]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/rtlanal.c
Add inline functions for various bitwise operations.
[thirdparty/gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
34 #include "recog.h"
35 #include "addresses.h"
36 #include "rtl-iter.h"
37
38 /* Forward declarations */
39 static void set_of_1 (rtx, const_rtx, void *);
40 static bool covers_regno_p (const_rtx, unsigned int);
41 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
42 static int computed_jump_p_1 (const_rtx);
43 static void parms_set (rtx, const_rtx, void *);
44
45 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
46 const_rtx, machine_mode,
47 unsigned HOST_WIDE_INT);
48 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
49 const_rtx, machine_mode,
50 unsigned HOST_WIDE_INT);
51 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
52 machine_mode,
53 unsigned int);
54 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
55 machine_mode, unsigned int);
56
57 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
58 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
59
60 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
61 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
62 SIGN_EXTEND then while narrowing we also have to enforce the
63 representation and sign-extend the value to mode DESTINATION_REP.
64
65 If the value is already sign-extended to DESTINATION_REP mode we
66 can just switch to DESTINATION mode on it. For each pair of
67 integral modes SOURCE and DESTINATION, when truncating from SOURCE
68 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
69 contains the number of high-order bits in SOURCE that have to be
70 copies of the sign-bit so that we can do this mode-switch to
71 DESTINATION. */
72
73 static unsigned int
74 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
75 \f
76 /* Store X into index I of ARRAY. ARRAY is known to have at least I
77 elements. Return the new base of ARRAY. */
78
79 template <typename T>
80 typename T::value_type *
81 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
82 value_type *base,
83 size_t i, value_type x)
84 {
85 if (base == array.stack)
86 {
87 if (i < LOCAL_ELEMS)
88 {
89 base[i] = x;
90 return base;
91 }
92 gcc_checking_assert (i == LOCAL_ELEMS);
93 /* A previous iteration might also have moved from the stack to the
94 heap, in which case the heap array will already be big enough. */
95 if (vec_safe_length (array.heap) <= i)
96 vec_safe_grow (array.heap, i + 1);
97 base = array.heap->address ();
98 memcpy (base, array.stack, sizeof (array.stack));
99 base[LOCAL_ELEMS] = x;
100 return base;
101 }
102 unsigned int length = array.heap->length ();
103 if (length > i)
104 {
105 gcc_checking_assert (base == array.heap->address ());
106 base[i] = x;
107 return base;
108 }
109 else
110 {
111 gcc_checking_assert (i == length);
112 vec_safe_push (array.heap, x);
113 return array.heap->address ();
114 }
115 }
116
117 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
118 number of elements added to the worklist. */
119
120 template <typename T>
121 size_t
122 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
123 value_type *base,
124 size_t end, rtx_type x)
125 {
126 enum rtx_code code = GET_CODE (x);
127 const char *format = GET_RTX_FORMAT (code);
128 size_t orig_end = end;
129 if (__builtin_expect (INSN_P (x), false))
130 {
131 /* Put the pattern at the top of the queue, since that's what
132 we're likely to want most. It also allows for the SEQUENCE
133 code below. */
134 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
135 if (format[i] == 'e')
136 {
137 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
138 if (__builtin_expect (end < LOCAL_ELEMS, true))
139 base[end++] = subx;
140 else
141 base = add_single_to_queue (array, base, end++, subx);
142 }
143 }
144 else
145 for (int i = 0; format[i]; ++i)
146 if (format[i] == 'e')
147 {
148 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
149 if (__builtin_expect (end < LOCAL_ELEMS, true))
150 base[end++] = subx;
151 else
152 base = add_single_to_queue (array, base, end++, subx);
153 }
154 else if (format[i] == 'E')
155 {
156 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
157 rtx *vec = x->u.fld[i].rt_rtvec->elem;
158 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
159 for (unsigned int j = 0; j < length; j++)
160 base[end++] = T::get_value (vec[j]);
161 else
162 for (unsigned int j = 0; j < length; j++)
163 base = add_single_to_queue (array, base, end++,
164 T::get_value (vec[j]));
165 if (code == SEQUENCE && end == length)
166 /* If the subrtxes of the sequence fill the entire array then
167 we know that no other parts of a containing insn are queued.
168 The caller is therefore iterating over the sequence as a
169 PATTERN (...), so we also want the patterns of the
170 subinstructions. */
171 for (unsigned int j = 0; j < length; j++)
172 {
173 typename T::rtx_type x = T::get_rtx (base[j]);
174 if (INSN_P (x))
175 base[j] = T::get_value (PATTERN (x));
176 }
177 }
178 return end - orig_end;
179 }
180
181 template <typename T>
182 void
183 generic_subrtx_iterator <T>::free_array (array_type &array)
184 {
185 vec_free (array.heap);
186 }
187
188 template <typename T>
189 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
190
191 template class generic_subrtx_iterator <const_rtx_accessor>;
192 template class generic_subrtx_iterator <rtx_var_accessor>;
193 template class generic_subrtx_iterator <rtx_ptr_accessor>;
194
195 /* Return 1 if the value of X is unstable
196 (would be different at a different point in the program).
197 The frame pointer, arg pointer, etc. are considered stable
198 (within one function) and so is anything marked `unchanging'. */
199
200 int
201 rtx_unstable_p (const_rtx x)
202 {
203 const RTX_CODE code = GET_CODE (x);
204 int i;
205 const char *fmt;
206
207 switch (code)
208 {
209 case MEM:
210 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
211
212 case CONST:
213 CASE_CONST_ANY:
214 case SYMBOL_REF:
215 case LABEL_REF:
216 return 0;
217
218 case REG:
219 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
220 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
221 /* The arg pointer varies if it is not a fixed register. */
222 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
223 return 0;
224 /* ??? When call-clobbered, the value is stable modulo the restore
225 that must happen after a call. This currently screws up local-alloc
226 into believing that the restore is not needed. */
227 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
228 return 0;
229 return 1;
230
231 case ASM_OPERANDS:
232 if (MEM_VOLATILE_P (x))
233 return 1;
234
235 /* Fall through. */
236
237 default:
238 break;
239 }
240
241 fmt = GET_RTX_FORMAT (code);
242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
243 if (fmt[i] == 'e')
244 {
245 if (rtx_unstable_p (XEXP (x, i)))
246 return 1;
247 }
248 else if (fmt[i] == 'E')
249 {
250 int j;
251 for (j = 0; j < XVECLEN (x, i); j++)
252 if (rtx_unstable_p (XVECEXP (x, i, j)))
253 return 1;
254 }
255
256 return 0;
257 }
258
259 /* Return 1 if X has a value that can vary even between two
260 executions of the program. 0 means X can be compared reliably
261 against certain constants or near-constants.
262 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
263 zero, we are slightly more conservative.
264 The frame pointer and the arg pointer are considered constant. */
265
266 bool
267 rtx_varies_p (const_rtx x, bool for_alias)
268 {
269 RTX_CODE code;
270 int i;
271 const char *fmt;
272
273 if (!x)
274 return 0;
275
276 code = GET_CODE (x);
277 switch (code)
278 {
279 case MEM:
280 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
281
282 case CONST:
283 CASE_CONST_ANY:
284 case SYMBOL_REF:
285 case LABEL_REF:
286 return 0;
287
288 case REG:
289 /* Note that we have to test for the actual rtx used for the frame
290 and arg pointers and not just the register number in case we have
291 eliminated the frame and/or arg pointer and are using it
292 for pseudos. */
293 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
294 /* The arg pointer varies if it is not a fixed register. */
295 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
296 return 0;
297 if (x == pic_offset_table_rtx
298 /* ??? When call-clobbered, the value is stable modulo the restore
299 that must happen after a call. This currently screws up
300 local-alloc into believing that the restore is not needed, so we
301 must return 0 only if we are called from alias analysis. */
302 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
303 return 0;
304 return 1;
305
306 case LO_SUM:
307 /* The operand 0 of a LO_SUM is considered constant
308 (in fact it is related specifically to operand 1)
309 during alias analysis. */
310 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
311 || rtx_varies_p (XEXP (x, 1), for_alias);
312
313 case ASM_OPERANDS:
314 if (MEM_VOLATILE_P (x))
315 return 1;
316
317 /* Fall through. */
318
319 default:
320 break;
321 }
322
323 fmt = GET_RTX_FORMAT (code);
324 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
325 if (fmt[i] == 'e')
326 {
327 if (rtx_varies_p (XEXP (x, i), for_alias))
328 return 1;
329 }
330 else if (fmt[i] == 'E')
331 {
332 int j;
333 for (j = 0; j < XVECLEN (x, i); j++)
334 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
335 return 1;
336 }
337
338 return 0;
339 }
340
341 /* Compute an approximation for the offset between the register
342 FROM and TO for the current function, as it was at the start
343 of the routine. */
344
345 static HOST_WIDE_INT
346 get_initial_register_offset (int from, int to)
347 {
348 static const struct elim_table_t
349 {
350 const int from;
351 const int to;
352 } table[] = ELIMINABLE_REGS;
353 HOST_WIDE_INT offset1, offset2;
354 unsigned int i, j;
355
356 if (to == from)
357 return 0;
358
359 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
360 before the reload pass. We need to give at least
361 an estimation for the resulting frame size. */
362 if (! reload_completed)
363 {
364 offset1 = crtl->outgoing_args_size + get_frame_size ();
365 #if !STACK_GROWS_DOWNWARD
366 offset1 = - offset1;
367 #endif
368 if (to == STACK_POINTER_REGNUM)
369 return offset1;
370 else if (from == STACK_POINTER_REGNUM)
371 return - offset1;
372 else
373 return 0;
374 }
375
376 for (i = 0; i < ARRAY_SIZE (table); i++)
377 if (table[i].from == from)
378 {
379 if (table[i].to == to)
380 {
381 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
382 offset1);
383 return offset1;
384 }
385 for (j = 0; j < ARRAY_SIZE (table); j++)
386 {
387 if (table[j].to == to
388 && table[j].from == table[i].to)
389 {
390 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
391 offset1);
392 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
393 offset2);
394 return offset1 + offset2;
395 }
396 if (table[j].from == to
397 && table[j].to == table[i].to)
398 {
399 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
400 offset1);
401 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
402 offset2);
403 return offset1 - offset2;
404 }
405 }
406 }
407 else if (table[i].to == from)
408 {
409 if (table[i].from == to)
410 {
411 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
412 offset1);
413 return - offset1;
414 }
415 for (j = 0; j < ARRAY_SIZE (table); j++)
416 {
417 if (table[j].to == to
418 && table[j].from == table[i].from)
419 {
420 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
421 offset1);
422 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
423 offset2);
424 return - offset1 + offset2;
425 }
426 if (table[j].from == to
427 && table[j].to == table[i].from)
428 {
429 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
430 offset1);
431 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
432 offset2);
433 return - offset1 - offset2;
434 }
435 }
436 }
437
438 /* If the requested register combination was not found,
439 try a different more simple combination. */
440 if (from == ARG_POINTER_REGNUM)
441 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
442 else if (to == ARG_POINTER_REGNUM)
443 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
444 else if (from == HARD_FRAME_POINTER_REGNUM)
445 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
446 else if (to == HARD_FRAME_POINTER_REGNUM)
447 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
448 else
449 return 0;
450 }
451
452 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
453 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
454 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
455 references on strict alignment machines. */
456
457 static int
458 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
459 machine_mode mode, bool unaligned_mems)
460 {
461 enum rtx_code code = GET_CODE (x);
462
463 /* The offset must be a multiple of the mode size if we are considering
464 unaligned memory references on strict alignment machines. */
465 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
466 {
467 HOST_WIDE_INT actual_offset = offset;
468
469 #ifdef SPARC_STACK_BOUNDARY_HACK
470 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
471 the real alignment of %sp. However, when it does this, the
472 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
473 if (SPARC_STACK_BOUNDARY_HACK
474 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
475 actual_offset -= STACK_POINTER_OFFSET;
476 #endif
477
478 if (actual_offset % GET_MODE_SIZE (mode) != 0)
479 return 1;
480 }
481
482 switch (code)
483 {
484 case SYMBOL_REF:
485 if (SYMBOL_REF_WEAK (x))
486 return 1;
487 if (!CONSTANT_POOL_ADDRESS_P (x))
488 {
489 tree decl;
490 HOST_WIDE_INT decl_size;
491
492 if (offset < 0)
493 return 1;
494 if (size == 0)
495 size = GET_MODE_SIZE (mode);
496 if (size == 0)
497 return offset != 0;
498
499 /* If the size of the access or of the symbol is unknown,
500 assume the worst. */
501 decl = SYMBOL_REF_DECL (x);
502
503 /* Else check that the access is in bounds. TODO: restructure
504 expr_size/tree_expr_size/int_expr_size and just use the latter. */
505 if (!decl)
506 decl_size = -1;
507 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
508 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
509 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
510 : -1);
511 else if (TREE_CODE (decl) == STRING_CST)
512 decl_size = TREE_STRING_LENGTH (decl);
513 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
514 decl_size = int_size_in_bytes (TREE_TYPE (decl));
515 else
516 decl_size = -1;
517
518 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
519 }
520
521 return 0;
522
523 case LABEL_REF:
524 return 0;
525
526 case REG:
527 /* Stack references are assumed not to trap, but we need to deal with
528 nonsensical offsets. */
529 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
530 || x == stack_pointer_rtx
531 /* The arg pointer varies if it is not a fixed register. */
532 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
533 {
534 #ifdef RED_ZONE_SIZE
535 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
536 #else
537 HOST_WIDE_INT red_zone_size = 0;
538 #endif
539 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
540 / BITS_PER_UNIT;
541 HOST_WIDE_INT low_bound, high_bound;
542
543 if (size == 0)
544 size = GET_MODE_SIZE (mode);
545
546 if (x == frame_pointer_rtx)
547 {
548 if (FRAME_GROWS_DOWNWARD)
549 {
550 high_bound = STARTING_FRAME_OFFSET;
551 low_bound = high_bound - get_frame_size ();
552 }
553 else
554 {
555 low_bound = STARTING_FRAME_OFFSET;
556 high_bound = low_bound + get_frame_size ();
557 }
558 }
559 else if (x == hard_frame_pointer_rtx)
560 {
561 HOST_WIDE_INT sp_offset
562 = get_initial_register_offset (STACK_POINTER_REGNUM,
563 HARD_FRAME_POINTER_REGNUM);
564 HOST_WIDE_INT ap_offset
565 = get_initial_register_offset (ARG_POINTER_REGNUM,
566 HARD_FRAME_POINTER_REGNUM);
567
568 #if STACK_GROWS_DOWNWARD
569 low_bound = sp_offset - red_zone_size - stack_boundary;
570 high_bound = ap_offset
571 + FIRST_PARM_OFFSET (current_function_decl)
572 #if !ARGS_GROW_DOWNWARD
573 + crtl->args.size
574 #endif
575 + stack_boundary;
576 #else
577 high_bound = sp_offset + red_zone_size + stack_boundary;
578 low_bound = ap_offset
579 + FIRST_PARM_OFFSET (current_function_decl)
580 #if ARGS_GROW_DOWNWARD
581 - crtl->args.size
582 #endif
583 - stack_boundary;
584 #endif
585 }
586 else if (x == stack_pointer_rtx)
587 {
588 HOST_WIDE_INT ap_offset
589 = get_initial_register_offset (ARG_POINTER_REGNUM,
590 STACK_POINTER_REGNUM);
591
592 #if STACK_GROWS_DOWNWARD
593 low_bound = - red_zone_size - stack_boundary;
594 high_bound = ap_offset
595 + FIRST_PARM_OFFSET (current_function_decl)
596 #if !ARGS_GROW_DOWNWARD
597 + crtl->args.size
598 #endif
599 + stack_boundary;
600 #else
601 high_bound = red_zone_size + stack_boundary;
602 low_bound = ap_offset
603 + FIRST_PARM_OFFSET (current_function_decl)
604 #if ARGS_GROW_DOWNWARD
605 - crtl->args.size
606 #endif
607 - stack_boundary;
608 #endif
609 }
610 else
611 {
612 /* We assume that accesses are safe to at least the
613 next stack boundary.
614 Examples are varargs and __builtin_return_address. */
615 #if ARGS_GROW_DOWNWARD
616 high_bound = FIRST_PARM_OFFSET (current_function_decl)
617 + stack_boundary;
618 low_bound = FIRST_PARM_OFFSET (current_function_decl)
619 - crtl->args.size - stack_boundary;
620 #else
621 low_bound = FIRST_PARM_OFFSET (current_function_decl)
622 - stack_boundary;
623 high_bound = FIRST_PARM_OFFSET (current_function_decl)
624 + crtl->args.size + stack_boundary;
625 #endif
626 }
627
628 if (offset >= low_bound && offset <= high_bound - size)
629 return 0;
630 return 1;
631 }
632 /* All of the virtual frame registers are stack references. */
633 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
634 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
635 return 0;
636 return 1;
637
638 case CONST:
639 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
640 mode, unaligned_mems);
641
642 case PLUS:
643 /* An address is assumed not to trap if:
644 - it is the pic register plus a constant. */
645 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
646 return 0;
647
648 /* - or it is an address that can't trap plus a constant integer. */
649 if (CONST_INT_P (XEXP (x, 1))
650 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
651 size, mode, unaligned_mems))
652 return 0;
653
654 return 1;
655
656 case LO_SUM:
657 case PRE_MODIFY:
658 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
659 mode, unaligned_mems);
660
661 case PRE_DEC:
662 case PRE_INC:
663 case POST_DEC:
664 case POST_INC:
665 case POST_MODIFY:
666 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
667 mode, unaligned_mems);
668
669 default:
670 break;
671 }
672
673 /* If it isn't one of the case above, it can cause a trap. */
674 return 1;
675 }
676
677 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
678
679 int
680 rtx_addr_can_trap_p (const_rtx x)
681 {
682 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
683 }
684
685 /* Return true if X is an address that is known to not be zero. */
686
687 bool
688 nonzero_address_p (const_rtx x)
689 {
690 const enum rtx_code code = GET_CODE (x);
691
692 switch (code)
693 {
694 case SYMBOL_REF:
695 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
696
697 case LABEL_REF:
698 return true;
699
700 case REG:
701 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
702 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
703 || x == stack_pointer_rtx
704 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
705 return true;
706 /* All of the virtual frame registers are stack references. */
707 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
708 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
709 return true;
710 return false;
711
712 case CONST:
713 return nonzero_address_p (XEXP (x, 0));
714
715 case PLUS:
716 /* Handle PIC references. */
717 if (XEXP (x, 0) == pic_offset_table_rtx
718 && CONSTANT_P (XEXP (x, 1)))
719 return true;
720 return false;
721
722 case PRE_MODIFY:
723 /* Similar to the above; allow positive offsets. Further, since
724 auto-inc is only allowed in memories, the register must be a
725 pointer. */
726 if (CONST_INT_P (XEXP (x, 1))
727 && INTVAL (XEXP (x, 1)) > 0)
728 return true;
729 return nonzero_address_p (XEXP (x, 0));
730
731 case PRE_INC:
732 /* Similarly. Further, the offset is always positive. */
733 return true;
734
735 case PRE_DEC:
736 case POST_DEC:
737 case POST_INC:
738 case POST_MODIFY:
739 return nonzero_address_p (XEXP (x, 0));
740
741 case LO_SUM:
742 return nonzero_address_p (XEXP (x, 1));
743
744 default:
745 break;
746 }
747
748 /* If it isn't one of the case above, might be zero. */
749 return false;
750 }
751
752 /* Return 1 if X refers to a memory location whose address
753 cannot be compared reliably with constant addresses,
754 or if X refers to a BLKmode memory object.
755 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
756 zero, we are slightly more conservative. */
757
758 bool
759 rtx_addr_varies_p (const_rtx x, bool for_alias)
760 {
761 enum rtx_code code;
762 int i;
763 const char *fmt;
764
765 if (x == 0)
766 return 0;
767
768 code = GET_CODE (x);
769 if (code == MEM)
770 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
771
772 fmt = GET_RTX_FORMAT (code);
773 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
774 if (fmt[i] == 'e')
775 {
776 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
777 return 1;
778 }
779 else if (fmt[i] == 'E')
780 {
781 int j;
782 for (j = 0; j < XVECLEN (x, i); j++)
783 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
784 return 1;
785 }
786 return 0;
787 }
788 \f
789 /* Return the CALL in X if there is one. */
790
791 rtx
792 get_call_rtx_from (rtx x)
793 {
794 if (INSN_P (x))
795 x = PATTERN (x);
796 if (GET_CODE (x) == PARALLEL)
797 x = XVECEXP (x, 0, 0);
798 if (GET_CODE (x) == SET)
799 x = SET_SRC (x);
800 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
801 return x;
802 return NULL_RTX;
803 }
804 \f
805 /* Return the value of the integer term in X, if one is apparent;
806 otherwise return 0.
807 Only obvious integer terms are detected.
808 This is used in cse.c with the `related_value' field. */
809
810 HOST_WIDE_INT
811 get_integer_term (const_rtx x)
812 {
813 if (GET_CODE (x) == CONST)
814 x = XEXP (x, 0);
815
816 if (GET_CODE (x) == MINUS
817 && CONST_INT_P (XEXP (x, 1)))
818 return - INTVAL (XEXP (x, 1));
819 if (GET_CODE (x) == PLUS
820 && CONST_INT_P (XEXP (x, 1)))
821 return INTVAL (XEXP (x, 1));
822 return 0;
823 }
824
825 /* If X is a constant, return the value sans apparent integer term;
826 otherwise return 0.
