]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/rtlanal.c
2014-10-16 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "target.h"
31 #include "output.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "regs.h"
35 #include "hashtab.h"
36 #include "hash-set.h"
37 #include "vec.h"
38 #include "machmode.h"
39 #include "input.h"
40 #include "function.h"
41 #include "df.h"
42 #include "tree.h"
43 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
44 #include "addresses.h"
45 #include "rtl-iter.h"
46
47 /* Forward declarations */
48 static void set_of_1 (rtx, const_rtx, void *);
49 static bool covers_regno_p (const_rtx, unsigned int);
50 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
51 static int computed_jump_p_1 (const_rtx);
52 static void parms_set (rtx, const_rtx, void *);
53
54 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
55 const_rtx, enum machine_mode,
56 unsigned HOST_WIDE_INT);
57 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
58 const_rtx, enum machine_mode,
59 unsigned HOST_WIDE_INT);
60 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
61 enum machine_mode,
62 unsigned int);
63 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
64 enum machine_mode, unsigned int);
65
66 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
67 -1 if a code has no such operand. */
68 static int non_rtx_starting_operands[NUM_RTX_CODE];
69
70 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
71 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
72
73 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
74 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
75 SIGN_EXTEND then while narrowing we also have to enforce the
76 representation and sign-extend the value to mode DESTINATION_REP.
77
78 If the value is already sign-extended to DESTINATION_REP mode we
79 can just switch to DESTINATION mode on it. For each pair of
80 integral modes SOURCE and DESTINATION, when truncating from SOURCE
81 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
82 contains the number of high-order bits in SOURCE that have to be
83 copies of the sign-bit so that we can do this mode-switch to
84 DESTINATION. */
85
86 static unsigned int
87 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
88 \f
89 /* Store X into index I of ARRAY. ARRAY is known to have at least I
90 elements. Return the new base of ARRAY. */
91
92 template <typename T>
93 typename T::value_type *
94 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
95 value_type *base,
96 size_t i, value_type x)
97 {
98 if (base == array.stack)
99 {
100 if (i < LOCAL_ELEMS)
101 {
102 base[i] = x;
103 return base;
104 }
105 gcc_checking_assert (i == LOCAL_ELEMS);
106 vec_safe_grow (array.heap, i + 1);
107 base = array.heap->address ();
108 memcpy (base, array.stack, sizeof (array.stack));
109 base[LOCAL_ELEMS] = x;
110 return base;
111 }
112 unsigned int length = array.heap->length ();
113 if (length > i)
114 {
115 gcc_checking_assert (base == array.heap->address ());
116 base[i] = x;
117 return base;
118 }
119 else
120 {
121 gcc_checking_assert (i == length);
122 vec_safe_push (array.heap, x);
123 return array.heap->address ();
124 }
125 }
126
127 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
128 number of elements added to the worklist. */
129
130 template <typename T>
131 size_t
132 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
133 value_type *base,
134 size_t end, rtx_type x)
135 {
136 enum rtx_code code = GET_CODE (x);
137 const char *format = GET_RTX_FORMAT (code);
138 size_t orig_end = end;
139 if (__builtin_expect (INSN_P (x), false))
140 {
141 /* Put the pattern at the top of the queue, since that's what
142 we're likely to want most. It also allows for the SEQUENCE
143 code below. */
144 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
145 if (format[i] == 'e')
146 {
147 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
148 if (__builtin_expect (end < LOCAL_ELEMS, true))
149 base[end++] = subx;
150 else
151 base = add_single_to_queue (array, base, end++, subx);
152 }
153 }
154 else
155 for (int i = 0; format[i]; ++i)
156 if (format[i] == 'e')
157 {
158 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
159 if (__builtin_expect (end < LOCAL_ELEMS, true))
160 base[end++] = subx;
161 else
162 base = add_single_to_queue (array, base, end++, subx);
163 }
164 else if (format[i] == 'E')
165 {
166 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
167 rtx *vec = x->u.fld[i].rt_rtvec->elem;
168 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
169 for (unsigned int j = 0; j < length; j++)
170 base[end++] = T::get_value (vec[j]);
171 else
172 for (unsigned int j = 0; j < length; j++)
173 base = add_single_to_queue (array, base, end++,
174 T::get_value (vec[j]));
175 if (code == SEQUENCE && end == length)
176 /* If the subrtxes of the sequence fill the entire array then
177 we know that no other parts of a containing insn are queued.
178 The caller is therefore iterating over the sequence as a
179 PATTERN (...), so we also want the patterns of the
180 subinstructions. */
181 for (unsigned int j = 0; j < length; j++)
182 {
183 typename T::rtx_type x = T::get_rtx (base[j]);
184 if (INSN_P (x))
185 base[j] = T::get_value (PATTERN (x));
186 }
187 }
188 return end - orig_end;
189 }
190
191 template <typename T>
192 void
193 generic_subrtx_iterator <T>::free_array (array_type &array)
194 {
195 vec_free (array.heap);
196 }
197
198 template <typename T>
199 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
200
201 template class generic_subrtx_iterator <const_rtx_accessor>;
202 template class generic_subrtx_iterator <rtx_var_accessor>;
203 template class generic_subrtx_iterator <rtx_ptr_accessor>;
204
205 /* Return 1 if the value of X is unstable
206 (would be different at a different point in the program).
207 The frame pointer, arg pointer, etc. are considered stable
208 (within one function) and so is anything marked `unchanging'. */
209
210 int
211 rtx_unstable_p (const_rtx x)
212 {
213 const RTX_CODE code = GET_CODE (x);
214 int i;
215 const char *fmt;
216
217 switch (code)
218 {
219 case MEM:
220 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
221
222 case CONST:
223 CASE_CONST_ANY:
224 case SYMBOL_REF:
225 case LABEL_REF:
226 return 0;
227
228 case REG:
229 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
230 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
231 /* The arg pointer varies if it is not a fixed register. */
232 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
233 return 0;
234 /* ??? When call-clobbered, the value is stable modulo the restore
235 that must happen after a call. This currently screws up local-alloc
236 into believing that the restore is not needed. */
237 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
238 return 0;
239 return 1;
240
241 case ASM_OPERANDS:
242 if (MEM_VOLATILE_P (x))
243 return 1;
244
245 /* Fall through. */
246
247 default:
248 break;
249 }
250
251 fmt = GET_RTX_FORMAT (code);
252 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
253 if (fmt[i] == 'e')
254 {
255 if (rtx_unstable_p (XEXP (x, i)))
256 return 1;
257 }
258 else if (fmt[i] == 'E')
259 {
260 int j;
261 for (j = 0; j < XVECLEN (x, i); j++)
262 if (rtx_unstable_p (XVECEXP (x, i, j)))
263 return 1;
264 }
265
266 return 0;
267 }
268
269 /* Return 1 if X has a value that can vary even between two
270 executions of the program. 0 means X can be compared reliably
271 against certain constants or near-constants.
272 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
273 zero, we are slightly more conservative.
274 The frame pointer and the arg pointer are considered constant. */
275
276 bool
277 rtx_varies_p (const_rtx x, bool for_alias)
278 {
279 RTX_CODE code;
280 int i;
281 const char *fmt;
282
283 if (!x)
284 return 0;
285
286 code = GET_CODE (x);
287 switch (code)
288 {
289 case MEM:
290 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
291
292 case CONST:
293 CASE_CONST_ANY:
294 case SYMBOL_REF:
295 case LABEL_REF:
296 return 0;
297
298 case REG:
299 /* Note that we have to test for the actual rtx used for the frame
300 and arg pointers and not just the register number in case we have
301 eliminated the frame and/or arg pointer and are using it
302 for pseudos. */
303 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
304 /* The arg pointer varies if it is not a fixed register. */
305 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
306 return 0;
307 if (x == pic_offset_table_rtx
308 /* ??? When call-clobbered, the value is stable modulo the restore
309 that must happen after a call. This currently screws up
310 local-alloc into believing that the restore is not needed, so we
311 must return 0 only if we are called from alias analysis. */
312 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
313 return 0;
314 return 1;
315
316 case LO_SUM:
317 /* The operand 0 of a LO_SUM is considered constant
318 (in fact it is related specifically to operand 1)
319 during alias analysis. */
320 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
321 || rtx_varies_p (XEXP (x, 1), for_alias);
322
323 case ASM_OPERANDS:
324 if (MEM_VOLATILE_P (x))
325 return 1;
326
327 /* Fall through. */
328
329 default:
330 break;
331 }
332
333 fmt = GET_RTX_FORMAT (code);
334 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
335 if (fmt[i] == 'e')
336 {
337 if (rtx_varies_p (XEXP (x, i), for_alias))
338 return 1;
339 }
340 else if (fmt[i] == 'E')
341 {
342 int j;
343 for (j = 0; j < XVECLEN (x, i); j++)
344 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
345 return 1;
346 }
347
348 return 0;
349 }
350
351 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
352 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
353 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
354 references on strict alignment machines. */
355
356 static int
357 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
358 enum machine_mode mode, bool unaligned_mems)
359 {
360 enum rtx_code code = GET_CODE (x);
361
362 /* The offset must be a multiple of the mode size if we are considering
363 unaligned memory references on strict alignment machines. */
364 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
365 {
366 HOST_WIDE_INT actual_offset = offset;
367
368 #ifdef SPARC_STACK_BOUNDARY_HACK
369 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
370 the real alignment of %sp. However, when it does this, the
371 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
372 if (SPARC_STACK_BOUNDARY_HACK
373 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
374 actual_offset -= STACK_POINTER_OFFSET;
375 #endif
376
377 if (actual_offset % GET_MODE_SIZE (mode) != 0)
378 return 1;
379 }
380
381 switch (code)
382 {
383 case SYMBOL_REF:
384 if (SYMBOL_REF_WEAK (x))
385 return 1;
386 if (!CONSTANT_POOL_ADDRESS_P (x))
387 {
388 tree decl;
389 HOST_WIDE_INT decl_size;
390
391 if (offset < 0)
392 return 1;
393 if (size == 0)
394 size = GET_MODE_SIZE (mode);
395 if (size == 0)
396 return offset != 0;
397
398 /* If the size of the access or of the symbol is unknown,
399 assume the worst. */
400 decl = SYMBOL_REF_DECL (x);
401
402 /* Else check that the access is in bounds. TODO: restructure
403 expr_size/tree_expr_size/int_expr_size and just use the latter. */
404 if (!decl)
405 decl_size = -1;
406 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
407 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
408 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
409 : -1);
410 else if (TREE_CODE (decl) == STRING_CST)
411 decl_size = TREE_STRING_LENGTH (decl);
412 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
413 decl_size = int_size_in_bytes (TREE_TYPE (decl));
414 else
415 decl_size = -1;
416
417 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
418 }
419
420 return 0;
421
422 case LABEL_REF:
423 return 0;
424
425 case REG:
426 /* Stack references are assumed not to trap, but we need to deal with
427 nonsensical offsets. */
428 if (x == frame_pointer_rtx)
429 {
430 HOST_WIDE_INT adj_offset = offset - STARTING_FRAME_OFFSET;
431 if (size == 0)
432 size = GET_MODE_SIZE (mode);
433 if (FRAME_GROWS_DOWNWARD)
434 {
435 if (adj_offset < frame_offset || adj_offset + size - 1 >= 0)
436 return 1;
437 }
438 else
439 {
440 if (adj_offset < 0 || adj_offset + size - 1 >= frame_offset)
441 return 1;
442 }
443 return 0;
444 }
445 /* ??? Need to add a similar guard for nonsensical offsets. */
446 if (x == hard_frame_pointer_rtx
447 || x == stack_pointer_rtx
448 /* The arg pointer varies if it is not a fixed register. */
449 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
450 return 0;
451 /* All of the virtual frame registers are stack references. */
452 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
453 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
454 return 0;
455 return 1;
456
457 case CONST:
458 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
459 mode, unaligned_mems);
460
461 case PLUS:
462 /* An address is assumed not to trap if:
463 - it is the pic register plus a constant. */
464 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
465 return 0;
466
467 /* - or it is an address that can't trap plus a constant integer. */
468 if (CONST_INT_P (XEXP (x, 1))
469 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
470 size, mode, unaligned_mems))
471 return 0;
472
473 return 1;
474
475 case LO_SUM:
476 case PRE_MODIFY:
477 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
478 mode, unaligned_mems);
479
480 case PRE_DEC:
481 case PRE_INC:
482 case POST_DEC:
483 case POST_INC:
484 case POST_MODIFY:
485 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
486 mode, unaligned_mems);
487
488 default:
489 break;
490 }
491
492 /* If it isn't one of the case above, it can cause a trap. */
493 return 1;
494 }
495
496 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
497
498 int
499 rtx_addr_can_trap_p (const_rtx x)
500 {
501 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
502 }
503
504 /* Return true if X is an address that is known to not be zero. */
505
506 bool
507 nonzero_address_p (const_rtx x)
508 {
509 const enum rtx_code code = GET_CODE (x);
510
511 switch (code)
512 {
513 case SYMBOL_REF:
514 return !SYMBOL_REF_WEAK (x);
515
516 case LABEL_REF:
517 return true;
518
519 case REG:
520 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
521 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
522 || x == stack_pointer_rtx
523 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
524 return true;
525 /* All of the virtual frame registers are stack references. */
526 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
527 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
528 return true;
529 return false;
530
531 case CONST:
532 return nonzero_address_p (XEXP (x, 0));
533
534 case PLUS:
535 /* Handle PIC references. */
536 if (XEXP (x, 0) == pic_offset_table_rtx
537 && CONSTANT_P (XEXP (x, 1)))
538 return true;
539 return false;
540
541 case PRE_MODIFY:
542 /* Similar to the above; allow positive offsets. Further, since
543 auto-inc is only allowed in memories, the register must be a
544 pointer. */
545 if (CONST_INT_P (XEXP (x, 1))
546 && INTVAL (XEXP (x, 1)) > 0)
547 return true;
548 return nonzero_address_p (XEXP (x, 0));
549
550 case PRE_INC:
551 /* Similarly. Further, the offset is always positive. */
552 return true;
553
554 case PRE_DEC:
555 case POST_DEC:
556 case POST_INC:
557 case POST_MODIFY:
558 return nonzero_address_p (XEXP (x, 0));
559
560 case LO_SUM:
561 return nonzero_address_p (XEXP (x, 1));
562
563 default:
564 break;
565 }
566
567 /* If it isn't one of the case above, might be zero. */
568 return false;
569 }
570
571 /* Return 1 if X refers to a memory location whose address
572 cannot be compared reliably with constant addresses,
573 or if X refers to a BLKmode memory object.
574 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
575 zero, we are slightly more conservative. */
576
577 bool
578 rtx_addr_varies_p (const_rtx x, bool for_alias)
579 {
580 enum rtx_code code;
581 int i;
582 const char *fmt;
583
584 if (x == 0)
585 return 0;
586
587 code = GET_CODE (x);
588 if (code == MEM)
589 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
590
591 fmt = GET_RTX_FORMAT (code);
592 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
593 if (fmt[i] == 'e')
594 {
595 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
596 return 1;
597 }
598 else if (fmt[i] == 'E')
599 {
600 int j;
601 for (j = 0; j < XVECLEN (x, i); j++)
602 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
603 return 1;
604 }
605 return 0;
606 }
607 \f
608 /* Return the CALL in X if there is one. */
609
610 rtx
611 get_call_rtx_from (rtx x)
612 {
613 if (INSN_P (x))
614 x = PATTERN (x);
615 if (GET_CODE (x) == PARALLEL)
616 x = XVECEXP (x, 0, 0);
617 if (GET_CODE (x) == SET)
618 x = SET_SRC (x);
619 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
620 return x;
621 return NULL_RTX;
622 }
623 \f
624 /* Return the value of the integer term in X, if one is apparent;
625 otherwise return 0.
626 Only obvious integer terms are detected.
627 This is used in cse.c with the `related_value' field. */
628
629 HOST_WIDE_INT
630 get_integer_term (const_rtx x)
631 {
632 if (GET_CODE (x) == CONST)
633 x = XEXP (x, 0);
634
635 if (GET_CODE (x) == MINUS
636 && CONST_INT_P (XEXP (x, 1)))
637 return - INTVAL (XEXP (x, 1));
638 if (GET_CODE (x) == PLUS
639 && CONST_INT_P (XEXP (x, 1)))
640 return INTVAL (XEXP (x, 1));
641 return 0;
642 }
643
644 /* If X is a constant, return the value sans apparent integer term;
645 otherwise return 0.
646 Only obvious integer terms are detected. */
647
648 rtx
649 get_related_value (const_rtx x)
650 {
651 if (GET_CODE (x) != CONST)
652 return 0;
653 x = XEXP (x, 0);
654 if (GET_CODE (x) == PLUS
655 && CONST_INT_P (XEXP (x, 1)))
656 return XEXP (x, 0);
657 else if (GET_CODE (x) == MINUS
658 && CONST_INT_P (XEXP (x, 1)))
659 return XEXP (x, 0);
660 return 0;
661 }
662 \f
663 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
664 to somewhere in the same object or object_block as SYMBOL. */
665
666 bool
667 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
668 {
669 tree decl;
670
671 if (GET_CODE (symbol) != SYMBOL_REF)
672 return false;
673
674 if (offset == 0)
675 return true;
676
677 if (offset > 0)
678 {
679 if (CONSTANT_POOL_ADDRESS_P (symbol)
680 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
681 return true;
682
683 decl = SYMBOL_REF_DECL (symbol);
684 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
685 return true;
686 }
687
688 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
689 && SYMBOL_REF_BLOCK (symbol)
690 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
691 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
692 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
693 return true;
694
695 return false;
696 }
697
698 /* Split X into a base and a constant offset, storing them in *BASE_OUT
699 and *OFFSET_OUT respectively. */
700
701 void
702 split_const (rtx x, rtx *base_out, rtx *offset_out)
703 {
704 if (GET_CODE (x) == CONST)
705 {
706 x = XEXP (x, 0);
707 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
708 {
709 *base_out = XEXP (x, 0);
710 *offset_out = XEXP (x, 1);
711 return;
712 }
713 }
714 *base_out = x;
715 *offset_out = const0_rtx;
716 }
717 \f
718 /* Return the number of places FIND appears within X. If COUNT_DEST is
719 zero, we do not count occurrences inside the destination of a SET. */
720
721 int
722 count_occurrences (const_rtx x, const_rtx find, int count_dest)
723 {
724 int i, j;
725 enum rtx_code code;
726 const char *format_ptr;
727 int count;
728
729 if (x == find)
730 return 1;
731
732 code = GET_CODE (x);
733
734 switch (code)
735 {
736 case REG:
737 CASE_CONST_ANY:
738 case SYMBOL_REF:
739 case CODE_LABEL:
740 case PC:
741 case CC0:
742 return 0;
743
744 case EXPR_LIST:
745 count = count_occurrences (XEXP (x, 0), find, count_dest);
746 if (XEXP (x, 1))
747 count += count_occurrences (XEXP (x, 1), find, count_dest);
748 return count;
749
750 case MEM:
751 if (MEM_P (find) && rtx_equal_p (x, find))
752 return 1;
753 break;
754
755 case SET:
756 if (SET_DEST (x) == find && ! count_dest)
757 return count_occurrences (SET_SRC (x), find, count_dest);
758 break;
759
760 default:
761 break;
762 }
763
764 format_ptr = GET_RTX_FORMAT (code);
765 count = 0;
766
767 for (i = 0; i < GET_RTX_LENGTH (code); i++)
768 {
769 switch (*format_ptr++)
770 {
771 case 'e':
772 count += count_occurrences (XEXP (x, i), find, count_dest);
773 break;
774
775 case 'E':
776 for (j = 0; j < XVECLEN (x, i); j++)
777 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
778 break;
779 }
780 }
781 return count;
782 }
783
784 \f
785 /* Return TRUE if OP is a register or subreg of a register that
786 holds an unsigned quantity. Otherwise, return FALSE. */
787
788 bool
789 unsigned_reg_p (rtx op)
790 {
791 if (REG_P (op)
792 && REG_EXPR (op)
793 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
794 return true;
795
796 if (GET_CODE (op) == SUBREG
797 && SUBREG_PROMOTED_SIGN (op))
798 return true;
799
800 return false;
801 }
802
803 \f
804 /* Nonzero if register REG appears somewhere within IN.
