->representable_p = false;
3523 info->nregs
3524 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3525 info->offset = offset / regsize_xmode;
3526 return;
3527 }
3528 }
3529
3530 /* Lowpart subregs are otherwise valid. */
3531 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3532 {
3533 info->representable_p = true;
3534 rknown = true;
3535
3536 if (offset == 0 || nregs_xmode == nregs_ymode)
3537 {
3538 info->offset = 0;
3539 info->nregs = nregs_ymode;
3540 return;
3541 }
3542 }
3543
3544 /* This should always pass, otherwise we don't know how to verify
3545 the constraint. These conditions may be relaxed but
3546 subreg_regno_offset would need to be redesigned. */
3547 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3548 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3549
3550 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3551 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3552 {
3553 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3554 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3555 HOST_WIDE_INT off_low = offset & (ysize - 1);
3556 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3557 offset = (xsize - ysize - off_high) | off_low;
3558 }
3559 /* The XMODE value can be seen as a vector of NREGS_XMODE
3560 values. The subreg must represent a lowpart of given field.
3561 Compute what field it is. */
3562 offset_adj = offset;
3563 offset_adj -= subreg_lowpart_offset (ymode,
3564 mode_for_size (GET_MODE_BITSIZE (xmode)
3565 / nregs_xmode,
3566 MODE_INT, 0));
3567
3568 /* Size of ymode must not be greater than the size of xmode. */
3569 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3570 gcc_assert (mode_multiple != 0);
3571
3572 y_offset = offset / GET_MODE_SIZE (ymode);
3573 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3574 nregs_multiple = nregs_xmode / nregs_ymode;
3575
3576 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3577 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3578
3579 if (!rknown)
3580 {
3581 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3582 rknown = true;
3583 }
3584 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3585 info->nregs = nregs_ymode;
3586 }
3587
3588 /* This function returns the regno offset of a subreg expression.
3589 xregno - A regno of an inner hard subreg_reg (or what will become one).
3590 xmode - The mode of xregno.
3591 offset - The byte offset.
3592 ymode - The mode of a top level SUBREG (or what may become one).
3593 RETURN - The regno offset which would be used. */
3594 unsigned int
3595 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3596 unsigned int offset, enum machine_mode ymode)
3597 {
3598 struct subreg_info info;
3599 subreg_get_info (xregno, xmode, offset, ymode, &info);
3600 return info.offset;
3601 }
3602
3603 /* This function returns true when the offset is representable via
3604 subreg_offset in the given regno.
3605 xregno - A regno of an inner hard subreg_reg (or what will become one).
3606 xmode - The mode of xregno.
3607 offset - The byte offset.
3608 ymode - The mode of a top level SUBREG (or what may become one).
3609 RETURN - Whether the offset is representable. */
3610 bool
3611 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3612 unsigned int offset, enum machine_mode ymode)
3613 {
3614 struct subreg_info info;
3615 subreg_get_info (xregno, xmode, offset, ymode, &info);
3616 return info.representable_p;
3617 }
3618
3619 /* Return the number of a YMODE register to which
3620
3621 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3622
3623 can be simplified. Return -1 if the subreg can't be simplified.
3624
3625 XREGNO is a hard register number. */
3626
3627 int
3628 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3629 unsigned int offset, enum machine_mode ymode)
3630 {
3631 struct subreg_info info;
3632 unsigned int yregno;
3633
3634 #ifdef CANNOT_CHANGE_MODE_CLASS
3635 /* Give the backend a chance to disallow the mode change. */
3636 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3637 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3638 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3639 /* We can use mode change in LRA for some transformations. */
3640 && ! lra_in_progress)
3641 return -1;
3642 #endif
3643
3644 /* We shouldn't simplify stack-related registers. */
3645 if ((!reload_completed || frame_pointer_needed)
3646 && xregno == FRAME_POINTER_REGNUM)
3647 return -1;
3648
3649 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3650 && xregno == ARG_POINTER_REGNUM)
3651 return -1;
3652
3653 if (xregno == STACK_POINTER_REGNUM
3654 /* We should convert hard stack register in LRA if it is
3655 possible. */
3656 && ! lra_in_progress)
3657 return -1;
3658
3659 /* Try to get the register offset. */
3660 subreg_get_info (xregno, xmode, offset, ymode, &info);
3661 if (!info.representable_p)
3662 return -1;
3663
3664 /* Make sure that the offsetted register value is in range. */
3665 yregno = xregno + info.offset;
3666 if (!HARD_REGISTER_NUM_P (yregno))
3667 return -1;
3668
3669 /* See whether (reg:YMODE YREGNO) is valid.
3670
3671 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3672 This is a kludge to work around how complex FP arguments are passed
3673 on IA-64 and should be fixed. See PR target/49226. */
3674 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3675 && HARD_REGNO_MODE_OK (xregno, xmode))
3676 return -1;
3677
3678 return (int) yregno;
3679 }
3680
3681 /* Return the final regno that a subreg expression refers to. */
3682 unsigned int
3683 subreg_regno (const_rtx x)
3684 {
3685 unsigned int ret;
3686 rtx subreg = SUBREG_REG (x);
3687 int regno = REGNO (subreg);
3688
3689 ret = regno + subreg_regno_offset (regno,
3690 GET_MODE (subreg),
3691 SUBREG_BYTE (x),
3692 GET_MODE (x));
3693 return ret;
3694
3695 }
3696
3697 /* Return the number of registers that a subreg expression refers
3698 to. */
3699 unsigned int
3700 subreg_nregs (const_rtx x)
3701 {
3702 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3703 }
3704
3705 /* Return the number of registers that a subreg REG with REGNO
3706 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3707 changed so that the regno can be passed in. */
3708
3709 unsigned int
3710 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3711 {
3712 struct subreg_info info;
3713 rtx subreg = SUBREG_REG (x);
3714
3715 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3716 &info);
3717 return info.nregs;
3718 }
3719
3720
3721 struct parms_set_data
3722 {
3723 int nregs;
3724 HARD_REG_SET regs;
3725 };
3726
3727 /* Helper function for noticing stores to parameter registers. */
3728 static void
3729 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3730 {
3731 struct parms_set_data *const d = (struct parms_set_data *) data;
3732 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3733 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3734 {
3735 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3736 d->nregs--;
3737 }
3738 }
3739
3740 /* Look backward for first parameter to be loaded.
3741 Note that loads of all parameters will not necessarily be
3742 found if CSE has eliminated some of them (e.g., an argument
3743 to the outer function is passed down as a parameter).
3744 Do not skip BOUNDARY. */
3745 rtx_insn *
3746 find_first_parameter_load (rtx call_insn, rtx boundary)
3747 {
3748 struct parms_set_data parm;
3749 rtx p, before, first_set;
3750
3751 /* Since different machines initialize their parameter registers
3752 in different orders, assume nothing. Collect the set of all
3753 parameter registers. */
3754 CLEAR_HARD_REG_SET (parm.regs);
3755 parm.nregs = 0;
3756 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3757 if (GET_CODE (XEXP (p, 0)) == USE
3758 && REG_P (XEXP (XEXP (p, 0), 0)))
3759 {
3760 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3761
3762 /* We only care about registers which can hold function
3763 arguments. */
3764 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3765 continue;
3766
3767 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3768 parm.nregs++;
3769 }
3770 before = call_insn;
3771 first_set = call_insn;
3772
3773 /* Search backward for the first set of a register in this set. */
3774 while (parm.nregs && before != boundary)
3775 {
3776 before = PREV_INSN (before);
3777
3778 /* It is possible that some loads got CSEed from one call to
3779 another. Stop in that case. */
3780 if (CALL_P (before))
3781 break;
3782
3783 /* Our caller needs either ensure that we will find all sets
3784 (in case code has not been optimized yet), or take care
3785 for possible labels in a way by setting boundary to preceding
3786 CODE_LABEL. */
3787 if (LABEL_P (before))
3788 {
3789 gcc_assert (before == boundary);
3790 break;
3791 }
3792
3793 if (INSN_P (before))
3794 {
3795 int nregs_old = parm.nregs;
3796 note_stores (PATTERN (before), parms_set, &parm);
3797 /* If we found something that did not set a parameter reg,
3798 we're done. Do not keep going, as that might result
3799 in hoisting an insn before the setting of a pseudo
3800 that is used by the hoisted insn. */
3801 if (nregs_old != parm.nregs)
3802 first_set = before;
3803 else
3804 break;
3805 }
3806 }
3807 return safe_as_a <rtx_insn *> (first_set);
3808 }
3809
3810 /* Return true if we should avoid inserting code between INSN and preceding
3811 call instruction. */
3812
3813 bool
3814 keep_with_call_p (const_rtx insn)
3815 {
3816 rtx set;
3817
3818 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3819 {
3820 if (REG_P (SET_DEST (set))
3821 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3822 && fixed_regs[REGNO (SET_DEST (set))]
3823 && general_operand (SET_SRC (set), VOIDmode))
3824 return true;
3825 if (REG_P (SET_SRC (set))
3826 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3827 && REG_P (SET_DEST (set))
3828 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3829 return true;
3830 /* There may be a stack pop just after the call and before the store
3831 of the return register. Search for the actual store when deciding
3832 if we can break or not. */
3833 if (SET_DEST (set) == stack_pointer_rtx)
3834 {
3835 /* This CONST_CAST is okay because next_nonnote_insn just
3836 returns its argument and we assign it to a const_rtx
3837 variable. */
3838 const rtx_insn *i2 = next_nonnote_insn (CONST_CAST_RTX (insn));
3839 if (i2 && keep_with_call_p (i2))
3840 return true;
3841 }
3842 }
3843 return false;
3844 }
3845
3846 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3847 to non-complex jumps. That is, direct unconditional, conditional,
3848 and tablejumps, but not computed jumps or returns. It also does
3849 not apply to the fallthru case of a conditional jump. */
3850
3851 bool
3852 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3853 {
3854 rtx tmp = JUMP_LABEL (jump_insn);
3855 rtx_jump_table_data *table;
3856
3857 if (label == tmp)
3858 return true;
3859
3860 if (tablejump_p (jump_insn, NULL, &table))
3861 {
3862 rtvec vec = table->get_labels ();
3863 int i, veclen = GET_NUM_ELEM (vec);
3864
3865 for (i = 0; i < veclen; ++i)
3866 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3867 return true;
3868 }
3869
3870 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3871 return true;
3872
3873 return false;
3874 }
3875
3876 \f
3877 /* Return an estimate of the cost of computing rtx X.