827 Only obvious integer terms are detected. */
828
829 rtx
830 get_related_value (const_rtx x)
831 {
832 if (GET_CODE (x) != CONST)
833 return 0;
834 x = XEXP (x, 0);
835 if (GET_CODE (x) == PLUS
836 && CONST_INT_P (XEXP (x, 1)))
837 return XEXP (x, 0);
838 else if (GET_CODE (x) == MINUS
839 && CONST_INT_P (XEXP (x, 1)))
840 return XEXP (x, 0);
841 return 0;
842 }
843 \f
844 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
845 to somewhere in the same object or object_block as SYMBOL. */
846
847 bool
848 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
849 {
850 tree decl;
851
852 if (GET_CODE (symbol) != SYMBOL_REF)
853 return false;
854
855 if (offset == 0)
856 return true;
857
858 if (offset > 0)
859 {
860 if (CONSTANT_POOL_ADDRESS_P (symbol)
861 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
862 return true;
863
864 decl = SYMBOL_REF_DECL (symbol);
865 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
866 return true;
867 }
868
869 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
870 && SYMBOL_REF_BLOCK (symbol)
871 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
872 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
873 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
874 return true;
875
876 return false;
877 }
878
879 /* Split X into a base and a constant offset, storing them in *BASE_OUT
880 and *OFFSET_OUT respectively. */
881
882 void
883 split_const (rtx x, rtx *base_out, rtx *offset_out)
884 {
885 if (GET_CODE (x) == CONST)
886 {
887 x = XEXP (x, 0);
888 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
889 {
890 *base_out = XEXP (x, 0);
891 *offset_out = XEXP (x, 1);
892 return;
893 }
894 }
895 *base_out = x;
896 *offset_out = const0_rtx;
897 }
898 \f
899 /* Return the number of places FIND appears within X. If COUNT_DEST is
900 zero, we do not count occurrences inside the destination of a SET. */
901
902 int
903 count_occurrences (const_rtx x, const_rtx find, int count_dest)
904 {
905 int i, j;
906 enum rtx_code code;
907 const char *format_ptr;
908 int count;
909
910 if (x == find)
911 return 1;
912
913 code = GET_CODE (x);
914
915 switch (code)
916 {
917 case REG:
918 CASE_CONST_ANY:
919 case SYMBOL_REF:
920 case CODE_LABEL:
921 case PC:
922 case CC0:
923 return 0;
924
925 case EXPR_LIST:
926 count = count_occurrences (XEXP (x, 0), find, count_dest);
927 if (XEXP (x, 1))
928 count += count_occurrences (XEXP (x, 1), find, count_dest);
929 return count;
930
931 case MEM:
932 if (MEM_P (find) && rtx_equal_p (x, find))
933 return 1;
934 break;
935
936 case SET:
937 if (SET_DEST (x) == find && ! count_dest)
938 return count_occurrences (SET_SRC (x), find, count_dest);
939 break;
940
941 default:
942 break;
943 }
944
945 format_ptr = GET_RTX_FORMAT (code);
946 count = 0;
947
948 for (i = 0; i < GET_RTX_LENGTH (code); i++)
949 {
950 switch (*format_ptr++)
951 {
952 case 'e':
953 count += count_occurrences (XEXP (x, i), find, count_dest);
954 break;
955
956 case 'E':
957 for (j = 0; j < XVECLEN (x, i); j++)
958 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
959 break;
960 }
961 }
962 return count;
963 }
964
965 \f
966 /* Return TRUE if OP is a register or subreg of a register that
967 holds an unsigned quantity. Otherwise, return FALSE. */
968
969 bool
970 unsigned_reg_p (rtx op)
971 {
972 if (REG_P (op)
973 && REG_EXPR (op)
974 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
975 return true;
976
977 if (GET_CODE (op) == SUBREG
978 && SUBREG_PROMOTED_SIGN (op))
979 return true;
980
981 return false;
982 }
983
984 \f
985 /* Nonzero if register REG appears somewhere within IN.
986 Also works if REG is not a register; in this case it checks
987 for a subexpression of IN that is Lisp "equal" to REG. */
988
989 int
990 reg_mentioned_p (const_rtx reg, const_rtx in)
991 {
992 const char *fmt;
993 int i;
994 enum rtx_code code;
995
996 if (in == 0)
997 return 0;
998
999 if (reg == in)
1000 return 1;
1001
1002 if (GET_CODE (in) == LABEL_REF)
1003 return reg == LABEL_REF_LABEL (in);
1004
1005 code = GET_CODE (in);
1006
1007 switch (code)
1008 {
1009 /* Compare registers by number. */
1010 case REG:
1011 return REG_P (reg) && REGNO (in) == REGNO (reg);
1012
1013 /* These codes have no constituent expressions
1014 and are unique. */
1015 case SCRATCH:
1016 case CC0:
1017 case PC:
1018 return 0;
1019
1020 CASE_CONST_ANY:
1021 /* These are kept unique for a given value. */
1022 return 0;
1023
1024 default:
1025 break;
1026 }
1027
1028 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1029 return 1;
1030
1031 fmt = GET_RTX_FORMAT (code);
1032
1033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1034 {
1035 if (fmt[i] == 'E')
1036 {
1037 int j;
1038 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1039 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1040 return 1;
1041 }
1042 else if (fmt[i] == 'e'
1043 && reg_mentioned_p (reg, XEXP (in, i)))
1044 return 1;
1045 }
1046 return 0;
1047 }
1048 \f
1049 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1050 no CODE_LABEL insn. */
1051
1052 int
1053 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1054 {
1055 rtx_insn *p;
1056 if (beg == end)
1057 return 0;
1058 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1059 if (LABEL_P (p))
1060 return 0;
1061 return 1;
1062 }
1063
1064 /* Nonzero if register REG is used in an insn between
1065 FROM_INSN and TO_INSN (exclusive of those two). */
1066
1067 int
1068 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1069 const rtx_insn *to_insn)
1070 {
1071 rtx_insn *insn;
1072
1073 if (from_insn == to_insn)
1074 return 0;
1075
1076 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1077 if (NONDEBUG_INSN_P (insn)
1078 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1079 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1080 return 1;
1081 return 0;
1082 }
1083 \f
1084 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1085 is entirely replaced by a new value and the only use is as a SET_DEST,
1086 we do not consider it a reference. */
1087
1088 int
1089 reg_referenced_p (const_rtx x, const_rtx body)
1090 {
1091 int i;
1092
1093 switch (GET_CODE (body))
1094 {
1095 case SET:
1096 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1097 return 1;
1098
1099 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1100 of a REG that occupies all of the REG, the insn references X if
1101 it is mentioned in the destination. */
1102 if (GET_CODE (SET_DEST (body)) != CC0
1103 && GET_CODE (SET_DEST (body)) != PC
1104 && !REG_P (SET_DEST (body))
1105 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1106 && REG_P (SUBREG_REG (SET_DEST (body)))
1107 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1108 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1109 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1110 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1111 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1112 return 1;
1113 return 0;
1114
1115 case ASM_OPERANDS:
1116 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1117 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1118 return 1;
1119 return 0;
1120
1121 case CALL:
1122 case USE:
1123 case IF_THEN_ELSE:
1124 return reg_overlap_mentioned_p (x, body);
1125
1126 case TRAP_IF:
1127 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1128
1129 case PREFETCH:
1130 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1131
1132 case UNSPEC:
1133 case UNSPEC_VOLATILE:
1134 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1135 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1136 return 1;
1137 return 0;
1138
1139 case PARALLEL:
1140 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1141 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1142 return 1;
1143 return 0;
1144
1145 case CLOBBER:
1146 if (MEM_P (XEXP (body, 0)))
1147 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1148 return 1;
1149 return 0;
1150
1151 case COND_EXEC:
1152 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1153 return 1;
1154 return reg_referenced_p (x, COND_EXEC_CODE (body));
1155
1156 default:
1157 return 0;
1158 }
1159 }
1160 \f
1161 /* Nonzero if register REG is set or clobbered in an insn between
1162 FROM_INSN and TO_INSN (exclusive of those two). */
1163
1164 int
1165 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1166 const rtx_insn *to_insn)
1167 {
1168 const rtx_insn *insn;
1169
1170 if (from_insn == to_insn)
1171 return 0;
1172
1173 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1174 if (INSN_P (insn) && reg_set_p (reg, insn))
1175 return 1;
1176 return 0;
1177 }
1178
1179 /* Return true if REG is set or clobbered inside INSN. */
1180
1181 int
1182 reg_set_p (const_rtx reg, const_rtx insn)
1183 {
1184 /* After delay slot handling, call and branch insns might be in a
1185 sequence. Check all the elements there. */
1186 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1187 {
1188 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1189 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1190 return true;
1191
1192 return false;
1193 }
1194
1195 /* We can be passed an insn or part of one. If we are passed an insn,
1196 check if a side-effect of the insn clobbers REG. */
1197 if (INSN_P (insn)
1198 && (FIND_REG_INC_NOTE (insn, reg)
1199 || (CALL_P (insn)
1200 && ((REG_P (reg)
1201 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1202 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1203 GET_MODE (reg), REGNO (reg)))
1204 || MEM_P (reg)
1205 || find_reg_fusage (insn, CLOBBER, reg)))))
1206 return true;
1207
1208 return set_of (reg, insn) != NULL_RTX;
1209 }
1210
1211 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1212 only if none of them are modified between START and END. Return 1 if
1213 X contains a MEM; this routine does use memory aliasing. */
1214
1215 int
1216 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1217 {
1218 const enum rtx_code code = GET_CODE (x);
1219 const char *fmt;
1220 int i, j;
1221 rtx_insn *insn;
1222
1223 if (start == end)
1224 return 0;
1225
1226 switch (code)
1227 {
1228 CASE_CONST_ANY:
1229 case CONST:
1230 case SYMBOL_REF:
1231 case LABEL_REF:
1232 return 0;
1233
1234 case PC:
1235 case CC0:
1236 return 1;
1237
1238 case MEM:
1239 if (modified_between_p (XEXP (x, 0), start, end))
1240 return 1;
1241 if (MEM_READONLY_P (x))
1242 return 0;
1243 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1244 if (memory_modified_in_insn_p (x, insn))
1245 return 1;
1246 return 0;
1247 break;
1248
1249 case REG:
1250 return reg_set_between_p (x, start, end);
1251
1252 default:
1253 break;
1254 }
1255
1256 fmt = GET_RTX_FORMAT (code);
1257 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1258 {
1259 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1260 return 1;
1261
1262 else if (fmt[i] == 'E')
1263 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1264 if (modified_between_p (XVECEXP (x, i, j), start, end))
1265 return 1;
1266 }
1267
1268 return 0;
1269 }
1270
1271 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1272 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1273 does use memory aliasing. */
1274
1275 int
1276 modified_in_p (const_rtx x, const_rtx insn)
1277 {
1278 const enum rtx_code code = GET_CODE (x);
1279 const char *fmt;
1280 int i, j;
1281
1282 switch (code)
1283 {
1284 CASE_CONST_ANY:
1285 case CONST:
1286 case SYMBOL_REF:
1287 case LABEL_REF:
1288 return 0;
1289
1290 case PC:
1291 case CC0:
1292 return 1;
1293
1294 case MEM:
1295 if (modified_in_p (XEXP (x, 0), insn))
1296 return 1;
1297 if (MEM_READONLY_P (x))
1298 return 0;
1299 if (memory_modified_in_insn_p (x, insn))
1300 return 1;
1301 return 0;
1302 break;
1303
1304 case REG:
1305 return reg_set_p (x, insn);
1306
1307 default:
1308 break;
1309 }
1310
1311 fmt = GET_RTX_FORMAT (code);
1312 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1313 {
1314 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1315 return 1;
1316
1317 else if (fmt[i] == 'E')
1318 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1319 if (modified_in_p (XVECEXP (x, i, j), insn))
1320 return 1;
1321 }
1322
1323 return 0;
1324 }
1325 \f
1326 /* Helper function for set_of. */
1327 struct set_of_data
1328 {
1329 const_rtx found;
1330 const_rtx pat;
1331 };
1332
1333 static void
1334 set_of_1 (rtx x, const_rtx pat, void *data1)
1335 {
1336 struct set_of_data *const data = (struct set_of_data *) (data1);
1337 if (rtx_equal_p (x, data->pat)
1338 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1339 data->found = pat;
1340 }
1341
1342 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1343 (either directly or via STRICT_LOW_PART and similar modifiers). */
1344 const_rtx
1345 set_of (const_rtx pat, const_rtx insn)
1346 {
1347 struct set_of_data data;
1348 data.found = NULL_RTX;
1349 data.pat = pat;
1350 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1351 return data.found;
1352 }
1353
1354 /* Add all hard register in X to *PSET. */
1355 void
1356 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1357 {
1358 subrtx_iterator::array_type array;
1359 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1360 {
1361 const_rtx x = *iter;
1362 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1363 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1364 }
1365 }
1366
1367 /* This function, called through note_stores, collects sets and
1368 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1369 by DATA. */
1370 void
1371 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1372 {
1373 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1374 if (REG_P (x) && HARD_REGISTER_P (x))
1375 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1376 }
1377
1378 /* Examine INSN, and compute the set of hard registers written by it.
1379 Store it in *PSET. Should only be called after reload. */
1380 void
1381 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1382 {
1383 rtx link;
1384
1385 CLEAR_HARD_REG_SET (*pset);
1386 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1387 if (CALL_P (insn))
1388 {
1389 if (implicit)
1390 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1391
1392 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1393 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1394 }
1395 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1396 if (REG_NOTE_KIND (link) == REG_INC)
1397 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1398 }
1399
1400 /* Like record_hard_reg_sets, but called through note_uses. */
1401 void
1402 record_hard_reg_uses (rtx *px, void *data)
1403 {
1404 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1405 }
1406 \f
1407 /* Given an INSN, return a SET expression if this insn has only a single SET.
1408 It may also have CLOBBERs, USEs, or SET whose output
1409 will not be used, which we ignore. */
1410
1411 rtx
1412 single_set_2 (const rtx_insn *insn, const_rtx pat)
1413 {
1414 rtx set = NULL;
1415 int set_verified = 1;
1416 int i;
1417
1418 if (GET_CODE (pat) == PARALLEL)
1419 {
1420 for (i = 0; i < XVECLEN (pat, 0); i++)
1421 {
1422 rtx sub = XVECEXP (pat, 0, i);
1423 switch (GET_CODE (sub))
1424 {
1425 case USE:
1426 case CLOBBER:
1427 break;
1428
1429 case SET:
1430 /* We can consider insns having multiple sets, where all
1431 but one are dead as single set insns. In common case
1432 only single set is present in the pattern so we want
1433 to avoid checking for REG_UNUSED notes unless necessary.
1434
1435 When we reach set first time, we just expect this is
1436 the single set we are looking for and only when more
1437 sets are found in the insn, we check them. */
1438 if (!set_verified)
1439 {
1440 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1441 && !side_effects_p (set))
1442 set = NULL;
1443 else
1444 set_verified = 1;
1445 }
1446 if (!set)
1447 set = sub, set_verified = 0;
1448 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1449 || side_effects_p (sub))
1450 return NULL_RTX;
1451 break;
1452
1453 default:
1454 return NULL_RTX;
1455 }
1456 }
1457 }
1458 return set;
1459 }
1460
1461 /* Given an INSN, return nonzero if it has more than one SET, else return
1462 zero. */
1463
1464 int
1465 multiple_sets (const_rtx insn)
1466 {
1467 int found;
1468 int i;
1469
1470 /* INSN must be an insn. */
1471 if (! INSN_P (insn))
1472 return 0;
1473
1474 /* Only a PARALLEL can have multiple SETs. */
1475 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1476 {
1477 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1478 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1479 {
1480 /* If we have already found a SET, then return now. */
1481 if (found)
1482 return 1;
1483 else
1484 found = 1;
1485 }
1486 }
1487
1488 /* Either zero or one SET. */
1489 return 0;
1490 }
1491 \f
1492 /* Return nonzero if the destination of SET equals the source
1493 and there are no side effects. */
1494
1495 int
1496 set_noop_p (const_rtx set)
1497 {
1498 rtx src = SET_SRC (set);
1499 rtx dst = SET_DEST (set);
1500
1501 if (dst == pc_rtx && src == pc_rtx)
1502 return 1;
1503
1504 if (MEM_P (dst) && MEM_P (src))
1505 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1506
1507 if (GET_CODE (dst) == ZERO_EXTRACT)
1508 return rtx_equal_p (XEXP (dst, 0), src)
1509 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1510 && !side_effects_p (src);
1511
1512 if (GET_CODE (dst) == STRICT_LOW_PART)
1513 dst = XEXP (dst, 0);
1514
1515 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1516 {
1517 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1518 return 0;
1519 src = SUBREG_REG (src);
1520 dst = SUBREG_REG (dst);
1521 }
1522
1523 /* It is a NOOP if destination overlaps with selected src vector
1524 elements. */
1525 if (GET_CODE (src) == VEC_SELECT
1526 && REG_P (XEXP (src, 0)) && REG_P (dst)
1527 && HARD_REGISTER_P (XEXP (src, 0))
1528 && HARD_REGISTER_P (dst))
1529 {
1530 int i;
1531 rtx par = XEXP (src, 1);
1532 rtx src0 = XEXP (src, 0);
1533 int c0 = INTVAL (XVECEXP (par, 0, 0));
1534 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1535
1536 for (i = 1; i < XVECLEN (par, 0); i++)
1537 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1538 return 0;
1539 return
1540 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1541 offset, GET_MODE (dst)) == (int) REGNO (dst);
1542 }
1543
1544 return (REG_P (src) && REG_P (dst)
1545 && REGNO (src) == REGNO (dst));
1546 }
1547 \f
1548 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1549 value to itself. */
1550
1551 int
1552 noop_move_p (const rtx_insn *insn)
1553 {
1554 rtx pat = PATTERN (insn);
1555
1556 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1557 return 1;
1558
1559 /* Insns carrying these notes are useful later on. */
1560 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1561 return 0;
1562
1563 /* Check the code to be executed for COND_EXEC. */
1564 if (GET_CODE (pat) == COND_EXEC)
1565 pat = COND_EXEC_CODE (pat);
1566
1567 if (GET_CODE (pat) == SET && set_noop_p (pat))
1568 return 1;
1569
1570 if (GET_CODE (pat) == PARALLEL)
1571 {
1572 int i;
1573 /* If nothing but SETs of registers to themselves,
1574 this insn can also be deleted. */
1575 for (i = 0; i < XVECLEN (pat, 0); i++)
1576 {
1577 rtx tem = XVECEXP (pat, 0, i);
1578
1579 if (GET_CODE (tem) == USE
1580 || GET_CODE (tem) == CLOBBER)
1581 continue;
1582
1583 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1584 return 0;
1585 }
1586
1587 return 1;
1588 }
1589 return 0;
1590 }
1591 \f
1592
1593 /* Return nonzero if register in range [REGNO, ENDREGNO)
1594 appears either explicitly or implicitly in X
1595 other than being stored into.
1596
1597 References contained within the substructure at LOC do not count.
1598 LOC may be zero, meaning don't ignore anything. */
1599
1600 bool
1601 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1602 rtx *loc)
1603 {
1604 int i;
1605 unsigned int x_regno;
1606 RTX_CODE code;
1607 const char *fmt;
1608
1609 repeat:
1610 /* The contents of a REG_NONNEG note is always zero, so we must come here
1611 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1612 if (x == 0)
1613 return false;
1614
1615 code = GET_CODE (x);
1616
1617 switch (code)
1618 {
1619 case REG:
1620 x_regno = REGNO (x);
1621
1622 /* If we modifying the stack, frame, or argument pointer, it will
1623 clobber a virtual register. In fact, we could be more precise,
1624 but it isn't worth it. */
1625 if ((x_regno == STACK_POINTER_REGNUM
1626 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1627 && x_regno == ARG_POINTER_REGNUM)
1628 || x_regno == FRAME_POINTER_REGNUM)
1629 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1630 return true;
1631
1632 return endregno > x_regno && regno < END_REGNO (x);
1633
1634 case SUBREG:
1635 /* If this is a SUBREG of a hard reg, we can see exactly which
1636 registers are being modified. Otherwise, handle normally. */
1637 if (REG_P (SUBREG_REG (x))
1638 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1639 {
1640 unsigned int inner_regno = subreg_regno (x);
1641 unsigned int inner_endregno
1642 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1643 ? subreg_nregs (x) : 1);
1644
1645 return endregno > inner_regno && regno < inner_endregno;
1646 }
1647 break;
1648
1649 case CLOBBER:
1650 case SET:
1651 if (&SET_DEST (x) != loc
1652 /* Note setting a SUBREG counts as referring to the REG it is in for
1653 a pseudo but not for hard registers since we can
1654 treat each word individually. */
1655 && ((GET_CODE (SET_DEST (x)) == SUBREG
1656 && loc != &SUBREG_REG (SET_DEST (x))
1657 && REG_P (SUBREG_REG (SET_DEST (x)))
1658 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1659 && refers_to_regno_p (regno, endregno,
1660 SUBREG_REG (SET_DEST (x)), loc))
1661 || (!REG_P (SET_DEST (x))
1662 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1663 return true;
1664
1665 if (code == CLOBBER || loc == &SET_SRC (x))
1666 return false;
1667 x = SET_SRC (x);
1668 goto repeat;
1669
1670 default:
1671 break;
1672 }
1673
1674 /* X does not match, so try its subexpressions. */
1675
1676 fmt = GET_RTX_FORMAT (code);
1677 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1678 {
1679 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1680 {
1681 if (i == 0)
1682 {
1683 x = XEXP (x, 0);
1684 goto repeat;
1685 }
1686 else
1687 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1688 return true;
1689 }
1690 else if (fmt[i] == 'E')
1691 {
1692 int j;
1693 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1694 if (loc != &XVECEXP (x, i, j)
1695 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1696 return true;
1697 }
1698 }
1699 return false;
1700 }
1701
1702 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1703 we check if any register number in X conflicts with the relevant register
1704 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1705 contains a MEM (we don't bother checking for memory addresses that can't
1706 conflict because we expect this to be a rare case. */
1707
1708 int
1709 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1710 {
1711 unsigned int regno, endregno;
1712
1713 /* If either argument is a constant, then modifying X can not
1714 affect IN. Here we look at IN, we can profitably combine
1715 CONSTANT_P (x) with the switch statement below. */
1716 if (CONSTANT_P (in))
1717 return 0;
1718
1719 recurse:
1720 switch (GET_CODE (x))
1721 {
1722 case STRICT_LOW_PART:
1723 case ZERO_EXTRACT:
1724 case SIGN_EXTRACT:
1725 /* Overly conservative. */
1726 x = XEXP (x, 0);
1727 goto recurse;
1728
1729 case SUBREG:
1730 regno = REGNO (SUBREG_REG (x));
1731 if (regno < FIRST_PSEUDO_REGISTER)
1732 regno = subreg_regno (x);
1733 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1734 ? subreg_nregs (x) : 1);
1735 goto do_reg;
1736
1737 case REG:
1738 regno = REGNO (x);
1739 endregno = END_REGNO (x);
1740 do_reg:
1741 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1742
1743 case MEM:
1744 {
1745 const char *fmt;
1746 int i;
1747
1748 if (MEM_P (in))
1749 return 1;
1750
1751 fmt = GET_RTX_FORMAT (GET_CODE (in));
1752 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1753 if (fmt[i] == 'e')
1754 {
1755 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1756 return 1;
1757 }
1758 else if (fmt[i] == 'E')
1759 {
1760 int j;
1761 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1762 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1763 return 1;
1764 }
1765
1766 return 0;
1767 }
1768
1769 case SCRATCH:
1770 case PC:
1771 case CC0:
1772 return reg_mentioned_p (x, in);
1773
1774 case PARALLEL:
1775 {
1776 int i;
1777
1778 /* If any register in here refers to it we return true. */
1779 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1780 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1781 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1782 return 1;
1783 return 0;
1784 }
1785
1786 default:
1787 gcc_assert (CONSTANT_P (x));
1788 return 0;
1789 }
1790 }
1791 \f
1792 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1793 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1794 ignored by note_stores, but passed to FUN.