805 Also works if REG is not a register; in this case it checks
806 for a subexpression of IN that is Lisp "equal" to REG. */
807
808 int
809 reg_mentioned_p (const_rtx reg, const_rtx in)
810 {
811 const char *fmt;
812 int i;
813 enum rtx_code code;
814
815 if (in == 0)
816 return 0;
817
818 if (reg == in)
819 return 1;
820
821 if (GET_CODE (in) == LABEL_REF)
822 return reg == LABEL_REF_LABEL (in);
823
824 code = GET_CODE (in);
825
826 switch (code)
827 {
828 /* Compare registers by number. */
829 case REG:
830 return REG_P (reg) && REGNO (in) == REGNO (reg);
831
832 /* These codes have no constituent expressions
833 and are unique. */
834 case SCRATCH:
835 case CC0:
836 case PC:
837 return 0;
838
839 CASE_CONST_ANY:
840 /* These are kept unique for a given value. */
841 return 0;
842
843 default:
844 break;
845 }
846
847 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
848 return 1;
849
850 fmt = GET_RTX_FORMAT (code);
851
852 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
853 {
854 if (fmt[i] == 'E')
855 {
856 int j;
857 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
858 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
859 return 1;
860 }
861 else if (fmt[i] == 'e'
862 && reg_mentioned_p (reg, XEXP (in, i)))
863 return 1;
864 }
865 return 0;
866 }
867 \f
868 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
869 no CODE_LABEL insn. */
870
871 int
872 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
873 {
874 rtx_insn *p;
875 if (beg == end)
876 return 0;
877 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
878 if (LABEL_P (p))
879 return 0;
880 return 1;
881 }
882
883 /* Nonzero if register REG is used in an insn between
884 FROM_INSN and TO_INSN (exclusive of those two). */
885
886 int
887 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
888 const rtx_insn *to_insn)
889 {
890 rtx_insn *insn;
891
892 if (from_insn == to_insn)
893 return 0;
894
895 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
896 if (NONDEBUG_INSN_P (insn)
897 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
898 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
899 return 1;
900 return 0;
901 }
902 \f
903 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
904 is entirely replaced by a new value and the only use is as a SET_DEST,
905 we do not consider it a reference. */
906
907 int
908 reg_referenced_p (const_rtx x, const_rtx body)
909 {
910 int i;
911
912 switch (GET_CODE (body))
913 {
914 case SET:
915 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
916 return 1;
917
918 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
919 of a REG that occupies all of the REG, the insn references X if
920 it is mentioned in the destination. */
921 if (GET_CODE (SET_DEST (body)) != CC0
922 && GET_CODE (SET_DEST (body)) != PC
923 && !REG_P (SET_DEST (body))
924 && ! (GET_CODE (SET_DEST (body)) == SUBREG
925 && REG_P (SUBREG_REG (SET_DEST (body)))
926 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
927 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
928 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
929 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
930 && reg_overlap_mentioned_p (x, SET_DEST (body)))
931 return 1;
932 return 0;
933
934 case ASM_OPERANDS:
935 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
936 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
937 return 1;
938 return 0;
939
940 case CALL:
941 case USE:
942 case IF_THEN_ELSE:
943 return reg_overlap_mentioned_p (x, body);
944
945 case TRAP_IF:
946 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
947
948 case PREFETCH:
949 return reg_overlap_mentioned_p (x, XEXP (body, 0));
950
951 case UNSPEC:
952 case UNSPEC_VOLATILE:
953 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
954 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
955 return 1;
956 return 0;
957
958 case PARALLEL:
959 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
960 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
961 return 1;
962 return 0;
963
964 case CLOBBER:
965 if (MEM_P (XEXP (body, 0)))
966 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
967 return 1;
968 return 0;
969
970 case COND_EXEC:
971 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
972 return 1;
973 return reg_referenced_p (x, COND_EXEC_CODE (body));
974
975 default:
976 return 0;
977 }
978 }
979 \f
980 /* Nonzero if register REG is set or clobbered in an insn between
981 FROM_INSN and TO_INSN (exclusive of those two). */
982
983 int
984 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
985 const rtx_insn *to_insn)
986 {
987 const rtx_insn *insn;
988
989 if (from_insn == to_insn)
990 return 0;
991
992 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
993 if (INSN_P (insn) && reg_set_p (reg, insn))
994 return 1;
995 return 0;
996 }
997
998 /* Internals of reg_set_between_p. */
999 int
1000 reg_set_p (const_rtx reg, const_rtx insn)
1001 {
1002 /* We can be passed an insn or part of one. If we are passed an insn,
1003 check if a side-effect of the insn clobbers REG. */
1004 if (INSN_P (insn)
1005 && (FIND_REG_INC_NOTE (insn, reg)
1006 || (CALL_P (insn)
1007 && ((REG_P (reg)
1008 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1009 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1010 GET_MODE (reg), REGNO (reg)))
1011 || MEM_P (reg)
1012 || find_reg_fusage (insn, CLOBBER, reg)))))
1013 return 1;
1014
1015 return set_of (reg, insn) != NULL_RTX;
1016 }
1017
1018 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1019 only if none of them are modified between START and END. Return 1 if
1020 X contains a MEM; this routine does use memory aliasing. */
1021
1022 int
1023 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1024 {
1025 const enum rtx_code code = GET_CODE (x);
1026 const char *fmt;
1027 int i, j;
1028 rtx_insn *insn;
1029
1030 if (start == end)
1031 return 0;
1032
1033 switch (code)
1034 {
1035 CASE_CONST_ANY:
1036 case CONST:
1037 case SYMBOL_REF:
1038 case LABEL_REF:
1039 return 0;
1040
1041 case PC:
1042 case CC0:
1043 return 1;
1044
1045 case MEM:
1046 if (modified_between_p (XEXP (x, 0), start, end))
1047 return 1;
1048 if (MEM_READONLY_P (x))
1049 return 0;
1050 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1051 if (memory_modified_in_insn_p (x, insn))
1052 return 1;
1053 return 0;
1054 break;
1055
1056 case REG:
1057 return reg_set_between_p (x, start, end);
1058
1059 default:
1060 break;
1061 }
1062
1063 fmt = GET_RTX_FORMAT (code);
1064 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1065 {
1066 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1067 return 1;
1068
1069 else if (fmt[i] == 'E')
1070 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1071 if (modified_between_p (XVECEXP (x, i, j), start, end))
1072 return 1;
1073 }
1074
1075 return 0;
1076 }
1077
1078 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1079 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1080 does use memory aliasing. */
1081
1082 int
1083 modified_in_p (const_rtx x, const_rtx insn)
1084 {
1085 const enum rtx_code code = GET_CODE (x);
1086 const char *fmt;
1087 int i, j;
1088
1089 switch (code)
1090 {
1091 CASE_CONST_ANY:
1092 case CONST:
1093 case SYMBOL_REF:
1094 case LABEL_REF:
1095 return 0;
1096
1097 case PC:
1098 case CC0:
1099 return 1;
1100
1101 case MEM:
1102 if (modified_in_p (XEXP (x, 0), insn))
1103 return 1;
1104 if (MEM_READONLY_P (x))
1105 return 0;
1106 if (memory_modified_in_insn_p (x, insn))
1107 return 1;
1108 return 0;
1109 break;
1110
1111 case REG:
1112 return reg_set_p (x, insn);
1113
1114 default:
1115 break;
1116 }
1117
1118 fmt = GET_RTX_FORMAT (code);
1119 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1120 {
1121 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1122 return 1;
1123
1124 else if (fmt[i] == 'E')
1125 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1126 if (modified_in_p (XVECEXP (x, i, j), insn))
1127 return 1;
1128 }
1129
1130 return 0;
1131 }
1132 \f
1133 /* Helper function for set_of. */
1134 struct set_of_data
1135 {
1136 const_rtx found;
1137 const_rtx pat;
1138 };
1139
1140 static void
1141 set_of_1 (rtx x, const_rtx pat, void *data1)
1142 {
1143 struct set_of_data *const data = (struct set_of_data *) (data1);
1144 if (rtx_equal_p (x, data->pat)
1145 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1146 data->found = pat;
1147 }
1148
1149 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1150 (either directly or via STRICT_LOW_PART and similar modifiers). */
1151 const_rtx
1152 set_of (const_rtx pat, const_rtx insn)
1153 {
1154 struct set_of_data data;
1155 data.found = NULL_RTX;
1156 data.pat = pat;
1157 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1158 return data.found;
1159 }
1160
1161 /* Add all hard register in X to *PSET. */
1162 void
1163 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1164 {
1165 subrtx_iterator::array_type array;
1166 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1167 {
1168 const_rtx x = *iter;
1169 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1170 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1171 }
1172 }
1173
1174 /* This function, called through note_stores, collects sets and
1175 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1176 by DATA. */
1177 void
1178 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1179 {
1180 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1181 if (REG_P (x) && HARD_REGISTER_P (x))
1182 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1183 }
1184
1185 /* Examine INSN, and compute the set of hard registers written by it.
1186 Store it in *PSET. Should only be called after reload. */
1187 void
1188 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset, bool implicit)
1189 {
1190 rtx link;
1191
1192 CLEAR_HARD_REG_SET (*pset);
1193 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1194 if (CALL_P (insn))
1195 {
1196 if (implicit)
1197 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1198
1199 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1200 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1201 }
1202 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1203 if (REG_NOTE_KIND (link) == REG_INC)
1204 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1205 }
1206
1207 /* Like record_hard_reg_sets, but called through note_uses. */
1208 void
1209 record_hard_reg_uses (rtx *px, void *data)
1210 {
1211 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1212 }
1213 \f
1214 /* Given an INSN, return a SET expression if this insn has only a single SET.
1215 It may also have CLOBBERs, USEs, or SET whose output
1216 will not be used, which we ignore. */
1217
1218 rtx
1219 single_set_2 (const rtx_insn *insn, const_rtx pat)
1220 {
1221 rtx set = NULL;
1222 int set_verified = 1;
1223 int i;
1224
1225 if (GET_CODE (pat) == PARALLEL)
1226 {
1227 for (i = 0; i < XVECLEN (pat, 0); i++)
1228 {
1229 rtx sub = XVECEXP (pat, 0, i);
1230 switch (GET_CODE (sub))
1231 {
1232 case USE:
1233 case CLOBBER:
1234 break;
1235
1236 case SET:
1237 /* We can consider insns having multiple sets, where all
1238 but one are dead as single set insns. In common case
1239 only single set is present in the pattern so we want
1240 to avoid checking for REG_UNUSED notes unless necessary.
1241
1242 When we reach set first time, we just expect this is
1243 the single set we are looking for and only when more
1244 sets are found in the insn, we check them. */
1245 if (!set_verified)
1246 {
1247 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1248 && !side_effects_p (set))
1249 set = NULL;
1250 else
1251 set_verified = 1;
1252 }
1253 if (!set)
1254 set = sub, set_verified = 0;
1255 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1256 || side_effects_p (sub))
1257 return NULL_RTX;
1258 break;
1259
1260 default:
1261 return NULL_RTX;
1262 }
1263 }
1264 }
1265 return set;
1266 }
1267
1268 /* Given an INSN, return nonzero if it has more than one SET, else return
1269 zero. */
1270
1271 int
1272 multiple_sets (const_rtx insn)
1273 {
1274 int found;
1275 int i;
1276
1277 /* INSN must be an insn. */
1278 if (! INSN_P (insn))
1279 return 0;
1280
1281 /* Only a PARALLEL can have multiple SETs. */
1282 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1283 {
1284 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1285 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1286 {
1287 /* If we have already found a SET, then return now. */
1288 if (found)
1289 return 1;
1290 else
1291 found = 1;
1292 }
1293 }
1294
1295 /* Either zero or one SET. */
1296 return 0;
1297 }
1298 \f
1299 /* Return nonzero if the destination of SET equals the source
1300 and there are no side effects. */
1301
1302 int
1303 set_noop_p (const_rtx set)
1304 {
1305 rtx src = SET_SRC (set);
1306 rtx dst = SET_DEST (set);
1307
1308 if (dst == pc_rtx && src == pc_rtx)
1309 return 1;
1310
1311 if (MEM_P (dst) && MEM_P (src))
1312 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1313
1314 if (GET_CODE (dst) == ZERO_EXTRACT)
1315 return rtx_equal_p (XEXP (dst, 0), src)
1316 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1317 && !side_effects_p (src);
1318
1319 if (GET_CODE (dst) == STRICT_LOW_PART)
1320 dst = XEXP (dst, 0);
1321
1322 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1323 {
1324 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1325 return 0;
1326 src = SUBREG_REG (src);
1327 dst = SUBREG_REG (dst);
1328 }
1329
1330 /* It is a NOOP if destination overlaps with selected src vector
1331 elements. */
1332 if (GET_CODE (src) == VEC_SELECT
1333 && REG_P (XEXP (src, 0)) && REG_P (dst)
1334 && HARD_REGISTER_P (XEXP (src, 0))
1335 && HARD_REGISTER_P (dst))
1336 {
1337 int i;
1338 rtx par = XEXP (src, 1);
1339 rtx src0 = XEXP (src, 0);
1340 int c0 = INTVAL (XVECEXP (par, 0, 0));
1341 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1342
1343 for (i = 1; i < XVECLEN (par, 0); i++)
1344 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1345 return 0;
1346 return
1347 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1348 offset, GET_MODE (dst)) == (int) REGNO (dst);
1349 }
1350
1351 return (REG_P (src) && REG_P (dst)
1352 && REGNO (src) == REGNO (dst));
1353 }
1354 \f
1355 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1356 value to itself. */
1357
1358 int
1359 noop_move_p (const_rtx insn)
1360 {
1361 rtx pat = PATTERN (insn);
1362
1363 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1364 return 1;
1365
1366 /* Insns carrying these notes are useful later on. */
1367 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1368 return 0;
1369
1370 /* Check the code to be executed for COND_EXEC. */
1371 if (GET_CODE (pat) == COND_EXEC)
1372 pat = COND_EXEC_CODE (pat);
1373
1374 if (GET_CODE (pat) == SET && set_noop_p (pat))
1375 return 1;
1376
1377 if (GET_CODE (pat) == PARALLEL)
1378 {
1379 int i;
1380 /* If nothing but SETs of registers to themselves,
1381 this insn can also be deleted. */
1382 for (i = 0; i < XVECLEN (pat, 0); i++)
1383 {
1384 rtx tem = XVECEXP (pat, 0, i);
1385
1386 if (GET_CODE (tem) == USE
1387 || GET_CODE (tem) == CLOBBER)
1388 continue;
1389
1390 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1391 return 0;
1392 }
1393
1394 return 1;
1395 }
1396 return 0;
1397 }
1398 \f
1399
1400 /* Return nonzero if register in range [REGNO, ENDREGNO)
1401 appears either explicitly or implicitly in X
1402 other than being stored into.