3878 One use is in cse, to decide which expression to keep in the hash table.
3879 Another is in rtl generation, to pick the cheapest way to multiply.
3880 Other uses like the latter are expected in the future.
3881
3882 X appears as operand OPNO in an expression with code OUTER_CODE.
3883 SPEED specifies whether costs optimized for speed or size should
3884 be returned. */
3885
3886 int
3887 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3888 {
3889 int i, j;
3890 enum rtx_code code;
3891 const char *fmt;
3892 int total;
3893 int factor;
3894
3895 if (x == 0)
3896 return 0;
3897
3898 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3899 many insns, taking N times as long. */
3900 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3901 if (factor == 0)
3902 factor = 1;
3903
3904 /* Compute the default costs of certain things.
3905 Note that targetm.rtx_costs can override the defaults. */
3906
3907 code = GET_CODE (x);
3908 switch (code)
3909 {
3910 case MULT:
3911 /* Multiplication has time-complexity O(N*N), where N is the
3912 number of units (translated from digits) when using
3913 schoolbook long multiplication. */
3914 total = factor * factor * COSTS_N_INSNS (5);
3915 break;
3916 case DIV:
3917 case UDIV:
3918 case MOD:
3919 case UMOD:
3920 /* Similarly, complexity for schoolbook long division. */
3921 total = factor * factor * COSTS_N_INSNS (7);
3922 break;
3923 case USE:
3924 /* Used in combine.c as a marker. */
3925 total = 0;
3926 break;
3927 case SET:
3928 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3929 the mode for the factor. */
3930 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3931 if (factor == 0)
3932 factor = 1;
3933 /* Pass through. */
3934 default:
3935 total = factor * COSTS_N_INSNS (1);
3936 }
3937
3938 switch (code)
3939 {
3940 case REG:
3941 return 0;
3942
3943 case SUBREG:
3944 total = 0;
3945 /* If we can't tie these modes, make this expensive. The larger
3946 the mode, the more expensive it is. */
3947 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3948 return COSTS_N_INSNS (2 + factor);
3949 break;
3950
3951 default:
3952 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3953 return total;
3954 break;
3955 }
3956
3957 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3958 which is already in total. */
3959
3960 fmt = GET_RTX_FORMAT (code);
3961 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3962 if (fmt[i] == 'e')
3963 total += rtx_cost (XEXP (x, i), code, i, speed);
3964 else if (fmt[i] == 'E')
3965 for (j = 0; j < XVECLEN (x, i); j++)
3966 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3967
3968 return total;
3969 }
3970
3971 /* Fill in the structure C with information about both speed and size rtx
3972 costs for X, which is operand OPNO in an expression with code OUTER. */
3973
3974 void
3975 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3976 struct full_rtx_costs *c)
3977 {
3978 c->speed = rtx_cost (x, outer, opno, true);
3979 c->size = rtx_cost (x, outer, opno, false);
3980 }
3981
3982 \f
3983 /* Return cost of address expression X.
3984 Expect that X is properly formed address reference.
3985
3986 SPEED parameter specify whether costs optimized for speed or size should
3987 be returned. */
3988
3989 int
3990 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3991 {
3992 /* We may be asked for cost of various unusual addresses, such as operands
3993 of push instruction. It is not worthwhile to complicate writing
3994 of the target hook by such cases. */
3995
3996 if (!memory_address_addr_space_p (mode, x, as))
3997 return 1000;
3998
3999 return targetm.address_cost (x, mode, as, speed);
4000 }
4001
4002 /* If the target doesn't override, compute the cost as with arithmetic. */
4003
4004 int
4005 default_address_cost (rtx x, enum machine_mode, addr_space_t, bool speed)
4006 {
4007 return rtx_cost (x, MEM, 0, speed);
4008 }
4009 \f
4010
4011 unsigned HOST_WIDE_INT
4012 nonzero_bits (const_rtx x, enum machine_mode mode)
4013 {
4014 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4015 }
4016
4017 unsigned int
4018 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
4019 {
4020 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4021 }
4022
4023 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4024 It avoids exponential behavior in nonzero_bits1 when X has
4025 identical subexpressions on the first or the second level. */
4026
4027 static unsigned HOST_WIDE_INT
4028 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
4029 enum machine_mode known_mode,
4030 unsigned HOST_WIDE_INT known_ret)
4031 {
4032 if (x == known_x && mode == known_mode)
4033 return known_ret;
4034
4035 /* Try to find identical subexpressions. If found call
4036 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4037 precomputed value for the subexpression as KNOWN_RET. */
4038
4039 if (ARITHMETIC_P (x))
4040 {
4041 rtx x0 = XEXP (x, 0);
4042 rtx x1 = XEXP (x, 1);
4043
4044 /* Check the first level. */
4045 if (x0 == x1)
4046 return nonzero_bits1 (x, mode, x0, mode,
4047 cached_nonzero_bits (x0, mode, known_x,
4048 known_mode, known_ret));
4049
4050 /* Check the second level. */
4051 if (ARITHMETIC_P (x0)
4052 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4053 return nonzero_bits1 (x, mode, x1, mode,
4054 cached_nonzero_bits (x1, mode, known_x,
4055 known_mode, known_ret));
4056
4057 if (ARITHMETIC_P (x1)
4058 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4059 return nonzero_bits1 (x, mode, x0, mode,
4060 cached_nonzero_bits (x0, mode, known_x,
4061 known_mode, known_ret));
4062 }
4063
4064 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4065 }
4066
4067 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4068 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4069 is less useful. We can't allow both, because that results in exponential
4070 run time recursion. There is a nullstone testcase that triggered
4071 this. This macro avoids accidental uses of num_sign_bit_copies. */
4072 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4073
4074 /* Given an expression, X, compute which bits in X can be nonzero.
4075 We don't care about bits outside of those defined in MODE.
4076
4077 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4078 an arithmetic operation, we can do better. */
4079
4080 static unsigned HOST_WIDE_INT
4081 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4082 enum machine_mode known_mode,
4083 unsigned HOST_WIDE_INT known_ret)
4084 {
4085 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4086 unsigned HOST_WIDE_INT inner_nz;
4087 enum rtx_code code;
4088 enum machine_mode inner_mode;
4089 unsigned int mode_width = GET_MODE_PRECISION (mode);
4090
4091 /* For floating-point and vector values, assume all bits are needed. */
4092 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4093 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4094 return nonzero;
4095
4096 /* If X is wider than MODE, use its mode instead. */
4097 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4098 {
4099 mode = GET_MODE (x);
4100 nonzero = GET_MODE_MASK (mode);
4101 mode_width = GET_MODE_PRECISION (mode);
4102 }
4103
4104 if (mode_width > HOST_BITS_PER_WIDE_INT)
4105 /* Our only callers in this case look for single bit values. So
4106 just return the mode mask. Those tests will then be false. */
4107 return nonzero;
4108
4109 #ifndef WORD_REGISTER_OPERATIONS
4110 /* If MODE is wider than X, but both are a single word for both the host
4111 and target machines, we can compute this from which bits of the
4112 object might be nonzero in its own mode, taking into account the fact
4113 that on many CISC machines, accessing an object in a wider mode
4114 causes the high-order bits to become undefined. So they are
4115 not known to be zero. */
4116
4117 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
4118 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4119 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4120 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4121 {
4122 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4123 known_x, known_mode, known_ret);
4124 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4125 return nonzero;
4126 }
4127 #endif
4128
4129 code = GET_CODE (x);
4130 switch (code)
4131 {
4132 case REG:
4133 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4134 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4135 all the bits above ptr_mode are known to be zero. */
4136 /* As we do not know which address space the pointer is referring to,
4137 we can do this only if the target does not support different pointer
4138 or address modes depending on the address space. */
4139 if (target_default_pointer_address_modes_p ()
4140 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4141 && REG_POINTER (x))
4142 nonzero &= GET_MODE_MASK (ptr_mode);
4143 #endif
4144
4145 /* Include declared information about alignment of pointers. */
4146 /* ??? We don't properly preserve REG_POINTER changes across
4147 pointer-to-integer casts, so we can't trust it except for
4148 things that we know must be pointers. See execute/960116-1.c. */
4149 if ((x == stack_pointer_rtx
4150 || x == frame_pointer_rtx
4151 || x == arg_pointer_rtx)
4152 && REGNO_POINTER_ALIGN (REGNO (x)))
4153 {
4154 unsigned HOST_WIDE_INT alignment
4155 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4156
4157 #ifdef PUSH_ROUNDING
4158 /* If PUSH_ROUNDING is defined, it is possible for the
4159 stack to be momentarily aligned only to that amount,
4160 so we pick the least alignment. */
4161 if (x == stack_pointer_rtx && PUSH_ARGS)
4162 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4163 alignment);
4164 #endif
4165
4166 nonzero &= ~(alignment - 1);
4167 }
4168
4169 {
4170 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4171 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4172 known_mode, known_ret,
4173 &nonzero_for_hook);
4174
4175 if (new_rtx)
4176 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4177 known_mode, known_ret);
4178
4179 return nonzero_for_hook;
4180 }
4181
4182 case CONST_INT:
4183 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4184 /* If X is negative in MODE, sign-extend the value. */
4185 if (INTVAL (x) > 0
4186 && mode_width < BITS_PER_WORD
4187 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4188 != 0)
4189 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4190 #endif
4191
4192 return UINTVAL (x);
4193
4194 case MEM:
4195 #ifdef LOAD_EXTEND_OP
4196 /* In many, if not most, RISC machines, reading a byte from memory
4197 zeros the rest of the register. Noticing that fact saves a lot
4198 of extra zero-extends. */
4199 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4200 nonzero &= GET_MODE_MASK (GET_MODE (x));
4201 #endif
4202 break;
4203
4204 case EQ: case NE:
4205 case UNEQ: case LTGT:
4206 case GT: case GTU: case UNGT:
4207 case LT: case LTU: case UNLT:
4208 case GE: case GEU: case UNGE:
4209 case LE: case LEU: case UNLE:
4210 case UNORDERED: case ORDERED:
4211 /* If this produces an integer result, we know which bits are set.