1795
1796 FUN receives three arguments:
1797 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1798 2. the SET or CLOBBER rtx that does the store,
1799 3. the pointer DATA provided to note_stores.
1800
1801 If the item being stored in or clobbered is a SUBREG of a hard register,
1802 the SUBREG will be passed. */
1803
1804 void
1805 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1806 {
1807 int i;
1808
1809 if (GET_CODE (x) == COND_EXEC)
1810 x = COND_EXEC_CODE (x);
1811
1812 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1813 {
1814 rtx dest = SET_DEST (x);
1815
1816 while ((GET_CODE (dest) == SUBREG
1817 && (!REG_P (SUBREG_REG (dest))
1818 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1819 || GET_CODE (dest) == ZERO_EXTRACT
1820 || GET_CODE (dest) == STRICT_LOW_PART)
1821 dest = XEXP (dest, 0);
1822
1823 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1824 each of whose first operand is a register. */
1825 if (GET_CODE (dest) == PARALLEL)
1826 {
1827 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1828 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1829 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1830 }
1831 else
1832 (*fun) (dest, x, data);
1833 }
1834
1835 else if (GET_CODE (x) == PARALLEL)
1836 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1837 note_stores (XVECEXP (x, 0, i), fun, data);
1838 }
1839 \f
1840 /* Like notes_stores, but call FUN for each expression that is being
1841 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1842 FUN for each expression, not any interior subexpressions. FUN receives a
1843 pointer to the expression and the DATA passed to this function.
1844
1845 Note that this is not quite the same test as that done in reg_referenced_p
1846 since that considers something as being referenced if it is being
1847 partially set, while we do not. */
1848
1849 void
1850 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1851 {
1852 rtx body = *pbody;
1853 int i;
1854
1855 switch (GET_CODE (body))
1856 {
1857 case COND_EXEC:
1858 (*fun) (&COND_EXEC_TEST (body), data);
1859 note_uses (&COND_EXEC_CODE (body), fun, data);
1860 return;
1861
1862 case PARALLEL:
1863 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1864 note_uses (&XVECEXP (body, 0, i), fun, data);
1865 return;
1866
1867 case SEQUENCE:
1868 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1869 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1870 return;
1871
1872 case USE:
1873 (*fun) (&XEXP (body, 0), data);
1874 return;
1875
1876 case ASM_OPERANDS:
1877 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1878 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1879 return;
1880
1881 case TRAP_IF:
1882 (*fun) (&TRAP_CONDITION (body), data);
1883 return;
1884
1885 case PREFETCH:
1886 (*fun) (&XEXP (body, 0), data);
1887 return;
1888
1889 case UNSPEC:
1890 case UNSPEC_VOLATILE:
1891 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1892 (*fun) (&XVECEXP (body, 0, i), data);
1893 return;
1894
1895 case CLOBBER:
1896 if (MEM_P (XEXP (body, 0)))
1897 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1898 return;
1899
1900 case SET:
1901 {
1902 rtx dest = SET_DEST (body);
1903
1904 /* For sets we replace everything in source plus registers in memory
1905 expression in store and operands of a ZERO_EXTRACT. */
1906 (*fun) (&SET_SRC (body), data);
1907
1908 if (GET_CODE (dest) == ZERO_EXTRACT)
1909 {
1910 (*fun) (&XEXP (dest, 1), data);
1911 (*fun) (&XEXP (dest, 2), data);
1912 }
1913
1914 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1915 dest = XEXP (dest, 0);
1916
1917 if (MEM_P (dest))
1918 (*fun) (&XEXP (dest, 0), data);
1919 }
1920 return;
1921
1922 default:
1923 /* All the other possibilities never store. */
1924 (*fun) (pbody, data);
1925 return;
1926 }
1927 }
1928 \f
1929 /* Return nonzero if X's old contents don't survive after INSN.
1930 This will be true if X is (cc0) or if X is a register and
1931 X dies in INSN or because INSN entirely sets X.
1932
1933 "Entirely set" means set directly and not through a SUBREG, or
1934 ZERO_EXTRACT, so no trace of the old contents remains.
1935 Likewise, REG_INC does not count.
1936
1937 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1938 but for this use that makes no difference, since regs don't overlap
1939 during their lifetimes. Therefore, this function may be used
1940 at any time after deaths have been computed.
1941
1942 If REG is a hard reg that occupies multiple machine registers, this
1943 function will only return 1 if each of those registers will be replaced
1944 by INSN. */
1945
1946 int
1947 dead_or_set_p (const_rtx insn, const_rtx x)
1948 {
1949 unsigned int regno, end_regno;
1950 unsigned int i;
1951
1952 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1953 if (GET_CODE (x) == CC0)
1954 return 1;
1955
1956 gcc_assert (REG_P (x));
1957
1958 regno = REGNO (x);
1959 end_regno = END_REGNO (x);
1960 for (i = regno; i < end_regno; i++)
1961 if (! dead_or_set_regno_p (insn, i))
1962 return 0;
1963
1964 return 1;
1965 }
1966
1967 /* Return TRUE iff DEST is a register or subreg of a register and
1968 doesn't change the number of words of the inner register, and any
1969 part of the register is TEST_REGNO. */
1970
1971 static bool
1972 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1973 {
1974 unsigned int regno, endregno;
1975
1976 if (GET_CODE (dest) == SUBREG
1977 && (((GET_MODE_SIZE (GET_MODE (dest))
1978 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1979 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1980 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1981 dest = SUBREG_REG (dest);
1982
1983 if (!REG_P (dest))
1984 return false;
1985
1986 regno = REGNO (dest);
1987 endregno = END_REGNO (dest);
1988 return (test_regno >= regno && test_regno < endregno);
1989 }
1990
1991 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1992 any member matches the covers_regno_no_parallel_p criteria. */
1993
1994 static bool
1995 covers_regno_p (const_rtx dest, unsigned int test_regno)
1996 {
1997 if (GET_CODE (dest) == PARALLEL)
1998 {
1999 /* Some targets place small structures in registers for return
2000 values of functions, and those registers are wrapped in
2001 PARALLELs that we may see as the destination of a SET. */
2002 int i;
2003
2004 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2005 {
2006 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2007 if (inner != NULL_RTX
2008 && covers_regno_no_parallel_p (inner, test_regno))
2009 return true;
2010 }
2011
2012 return false;
2013 }
2014 else
2015 return covers_regno_no_parallel_p (dest, test_regno);
2016 }
2017
2018 /* Utility function for dead_or_set_p to check an individual register. */
2019
2020 int
2021 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2022 {
2023 const_rtx pattern;
2024
2025 /* See if there is a death note for something that includes TEST_REGNO. */
2026 if (find_regno_note (insn, REG_DEAD, test_regno))
2027 return 1;
2028
2029 if (CALL_P (insn)
2030 && find_regno_fusage (insn, CLOBBER, test_regno))
2031 return 1;
2032
2033 pattern = PATTERN (insn);
2034
2035 /* If a COND_EXEC is not executed, the value survives. */
2036 if (GET_CODE (pattern) == COND_EXEC)
2037 return 0;
2038
2039 if (GET_CODE (pattern) == SET)
2040 return covers_regno_p (SET_DEST (pattern), test_regno);
2041 else if (GET_CODE (pattern) == PARALLEL)
2042 {
2043 int i;
2044
2045 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2046 {
2047 rtx body = XVECEXP (pattern, 0, i);
2048
2049 if (GET_CODE (body) == COND_EXEC)
2050 body = COND_EXEC_CODE (body);
2051
2052 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2053 && covers_regno_p (SET_DEST (body), test_regno))
2054 return 1;
2055 }
2056 }
2057
2058 return 0;
2059 }
2060
2061 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2062 If DATUM is nonzero, look for one whose datum is DATUM. */
2063
2064 rtx
2065 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2066 {
2067 rtx link;
2068
2069 gcc_checking_assert (insn);
2070
2071 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2072 if (! INSN_P (insn))
2073 return 0;
2074 if (datum == 0)
2075 {
2076 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2077 if (REG_NOTE_KIND (link) == kind)
2078 return link;
2079 return 0;
2080 }
2081
2082 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2083 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2084 return link;
2085 return 0;
2086 }
2087
2088 /* Return the reg-note of kind KIND in insn INSN which applies to register
2089 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2090 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2091 it might be the case that the note overlaps REGNO. */
2092
2093 rtx
2094 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2095 {
2096 rtx link;
2097
2098 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2099 if (! INSN_P (insn))
2100 return 0;
2101
2102 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2103 if (REG_NOTE_KIND (link) == kind
2104 /* Verify that it is a register, so that scratch and MEM won't cause a
2105 problem here. */
2106 && REG_P (XEXP (link, 0))
2107 && REGNO (XEXP (link, 0)) <= regno
2108 && END_REGNO (XEXP (link, 0)) > regno)
2109 return link;
2110 return 0;
2111 }
2112
2113 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2114 has such a note. */
2115
2116 rtx
2117 find_reg_equal_equiv_note (const_rtx insn)
2118 {
2119 rtx link;
2120
2121 if (!INSN_P (insn))
2122 return 0;
2123
2124 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2125 if (REG_NOTE_KIND (link) == REG_EQUAL
2126 || REG_NOTE_KIND (link) == REG_EQUIV)
2127 {
2128 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2129 insns that have multiple sets. Checking single_set to
2130 make sure of this is not the proper check, as explained
2131 in the comment in set_unique_reg_note.
2132
2133 This should be changed into an assert. */
2134 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2135 return 0;
2136 return link;
2137 }
2138 return NULL;
2139 }
2140
2141 /* Check whether INSN is a single_set whose source is known to be
2142 equivalent to a constant. Return that constant if so, otherwise
2143 return null. */
2144
2145 rtx
2146 find_constant_src (const rtx_insn *insn)
2147 {
2148 rtx note, set, x;
2149
2150 set = single_set (insn);
2151 if (set)
2152 {
2153 x = avoid_constant_pool_reference (SET_SRC (set));
2154 if (CONSTANT_P (x))
2155 return x;
2156 }
2157
2158 note = find_reg_equal_equiv_note (insn);
2159 if (note && CONSTANT_P (XEXP (note, 0)))
2160 return XEXP (note, 0);
2161
2162 return NULL_RTX;
2163 }
2164
2165 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2166 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2167
2168 int
2169 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2170 {
2171 /* If it's not a CALL_INSN, it can't possibly have a
2172 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2173 if (!CALL_P (insn))
2174 return 0;
2175
2176 gcc_assert (datum);
2177
2178 if (!REG_P (datum))
2179 {
2180 rtx link;
2181
2182 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2183 link;
2184 link = XEXP (link, 1))
2185 if (GET_CODE (XEXP (link, 0)) == code
2186 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2187 return 1;
2188 }
2189 else
2190 {
2191 unsigned int regno = REGNO (datum);
2192
2193 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2194 to pseudo registers, so don't bother checking. */
2195
2196 if (regno < FIRST_PSEUDO_REGISTER)
2197 {
2198 unsigned int end_regno = END_REGNO (datum);
2199 unsigned int i;
2200
2201 for (i = regno; i < end_regno; i++)
2202 if (find_regno_fusage (insn, code, i))
2203 return 1;
2204 }
2205 }
2206
2207 return 0;
2208 }
2209
2210 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2211 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2212
2213 int
2214 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2215 {
2216 rtx link;
2217
2218 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2219 to pseudo registers, so don't bother checking. */
2220
2221 if (regno >= FIRST_PSEUDO_REGISTER
2222 || !CALL_P (insn) )
2223 return 0;
2224
2225 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2226 {
2227 rtx op, reg;
2228
2229 if (GET_CODE (op = XEXP (link, 0)) == code
2230 && REG_P (reg = XEXP (op, 0))
2231 && REGNO (reg) <= regno
2232 && END_REGNO (reg) > regno)
2233 return 1;
2234 }
2235
2236 return 0;
2237 }
2238
2239 \f
2240 /* Return true if KIND is an integer REG_NOTE. */
2241
2242 static bool
2243 int_reg_note_p (enum reg_note kind)
2244 {
2245 return kind == REG_BR_PROB;
2246 }
2247
2248 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2249 stored as the pointer to the next register note. */
2250
2251 rtx
2252 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2253 {
2254 rtx note;
2255
2256 gcc_checking_assert (!int_reg_note_p (kind));
2257 switch (kind)
2258 {
2259 case REG_CC_SETTER:
2260 case REG_CC_USER:
2261 case REG_LABEL_TARGET:
2262 case REG_LABEL_OPERAND:
2263 case REG_TM:
2264 /* These types of register notes use an INSN_LIST rather than an
2265 EXPR_LIST, so that copying is done right and dumps look
2266 better. */
2267 note = alloc_INSN_LIST (datum, list);
2268 PUT_REG_NOTE_KIND (note, kind);
2269 break;
2270
2271 default:
2272 note = alloc_EXPR_LIST (kind, datum, list);
2273 break;
2274 }
2275
2276 return note;
2277 }
2278
2279 /* Add register note with kind KIND and datum DATUM to INSN. */
2280
2281 void
2282 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2283 {
2284 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2285 }
2286
2287 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2288
2289 void
2290 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2291 {
2292 gcc_checking_assert (int_reg_note_p (kind));
2293 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2294 datum, REG_NOTES (insn));
2295 }
2296
2297 /* Add a register note like NOTE to INSN. */
2298
2299 void
2300 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2301 {
2302 if (GET_CODE (note) == INT_LIST)
2303 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2304 else
2305 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2306 }
2307
2308 /* Remove register note NOTE from the REG_NOTES of INSN. */
2309
2310 void
2311 remove_note (rtx insn, const_rtx note)
2312 {
2313 rtx link;
2314
2315 if (note == NULL_RTX)
2316 return;
2317
2318 if (REG_NOTES (insn) == note)
2319 REG_NOTES (insn) = XEXP (note, 1);
2320 else
2321 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2322 if (XEXP (link, 1) == note)
2323 {
2324 XEXP (link, 1) = XEXP (note, 1);
2325 break;
2326 }
2327
2328 switch (REG_NOTE_KIND (note))
2329 {
2330 case REG_EQUAL:
2331 case REG_EQUIV:
2332 df_notes_rescan (as_a <rtx_insn *> (insn));
2333 break;
2334 default:
2335 break;
2336 }
2337 }
2338
2339 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2340
2341 void
2342 remove_reg_equal_equiv_notes (rtx_insn *insn)
2343 {
2344 rtx *loc;
2345
2346 loc = &REG_NOTES (insn);
2347 while (*loc)
2348 {
2349 enum reg_note kind = REG_NOTE_KIND (*loc);
2350 if (kind == REG_EQUAL || kind == REG_EQUIV)
2351 *loc = XEXP (*loc, 1);
2352 else
2353 loc = &XEXP (*loc, 1);
2354 }
2355 }
2356
2357 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2358
2359 void
2360 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2361 {
2362 df_ref eq_use;
2363
2364 if (!df)
2365 return;
2366
2367 /* This loop is a little tricky. We cannot just go down the chain because
2368 it is being modified by some actions in the loop. So we just iterate
2369 over the head. We plan to drain the list anyway. */
2370 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2371 {
2372 rtx_insn *insn = DF_REF_INSN (eq_use);
2373 rtx note = find_reg_equal_equiv_note (insn);
2374
2375 /* This assert is generally triggered when someone deletes a REG_EQUAL
2376 or REG_EQUIV note by hacking the list manually rather than calling
2377 remove_note. */
2378 gcc_assert (note);
2379
2380 remove_note (insn, note);
2381 }
2382 }
2383
2384 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2385 return 1 if it is found. A simple equality test is used to determine if
2386 NODE matches. */
2387
2388 bool
2389 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2390 {
2391 const_rtx x;
2392
2393 for (x = listp; x; x = XEXP (x, 1))
2394 if (node == XEXP (x, 0))
2395 return true;
2396
2397 return false;
2398 }
2399
2400 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2401 remove that entry from the list if it is found.
2402
2403 A simple equality test is used to determine if NODE matches. */
2404
2405 void
2406 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2407 {
2408 rtx_expr_list *temp = *listp;
2409 rtx_expr_list *prev = NULL;
2410
2411 while (temp)
2412 {
2413 if (node == temp->element ())
2414 {
2415 /* Splice the node out of the list. */
2416 if (prev)
2417 XEXP (prev, 1) = temp->next ();
2418 else
2419 *listp = temp->next ();
2420
2421 return;
2422 }
2423
2424 prev = temp;
2425 temp = temp->next ();
2426 }
2427 }
2428
2429 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2430 remove that entry from the list if it is found.
2431
2432 A simple equality test is used to determine if NODE matches. */
2433
2434 void
2435 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2436 {
2437 rtx_insn_list *temp = *listp;
2438 rtx_insn_list *prev = NULL;
2439
2440 while (temp)
2441 {
2442 if (node == temp->insn ())
2443 {
2444 /* Splice the node out of the list. */
2445 if (prev)
2446 XEXP (prev, 1) = temp->next ();
2447 else
2448 *listp = temp->next ();
2449
2450 return;
2451 }
2452
2453 prev = temp;
2454 temp = temp->next ();
2455 }
2456 }
2457 \f
2458 /* Nonzero if X contains any volatile instructions. These are instructions
2459 which may cause unpredictable machine state instructions, and thus no
2460 instructions or register uses should be moved or combined across them.
2461 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2462
2463 int
2464 volatile_insn_p (const_rtx x)
2465 {
2466 const RTX_CODE code = GET_CODE (x);
2467 switch (code)
2468 {
2469 case LABEL_REF:
2470 case SYMBOL_REF:
2471 case CONST:
2472 CASE_CONST_ANY:
2473 case CC0:
2474 case PC:
2475 case REG:
2476 case SCRATCH:
2477 case CLOBBER:
2478 case ADDR_VEC:
2479 case ADDR_DIFF_VEC:
2480 case CALL:
2481 case MEM:
2482 return 0;
2483
2484 case UNSPEC_VOLATILE:
2485 return 1;
2486
2487 case ASM_INPUT:
2488 case ASM_OPERANDS:
2489 if (MEM_VOLATILE_P (x))
2490 return 1;
2491
2492 default:
2493 break;
2494 }
2495
2496 /* Recursively scan the operands of this expression. */
2497
2498 {
2499 const char *const fmt = GET_RTX_FORMAT (code);
2500 int i;
2501
2502 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2503 {
2504 if (fmt[i] == 'e')
2505 {
2506 if (volatile_insn_p (XEXP (x, i)))
2507 return 1;
2508 }
2509 else if (fmt[i] == 'E')
2510 {
2511 int j;
2512 for (j = 0; j < XVECLEN (x, i); j++)
2513 if (volatile_insn_p (XVECEXP (x, i, j)))
2514 return 1;
2515 }
2516 }
2517 }
2518 return 0;
2519 }
2520
2521 /* Nonzero if X contains any volatile memory references
2522 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2523
2524 int
2525 volatile_refs_p (const_rtx x)
2526 {
2527 const RTX_CODE code = GET_CODE (x);
2528 switch (code)
2529 {
2530 case LABEL_REF:
2531 case SYMBOL_REF:
2532 case CONST:
2533 CASE_CONST_ANY:
2534 case CC0:
2535 case PC:
2536 case REG:
2537 case SCRATCH:
2538 case CLOBBER:
2539 case ADDR_VEC:
2540 case ADDR_DIFF_VEC:
2541 return 0;
2542
2543 case UNSPEC_VOLATILE:
2544 return 1;
2545
2546 case MEM:
2547 case ASM_INPUT:
2548 case ASM_OPERANDS:
2549 if (MEM_VOLATILE_P (x))
2550 return 1;
2551
2552 default:
2553 break;
2554 }
2555
2556 /* Recursively scan the operands of this expression. */
2557
2558 {
2559 const char *const fmt = GET_RTX_FORMAT (code);
2560 int i;
2561
2562 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2563 {
2564 if (fmt[i] == 'e')
2565 {
2566 if (volatile_refs_p (XEXP (x, i)))
2567 return 1;
2568 }
2569 else if (fmt[i] == 'E')
2570 {
2571 int j;
2572 for (j = 0; j < XVECLEN (x, i); j++)
2573 if (volatile_refs_p (XVECEXP (x, i, j)))
2574 return 1;
2575 }
2576 }
2577 }
2578 return 0;
2579 }
2580
2581 /* Similar to above, except that it also rejects register pre- and post-
2582 incrementing. */
2583
2584 int
2585 side_effects_p (const_rtx x)
2586 {
2587 const RTX_CODE code = GET_CODE (x);
2588 switch (code)
2589 {
2590 case LABEL_REF:
2591 case SYMBOL_REF:
2592 case CONST:
2593 CASE_CONST_ANY:
2594 case CC0:
2595 case PC:
2596 case REG:
2597 case SCRATCH:
2598 case ADDR_VEC:
2599 case ADDR_DIFF_VEC:
2600 case VAR_LOCATION:
2601 return 0;
2602
2603 case CLOBBER:
2604 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2605 when some combination can't be done. If we see one, don't think
2606 that we can simplify the expression. */
2607 return (GET_MODE (x) != VOIDmode);
2608
2609 case PRE_INC:
2610 case PRE_DEC:
2611 case POST_INC:
2612 case POST_DEC:
2613 case PRE_MODIFY:
2614 case POST_MODIFY:
2615 case CALL:
2616 case UNSPEC_VOLATILE:
2617 return 1;
2618
2619 case MEM:
2620 case ASM_INPUT:
2621 case ASM_OPERANDS:
2622 if (MEM_VOLATILE_P (x))
2623 return 1;
2624
2625 default:
2626 break;
2627 }
2628
2629 /* Recursively scan the operands of this expression. */
2630
2631 {
2632 const char *fmt = GET_RTX_FORMAT (code);
2633 int i;
2634
2635 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2636 {
2637 if (fmt[i] == 'e')
2638 {
2639 if (side_effects_p (XEXP (x, i)))
2640 return 1;
2641 }
2642 else if (fmt[i] == 'E')
2643 {
2644 int j;
2645 for (j = 0; j < XVECLEN (x, i); j++)
2646 if (side_effects_p (XVECEXP (x, i, j)))
2647 return 1;
2648 }
2649 }
2650 }
2651 return 0;
2652 }
2653 \f
2654 /* Return nonzero if evaluating rtx X might cause a trap.