1403
1404 References contained within the substructure at LOC do not count.
1405 LOC may be zero, meaning don't ignore anything. */
1406
1407 int
1408 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1409 rtx *loc)
1410 {
1411 int i;
1412 unsigned int x_regno;
1413 RTX_CODE code;
1414 const char *fmt;
1415
1416 repeat:
1417 /* The contents of a REG_NONNEG note is always zero, so we must come here
1418 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1419 if (x == 0)
1420 return 0;
1421
1422 code = GET_CODE (x);
1423
1424 switch (code)
1425 {
1426 case REG:
1427 x_regno = REGNO (x);
1428
1429 /* If we modifying the stack, frame, or argument pointer, it will
1430 clobber a virtual register. In fact, we could be more precise,
1431 but it isn't worth it. */
1432 if ((x_regno == STACK_POINTER_REGNUM
1433 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1434 || x_regno == ARG_POINTER_REGNUM
1435 #endif
1436 || x_regno == FRAME_POINTER_REGNUM)
1437 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1438 return 1;
1439
1440 return endregno > x_regno && regno < END_REGNO (x);
1441
1442 case SUBREG:
1443 /* If this is a SUBREG of a hard reg, we can see exactly which
1444 registers are being modified. Otherwise, handle normally. */
1445 if (REG_P (SUBREG_REG (x))
1446 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1447 {
1448 unsigned int inner_regno = subreg_regno (x);
1449 unsigned int inner_endregno
1450 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1451 ? subreg_nregs (x) : 1);
1452
1453 return endregno > inner_regno && regno < inner_endregno;
1454 }
1455 break;
1456
1457 case CLOBBER:
1458 case SET:
1459 if (&SET_DEST (x) != loc
1460 /* Note setting a SUBREG counts as referring to the REG it is in for
1461 a pseudo but not for hard registers since we can
1462 treat each word individually. */
1463 && ((GET_CODE (SET_DEST (x)) == SUBREG
1464 && loc != &SUBREG_REG (SET_DEST (x))
1465 && REG_P (SUBREG_REG (SET_DEST (x)))
1466 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1467 && refers_to_regno_p (regno, endregno,
1468 SUBREG_REG (SET_DEST (x)), loc))
1469 || (!REG_P (SET_DEST (x))
1470 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1471 return 1;
1472
1473 if (code == CLOBBER || loc == &SET_SRC (x))
1474 return 0;
1475 x = SET_SRC (x);
1476 goto repeat;
1477
1478 default:
1479 break;
1480 }
1481
1482 /* X does not match, so try its subexpressions. */
1483
1484 fmt = GET_RTX_FORMAT (code);
1485 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1486 {
1487 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1488 {
1489 if (i == 0)
1490 {
1491 x = XEXP (x, 0);
1492 goto repeat;
1493 }
1494 else
1495 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1496 return 1;
1497 }
1498 else if (fmt[i] == 'E')
1499 {
1500 int j;
1501 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1502 if (loc != &XVECEXP (x, i, j)
1503 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1504 return 1;
1505 }
1506 }
1507 return 0;
1508 }
1509
1510 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1511 we check if any register number in X conflicts with the relevant register
1512 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1513 contains a MEM (we don't bother checking for memory addresses that can't
1514 conflict because we expect this to be a rare case. */
1515
1516 int
1517 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1518 {
1519 unsigned int regno, endregno;
1520
1521 /* If either argument is a constant, then modifying X can not
1522 affect IN. Here we look at IN, we can profitably combine
1523 CONSTANT_P (x) with the switch statement below. */
1524 if (CONSTANT_P (in))
1525 return 0;
1526
1527 recurse:
1528 switch (GET_CODE (x))
1529 {
1530 case STRICT_LOW_PART:
1531 case ZERO_EXTRACT:
1532 case SIGN_EXTRACT:
1533 /* Overly conservative. */
1534 x = XEXP (x, 0);
1535 goto recurse;
1536
1537 case SUBREG:
1538 regno = REGNO (SUBREG_REG (x));
1539 if (regno < FIRST_PSEUDO_REGISTER)
1540 regno = subreg_regno (x);
1541 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1542 ? subreg_nregs (x) : 1);
1543 goto do_reg;
1544
1545 case REG:
1546 regno = REGNO (x);
1547 endregno = END_REGNO (x);
1548 do_reg:
1549 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1550
1551 case MEM:
1552 {
1553 const char *fmt;
1554 int i;
1555
1556 if (MEM_P (in))
1557 return 1;
1558
1559 fmt = GET_RTX_FORMAT (GET_CODE (in));
1560 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1561 if (fmt[i] == 'e')
1562 {
1563 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1564 return 1;
1565 }
1566 else if (fmt[i] == 'E')
1567 {
1568 int j;
1569 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1570 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1571 return 1;
1572 }
1573
1574 return 0;
1575 }
1576
1577 case SCRATCH:
1578 case PC:
1579 case CC0:
1580 return reg_mentioned_p (x, in);
1581
1582 case PARALLEL:
1583 {
1584 int i;
1585
1586 /* If any register in here refers to it we return true. */
1587 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1588 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1589 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1590 return 1;
1591 return 0;
1592 }
1593
1594 default:
1595 gcc_assert (CONSTANT_P (x));
1596 return 0;
1597 }
1598 }
1599 \f
1600 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1601 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1602 ignored by note_stores, but passed to FUN.
1603
1604 FUN receives three arguments:
1605 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1606 2. the SET or CLOBBER rtx that does the store,
1607 3. the pointer DATA provided to note_stores.
1608
1609 If the item being stored in or clobbered is a SUBREG of a hard register,
1610 the SUBREG will be passed. */
1611
1612 void
1613 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1614 {
1615 int i;
1616
1617 if (GET_CODE (x) == COND_EXEC)
1618 x = COND_EXEC_CODE (x);
1619
1620 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1621 {
1622 rtx dest = SET_DEST (x);
1623
1624 while ((GET_CODE (dest) == SUBREG
1625 && (!REG_P (SUBREG_REG (dest))
1626 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1627 || GET_CODE (dest) == ZERO_EXTRACT
1628 || GET_CODE (dest) == STRICT_LOW_PART)
1629 dest = XEXP (dest, 0);
1630
1631 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1632 each of whose first operand is a register. */
1633 if (GET_CODE (dest) == PARALLEL)
1634 {
1635 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1636 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1637 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1638 }
1639 else
1640 (*fun) (dest, x, data);
1641 }
1642
1643 else if (GET_CODE (x) == PARALLEL)
1644 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1645 note_stores (XVECEXP (x, 0, i), fun, data);
1646 }
1647 \f
1648 /* Like notes_stores, but call FUN for each expression that is being
1649 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1650 FUN for each expression, not any interior subexpressions. FUN receives a
1651 pointer to the expression and the DATA passed to this function.
1652
1653 Note that this is not quite the same test as that done in reg_referenced_p
1654 since that considers something as being referenced if it is being
1655 partially set, while we do not. */
1656
1657 void
1658 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1659 {
1660 rtx body = *pbody;
1661 int i;
1662
1663 switch (GET_CODE (body))
1664 {
1665 case COND_EXEC:
1666 (*fun) (&COND_EXEC_TEST (body), data);
1667 note_uses (&COND_EXEC_CODE (body), fun, data);
1668 return;
1669
1670 case PARALLEL:
1671 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1672 note_uses (&XVECEXP (body, 0, i), fun, data);
1673 return;
1674
1675 case SEQUENCE:
1676 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1677 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1678 return;
1679
1680 case USE:
1681 (*fun) (&XEXP (body, 0), data);
1682 return;
1683
1684 case ASM_OPERANDS:
1685 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1686 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1687 return;
1688
1689 case TRAP_IF:
1690 (*fun) (&TRAP_CONDITION (body), data);
1691 return;
1692
1693 case PREFETCH:
1694 (*fun) (&XEXP (body, 0), data);
1695 return;
1696
1697 case UNSPEC:
1698 case UNSPEC_VOLATILE:
1699 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1700 (*fun) (&XVECEXP (body, 0, i), data);
1701 return;
1702
1703 case CLOBBER:
1704 if (MEM_P (XEXP (body, 0)))
1705 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1706 return;
1707
1708 case SET:
1709 {
1710 rtx dest = SET_DEST (body);
1711
1712 /* For sets we replace everything in source plus registers in memory
1713 expression in store and operands of a ZERO_EXTRACT. */
1714 (*fun) (&SET_SRC (body), data);
1715
1716 if (GET_CODE (dest) == ZERO_EXTRACT)
1717 {
1718 (*fun) (&XEXP (dest, 1), data);
1719 (*fun) (&XEXP (dest, 2), data);
1720 }
1721
1722 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1723 dest = XEXP (dest, 0);
1724
1725 if (MEM_P (dest))
1726 (*fun) (&XEXP (dest, 0), data);
1727 }
1728 return;
1729
1730 default:
1731 /* All the other possibilities never store. */
1732 (*fun) (pbody, data);
1733 return;
1734 }
1735 }
1736 \f
1737 /* Return nonzero if X's old contents don't survive after INSN.
1738 This will be true if X is (cc0) or if X is a register and
1739 X dies in INSN or because INSN entirely sets X.
1740
1741 "Entirely set" means set directly and not through a SUBREG, or
1742 ZERO_EXTRACT, so no trace of the old contents remains.
1743 Likewise, REG_INC does not count.
1744
1745 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1746 but for this use that makes no difference, since regs don't overlap
1747 during their lifetimes. Therefore, this function may be used
1748 at any time after deaths have been computed.
1749
1750 If REG is a hard reg that occupies multiple machine registers, this
1751 function will only return 1 if each of those registers will be replaced
1752 by INSN. */
1753
1754 int
1755 dead_or_set_p (const_rtx insn, const_rtx x)
1756 {
1757 unsigned int regno, end_regno;
1758 unsigned int i;
1759
1760 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1761 if (GET_CODE (x) == CC0)
1762 return 1;
1763
1764 gcc_assert (REG_P (x));
1765
1766 regno = REGNO (x);
1767 end_regno = END_REGNO (x);
1768 for (i = regno; i < end_regno; i++)
1769 if (! dead_or_set_regno_p (insn, i))
1770 return 0;
1771
1772 return 1;
1773 }
1774
1775 /* Return TRUE iff DEST is a register or subreg of a register and
1776 doesn't change the number of words of the inner register, and any
1777 part of the register is TEST_REGNO. */
1778
1779 static bool
1780 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1781 {
1782 unsigned int regno, endregno;
1783
1784 if (GET_CODE (dest) == SUBREG
1785 && (((GET_MODE_SIZE (GET_MODE (dest))
1786 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1787 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1788 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1789 dest = SUBREG_REG (dest);
1790
1791 if (!REG_P (dest))
1792 return false;
1793
1794 regno = REGNO (dest);
1795 endregno = END_REGNO (dest);
1796 return (test_regno >= regno && test_regno < endregno);
1797 }
1798
1799 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1800 any member matches the covers_regno_no_parallel_p criteria. */
1801
1802 static bool
1803 covers_regno_p (const_rtx dest, unsigned int test_regno)
1804 {
1805 if (GET_CODE (dest) == PARALLEL)
1806 {
1807 /* Some targets place small structures in registers for return
1808 values of functions, and those registers are wrapped in
1809 PARALLELs that we may see as the destination of a SET. */
1810 int i;
1811
1812 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1813 {
1814 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1815 if (inner != NULL_RTX
1816 && covers_regno_no_parallel_p (inner, test_regno))
1817 return true;
1818 }
1819
1820 return false;
1821 }
1822 else
1823 return covers_regno_no_parallel_p (dest, test_regno);
1824 }
1825
1826 /* Utility function for dead_or_set_p to check an individual register. */
1827
1828 int
1829 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1830 {
1831 const_rtx pattern;
1832
1833 /* See if there is a death note for something that includes TEST_REGNO. */
1834 if (find_regno_note (insn, REG_DEAD, test_regno))
1835 return 1;
1836
1837 if (CALL_P (insn)
1838 && find_regno_fusage (insn, CLOBBER, test_regno))
1839 return 1;
1840
1841 pattern = PATTERN (insn);
1842
1843 /* If a COND_EXEC is not executed, the value survives. */
1844 if (GET_CODE (pattern) == COND_EXEC)
1845 return 0;
1846
1847 if (GET_CODE (pattern) == SET)
1848 return covers_regno_p (SET_DEST (pattern), test_regno);
1849 else if (GET_CODE (pattern) == PARALLEL)
1850 {
1851 int i;
1852
1853 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1854 {
1855 rtx body = XVECEXP (pattern, 0, i);
1856
1857 if (GET_CODE (body) == COND_EXEC)
1858 body = COND_EXEC_CODE (body);
1859
1860 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1861 && covers_regno_p (SET_DEST (body), test_regno))
1862 return 1;
1863 }
1864 }
1865
1866 return 0;
1867 }
1868
1869 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1870 If DATUM is nonzero, look for one whose datum is DATUM. */
1871
1872 rtx
1873 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1874 {
1875 rtx link;
1876
1877 gcc_checking_assert (insn);
1878
1879 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1880 if (! INSN_P (insn))
1881 return 0;
1882 if (datum == 0)
1883 {
1884 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1885 if (REG_NOTE_KIND (link) == kind)
1886 return link;
1887 return 0;
1888 }
1889
1890 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1891 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1892 return link;
1893 return 0;
1894 }
1895
1896 /* Return the reg-note of kind KIND in insn INSN which applies to register
1897 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1898 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1899 it might be the case that the note overlaps REGNO. */
1900
1901 rtx
1902 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1903 {
1904 rtx link;
1905
1906 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1907 if (! INSN_P (insn))
1908 return 0;
1909
1910 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1911 if (REG_NOTE_KIND (link) == kind
1912 /* Verify that it is a register, so that scratch and MEM won't cause a
1913 problem here. */
1914 && REG_P (XEXP (link, 0))
1915 && REGNO (XEXP (link, 0)) <= regno
1916 && END_REGNO (XEXP (link, 0)) > regno)
1917 return link;
1918 return 0;
1919 }
1920
1921 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1922 has such a note. */
1923
1924 rtx
1925 find_reg_equal_equiv_note (const_rtx insn)
1926 {
1927 rtx link;
1928
1929 if (!INSN_P (insn))
1930 return 0;
1931
1932 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1933 if (REG_NOTE_KIND (link) == REG_EQUAL
1934 || REG_NOTE_KIND (link) == REG_EQUIV)
1935 {
1936 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1937 insns that have multiple sets. Checking single_set to
1938 make sure of this is not the proper check, as explained
1939 in the comment in set_unique_reg_note.
1940
1941 This should be changed into an assert. */
1942 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1943 return 0;
1944 return link;
1945 }
1946 return NULL;
1947 }
1948
1949 /* Check whether INSN is a single_set whose source is known to be
1950 equivalent to a constant. Return that constant if so, otherwise
1951 return null. */
1952
1953 rtx
1954 find_constant_src (const rtx_insn *insn)
1955 {
1956 rtx note, set, x;
1957
1958 set = single_set (insn);
1959 if (set)
1960 {
1961 x = avoid_constant_pool_reference (SET_SRC (set));
1962 if (CONSTANT_P (x))
1963 return x;
1964 }
1965
1966 note = find_reg_equal_equiv_note (insn);
1967 if (note && CONSTANT_P (XEXP (note, 0)))
1968 return XEXP (note, 0);
1969
1970 return NULL_RTX;
1971 }
1972
1973 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1974 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1975
1976 int
1977 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1978 {
1979 /* If it's not a CALL_INSN, it can't possibly have a
1980 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1981 if (!CALL_P (insn))
1982 return 0;
1983
1984 gcc_assert (datum);
1985
1986 if (!REG_P (datum))
1987 {
1988 rtx link;
1989
1990 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1991 link;
1992 link = XEXP (link, 1))
1993 if (GET_CODE (XEXP (link, 0)) == code
1994 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1995 return 1;
1996 }
1997 else
1998 {
1999 unsigned int regno = REGNO (datum);
2000
2001 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2002 to pseudo registers, so don't bother checking. */
2003
2004 if (regno < FIRST_PSEUDO_REGISTER)
2005 {
2006 unsigned int end_regno = END_HARD_REGNO (datum);
2007 unsigned int i;
2008
2009 for (i = regno; i < end_regno; i++)
2010 if (find_regno_fusage (insn, code, i))
2011 return 1;
2012 }
2013 }
2014
2015 return 0;
2016 }
2017
2018 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2019 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2020
2021 int
2022 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2023 {
2024 rtx link;
2025
2026 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2027 to pseudo registers, so don't bother checking. */
2028
2029 if (regno >= FIRST_PSEUDO_REGISTER
2030 || !CALL_P (insn) )
2031 return 0;
2032
2033 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2034 {
2035 rtx op, reg;
2036
2037 if (GET_CODE (op = XEXP (link, 0)) == code
2038 && REG_P (reg = XEXP (op, 0))
2039 && REGNO (reg) <= regno
2040 && END_HARD_REGNO (reg) > regno)
2041 return 1;
2042 }
2043
2044 return 0;
2045 }
2046
2047 \f
2048 /* Return true if KIND is an integer REG_NOTE. */
2049
2050 static bool
2051 int_reg_note_p (enum reg_note kind)
2052 {
2053 return kind == REG_BR_PROB;
2054 }
2055
2056 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2057 stored as the pointer to the next register note. */
2058
2059 rtx
2060 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2061 {
2062 rtx note;
2063
2064 gcc_checking_assert (!int_reg_note_p (kind));
2065 switch (kind)
2066 {
2067 case REG_CC_SETTER:
2068 case REG_CC_USER:
2069 case REG_LABEL_TARGET:
2070 case REG_LABEL_OPERAND:
2071 case REG_TM:
2072 /* These types of register notes use an INSN_LIST rather than an
2073 EXPR_LIST, so that copying is done right and dumps look
2074 better. */
2075 note = alloc_INSN_LIST (datum, list);
2076 PUT_REG_NOTE_KIND (note, kind);
2077 break;
2078
2079 default:
2080 note = alloc_EXPR_LIST (kind, datum, list);
2081 break;
2082 }
2083
2084 return note;
2085 }
2086
2087 /* Add register note with kind KIND and datum DATUM to INSN. */
2088
2089 void
2090 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2091 {
2092 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2093 }
2094
2095 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2096
2097 void
2098 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2099 {
2100 gcc_checking_assert (int_reg_note_p (kind));
2101 REG_NOTES (insn) = gen_rtx_INT_LIST ((enum machine_mode) kind,
2102 datum, REG_NOTES (insn));
2103 }
2104
2105 /* Add a register note like NOTE to INSN. */
2106
2107 void
2108 add_shallow_copy_of_reg_note (rtx insn, rtx note)
2109 {
2110 if (GET_CODE (note) == INT_LIST)
2111 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2112 else
2113 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2114 }
2115
2116 /* Remove register note NOTE from the REG_NOTES of INSN. */
2117
2118 void
2119 remove_note (rtx insn, const_rtx note)
2120 {
2121 rtx link;
2122
2123 if (note == NULL_RTX)
2124 return;
2125
2126 if (REG_NOTES (insn) == note)
2127 REG_NOTES (insn) = XEXP (note, 1);
2128 else
2129 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2130 if (XEXP (link, 1) == note)
2131 {
2132 XEXP (link, 1) = XEXP (note, 1);
2133 break;
2134 }
2135
2136 switch (REG_NOTE_KIND (note))
2137 {
2138 case REG_EQUAL:
2139 case REG_EQUIV:
2140 df_notes_rescan (as_a <rtx_insn *> (insn));
2141 break;
2142 default:
2143 break;
2144 }
2145 }
2146
2147 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2148
2149 void
2150 remove_reg_equal_equiv_notes (rtx insn)
2151 {
2152 rtx *loc;
2153
2154 loc = &REG_NOTES (insn);
2155 while (*loc)
2156 {
2157 enum reg_note kind = REG_NOTE_KIND (*loc);
2158 if (kind == REG_EQUAL || kind == REG_EQUIV)
2159 *loc = XEXP (*loc, 1);
2160 else
2161 loc = &XEXP (*loc, 1);
2162 }
2163 }
2164
2165 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2166
2167 void
2168 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2169 {
2170 df_ref eq_use;
2171
2172 if (!df)
2173 return;
2174
2175 /* This loop is a little tricky. We cannot just go down the chain because
2176 it is being modified by some actions in the loop. So we just iterate
2177 over the head. We plan to drain the list anyway. */
2178 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2179 {
2180 rtx_insn *insn = DF_REF_INSN (eq_use);
2181 rtx note = find_reg_equal_equiv_note (insn);
2182
2183 /* This assert is generally triggered when someone deletes a REG_EQUAL
2184 or REG_EQUIV note by hacking the list manually rather than calling
2185 remove_note. */
2186 gcc_assert (note);
2187
2188 remove_note (insn, note);
2189 }
2190 }
2191
2192 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2193 return 1 if it is found. A simple equality test is used to determine if
2194 NODE matches. */
2195
2196 int
2197 in_expr_list_p (const_rtx listp, const_rtx node)
2198 {
2199 const_rtx x;
2200
2201 for (x = listp; x; x = XEXP (x, 1))
2202 if (node == XEXP (x, 0))
2203 return 1;
2204
2205 return 0;
2206 }
2207
2208 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2209 remove that entry from the list if it is found.