4212 Code here used to clear bits outside the mode of X, but that is
4213 now done above. */
4214 /* Mind that MODE is the mode the caller wants to look at this
4215 operation in, and not the actual operation mode. We can wind
4216 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4217 that describes the results of a vector compare. */
4218 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4219 && mode_width <= HOST_BITS_PER_WIDE_INT)
4220 nonzero = STORE_FLAG_VALUE;
4221 break;
4222
4223 case NEG:
4224 #if 0
4225 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4226 and num_sign_bit_copies. */
4227 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4228 == GET_MODE_PRECISION (GET_MODE (x)))
4229 nonzero = 1;
4230 #endif
4231
4232 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4233 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4234 break;
4235
4236 case ABS:
4237 #if 0
4238 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4239 and num_sign_bit_copies. */
4240 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4241 == GET_MODE_PRECISION (GET_MODE (x)))
4242 nonzero = 1;
4243 #endif
4244 break;
4245
4246 case TRUNCATE:
4247 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4248 known_x, known_mode, known_ret)
4249 & GET_MODE_MASK (mode));
4250 break;
4251
4252 case ZERO_EXTEND:
4253 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4254 known_x, known_mode, known_ret);
4255 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4256 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4257 break;
4258
4259 case SIGN_EXTEND:
4260 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4261 Otherwise, show all the bits in the outer mode but not the inner
4262 may be nonzero. */
4263 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4264 known_x, known_mode, known_ret);
4265 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4266 {
4267 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4268 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4269 inner_nz |= (GET_MODE_MASK (mode)
4270 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4271 }
4272
4273 nonzero &= inner_nz;
4274 break;
4275
4276 case AND:
4277 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4278 known_x, known_mode, known_ret)
4279 & cached_nonzero_bits (XEXP (x, 1), mode,
4280 known_x, known_mode, known_ret);
4281 break;
4282
4283 case XOR: case IOR:
4284 case UMIN: case UMAX: case SMIN: case SMAX:
4285 {
4286 unsigned HOST_WIDE_INT nonzero0
4287 = cached_nonzero_bits (XEXP (x, 0), mode,
4288 known_x, known_mode, known_ret);
4289
4290 /* Don't call nonzero_bits for the second time if it cannot change
4291 anything. */
4292 if ((nonzero & nonzero0) != nonzero)
4293 nonzero &= nonzero0
4294 | cached_nonzero_bits (XEXP (x, 1), mode,
4295 known_x, known_mode, known_ret);
4296 }
4297 break;
4298
4299 case PLUS: case MINUS:
4300 case MULT:
4301 case DIV: case UDIV:
4302 case MOD: case UMOD:
4303 /* We can apply the rules of arithmetic to compute the number of
4304 high- and low-order zero bits of these operations. We start by
4305 computing the width (position of the highest-order nonzero bit)
4306 and the number of low-order zero bits for each value. */
4307 {
4308 unsigned HOST_WIDE_INT nz0
4309 = cached_nonzero_bits (XEXP (x, 0), mode,
4310 known_x, known_mode, known_ret);
4311 unsigned HOST_WIDE_INT nz1
4312 = cached_nonzero_bits (XEXP (x, 1), mode,
4313 known_x, known_mode, known_ret);
4314 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4315 int width0 = floor_log2 (nz0) + 1;
4316 int width1 = floor_log2 (nz1) + 1;
4317 int low0 = floor_log2 (nz0 & -nz0);
4318 int low1 = floor_log2 (nz1 & -nz1);
4319 unsigned HOST_WIDE_INT op0_maybe_minusp
4320 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4321 unsigned HOST_WIDE_INT op1_maybe_minusp
4322 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4323 unsigned int result_width = mode_width;
4324 int result_low = 0;
4325
4326 switch (code)
4327 {
4328 case PLUS:
4329 result_width = MAX (width0, width1) + 1;
4330 result_low = MIN (low0, low1);
4331 break;
4332 case MINUS:
4333 result_low = MIN (low0, low1);
4334 break;
4335 case MULT:
4336 result_width = width0 + width1;
4337 result_low = low0 + low1;
4338 break;
4339 case DIV:
4340 if (width1 == 0)
4341 break;
4342 if (!op0_maybe_minusp && !op1_maybe_minusp)
4343 result_width = width0;
4344 break;
4345 case UDIV:
4346 if (width1 == 0)
4347 break;
4348 result_width = width0;
4349 break;
4350 case MOD:
4351 if (width1 == 0)
4352 break;
4353 if (!op0_maybe_minusp && !op1_maybe_minusp)
4354 result_width = MIN (width0, width1);
4355 result_low = MIN (low0, low1);
4356 break;
4357 case UMOD:
4358 if (width1 == 0)
4359 break;
4360 result_width = MIN (width0, width1);
4361 result_low = MIN (low0, low1);
4362 break;
4363 default:
4364 gcc_unreachable ();
4365 }
4366
4367 if (result_width < mode_width)
4368 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4369
4370 if (result_low > 0)
4371 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4372 }
4373 break;
4374
4375 case ZERO_EXTRACT:
4376 if (CONST_INT_P (XEXP (x, 1))
4377 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4378 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4379 break;
4380
4381 case SUBREG:
4382 /* If this is a SUBREG formed for a promoted variable that has
4383 been zero-extended, we know that at least the high-order bits
4384 are zero, though others might be too. */
4385
4386 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4387 nonzero = GET_MODE_MASK (GET_MODE (x))
4388 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4389 known_x, known_mode, known_ret);
4390
4391 inner_mode = GET_MODE (SUBREG_REG (x));
4392 /* If the inner mode is a single word for both the host and target
4393 machines, we can compute this from which bits of the inner
4394 object might be nonzero. */
4395 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4396 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4397 {
4398 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4399 known_x, known_mode, known_ret);
4400
4401 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4402 /* If this is a typical RISC machine, we only have to worry
4403 about the way loads are extended. */
4404 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4405 ? val_signbit_known_set_p (inner_mode, nonzero)
4406 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4407 || !MEM_P (SUBREG_REG (x)))
4408 #endif
4409 {
4410 /* On many CISC machines, accessing an object in a wider mode
4411 causes the high-order bits to become undefined. So they are
4412 not known to be zero. */
4413 if (GET_MODE_PRECISION (GET_MODE (x))
4414 > GET_MODE_PRECISION (inner_mode))
4415 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4416 & ~GET_MODE_MASK (inner_mode));
4417 }
4418 }
4419 break;
4420
4421 case ASHIFTRT:
4422 case LSHIFTRT:
4423 case ASHIFT:
4424 case ROTATE:
4425 /* The nonzero bits are in two classes: any bits within MODE
4426 that aren't in GET_MODE (x) are always significant. The rest of the
4427 nonzero bits are those that are significant in the operand of
4428 the shift when shifted the appropriate number of bits. This
4429 shows that high-order bits are cleared by the right shift and
4430 low-order bits by left shifts. */
4431 if (CONST_INT_P (XEXP (x, 1))
4432 && INTVAL (XEXP (x, 1)) >= 0
4433 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4434 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4435 {
4436 enum machine_mode inner_mode = GET_MODE (x);
4437 unsigned int width = GET_MODE_PRECISION (inner_mode);
4438 int count = INTVAL (XEXP (x, 1));
4439 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4440 unsigned HOST_WIDE_INT op_nonzero
4441 = cached_nonzero_bits (XEXP (x, 0), mode,
4442 known_x, known_mode, known_ret);
4443 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4444 unsigned HOST_WIDE_INT outer = 0;
4445
4446 if (mode_width > width)
4447 outer = (op_nonzero & nonzero & ~mode_mask);
4448
4449 if (code == LSHIFTRT)
4450 inner >>= count;
4451 else if (code == ASHIFTRT)
4452 {
4453 inner >>= count;
4454
4455 /* If the sign bit may have been nonzero before the shift, we
4456 need to mark all the places it could have been copied to
4457 by the shift as possibly nonzero. */
4458 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4459 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4460 << (width - count);
4461 }
4462 else if (code == ASHIFT)
4463 inner <<= count;
4464 else
4465 inner = ((inner << (count % width)
4466 | (inner >> (width - (count % width)))) & mode_mask);
4467
4468 nonzero &= (outer | inner);
4469 }
4470 break;
4471
4472 case FFS:
4473 case POPCOUNT:
4474 /* This is at most the number of bits in the mode. */
4475 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4476 break;
4477
4478 case CLZ:
4479 /* If CLZ has a known value at zero, then the nonzero bits are
4480 that value, plus the number of bits in the mode minus one. */
4481 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4482 nonzero
4483 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4484 else
4485 nonzero = -1;
4486 break;
4487
4488 case CTZ:
4489 /* If CTZ has a known value at zero, then the nonzero bits are
4490 that value, plus the number of bits in the mode minus one. */
4491 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4492 nonzero
4493 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4494 else
4495 nonzero = -1;
4496 break;
4497
4498 case CLRSB:
4499 /* This is at most the number of bits in the mode minus 1. */
4500 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4501 break;
4502
4503 case PARITY:
4504 nonzero = 1;
4505 break;
4506
4507 case IF_THEN_ELSE:
4508 {