2655 FLAGS controls how to consider MEMs. A nonzero means the context
2656 of the access may have changed from the original, such that the
2657 address may have become invalid. */
2658
2659 int
2660 may_trap_p_1 (const_rtx x, unsigned flags)
2661 {
2662 int i;
2663 enum rtx_code code;
2664 const char *fmt;
2665
2666 /* We make no distinction currently, but this function is part of
2667 the internal target-hooks ABI so we keep the parameter as
2668 "unsigned flags". */
2669 bool code_changed = flags != 0;
2670
2671 if (x == 0)
2672 return 0;
2673 code = GET_CODE (x);
2674 switch (code)
2675 {
2676 /* Handle these cases quickly. */
2677 CASE_CONST_ANY:
2678 case SYMBOL_REF:
2679 case LABEL_REF:
2680 case CONST:
2681 case PC:
2682 case CC0:
2683 case REG:
2684 case SCRATCH:
2685 return 0;
2686
2687 case UNSPEC:
2688 return targetm.unspec_may_trap_p (x, flags);
2689
2690 case UNSPEC_VOLATILE:
2691 case ASM_INPUT:
2692 case TRAP_IF:
2693 return 1;
2694
2695 case ASM_OPERANDS:
2696 return MEM_VOLATILE_P (x);
2697
2698 /* Memory ref can trap unless it's a static var or a stack slot. */
2699 case MEM:
2700 /* Recognize specific pattern of stack checking probes. */
2701 if (flag_stack_check
2702 && MEM_VOLATILE_P (x)
2703 && XEXP (x, 0) == stack_pointer_rtx)
2704 return 1;
2705 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2706 reference; moving it out of context such as when moving code
2707 when optimizing, might cause its address to become invalid. */
2708 code_changed
2709 || !MEM_NOTRAP_P (x))
2710 {
2711 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2712 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2713 GET_MODE (x), code_changed);
2714 }
2715
2716 return 0;
2717
2718 /* Division by a non-constant might trap. */
2719 case DIV:
2720 case MOD:
2721 case UDIV:
2722 case UMOD:
2723 if (HONOR_SNANS (x))
2724 return 1;
2725 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2726 return flag_trapping_math;
2727 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2728 return 1;
2729 break;
2730
2731 case EXPR_LIST:
2732 /* An EXPR_LIST is used to represent a function call. This
2733 certainly may trap. */
2734 return 1;
2735
2736 case GE:
2737 case GT:
2738 case LE:
2739 case LT:
2740 case LTGT:
2741 case COMPARE:
2742 /* Some floating point comparisons may trap. */
2743 if (!flag_trapping_math)
2744 break;
2745 /* ??? There is no machine independent way to check for tests that trap
2746 when COMPARE is used, though many targets do make this distinction.
2747 For instance, sparc uses CCFPE for compares which generate exceptions
2748 and CCFP for compares which do not generate exceptions. */
2749 if (HONOR_NANS (x))
2750 return 1;
2751 /* But often the compare has some CC mode, so check operand
2752 modes as well. */
2753 if (HONOR_NANS (XEXP (x, 0))
2754 || HONOR_NANS (XEXP (x, 1)))
2755 return 1;
2756 break;
2757
2758 case EQ:
2759 case NE:
2760 if (HONOR_SNANS (x))
2761 return 1;
2762 /* Often comparison is CC mode, so check operand modes. */
2763 if (HONOR_SNANS (XEXP (x, 0))
2764 || HONOR_SNANS (XEXP (x, 1)))
2765 return 1;
2766 break;
2767
2768 case FIX:
2769 /* Conversion of floating point might trap. */
2770 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2771 return 1;
2772 break;
2773
2774 case NEG:
2775 case ABS:
2776 case SUBREG:
2777 /* These operations don't trap even with floating point. */
2778 break;
2779
2780 default:
2781 /* Any floating arithmetic may trap. */
2782 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2783 return 1;
2784 }
2785
2786 fmt = GET_RTX_FORMAT (code);
2787 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2788 {
2789 if (fmt[i] == 'e')
2790 {
2791 if (may_trap_p_1 (XEXP (x, i), flags))
2792 return 1;
2793 }
2794 else if (fmt[i] == 'E')
2795 {
2796 int j;
2797 for (j = 0; j < XVECLEN (x, i); j++)
2798 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2799 return 1;
2800 }
2801 }
2802 return 0;
2803 }
2804
2805 /* Return nonzero if evaluating rtx X might cause a trap. */
2806
2807 int
2808 may_trap_p (const_rtx x)
2809 {
2810 return may_trap_p_1 (x, 0);
2811 }
2812
2813 /* Same as above, but additionally return nonzero if evaluating rtx X might
2814 cause a fault. We define a fault for the purpose of this function as a
2815 erroneous execution condition that cannot be encountered during the normal
2816 execution of a valid program; the typical example is an unaligned memory
2817 access on a strict alignment machine. The compiler guarantees that it
2818 doesn't generate code that will fault from a valid program, but this
2819 guarantee doesn't mean anything for individual instructions. Consider
2820 the following example:
2821
2822 struct S { int d; union { char *cp; int *ip; }; };
2823
2824 int foo(struct S *s)
2825 {
2826 if (s->d == 1)
2827 return *s->ip;
2828 else
2829 return *s->cp;
2830 }
2831
2832 on a strict alignment machine. In a valid program, foo will never be
2833 invoked on a structure for which d is equal to 1 and the underlying
2834 unique field of the union not aligned on a 4-byte boundary, but the
2835 expression *s->ip might cause a fault if considered individually.
2836
2837 At the RTL level, potentially problematic expressions will almost always
2838 verify may_trap_p; for example, the above dereference can be emitted as
2839 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2840 However, suppose that foo is inlined in a caller that causes s->cp to
2841 point to a local character variable and guarantees that s->d is not set
2842 to 1; foo may have been effectively translated into pseudo-RTL as:
2843
2844 if ((reg:SI) == 1)
2845 (set (reg:SI) (mem:SI (%fp - 7)))
2846 else
2847 (set (reg:QI) (mem:QI (%fp - 7)))
2848
2849 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2850 memory reference to a stack slot, but it will certainly cause a fault
2851 on a strict alignment machine. */
2852
2853 int
2854 may_trap_or_fault_p (const_rtx x)
2855 {
2856 return may_trap_p_1 (x, 1);
2857 }
2858 \f
2859 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2860 i.e., an inequality. */
2861
2862 int
2863 inequality_comparisons_p (const_rtx x)
2864 {
2865 const char *fmt;
2866 int len, i;
2867 const enum rtx_code code = GET_CODE (x);
2868
2869 switch (code)
2870 {
2871 case REG:
2872 case SCRATCH:
2873 case PC:
2874 case CC0:
2875 CASE_CONST_ANY:
2876 case CONST:
2877 case LABEL_REF:
2878 case SYMBOL_REF:
2879 return 0;
2880
2881 case LT:
2882 case LTU:
2883 case GT:
2884 case GTU:
2885 case LE:
2886 case LEU:
2887 case GE:
2888 case GEU:
2889 return 1;
2890
2891 default:
2892 break;
2893 }
2894
2895 len = GET_RTX_LENGTH (code);
2896 fmt = GET_RTX_FORMAT (code);
2897
2898 for (i = 0; i < len; i++)
2899 {
2900 if (fmt[i] == 'e')
2901 {
2902 if (inequality_comparisons_p (XEXP (x, i)))
2903 return 1;
2904 }
2905 else if (fmt[i] == 'E')
2906 {
2907 int j;
2908 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2909 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2910 return 1;
2911 }
2912 }
2913
2914 return 0;
2915 }
2916 \f
2917 /* Replace any occurrence of FROM in X with TO. The function does
2918 not enter into CONST_DOUBLE for the replace.
2919
2920 Note that copying is not done so X must not be shared unless all copies
2921 are to be modified.
2922
2923 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2924 those pointer-equal ones. */
2925
2926 rtx
2927 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
2928 {
2929 int i, j;
2930 const char *fmt;
2931
2932 if (x == from)
2933 return to;
2934
2935 /* Allow this function to make replacements in EXPR_LISTs. */
2936 if (x == 0)
2937 return 0;
2938
2939 if (all_regs
2940 && REG_P (x)
2941 && REG_P (from)
2942 && REGNO (x) == REGNO (from))
2943 {
2944 gcc_assert (GET_MODE (x) == GET_MODE (from));
2945 return to;
2946 }
2947 else if (GET_CODE (x) == SUBREG)
2948 {
2949 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
2950
2951 if (CONST_INT_P (new_rtx))
2952 {
2953 x = simplify_subreg (GET_MODE (x), new_rtx,
2954 GET_MODE (SUBREG_REG (x)),
2955 SUBREG_BYTE (x));
2956 gcc_assert (x);
2957 }
2958 else
2959 SUBREG_REG (x) = new_rtx;
2960
2961 return x;
2962 }
2963 else if (GET_CODE (x) == ZERO_EXTEND)
2964 {
2965 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
2966
2967 if (CONST_INT_P (new_rtx))
2968 {
2969 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2970 new_rtx, GET_MODE (XEXP (x, 0)));
2971 gcc_assert (x);
2972 }
2973 else
2974 XEXP (x, 0) = new_rtx;
2975
2976 return x;
2977 }
2978
2979 fmt = GET_RTX_FORMAT (GET_CODE (x));
2980 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2981 {
2982 if (fmt[i] == 'e')
2983 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
2984 else if (fmt[i] == 'E')
2985 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2986 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
2987 from, to, all_regs);
2988 }
2989
2990 return x;
2991 }
2992 \f
2993 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2994 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
2995
2996 void
2997 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
2998 {
2999 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3000 rtx x = *loc;
3001 if (JUMP_TABLE_DATA_P (x))
3002 {
3003 x = PATTERN (x);
3004 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3005 int len = GET_NUM_ELEM (vec);
3006 for (int i = 0; i < len; ++i)
3007 {
3008 rtx ref = RTVEC_ELT (vec, i);
3009 if (XEXP (ref, 0) == old_label)
3010 {
3011 XEXP (ref, 0) = new_label;
3012 if (update_label_nuses)
3013 {
3014 ++LABEL_NUSES (new_label);
3015 --LABEL_NUSES (old_label);
3016 }
3017 }
3018 }
3019 return;
3020 }
3021
3022 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3023 field. This is not handled by the iterator because it doesn't
3024 handle unprinted ('0') fields. */
3025 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3026 JUMP_LABEL (x) = new_label;
3027
3028 subrtx_ptr_iterator::array_type array;
3029 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3030 {
3031 rtx *loc = *iter;
3032 if (rtx x = *loc)
3033 {
3034 if (GET_CODE (x) == SYMBOL_REF
3035 && CONSTANT_POOL_ADDRESS_P (x))
3036 {
3037 rtx c = get_pool_constant (x);
3038 if (rtx_referenced_p (old_label, c))
3039 {
3040 /* Create a copy of constant C; replace the label inside
3041 but do not update LABEL_NUSES because uses in constant pool
3042 are not counted. */
3043 rtx new_c = copy_rtx (c);
3044 replace_label (&new_c, old_label, new_label, false);
3045
3046 /* Add the new constant NEW_C to constant pool and replace
3047 the old reference to constant by new reference. */
3048 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3049 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3050 }
3051 }
3052
3053 if ((GET_CODE (x) == LABEL_REF
3054 || GET_CODE (x) == INSN_LIST)
3055 && XEXP (x, 0) == old_label)
3056 {
3057 XEXP (x, 0) = new_label;
3058 if (update_label_nuses)
3059 {
3060 ++LABEL_NUSES (new_label);
3061 --LABEL_NUSES (old_label);
3062 }
3063 }
3064 }
3065 }
3066 }
3067
3068 void
3069 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
3070 bool update_label_nuses)
3071 {
3072 rtx insn_as_rtx = insn;
3073 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3074 gcc_checking_assert (insn_as_rtx == insn);
3075 }
3076
3077 /* Return true if X is referenced in BODY. */
3078
3079 bool
3080 rtx_referenced_p (const_rtx x, const_rtx body)
3081 {
3082 subrtx_iterator::array_type array;
3083 FOR_EACH_SUBRTX (iter, array, body, ALL)
3084 if (const_rtx y = *iter)
3085 {
3086 /* Check if a label_ref Y refers to label X. */
3087 if (GET_CODE (y) == LABEL_REF
3088 && LABEL_P (x)
3089 && LABEL_REF_LABEL (y) == x)
3090 return true;
3091
3092 if (rtx_equal_p (x, y))
3093 return true;
3094
3095 /* If Y is a reference to pool constant traverse the constant. */
3096 if (GET_CODE (y) == SYMBOL_REF
3097 && CONSTANT_POOL_ADDRESS_P (y))
3098 iter.substitute (get_pool_constant (y));
3099 }
3100 return false;
3101 }
3102
3103 /* If INSN is a tablejump return true and store the label (before jump table) to
3104 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3105
3106 bool
3107 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
3108 {
3109 rtx label;
3110 rtx_insn *table;
3111
3112 if (!JUMP_P (insn))
3113 return false;
3114
3115 label = JUMP_LABEL (insn);
3116 if (label != NULL_RTX && !ANY_RETURN_P (label)
3117 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
3118 && JUMP_TABLE_DATA_P (table))
3119 {
3120 if (labelp)
3121 *labelp = label;
3122 if (tablep)
3123 *tablep = as_a <rtx_jump_table_data *> (table);
3124 return true;
3125 }
3126 return false;
3127 }
3128
3129 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3130 constant that is not in the constant pool and not in the condition
3131 of an IF_THEN_ELSE. */
3132
3133 static int
3134 computed_jump_p_1 (const_rtx x)
3135 {
3136 const enum rtx_code code = GET_CODE (x);
3137 int i, j;
3138 const char *fmt;
3139
3140 switch (code)
3141 {
3142 case LABEL_REF:
3143 case PC:
3144 return 0;
3145
3146 case CONST:
3147 CASE_CONST_ANY:
3148 case SYMBOL_REF:
3149 case REG:
3150 return 1;
3151
3152 case MEM:
3153 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3154 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3155
3156 case IF_THEN_ELSE:
3157 return (computed_jump_p_1 (XEXP (x, 1))
3158 || computed_jump_p_1 (XEXP (x, 2)));
3159
3160 default:
3161 break;
3162 }
3163
3164 fmt = GET_RTX_FORMAT (code);
3165 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3166 {
3167 if (fmt[i] == 'e'
3168 && computed_jump_p_1 (XEXP (x, i)))
3169 return 1;
3170
3171 else if (fmt[i] == 'E')
3172 for (j = 0; j < XVECLEN (x, i); j++)
3173 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3174 return 1;
3175 }
3176
3177 return 0;
3178 }
3179
3180 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3181
3182 Tablejumps and casesi insns are not considered indirect jumps;
3183 we can recognize them by a (use (label_ref)). */
3184
3185 int
3186 computed_jump_p (const rtx_insn *insn)
3187 {
3188 int i;
3189 if (JUMP_P (insn))
3190 {
3191 rtx pat = PATTERN (insn);
3192
3193 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3194 if (JUMP_LABEL (insn) != NULL)
3195 return 0;
3196
3197 if (GET_CODE (pat) == PARALLEL)
3198 {
3199 int len = XVECLEN (pat, 0);
3200 int has_use_labelref = 0;
3201
3202 for (i = len - 1; i >= 0; i--)
3203 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3204 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3205 == LABEL_REF))
3206 {
3207 has_use_labelref = 1;
3208 break;
3209 }
3210
3211 if (! has_use_labelref)
3212 for (i = len - 1; i >= 0; i--)
3213 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3214 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3215 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3216 return 1;
3217 }
3218 else if (GET_CODE (pat) == SET
3219 && SET_DEST (pat) == pc_rtx
3220 && computed_jump_p_1 (SET_SRC (pat)))
3221 return 1;
3222 }
3223 return 0;
3224 }
3225
3226 \f
3227
3228 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3229 the equivalent add insn and pass the result to FN, using DATA as the
3230 final argument. */
3231
3232 static int
3233 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3234 {
3235 rtx x = XEXP (mem, 0);
3236 switch (GET_CODE (x))
3237 {
3238 case PRE_INC:
3239 case POST_INC:
3240 {
3241 int size = GET_MODE_SIZE (GET_MODE (mem));
3242 rtx r1 = XEXP (x, 0);
3243 rtx c = gen_int_mode (size, GET_MODE (r1));
3244 return fn (mem, x, r1, r1, c, data);
3245 }
3246
3247 case PRE_DEC:
3248 case POST_DEC:
3249 {
3250 int size = GET_MODE_SIZE (GET_MODE (mem));
3251 rtx r1 = XEXP (x, 0);
3252 rtx c = gen_int_mode (-size, GET_MODE (r1));
3253 return fn (mem, x, r1, r1, c, data);
3254 }
3255
3256 case PRE_MODIFY:
3257 case POST_MODIFY:
3258 {
3259 rtx r1 = XEXP (x, 0);
3260 rtx add = XEXP (x, 1);
3261 return fn (mem, x, r1, add, NULL, data);
3262 }
3263
3264 default:
3265 gcc_unreachable ();
3266 }
3267 }
3268
3269 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3270 For each such autoinc operation found, call FN, passing it
3271 the innermost enclosing MEM, the operation itself, the RTX modified
3272 by the operation, two RTXs (the second may be NULL) that, once
3273 added, represent the value to be held by the modified RTX
3274 afterwards, and DATA. FN is to return 0 to continue the
3275 traversal or any other value to have it returned to the caller of
3276 for_each_inc_dec. */
3277
3278 int
3279 for_each_inc_dec (rtx x,
3280 for_each_inc_dec_fn fn,
3281 void *data)
3282 {
3283 subrtx_var_iterator::array_type array;
3284 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3285 {
3286 rtx mem = *iter;
3287 if (mem
3288 && MEM_P (mem)
3289 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3290 {
3291 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3292 if (res != 0)
3293 return res;
3294 iter.skip_subrtxes ();
3295 }
3296 }
3297 return 0;
3298 }
3299
3300 \f
3301 /* Searches X for any reference to REGNO, returning the rtx of the
3302 reference found if any. Otherwise, returns NULL_RTX. */
3303
3304 rtx
3305 regno_use_in (unsigned int regno, rtx x)
3306 {
3307 const char *fmt;
3308 int i, j;
3309 rtx tem;
3310
3311 if (REG_P (x) && REGNO (x) == regno)
3312 return x;
3313
3314 fmt = GET_RTX_FORMAT (GET_CODE (x));
3315 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3316 {
3317 if (fmt[i] == 'e')
3318 {
3319 if ((tem = regno_use_in (regno, XEXP (x, i))))
3320 return tem;
3321 }
3322 else if (fmt[i] == 'E')
3323 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3324 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3325 return tem;
3326 }
3327
3328 return NULL_RTX;
3329 }
3330
3331 /* Return a value indicating whether OP, an operand of a commutative
3332 operation, is preferred as the first or second operand. The more
3333 positive the value, the stronger the preference for being the first
3334 operand. */
3335
3336 int
3337 commutative_operand_precedence (rtx op)
3338 {
3339 enum rtx_code code = GET_CODE (op);
3340
3341 /* Constants always become the second operand. Prefer "nice" constants. */
3342 if (code == CONST_INT)
3343 return -8;
3344 if (code == CONST_WIDE_INT)
3345 return -7;
3346 if (code == CONST_DOUBLE)
3347 return -7;
3348 if (code == CONST_FIXED)
3349 return -7;
3350 op = avoid_constant_pool_reference (op);
3351 code = GET_CODE (op);
3352
3353 switch (GET_RTX_CLASS (code))
3354 {
3355 case RTX_CONST_OBJ:
3356 if (code == CONST_INT)
3357 return -6;
3358 if (code == CONST_WIDE_INT)
3359 return -6;
3360 if (code == CONST_DOUBLE)
3361 return -5;
3362 if (code == CONST_FIXED)
3363 return -5;
3364 return -4;
3365
3366 case RTX_EXTRA:
3367 /* SUBREGs of objects should come second. */
3368 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3369 return -3;
3370 return 0;
3371
3372 case RTX_OBJ:
3373 /* Complex expressions should be the first, so decrease priority
3374 of objects. Prefer pointer objects over non pointer objects. */
3375 if ((REG_P (op) && REG_POINTER (op))
3376 || (MEM_P (op) && MEM_POINTER (op)))
3377 return -1;
3378 return -2;
3379
3380 case RTX_COMM_ARITH:
3381 /* Prefer operands that are themselves commutative to be first.