2210
2211 A simple equality test is used to determine if NODE matches. */
2212
2213 void
2214 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2215 {
2216 rtx_expr_list *temp = *listp;
2217 rtx prev = NULL_RTX;
2218
2219 while (temp)
2220 {
2221 if (node == temp->element ())
2222 {
2223 /* Splice the node out of the list. */
2224 if (prev)
2225 XEXP (prev, 1) = temp->next ();
2226 else
2227 *listp = temp->next ();
2228
2229 return;
2230 }
2231
2232 prev = temp;
2233 temp = temp->next ();
2234 }
2235 }
2236
2237 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2238 remove that entry from the list if it is found.
2239
2240 A simple equality test is used to determine if NODE matches. */
2241
2242 void
2243 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2244 {
2245 rtx_insn_list *temp = *listp;
2246 rtx prev = NULL;
2247
2248 while (temp)
2249 {
2250 if (node == temp->insn ())
2251 {
2252 /* Splice the node out of the list. */
2253 if (prev)
2254 XEXP (prev, 1) = temp->next ();
2255 else
2256 *listp = temp->next ();
2257
2258 return;
2259 }
2260
2261 prev = temp;
2262 temp = temp->next ();
2263 }
2264 }
2265 \f
2266 /* Nonzero if X contains any volatile instructions. These are instructions
2267 which may cause unpredictable machine state instructions, and thus no
2268 instructions or register uses should be moved or combined across them.
2269 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2270
2271 int
2272 volatile_insn_p (const_rtx x)
2273 {
2274 const RTX_CODE code = GET_CODE (x);
2275 switch (code)
2276 {
2277 case LABEL_REF:
2278 case SYMBOL_REF:
2279 case CONST:
2280 CASE_CONST_ANY:
2281 case CC0:
2282 case PC:
2283 case REG:
2284 case SCRATCH:
2285 case CLOBBER:
2286 case ADDR_VEC:
2287 case ADDR_DIFF_VEC:
2288 case CALL:
2289 case MEM:
2290 return 0;
2291
2292 case UNSPEC_VOLATILE:
2293 return 1;
2294
2295 case ASM_INPUT:
2296 case ASM_OPERANDS:
2297 if (MEM_VOLATILE_P (x))
2298 return 1;
2299
2300 default:
2301 break;
2302 }
2303
2304 /* Recursively scan the operands of this expression. */
2305
2306 {
2307 const char *const fmt = GET_RTX_FORMAT (code);
2308 int i;
2309
2310 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2311 {
2312 if (fmt[i] == 'e')
2313 {
2314 if (volatile_insn_p (XEXP (x, i)))
2315 return 1;
2316 }
2317 else if (fmt[i] == 'E')
2318 {
2319 int j;
2320 for (j = 0; j < XVECLEN (x, i); j++)
2321 if (volatile_insn_p (XVECEXP (x, i, j)))
2322 return 1;
2323 }
2324 }
2325 }
2326 return 0;
2327 }
2328
2329 /* Nonzero if X contains any volatile memory references
2330 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2331
2332 int
2333 volatile_refs_p (const_rtx x)
2334 {
2335 const RTX_CODE code = GET_CODE (x);
2336 switch (code)
2337 {
2338 case LABEL_REF:
2339 case SYMBOL_REF:
2340 case CONST:
2341 CASE_CONST_ANY:
2342 case CC0:
2343 case PC:
2344 case REG:
2345 case SCRATCH:
2346 case CLOBBER:
2347 case ADDR_VEC:
2348 case ADDR_DIFF_VEC:
2349 return 0;
2350
2351 case UNSPEC_VOLATILE:
2352 return 1;
2353
2354 case MEM:
2355 case ASM_INPUT:
2356 case ASM_OPERANDS:
2357 if (MEM_VOLATILE_P (x))
2358 return 1;
2359
2360 default:
2361 break;
2362 }
2363
2364 /* Recursively scan the operands of this expression. */
2365
2366 {
2367 const char *const fmt = GET_RTX_FORMAT (code);
2368 int i;
2369
2370 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2371 {
2372 if (fmt[i] == 'e')
2373 {
2374 if (volatile_refs_p (XEXP (x, i)))
2375 return 1;
2376 }
2377 else if (fmt[i] == 'E')
2378 {
2379 int j;
2380 for (j = 0; j < XVECLEN (x, i); j++)
2381 if (volatile_refs_p (XVECEXP (x, i, j)))
2382 return 1;
2383 }
2384 }
2385 }
2386 return 0;
2387 }
2388
2389 /* Similar to above, except that it also rejects register pre- and post-
2390 incrementing. */
2391
2392 int
2393 side_effects_p (const_rtx x)
2394 {
2395 const RTX_CODE code = GET_CODE (x);
2396 switch (code)
2397 {
2398 case LABEL_REF:
2399 case SYMBOL_REF:
2400 case CONST:
2401 CASE_CONST_ANY:
2402 case CC0:
2403 case PC:
2404 case REG:
2405 case SCRATCH:
2406 case ADDR_VEC:
2407 case ADDR_DIFF_VEC:
2408 case VAR_LOCATION:
2409 return 0;
2410
2411 case CLOBBER:
2412 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2413 when some combination can't be done. If we see one, don't think
2414 that we can simplify the expression. */
2415 return (GET_MODE (x) != VOIDmode);
2416
2417 case PRE_INC:
2418 case PRE_DEC:
2419 case POST_INC:
2420 case POST_DEC:
2421 case PRE_MODIFY:
2422 case POST_MODIFY:
2423 case CALL:
2424 case UNSPEC_VOLATILE:
2425 return 1;
2426
2427 case MEM:
2428 case ASM_INPUT:
2429 case ASM_OPERANDS:
2430 if (MEM_VOLATILE_P (x))
2431 return 1;
2432
2433 default:
2434 break;
2435 }
2436
2437 /* Recursively scan the operands of this expression. */
2438
2439 {
2440 const char *fmt = GET_RTX_FORMAT (code);
2441 int i;
2442
2443 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2444 {
2445 if (fmt[i] == 'e')
2446 {
2447 if (side_effects_p (XEXP (x, i)))
2448 return 1;
2449 }
2450 else if (fmt[i] == 'E')
2451 {
2452 int j;
2453 for (j = 0; j < XVECLEN (x, i); j++)
2454 if (side_effects_p (XVECEXP (x, i, j)))
2455 return 1;
2456 }
2457 }
2458 }
2459 return 0;
2460 }
2461 \f
2462 /* Return nonzero if evaluating rtx X might cause a trap.
2463 FLAGS controls how to consider MEMs. A nonzero means the context
2464 of the access may have changed from the original, such that the
2465 address may have become invalid. */
2466
2467 int
2468 may_trap_p_1 (const_rtx x, unsigned flags)
2469 {
2470 int i;
2471 enum rtx_code code;
2472 const char *fmt;
2473
2474 /* We make no distinction currently, but this function is part of
2475 the internal target-hooks ABI so we keep the parameter as
2476 "unsigned flags". */
2477 bool code_changed = flags != 0;
2478
2479 if (x == 0)
2480 return 0;
2481 code = GET_CODE (x);
2482 switch (code)
2483 {
2484 /* Handle these cases quickly. */
2485 CASE_CONST_ANY:
2486 case SYMBOL_REF:
2487 case LABEL_REF:
2488 case CONST:
2489 case PC:
2490 case CC0:
2491 case REG:
2492 case SCRATCH:
2493 return 0;
2494
2495 case UNSPEC:
2496 return targetm.unspec_may_trap_p (x, flags);
2497
2498 case UNSPEC_VOLATILE:
2499 case ASM_INPUT:
2500 case TRAP_IF:
2501 return 1;
2502
2503 case ASM_OPERANDS:
2504 return MEM_VOLATILE_P (x);
2505
2506 /* Memory ref can trap unless it's a static var or a stack slot. */
2507 case MEM:
2508 /* Recognize specific pattern of stack checking probes. */
2509 if (flag_stack_check
2510 && MEM_VOLATILE_P (x)
2511 && XEXP (x, 0) == stack_pointer_rtx)
2512 return 1;
2513 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2514 reference; moving it out of context such as when moving code
2515 when optimizing, might cause its address to become invalid. */
2516 code_changed
2517 || !MEM_NOTRAP_P (x))
2518 {
2519 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2520 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2521 GET_MODE (x), code_changed);
2522 }
2523
2524 return 0;
2525
2526 /* Division by a non-constant might trap. */
2527 case DIV:
2528 case MOD:
2529 case UDIV:
2530 case UMOD:
2531 if (HONOR_SNANS (GET_MODE (x)))
2532 return 1;
2533 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2534 return flag_trapping_math;
2535 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2536 return 1;
2537 break;
2538
2539 case EXPR_LIST:
2540 /* An EXPR_LIST is used to represent a function call. This
2541 certainly may trap. */
2542 return 1;
2543
2544 case GE:
2545 case GT:
2546 case LE:
2547 case LT:
2548 case LTGT:
2549 case COMPARE:
2550 /* Some floating point comparisons may trap. */
2551 if (!flag_trapping_math)
2552 break;
2553 /* ??? There is no machine independent way to check for tests that trap
2554 when COMPARE is used, though many targets do make this distinction.
2555 For instance, sparc uses CCFPE for compares which generate exceptions
2556 and CCFP for compares which do not generate exceptions. */
2557 if (HONOR_NANS (GET_MODE (x)))
2558 return 1;
2559 /* But often the compare has some CC mode, so check operand
2560 modes as well. */
2561 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2562 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2563 return 1;
2564 break;
2565
2566 case EQ:
2567 case NE:
2568 if (HONOR_SNANS (GET_MODE (x)))
2569 return 1;
2570 /* Often comparison is CC mode, so check operand modes. */
2571 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2572 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2573 return 1;
2574 break;
2575
2576 case FIX:
2577 /* Conversion of floating point might trap. */
2578 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2579 return 1;
2580 break;
2581
2582 case NEG:
2583 case ABS:
2584 case SUBREG:
2585 /* These operations don't trap even with floating point. */
2586 break;
2587
2588 default:
2589 /* Any floating arithmetic may trap. */
2590 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2591 return 1;
2592 }
2593
2594 fmt = GET_RTX_FORMAT (code);
2595 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2596 {
2597 if (fmt[i] == 'e')
2598 {
2599 if (may_trap_p_1 (XEXP (x, i), flags))
2600 return 1;
2601 }
2602 else if (fmt[i] == 'E')
2603 {
2604 int j;
2605 for (j = 0; j < XVECLEN (x, i); j++)
2606 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2607 return 1;
2608 }
2609 }
2610 return 0;
2611 }
2612
2613 /* Return nonzero if evaluating rtx X might cause a trap. */
2614
2615 int
2616 may_trap_p (const_rtx x)
2617 {
2618 return may_trap_p_1 (x, 0);
2619 }
2620
2621 /* Same as above, but additionally return nonzero if evaluating rtx X might
2622 cause a fault. We define a fault for the purpose of this function as a
2623 erroneous execution condition that cannot be encountered during the normal
2624 execution of a valid program; the typical example is an unaligned memory
2625 access on a strict alignment machine. The compiler guarantees that it
2626 doesn't generate code that will fault from a valid program, but this
2627 guarantee doesn't mean anything for individual instructions. Consider
2628 the following example:
2629
2630 struct S { int d; union { char *cp; int *ip; }; };
2631
2632 int foo(struct S *s)
2633 {
2634 if (s->d == 1)
2635 return *s->ip;
2636 else
2637 return *s->cp;
2638 }
2639
2640 on a strict alignment machine. In a valid program, foo will never be
2641 invoked on a structure for which d is equal to 1 and the underlying
2642 unique field of the union not aligned on a 4-byte boundary, but the
2643 expression *s->ip might cause a fault if considered individually.
2644
2645 At the RTL level, potentially problematic expressions will almost always
2646 verify may_trap_p; for example, the above dereference can be emitted as
2647 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2648 However, suppose that foo is inlined in a caller that causes s->cp to
2649 point to a local character variable and guarantees that s->d is not set
2650 to 1; foo may have been effectively translated into pseudo-RTL as:
2651
2652 if ((reg:SI) == 1)
2653 (set (reg:SI) (mem:SI (%fp - 7)))
2654 else
2655 (set (reg:QI) (mem:QI (%fp - 7)))
2656
2657 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2658 memory reference to a stack slot, but it will certainly cause a fault
2659 on a strict alignment machine. */
2660
2661 int
2662 may_trap_or_fault_p (const_rtx x)
2663 {
2664 return may_trap_p_1 (x, 1);
2665 }
2666 \f
2667 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2668 i.e., an inequality. */
2669
2670 int
2671 inequality_comparisons_p (const_rtx x)
2672 {
2673 const char *fmt;
2674 int len, i;
2675 const enum rtx_code code = GET_CODE (x);
2676
2677 switch (code)
2678 {
2679 case REG:
2680 case SCRATCH:
2681 case PC:
2682 case CC0:
2683 CASE_CONST_ANY:
2684 case CONST:
2685 case LABEL_REF:
2686 case SYMBOL_REF:
2687 return 0;
2688
2689 case LT:
2690 case LTU:
2691 case GT:
2692 case GTU:
2693 case LE:
2694 case LEU:
2695 case GE:
2696 case GEU:
2697 return 1;
2698
2699 default:
2700 break;
2701 }
2702
2703 len = GET_RTX_LENGTH (code);
2704 fmt = GET_RTX_FORMAT (code);
2705
2706 for (i = 0; i < len; i++)
2707 {
2708 if (fmt[i] == 'e')
2709 {
2710 if (inequality_comparisons_p (XEXP (x, i)))
2711 return 1;
2712 }
2713 else if (fmt[i] == 'E')
2714 {
2715 int j;
2716 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2717 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2718 return 1;
2719 }
2720 }
2721
2722 return 0;
2723 }
2724 \f
2725 /* Replace any occurrence of FROM in X with TO. The function does
2726 not enter into CONST_DOUBLE for the replace.