4509 unsigned HOST_WIDE_INT nonzero_true
4510 = cached_nonzero_bits (XEXP (x, 1), mode,
4511 known_x, known_mode, known_ret);
4512
4513 /* Don't call nonzero_bits for the second time if it cannot change
4514 anything. */
4515 if ((nonzero & nonzero_true) != nonzero)
4516 nonzero &= nonzero_true
4517 | cached_nonzero_bits (XEXP (x, 2), mode,
4518 known_x, known_mode, known_ret);
4519 }
4520 break;
4521
4522 default:
4523 break;
4524 }
4525
4526 return nonzero;
4527 }
4528
4529 /* See the macro definition above. */
4530 #undef cached_num_sign_bit_copies
4531
4532 \f
4533 /* The function cached_num_sign_bit_copies is a wrapper around
4534 num_sign_bit_copies1. It avoids exponential behavior in
4535 num_sign_bit_copies1 when X has identical subexpressions on the
4536 first or the second level. */
4537
4538 static unsigned int
4539 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4540 enum machine_mode known_mode,
4541 unsigned int known_ret)
4542 {
4543 if (x == known_x && mode == known_mode)
4544 return known_ret;
4545
4546 /* Try to find identical subexpressions. If found call
4547 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4548 the precomputed value for the subexpression as KNOWN_RET. */
4549
4550 if (ARITHMETIC_P (x))
4551 {
4552 rtx x0 = XEXP (x, 0);
4553 rtx x1 = XEXP (x, 1);
4554
4555 /* Check the first level. */
4556 if (x0 == x1)
4557 return
4558 num_sign_bit_copies1 (x, mode, x0, mode,
4559 cached_num_sign_bit_copies (x0, mode, known_x,
4560 known_mode,
4561 known_ret));
4562
4563 /* Check the second level. */
4564 if (ARITHMETIC_P (x0)
4565 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4566 return
4567 num_sign_bit_copies1 (x, mode, x1, mode,
4568 cached_num_sign_bit_copies (x1, mode, known_x,
4569 known_mode,
4570 known_ret));
4571
4572 if (ARITHMETIC_P (x1)
4573 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4574 return
4575 num_sign_bit_copies1 (x, mode, x0, mode,
4576 cached_num_sign_bit_copies (x0, mode, known_x,
4577 known_mode,
4578 known_ret));
4579 }
4580
4581 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4582 }
4583
4584 /* Return the number of bits at the high-order end of X that are known to
4585 be equal to the sign bit. X will be used in mode MODE; if MODE is
4586 VOIDmode, X will be used in its own mode. The returned value will always
4587 be between 1 and the number of bits in MODE. */
4588
4589 static unsigned int
4590 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4591 enum machine_mode known_mode,
4592 unsigned int known_ret)
4593 {
4594 enum rtx_code code = GET_CODE (x);
4595 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4596 int num0, num1, result;
4597 unsigned HOST_WIDE_INT nonzero;
4598
4599 /* If we weren't given a mode, use the mode of X. If the mode is still
4600 VOIDmode, we don't know anything. Likewise if one of the modes is
4601 floating-point. */
4602
4603 if (mode == VOIDmode)
4604 mode = GET_MODE (x);
4605
4606 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4607 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4608 return 1;
4609
4610 /* For a smaller object, just ignore the high bits. */
4611 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4612 {
4613 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4614 known_x, known_mode, known_ret);
4615 return MAX (1,
4616 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4617 }
4618
4619 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4620 {
4621 #ifndef WORD_REGISTER_OPERATIONS
4622 /* If this machine does not do all register operations on the entire
4623 register and MODE is wider than the mode of X, we can say nothing
4624 at all about the high-order bits. */
4625 return 1;
4626 #else
4627 /* Likewise on machines that do, if the mode of the object is smaller
4628 than a word and loads of that size don't sign extend, we can say
4629 nothing about the high order bits. */
4630 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4631 #ifdef LOAD_EXTEND_OP
4632 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4633 #endif
4634 )
4635 return 1;
4636 #endif
4637 }
4638
4639 switch (code)
4640 {
4641 case REG:
4642
4643 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4644 /* If pointers extend signed and this is a pointer in Pmode, say that
4645 all the bits above ptr_mode are known to be sign bit copies. */
4646 /* As we do not know which address space the pointer is referring to,
4647 we can do this only if the target does not support different pointer
4648 or address modes depending on the address space. */
4649 if (target_default_pointer_address_modes_p ()
4650 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4651 && mode == Pmode && REG_POINTER (x))
4652 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4653 #endif
4654
4655 {
4656 unsigned int copies_for_hook = 1, copies = 1;
4657 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4658 known_mode, known_ret,
4659 &copies_for_hook);
4660
4661 if (new_rtx)
4662 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4663 known_mode, known_ret);
4664
4665 if (copies > 1 || copies_for_hook > 1)
4666 return MAX (copies, copies_for_hook);
4667
4668 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4669 }
4670 break;
4671
4672 case MEM:
4673 #ifdef LOAD_EXTEND_OP
4674 /* Some RISC machines sign-extend all loads of smaller than a word. */
4675 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4676 return MAX (1, ((int) bitwidth
4677 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4678 #endif
4679 break;
4680
4681 case CONST_INT:
4682 /* If the constant is negative, take its 1's complement and remask.
4683 Then see how many zero bits we have. */
4684 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4685 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4686 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4687 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4688
4689 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4690
4691 case SUBREG:
4692 /* If this is a SUBREG for a promoted object that is sign-extended
4693 and we are looking at it in a wider mode, we know that at least the
4694 high-order bits are known to be sign bit copies. */
4695
4696 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4697 {
4698 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4699 known_x, known_mode, known_ret);
4700 return MAX ((int) bitwidth
4701 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4702 num0);
4703 }
4704
4705 /* For a smaller object, just ignore the high bits. */
4706 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4707 {
4708 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4709 known_x, known_mode, known_ret);
4710 return MAX (1, (num0
4711 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4712 - bitwidth)));
4713 }
4714
4715 #ifdef WORD_REGISTER_OPERATIONS
4716 #ifdef LOAD_EXTEND_OP
4717 /* For paradoxical SUBREGs on machines where all register operations
4718 affect the entire register, just look inside. Note that we are
4719 passing MODE to the recursive call, so the number of sign bit copies
4720 will remain relative to that mode, not the inner mode. */
4721
4722 /* This works only if loads sign extend. Otherwise, if we get a
4723 reload for the inner part, it may be loaded from the stack, and
4724 then we lose all sign bit copies that existed before the store
4725 to the stack. */
4726
4727 if (paradoxical_subreg_p (x)
4728 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4729 && MEM_P (SUBREG_REG (x)))
4730 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4731 known_x, known_mode, known_ret);
4732 #endif
4733 #endif
4734 break;
4735
4736 case SIGN_EXTRACT:
4737 if (CONST_INT_P (XEXP (x, 1)))
4738 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4739 break;
4740
4741 case SIGN_EXTEND:
4742 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4743 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4744 known_x, known_mode, known_ret));
4745
4746 case TRUNCATE:
4747 /* For a smaller object, just ignore the high bits. */
4748 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4749 known_x, known_mode, known_ret);
4750 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4751 - bitwidth)));
4752
4753 case NOT:
4754 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4755 known_x, known_mode, known_ret);
4756
4757 case ROTATE: case ROTATERT:
4758 /* If we are rotating left by a number of bits less than the number
4759 of sign bit copies, we can just subtract that amount from the
4760 number. */
4761 if (CONST_INT_P (XEXP (x, 1))
4762 && INTVAL (XEXP (x, 1)) >= 0
4763 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4764 {
4765 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4766 known_x, known_mode, known_ret);
4767 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4768 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4769 }
4770 break;
4771
4772 case NEG:
4773 /* In general, this subtracts one sign bit copy. But if the value
4774 is known to be positive, the number of sign bit copies is the
4775 same as that of the input. Finally, if the input has just one bit
4776 that might be nonzero, all the bits are copies of the sign bit. */
4777 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4778 known_x, known_mode, known_ret);
4779 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4780 return num0 > 1 ? num0 - 1 : 1;
4781
4782 nonzero = nonzero_bits (XEXP (x, 0), mode);
4783 if (nonzero == 1)
4784 return bitwidth;
4785
4786 if (num0 > 1
4787 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4788 num0--;
4789
4790 return num0;
4791
4792 case IOR: case AND: case XOR:
4793 case SMIN: case SMAX: case UMIN: case UMAX:
4794 /* Logical operations will preserve the number of sign-bit copies.