3382 This helps to make things linear. In particular,
3383 (and (and (reg) (reg)) (not (reg))) is canonical. */
3384 return 4;
3385
3386 case RTX_BIN_ARITH:
3387 /* If only one operand is a binary expression, it will be the first
3388 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3389 is canonical, although it will usually be further simplified. */
3390 return 2;
3391
3392 case RTX_UNARY:
3393 /* Then prefer NEG and NOT. */
3394 if (code == NEG || code == NOT)
3395 return 1;
3396 /* FALLTHRU */
3397
3398 default:
3399 return 0;
3400 }
3401 }
3402
3403 /* Return 1 iff it is necessary to swap operands of commutative operation
3404 in order to canonicalize expression. */
3405
3406 bool
3407 swap_commutative_operands_p (rtx x, rtx y)
3408 {
3409 return (commutative_operand_precedence (x)
3410 < commutative_operand_precedence (y));
3411 }
3412
3413 /* Return 1 if X is an autoincrement side effect and the register is
3414 not the stack pointer. */
3415 int
3416 auto_inc_p (const_rtx x)
3417 {
3418 switch (GET_CODE (x))
3419 {
3420 case PRE_INC:
3421 case POST_INC:
3422 case PRE_DEC:
3423 case POST_DEC:
3424 case PRE_MODIFY:
3425 case POST_MODIFY:
3426 /* There are no REG_INC notes for SP. */
3427 if (XEXP (x, 0) != stack_pointer_rtx)
3428 return 1;
3429 default:
3430 break;
3431 }
3432 return 0;
3433 }
3434
3435 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3436 int
3437 loc_mentioned_in_p (rtx *loc, const_rtx in)
3438 {
3439 enum rtx_code code;
3440 const char *fmt;
3441 int i, j;
3442
3443 if (!in)
3444 return 0;
3445
3446 code = GET_CODE (in);
3447 fmt = GET_RTX_FORMAT (code);
3448 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3449 {
3450 if (fmt[i] == 'e')
3451 {
3452 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3453 return 1;
3454 }
3455 else if (fmt[i] == 'E')
3456 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3457 if (loc == &XVECEXP (in, i, j)
3458 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3459 return 1;
3460 }
3461 return 0;
3462 }
3463
3464 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3465 and SUBREG_BYTE, return the bit offset where the subreg begins
3466 (counting from the least significant bit of the operand). */
3467
3468 unsigned int
3469 subreg_lsb_1 (machine_mode outer_mode,
3470 machine_mode inner_mode,
3471 unsigned int subreg_byte)
3472 {
3473 unsigned int bitpos;
3474 unsigned int byte;
3475 unsigned int word;
3476
3477 /* A paradoxical subreg begins at bit position 0. */
3478 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3479 return 0;
3480
3481 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3482 /* If the subreg crosses a word boundary ensure that
3483 it also begins and ends on a word boundary. */
3484 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3485 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3486 && (subreg_byte % UNITS_PER_WORD
3487 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3488
3489 if (WORDS_BIG_ENDIAN)
3490 word = (GET_MODE_SIZE (inner_mode)
3491 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3492 else
3493 word = subreg_byte / UNITS_PER_WORD;
3494 bitpos = word * BITS_PER_WORD;
3495
3496 if (BYTES_BIG_ENDIAN)
3497 byte = (GET_MODE_SIZE (inner_mode)
3498 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3499 else
3500 byte = subreg_byte % UNITS_PER_WORD;
3501 bitpos += byte * BITS_PER_UNIT;
3502
3503 return bitpos;
3504 }
3505
3506 /* Given a subreg X, return the bit offset where the subreg begins
3507 (counting from the least significant bit of the reg). */
3508
3509 unsigned int
3510 subreg_lsb (const_rtx x)
3511 {
3512 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3513 SUBREG_BYTE (x));
3514 }
3515
3516 /* Fill in information about a subreg of a hard register.
3517 xregno - A regno of an inner hard subreg_reg (or what will become one).
3518 xmode - The mode of xregno.
3519 offset - The byte offset.
3520 ymode - The mode of a top level SUBREG (or what may become one).
3521 info - Pointer to structure to fill in.
3522
3523 Rather than considering one particular inner register (and thus one
3524 particular "outer" register) in isolation, this function really uses
3525 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3526 function does not check whether adding INFO->offset to XREGNO gives
3527 a valid hard register; even if INFO->offset + XREGNO is out of range,
3528 there might be another register of the same type that is in range.
3529 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3530 register, since that can depend on things like whether the final
3531 register number is even or odd. Callers that want to check whether
3532 this particular subreg can be replaced by a simple (reg ...) should
3533 use simplify_subreg_regno. */
3534
3535 void
3536 subreg_get_info (unsigned int xregno, machine_mode xmode,
3537 unsigned int offset, machine_mode ymode,
3538 struct subreg_info *info)
3539 {
3540 int nregs_xmode, nregs_ymode;
3541 int mode_multiple, nregs_multiple;
3542 int offset_adj, y_offset, y_offset_adj;
3543 int regsize_xmode, regsize_ymode;
3544 bool rknown;
3545
3546 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3547
3548 rknown = false;
3549
3550 /* If there are holes in a non-scalar mode in registers, we expect
3551 that it is made up of its units concatenated together. */
3552 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3553 {
3554 machine_mode xmode_unit;
3555
3556 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3557 xmode_unit = GET_MODE_INNER (xmode);
3558 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3559 gcc_assert (nregs_xmode
3560 == (GET_MODE_NUNITS (xmode)
3561 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3562 gcc_assert (hard_regno_nregs[xregno][xmode]
3563 == (hard_regno_nregs[xregno][xmode_unit]
3564 * GET_MODE_NUNITS (xmode)));
3565
3566 /* You can only ask for a SUBREG of a value with holes in the middle
3567 if you don't cross the holes. (Such a SUBREG should be done by
3568 picking a different register class, or doing it in memory if
3569 necessary.) An example of a value with holes is XCmode on 32-bit
3570 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3571 3 for each part, but in memory it's two 128-bit parts.
3572 Padding is assumed to be at the end (not necessarily the 'high part')
3573 of each unit. */
3574 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3575 < GET_MODE_NUNITS (xmode))
3576 && (offset / GET_MODE_SIZE (xmode_unit)
3577 != ((offset + GET_MODE_SIZE (ymode) - 1)
3578 / GET_MODE_SIZE (xmode_unit))))
3579 {
3580 info->representable_p = false;
3581 rknown = true;
3582 }
3583 }
3584 else
3585 nregs_xmode = hard_regno_nregs[xregno][xmode];
3586
3587 nregs_ymode = hard_regno_nregs[xregno][ymode];
3588
3589 /* Paradoxical subregs are otherwise valid. */
3590 if (!rknown
3591 && offset == 0
3592 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3593 {
3594 info->representable_p = true;
3595 /* If this is a big endian paradoxical subreg, which uses more
3596 actual hard registers than the original register, we must
3597 return a negative offset so that we find the proper highpart
3598 of the register. */
3599 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3600 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3601 info->offset = nregs_xmode - nregs_ymode;
3602 else
3603 info->offset = 0;
3604 info->nregs = nregs_ymode;
3605 return;
3606 }
3607
3608 /* If registers store different numbers of bits in the different
3609 modes, we cannot generally form this subreg. */
3610 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3611 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3612 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3613 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3614 {
3615 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3616 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3617 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3618 {
3619 info->representable_p = false;
3620 info->nregs
3621 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3622 info->offset = offset / regsize_xmode;
3623 return;
3624 }
3625 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3626 {
3627 info->representable_p = false;
3628 info->nregs
3629 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3630 info->offset = offset / regsize_xmode;
3631 return;
3632 }
3633 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3634 would go outside of XMODE. */
3635 if (!rknown
3636 && GET_MODE_SIZE (ymode) + offset > GET_MODE_SIZE (xmode))
3637 {
3638 info->representable_p = false;
3639 info->nregs = nregs_ymode;
3640 info->offset = offset / regsize_xmode;
3641 return;
3642 }
3643 /* Quick exit for the simple and common case of extracting whole
3644 subregisters from a multiregister value. */
3645 /* ??? It would be better to integrate this into the code below,
3646 if we can generalize the concept enough and figure out how
3647 odd-sized modes can coexist with the other weird cases we support. */
3648 if (!rknown
3649 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3650 && regsize_xmode == regsize_ymode
3651 && (offset % regsize_ymode) == 0)
3652 {
3653 info->representable_p = true;
3654 info->nregs = nregs_ymode;
3655 info->offset = offset / regsize_ymode;
3656 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3657 return;
3658 }
3659 }
3660
3661 /* Lowpart subregs are otherwise valid. */
3662 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3663 {
3664 info->representable_p = true;
3665 rknown = true;
3666
3667 if (offset == 0 || nregs_xmode == nregs_ymode)
3668 {
3669 info->offset = 0;
3670 info->nregs = nregs_ymode;
3671 return;
3672 }
3673 }
3674
3675 /* This should always pass, otherwise we don't know how to verify
3676 the constraint. These conditions may be relaxed but
3677 subreg_regno_offset would need to be redesigned. */
3678 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3679 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3680
3681 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3682 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3683 {
3684 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3685 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3686 HOST_WIDE_INT off_low = offset & (ysize - 1);
3687 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3688 offset = (xsize - ysize - off_high) | off_low;
3689 }
3690 /* The XMODE value can be seen as a vector of NREGS_XMODE
3691 values. The subreg must represent a lowpart of given field.
3692 Compute what field it is. */
3693 offset_adj = offset;
3694 offset_adj -= subreg_lowpart_offset (ymode,
3695 mode_for_size (GET_MODE_BITSIZE (xmode)
3696 / nregs_xmode,
3697 MODE_INT, 0));
3698
3699 /* Size of ymode must not be greater than the size of xmode. */
3700 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3701 gcc_assert (mode_multiple != 0);
3702
3703 y_offset = offset / GET_MODE_SIZE (ymode);
3704 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3705 nregs_multiple = nregs_xmode / nregs_ymode;
3706
3707 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3708 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3709
3710 if (!rknown)
3711 {
3712 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3713 rknown = true;
3714 }
3715 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3716 info->nregs = nregs_ymode;
3717 }
3718
3719 /* This function returns the regno offset of a subreg expression.
3720 xregno - A regno of an inner hard subreg_reg (or what will become one).
3721 xmode - The mode of xregno.
3722 offset - The byte offset.
3723 ymode - The mode of a top level SUBREG (or what may become one).
3724 RETURN - The regno offset which would be used. */
3725 unsigned int
3726 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3727 unsigned int offset, machine_mode ymode)
3728 {
3729 struct subreg_info info;
3730 subreg_get_info (xregno, xmode, offset, ymode, &info);
3731 return info.offset;
3732 }
3733
3734 /* This function returns true when the offset is representable via
3735 subreg_offset in the given regno.
3736 xregno - A regno of an inner hard subreg_reg (or what will become one).
3737 xmode - The mode of xregno.
3738 offset - The byte offset.
3739 ymode - The mode of a top level SUBREG (or what may become one).
3740 RETURN - Whether the offset is representable. */
3741 bool
3742 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3743 unsigned int offset, machine_mode ymode)
3744 {
3745 struct subreg_info info;
3746 subreg_get_info (xregno, xmode, offset, ymode, &info);
3747 return info.representable_p;
3748 }
3749
3750 /* Return the number of a YMODE register to which
3751
3752 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3753
3754 can be simplified. Return -1 if the subreg can't be simplified.
3755
3756 XREGNO is a hard register number. */
3757
3758 int
3759 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3760 unsigned int offset, machine_mode ymode)
3761 {
3762 struct subreg_info info;
3763 unsigned int yregno;
3764
3765 #ifdef CANNOT_CHANGE_MODE_CLASS
3766 /* Give the backend a chance to disallow the mode change. */
3767 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3768 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3769 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3770 /* We can use mode change in LRA for some transformations. */
3771 && ! lra_in_progress)
3772 return -1;
3773 #endif
3774
3775 /* We shouldn't simplify stack-related registers. */
3776 if ((!reload_completed || frame_pointer_needed)
3777 && xregno == FRAME_POINTER_REGNUM)
3778 return -1;
3779
3780 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3781 && xregno == ARG_POINTER_REGNUM)
3782 return -1;
3783
3784 if (xregno == STACK_POINTER_REGNUM
3785 /* We should convert hard stack register in LRA if it is
3786 possible. */
3787 && ! lra_in_progress)
3788 return -1;
3789
3790 /* Try to get the register offset. */
3791 subreg_get_info (xregno, xmode, offset, ymode, &info);
3792 if (!info.representable_p)
3793 return -1;
3794
3795 /* Make sure that the offsetted register value is in range. */
3796 yregno = xregno + info.offset;
3797 if (!HARD_REGISTER_NUM_P (yregno))
3798 return -1;
3799
3800 /* See whether (reg:YMODE YREGNO) is valid.
3801
3802 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3803 This is a kludge to work around how complex FP arguments are passed
3804 on IA-64 and should be fixed. See PR target/49226. */
3805 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3806 && HARD_REGNO_MODE_OK (xregno, xmode))
3807 return -1;
3808
3809 return (int) yregno;
3810 }
3811
3812 /* Return the final regno that a subreg expression refers to. */
3813 unsigned int
3814 subreg_regno (const_rtx x)
3815 {
3816 unsigned int ret;
3817 rtx subreg = SUBREG_REG (x);
3818 int regno = REGNO (subreg);
3819
3820 ret = regno + subreg_regno_offset (regno,
3821 GET_MODE (subreg),
3822 SUBREG_BYTE (x),
3823 GET_MODE (x));
3824 return ret;
3825
3826 }
3827
3828 /* Return the number of registers that a subreg expression refers
3829 to. */
3830 unsigned int
3831 subreg_nregs (const_rtx x)
3832 {
3833 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3834 }
3835
3836 /* Return the number of registers that a subreg REG with REGNO
3837 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3838 changed so that the regno can be passed in. */
3839
3840 unsigned int
3841 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3842 {
3843 struct subreg_info info;
3844 rtx subreg = SUBREG_REG (x);
3845
3846 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3847 &info);
3848 return info.nregs;
3849 }
3850
3851
3852 struct parms_set_data
3853 {
3854 int nregs;
3855 HARD_REG_SET regs;
3856 };
3857
3858 /* Helper function for noticing stores to parameter registers. */
3859 static void
3860 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3861 {
3862 struct parms_set_data *const d = (struct parms_set_data *) data;
3863 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3864 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3865 {
3866 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3867 d->nregs--;
3868 }
3869 }
3870
3871 /* Look backward for first parameter to be loaded.
3872 Note that loads of all parameters will not necessarily be
3873 found if CSE has eliminated some of them (e.g., an argument
3874 to the outer function is passed down as a parameter).
3875 Do not skip BOUNDARY. */
3876 rtx_insn *
3877 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3878 {
3879 struct parms_set_data parm;
3880 rtx p;
3881 rtx_insn *before, *first_set;
3882
3883 /* Since different machines initialize their parameter registers
3884 in different orders, assume nothing. Collect the set of all
3885 parameter registers. */
3886 CLEAR_HARD_REG_SET (parm.regs);
3887 parm.nregs = 0;
3888 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3889 if (GET_CODE (XEXP (p, 0)) == USE
3890 && REG_P (XEXP (XEXP (p, 0), 0)))
3891 {
3892 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3893
3894 /* We only care about registers which can hold function
3895 arguments. */
3896 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3897 continue;
3898
3899 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3900 parm.nregs++;
3901 }
3902 before = call_insn;
3903 first_set = call_insn;
3904
3905 /* Search backward for the first set of a register in this set. */
3906 while (parm.nregs && before != boundary)
3907 {
3908 before = PREV_INSN (before);
3909
3910 /* It is possible that some loads got CSEed from one call to
3911 another. Stop in that case. */
3912 if (CALL_P (before))
3913 break;
3914
3915 /* Our caller needs either ensure that we will find all sets
3916 (in case code has not been optimized yet), or take care
3917 for possible labels in a way by setting boundary to preceding
3918 CODE_LABEL. */
3919 if (LABEL_P (before))
3920 {
3921 gcc_assert (before == boundary);
3922 break;
3923 }
3924
3925 if (INSN_P (before))
3926 {
3927 int nregs_old = parm.nregs;
3928 note_stores (PATTERN (before), parms_set, &parm);
3929 /* If we found something that did not set a parameter reg,
3930 we're done. Do not keep going, as that might result
3931 in hoisting an insn before the setting of a pseudo
3932 that is used by the hoisted insn. */
3933 if (nregs_old != parm.nregs)
3934 first_set = before;
3935 else
3936 break;
3937 }
3938 }
3939 return first_set;
3940 }
3941
3942 /* Return true if we should avoid inserting code between INSN and preceding
3943 call instruction. */
3944
3945 bool
3946 keep_with_call_p (const rtx_insn *insn)
3947 {
3948 rtx set;
3949
3950 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3951 {
3952 if (REG_P (SET_DEST (set))
3953 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3954 && fixed_regs[REGNO (SET_DEST (set))]
3955 && general_operand (SET_SRC (set), VOIDmode))
3956 return true;
3957 if (REG_P (SET_SRC (set))
3958 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3959 && REG_P (SET_DEST (set))
3960 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3961 return true;
3962 /* There may be a stack pop just after the call and before the store
3963 of the return register. Search for the actual store when deciding
3964 if we can break or not. */
3965 if (SET_DEST (set) == stack_pointer_rtx)
3966 {
3967 /* This CONST_CAST is okay because next_nonnote_insn just
3968 returns its argument and we assign it to a const_rtx
3969 variable. */
3970 const rtx_insn *i2
3971 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3972 if (i2 && keep_with_call_p (i2))
3973 return true;
3974 }
3975 }
3976 return false;
3977 }
3978
3979 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3980 to non-complex jumps. That is, direct unconditional, conditional,
3981 and tablejumps, but not computed jumps or returns. It also does
3982 not apply to the fallthru case of a conditional jump. */
3983
3984 bool
3985 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
3986 {
3987 rtx tmp = JUMP_LABEL (jump_insn);
3988 rtx_jump_table_data *table;
3989
3990 if (label == tmp)
3991 return true;
3992
3993 if (tablejump_p (jump_insn, NULL, &table))
3994 {
3995 rtvec vec = table->get_labels ();
3996 int i, veclen = GET_NUM_ELEM (vec);
3997
3998 for (i = 0; i < veclen; ++i)
3999 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4000 return true;
4001 }
4002
4003 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4004 return true;
4005
4006 return false;
4007 }
4008
4009 \f
4010 /* Return an estimate of the cost of computing rtx X.
4011 One use is in cse, to decide which expression to keep in the hash table.
4012 Another is in rtl generation, to pick the cheapest way to multiply.
4013 Other uses like the latter are expected in the future.
4014
4015 X appears as operand OPNO in an expression with code OUTER_CODE.
4016 SPEED specifies whether costs optimized for speed or size should
4017 be returned. */
4018
4019 int
4020 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4021 int opno, bool speed)
4022 {
4023 int i, j;
4024 enum rtx_code code;
4025 const char *fmt;
4026 int total;
4027 int factor;
4028
4029 if (x == 0)
4030 return 0;
4031
4032 if (GET_MODE (x) != VOIDmode)
4033 mode = GET_MODE (x);
4034
4035 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4036 many insns, taking N times as long. */
4037 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4038 if (factor == 0)
4039 factor = 1;
4040
4041 /* Compute the default costs of certain things.
4042 Note that targetm.rtx_costs can override the defaults. */
4043
4044 code = GET_CODE (x);
4045 switch (code)
4046 {
4047 case MULT:
4048 /* Multiplication has time-complexity O(N*N), where N is the
4049 number of units (translated from digits) when using
4050 schoolbook long multiplication. */
4051 total = factor * factor * COSTS_N_INSNS (5);
4052 break;
4053 case DIV:
4054 case UDIV:
4055 case MOD:
4056 case UMOD:
4057 /* Similarly, complexity for schoolbook long division. */
4058 total = factor * factor * COSTS_N_INSNS (7);
4059 break;
4060 case USE:
4061 /* Used in combine.c as a marker. */
4062 total = 0;
4063 break;
4064 case SET:
4065 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4066 the mode for the factor. */
4067 mode = GET_MODE (SET_DEST (x));
4068 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4069 if (factor == 0)
4070 factor = 1;
4071 /* FALLTHRU */
4072 default:
4073 total = factor * COSTS_N_INSNS (1);
4074 }
4075
4076 switch (code)
4077 {
4078 case REG:
4079 return 0;
4080
4081 case SUBREG:
4082 total = 0;
4083 /* If we can't tie these modes, make this expensive. The larger
4084 the mode, the more expensive it is. */
4085 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
4086 return COSTS_N_INSNS (2 + factor);
4087 break;
4088
4089 default:
4090 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4091 return total;
4092 break;
4093 }
4094
4095 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4096 which is already in total. */
4097
4098 fmt = GET_RTX_FORMAT (code);
4099 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4100 if (fmt[i] == 'e')
4101 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4102 else if (fmt[i] == 'E')
4103 for (j = 0; j < XVECLEN (x, i); j++)
4104 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4105
4106 return total;
4107 }
4108
4109 /* Fill in the structure C with information about both speed and size rtx
4110 costs for X, which is operand OPNO in an expression with code OUTER. */
4111
4112 void
4113 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4114 struct full_rtx_costs *c)
4115 {
4116 c->speed = rtx_cost (x, mode, outer, opno, true);
4117 c->size = rtx_cost (x, mode, outer, opno, false);
4118 }
4119
4120 \f
4121 /* Return cost of address expression X.