2727
2728 Note that copying is not done so X must not be shared unless all copies
2729 are to be modified. */
2730
2731 rtx
2732 replace_rtx (rtx x, rtx from, rtx to)
2733 {
2734 int i, j;
2735 const char *fmt;
2736
2737 if (x == from)
2738 return to;
2739
2740 /* Allow this function to make replacements in EXPR_LISTs. */
2741 if (x == 0)
2742 return 0;
2743
2744 if (GET_CODE (x) == SUBREG)
2745 {
2746 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2747
2748 if (CONST_INT_P (new_rtx))
2749 {
2750 x = simplify_subreg (GET_MODE (x), new_rtx,
2751 GET_MODE (SUBREG_REG (x)),
2752 SUBREG_BYTE (x));
2753 gcc_assert (x);
2754 }
2755 else
2756 SUBREG_REG (x) = new_rtx;
2757
2758 return x;
2759 }
2760 else if (GET_CODE (x) == ZERO_EXTEND)
2761 {
2762 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2763
2764 if (CONST_INT_P (new_rtx))
2765 {
2766 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2767 new_rtx, GET_MODE (XEXP (x, 0)));
2768 gcc_assert (x);
2769 }
2770 else
2771 XEXP (x, 0) = new_rtx;
2772
2773 return x;
2774 }
2775
2776 fmt = GET_RTX_FORMAT (GET_CODE (x));
2777 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2778 {
2779 if (fmt[i] == 'e')
2780 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2781 else if (fmt[i] == 'E')
2782 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2783 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2784 }
2785
2786 return x;
2787 }
2788 \f
2789 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2790 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
2791
2792 void
2793 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
2794 {
2795 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2796 rtx x = *loc;
2797 if (JUMP_TABLE_DATA_P (x))
2798 {
2799 x = PATTERN (x);
2800 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
2801 int len = GET_NUM_ELEM (vec);
2802 for (int i = 0; i < len; ++i)
2803 {
2804 rtx ref = RTVEC_ELT (vec, i);
2805 if (XEXP (ref, 0) == old_label)
2806 {
2807 XEXP (ref, 0) = new_label;
2808 if (update_label_nuses)
2809 {
2810 ++LABEL_NUSES (new_label);
2811 --LABEL_NUSES (old_label);
2812 }
2813 }
2814 }
2815 return;
2816 }
2817
2818 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2819 field. This is not handled by the iterator because it doesn't
2820 handle unprinted ('0') fields. */
2821 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
2822 JUMP_LABEL (x) = new_label;
2823
2824 subrtx_ptr_iterator::array_type array;
2825 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
2826 {
2827 rtx *loc = *iter;
2828 if (rtx x = *loc)
2829 {
2830 if (GET_CODE (x) == SYMBOL_REF
2831 && CONSTANT_POOL_ADDRESS_P (x))
2832 {
2833 rtx c = get_pool_constant (x);
2834 if (rtx_referenced_p (old_label, c))
2835 {
2836 /* Create a copy of constant C; replace the label inside
2837 but do not update LABEL_NUSES because uses in constant pool
2838 are not counted. */
2839 rtx new_c = copy_rtx (c);
2840 replace_label (&new_c, old_label, new_label, false);
2841
2842 /* Add the new constant NEW_C to constant pool and replace
2843 the old reference to constant by new reference. */
2844 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
2845 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
2846 }
2847 }
2848
2849 if ((GET_CODE (x) == LABEL_REF
2850 || GET_CODE (x) == INSN_LIST)
2851 && XEXP (x, 0) == old_label)
2852 {
2853 XEXP (x, 0) = new_label;
2854 if (update_label_nuses)
2855 {
2856 ++LABEL_NUSES (new_label);
2857 --LABEL_NUSES (old_label);
2858 }
2859 }
2860 }
2861 }
2862 }
2863
2864 void
2865 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
2866 bool update_label_nuses)
2867 {
2868 rtx insn_as_rtx = insn;
2869 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
2870 gcc_checking_assert (insn_as_rtx == insn);
2871 }
2872
2873 /* Return true if X is referenced in BODY. */
2874
2875 bool
2876 rtx_referenced_p (const_rtx x, const_rtx body)
2877 {
2878 subrtx_iterator::array_type array;
2879 FOR_EACH_SUBRTX (iter, array, body, ALL)
2880 if (const_rtx y = *iter)
2881 {
2882 /* Check if a label_ref Y refers to label X. */
2883 if (GET_CODE (y) == LABEL_REF
2884 && LABEL_P (x)
2885 && LABEL_REF_LABEL (y) == x)
2886 return true;
2887
2888 if (rtx_equal_p (x, y))
2889 return true;
2890
2891 /* If Y is a reference to pool constant traverse the constant. */
2892 if (GET_CODE (y) == SYMBOL_REF
2893 && CONSTANT_POOL_ADDRESS_P (y))
2894 iter.substitute (get_pool_constant (y));
2895 }
2896 return false;
2897 }
2898
2899 /* If INSN is a tablejump return true and store the label (before jump table) to
2900 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2901
2902 bool
2903 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
2904 {
2905 rtx label, table;
2906
2907 if (!JUMP_P (insn))
2908 return false;
2909
2910 label = JUMP_LABEL (insn);
2911 if (label != NULL_RTX && !ANY_RETURN_P (label)
2912 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
2913 && JUMP_TABLE_DATA_P (table))
2914 {
2915 if (labelp)
2916 *labelp = label;
2917 if (tablep)
2918 *tablep = as_a <rtx_jump_table_data *> (table);
2919 return true;
2920 }
2921 return false;
2922 }
2923
2924 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2925 constant that is not in the constant pool and not in the condition
2926 of an IF_THEN_ELSE. */
2927
2928 static int
2929 computed_jump_p_1 (const_rtx x)
2930 {
2931 const enum rtx_code code = GET_CODE (x);
2932 int i, j;
2933 const char *fmt;
2934
2935 switch (code)
2936 {
2937 case LABEL_REF:
2938 case PC:
2939 return 0;
2940
2941 case CONST:
2942 CASE_CONST_ANY:
2943 case SYMBOL_REF:
2944 case REG:
2945 return 1;
2946
2947 case MEM:
2948 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2949 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2950
2951 case IF_THEN_ELSE:
2952 return (computed_jump_p_1 (XEXP (x, 1))
2953 || computed_jump_p_1 (XEXP (x, 2)));
2954
2955 default:
2956 break;
2957 }
2958
2959 fmt = GET_RTX_FORMAT (code);
2960 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2961 {
2962 if (fmt[i] == 'e'
2963 && computed_jump_p_1 (XEXP (x, i)))
2964 return 1;
2965
2966 else if (fmt[i] == 'E')
2967 for (j = 0; j < XVECLEN (x, i); j++)
2968 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2969 return 1;
2970 }
2971
2972 return 0;
2973 }
2974
2975 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2976
2977 Tablejumps and casesi insns are not considered indirect jumps;
2978 we can recognize them by a (use (label_ref)). */
2979
2980 int
2981 computed_jump_p (const_rtx insn)
2982 {
2983 int i;
2984 if (JUMP_P (insn))
2985 {
2986 rtx pat = PATTERN (insn);
2987
2988 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2989 if (JUMP_LABEL (insn) != NULL)
2990 return 0;
2991
2992 if (GET_CODE (pat) == PARALLEL)
2993 {
2994 int len = XVECLEN (pat, 0);
2995 int has_use_labelref = 0;
2996
2997 for (i = len - 1; i >= 0; i--)
2998 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2999 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3000 == LABEL_REF))
3001 {
3002 has_use_labelref = 1;
3003 break;
3004 }
3005
3006 if (! has_use_labelref)
3007 for (i = len - 1; i >= 0; i--)
3008 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3009 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3010 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3011 return 1;
3012 }
3013 else if (GET_CODE (pat) == SET
3014 && SET_DEST (pat) == pc_rtx
3015 && computed_jump_p_1 (SET_SRC (pat)))
3016 return 1;
3017 }
3018 return 0;
3019 }
3020
3021 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
3022 calls. Processes the subexpressions of EXP and passes them to F. */
3023 static int
3024 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
3025 {
3026 int result, i, j;
3027 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
3028 rtx *x;
3029
3030 for (; format[n] != '\0'; n++)
3031 {
3032 switch (format[n])
3033 {
3034 case 'e':
3035 /* Call F on X. */
3036 x = &XEXP (exp, n);
3037 result = (*f) (x, data);
3038 if (result == -1)
3039 /* Do not traverse sub-expressions. */
3040 continue;
3041 else if (result != 0)
3042 /* Stop the traversal. */
3043 return result;
3044
3045 if (*x == NULL_RTX)
3046 /* There are no sub-expressions. */
3047 continue;
3048
3049 i = non_rtx_starting_operands[GET_CODE (*x)];
3050 if (i >= 0)
3051 {
3052 result = for_each_rtx_1 (*x, i, f, data);
3053 if (result != 0)
3054 return result;
3055 }
3056 break;
3057
3058 case 'V':
3059 case 'E':
3060 if (XVEC (exp, n) == 0)
3061 continue;
3062 for (j = 0; j < XVECLEN (exp, n); ++j)
3063 {
3064 /* Call F on X. */
3065 x = &XVECEXP (exp, n, j);
3066 result = (*f) (x, data);
3067 if (result == -1)
3068 /* Do not traverse sub-expressions. */
3069 continue;
3070 else if (result != 0)
3071 /* Stop the traversal. */
3072 return result;
3073
3074 if (*x == NULL_RTX)
3075 /* There are no sub-expressions. */
3076 continue;
3077
3078 i = non_rtx_starting_operands[GET_CODE (*x)];
3079 if (i >= 0)
3080 {
3081 result = for_each_rtx_1 (*x, i, f, data);
3082 if (result != 0)
3083 return result;
3084 }
3085 }
3086 break;
3087
3088 default:
3089 /* Nothing to do. */
3090 break;
3091 }
3092 }
3093
3094 return 0;
3095 }
3096
3097 /* Traverse X via depth-first search, calling F for each
3098 sub-expression (including X itself). F is also passed the DATA.
3099 If F returns -1, do not traverse sub-expressions, but continue
3100 traversing the rest of the tree. If F ever returns any other
3101 nonzero value, stop the traversal, and return the value returned
3102 by F. Otherwise, return 0. This function does not traverse inside
3103 tree structure that contains RTX_EXPRs, or into sub-expressions
3104 whose format code is `0' since it is not known whether or not those
3105 codes are actually RTL.
3106
3107 This routine is very general, and could (should?) be used to
3108 implement many of the other routines in this file. */
3109
3110 int
3111 for_each_rtx (rtx *x, rtx_function f, void *data)
3112 {
3113 int result;
3114 int i;
3115
3116 /* Call F on X. */
3117 result = (*f) (x, data);
3118 if (result == -1)
3119 /* Do not traverse sub-expressions. */
3120 return 0;
3121 else if (result != 0)
3122 /* Stop the traversal. */
3123 return result;
3124
3125 if (*x == NULL_RTX)
3126 /* There are no sub-expressions. */
3127 return 0;
3128
3129 i = non_rtx_starting_operands[GET_CODE (*x)];
3130 if (i < 0)
3131 return 0;
3132
3133 return for_each_rtx_1 (*x, i, f, data);
3134 }
3135
3136 /* Like "for_each_rtx", but for calling on an rtx_insn **. */
3137
3138 int
3139 for_each_rtx_in_insn (rtx_insn **insn, rtx_function f, void *data)
3140 {
3141 rtx insn_as_rtx = *insn;
3142 int result;
3143
3144 result = for_each_rtx (&insn_as_rtx, f, data);
3145
3146 if (insn_as_rtx != *insn)
3147 *insn = safe_as_a <rtx_insn *> (insn_as_rtx);
3148
3149 return result;
3150 }
3151
3152 \f
3153
3154 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3155 the equivalent add insn and pass the result to FN, using DATA as the
3156 final argument. */
3157
3158 static int
3159 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3160 {
3161 rtx x = XEXP (mem, 0);
3162 switch (GET_CODE (x))
3163 {
3164 case PRE_INC:
3165 case POST_INC:
3166 {
3167 int size = GET_MODE_SIZE (GET_MODE (mem));
3168 rtx r1 = XEXP (x, 0);
3169 rtx c = gen_int_mode (size, GET_MODE (r1));
3170 return fn (mem, x, r1, r1, c, data);
3171 }
3172
3173 case PRE_DEC:
3174 case POST_DEC:
3175 {
3176 int size = GET_MODE_SIZE (GET_MODE (mem));
3177 rtx r1 = XEXP (x, 0);
3178 rtx c = gen_int_mode (-size, GET_MODE (r1));
3179 return fn (mem, x, r1, r1, c, data);
3180 }
3181
3182 case PRE_MODIFY:
3183 case POST_MODIFY:
3184 {
3185 rtx r1 = XEXP (x, 0);
3186 rtx add = XEXP (x, 1);
3187 return fn (mem, x, r1, add, NULL, data);
3188 }
3189
3190 default:
3191 gcc_unreachable ();
3192 }
3193 }
3194
3195 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3196 For each such autoinc operation found, call FN, passing it
3197 the innermost enclosing MEM, the operation itself, the RTX modified
3198 by the operation, two RTXs (the second may be NULL) that, once
3199 added, represent the value to be held by the modified RTX
3200 afterwards, and DATA. FN is to return 0 to continue the
3201 traversal or any other value to have it returned to the caller of
3202 for_each_inc_dec. */
3203
3204 int
3205 for_each_inc_dec (rtx x,
3206 for_each_inc_dec_fn fn,
3207 void *data)
3208 {
3209 subrtx_var_iterator::array_type array;
3210 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3211 {
3212 rtx mem = *iter;
3213 if (mem
3214 && MEM_P (mem)
3215 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3216 {
3217 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3218 if (res != 0)
3219 return res;
3220 iter.skip_subrtxes ();
3221 }
3222 }
3223 return 0;
3224 }
3225
3226 \f
3227 /* Searches X for any reference to REGNO, returning the rtx of the
3228 reference found if any. Otherwise, returns NULL_RTX. */
3229
3230 rtx
3231 regno_use_in (unsigned int regno, rtx x)
3232 {
3233 const char *fmt;
3234 int i, j;
3235 rtx tem;
3236
3237 if (REG_P (x) && REGNO (x) == regno)
3238 return x;
3239
3240 fmt = GET_RTX_FORMAT (GET_CODE (x));
3241 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3242 {
3243 if (fmt[i] == 'e')
3244 {
3245 if ((tem = regno_use_in (regno, XEXP (x, i))))
3246 return tem;
3247 }
3248 else if (fmt[i] == 'E')
3249 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3250 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3251 return tem;
3252 }
3253
3254 return NULL_RTX;
3255 }
3256
3257 /* Return a value indicating whether OP, an operand of a commutative
3258 operation, is preferred as the first or second operand. The higher
3259 the value, the stronger the preference for being the first operand.
3260 We use negative values to indicate a preference for the first operand
3261 and positive values for the second operand. */
3262
3263 int
3264 commutative_operand_precedence (rtx op)
3265 {
3266 enum rtx_code code = GET_CODE (op);
3267
3268 /* Constants always come the second operand. Prefer "nice" constants. */
3269 if (code == CONST_INT)
3270 return -8;
3271 if (code == CONST_WIDE_INT)
3272 return -8;
3273 if (code == CONST_DOUBLE)
3274 return -7;
3275 if (code == CONST_FIXED)
3276 return -7;
3277 op = avoid_constant_pool_reference (op);
3278 code = GET_CODE (op);
3279
3280 switch (GET_RTX_CLASS (code))
3281 {
3282 case RTX_CONST_OBJ:
3283 if (code == CONST_INT)
3284 return -6;
3285 if (code == CONST_WIDE_INT)
3286 return -6;
3287 if (code == CONST_DOUBLE)
3288 return -5;
3289 if (code == CONST_FIXED)
3290 return -5;
3291 return -4;
3292
3293 case RTX_EXTRA:
3294 /* SUBREGs of objects should come second. */
3295 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3296 return -3;
3297 return 0;
3298
3299 case RTX_OBJ:
3300 /* Complex expressions should be the first, so decrease priority
3301 of objects. Prefer pointer objects over non pointer objects. */
3302 if ((REG_P (op) && REG_POINTER (op))
3303 || (MEM_P (op) && MEM_POINTER (op)))
3304 return -1;
3305 return -2;
3306
3307 case RTX_COMM_ARITH:
3308 /* Prefer operands that are themselves commutative to be first.
3309 This helps to make things linear. In particular,
3310 (and (and (reg) (reg)) (not (reg))) is canonical. */
3311 return 4;
3312
3313 case RTX_BIN_ARITH:
3314 /* If only one operand is a binary expression, it will be the first
3315 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3316 is canonical, although it will usually be further simplified. */
3317 return 2;
3318
3319 case RTX_UNARY:
3320 /* Then prefer NEG and NOT. */
3321 if (code == NEG || code == NOT)
3322 return 1;
3323
3324 default:
3325 return 0;
3326 }
3327 }
3328
3329 /* Return 1 iff it is necessary to swap operands of commutative operation
3330 in order to canonicalize expression. */
3331
3332 bool
3333 swap_commutative_operands_p (rtx x, rtx y)
3334 {
3335 return (commutative_operand_precedence (x)
3336 < commutative_operand_precedence (y));
3337 }
3338
3339 /* Return 1 if X is an autoincrement side effect and the register is
3340 not the stack pointer. */
3341 int
3342 auto_inc_p (const_rtx x)
3343 {
3344 switch (GET_CODE (x))
3345 {
3346 case PRE_INC:
3347 case POST_INC:
3348 case PRE_DEC:
3349 case POST_DEC:
3350 case PRE_MODIFY:
3351 case POST_MODIFY:
3352 /* There are no REG_INC notes for SP. */
3353 if (XEXP (x, 0) != stack_pointer_rtx)
3354 return 1;
3355 default:
3356 break;
3357 }
3358 return 0;
3359 }
3360
3361 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3362 int
3363 loc_mentioned_in_p (rtx *loc, const_rtx in)
3364 {
3365 enum rtx_code code;
3366 const char *fmt;
3367 int i, j;
3368
3369 if (!in)
3370 return 0;
3371
3372 code = GET_CODE (in);
3373 fmt = GET_RTX_FORMAT (code);
3374 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3375 {
3376 if (fmt[i] == 'e')
3377 {
3378 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3379 return 1;
3380 }
3381 else if (fmt[i] == 'E')
3382 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3383 if (loc == &XVECEXP (in, i, j)
3384 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3385 return 1;
3386 }
3387 return 0;
3388 }
3389
3390 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3391 and SUBREG_BYTE, return the bit offset where the subreg begins
3392 (counting from the least significant bit of the operand). */
3393
3394 unsigned int
3395 subreg_lsb_1 (enum machine_mode outer_mode,
3396 enum machine_mode inner_mode,
3397 unsigned int subreg_byte)
3398 {
3399 unsigned int bitpos;
3400 unsigned int byte;
3401 unsigned int word;
3402
3403 /* A paradoxical subreg begins at bit position 0. */
3404 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3405 return 0;
3406
3407 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3408 /* If the subreg crosses a word boundary ensure that
3409 it also begins and ends on a word boundary. */
3410 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3411 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3412 && (subreg_byte % UNITS_PER_WORD
3413 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3414
3415 if (WORDS_BIG_ENDIAN)
3416 word = (GET_MODE_SIZE (inner_mode)
3417 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3418 else
3419 word = subreg_byte / UNITS_PER_WORD;
3420 bitpos = word * BITS_PER_WORD;
3421
3422 if (BYTES_BIG_ENDIAN)
3423 byte = (GET_MODE_SIZE (inner_mode)
3424 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3425 else
3426 byte = subreg_byte % UNITS_PER_WORD;
3427 bitpos += byte * BITS_PER_UNIT;
3428
3429 return bitpos;
3430 }
3431
3432 /* Given a subreg X, return the bit offset where the subreg begins
3433 (counting from the least significant bit of the reg). */
3434
3435 unsigned int
3436 subreg_lsb (const_rtx x)
3437 {
3438 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3439 SUBREG_BYTE (x));
3440 }
3441
3442 /* Fill in information about a subreg of a hard register.
3443 xregno - A regno of an inner hard subreg_reg (or what will become one).
3444 xmode - The mode of xregno.
3445 offset - The byte offset.
3446 ymode - The mode of a top level SUBREG (or what may become one).
3447 info - Pointer to structure to fill in.
3448
3449 Rather than considering one particular inner register (and thus one
3450 particular "outer" register) in isolation, this function really uses
3451 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3452 function does not check whether adding INFO->offset to XREGNO gives
3453 a valid hard register; even if INFO->offset + XREGNO is out of range,
3454 there might be another register of the same type that is in range.
3455 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3456 register, since that can depend on things like whether the final
3457 register number is even or odd. Callers that want to check whether
3458 this particular subreg can be replaced by a simple (reg ...) should
3459 use simplify_subreg_regno. */
3460
3461 void
3462 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3463 unsigned int offset, enum machine_mode ymode,
3464 struct subreg_info *info)
3465 {
3466 int nregs_xmode, nregs_ymode;
3467 int mode_multiple, nregs_multiple;
3468 int offset_adj, y_offset, y_offset_adj;
3469 int regsize_xmode, regsize_ymode;
3470 bool rknown;
3471
3472 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3473
3474 rknown = false;
3475
3476 /* If there are holes in a non-scalar mode in registers, we expect
3477 that it is made up of its units concatenated together. */
3478 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3479 {
3480 enum machine_mode xmode_unit;
3481
3482 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3483 if (GET_MODE_INNER (xmode) == VOIDmode)
3484 xmode_unit = xmode;
3485 else
3486 xmode_unit = GET_MODE_INNER (xmode);
3487 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3488 gcc_assert (nregs_xmode
3489 == (GET_MODE_NUNITS (xmode)
3490 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3491 gcc_assert (hard_regno_nregs[xregno][xmode]
3492 == (hard_regno_nregs[xregno][xmode_unit]
3493 * GET_MODE_NUNITS (xmode)));
3494
3495 /* You can only ask for a SUBREG of a value with holes in the middle
3496 if you don't cross the holes. (Such a SUBREG should be done by
3497 picking a different register class, or doing it in memory if
3498 necessary.) An example of a value with holes is XCmode on 32-bit
3499 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3500 3 for each part, but in memory it's two 128-bit parts.