4795 MIN and MAX operations always return one of the operands. */
4796 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4797 known_x, known_mode, known_ret);
4798 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4799 known_x, known_mode, known_ret);
4800
4801 /* If num1 is clearing some of the top bits then regardless of
4802 the other term, we are guaranteed to have at least that many
4803 high-order zero bits. */
4804 if (code == AND
4805 && num1 > 1
4806 && bitwidth <= HOST_BITS_PER_WIDE_INT
4807 && CONST_INT_P (XEXP (x, 1))
4808 && (UINTVAL (XEXP (x, 1))
4809 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4810 return num1;
4811
4812 /* Similarly for IOR when setting high-order bits. */
4813 if (code == IOR
4814 && num1 > 1
4815 && bitwidth <= HOST_BITS_PER_WIDE_INT
4816 && CONST_INT_P (XEXP (x, 1))
4817 && (UINTVAL (XEXP (x, 1))
4818 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4819 return num1;
4820
4821 return MIN (num0, num1);
4822
4823 case PLUS: case MINUS:
4824 /* For addition and subtraction, we can have a 1-bit carry. However,
4825 if we are subtracting 1 from a positive number, there will not
4826 be such a carry. Furthermore, if the positive number is known to
4827 be 0 or 1, we know the result is either -1 or 0. */
4828
4829 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4830 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4831 {
4832 nonzero = nonzero_bits (XEXP (x, 0), mode);
4833 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4834 return (nonzero == 1 || nonzero == 0 ? bitwidth
4835 : bitwidth - floor_log2 (nonzero) - 1);
4836 }
4837
4838 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4839 known_x, known_mode, known_ret);
4840 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4841 known_x, known_mode, known_ret);
4842 result = MAX (1, MIN (num0, num1) - 1);
4843
4844 return result;
4845
4846 case MULT:
4847 /* The number of bits of the product is the sum of the number of
4848 bits of both terms. However, unless one of the terms if known
4849 to be positive, we must allow for an additional bit since negating
4850 a negative number can remove one sign bit copy. */
4851
4852 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4853 known_x, known_mode, known_ret);
4854 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4855 known_x, known_mode, known_ret);
4856
4857 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4858 if (result > 0
4859 && (bitwidth > HOST_BITS_PER_WIDE_INT
4860 || (((nonzero_bits (XEXP (x, 0), mode)
4861 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4862 && ((nonzero_bits (XEXP (x, 1), mode)
4863 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4864 != 0))))
4865 result--;
4866
4867 return MAX (1, result);
4868
4869 case UDIV:
4870 /* The result must be <= the first operand. If the first operand
4871 has the high bit set, we know nothing about the number of sign
4872 bit copies. */
4873 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4874 return 1;
4875 else if ((nonzero_bits (XEXP (x, 0), mode)
4876 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4877 return 1;
4878 else
4879 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4880 known_x, known_mode, known_ret);
4881
4882 case UMOD:
4883 /* The result must be <= the second operand. If the second operand
4884 has (or just might have) the high bit set, we know nothing about
4885 the number of sign bit copies. */
4886 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4887 return 1;
4888 else if ((nonzero_bits (XEXP (x, 1), mode)
4889 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4890 return 1;
4891 else
4892 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4893 known_x, known_mode, known_ret);
4894
4895 case DIV:
4896 /* Similar to unsigned division, except that we have to worry about
4897 the case where the divisor is negative, in which case we have
4898 to add 1. */
4899 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4900 known_x, known_mode, known_ret);
4901 if (result > 1
4902 && (bitwidth > HOST_BITS_PER_WIDE_INT
4903 || (nonzero_bits (XEXP (x, 1), mode)
4904 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4905 result--;
4906
4907 return result;
4908
4909 case MOD:
4910 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4911 known_x, known_mode, known_ret);
4912 if (result > 1
4913 && (bitwidth > HOST_BITS_PER_WIDE_INT
4914 || (nonzero_bits (XEXP (x, 1), mode)
4915 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4916 result--;
4917
4918 return result;
4919
4920 case ASHIFTRT:
4921 /* Shifts by a constant add to the number of bits equal to the
4922 sign bit. */
4923 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4924 known_x, known_mode, known_ret);
4925 if (CONST_INT_P (XEXP (x, 1))
4926 && INTVAL (XEXP (x, 1)) > 0
4927 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4928 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4929
4930 return num0;
4931
4932 case ASHIFT:
4933 /* Left shifts destroy copies. */
4934 if (!CONST_INT_P (XEXP (x, 1))
4935 || INTVAL (XEXP (x, 1)) < 0
4936 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4937 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4938 return 1;
4939
4940 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4941 known_x, known_mode, known_ret);
4942 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4943
4944 case IF_THEN_ELSE:
4945 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4946 known_x, known_mode, known_ret);
4947 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4948 known_x, known_mode, known_ret);
4949 return MIN (num0, num1);
4950
4951 case EQ: case NE: case GE: case GT: case LE: case LT:
4952 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4953 case GEU: case GTU: case LEU: case LTU:
4954 case UNORDERED: case ORDERED:
4955 /* If the constant is negative, take its 1's complement and remask.
4956 Then see how many zero bits we have. */
4957 nonzero = STORE_FLAG_VALUE;
4958 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4959 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4960 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4961
4962 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4963
4964 default:
4965 break;
4966 }
4967
4968 /* If we haven't been able to figure it out by one of the above rules,
4969 see if some of the high-order bits are known to be zero. If so,
4970 count those bits and return one less than that amount. If we can't
4971 safely compute the mask for this mode, always return BITWIDTH. */
4972
4973 bitwidth = GET_MODE_PRECISION (mode);
4974 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4975 return 1;
4976
4977 nonzero = nonzero_bits (x, mode);
4978 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4979 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4980 }
4981
4982 /* Calculate the rtx_cost of a single instruction. A return value of
4983 zero indicates an instruction pattern without a known cost. */
4984
4985 int
4986 insn_rtx_cost (rtx pat, bool speed)
4987 {
4988 int i, cost;
4989 rtx set;
4990
4991 /* Extract the single set rtx from the instruction pattern.
4992 We can't use single_set since we only have the pattern. */
4993 if (GET_CODE (pat) == SET)
4994 set = pat;
4995 else if (GET_CODE (pat) == PARALLEL)
4996 {
4997 set = NULL_RTX;
4998 for (i = 0; i < XVECLEN (pat, 0); i++)
4999 {
5000 rtx x = XVECEXP (pat, 0, i);
5001 if (GET_CODE (x) == SET)
5002 {
5003 if (set)
5004 return 0;
5005 set = x;
5006 }
5007 }
5008 if (!set)
5009 return 0;
5010 }
5011 else
5012 return 0;
5013
5014 cost = set_src_cost (SET_SRC (set), speed);
5015 return cost > 0 ? cost : COSTS_N_INSNS (1);
5016 }
5017
5018 /* Given an insn INSN and condition COND, return the condition in a
5019 canonical form to simplify testing by callers. Specifically:
5020
5021 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5022 (2) Both operands will be machine operands; (cc0) will have been replaced.
5023 (3) If an operand is a constant, it will be the second operand.
5024 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5025 for GE, GEU, and LEU.
5026
5027 If the condition cannot be understood, or is an inequality floating-point
5028 comparison which needs to be reversed, 0 will be returned.
5029
5030 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5031
5032 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5033 insn used in locating the condition was found. If a replacement test
5034 of the condition is desired, it should be placed in front of that
5035 insn and we will be sure that the inputs are still valid.
5036
5037 If WANT_REG is nonzero, we wish the condition to be relative to that
5038 register, if possible. Therefore, do not canonicalize the condition
5039 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5040 to be a compare to a CC mode register.
5041
5042 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5043 and at INSN. */
5044
5045 rtx
5046 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5047 rtx_insn **earliest,
5048 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5049 {
5050 enum rtx_code code;
5051 rtx_insn *prev = insn;
5052 const_rtx set;
5053 rtx tem;
5054 rtx op0, op1;
5055 int reverse_code = 0;
5056 enum machine_mode mode;
5057 basic_block bb = BLOCK_FOR_INSN (insn);
5058
5059 code = GET_CODE (cond);
5060 mode = GET_MODE (cond);
5061 op0 = XEXP (cond, 0);
5062 op1 = XEXP (cond, 1);
5063
5064 if (reverse)
5065 code = reversed_comparison_code (cond, insn);
5066 if (code == UNKNOWN)
5067 return 0;
5068
5069 if (earliest)
5070 *earliest = insn;
5071
5072 /* If we are comparing a register with zero, see if the register is set
5073 in the previous insn to a COMPARE or a comparison operation. Perform
5074 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5075 in cse.c */
5076
5077 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5078 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5079 && op1 == CONST0_RTX (GET_MODE (op0))
5080 && op0 != want_reg)
5081 {
5082 /* Set nonzero when we find something of interest. */
5083 rtx x = 0;
5084
5085 #ifdef HAVE_cc0
5086 /* If comparison with cc0, import actual comparison from compare
5087 insn. */
5088 if (op0 == cc0_rtx)
5089 {
5090 if ((prev = prev_nonnote_insn (prev)) == 0
5091 || !NONJUMP_INSN_P (prev)
5092 || (set = single_set (prev)) == 0
5093 || SET_DEST (set) != cc0_rtx)
5094 return 0;
5095
5096 op0 = SET_SRC (set);
5097 op1 = CONST0_RTX (GET_MODE (op0));
5098 if (earliest)
5099 *earliest = prev;
5100 }
5101 #endif
5102
5103 /* If this is a COMPARE, pick up the two things being compared. */
5104 if (GET_CODE (op0) == COMPARE)
5105 {
5106 op1 = XEXP (op0, 1);
5107 op0 = XEXP (op0, 0);
5108 continue;
5109 }
5110 else if (!REG_P (op0))
5111 break;
5112
5113 /* Go back to the previous insn. Stop if it is not an INSN. We also
5114 stop if it isn't a single set or if it has a REG_INC note because
5115 we don't want to bother dealing with it. */
5116
5117 prev = prev_nonnote_nondebug_insn (prev);
5118
5119 if (prev == 0
5120 || !NONJUMP_INSN_P (prev)
5121 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5122 /* In cfglayout mode, there do not have to be labels at the
5123 beginning of a block, or jumps at the end, so the previous
5124 conditions would not stop us when we reach bb boundary. */
5125 || BLOCK_FOR_INSN (prev) != bb)
5126 break;
5127
5128 set = set_of (op0, prev);
5129
5130 if (set
5131 && (GET_CODE (set) != SET
5132 || !rtx_equal_p (SET_DEST (set), op0)))
5133 break;
5134
5135 /* If this is setting OP0, get what it sets it to if it looks
5136 relevant. */
5137 if (set)
5138 {
5139 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
5140 #ifdef FLOAT_STORE_FLAG_VALUE
5141 REAL_VALUE_TYPE fsfv;
5142 #endif
5143
5144 /* ??? We may not combine comparisons done in a CCmode with
5145 comparisons not done in a CCmode. This is to aid targets
5146 like Alpha that have an IEEE compliant EQ instruction, and
5147 a non-IEEE compliant BEQ instruction. The use of CCmode is
5148 actually artificial, simply to prevent the combination, but
5149 should not affect other platforms.