4122 Expect that X is properly formed address reference.
4123
4124 SPEED parameter specify whether costs optimized for speed or size should
4125 be returned. */
4126
4127 int
4128 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4129 {
4130 /* We may be asked for cost of various unusual addresses, such as operands
4131 of push instruction. It is not worthwhile to complicate writing
4132 of the target hook by such cases. */
4133
4134 if (!memory_address_addr_space_p (mode, x, as))
4135 return 1000;
4136
4137 return targetm.address_cost (x, mode, as, speed);
4138 }
4139
4140 /* If the target doesn't override, compute the cost as with arithmetic. */
4141
4142 int
4143 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4144 {
4145 return rtx_cost (x, Pmode, MEM, 0, speed);
4146 }
4147 \f
4148
4149 unsigned HOST_WIDE_INT
4150 nonzero_bits (const_rtx x, machine_mode mode)
4151 {
4152 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4153 }
4154
4155 unsigned int
4156 num_sign_bit_copies (const_rtx x, machine_mode mode)
4157 {
4158 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4159 }
4160
4161 /* Return true if nonzero_bits1 might recurse into both operands
4162 of X. */
4163
4164 static inline bool
4165 nonzero_bits_binary_arith_p (const_rtx x)
4166 {
4167 if (!ARITHMETIC_P (x))
4168 return false;
4169 switch (GET_CODE (x))
4170 {
4171 case AND:
4172 case XOR:
4173 case IOR:
4174 case UMIN:
4175 case UMAX:
4176 case SMIN:
4177 case SMAX:
4178 case PLUS:
4179 case MINUS:
4180 case MULT:
4181 case DIV:
4182 case UDIV:
4183 case MOD:
4184 case UMOD:
4185 return true;
4186 default:
4187 return false;
4188 }
4189 }
4190
4191 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4192 It avoids exponential behavior in nonzero_bits1 when X has
4193 identical subexpressions on the first or the second level. */
4194
4195 static unsigned HOST_WIDE_INT
4196 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4197 machine_mode known_mode,
4198 unsigned HOST_WIDE_INT known_ret)
4199 {
4200 if (x == known_x && mode == known_mode)
4201 return known_ret;
4202
4203 /* Try to find identical subexpressions. If found call
4204 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4205 precomputed value for the subexpression as KNOWN_RET. */
4206
4207 if (nonzero_bits_binary_arith_p (x))
4208 {
4209 rtx x0 = XEXP (x, 0);
4210 rtx x1 = XEXP (x, 1);
4211
4212 /* Check the first level. */
4213 if (x0 == x1)
4214 return nonzero_bits1 (x, mode, x0, mode,
4215 cached_nonzero_bits (x0, mode, known_x,
4216 known_mode, known_ret));
4217
4218 /* Check the second level. */
4219 if (nonzero_bits_binary_arith_p (x0)
4220 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4221 return nonzero_bits1 (x, mode, x1, mode,
4222 cached_nonzero_bits (x1, mode, known_x,
4223 known_mode, known_ret));
4224
4225 if (nonzero_bits_binary_arith_p (x1)
4226 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4227 return nonzero_bits1 (x, mode, x0, mode,
4228 cached_nonzero_bits (x0, mode, known_x,
4229 known_mode, known_ret));
4230 }
4231
4232 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4233 }
4234
4235 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4236 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4237 is less useful. We can't allow both, because that results in exponential
4238 run time recursion. There is a nullstone testcase that triggered
4239 this. This macro avoids accidental uses of num_sign_bit_copies. */
4240 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4241
4242 /* Given an expression, X, compute which bits in X can be nonzero.
4243 We don't care about bits outside of those defined in MODE.
4244
4245 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4246 an arithmetic operation, we can do better. */
4247
4248 static unsigned HOST_WIDE_INT
4249 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4250 machine_mode known_mode,
4251 unsigned HOST_WIDE_INT known_ret)
4252 {
4253 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4254 unsigned HOST_WIDE_INT inner_nz;
4255 enum rtx_code code;
4256 machine_mode inner_mode;
4257 unsigned int mode_width = GET_MODE_PRECISION (mode);
4258
4259 /* For floating-point and vector values, assume all bits are needed. */
4260 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4261 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4262 return nonzero;
4263
4264 /* If X is wider than MODE, use its mode instead. */
4265 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4266 {
4267 mode = GET_MODE (x);
4268 nonzero = GET_MODE_MASK (mode);
4269 mode_width = GET_MODE_PRECISION (mode);
4270 }
4271
4272 if (mode_width > HOST_BITS_PER_WIDE_INT)
4273 /* Our only callers in this case look for single bit values. So
4274 just return the mode mask. Those tests will then be false. */
4275 return nonzero;
4276
4277 /* If MODE is wider than X, but both are a single word for both the host
4278 and target machines, we can compute this from which bits of the
4279 object might be nonzero in its own mode, taking into account the fact
4280 that on many CISC machines, accessing an object in a wider mode
4281 causes the high-order bits to become undefined. So they are
4282 not known to be zero. */
4283
4284 if (!WORD_REGISTER_OPERATIONS
4285 && GET_MODE (x) != VOIDmode
4286 && GET_MODE (x) != mode
4287 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4288 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4289 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4290 {
4291 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4292 known_x, known_mode, known_ret);
4293 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4294 return nonzero;
4295 }
4296
4297 /* Please keep nonzero_bits_binary_arith_p above in sync with
4298 the code in the switch below. */
4299 code = GET_CODE (x);
4300 switch (code)
4301 {
4302 case REG:
4303 #if defined(POINTERS_EXTEND_UNSIGNED)
4304 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4305 all the bits above ptr_mode are known to be zero. */
4306 /* As we do not know which address space the pointer is referring to,
4307 we can do this only if the target does not support different pointer
4308 or address modes depending on the address space. */
4309 if (target_default_pointer_address_modes_p ()
4310 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4311 && REG_POINTER (x)
4312 && !targetm.have_ptr_extend ())
4313 nonzero &= GET_MODE_MASK (ptr_mode);
4314 #endif
4315
4316 /* Include declared information about alignment of pointers. */
4317 /* ??? We don't properly preserve REG_POINTER changes across
4318 pointer-to-integer casts, so we can't trust it except for
4319 things that we know must be pointers. See execute/960116-1.c. */
4320 if ((x == stack_pointer_rtx
4321 || x == frame_pointer_rtx
4322 || x == arg_pointer_rtx)
4323 && REGNO_POINTER_ALIGN (REGNO (x)))
4324 {
4325 unsigned HOST_WIDE_INT alignment
4326 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4327
4328 #ifdef PUSH_ROUNDING
4329 /* If PUSH_ROUNDING is defined, it is possible for the
4330 stack to be momentarily aligned only to that amount,
4331 so we pick the least alignment. */
4332 if (x == stack_pointer_rtx && PUSH_ARGS)
4333 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4334 alignment);
4335 #endif
4336
4337 nonzero &= ~(alignment - 1);
4338 }
4339
4340 {
4341 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4342 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4343 known_mode, known_ret,
4344 &nonzero_for_hook);
4345
4346 if (new_rtx)
4347 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4348 known_mode, known_ret);
4349
4350 return nonzero_for_hook;
4351 }
4352
4353 case CONST_INT:
4354 /* If X is negative in MODE, sign-extend the value. */
4355 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
4356 && mode_width < BITS_PER_WORD
4357 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1)))
4358 != 0)
4359 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4360
4361 return UINTVAL (x);
4362
4363 case MEM:
4364 #ifdef LOAD_EXTEND_OP
4365 /* In many, if not most, RISC machines, reading a byte from memory
4366 zeros the rest of the register. Noticing that fact saves a lot
4367 of extra zero-extends. */
4368 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4369 nonzero &= GET_MODE_MASK (GET_MODE (x));
4370 #endif
4371 break;
4372
4373 case EQ: case NE:
4374 case UNEQ: case LTGT:
4375 case GT: case GTU: case UNGT:
4376 case LT: case LTU: case UNLT:
4377 case GE: case GEU: case UNGE:
4378 case LE: case LEU: case UNLE:
4379 case UNORDERED: case ORDERED:
4380 /* If this produces an integer result, we know which bits are set.
4381 Code here used to clear bits outside the mode of X, but that is
4382 now done above. */
4383 /* Mind that MODE is the mode the caller wants to look at this
4384 operation in, and not the actual operation mode. We can wind
4385 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4386 that describes the results of a vector compare. */
4387 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4388 && mode_width <= HOST_BITS_PER_WIDE_INT)
4389 nonzero = STORE_FLAG_VALUE;
4390 break;
4391
4392 case NEG:
4393 #if 0
4394 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4395 and num_sign_bit_copies. */
4396 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4397 == GET_MODE_PRECISION (GET_MODE (x)))
4398 nonzero = 1;
4399 #endif
4400
4401 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4402 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4403 break;
4404
4405 case ABS:
4406 #if 0
4407 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4408 and num_sign_bit_copies. */
4409 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4410 == GET_MODE_PRECISION (GET_MODE (x)))
4411 nonzero = 1;
4412 #endif
4413 break;
4414
4415 case TRUNCATE:
4416 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4417 known_x, known_mode, known_ret)
4418 & GET_MODE_MASK (mode));
4419 break;
4420
4421 case ZERO_EXTEND:
4422 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4423 known_x, known_mode, known_ret);
4424 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4425 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4426 break;
4427
4428 case SIGN_EXTEND:
4429 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4430 Otherwise, show all the bits in the outer mode but not the inner
4431 may be nonzero. */
4432 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4433 known_x, known_mode, known_ret);
4434 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4435 {
4436 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4437 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4438 inner_nz |= (GET_MODE_MASK (mode)
4439 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4440 }
4441
4442 nonzero &= inner_nz;
4443 break;
4444
4445 case AND:
4446 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4447 known_x, known_mode, known_ret)
4448 & cached_nonzero_bits (XEXP (x, 1), mode,
4449 known_x, known_mode, known_ret);
4450 break;
4451
4452 case XOR: case IOR:
4453 case UMIN: case UMAX: case SMIN: case SMAX:
4454 {
4455 unsigned HOST_WIDE_INT nonzero0
4456 = cached_nonzero_bits (XEXP (x, 0), mode,
4457 known_x, known_mode, known_ret);
4458
4459 /* Don't call nonzero_bits for the second time if it cannot change
4460 anything. */
4461 if ((nonzero & nonzero0) != nonzero)
4462 nonzero &= nonzero0
4463 | cached_nonzero_bits (XEXP (x, 1), mode,
4464 known_x, known_mode, known_ret);
4465 }
4466 break;
4467
4468 case PLUS: case MINUS:
4469 case MULT:
4470 case DIV: case UDIV:
4471 case MOD: case UMOD:
4472 /* We can apply the rules of arithmetic to compute the number of
4473 high- and low-order zero bits of these operations. We start by
4474 computing the width (position of the highest-order nonzero bit)
4475 and the number of low-order zero bits for each value. */
4476 {
4477 unsigned HOST_WIDE_INT nz0
4478 = cached_nonzero_bits (XEXP (x, 0), mode,
4479 known_x, known_mode, known_ret);
4480 unsigned HOST_WIDE_INT nz1
4481 = cached_nonzero_bits (XEXP (x, 1), mode,
4482 known_x, known_mode, known_ret);
4483 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4484 int width0 = floor_log2 (nz0) + 1;
4485 int width1 = floor_log2 (nz1) + 1;
4486 int low0 = ctz_or_zero (nz0);
4487 int low1 = ctz_or_zero (nz1);
4488 unsigned HOST_WIDE_INT op0_maybe_minusp
4489 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4490 unsigned HOST_WIDE_INT op1_maybe_minusp
4491 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4492 unsigned int result_width = mode_width;
4493 int result_low = 0;
4494
4495 switch (code)
4496 {
4497 case PLUS:
4498 result_width = MAX (width0, width1) + 1;
4499 result_low = MIN (low0, low1);
4500 break;
4501 case MINUS:
4502 result_low = MIN (low0, low1);
4503 break;
4504 case MULT:
4505 result_width = width0 + width1;
4506 result_low = low0 + low1;
4507 break;
4508 case DIV:
4509 if (width1 == 0)
4510 break;
4511 if (!op0_maybe_minusp && !op1_maybe_minusp)
4512 result_width = width0;
4513 break;
4514 case UDIV:
4515 if (width1 == 0)
4516 break;
4517 result_width = width0;
4518 break;
4519 case MOD:
4520 if (width1 == 0)
4521 break;
4522 if (!op0_maybe_minusp && !op1_maybe_minusp)
4523 result_width = MIN (width0, width1);
4524 result_low = MIN (low0, low1);
4525 break;
4526 case UMOD:
4527 if (width1 == 0)
4528 break;
4529 result_width = MIN (width0, width1);
4530 result_low = MIN (low0, low1);
4531 break;
4532 default:
4533 gcc_unreachable ();
4534 }
4535
4536 if (result_width < mode_width)
4537 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4538
4539 if (result_low > 0)
4540 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4541 }
4542 break;
4543
4544 case ZERO_EXTRACT:
4545 if (CONST_INT_P (XEXP (x, 1))
4546 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4547 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4548 break;
4549
4550 case SUBREG:
4551 /* If this is a SUBREG formed for a promoted variable that has
4552 been zero-extended, we know that at least the high-order bits
4553 are zero, though others might be too. */
4554
4555 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4556 nonzero = GET_MODE_MASK (GET_MODE (x))
4557 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4558 known_x, known_mode, known_ret);
4559
4560 inner_mode = GET_MODE (SUBREG_REG (x));
4561 /* If the inner mode is a single word for both the host and target
4562 machines, we can compute this from which bits of the inner
4563 object might be nonzero. */
4564 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4565 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4566 {
4567 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4568 known_x, known_mode, known_ret);
4569
4570 #ifdef LOAD_EXTEND_OP
4571 /* If this is a typical RISC machine, we only have to worry
4572 about the way loads are extended. */
4573 if (WORD_REGISTER_OPERATIONS
4574 && ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4575 ? val_signbit_known_set_p (inner_mode, nonzero)
4576 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4577 || !MEM_P (SUBREG_REG (x))))
4578 #endif
4579 {
4580 /* On many CISC machines, accessing an object in a wider mode
4581 causes the high-order bits to become undefined. So they are
4582 not known to be zero. */
4583 if (GET_MODE_PRECISION (GET_MODE (x))
4584 > GET_MODE_PRECISION (inner_mode))
4585 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4586 & ~GET_MODE_MASK (inner_mode));
4587 }
4588 }
4589 break;
4590
4591 case ASHIFTRT:
4592 case LSHIFTRT:
4593 case ASHIFT:
4594 case ROTATE:
4595 /* The nonzero bits are in two classes: any bits within MODE
4596 that aren't in GET_MODE (x) are always significant. The rest of the
4597 nonzero bits are those that are significant in the operand of
4598 the shift when shifted the appropriate number of bits. This
4599 shows that high-order bits are cleared by the right shift and
4600 low-order bits by left shifts. */
4601 if (CONST_INT_P (XEXP (x, 1))
4602 && INTVAL (XEXP (x, 1)) >= 0
4603 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4604 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4605 {
4606 machine_mode inner_mode = GET_MODE (x);
4607 unsigned int width = GET_MODE_PRECISION (inner_mode);
4608 int count = INTVAL (XEXP (x, 1));
4609 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4610 unsigned HOST_WIDE_INT op_nonzero
4611 = cached_nonzero_bits (XEXP (x, 0), mode,
4612 known_x, known_mode, known_ret);
4613 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4614 unsigned HOST_WIDE_INT outer = 0;
4615
4616 if (mode_width > width)
4617 outer = (op_nonzero & nonzero & ~mode_mask);
4618
4619 if (code == LSHIFTRT)
4620 inner >>= count;
4621 else if (code == ASHIFTRT)
4622 {
4623 inner >>= count;
4624
4625 /* If the sign bit may have been nonzero before the shift, we
4626 need to mark all the places it could have been copied to
4627 by the shift as possibly nonzero. */
4628 if (inner & (HOST_WIDE_INT_1U << (width - 1 - count)))
4629 inner |= ((HOST_WIDE_INT_1U << count) - 1)
4630 << (width - count);
4631 }
4632 else if (code == ASHIFT)
4633 inner <<= count;
4634 else
4635 inner = ((inner << (count % width)
4636 | (inner >> (width - (count % width)))) & mode_mask);
4637
4638 nonzero &= (outer | inner);
4639 }
4640 break;
4641
4642 case FFS:
4643 case POPCOUNT:
4644 /* This is at most the number of bits in the mode. */
4645 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4646 break;
4647
4648 case CLZ:
4649 /* If CLZ has a known value at zero, then the nonzero bits are
4650 that value, plus the number of bits in the mode minus one. */
4651 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4652 nonzero
4653 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4654 else
4655 nonzero = -1;
4656 break;
4657
4658 case CTZ:
4659 /* If CTZ has a known value at zero, then the nonzero bits are
4660 that value, plus the number of bits in the mode minus one. */
4661 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4662 nonzero
4663 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4664 else
4665 nonzero = -1;
4666 break;
4667
4668 case CLRSB:
4669 /* This is at most the number of bits in the mode minus 1. */
4670 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4671 break;
4672
4673 case PARITY:
4674 nonzero = 1;
4675 break;
4676
4677 case IF_THEN_ELSE:
4678 {
4679 unsigned HOST_WIDE_INT nonzero_true
4680 = cached_nonzero_bits (XEXP (x, 1), mode,
4681 known_x, known_mode, known_ret);
4682
4683 /* Don't call nonzero_bits for the second time if it cannot change
4684 anything. */
4685 if ((nonzero & nonzero_true) != nonzero)
4686 nonzero &= nonzero_true
4687 | cached_nonzero_bits (XEXP (x, 2), mode,
4688 known_x, known_mode, known_ret);
4689 }
4690 break;
4691
4692 default:
4693 break;
4694 }
4695
4696 return nonzero;
4697 }
4698
4699 /* See the macro definition above. */
4700 #undef cached_num_sign_bit_copies
4701
4702 \f
4703 /* Return true if num_sign_bit_copies1 might recurse into both operands
4704 of X. */
4705
4706 static inline bool
4707 num_sign_bit_copies_binary_arith_p (const_rtx x)
4708 {
4709 if (!ARITHMETIC_P (x))
4710 return false;
4711 switch (GET_CODE (x))
4712 {
4713 case IOR:
4714 case AND:
4715 case XOR:
4716 case SMIN:
4717 case SMAX:
4718 case UMIN:
4719 case UMAX:
4720 case PLUS:
4721 case MINUS:
4722 case MULT:
4723 return true;
4724 default:
4725 return false;
4726 }
4727 }
4728
4729 /* The function cached_num_sign_bit_copies is a wrapper around
4730 num_sign_bit_copies1. It avoids exponential behavior in
4731 num_sign_bit_copies1 when X has identical subexpressions on the
4732 first or the second level. */
4733
4734 static unsigned int
4735 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4736 machine_mode known_mode,
4737 unsigned int known_ret)
4738 {
4739 if (x == known_x && mode == known_mode)
4740 return known_ret;
4741
4742 /* Try to find identical subexpressions. If found call
4743 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4744 the precomputed value for the subexpression as KNOWN_RET. */
4745
4746 if (num_sign_bit_copies_binary_arith_p (x))
4747 {
4748 rtx x0 = XEXP (x, 0);
4749 rtx x1 = XEXP (x, 1);
4750
4751 /* Check the first level. */
4752 if (x0 == x1)
4753 return
4754 num_sign_bit_copies1 (x, mode, x0, mode,
4755 cached_num_sign_bit_copies (x0, mode, known_x,
4756 known_mode,
4757 known_ret));
4758
4759 /* Check the second level. */
4760 if (num_sign_bit_copies_binary_arith_p (x0)
4761 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4762 return
4763 num_sign_bit_copies1 (x, mode, x1, mode,
4764 cached_num_sign_bit_copies (x1, mode, known_x,
4765 known_mode,
4766 known_ret));
4767
4768 if (num_sign_bit_copies_binary_arith_p (x1)
4769 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4770 return
4771 num_sign_bit_copies1 (x, mode, x0, mode,
4772 cached_num_sign_bit_copies (x0, mode, known_x,
4773 known_mode,
4774 known_ret));
4775 }
4776
4777 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4778 }
4779
4780 /* Return the number of bits at the high-order end of X that are known to
4781 be equal to the sign bit. X will be used in mode MODE; if MODE is
4782 VOIDmode, X will be used in its own mode. The returned value will always
4783 be between 1 and the number of bits in MODE. */
4784
4785 static unsigned int
4786 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4787 machine_mode known_mode,
4788 unsigned int known_ret)
4789 {
4790 enum rtx_code code = GET_CODE (x);
4791 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4792 int num0, num1, result;
4793 unsigned HOST_WIDE_INT nonzero;
4794
4795 /* If we weren't given a mode, use the mode of X. If the mode is still
4796 VOIDmode, we don't know anything. Likewise if one of the modes is
4797 floating-point. */
4798
4799 if (mode == VOIDmode)
4800 mode = GET_MODE (x);
4801
4802 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4803 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4804 return 1;
4805
4806 /* For a smaller object, just ignore the high bits. */
4807 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4808 {
4809 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4810 known_x, known_mode, known_ret);
4811 return MAX (1,
4812 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4813 }
4814
4815 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4816 {
4817 /* If this machine does not do all register operations on the entire
4818 register and MODE is wider than the mode of X, we can say nothing
4819 at all about the high-order bits. */
4820 if (!WORD_REGISTER_OPERATIONS)
4821 return 1;
4822
4823 /* Likewise on machines that do, if the mode of the object is smaller
4824 than a word and loads of that size don't sign extend, we can say
4825 nothing about the high order bits. */
4826 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4827 #ifdef LOAD_EXTEND_OP
4828 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4829 #endif
4830 )
4831 return 1;
4832 }
4833
4834 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4835 the code in the switch below. */
4836 switch (code)
4837 {
4838 case REG:
4839
4840 #if defined(POINTERS_EXTEND_UNSIGNED)
4841 /* If pointers extend signed and this is a pointer in Pmode, say that
4842 all the bits above ptr_mode are known to be sign bit copies. */
4843 /* As we do not know which address space the pointer is referring to,
4844 we can do this only if the target does not support different pointer
4845 or address modes depending on the address space. */
4846 if (target_default_pointer_address_modes_p ()
4847 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4848 && mode == Pmode && REG_POINTER (x)
4849 && !targetm.have_ptr_extend ())
4850 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4851 #endif
4852
4853 {
4854 unsigned int copies_for_hook = 1, copies = 1;
4855 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4856 known_mode, known_ret,
4857 &copies_for_hook);
4858
4859 if (new_rtx)
4860 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4861 known_mode, known_ret);
4862
4863 if (copies > 1 || copies_for_hook > 1)
4864 return MAX (copies, copies_for_hook);
4865
4866 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4867 }
4868 break;
4869
4870 case MEM:
4871 #ifdef LOAD_EXTEND_OP
4872 /* Some RISC machines sign-extend all loads of smaller than a word. */
4873 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4874 return MAX (1, ((int) bitwidth
4875 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4876 #endif
4877 break;
4878
4879 case CONST_INT:
4880 /* If the constant is negative, take its 1's complement and remask.