3501 Padding is assumed to be at the end (not necessarily the 'high part')
3502 of each unit. */
3503 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3504 < GET_MODE_NUNITS (xmode))
3505 && (offset / GET_MODE_SIZE (xmode_unit)
3506 != ((offset + GET_MODE_SIZE (ymode) - 1)
3507 / GET_MODE_SIZE (xmode_unit))))
3508 {
3509 info->representable_p = false;
3510 rknown = true;
3511 }
3512 }
3513 else
3514 nregs_xmode = hard_regno_nregs[xregno][xmode];
3515
3516 nregs_ymode = hard_regno_nregs[xregno][ymode];
3517
3518 /* Paradoxical subregs are otherwise valid. */
3519 if (!rknown
3520 && offset == 0
3521 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3522 {
3523 info->representable_p = true;
3524 /* If this is a big endian paradoxical subreg, which uses more
3525 actual hard registers than the original register, we must
3526 return a negative offset so that we find the proper highpart
3527 of the register. */
3528 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3529 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3530 info->offset = nregs_xmode - nregs_ymode;
3531 else
3532 info->offset = 0;
3533 info->nregs = nregs_ymode;
3534 return;
3535 }
3536
3537 /* If registers store different numbers of bits in the different
3538 modes, we cannot generally form this subreg. */
3539 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3540 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3541 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3542 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3543 {
3544 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3545 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3546 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3547 {
3548 info->representable_p = false;
3549 info->nregs
3550 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3551 info->offset = offset / regsize_xmode;
3552 return;
3553 }
3554 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3555 {
3556 info->representable_p = false;
3557 info->nregs
3558 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3559 info->offset = offset / regsize_xmode;
3560 return;
3561 }
3562 }
3563
3564 /* Lowpart subregs are otherwise valid. */
3565 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3566 {
3567 info->representable_p = true;
3568 rknown = true;
3569
3570 if (offset == 0 || nregs_xmode == nregs_ymode)
3571 {
3572 info->offset = 0;
3573 info->nregs = nregs_ymode;
3574 return;
3575 }
3576 }
3577
3578 /* This should always pass, otherwise we don't know how to verify
3579 the constraint. These conditions may be relaxed but
3580 subreg_regno_offset would need to be redesigned. */
3581 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3582 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3583
3584 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3585 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3586 {
3587 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3588 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3589 HOST_WIDE_INT off_low = offset & (ysize - 1);
3590 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3591 offset = (xsize - ysize - off_high) | off_low;
3592 }
3593 /* The XMODE value can be seen as a vector of NREGS_XMODE
3594 values. The subreg must represent a lowpart of given field.
3595 Compute what field it is. */
3596 offset_adj = offset;
3597 offset_adj -= subreg_lowpart_offset (ymode,
3598 mode_for_size (GET_MODE_BITSIZE (xmode)
3599 / nregs_xmode,
3600 MODE_INT, 0));
3601
3602 /* Size of ymode must not be greater than the size of xmode. */
3603 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3604 gcc_assert (mode_multiple != 0);
3605
3606 y_offset = offset / GET_MODE_SIZE (ymode);
3607 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3608 nregs_multiple = nregs_xmode / nregs_ymode;
3609
3610 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3611 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3612
3613 if (!rknown)
3614 {
3615 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3616 rknown = true;
3617 }
3618 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3619 info->nregs = nregs_ymode;
3620 }
3621
3622 /* This function returns the regno offset of a subreg expression.
3623 xregno - A regno of an inner hard subreg_reg (or what will become one).
3624 xmode - The mode of xregno.
3625 offset - The byte offset.
3626 ymode - The mode of a top level SUBREG (or what may become one).
3627 RETURN - The regno offset which would be used. */
3628 unsigned int
3629 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3630 unsigned int offset, enum machine_mode ymode)
3631 {
3632 struct subreg_info info;
3633 subreg_get_info (xregno, xmode, offset, ymode, &info);
3634 return info.offset;
3635 }
3636
3637 /* This function returns true when the offset is representable via
3638 subreg_offset in the given regno.
3639 xregno - A regno of an inner hard subreg_reg (or what will become one).
3640 xmode - The mode of xregno.
3641 offset - The byte offset.
3642 ymode - The mode of a top level SUBREG (or what may become one).
3643 RETURN - Whether the offset is representable. */
3644 bool
3645 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3646 unsigned int offset, enum machine_mode ymode)
3647 {
3648 struct subreg_info info;
3649 subreg_get_info (xregno, xmode, offset, ymode, &info);
3650 return info.representable_p;
3651 }
3652
3653 /* Return the number of a YMODE register to which
3654
3655 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3656
3657 can be simplified. Return -1 if the subreg can't be simplified.
3658
3659 XREGNO is a hard register number. */
3660
3661 int
3662 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3663 unsigned int offset, enum machine_mode ymode)
3664 {
3665 struct subreg_info info;
3666 unsigned int yregno;
3667
3668 #ifdef CANNOT_CHANGE_MODE_CLASS
3669 /* Give the backend a chance to disallow the mode change. */
3670 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3671 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3672 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3673 /* We can use mode change in LRA for some transformations. */
3674 && ! lra_in_progress)
3675 return -1;
3676 #endif
3677
3678 /* We shouldn't simplify stack-related registers. */
3679 if ((!reload_completed || frame_pointer_needed)
3680 && xregno == FRAME_POINTER_REGNUM)
3681 return -1;
3682
3683 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3684 && xregno == ARG_POINTER_REGNUM)
3685 return -1;
3686
3687 if (xregno == STACK_POINTER_REGNUM
3688 /* We should convert hard stack register in LRA if it is
3689 possible. */
3690 && ! lra_in_progress)
3691 return -1;
3692
3693 /* Try to get the register offset. */
3694 subreg_get_info (xregno, xmode, offset, ymode, &info);
3695 if (!info.representable_p)
3696 return -1;
3697
3698 /* Make sure that the offsetted register value is in range. */
3699 yregno = xregno + info.offset;
3700 if (!HARD_REGISTER_NUM_P (yregno))
3701 return -1;
3702
3703 /* See whether (reg:YMODE YREGNO) is valid.
3704
3705 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3706 This is a kludge to work around how complex FP arguments are passed
3707 on IA-64 and should be fixed. See PR target/49226. */
3708 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3709 && HARD_REGNO_MODE_OK (xregno, xmode))
3710 return -1;
3711
3712 return (int) yregno;
3713 }
3714
3715 /* Return the final regno that a subreg expression refers to. */
3716 unsigned int
3717 subreg_regno (const_rtx x)
3718 {
3719 unsigned int ret;
3720 rtx subreg = SUBREG_REG (x);
3721 int regno = REGNO (subreg);
3722
3723 ret = regno + subreg_regno_offset (regno,
3724 GET_MODE (subreg),
3725 SUBREG_BYTE (x),
3726 GET_MODE (x));
3727 return ret;
3728
3729 }
3730
3731 /* Return the number of registers that a subreg expression refers
3732 to. */
3733 unsigned int
3734 subreg_nregs (const_rtx x)
3735 {
3736 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3737 }
3738
3739 /* Return the number of registers that a subreg REG with REGNO
3740 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3741 changed so that the regno can be passed in. */
3742
3743 unsigned int
3744 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3745 {
3746 struct subreg_info info;
3747 rtx subreg = SUBREG_REG (x);
3748
3749 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3750 &info);
3751 return info.nregs;
3752 }
3753
3754
3755 struct parms_set_data
3756 {
3757 int nregs;
3758 HARD_REG_SET regs;
3759 };
3760
3761 /* Helper function for noticing stores to parameter registers. */
3762 static void
3763 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3764 {
3765 struct parms_set_data *const d = (struct parms_set_data *) data;
3766 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3767 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3768 {
3769 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3770 d->nregs--;
3771 }
3772 }
3773
3774 /* Look backward for first parameter to be loaded.
3775 Note that loads of all parameters will not necessarily be
3776 found if CSE has eliminated some of them (e.g., an argument
3777 to the outer function is passed down as a parameter).
3778 Do not skip BOUNDARY. */
3779 rtx_insn *
3780 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3781 {
3782 struct parms_set_data parm;
3783 rtx p;
3784 rtx_insn *before, *first_set;
3785
3786 /* Since different machines initialize their parameter registers
3787 in different orders, assume nothing. Collect the set of all
3788 parameter registers. */
3789 CLEAR_HARD_REG_SET (parm.regs);
3790 parm.nregs = 0;
3791 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3792 if (GET_CODE (XEXP (p, 0)) == USE
3793 && REG_P (XEXP (XEXP (p, 0), 0)))
3794 {
3795 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3796
3797 /* We only care about registers which can hold function
3798 arguments. */
3799 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3800 continue;
3801
3802 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3803 parm.nregs++;
3804 }
3805 before = call_insn;
3806 first_set = call_insn;
3807
3808 /* Search backward for the first set of a register in this set. */
3809 while (parm.nregs && before != boundary)
3810 {
3811 before = PREV_INSN (before);
3812
3813 /* It is possible that some loads got CSEed from one call to
3814 another. Stop in that case. */
3815 if (CALL_P (before))
3816 break;
3817
3818 /* Our caller needs either ensure that we will find all sets
3819 (in case code has not been optimized yet), or take care
3820 for possible labels in a way by setting boundary to preceding
3821 CODE_LABEL. */
3822 if (LABEL_P (before))
3823 {
3824 gcc_assert (before == boundary);
3825 break;
3826 }
3827
3828 if (INSN_P (before))
3829 {
3830 int nregs_old = parm.nregs;
3831 note_stores (PATTERN (before), parms_set, &parm);
3832 /* If we found something that did not set a parameter reg,
3833 we're done. Do not keep going, as that might result
3834 in hoisting an insn before the setting of a pseudo
3835 that is used by the hoisted insn. */
3836 if (nregs_old != parm.nregs)
3837 first_set = before;
3838 else
3839 break;
3840 }
3841 }
3842 return first_set;
3843 }
3844
3845 /* Return true if we should avoid inserting code between INSN and preceding
3846 call instruction. */
3847
3848 bool
3849 keep_with_call_p (const rtx_insn *insn)
3850 {
3851 rtx set;
3852
3853 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3854 {
3855 if (REG_P (SET_DEST (set))
3856 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3857 && fixed_regs[REGNO (SET_DEST (set))]
3858 && general_operand (SET_SRC (set), VOIDmode))
3859 return true;
3860 if (REG_P (SET_SRC (set))
3861 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3862 && REG_P (SET_DEST (set))
3863 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3864 return true;
3865 /* There may be a stack pop just after the call and before the store
3866 of the return register. Search for the actual store when deciding
3867 if we can break or not. */
3868 if (SET_DEST (set) == stack_pointer_rtx)
3869 {
3870 /* This CONST_CAST is okay because next_nonnote_insn just
3871 returns its argument and we assign it to a const_rtx
3872 variable. */
3873 const rtx_insn *i2
3874 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3875 if (i2 && keep_with_call_p (i2))
3876 return true;
3877 }
3878 }
3879 return false;
3880 }
3881
3882 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3883 to non-complex jumps. That is, direct unconditional, conditional,
3884 and tablejumps, but not computed jumps or returns. It also does
3885 not apply to the fallthru case of a conditional jump. */
3886
3887 bool
3888 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
3889 {
3890 rtx tmp = JUMP_LABEL (jump_insn);
3891 rtx_jump_table_data *table;
3892
3893 if (label == tmp)
3894 return true;
3895
3896 if (tablejump_p (jump_insn, NULL, &table))
3897 {
3898 rtvec vec = table->get_labels ();
3899 int i, veclen = GET_NUM_ELEM (vec);
3900
3901 for (i = 0; i < veclen; ++i)
3902 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3903 return true;
3904 }
3905
3906 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3907 return true;
3908
3909 return false;
3910 }
3911
3912 \f
3913 /* Return an estimate of the cost of computing rtx X.
3914 One use is in cse, to decide which expression to keep in the hash table.
3915 Another is in rtl generation, to pick the cheapest way to multiply.
3916 Other uses like the latter are expected in the future.
3917
3918 X appears as operand OPNO in an expression with code OUTER_CODE.
3919 SPEED specifies whether costs optimized for speed or size should
3920 be returned. */
3921
3922 int
3923 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3924 {
3925 int i, j;
3926 enum rtx_code code;
3927 const char *fmt;
3928 int total;
3929 int factor;
3930
3931 if (x == 0)
3932 return 0;
3933
3934 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3935 many insns, taking N times as long. */
3936 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3937 if (factor == 0)
3938 factor = 1;
3939
3940 /* Compute the default costs of certain things.
3941 Note that targetm.rtx_costs can override the defaults. */
3942
3943 code = GET_CODE (x);
3944 switch (code)
3945 {
3946 case MULT:
3947 /* Multiplication has time-complexity O(N*N), where N is the
3948 number of units (translated from digits) when using
3949 schoolbook long multiplication. */
3950 total = factor * factor * COSTS_N_INSNS (5);
3951 break;
3952 case DIV:
3953 case UDIV:
3954 case MOD:
3955 case UMOD:
3956 /* Similarly, complexity for schoolbook long division. */
3957 total = factor * factor * COSTS_N_INSNS (7);
3958 break;
3959 case USE:
3960 /* Used in combine.c as a marker. */
3961 total = 0;
3962 break;
3963 case SET:
3964 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3965 the mode for the factor. */
3966 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3967 if (factor == 0)
3968 factor = 1;
3969 /* Pass through. */
3970 default:
3971 total = factor * COSTS_N_INSNS (1);
3972 }
3973
3974 switch (code)
3975 {
3976 case REG:
3977 return 0;
3978
3979 case SUBREG:
3980 total = 0;
3981 /* If we can't tie these modes, make this expensive. The larger
3982 the mode, the more expensive it is. */
3983 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3984 return COSTS_N_INSNS (2 + factor);
3985 break;
3986
3987 default:
3988 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3989 return total;
3990 break;
3991 }
3992
3993 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3994 which is already in total. */
3995
3996 fmt = GET_RTX_FORMAT (code);
3997 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3998 if (fmt[i] == 'e')
3999 total += rtx_cost (XEXP (x, i), code, i, speed);
4000 else if (fmt[i] == 'E')
4001 for (j = 0; j < XVECLEN (x, i); j++)
4002 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
4003
4004 return total;
4005 }
4006
4007 /* Fill in the structure C with information about both speed and size rtx
4008 costs for X, which is operand OPNO in an expression with code OUTER. */
4009
4010 void
4011 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
4012 struct full_rtx_costs *c)
4013 {
4014 c->speed = rtx_cost (x, outer, opno, true);
4015 c->size = rtx_cost (x, outer, opno, false);
4016 }
4017
4018 \f
4019 /* Return cost of address expression X.
4020 Expect that X is properly formed address reference.
4021
4022 SPEED parameter specify whether costs optimized for speed or size should
4023 be returned. */
4024
4025 int
4026 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
4027 {
4028 /* We may be asked for cost of various unusual addresses, such as operands
4029 of push instruction. It is not worthwhile to complicate writing
4030 of the target hook by such cases. */
4031
4032 if (!memory_address_addr_space_p (mode, x, as))
4033 return 1000;
4034
4035 return targetm.address_cost (x, mode, as, speed);
4036 }
4037
4038 /* If the target doesn't override, compute the cost as with arithmetic. */
4039
4040 int
4041 default_address_cost (rtx x, enum machine_mode, addr_space_t, bool speed)
4042 {
4043 return rtx_cost (x, MEM, 0, speed);
4044 }
4045 \f
4046
4047 unsigned HOST_WIDE_INT
4048 nonzero_bits (const_rtx x, enum machine_mode mode)
4049 {
4050 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4051 }
4052
4053 unsigned int
4054 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
4055 {
4056 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4057 }
4058
4059 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4060 It avoids exponential behavior in nonzero_bits1 when X has
4061 identical subexpressions on the first or the second level. */
4062
4063 static unsigned HOST_WIDE_INT
4064 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
4065 enum machine_mode known_mode,
4066 unsigned HOST_WIDE_INT known_ret)
4067 {
4068 if (x == known_x && mode == known_mode)
4069 return known_ret;
4070
4071 /* Try to find identical subexpressions. If found call
4072 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4073 precomputed value for the subexpression as KNOWN_RET. */
4074
4075 if (ARITHMETIC_P (x))
4076 {
4077 rtx x0 = XEXP (x, 0);
4078 rtx x1 = XEXP (x, 1);
4079
4080 /* Check the first level. */
4081 if (x0 == x1)
4082 return nonzero_bits1 (x, mode, x0, mode,
4083 cached_nonzero_bits (x0, mode, known_x,
4084 known_mode, known_ret));
4085
4086 /* Check the second level. */
4087 if (ARITHMETIC_P (x0)
4088 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4089 return nonzero_bits1 (x, mode, x1, mode,
4090 cached_nonzero_bits (x1, mode, known_x,
4091 known_mode, known_ret));
4092
4093 if (ARITHMETIC_P (x1)
4094 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4095 return nonzero_bits1 (x, mode, x0, mode,
4096 cached_nonzero_bits (x0, mode, known_x,
4097 known_mode, known_ret));
4098 }
4099
4100 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4101 }
4102
4103 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4104 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4105 is less useful. We can't allow both, because that results in exponential
4106 run time recursion. There is a nullstone testcase that triggered
4107 this. This macro avoids accidental uses of num_sign_bit_copies. */
4108 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4109
4110 /* Given an expression, X, compute which bits in X can be nonzero.