5150
5151 However, we must allow VOIDmode comparisons to match either
5152 CCmode or non-CCmode comparison, because some ports have
5153 modeless comparisons inside branch patterns.
5154
5155 ??? This mode check should perhaps look more like the mode check
5156 in simplify_comparison in combine. */
5157 if (((GET_MODE_CLASS (mode) == MODE_CC)
5158 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5159 && mode != VOIDmode
5160 && inner_mode != VOIDmode)
5161 break;
5162 if (GET_CODE (SET_SRC (set)) == COMPARE
5163 || (((code == NE
5164 || (code == LT
5165 && val_signbit_known_set_p (inner_mode,
5166 STORE_FLAG_VALUE))
5167 #ifdef FLOAT_STORE_FLAG_VALUE
5168 || (code == LT
5169 && SCALAR_FLOAT_MODE_P (inner_mode)
5170 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5171 REAL_VALUE_NEGATIVE (fsfv)))
5172 #endif
5173 ))
5174 && COMPARISON_P (SET_SRC (set))))
5175 x = SET_SRC (set);
5176 else if (((code == EQ
5177 || (code == GE
5178 && val_signbit_known_set_p (inner_mode,
5179 STORE_FLAG_VALUE))
5180 #ifdef FLOAT_STORE_FLAG_VALUE
5181 || (code == GE
5182 && SCALAR_FLOAT_MODE_P (inner_mode)
5183 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5184 REAL_VALUE_NEGATIVE (fsfv)))
5185 #endif
5186 ))
5187 && COMPARISON_P (SET_SRC (set)))
5188 {
5189 reverse_code = 1;
5190 x = SET_SRC (set);
5191 }
5192 else if ((code == EQ || code == NE)
5193 && GET_CODE (SET_SRC (set)) == XOR)
5194 /* Handle sequences like:
5195
5196 (set op0 (xor X Y))
5197 ...(eq|ne op0 (const_int 0))...
5198
5199 in which case:
5200
5201 (eq op0 (const_int 0)) reduces to (eq X Y)
5202 (ne op0 (const_int 0)) reduces to (ne X Y)
5203
5204 This is the form used by MIPS16, for example. */
5205 x = SET_SRC (set);
5206 else
5207 break;
5208 }
5209
5210 else if (reg_set_p (op0, prev))
5211 /* If this sets OP0, but not directly, we have to give up. */
5212 break;
5213
5214 if (x)
5215 {
5216 /* If the caller is expecting the condition to be valid at INSN,
5217 make sure X doesn't change before INSN. */
5218 if (valid_at_insn_p)
5219 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5220 break;
5221 if (COMPARISON_P (x))
5222 code = GET_CODE (x);
5223 if (reverse_code)
5224 {
5225 code = reversed_comparison_code (x, prev);
5226 if (code == UNKNOWN)
5227 return 0;
5228 reverse_code = 0;
5229 }
5230
5231 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5232 if (earliest)
5233 *earliest = prev;
5234 }
5235 }
5236
5237 /* If constant is first, put it last. */
5238 if (CONSTANT_P (op0))
5239 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5240
5241 /* If OP0 is the result of a comparison, we weren't able to find what
5242 was really being compared, so fail. */
5243 if (!allow_cc_mode
5244 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5245 return 0;
5246
5247 /* Canonicalize any ordered comparison with integers involving equality
5248 if we can do computations in the relevant mode and we do not
5249 overflow. */
5250
5251 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5252 && CONST_INT_P (op1)
5253 && GET_MODE (op0) != VOIDmode
5254 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5255 {
5256 HOST_WIDE_INT const_val = INTVAL (op1);
5257 unsigned HOST_WIDE_INT uconst_val = const_val;
5258 unsigned HOST_WIDE_INT max_val
5259 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5260
5261 switch (code)
5262 {
5263 case LE:
5264 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5265 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5266 break;
5267
5268 /* When cross-compiling, const_val might be sign-extended from
5269 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5270 case GE:
5271 if ((const_val & max_val)
5272 != ((unsigned HOST_WIDE_INT) 1
5273 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5274 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5275 break;
5276
5277 case LEU:
5278 if (uconst_val < max_val)
5279 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5280 break;
5281
5282 case GEU:
5283 if (uconst_val != 0)
5284 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5285 break;
5286
5287 default:
5288 break;
5289 }
5290 }
5291
5292 /* Never return CC0; return zero instead. */
5293 if (CC0_P (op0))
5294 return 0;
5295
5296 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5297 }
5298
5299 /* Given a jump insn JUMP, return the condition that will cause it to branch
5300 to its JUMP_LABEL. If the condition cannot be understood, or is an
5301 inequality floating-point comparison which needs to be reversed, 0 will
5302 be returned.
5303
5304 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5305 insn used in locating the condition was found. If a replacement test
5306 of the condition is desired, it should be placed in front of that
5307 insn and we will be sure that the inputs are still valid. If EARLIEST
5308 is null, the returned condition will be valid at INSN.
5309
5310 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5311 compare CC mode register.
5312
5313 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5314
5315 rtx
5316 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5317 int valid_at_insn_p)
5318 {
5319 rtx cond;
5320 int reverse;
5321 rtx set;
5322
5323 /* If this is not a standard conditional jump, we can't parse it. */
5324 if (!JUMP_P (jump)
5325 || ! any_condjump_p (jump))
5326 return 0;
5327 set = pc_set (jump);
5328
5329 cond = XEXP (SET_SRC (set), 0);
5330
5331 /* If this branches to JUMP_LABEL when the condition is false, reverse
5332 the condition. */
5333 reverse
5334 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5335 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5336
5337 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5338 allow_cc_mode, valid_at_insn_p);
5339 }
5340
5341 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5342 TARGET_MODE_REP_EXTENDED.
5343
5344 Note that we assume that the property of
5345 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5346 narrower than mode B. I.e., if A is a mode narrower than B then in
5347 order to be able to operate on it in mode B, mode A needs to
5348 satisfy the requirements set by the representation of mode B. */
5349
5350 static void
5351 init_num_sign_bit_copies_in_rep (void)
5352 {
5353 enum machine_mode mode, in_mode;
5354
5355 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5356 in_mode = GET_MODE_WIDER_MODE (mode))
5357 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5358 mode = GET_MODE_WIDER_MODE (mode))
5359 {
5360 enum machine_mode i;
5361
5362 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5363 extends to the next widest mode. */
5364 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5365 || GET_MODE_WIDER_MODE (mode) == in_mode);
5366
5367 /* We are in in_mode. Count how many bits outside of mode
5368 have to be copies of the sign-bit. */
5369 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5370 {
5371 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5372
5373 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5374 /* We can only check sign-bit copies starting from the
5375 top-bit. In order to be able to check the bits we
5376 have already seen we pretend that subsequent bits
5377 have to be sign-bit copies too. */
5378 || num_sign_bit_copies_in_rep [in_mode][mode])
5379 num_sign_bit_copies_in_rep [in_mode][mode]
5380 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5381 }
5382 }
5383 }
5384
5385 /* Suppose that truncation from the machine mode of X to MODE is not a
5386 no-op. See if there is anything special about X so that we can
5387 assume it already contains a truncated value of MODE. */
5388
5389 bool
5390 truncated_to_mode (enum machine_mode mode, const_rtx x)
5391 {
5392 /* This register has already been used in MODE without explicit
5393 truncation. */
5394 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5395 return true;
5396
5397 /* See if we already satisfy the requirements of MODE. If yes we
5398 can just switch to MODE. */
5399 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5400 && (num_sign_bit_copies (x, GET_MODE (x))
5401 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5402 return true;
5403
5404 return false;
5405 }
5406 \f
5407 /* Return true if RTX code CODE has a single sequence of zero or more
5408 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5409 entry in that case. */
5410
5411 static bool
5412 setup_reg_subrtx_bounds (unsigned int code)
5413 {
5414 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5415 unsigned int i = 0;
5416 for (; format[i] != 'e'; ++i)
5417 {
5418 if (!format[i])
5419 /* No subrtxes. Leave start and count as 0. */
5420 return true;
5421 if (format[i] == 'E' || format[i] == 'V')
5422 return false;
5423 }
5424
5425 /* Record the sequence of 'e's. */
5426 rtx_all_subrtx_bounds[code].start = i;
5427 do
5428 ++i;
5429 while (format[i] == 'e');
5430 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5431 /* rtl-iter.h relies on this. */
5432 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5433
5434 for (; format[i]; ++i)
5435 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5436 return false;
5437
5438 return true;
5439 }
5440
5441 /* Initialize non_rtx_starting_operands, which is used to speed up
5442 for_each_rtx, and rtx_all_subrtx_bounds. */
5443 void
5444 init_rtlanal (void)
5445 {
5446 int i;
5447 for (i = 0; i < NUM_RTX_CODE; i++)
5448 {
5449 const char *format = GET_RTX_FORMAT (i);
5450 const char *first = strpbrk (format, "eEV");
5451 non_rtx_starting_operands[i] = first ? first - format : -1;
5452 if (!setup_reg_subrtx_bounds (i))
5453 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5454 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5455 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5456 }
5457
5458 init_num_sign_bit_copies_in_rep ();
5459 }
5460 \f
5461 /* Check whether this is a constant pool constant. */
5462 bool
5463 constant_pool_constant_p (rtx x)
5464 {
5465 x = avoid_constant_pool_reference (x);
5466 return CONST_DOUBLE_P (x);
5467 }
5468 \f
5469 /* If M is a bitmask that selects a field of low-order bits within an item but
5470 not the entire word, return the length of the field. Return -1 otherwise.