4881 Then see how many zero bits we have. */
4882 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4883 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4884 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
4885 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4886
4887 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4888
4889 case SUBREG:
4890 /* If this is a SUBREG for a promoted object that is sign-extended
4891 and we are looking at it in a wider mode, we know that at least the
4892 high-order bits are known to be sign bit copies. */
4893
4894 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4895 {
4896 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4897 known_x, known_mode, known_ret);
4898 return MAX ((int) bitwidth
4899 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4900 num0);
4901 }
4902
4903 /* For a smaller object, just ignore the high bits. */
4904 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4905 {
4906 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4907 known_x, known_mode, known_ret);
4908 return MAX (1, (num0
4909 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4910 - bitwidth)));
4911 }
4912
4913 #ifdef LOAD_EXTEND_OP
4914 /* For paradoxical SUBREGs on machines where all register operations
4915 affect the entire register, just look inside. Note that we are
4916 passing MODE to the recursive call, so the number of sign bit copies
4917 will remain relative to that mode, not the inner mode. */
4918
4919 /* This works only if loads sign extend. Otherwise, if we get a
4920 reload for the inner part, it may be loaded from the stack, and
4921 then we lose all sign bit copies that existed before the store
4922 to the stack. */
4923
4924 if (WORD_REGISTER_OPERATIONS
4925 && paradoxical_subreg_p (x)
4926 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4927 && MEM_P (SUBREG_REG (x)))
4928 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4929 known_x, known_mode, known_ret);
4930 #endif
4931 break;
4932
4933 case SIGN_EXTRACT:
4934 if (CONST_INT_P (XEXP (x, 1)))
4935 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4936 break;
4937
4938 case SIGN_EXTEND:
4939 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4940 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4941 known_x, known_mode, known_ret));
4942
4943 case TRUNCATE:
4944 /* For a smaller object, just ignore the high bits. */
4945 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4946 known_x, known_mode, known_ret);
4947 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4948 - bitwidth)));
4949
4950 case NOT:
4951 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4952 known_x, known_mode, known_ret);
4953
4954 case ROTATE: case ROTATERT:
4955 /* If we are rotating left by a number of bits less than the number
4956 of sign bit copies, we can just subtract that amount from the
4957 number. */
4958 if (CONST_INT_P (XEXP (x, 1))
4959 && INTVAL (XEXP (x, 1)) >= 0
4960 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4961 {
4962 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4963 known_x, known_mode, known_ret);
4964 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4965 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4966 }
4967 break;
4968
4969 case NEG:
4970 /* In general, this subtracts one sign bit copy. But if the value
4971 is known to be positive, the number of sign bit copies is the
4972 same as that of the input. Finally, if the input has just one bit
4973 that might be nonzero, all the bits are copies of the sign bit. */
4974 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4975 known_x, known_mode, known_ret);
4976 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4977 return num0 > 1 ? num0 - 1 : 1;
4978
4979 nonzero = nonzero_bits (XEXP (x, 0), mode);
4980 if (nonzero == 1)
4981 return bitwidth;
4982
4983 if (num0 > 1
4984 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
4985 num0--;
4986
4987 return num0;
4988
4989 case IOR: case AND: case XOR:
4990 case SMIN: case SMAX: case UMIN: case UMAX:
4991 /* Logical operations will preserve the number of sign-bit copies.
4992 MIN and MAX operations always return one of the operands. */
4993 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4994 known_x, known_mode, known_ret);
4995 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4996 known_x, known_mode, known_ret);
4997
4998 /* If num1 is clearing some of the top bits then regardless of
4999 the other term, we are guaranteed to have at least that many
5000 high-order zero bits. */
5001 if (code == AND
5002 && num1 > 1
5003 && bitwidth <= HOST_BITS_PER_WIDE_INT
5004 && CONST_INT_P (XEXP (x, 1))
5005 && (UINTVAL (XEXP (x, 1))
5006 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5007 return num1;
5008
5009 /* Similarly for IOR when setting high-order bits. */
5010 if (code == IOR
5011 && num1 > 1
5012 && bitwidth <= HOST_BITS_PER_WIDE_INT
5013 && CONST_INT_P (XEXP (x, 1))
5014 && (UINTVAL (XEXP (x, 1))
5015 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5016 return num1;
5017
5018 return MIN (num0, num1);
5019
5020 case PLUS: case MINUS:
5021 /* For addition and subtraction, we can have a 1-bit carry. However,
5022 if we are subtracting 1 from a positive number, there will not
5023 be such a carry. Furthermore, if the positive number is known to
5024 be 0 or 1, we know the result is either -1 or 0. */
5025
5026 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5027 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5028 {
5029 nonzero = nonzero_bits (XEXP (x, 0), mode);
5030 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5031 return (nonzero == 1 || nonzero == 0 ? bitwidth
5032 : bitwidth - floor_log2 (nonzero) - 1);
5033 }
5034
5035 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5036 known_x, known_mode, known_ret);
5037 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5038 known_x, known_mode, known_ret);
5039 result = MAX (1, MIN (num0, num1) - 1);
5040
5041 return result;
5042
5043 case MULT:
5044 /* The number of bits of the product is the sum of the number of
5045 bits of both terms. However, unless one of the terms if known
5046 to be positive, we must allow for an additional bit since negating
5047 a negative number can remove one sign bit copy. */
5048
5049 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5050 known_x, known_mode, known_ret);
5051 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5052 known_x, known_mode, known_ret);
5053
5054 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5055 if (result > 0
5056 && (bitwidth > HOST_BITS_PER_WIDE_INT
5057 || (((nonzero_bits (XEXP (x, 0), mode)
5058 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5059 && ((nonzero_bits (XEXP (x, 1), mode)
5060 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5061 != 0))))
5062 result--;
5063
5064 return MAX (1, result);
5065
5066 case UDIV:
5067 /* The result must be <= the first operand. If the first operand
5068 has the high bit set, we know nothing about the number of sign
5069 bit copies. */
5070 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5071 return 1;
5072 else if ((nonzero_bits (XEXP (x, 0), mode)
5073 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5074 return 1;
5075 else
5076 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5077 known_x, known_mode, known_ret);
5078
5079 case UMOD:
5080 /* The result must be <= the second operand. If the second operand
5081 has (or just might have) the high bit set, we know nothing about
5082 the number of sign bit copies. */
5083 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5084 return 1;
5085 else if ((nonzero_bits (XEXP (x, 1), mode)
5086 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5087 return 1;
5088 else
5089 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5090 known_x, known_mode, known_ret);
5091
5092 case DIV:
5093 /* Similar to unsigned division, except that we have to worry about
5094 the case where the divisor is negative, in which case we have
5095 to add 1. */
5096 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5097 known_x, known_mode, known_ret);
5098 if (result > 1
5099 && (bitwidth > HOST_BITS_PER_WIDE_INT
5100 || (nonzero_bits (XEXP (x, 1), mode)
5101 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5102 result--;
5103
5104 return result;
5105
5106 case MOD:
5107 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5108 known_x, known_mode, known_ret);
5109 if (result > 1
5110 && (bitwidth > HOST_BITS_PER_WIDE_INT
5111 || (nonzero_bits (XEXP (x, 1), mode)
5112 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5113 result--;
5114
5115 return result;
5116
5117 case ASHIFTRT:
5118 /* Shifts by a constant add to the number of bits equal to the
5119 sign bit. */
5120 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5121 known_x, known_mode, known_ret);
5122 if (CONST_INT_P (XEXP (x, 1))
5123 && INTVAL (XEXP (x, 1)) > 0
5124 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
5125 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5126
5127 return num0;
5128
5129 case ASHIFT:
5130 /* Left shifts destroy copies. */
5131 if (!CONST_INT_P (XEXP (x, 1))
5132 || INTVAL (XEXP (x, 1)) < 0
5133 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5134 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
5135 return 1;
5136
5137 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5138 known_x, known_mode, known_ret);
5139 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5140
5141 case IF_THEN_ELSE:
5142 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5143 known_x, known_mode, known_ret);
5144 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5145 known_x, known_mode, known_ret);
5146 return MIN (num0, num1);
5147
5148 case EQ: case NE: case GE: case GT: case LE: case LT:
5149 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5150 case GEU: case GTU: case LEU: case LTU:
5151 case UNORDERED: case ORDERED:
5152 /* If the constant is negative, take its 1's complement and remask.
5153 Then see how many zero bits we have. */
5154 nonzero = STORE_FLAG_VALUE;
5155 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5156 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5157 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5158
5159 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5160
5161 default:
5162 break;
5163 }
5164
5165 /* If we haven't been able to figure it out by one of the above rules,
5166 see if some of the high-order bits are known to be zero. If so,
5167 count those bits and return one less than that amount. If we can't
5168 safely compute the mask for this mode, always return BITWIDTH. */
5169
5170 bitwidth = GET_MODE_PRECISION (mode);
5171 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5172 return 1;
5173
5174 nonzero = nonzero_bits (x, mode);
5175 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5176 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5177 }
5178
5179 /* Calculate the rtx_cost of a single instruction. A return value of
5180 zero indicates an instruction pattern without a known cost. */
5181
5182 int
5183 insn_rtx_cost (rtx pat, bool speed)
5184 {
5185 int i, cost;
5186 rtx set;
5187
5188 /* Extract the single set rtx from the instruction pattern.
5189 We can't use single_set since we only have the pattern. */
5190 if (GET_CODE (pat) == SET)
5191 set = pat;
5192 else if (GET_CODE (pat) == PARALLEL)
5193 {
5194 set = NULL_RTX;
5195 for (i = 0; i < XVECLEN (pat, 0); i++)
5196 {
5197 rtx x = XVECEXP (pat, 0, i);
5198 if (GET_CODE (x) == SET)
5199 {
5200 if (set)
5201 return 0;
5202 set = x;
5203 }
5204 }
5205 if (!set)
5206 return 0;
5207 }
5208 else
5209 return 0;
5210
5211 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5212 return cost > 0 ? cost : COSTS_N_INSNS (1);
5213 }
5214
5215 /* Returns estimate on cost of computing SEQ. */
5216
5217 unsigned
5218 seq_cost (const rtx_insn *seq, bool speed)
5219 {
5220 unsigned cost = 0;
5221 rtx set;
5222
5223 for (; seq; seq = NEXT_INSN (seq))
5224 {
5225 set = single_set (seq);
5226 if (set)
5227 cost += set_rtx_cost (set, speed);
5228 else
5229 cost++;
5230 }
5231
5232 return cost;
5233 }
5234
5235 /* Given an insn INSN and condition COND, return the condition in a
5236 canonical form to simplify testing by callers. Specifically:
5237
5238 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5239 (2) Both operands will be machine operands; (cc0) will have been replaced.
5240 (3) If an operand is a constant, it will be the second operand.
5241 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5242 for GE, GEU, and LEU.
5243
5244 If the condition cannot be understood, or is an inequality floating-point
5245 comparison which needs to be reversed, 0 will be returned.
5246
5247 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5248
5249 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5250 insn used in locating the condition was found. If a replacement test
5251 of the condition is desired, it should be placed in front of that
5252 insn and we will be sure that the inputs are still valid.
5253
5254 If WANT_REG is nonzero, we wish the condition to be relative to that
5255 register, if possible. Therefore, do not canonicalize the condition
5256 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5257 to be a compare to a CC mode register.
5258
5259 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5260 and at INSN. */
5261
5262 rtx
5263 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5264 rtx_insn **earliest,
5265 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5266 {
5267 enum rtx_code code;
5268 rtx_insn *prev = insn;
5269 const_rtx set;
5270 rtx tem;
5271 rtx op0, op1;
5272 int reverse_code = 0;
5273 machine_mode mode;
5274 basic_block bb = BLOCK_FOR_INSN (insn);
5275
5276 code = GET_CODE (cond);
5277 mode = GET_MODE (cond);
5278 op0 = XEXP (cond, 0);
5279 op1 = XEXP (cond, 1);
5280
5281 if (reverse)
5282 code = reversed_comparison_code (cond, insn);
5283 if (code == UNKNOWN)
5284 return 0;
5285
5286 if (earliest)
5287 *earliest = insn;
5288
5289 /* If we are comparing a register with zero, see if the register is set
5290 in the previous insn to a COMPARE or a comparison operation. Perform
5291 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5292 in cse.c */
5293
5294 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5295 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5296 && op1 == CONST0_RTX (GET_MODE (op0))
5297 && op0 != want_reg)
5298 {
5299 /* Set nonzero when we find something of interest. */
5300 rtx x = 0;
5301
5302 /* If comparison with cc0, import actual comparison from compare
5303 insn. */
5304 if (op0 == cc0_rtx)
5305 {
5306 if ((prev = prev_nonnote_insn (prev)) == 0
5307 || !NONJUMP_INSN_P (prev)
5308 || (set = single_set (prev)) == 0
5309 || SET_DEST (set) != cc0_rtx)
5310 return 0;
5311
5312 op0 = SET_SRC (set);
5313 op1 = CONST0_RTX (GET_MODE (op0));
5314 if (earliest)
5315 *earliest = prev;
5316 }
5317
5318 /* If this is a COMPARE, pick up the two things being compared. */
5319 if (GET_CODE (op0) == COMPARE)
5320 {
5321 op1 = XEXP (op0, 1);
5322 op0 = XEXP (op0, 0);
5323 continue;
5324 }
5325 else if (!REG_P (op0))
5326 break;
5327
5328 /* Go back to the previous insn. Stop if it is not an INSN. We also
5329 stop if it isn't a single set or if it has a REG_INC note because
5330 we don't want to bother dealing with it. */
5331
5332 prev = prev_nonnote_nondebug_insn (prev);
5333
5334 if (prev == 0
5335 || !NONJUMP_INSN_P (prev)
5336 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5337 /* In cfglayout mode, there do not have to be labels at the
5338 beginning of a block, or jumps at the end, so the previous
5339 conditions would not stop us when we reach bb boundary. */
5340 || BLOCK_FOR_INSN (prev) != bb)
5341 break;
5342
5343 set = set_of (op0, prev);
5344
5345 if (set
5346 && (GET_CODE (set) != SET
5347 || !rtx_equal_p (SET_DEST (set), op0)))
5348 break;
5349
5350 /* If this is setting OP0, get what it sets it to if it looks
5351 relevant. */
5352 if (set)
5353 {
5354 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5355 #ifdef FLOAT_STORE_FLAG_VALUE
5356 REAL_VALUE_TYPE fsfv;
5357 #endif
5358
5359 /* ??? We may not combine comparisons done in a CCmode with
5360 comparisons not done in a CCmode. This is to aid targets
5361 like Alpha that have an IEEE compliant EQ instruction, and
5362 a non-IEEE compliant BEQ instruction. The use of CCmode is
5363 actually artificial, simply to prevent the combination, but
5364 should not affect other platforms.
5365
5366 However, we must allow VOIDmode comparisons to match either
5367 CCmode or non-CCmode comparison, because some ports have
5368 modeless comparisons inside branch patterns.
5369
5370 ??? This mode check should perhaps look more like the mode check
5371 in simplify_comparison in combine. */
5372 if (((GET_MODE_CLASS (mode) == MODE_CC)
5373 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5374 && mode != VOIDmode
5375 && inner_mode != VOIDmode)
5376 break;
5377 if (GET_CODE (SET_SRC (set)) == COMPARE
5378 || (((code == NE
5379 || (code == LT
5380 && val_signbit_known_set_p (inner_mode,
5381 STORE_FLAG_VALUE))
5382 #ifdef FLOAT_STORE_FLAG_VALUE
5383 || (code == LT
5384 && SCALAR_FLOAT_MODE_P (inner_mode)
5385 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5386 REAL_VALUE_NEGATIVE (fsfv)))
5387 #endif
5388 ))
5389 && COMPARISON_P (SET_SRC (set))))
5390 x = SET_SRC (set);
5391 else if (((code == EQ
5392 || (code == GE
5393 && val_signbit_known_set_p (inner_mode,
5394 STORE_FLAG_VALUE))
5395 #ifdef FLOAT_STORE_FLAG_VALUE
5396 || (code == GE
5397 && SCALAR_FLOAT_MODE_P (inner_mode)
5398 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5399 REAL_VALUE_NEGATIVE (fsfv)))
5400 #endif
5401 ))
5402 && COMPARISON_P (SET_SRC (set)))
5403 {
5404 reverse_code = 1;
5405 x = SET_SRC (set);
5406 }
5407 else if ((code == EQ || code == NE)
5408 && GET_CODE (SET_SRC (set)) == XOR)
5409 /* Handle sequences like:
5410
5411 (set op0 (xor X Y))
5412 ...(eq|ne op0 (const_int 0))...
5413
5414 in which case:
5415
5416 (eq op0 (const_int 0)) reduces to (eq X Y)
5417 (ne op0 (const_int 0)) reduces to (ne X Y)
5418
5419 This is the form used by MIPS16, for example. */
5420 x = SET_SRC (set);
5421 else
5422 break;
5423 }
5424
5425 else if (reg_set_p (op0, prev))
5426 /* If this sets OP0, but not directly, we have to give up. */
5427 break;
5428
5429 if (x)
5430 {
5431 /* If the caller is expecting the condition to be valid at INSN,
5432 make sure X doesn't change before INSN. */
5433 if (valid_at_insn_p)
5434 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5435 break;
5436 if (COMPARISON_P (x))
5437 code = GET_CODE (x);
5438 if (reverse_code)
5439 {
5440 code = reversed_comparison_code (x, prev);
5441 if (code == UNKNOWN)
5442 return 0;
5443 reverse_code = 0;
5444 }
5445
5446 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5447 if (earliest)
5448 *earliest = prev;
5449 }
5450 }
5451
5452 /* If constant is first, put it last. */
5453 if (CONSTANT_P (op0))
5454 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5455
5456 /* If OP0 is the result of a comparison, we weren't able to find what
5457 was really being compared, so fail. */
5458 if (!allow_cc_mode
5459 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5460 return 0;
5461
5462 /* Canonicalize any ordered comparison with integers involving equality
5463 if we can do computations in the relevant mode and we do not
5464 overflow. */
5465
5466 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5467 && CONST_INT_P (op1)
5468 && GET_MODE (op0) != VOIDmode
5469 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5470 {
5471 HOST_WIDE_INT const_val = INTVAL (op1);
5472 unsigned HOST_WIDE_INT uconst_val = const_val;
5473 unsigned HOST_WIDE_INT max_val
5474 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5475
5476 switch (code)
5477 {
5478 case LE:
5479 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5480 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5481 break;
5482
5483 /* When cross-compiling, const_val might be sign-extended from
5484 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5485 case GE:
5486 if ((const_val & max_val)
5487 != (HOST_WIDE_INT_1U
5488 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5489 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5490 break;
5491
5492 case LEU:
5493 if (uconst_val < max_val)
5494 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5495 break;
5496
5497 case GEU:
5498 if (uconst_val != 0)
5499 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5500 break;
5501
5502 default:
5503 break;
5504 }
5505 }
5506
5507 /* Never return CC0; return zero instead. */
5508 if (CC0_P (op0))
5509 return 0;
5510
5511 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5512 }
5513
5514 /* Given a jump insn JUMP, return the condition that will cause it to branch
5515 to its JUMP_LABEL. If the condition cannot be understood, or is an
5516 inequality floating-point comparison which needs to be reversed, 0 will
5517 be returned.
5518
5519 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5520 insn used in locating the condition was found. If a replacement test
5521 of the condition is desired, it should be placed in front of that
5522 insn and we will be sure that the inputs are still valid. If EARLIEST
5523 is null, the returned condition will be valid at INSN.
5524
5525 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5526 compare CC mode register.
5527
5528 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5529
5530 rtx
5531 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5532 int valid_at_insn_p)
5533 {
5534 rtx cond;
5535 int reverse;
5536 rtx set;
5537
5538 /* If this is not a standard conditional jump, we can't parse it. */
5539 if (!JUMP_P (jump)
5540 || ! any_condjump_p (jump))
5541 return 0;
5542 set = pc_set (jump);
5543
5544 cond = XEXP (SET_SRC (set), 0);
5545
5546 /* If this branches to JUMP_LABEL when the condition is false, reverse
5547 the condition. */
5548 reverse
5549 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5550 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5551
5552 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5553 allow_cc_mode, valid_at_insn_p);
5554 }
5555
5556 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5557 TARGET_MODE_REP_EXTENDED.