4111 We don't care about bits outside of those defined in MODE.
4112
4113 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4114 an arithmetic operation, we can do better. */
4115
4116 static unsigned HOST_WIDE_INT
4117 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4118 enum machine_mode known_mode,
4119 unsigned HOST_WIDE_INT known_ret)
4120 {
4121 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4122 unsigned HOST_WIDE_INT inner_nz;
4123 enum rtx_code code;
4124 enum machine_mode inner_mode;
4125 unsigned int mode_width = GET_MODE_PRECISION (mode);
4126
4127 /* For floating-point and vector values, assume all bits are needed. */
4128 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4129 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4130 return nonzero;
4131
4132 /* If X is wider than MODE, use its mode instead. */
4133 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4134 {
4135 mode = GET_MODE (x);
4136 nonzero = GET_MODE_MASK (mode);
4137 mode_width = GET_MODE_PRECISION (mode);
4138 }
4139
4140 if (mode_width > HOST_BITS_PER_WIDE_INT)
4141 /* Our only callers in this case look for single bit values. So
4142 just return the mode mask. Those tests will then be false. */
4143 return nonzero;
4144
4145 #ifndef WORD_REGISTER_OPERATIONS
4146 /* If MODE is wider than X, but both are a single word for both the host
4147 and target machines, we can compute this from which bits of the
4148 object might be nonzero in its own mode, taking into account the fact
4149 that on many CISC machines, accessing an object in a wider mode
4150 causes the high-order bits to become undefined. So they are
4151 not known to be zero. */
4152
4153 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
4154 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4155 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4156 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4157 {
4158 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4159 known_x, known_mode, known_ret);
4160 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4161 return nonzero;
4162 }
4163 #endif
4164
4165 code = GET_CODE (x);
4166 switch (code)
4167 {
4168 case REG:
4169 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4170 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4171 all the bits above ptr_mode are known to be zero. */
4172 /* As we do not know which address space the pointer is referring to,
4173 we can do this only if the target does not support different pointer
4174 or address modes depending on the address space. */
4175 if (target_default_pointer_address_modes_p ()
4176 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4177 && REG_POINTER (x))
4178 nonzero &= GET_MODE_MASK (ptr_mode);
4179 #endif
4180
4181 /* Include declared information about alignment of pointers. */
4182 /* ??? We don't properly preserve REG_POINTER changes across
4183 pointer-to-integer casts, so we can't trust it except for
4184 things that we know must be pointers. See execute/960116-1.c. */
4185 if ((x == stack_pointer_rtx
4186 || x == frame_pointer_rtx
4187 || x == arg_pointer_rtx)
4188 && REGNO_POINTER_ALIGN (REGNO (x)))
4189 {
4190 unsigned HOST_WIDE_INT alignment
4191 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4192
4193 #ifdef PUSH_ROUNDING
4194 /* If PUSH_ROUNDING is defined, it is possible for the
4195 stack to be momentarily aligned only to that amount,
4196 so we pick the least alignment. */
4197 if (x == stack_pointer_rtx && PUSH_ARGS)
4198 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4199 alignment);
4200 #endif
4201
4202 nonzero &= ~(alignment - 1);
4203 }
4204
4205 {
4206 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4207 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4208 known_mode, known_ret,
4209 &nonzero_for_hook);
4210
4211 if (new_rtx)
4212 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4213 known_mode, known_ret);
4214
4215 return nonzero_for_hook;
4216 }
4217
4218 case CONST_INT:
4219 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4220 /* If X is negative in MODE, sign-extend the value. */
4221 if (INTVAL (x) > 0
4222 && mode_width < BITS_PER_WORD
4223 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4224 != 0)
4225 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4226 #endif
4227
4228 return UINTVAL (x);
4229
4230 case MEM:
4231 #ifdef LOAD_EXTEND_OP
4232 /* In many, if not most, RISC machines, reading a byte from memory
4233 zeros the rest of the register. Noticing that fact saves a lot
4234 of extra zero-extends. */
4235 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4236 nonzero &= GET_MODE_MASK (GET_MODE (x));
4237 #endif
4238 break;
4239
4240 case EQ: case NE:
4241 case UNEQ: case LTGT:
4242 case GT: case GTU: case UNGT:
4243 case LT: case LTU: case UNLT:
4244 case GE: case GEU: case UNGE:
4245 case LE: case LEU: case UNLE:
4246 case UNORDERED: case ORDERED:
4247 /* If this produces an integer result, we know which bits are set.
4248 Code here used to clear bits outside the mode of X, but that is
4249 now done above. */
4250 /* Mind that MODE is the mode the caller wants to look at this
4251 operation in, and not the actual operation mode. We can wind
4252 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4253 that describes the results of a vector compare. */
4254 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4255 && mode_width <= HOST_BITS_PER_WIDE_INT)
4256 nonzero = STORE_FLAG_VALUE;
4257 break;
4258
4259 case NEG:
4260 #if 0
4261 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4262 and num_sign_bit_copies. */
4263 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4264 == GET_MODE_PRECISION (GET_MODE (x)))
4265 nonzero = 1;
4266 #endif
4267
4268 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4269 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4270 break;
4271
4272 case ABS:
4273 #if 0
4274 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4275 and num_sign_bit_copies. */
4276 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4277 == GET_MODE_PRECISION (GET_MODE (x)))
4278 nonzero = 1;
4279 #endif
4280 break;
4281
4282 case TRUNCATE:
4283 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4284 known_x, known_mode, known_ret)
4285 & GET_MODE_MASK (mode));
4286 break;
4287
4288 case ZERO_EXTEND:
4289 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4290 known_x, known_mode, known_ret);
4291 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4292 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4293 break;
4294
4295 case SIGN_EXTEND:
4296 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4297 Otherwise, show all the bits in the outer mode but not the inner
4298 may be nonzero. */
4299 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4300 known_x, known_mode, known_ret);
4301 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4302 {
4303 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4304 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4305 inner_nz |= (GET_MODE_MASK (mode)
4306 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4307 }
4308
4309 nonzero &= inner_nz;
4310 break;
4311
4312 case AND:
4313 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4314 known_x, known_mode, known_ret)
4315 & cached_nonzero_bits (XEXP (x, 1), mode,
4316 known_x, known_mode, known_ret);
4317 break;
4318
4319 case XOR: case IOR:
4320 case UMIN: case UMAX: case SMIN: case SMAX:
4321 {
4322 unsigned HOST_WIDE_INT nonzero0
4323 = cached_nonzero_bits (XEXP (x, 0), mode,
4324 known_x, known_mode, known_ret);
4325
4326 /* Don't call nonzero_bits for the second time if it cannot change
4327 anything. */
4328 if ((nonzero & nonzero0) != nonzero)
4329 nonzero &= nonzero0
4330 | cached_nonzero_bits (XEXP (x, 1), mode,
4331 known_x, known_mode, known_ret);
4332 }
4333 break;
4334
4335 case PLUS: case MINUS:
4336 case MULT:
4337 case DIV: case UDIV:
4338 case MOD: case UMOD:
4339 /* We can apply the rules of arithmetic to compute the number of
4340 high- and low-order zero bits of these operations. We start by
4341 computing the width (position of the highest-order nonzero bit)
4342 and the number of low-order zero bits for each value. */
4343 {
4344 unsigned HOST_WIDE_INT nz0
4345 = cached_nonzero_bits (XEXP (x, 0), mode,
4346 known_x, known_mode, known_ret);
4347 unsigned HOST_WIDE_INT nz1
4348 = cached_nonzero_bits (XEXP (x, 1), mode,
4349 known_x, known_mode, known_ret);
4350 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4351 int width0 = floor_log2 (nz0) + 1;
4352 int width1 = floor_log2 (nz1) + 1;
4353 int low0 = floor_log2 (nz0 & -nz0);
4354 int low1 = floor_log2 (nz1 & -nz1);
4355 unsigned HOST_WIDE_INT op0_maybe_minusp
4356 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4357 unsigned HOST_WIDE_INT op1_maybe_minusp
4358 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4359 unsigned int result_width = mode_width;
4360 int result_low = 0;
4361
4362 switch (code)
4363 {
4364 case PLUS:
4365 result_width = MAX (width0, width1) + 1;
4366 result_low = MIN (low0, low1);
4367 break;
4368 case MINUS:
4369 result_low = MIN (low0, low1);
4370 break;
4371 case MULT:
4372 result_width = width0 + width1;
4373 result_low = low0 + low1;
4374 break;
4375 case DIV:
4376 if (width1 == 0)
4377 break;
4378 if (!op0_maybe_minusp && !op1_maybe_minusp)
4379 result_width = width0;
4380 break;
4381 case UDIV:
4382 if (width1 == 0)
4383 break;
4384 result_width = width0;
4385 break;
4386 case MOD:
4387 if (width1 == 0)
4388 break;
4389 if (!op0_maybe_minusp && !op1_maybe_minusp)
4390 result_width = MIN (width0, width1);
4391 result_low = MIN (low0, low1);
4392 break;
4393 case UMOD:
4394 if (width1 == 0)
4395 break;
4396 result_width = MIN (width0, width1);
4397 result_low = MIN (low0, low1);
4398 break;
4399 default:
4400 gcc_unreachable ();
4401 }
4402
4403 if (result_width < mode_width)
4404 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4405
4406 if (result_low > 0)
4407 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4408 }
4409 break;
4410
4411 case ZERO_EXTRACT:
4412 if (CONST_INT_P (XEXP (x, 1))
4413 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4414 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4415 break;
4416
4417 case SUBREG:
4418 /* If this is a SUBREG formed for a promoted variable that has
4419 been zero-extended, we know that at least the high-order bits
4420 are zero, though others might be too. */
4421
4422 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4423 nonzero = GET_MODE_MASK (GET_MODE (x))
4424 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4425 known_x, known_mode, known_ret);
4426
4427 inner_mode = GET_MODE (SUBREG_REG (x));
4428 /* If the inner mode is a single word for both the host and target
4429 machines, we can compute this from which bits of the inner
4430 object might be nonzero. */
4431 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4432 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4433 {
4434 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4435 known_x, known_mode, known_ret);
4436
4437 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4438 /* If this is a typical RISC machine, we only have to worry
4439 about the way loads are extended. */
4440 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4441 ? val_signbit_known_set_p (inner_mode, nonzero)
4442 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4443 || !MEM_P (SUBREG_REG (x)))
4444 #endif
4445 {
4446 /* On many CISC machines, accessing an object in a wider mode
4447 causes the high-order bits to become undefined. So they are
4448 not known to be zero. */
4449 if (GET_MODE_PRECISION (GET_MODE (x))
4450 > GET_MODE_PRECISION (inner_mode))
4451 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4452 & ~GET_MODE_MASK (inner_mode));
4453 }
4454 }
4455 break;
4456
4457 case ASHIFTRT:
4458 case LSHIFTRT:
4459 case ASHIFT:
4460 case ROTATE:
4461 /* The nonzero bits are in two classes: any bits within MODE
4462 that aren't in GET_MODE (x) are always significant. The rest of the
4463 nonzero bits are those that are significant in the operand of
4464 the shift when shifted the appropriate number of bits. This
4465 shows that high-order bits are cleared by the right shift and
4466 low-order bits by left shifts. */
4467 if (CONST_INT_P (XEXP (x, 1))
4468 && INTVAL (XEXP (x, 1)) >= 0
4469 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4470 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4471 {
4472 enum machine_mode inner_mode = GET_MODE (x);
4473 unsigned int width = GET_MODE_PRECISION (inner_mode);
4474 int count = INTVAL (XEXP (x, 1));
4475 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4476 unsigned HOST_WIDE_INT op_nonzero
4477 = cached_nonzero_bits (XEXP (x, 0), mode,
4478 known_x, known_mode, known_ret);
4479 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4480 unsigned HOST_WIDE_INT outer = 0;
4481
4482 if (mode_width > width)
4483 outer = (op_nonzero & nonzero & ~mode_mask);
4484
4485 if (code == LSHIFTRT)
4486 inner >>= count;
4487 else if (code == ASHIFTRT)
4488 {
4489 inner >>= count;
4490
4491 /* If the sign bit may have been nonzero before the shift, we
4492 need to mark all the places it could have been copied to
4493 by the shift as possibly nonzero. */
4494 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4495 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4496 << (width - count);
4497 }
4498 else if (code == ASHIFT)
4499 inner <<= count;
4500 else
4501 inner = ((inner << (count % width)
4502 | (inner >> (width - (count % width)))) & mode_mask);
4503
4504 nonzero &= (outer | inner);
4505 }
4506 break;
4507
4508 case FFS:
4509 case POPCOUNT:
4510 /* This is at most the number of bits in the mode. */
4511 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4512 break;
4513
4514 case CLZ:
4515 /* If CLZ has a known value at zero, then the nonzero bits are
4516 that value, plus the number of bits in the mode minus one. */
4517 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4518 nonzero
4519 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4520 else
4521 nonzero = -1;
4522 break;
4523
4524 case CTZ:
4525 /* If CTZ has a known value at zero, then the nonzero bits are
4526 that value, plus the number of bits in the mode minus one. */
4527 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4528 nonzero
4529 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4530 else
4531 nonzero = -1;
4532 break;
4533
4534 case CLRSB:
4535 /* This is at most the number of bits in the mode minus 1. */
4536 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4537 break;
4538
4539 case PARITY:
4540 nonzero = 1;
4541 break;
4542
4543 case IF_THEN_ELSE:
4544 {
4545 unsigned HOST_WIDE_INT nonzero_true
4546 = cached_nonzero_bits (XEXP (x, 1), mode,
4547 known_x, known_mode, known_ret);
4548
4549 /* Don't call nonzero_bits for the second time if it cannot change
4550 anything. */
4551 if ((nonzero & nonzero_true) != nonzero)
4552 nonzero &= nonzero_true
4553 | cached_nonzero_bits (XEXP (x, 2), mode,
4554 known_x, known_mode, known_ret);
4555 }
4556 break;
4557
4558 default:
4559 break;
4560 }
4561
4562 return nonzero;
4563 }
4564
4565 /* See the macro definition above. */
4566 #undef cached_num_sign_bit_copies
4567
4568 \f
4569 /* The function cached_num_sign_bit_copies is a wrapper around
4570 num_sign_bit_copies1. It avoids exponential behavior in
4571 num_sign_bit_copies1 when X has identical subexpressions on the
4572 first or the second level. */
4573
4574 static unsigned int
4575 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4576 enum machine_mode known_mode,
4577 unsigned int known_ret)
4578 {
4579 if (x == known_x && mode == known_mode)
4580 return known_ret;
4581
4582 /* Try to find identical subexpressions. If found call
4583 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4584 the precomputed value for the subexpression as KNOWN_RET. */
4585
4586 if (ARITHMETIC_P (x))
4587 {
4588 rtx x0 = XEXP (x, 0);
4589 rtx x1 = XEXP (x, 1);
4590
4591 /* Check the first level. */
4592 if (x0 == x1)
4593 return
4594 num_sign_bit_copies1 (x, mode, x0, mode,
4595 cached_num_sign_bit_copies (x0, mode, known_x,
4596 known_mode,
4597 known_ret));
4598
4599 /* Check the second level. */
4600 if (ARITHMETIC_P (x0)
4601 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4602 return
4603 num_sign_bit_copies1 (x, mode, x1, mode,
4604 cached_num_sign_bit_copies (x1, mode, known_x,
4605 known_mode,
4606 known_ret));
4607
4608 if (ARITHMETIC_P (x1)
4609 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4610 return
4611 num_sign_bit_copies1 (x, mode, x0, mode,
4612 cached_num_sign_bit_copies (x0, mode, known_x,
4613 known_mode,
4614 known_ret));
4615 }
4616
4617 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4618 }
4619
4620 /* Return the number of bits at the high-order end of X that are known to
4621 be equal to the sign bit. X will be used in mode MODE; if MODE is
4622 VOIDmode, X will be used in its own mode. The returned value will always
4623 be between 1 and the number of bits in MODE. */
4624
4625 static unsigned int
4626 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4627 enum machine_mode known_mode,
4628 unsigned int known_ret)
4629 {
4630 enum rtx_code code = GET_CODE (x);
4631 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4632 int num0, num1, result;
4633 unsigned HOST_WIDE_INT nonzero;
4634
4635 /* If we weren't given a mode, use the mode of X. If the mode is still
4636 VOIDmode, we don't know anything. Likewise if one of the modes is
4637 floating-point. */
4638
4639 if (mode == VOIDmode)
4640 mode = GET_MODE (x);
4641
4642 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4643 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4644 return 1;
4645
4646 /* For a smaller object, just ignore the high bits. */
4647 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4648 {
4649 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4650 known_x, known_mode, known_ret);
4651 return MAX (1,
4652 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4653 }
4654
4655 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4656 {
4657 #ifndef WORD_REGISTER_OPERATIONS
4658 /* If this machine does not do all register operations on the entire
4659 register and MODE is wider than the mode of X, we can say nothing
4660 at all about the high-order bits. */
4661 return 1;
4662 #else
4663 /* Likewise on machines that do, if the mode of the object is smaller
4664 than a word and loads of that size don't sign extend, we can say
4665 nothing about the high order bits. */
4666 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4667 #ifdef LOAD_EXTEND_OP
4668 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4669 #endif
4670 )
4671 return 1;
4672 #endif
4673 }
4674
4675 switch (code)
4676 {
4677 case REG:
4678
4679 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4680 /* If pointers extend signed and this is a pointer in Pmode, say that
4681 all the bits above ptr_mode are known to be sign bit copies. */
4682 /* As we do not know which address space the pointer is referring to,
4683 we can do this only if the target does not support different pointer
4684 or address modes depending on the address space. */
4685 if (target_default_pointer_address_modes_p ()
4686 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4687 && mode == Pmode && REG_POINTER (x))
4688 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4689 #endif
4690
4691 {
4692 unsigned int copies_for_hook = 1, copies = 1;
4693 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4694 known_mode, known_ret,
4695 &copies_for_hook);
4696
4697 if (new_rtx)
4698 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4699 known_mode, known_ret);
4700
4701 if (copies > 1 || copies_for_hook > 1)
4702 return MAX (copies, copies_for_hook);
4703
4704 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4705 }
4706 break;
4707
4708 case MEM:
4709 #ifdef LOAD_EXTEND_OP
4710 /* Some RISC machines sign-extend all loads of smaller than a word. */
4711 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4712 return MAX (1, ((int) bitwidth
4713 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4714 #endif
4715 break;
4716
4717 case CONST_INT:
4718 /* If the constant is negative, take its 1's complement and remask.