5471 M is used in machine mode MODE. */
5472
5473 int
5474 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5475 {
5476 if (mode != VOIDmode)
5477 {
5478 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5479 return -1;
5480 m &= GET_MODE_MASK (mode);
5481 }
5482
5483 return exact_log2 (m + 1);
5484 }
5485
5486 /* Return the mode of MEM's address. */
5487
5488 enum machine_mode
5489 get_address_mode (rtx mem)
5490 {
5491 enum machine_mode mode;
5492
5493 gcc_assert (MEM_P (mem));
5494 mode = GET_MODE (XEXP (mem, 0));
5495 if (mode != VOIDmode)
5496 return mode;
5497 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5498 }
5499 \f
5500 /* Split up a CONST_DOUBLE or integer constant rtx
5501 into two rtx's for single words,
5502 storing in *FIRST the word that comes first in memory in the target
5503 and in *SECOND the other.
5504
5505 TODO: This function needs to be rewritten to work on any size
5506 integer. */
5507
5508 void
5509 split_double (rtx value, rtx *first, rtx *second)
5510 {
5511 if (CONST_INT_P (value))
5512 {
5513 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5514 {
5515 /* In this case the CONST_INT holds both target words.
5516 Extract the bits from it into two word-sized pieces.
5517 Sign extend each half to HOST_WIDE_INT. */
5518 unsigned HOST_WIDE_INT low, high;
5519 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5520 unsigned bits_per_word = BITS_PER_WORD;
5521
5522 /* Set sign_bit to the most significant bit of a word. */
5523 sign_bit = 1;
5524 sign_bit <<= bits_per_word - 1;
5525
5526 /* Set mask so that all bits of the word are set. We could
5527 have used 1 << BITS_PER_WORD instead of basing the
5528 calculation on sign_bit. However, on machines where
5529 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5530 compiler warning, even though the code would never be
5531 executed. */
5532 mask = sign_bit << 1;
5533 mask--;
5534
5535 /* Set sign_extend as any remaining bits. */
5536 sign_extend = ~mask;
5537
5538 /* Pick the lower word and sign-extend it. */
5539 low = INTVAL (value);
5540 low &= mask;
5541 if (low & sign_bit)
5542 low |= sign_extend;
5543
5544 /* Pick the higher word, shifted to the least significant
5545 bits, and sign-extend it. */
5546 high = INTVAL (value);
5547 high >>= bits_per_word - 1;
5548 high >>= 1;
5549 high &= mask;
5550 if (high & sign_bit)
5551 high |= sign_extend;
5552
5553 /* Store the words in the target machine order. */
5554 if (WORDS_BIG_ENDIAN)
5555 {
5556 *first = GEN_INT (high);
5557 *second = GEN_INT (low);
5558 }
5559 else
5560 {
5561 *first = GEN_INT (low);
5562 *second = GEN_INT (high);
5563 }
5564 }
5565 else
5566 {
5567 /* The rule for using CONST_INT for a wider mode
5568 is that we regard the value as signed.
5569 So sign-extend it. */
5570 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5571 if (WORDS_BIG_ENDIAN)
5572 {
5573 *first = high;
5574 *second = value;
5575 }
5576 else
5577 {
5578 *first = value;
5579 *second = high;
5580 }
5581 }
5582 }
5583 else if (GET_CODE (value) == CONST_WIDE_INT)
5584 {
5585 /* All of this is scary code and needs to be converted to
5586 properly work with any size integer. */
5587 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5588 if (WORDS_BIG_ENDIAN)
5589 {
5590 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5591 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5592 }
5593 else
5594 {
5595 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5596 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5597 }
5598 }
5599 else if (!CONST_DOUBLE_P (value))
5600 {
5601 if (WORDS_BIG_ENDIAN)
5602 {
5603 *first = const0_rtx;
5604 *second = value;
5605 }
5606 else
5607 {
5608 *first = value;
5609 *second = const0_rtx;
5610 }
5611 }
5612 else if (GET_MODE (value) == VOIDmode
5613 /* This is the old way we did CONST_DOUBLE integers. */
5614 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5615 {
5616 /* In an integer, the words are defined as most and least significant.
5617 So order them by the target's convention. */
5618 if (WORDS_BIG_ENDIAN)
5619 {
5620 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5621 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5622 }
5623 else
5624 {
5625 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5626 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5627 }
5628 }
5629 else
5630 {
5631 REAL_VALUE_TYPE r;
5632 long l[2];
5633 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5634
5635 /* Note, this converts the REAL_VALUE_TYPE to the target's
5636 format, splits up the floating point double and outputs
5637 exactly 32 bits of it into each of l[0] and l[1] --
5638 not necessarily BITS_PER_WORD bits. */
5639 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5640
5641 /* If 32 bits is an entire word for the target, but not for the host,
5642 then sign-extend on the host so that the number will look the same
5643 way on the host that it would on the target. See for instance
5644 simplify_unary_operation. The #if is needed to avoid compiler
5645 warnings. */
5646
5647 #if HOST_BITS_PER_LONG > 32
5648 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5649 {
5650 if (l[0] & ((long) 1 << 31))
5651 l[0] |= ((long) (-1) << 32);
5652 if (l[1] & ((long) 1 << 31))
5653 l[1] |= ((long) (-1) << 32);
5654 }
5655 #endif
5656
5657 *first = GEN_INT (l[0]);
5658 *second = GEN_INT (l[1]);
5659 }
5660 }
5661
5662 /* Return true if X is a sign_extract or zero_extract from the least
5663 significant bit. */
5664
5665 static bool
5666 lsb_bitfield_op_p (rtx x)
5667 {
5668 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5669 {
5670 enum machine_mode mode = GET_MODE (XEXP (x, 0));
5671 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5672 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5673
5674 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5675 }
5676 return false;
5677 }
5678
5679 /* Strip outer address "mutations" from LOC and return a pointer to the
5680 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5681 stripped expression there.
5682
5683 "Mutations" either convert between modes or apply some kind of
5684 extension, truncation or alignment. */
5685
5686 rtx *
5687 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5688 {
5689 for (;;)
5690 {
5691 enum rtx_code code = GET_CODE (*loc);
5692 if (GET_RTX_CLASS (code) == RTX_UNARY)
5693 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5694 used to convert between pointer sizes. */
5695 loc = &XEXP (*loc, 0);
5696 else if (lsb_bitfield_op_p (*loc))
5697 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5698 acts as a combined truncation and extension. */
5699 loc = &XEXP (*loc, 0);
5700 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5701 /* (and ... (const_int -X)) is used to align to X bytes. */
5702 loc = &XEXP (*loc, 0);
5703 else if (code == SUBREG
5704 && !OBJECT_P (SUBREG_REG (*loc))
5705 && subreg_lowpart_p (*loc))
5706 /* (subreg (operator ...) ...) inside and is used for mode
5707 conversion too. */
5708 loc = &SUBREG_REG (*loc);
5709 else
5710 return loc;
5711 if (outer_code)
5712 *outer_code = code;
5713 }
5714 }
5715
5716 /* Return true if CODE applies some kind of scale. The scaled value is
5717 is the first operand and the scale is the second. */
5718
5719 static bool
5720 binary_scale_code_p (enum rtx_code code)
5721 {
5722 return (code == MULT
5723 || code == ASHIFT
5724 /* Needed by ARM targets. */
5725 || code == ASHIFTRT
5726 || code == LSHIFTRT
5727 || code == ROTATE
5728 || code == ROTATERT);
5729 }
5730
5731 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5732 (see address_info). Return null otherwise. */
5733
5734 static rtx *
5735 get_base_term (rtx *inner)
5736 {
5737 if (GET_CODE (*inner) == LO_SUM)
5738 inner = strip_address_mutations (&XEXP (*inner, 0));
5739 if (REG_P (*inner)
5740 || MEM_P (*inner)
5741 || GET_CODE (*inner) == SUBREG)
5742 return inner;
5743 return 0;
5744 }
5745
5746 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5747 (see address_info). Return null otherwise. */
5748
5749 static rtx *
5750 get_index_term (rtx *inner)
5751 {
5752 /* At present, only constant scales are allowed. */
5753 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5754 inner = strip_address_mutations (&XEXP (*inner, 0));
5755 if (REG_P (*inner)
5756 || MEM_P (*inner)
5757 || GET_CODE (*inner) == SUBREG)
5758 return inner;
5759 return 0;
5760 }
5761
5762 /* Set the segment part of address INFO to LOC, given that INNER is the
5763 unmutated value. */
5764
5765 static void
5766 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5767 {
5768 gcc_assert (!info->segment);
5769 info->segment = loc;
5770 info->segment_term = inner;
5771 }
5772
5773 /* Set the base part of address INFO to LOC, given that INNER is the
5774 unmutated value. */
5775
5776 static void
5777 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5778 {
5779 gcc_assert (!info->base);
5780 info->base = loc;
5781 info->base_term = inner;
5782 }
5783
5784 /* Set the index part of address INFO to LOC, given that INNER is the
5785 unmutated value. */
5786
5787 static void
5788 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5789 {
5790 gcc_assert (!info->index);
5791 info->index = loc;
5792 info->index_term = inner;
5793 }
5794
5795 /* Set the displacement part of address INFO to LOC, given that INNER
5796 is the constant term. */
5797
5798 static void
5799 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5800 {
5801 gcc_assert (!info->disp);
5802 info->disp = loc;
5803 info->disp_term = inner;
5804 }
5805
5806 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5807 rest of INFO accordingly. */
5808
5809 static void
5810 decompose_incdec_address (struct address_info *info)
5811 {
5812 info->autoinc_p = true;
5813
5814 rtx *base = &XEXP (*info->inner, 0);
5815 set_address_base (info, base, base);
5816 gcc_checking_assert (info->base == info->base_term);
5817
5818 /* These addresses are only valid when the size of the addressed
5819 value is known. */
5820 gcc_checking_assert (info->mode != VOIDmode);
5821 }
5822
5823 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5824 of INFO accordingly. */
5825
5826 static void
5827 decompose_automod_address (struct address_info *info)
5828 {
5829 info->autoinc_p = true;
5830
5831 rtx *base = &XEXP (*info->inner, 0);
5832 set_address_base (info, base, base);
5833 gcc_checking_assert (info->base == info->base_term);
5834
5835 rtx plus = XEXP (*info->inner, 1);
5836 gcc_assert (GET_CODE (plus) == PLUS);
5837
5838 info->base_term2 = &XEXP (plus, 0);
5839 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5840
5841 rtx *step = &XEXP (plus, 1);
5842 rtx *inner_step = strip_address_mutations (step);
5843 if (CONSTANT_P (*inner_step))
5844 set_address_disp (info, step, inner_step);
5845 else
5846 set_address_index (info, step, inner_step);
5847 }
5848
5849 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5850 values in [PTR, END). Return a pointer to the end of the used array. */
5851
5852 static rtx **
5853 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5854 {
5855 rtx x = *loc;
5856 if (GET_CODE (x) == PLUS)
5857 {
5858 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5859 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5860 }
5861 else
5862 {
5863 gcc_assert (ptr != end);
5864 *ptr++ = loc;
5865 }
5866 return ptr;
5867 }
5868
5869 /* Evaluate the likelihood of X being a base or index value, returning
5870 positive if it is likely to be a base, negative if it is likely to be
5871 an index, and 0 if we can't tell. Make the magnitude of the return
5872 value reflect the amount of confidence we have in the answer.