5558
5559 Note that we assume that the property of
5560 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5561 narrower than mode B. I.e., if A is a mode narrower than B then in
5562 order to be able to operate on it in mode B, mode A needs to
5563 satisfy the requirements set by the representation of mode B. */
5564
5565 static void
5566 init_num_sign_bit_copies_in_rep (void)
5567 {
5568 machine_mode mode, in_mode;
5569
5570 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5571 in_mode = GET_MODE_WIDER_MODE (mode))
5572 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5573 mode = GET_MODE_WIDER_MODE (mode))
5574 {
5575 machine_mode i;
5576
5577 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5578 extends to the next widest mode. */
5579 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5580 || GET_MODE_WIDER_MODE (mode) == in_mode);
5581
5582 /* We are in in_mode. Count how many bits outside of mode
5583 have to be copies of the sign-bit. */
5584 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5585 {
5586 machine_mode wider = GET_MODE_WIDER_MODE (i);
5587
5588 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5589 /* We can only check sign-bit copies starting from the
5590 top-bit. In order to be able to check the bits we
5591 have already seen we pretend that subsequent bits
5592 have to be sign-bit copies too. */
5593 || num_sign_bit_copies_in_rep [in_mode][mode])
5594 num_sign_bit_copies_in_rep [in_mode][mode]
5595 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5596 }
5597 }
5598 }
5599
5600 /* Suppose that truncation from the machine mode of X to MODE is not a
5601 no-op. See if there is anything special about X so that we can
5602 assume it already contains a truncated value of MODE. */
5603
5604 bool
5605 truncated_to_mode (machine_mode mode, const_rtx x)
5606 {
5607 /* This register has already been used in MODE without explicit
5608 truncation. */
5609 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5610 return true;
5611
5612 /* See if we already satisfy the requirements of MODE. If yes we
5613 can just switch to MODE. */
5614 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5615 && (num_sign_bit_copies (x, GET_MODE (x))
5616 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5617 return true;
5618
5619 return false;
5620 }
5621 \f
5622 /* Return true if RTX code CODE has a single sequence of zero or more
5623 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5624 entry in that case. */
5625
5626 static bool
5627 setup_reg_subrtx_bounds (unsigned int code)
5628 {
5629 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5630 unsigned int i = 0;
5631 for (; format[i] != 'e'; ++i)
5632 {
5633 if (!format[i])
5634 /* No subrtxes. Leave start and count as 0. */
5635 return true;
5636 if (format[i] == 'E' || format[i] == 'V')
5637 return false;
5638 }
5639
5640 /* Record the sequence of 'e's. */
5641 rtx_all_subrtx_bounds[code].start = i;
5642 do
5643 ++i;
5644 while (format[i] == 'e');
5645 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5646 /* rtl-iter.h relies on this. */
5647 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5648
5649 for (; format[i]; ++i)
5650 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5651 return false;
5652
5653 return true;
5654 }
5655
5656 /* Initialize rtx_all_subrtx_bounds. */
5657 void
5658 init_rtlanal (void)
5659 {
5660 int i;
5661 for (i = 0; i < NUM_RTX_CODE; i++)
5662 {
5663 if (!setup_reg_subrtx_bounds (i))
5664 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5665 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5666 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5667 }
5668
5669 init_num_sign_bit_copies_in_rep ();
5670 }
5671 \f
5672 /* Check whether this is a constant pool constant. */
5673 bool
5674 constant_pool_constant_p (rtx x)
5675 {
5676 x = avoid_constant_pool_reference (x);
5677 return CONST_DOUBLE_P (x);
5678 }
5679 \f
5680 /* If M is a bitmask that selects a field of low-order bits within an item but
5681 not the entire word, return the length of the field. Return -1 otherwise.
5682 M is used in machine mode MODE. */
5683
5684 int
5685 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5686 {
5687 if (mode != VOIDmode)
5688 {
5689 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5690 return -1;
5691 m &= GET_MODE_MASK (mode);
5692 }
5693
5694 return exact_log2 (m + 1);
5695 }
5696
5697 /* Return the mode of MEM's address. */
5698
5699 machine_mode
5700 get_address_mode (rtx mem)
5701 {
5702 machine_mode mode;
5703
5704 gcc_assert (MEM_P (mem));
5705 mode = GET_MODE (XEXP (mem, 0));
5706 if (mode != VOIDmode)
5707 return mode;
5708 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5709 }
5710 \f
5711 /* Split up a CONST_DOUBLE or integer constant rtx
5712 into two rtx's for single words,
5713 storing in *FIRST the word that comes first in memory in the target
5714 and in *SECOND the other.
5715
5716 TODO: This function needs to be rewritten to work on any size
5717 integer. */
5718
5719 void
5720 split_double (rtx value, rtx *first, rtx *second)
5721 {
5722 if (CONST_INT_P (value))
5723 {
5724 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5725 {
5726 /* In this case the CONST_INT holds both target words.
5727 Extract the bits from it into two word-sized pieces.
5728 Sign extend each half to HOST_WIDE_INT. */
5729 unsigned HOST_WIDE_INT low, high;
5730 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5731 unsigned bits_per_word = BITS_PER_WORD;
5732
5733 /* Set sign_bit to the most significant bit of a word. */
5734 sign_bit = 1;
5735 sign_bit <<= bits_per_word - 1;
5736
5737 /* Set mask so that all bits of the word are set. We could
5738 have used 1 << BITS_PER_WORD instead of basing the
5739 calculation on sign_bit. However, on machines where
5740 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5741 compiler warning, even though the code would never be
5742 executed. */
5743 mask = sign_bit << 1;
5744 mask--;
5745
5746 /* Set sign_extend as any remaining bits. */
5747 sign_extend = ~mask;
5748
5749 /* Pick the lower word and sign-extend it. */
5750 low = INTVAL (value);
5751 low &= mask;
5752 if (low & sign_bit)
5753 low |= sign_extend;
5754
5755 /* Pick the higher word, shifted to the least significant
5756 bits, and sign-extend it. */
5757 high = INTVAL (value);
5758 high >>= bits_per_word - 1;
5759 high >>= 1;
5760 high &= mask;
5761 if (high & sign_bit)
5762 high |= sign_extend;
5763
5764 /* Store the words in the target machine order. */
5765 if (WORDS_BIG_ENDIAN)
5766 {
5767 *first = GEN_INT (high);
5768 *second = GEN_INT (low);
5769 }
5770 else
5771 {
5772 *first = GEN_INT (low);
5773 *second = GEN_INT (high);
5774 }
5775 }
5776 else
5777 {
5778 /* The rule for using CONST_INT for a wider mode
5779 is that we regard the value as signed.
5780 So sign-extend it. */
5781 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5782 if (WORDS_BIG_ENDIAN)
5783 {
5784 *first = high;
5785 *second = value;
5786 }
5787 else
5788 {
5789 *first = value;
5790 *second = high;
5791 }
5792 }
5793 }
5794 else if (GET_CODE (value) == CONST_WIDE_INT)
5795 {
5796 /* All of this is scary code and needs to be converted to
5797 properly work with any size integer. */
5798 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5799 if (WORDS_BIG_ENDIAN)
5800 {
5801 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5802 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5803 }
5804 else
5805 {
5806 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5807 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5808 }
5809 }
5810 else if (!CONST_DOUBLE_P (value))
5811 {
5812 if (WORDS_BIG_ENDIAN)
5813 {
5814 *first = const0_rtx;
5815 *second = value;
5816 }
5817 else
5818 {
5819 *first = value;
5820 *second = const0_rtx;
5821 }
5822 }
5823 else if (GET_MODE (value) == VOIDmode
5824 /* This is the old way we did CONST_DOUBLE integers. */
5825 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5826 {
5827 /* In an integer, the words are defined as most and least significant.
5828 So order them by the target's convention. */
5829 if (WORDS_BIG_ENDIAN)
5830 {
5831 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5832 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5833 }
5834 else
5835 {
5836 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5837 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5838 }
5839 }
5840 else
5841 {
5842 long l[2];
5843
5844 /* Note, this converts the REAL_VALUE_TYPE to the target's
5845 format, splits up the floating point double and outputs
5846 exactly 32 bits of it into each of l[0] and l[1] --
5847 not necessarily BITS_PER_WORD bits. */
5848 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5849
5850 /* If 32 bits is an entire word for the target, but not for the host,
5851 then sign-extend on the host so that the number will look the same
5852 way on the host that it would on the target. See for instance
5853 simplify_unary_operation. The #if is needed to avoid compiler
5854 warnings. */
5855
5856 #if HOST_BITS_PER_LONG > 32
5857 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5858 {
5859 if (l[0] & ((long) 1 << 31))
5860 l[0] |= ((unsigned long) (-1) << 32);
5861 if (l[1] & ((long) 1 << 31))
5862 l[1] |= ((unsigned long) (-1) << 32);
5863 }
5864 #endif
5865
5866 *first = GEN_INT (l[0]);
5867 *second = GEN_INT (l[1]);
5868 }
5869 }
5870
5871 /* Return true if X is a sign_extract or zero_extract from the least
5872 significant bit. */
5873
5874 static bool
5875 lsb_bitfield_op_p (rtx x)
5876 {
5877 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5878 {
5879 machine_mode mode = GET_MODE (XEXP (x, 0));
5880 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5881 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5882
5883 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5884 }
5885 return false;
5886 }
5887
5888 /* Strip outer address "mutations" from LOC and return a pointer to the
5889 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5890 stripped expression there.
5891
5892 "Mutations" either convert between modes or apply some kind of
5893 extension, truncation or alignment. */
5894
5895 rtx *
5896 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5897 {
5898 for (;;)
5899 {
5900 enum rtx_code code = GET_CODE (*loc);
5901 if (GET_RTX_CLASS (code) == RTX_UNARY)
5902 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5903 used to convert between pointer sizes. */
5904 loc = &XEXP (*loc, 0);
5905 else if (lsb_bitfield_op_p (*loc))
5906 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5907 acts as a combined truncation and extension. */
5908 loc = &XEXP (*loc, 0);
5909 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5910 /* (and ... (const_int -X)) is used to align to X bytes. */
5911 loc = &XEXP (*loc, 0);
5912 else if (code == SUBREG
5913 && !OBJECT_P (SUBREG_REG (*loc))
5914 && subreg_lowpart_p (*loc))
5915 /* (subreg (operator ...) ...) inside and is used for mode
5916 conversion too. */
5917 loc = &SUBREG_REG (*loc);
5918 else
5919 return loc;
5920 if (outer_code)
5921 *outer_code = code;
5922 }
5923 }
5924
5925 /* Return true if CODE applies some kind of scale. The scaled value is
5926 is the first operand and the scale is the second. */
5927
5928 static bool
5929 binary_scale_code_p (enum rtx_code code)
5930 {
5931 return (code == MULT
5932 || code == ASHIFT
5933 /* Needed by ARM targets. */
5934 || code == ASHIFTRT
5935 || code == LSHIFTRT
5936 || code == ROTATE
5937 || code == ROTATERT);
5938 }
5939
5940 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5941 (see address_info). Return null otherwise. */
5942
5943 static rtx *
5944 get_base_term (rtx *inner)
5945 {
5946 if (GET_CODE (*inner) == LO_SUM)
5947 inner = strip_address_mutations (&XEXP (*inner, 0));
5948 if (REG_P (*inner)
5949 || MEM_P (*inner)
5950 || GET_CODE (*inner) == SUBREG
5951 || GET_CODE (*inner) == SCRATCH)
5952 return inner;
5953 return 0;
5954 }
5955
5956 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5957 (see address_info). Return null otherwise. */
5958
5959 static rtx *
5960 get_index_term (rtx *inner)
5961 {
5962 /* At present, only constant scales are allowed. */
5963 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5964 inner = strip_address_mutations (&XEXP (*inner, 0));
5965 if (REG_P (*inner)
5966 || MEM_P (*inner)
5967 || GET_CODE (*inner) == SUBREG
5968 || GET_CODE (*inner) == SCRATCH)
5969 return inner;
5970 return 0;
5971 }
5972
5973 /* Set the segment part of address INFO to LOC, given that INNER is the
5974 unmutated value. */
5975
5976 static void
5977 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5978 {
5979 gcc_assert (!info->segment);
5980 info->segment = loc;
5981 info->segment_term = inner;
5982 }
5983
5984 /* Set the base part of address INFO to LOC, given that INNER is the
5985 unmutated value. */
5986
5987 static void
5988 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5989 {
5990 gcc_assert (!info->base);
5991 info->base = loc;
5992 info->base_term = inner;
5993 }
5994
5995 /* Set the index part of address INFO to LOC, given that INNER is the
5996 unmutated value. */
5997
5998 static void
5999 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6000 {
6001 gcc_assert (!info->index);
6002 info->index = loc;
6003 info->index_term = inner;
6004 }
6005
6006 /* Set the displacement part of address INFO to LOC, given that INNER
6007 is the constant term. */
6008
6009 static void
6010 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6011 {
6012 gcc_assert (!info->disp);
6013 info->disp = loc;
6014 info->disp_term = inner;
6015 }
6016
6017 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6018 rest of INFO accordingly. */
6019
6020 static void
6021 decompose_incdec_address (struct address_info *info)
6022 {
6023 info->autoinc_p = true;
6024
6025 rtx *base = &XEXP (*info->inner, 0);
6026 set_address_base (info, base, base);
6027 gcc_checking_assert (info->base == info->base_term);
6028
6029 /* These addresses are only valid when the size of the addressed
6030 value is known. */
6031 gcc_checking_assert (info->mode != VOIDmode);
6032 }
6033
6034 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6035 of INFO accordingly. */
6036
6037 static void
6038 decompose_automod_address (struct address_info *info)
6039 {
6040 info->autoinc_p = true;
6041
6042 rtx *base = &XEXP (*info->inner, 0);
6043 set_address_base (info, base, base);
6044 gcc_checking_assert (info->base == info->base_term);
6045
6046 rtx plus = XEXP (*info->inner, 1);
6047 gcc_assert (GET_CODE (plus) == PLUS);
6048
6049 info->base_term2 = &XEXP (plus, 0);
6050 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6051
6052 rtx *step = &XEXP (plus, 1);
6053 rtx *inner_step = strip_address_mutations (step);
6054 if (CONSTANT_P (*inner_step))
6055 set_address_disp (info, step, inner_step);
6056 else
6057 set_address_index (info, step, inner_step);
6058 }
6059
6060 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6061 values in [PTR, END). Return a pointer to the end of the used array. */
6062
6063 static rtx **
6064 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6065 {
6066 rtx x = *loc;
6067 if (GET_CODE (x) == PLUS)
6068 {
6069 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6070 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6071 }
6072 else
6073 {
6074 gcc_assert (ptr != end);
6075 *ptr++ = loc;
6076 }
6077 return ptr;
6078 }
6079
6080 /* Evaluate the likelihood of X being a base or index value, returning
6081 positive if it is likely to be a base, negative if it is likely to be
6082 an index, and 0 if we can't tell. Make the magnitude of the return
6083 value reflect the amount of confidence we have in the answer.
6084
6085 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6086
6087 static int
6088 baseness (rtx x, machine_mode mode, addr_space_t as,
6089 enum rtx_code outer_code, enum rtx_code index_code)
6090 {
6091 /* Believe *_POINTER unless the address shape requires otherwise. */
6092 if (REG_P (x) && REG_POINTER (x))
6093 return 2;
6094 if (MEM_P (x) && MEM_POINTER (x))
6095 return 2;
6096
6097 if (REG_P (x) && HARD_REGISTER_P (x))
6098 {
6099 /* X is a hard register. If it only fits one of the base
6100 or index classes, choose that interpretation. */
6101 int regno = REGNO (x);
6102 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6103 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6104 if (base_p != index_p)
6105 return base_p ? 1 : -1;
6106 }
6107 return 0;
6108 }
6109
6110 /* INFO->INNER describes a normal, non-automodified address.
6111 Fill in the rest of INFO accordingly. */
6112
6113 static void
6114 decompose_normal_address (struct address_info *info)
6115 {
6116 /* Treat the address as the sum of up to four values. */
6117 rtx *ops[4];
6118 size_t n_ops = extract_plus_operands (info->inner, ops,
6119 ops + ARRAY_SIZE (ops)) - ops;
6120
6121 /* If there is more than one component, any base component is in a PLUS. */
6122 if (n_ops > 1)
6123 info->base_outer_code = PLUS;
6124
6125 /* Try to classify each sum operand now. Leave those that could be
6126 either a base or an index in OPS. */
6127 rtx *inner_ops[4];
6128 size_t out = 0;
6129 for (size_t in = 0; in < n_ops; ++in)
6130 {
6131 rtx *loc = ops[in];
6132 rtx *inner = strip_address_mutations (loc);
6133 if (CONSTANT_P (*inner))
6134 set_address_disp (info, loc, inner);
6135 else if (GET_CODE (*inner) == UNSPEC)
6136 set_address_segment (info, loc, inner);
6137 else
6138 {
6139 /* The only other possibilities are a base or an index. */
6140 rtx *base_term = get_base_term (inner);
6141 rtx *index_term = get_index_term (inner);
6142 gcc_assert (base_term || index_term);
6143 if (!base_term)
6144 set_address_index (info, loc, index_term);
6145 else if (!index_term)
6146 set_address_base (info, loc, base_term);
6147 else
6148 {
6149 gcc_assert (base_term == index_term);
6150 ops[out] = loc;
6151 inner_ops[out] = base_term;
6152 ++out;
6153 }
6154 }
6155 }
6156
6157 /* Classify the remaining OPS members as bases and indexes. */
6158 if (out == 1)
6159 {
6160 /* If we haven't seen a base or an index yet, assume that this is
6161 the base. If we were confident that another term was the base
6162 or index, treat the remaining operand as the other kind. */
6163 if (!info->base)
6164 set_address_base (info, ops[0], inner_ops[0]);
6165 else
6166 set_address_index (info, ops[0], inner_ops[0]);
6167 }
6168 else if (out == 2)
6169 {
6170 /* In the event of a tie, assume the base comes first. */
6171 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6172 GET_CODE (*ops[1]))
6173 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6174 GET_CODE (*ops[0])))
6175 {
6176 set_address_base (info, ops[0], inner_ops[0]);
6177 set_address_index (info, ops[1], inner_ops[1]);
6178 }
6179 else
6180 {
6181 set_address_base (info, ops[1], inner_ops[1]);
6182 set_address_index (info, ops[0], inner_ops[0]);
6183 }
6184 }
6185 else
6186 gcc_assert (out == 0);
6187 }
6188
6189 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6190 or VOIDmode if not known. AS is the address space associated with LOC.
6191 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6192
6193 void
6194 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6195 addr_space_t as, enum rtx_code outer_code)
6196 {
6197 memset (info, 0, sizeof (*info));
6198 info->mode = mode;
6199 info->as = as;
6200 info->addr_outer_code = outer_code;
6201 info->outer = loc;
6202 info->inner = strip_address_mutations (loc, &outer_code);
6203 info->base_outer_code = outer_code;
6204 switch (GET_CODE (*info->inner))
6205 {
6206 case PRE_DEC:
6207 case PRE_INC:
6208 case POST_DEC:
6209 case POST_INC:
6210 decompose_incdec_address (info);
6211 break;
6212
6213 case PRE_MODIFY:
6214 case POST_MODIFY:
6215 decompose_automod_address (info);
6216 break;
6217
6218 default:
6219 decompose_normal_address (info);
6220 break;
6221 }
6222 }
6223
6224 /* Describe address operand LOC in INFO. */
6225
6226 void
6227 decompose_lea_address (struct address_info *info, rtx *loc)
6228 {
6229 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6230 }
6231
6232 /* Describe the address of MEM X in INFO. */
6233
6234 void
6235 decompose_mem_address (struct address_info *info, rtx x)
6236 {
6237 gcc_assert (MEM_P (x));
6238 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6239 MEM_ADDR_SPACE (x), MEM);
6240 }
6241
6242 /* Update INFO after a change to the address it describes. */
6243
6244 void
6245 update_address (struct address_info *info)
6246 {
6247 decompose_address (info, info->outer, info->mode, info->as,
6248 info->addr_outer_code);
6249 }
6250
6251 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6252 more complicated than that. */
6253
6254 HOST_WIDE_INT
6255 get_index_scale (const struct address_info *info)
6256 {
6257 rtx index = *info->index;
6258 if (GET_CODE (index) == MULT
6259 && CONST_INT_P (XEXP (index, 1))
6260 && info->index_term == &XEXP (index, 0))
6261 return INTVAL (XEXP (index, 1));
6262
6263 if (GET_CODE (index) == ASHIFT
6264 && CONST_INT_P (XEXP (index, 1))
6265 && info->index_term == &XEXP (index, 0))
6266 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6267
6268 if (info->index == info->index_term)
6269 return 1;
6270
6271 return 0;
6272 }
6273
6274 /* Return the "index code" of INFO, in the form required by
6275 ok_for_base_p_1. */
6276
6277 enum rtx_code
6278 get_index_code (const struct address_info *info)
6279 {
6280 if (info->index)
6281 return GET_CODE (*info->index);
6282
6283 if (info->disp)
6284 return GET_CODE (*info->disp);
6285
6286 return SCRATCH;
6287 }
6288
6289 /* Return true if RTL X contains a SYMBOL_REF. */
6290
6291 bool
6292 contains_symbol_ref_p (const_rtx x)
6293 {
6294 subrtx_iterator::array_type array;
6295 FOR_EACH_SUBRTX (iter, array, x, ALL)
6296 if (SYMBOL_REF_P (*iter))
6297 return true;
6298
6299 return false;
6300 }
6301
6302 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6303
6304 bool
6305 contains_symbolic_reference_p (const_rtx x)
6306 {
6307 subrtx_iterator::array_type array;
6308 FOR_EACH_SUBRTX (iter, array, x, ALL)
6309 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6310 return true;
6311
6312 return false;
6313 }
6314
6315 /* Return true if X contains a thread-local symbol. */
6316
6317 bool
6318 tls_referenced_p (const_rtx x)
6319 {
6320 if (!targetm.have_tls)
6321 return false;
6322
6323 subrtx_iterator::array_type array;
6324 FOR_EACH_SUBRTX (iter, array, x, ALL)
6325 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6326 return true;
6327 return false;
6328 }