5873
5874 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5875
5876 static int
5877 baseness (rtx x, enum machine_mode mode, addr_space_t as,
5878 enum rtx_code outer_code, enum rtx_code index_code)
5879 {
5880 /* Believe *_POINTER unless the address shape requires otherwise. */
5881 if (REG_P (x) && REG_POINTER (x))
5882 return 2;
5883 if (MEM_P (x) && MEM_POINTER (x))
5884 return 2;
5885
5886 if (REG_P (x) && HARD_REGISTER_P (x))
5887 {
5888 /* X is a hard register. If it only fits one of the base
5889 or index classes, choose that interpretation. */
5890 int regno = REGNO (x);
5891 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5892 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5893 if (base_p != index_p)
5894 return base_p ? 1 : -1;
5895 }
5896 return 0;
5897 }
5898
5899 /* INFO->INNER describes a normal, non-automodified address.
5900 Fill in the rest of INFO accordingly. */
5901
5902 static void
5903 decompose_normal_address (struct address_info *info)
5904 {
5905 /* Treat the address as the sum of up to four values. */
5906 rtx *ops[4];
5907 size_t n_ops = extract_plus_operands (info->inner, ops,
5908 ops + ARRAY_SIZE (ops)) - ops;
5909
5910 /* If there is more than one component, any base component is in a PLUS. */
5911 if (n_ops > 1)
5912 info->base_outer_code = PLUS;
5913
5914 /* Try to classify each sum operand now. Leave those that could be
5915 either a base or an index in OPS. */
5916 rtx *inner_ops[4];
5917 size_t out = 0;
5918 for (size_t in = 0; in < n_ops; ++in)
5919 {
5920 rtx *loc = ops[in];
5921 rtx *inner = strip_address_mutations (loc);
5922 if (CONSTANT_P (*inner))
5923 set_address_disp (info, loc, inner);
5924 else if (GET_CODE (*inner) == UNSPEC)
5925 set_address_segment (info, loc, inner);
5926 else
5927 {
5928 /* The only other possibilities are a base or an index. */
5929 rtx *base_term = get_base_term (inner);
5930 rtx *index_term = get_index_term (inner);
5931 gcc_assert (base_term || index_term);
5932 if (!base_term)
5933 set_address_index (info, loc, index_term);
5934 else if (!index_term)
5935 set_address_base (info, loc, base_term);
5936 else
5937 {
5938 gcc_assert (base_term == index_term);
5939 ops[out] = loc;
5940 inner_ops[out] = base_term;
5941 ++out;
5942 }
5943 }
5944 }
5945
5946 /* Classify the remaining OPS members as bases and indexes. */
5947 if (out == 1)
5948 {
5949 /* If we haven't seen a base or an index yet, assume that this is
5950 the base. If we were confident that another term was the base
5951 or index, treat the remaining operand as the other kind. */
5952 if (!info->base)
5953 set_address_base (info, ops[0], inner_ops[0]);
5954 else
5955 set_address_index (info, ops[0], inner_ops[0]);
5956 }
5957 else if (out == 2)
5958 {
5959 /* In the event of a tie, assume the base comes first. */
5960 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5961 GET_CODE (*ops[1]))
5962 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5963 GET_CODE (*ops[0])))
5964 {
5965 set_address_base (info, ops[0], inner_ops[0]);
5966 set_address_index (info, ops[1], inner_ops[1]);
5967 }
5968 else
5969 {
5970 set_address_base (info, ops[1], inner_ops[1]);
5971 set_address_index (info, ops[0], inner_ops[0]);
5972 }
5973 }
5974 else
5975 gcc_assert (out == 0);
5976 }
5977
5978 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5979 or VOIDmode if not known. AS is the address space associated with LOC.
5980 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5981
5982 void
5983 decompose_address (struct address_info *info, rtx *loc, enum machine_mode mode,
5984 addr_space_t as, enum rtx_code outer_code)
5985 {
5986 memset (info, 0, sizeof (*info));
5987 info->mode = mode;
5988 info->as = as;
5989 info->addr_outer_code = outer_code;
5990 info->outer = loc;
5991 info->inner = strip_address_mutations (loc, &outer_code);
5992 info->base_outer_code = outer_code;
5993 switch (GET_CODE (*info->inner))
5994 {
5995 case PRE_DEC:
5996 case PRE_INC:
5997 case POST_DEC:
5998 case POST_INC:
5999 decompose_incdec_address (info);
6000 break;
6001
6002 case PRE_MODIFY:
6003 case POST_MODIFY:
6004 decompose_automod_address (info);
6005 break;
6006
6007 default:
6008 decompose_normal_address (info);
6009 break;
6010 }
6011 }
6012
6013 /* Describe address operand LOC in INFO. */
6014
6015 void
6016 decompose_lea_address (struct address_info *info, rtx *loc)
6017 {
6018 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6019 }
6020
6021 /* Describe the address of MEM X in INFO. */
6022
6023 void
6024 decompose_mem_address (struct address_info *info, rtx x)
6025 {
6026 gcc_assert (MEM_P (x));
6027 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6028 MEM_ADDR_SPACE (x), MEM);
6029 }
6030
6031 /* Update INFO after a change to the address it describes. */
6032
6033 void
6034 update_address (struct address_info *info)
6035 {
6036 decompose_address (info, info->outer, info->mode, info->as,
6037 info->addr_outer_code);
6038 }
6039
6040 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6041 more complicated than that. */
6042
6043 HOST_WIDE_INT
6044 get_index_scale (const struct address_info *info)
6045 {
6046 rtx index = *info->index;
6047 if (GET_CODE (index) == MULT
6048 && CONST_INT_P (XEXP (index, 1))
6049 && info->index_term == &XEXP (index, 0))
6050 return INTVAL (XEXP (index, 1));
6051
6052 if (GET_CODE (index) == ASHIFT
6053 && CONST_INT_P (XEXP (index, 1))
6054 && info->index_term == &XEXP (index, 0))
6055 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6056
6057 if (info->index == info->index_term)
6058 return 1;
6059
6060 return 0;
6061 }
6062
6063 /* Return the "index code" of INFO, in the form required by
6064 ok_for_base_p_1. */
6065
6066 enum rtx_code
6067 get_index_code (const struct address_info *info)
6068 {
6069 if (info->index)
6070 return GET_CODE (*info->index);
6071
6072 if (info->disp)
6073 return GET_CODE (*info->disp);
6074
6075 return SCRATCH;
6076 }
6077
6078 /* Return 1 if *X is a thread-local symbol. */
6079
6080 static int
6081 tls_referenced_p_1 (rtx *x, void *)
6082 {
6083 return GET_CODE (*x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*x) != 0;
6084 }
6085
6086 /* Return true if X contains a thread-local symbol. */
6087
6088 bool
6089 tls_referenced_p (rtx x)
6090 {
6091 if (!targetm.have_tls)
6092 return false;
6093
6094 return for_each_rtx (&x, &tls_referenced_p_1, 0);
6095 }