4719 Then see how many zero bits we have. */
4720 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4721 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4722 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4723 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4724
4725 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4726
4727 case SUBREG:
4728 /* If this is a SUBREG for a promoted object that is sign-extended
4729 and we are looking at it in a wider mode, we know that at least the
4730 high-order bits are known to be sign bit copies. */
4731
4732 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4733 {
4734 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4735 known_x, known_mode, known_ret);
4736 return MAX ((int) bitwidth
4737 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4738 num0);
4739 }
4740
4741 /* For a smaller object, just ignore the high bits. */
4742 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4743 {
4744 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4745 known_x, known_mode, known_ret);
4746 return MAX (1, (num0
4747 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4748 - bitwidth)));
4749 }
4750
4751 #ifdef WORD_REGISTER_OPERATIONS
4752 #ifdef LOAD_EXTEND_OP
4753 /* For paradoxical SUBREGs on machines where all register operations
4754 affect the entire register, just look inside. Note that we are
4755 passing MODE to the recursive call, so the number of sign bit copies
4756 will remain relative to that mode, not the inner mode. */
4757
4758 /* This works only if loads sign extend. Otherwise, if we get a
4759 reload for the inner part, it may be loaded from the stack, and
4760 then we lose all sign bit copies that existed before the store
4761 to the stack. */
4762
4763 if (paradoxical_subreg_p (x)
4764 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4765 && MEM_P (SUBREG_REG (x)))
4766 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4767 known_x, known_mode, known_ret);
4768 #endif
4769 #endif
4770 break;
4771
4772 case SIGN_EXTRACT:
4773 if (CONST_INT_P (XEXP (x, 1)))
4774 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4775 break;
4776
4777 case SIGN_EXTEND:
4778 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4779 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4780 known_x, known_mode, known_ret));
4781
4782 case TRUNCATE:
4783 /* For a smaller object, just ignore the high bits. */
4784 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4785 known_x, known_mode, known_ret);
4786 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4787 - bitwidth)));
4788
4789 case NOT:
4790 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4791 known_x, known_mode, known_ret);
4792
4793 case ROTATE: case ROTATERT:
4794 /* If we are rotating left by a number of bits less than the number
4795 of sign bit copies, we can just subtract that amount from the
4796 number. */
4797 if (CONST_INT_P (XEXP (x, 1))
4798 && INTVAL (XEXP (x, 1)) >= 0
4799 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4800 {
4801 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4802 known_x, known_mode, known_ret);
4803 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4804 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4805 }
4806 break;
4807
4808 case NEG:
4809 /* In general, this subtracts one sign bit copy. But if the value
4810 is known to be positive, the number of sign bit copies is the
4811 same as that of the input. Finally, if the input has just one bit
4812 that might be nonzero, all the bits are copies of the sign bit. */
4813 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4814 known_x, known_mode, known_ret);
4815 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4816 return num0 > 1 ? num0 - 1 : 1;
4817
4818 nonzero = nonzero_bits (XEXP (x, 0), mode);
4819 if (nonzero == 1)
4820 return bitwidth;
4821
4822 if (num0 > 1
4823 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4824 num0--;
4825
4826 return num0;
4827
4828 case IOR: case AND: case XOR:
4829 case SMIN: case SMAX: case UMIN: case UMAX:
4830 /* Logical operations will preserve the number of sign-bit copies.
4831 MIN and MAX operations always return one of the operands. */
4832 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4833 known_x, known_mode, known_ret);
4834 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4835 known_x, known_mode, known_ret);
4836
4837 /* If num1 is clearing some of the top bits then regardless of
4838 the other term, we are guaranteed to have at least that many
4839 high-order zero bits. */
4840 if (code == AND
4841 && num1 > 1
4842 && bitwidth <= HOST_BITS_PER_WIDE_INT
4843 && CONST_INT_P (XEXP (x, 1))
4844 && (UINTVAL (XEXP (x, 1))
4845 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4846 return num1;
4847
4848 /* Similarly for IOR when setting high-order bits. */
4849 if (code == IOR
4850 && num1 > 1
4851 && bitwidth <= HOST_BITS_PER_WIDE_INT
4852 && CONST_INT_P (XEXP (x, 1))
4853 && (UINTVAL (XEXP (x, 1))
4854 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4855 return num1;
4856
4857 return MIN (num0, num1);
4858
4859 case PLUS: case MINUS:
4860 /* For addition and subtraction, we can have a 1-bit carry. However,
4861 if we are subtracting 1 from a positive number, there will not
4862 be such a carry. Furthermore, if the positive number is known to
4863 be 0 or 1, we know the result is either -1 or 0. */
4864
4865 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4866 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4867 {
4868 nonzero = nonzero_bits (XEXP (x, 0), mode);
4869 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4870 return (nonzero == 1 || nonzero == 0 ? bitwidth
4871 : bitwidth - floor_log2 (nonzero) - 1);
4872 }
4873
4874 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4875 known_x, known_mode, known_ret);
4876 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4877 known_x, known_mode, known_ret);
4878 result = MAX (1, MIN (num0, num1) - 1);
4879
4880 return result;
4881
4882 case MULT:
4883 /* The number of bits of the product is the sum of the number of
4884 bits of both terms. However, unless one of the terms if known
4885 to be positive, we must allow for an additional bit since negating
4886 a negative number can remove one sign bit copy. */
4887
4888 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4889 known_x, known_mode, known_ret);
4890 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4891 known_x, known_mode, known_ret);
4892
4893 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4894 if (result > 0
4895 && (bitwidth > HOST_BITS_PER_WIDE_INT
4896 || (((nonzero_bits (XEXP (x, 0), mode)
4897 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4898 && ((nonzero_bits (XEXP (x, 1), mode)
4899 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4900 != 0))))
4901 result--;
4902
4903 return MAX (1, result);
4904
4905 case UDIV:
4906 /* The result must be <= the first operand. If the first operand
4907 has the high bit set, we know nothing about the number of sign
4908 bit copies. */
4909 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4910 return 1;
4911 else if ((nonzero_bits (XEXP (x, 0), mode)
4912 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4913 return 1;
4914 else
4915 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4916 known_x, known_mode, known_ret);
4917
4918 case UMOD:
4919 /* The result must be <= the second operand. If the second operand
4920 has (or just might have) the high bit set, we know nothing about
4921 the number of sign bit copies. */
4922 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4923 return 1;
4924 else if ((nonzero_bits (XEXP (x, 1), mode)
4925 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4926 return 1;
4927 else
4928 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4929 known_x, known_mode, known_ret);
4930
4931 case DIV:
4932 /* Similar to unsigned division, except that we have to worry about
4933 the case where the divisor is negative, in which case we have
4934 to add 1. */
4935 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4936 known_x, known_mode, known_ret);
4937 if (result > 1
4938 && (bitwidth > HOST_BITS_PER_WIDE_INT
4939 || (nonzero_bits (XEXP (x, 1), mode)
4940 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4941 result--;
4942
4943 return result;
4944
4945 case MOD:
4946 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4947 known_x, known_mode, known_ret);
4948 if (result > 1
4949 && (bitwidth > HOST_BITS_PER_WIDE_INT
4950 || (nonzero_bits (XEXP (x, 1), mode)
4951 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4952 result--;
4953
4954 return result;
4955
4956 case ASHIFTRT:
4957 /* Shifts by a constant add to the number of bits equal to the
4958 sign bit. */
4959 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4960 known_x, known_mode, known_ret);
4961 if (CONST_INT_P (XEXP (x, 1))
4962 && INTVAL (XEXP (x, 1)) > 0
4963 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4964 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4965
4966 return num0;
4967
4968 case ASHIFT:
4969 /* Left shifts destroy copies. */
4970 if (!CONST_INT_P (XEXP (x, 1))
4971 || INTVAL (XEXP (x, 1)) < 0
4972 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4973 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4974 return 1;
4975
4976 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4977 known_x, known_mode, known_ret);
4978 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4979
4980 case IF_THEN_ELSE:
4981 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4982 known_x, known_mode, known_ret);
4983 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4984 known_x, known_mode, known_ret);
4985 return MIN (num0, num1);
4986
4987 case EQ: case NE: case GE: case GT: case LE: case LT:
4988 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4989 case GEU: case GTU: case LEU: case LTU:
4990 case UNORDERED: case ORDERED:
4991 /* If the constant is negative, take its 1's complement and remask.
4992 Then see how many zero bits we have. */
4993 nonzero = STORE_FLAG_VALUE;
4994 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4995 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4996 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4997
4998 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4999
5000 default:
5001 break;
5002 }
5003
5004 /* If we haven't been able to figure it out by one of the above rules,
5005 see if some of the high-order bits are known to be zero. If so,
5006 count those bits and return one less than that amount. If we can't
5007 safely compute the mask for this mode, always return BITWIDTH. */
5008
5009 bitwidth = GET_MODE_PRECISION (mode);
5010 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5011 return 1;
5012
5013 nonzero = nonzero_bits (x, mode);
5014 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
5015 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5016 }
5017
5018 /* Calculate the rtx_cost of a single instruction. A return value of
5019 zero indicates an instruction pattern without a known cost. */
5020
5021 int
5022 insn_rtx_cost (rtx pat, bool speed)
5023 {
5024 int i, cost;
5025 rtx set;
5026
5027 /* Extract the single set rtx from the instruction pattern.
5028 We can't use single_set since we only have the pattern. */
5029 if (GET_CODE (pat) == SET)
5030 set = pat;
5031 else if (GET_CODE (pat) == PARALLEL)
5032 {
5033 set = NULL_RTX;
5034 for (i = 0; i < XVECLEN (pat, 0); i++)
5035 {
5036 rtx x = XVECEXP (pat, 0, i);
5037 if (GET_CODE (x) == SET)
5038 {
5039 if (set)
5040 return 0;
5041 set = x;
5042 }
5043 }
5044 if (!set)
5045 return 0;
5046 }
5047 else
5048 return 0;
5049
5050 cost = set_src_cost (SET_SRC (set), speed);
5051 return cost > 0 ? cost : COSTS_N_INSNS (1);
5052 }
5053
5054 /* Given an insn INSN and condition COND, return the condition in a
5055 canonical form to simplify testing by callers. Specifically:
5056
5057 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5058 (2) Both operands will be machine operands; (cc0) will have been replaced.
5059 (3) If an operand is a constant, it will be the second operand.
5060 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5061 for GE, GEU, and LEU.
5062
5063 If the condition cannot be understood, or is an inequality floating-point
5064 comparison which needs to be reversed, 0 will be returned.
5065
5066 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5067
5068 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5069 insn used in locating the condition was found. If a replacement test
5070 of the condition is desired, it should be placed in front of that
5071 insn and we will be sure that the inputs are still valid.
5072
5073 If WANT_REG is nonzero, we wish the condition to be relative to that
5074 register, if possible. Therefore, do not canonicalize the condition
5075 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5076 to be a compare to a CC mode register.
5077
5078 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5079 and at INSN. */
5080
5081 rtx
5082 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5083 rtx_insn **earliest,
5084 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5085 {
5086 enum rtx_code code;
5087 rtx_insn *prev = insn;
5088 const_rtx set;
5089 rtx tem;
5090 rtx op0, op1;
5091 int reverse_code = 0;
5092 enum machine_mode mode;
5093 basic_block bb = BLOCK_FOR_INSN (insn);
5094
5095 code = GET_CODE (cond);
5096 mode = GET_MODE (cond);
5097 op0 = XEXP (cond, 0);
5098 op1 = XEXP (cond, 1);
5099
5100 if (reverse)
5101 code = reversed_comparison_code (cond, insn);
5102 if (code == UNKNOWN)
5103 return 0;
5104
5105 if (earliest)
5106 *earliest = insn;
5107
5108 /* If we are comparing a register with zero, see if the register is set
5109 in the previous insn to a COMPARE or a comparison operation. Perform
5110 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5111 in cse.c */
5112
5113 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5114 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5115 && op1 == CONST0_RTX (GET_MODE (op0))
5116 && op0 != want_reg)
5117 {
5118 /* Set nonzero when we find something of interest. */
5119 rtx x = 0;
5120
5121 #ifdef HAVE_cc0
5122 /* If comparison with cc0, import actual comparison from compare
5123 insn. */
5124 if (op0 == cc0_rtx)
5125 {
5126 if ((prev = prev_nonnote_insn (prev)) == 0
5127 || !NONJUMP_INSN_P (prev)
5128 || (set = single_set (prev)) == 0
5129 || SET_DEST (set) != cc0_rtx)
5130 return 0;
5131
5132 op0 = SET_SRC (set);
5133 op1 = CONST0_RTX (GET_MODE (op0));
5134 if (earliest)
5135 *earliest = prev;
5136 }
5137 #endif
5138
5139 /* If this is a COMPARE, pick up the two things being compared. */
5140 if (GET_CODE (op0) == COMPARE)
5141 {
5142 op1 = XEXP (op0, 1);
5143 op0 = XEXP (op0, 0);
5144 continue;
5145 }
5146 else if (!REG_P (op0))
5147 break;
5148
5149 /* Go back to the previous insn. Stop if it is not an INSN. We also
5150 stop if it isn't a single set or if it has a REG_INC note because
5151 we don't want to bother dealing with it. */
5152
5153 prev = prev_nonnote_nondebug_insn (prev);
5154
5155 if (prev == 0
5156 || !NONJUMP_INSN_P (prev)
5157 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5158 /* In cfglayout mode, there do not have to be labels at the
5159 beginning of a block, or jumps at the end, so the previous
5160 conditions would not stop us when we reach bb boundary. */
5161 || BLOCK_FOR_INSN (prev) != bb)
5162 break;
5163
5164 set = set_of (op0, prev);
5165
5166 if (set
5167 && (GET_CODE (set) != SET
5168 || !rtx_equal_p (SET_DEST (set), op0)))
5169 break;
5170
5171 /* If this is setting OP0, get what it sets it to if it looks
5172 relevant. */
5173 if (set)
5174 {
5175 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
5176 #ifdef FLOAT_STORE_FLAG_VALUE
5177 REAL_VALUE_TYPE fsfv;
5178 #endif
5179
5180 /* ??? We may not combine comparisons done in a CCmode with
5181 comparisons not done in a CCmode. This is to aid targets
5182 like Alpha that have an IEEE compliant EQ instruction, and
5183 a non-IEEE compliant BEQ instruction. The use of CCmode is
5184 actually artificial, simply to prevent the combination, but
5185 should not affect other platforms.
5186
5187 However, we must allow VOIDmode comparisons to match either
5188 CCmode or non-CCmode comparison, because some ports have
5189 modeless comparisons inside branch patterns.
5190
5191 ??? This mode check should perhaps look more like the mode check
5192 in simplify_comparison in combine. */
5193 if (((GET_MODE_CLASS (mode) == MODE_CC)
5194 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5195 && mode != VOIDmode
5196 && inner_mode != VOIDmode)
5197 break;
5198 if (GET_CODE (SET_SRC (set)) == COMPARE
5199 || (((code == NE
5200 || (code == LT
5201 && val_signbit_known_set_p (inner_mode,
5202 STORE_FLAG_VALUE))
5203 #ifdef FLOAT_STORE_FLAG_VALUE
5204 || (code == LT
5205 && SCALAR_FLOAT_MODE_P (inner_mode)
5206 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5207 REAL_VALUE_NEGATIVE (fsfv)))
5208 #endif
5209 ))
5210 && COMPARISON_P (SET_SRC (set))))
5211 x = SET_SRC (set);
5212 else if (((code == EQ
5213 || (code == GE
5214 && val_signbit_known_set_p (inner_mode,
5215 STORE_FLAG_VALUE))
5216 #ifdef FLOAT_STORE_FLAG_VALUE
5217 || (code == GE
5218 && SCALAR_FLOAT_MODE_P (inner_mode)
5219 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5220 REAL_VALUE_NEGATIVE (fsfv)))
5221 #endif
5222 ))
5223 && COMPARISON_P (SET_SRC (set)))
5224 {
5225 reverse_code = 1;
5226 x = SET_SRC (set);
5227 }
5228 else if ((code == EQ || code == NE)
5229 && GET_CODE (SET_SRC (set)) == XOR)
5230 /* Handle sequences like:
5231
5232 (set op0 (xor X Y))
5233 ...(eq|ne op0 (const_int 0))...
5234
5235 in which case:
5236
5237 (eq op0 (const_int 0)) reduces to (eq X Y)
5238 (ne op0 (const_int 0)) reduces to (ne X Y)
5239
5240 This is the form used by MIPS16, for example. */
5241 x = SET_SRC (set);
5242 else
5243 break;
5244 }
5245
5246 else if (reg_set_p (op0, prev))
5247 /* If this sets OP0, but not directly, we have to give up. */
5248 break;
5249
5250 if (x)
5251 {
5252 /* If the caller is expecting the condition to be valid at INSN,
5253 make sure X doesn't change before INSN. */
5254 if (valid_at_insn_p)
5255 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5256 break;
5257 if (COMPARISON_P (x))
5258 code = GET_CODE (x);
5259 if (reverse_code)
5260 {
5261 code = reversed_comparison_code (x, prev);
5262 if (code == UNKNOWN)
5263 return 0;
5264 reverse_code = 0;
5265 }
5266
5267 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5268 if (earliest)
5269 *earliest = prev;
5270 }
5271 }
5272
5273 /* If constant is first, put it last. */
5274 if (CONSTANT_P (op0))
5275 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5276
5277 /* If OP0 is the result of a comparison, we weren't able to find what
5278 was really being compared, so fail. */
5279 if (!allow_cc_mode
5280 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5281 return 0;
5282
5283 /* Canonicalize any ordered comparison with integers involving equality
5284 if we can do computations in the relevant mode and we do not
5285 overflow. */
5286
5287 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5288 && CONST_INT_P (op1)
5289 && GET_MODE (op0) != VOIDmode
5290 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5291 {
5292 HOST_WIDE_INT const_val = INTVAL (op1);
5293 unsigned HOST_WIDE_INT uconst_val = const_val;
5294 unsigned HOST_WIDE_INT max_val
5295 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5296
5297 switch (code)
5298 {
5299 case LE:
5300 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5301 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5302 break;
5303
5304 /* When cross-compiling, const_val might be sign-extended from
5305 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5306 case GE:
5307 if ((const_val & max_val)
5308 != ((unsigned HOST_WIDE_INT) 1
5309 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5310 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5311 break;
5312
5313 case LEU:
5314 if (uconst_val < max_val)
5315 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5316 break;
5317
5318 case GEU:
5319 if (uconst_val != 0)
5320 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5321 break;
5322
5323 default:
5324 break;
5325 }
5326 }
5327
5328 /* Never return CC0; return zero instead. */
5329 if (CC0_P (op0))
5330 return 0;
5331
5332 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5333 }
5334
5335 /* Given a jump insn JUMP, return the condition that will cause it to branch
5336 to its JUMP_LABEL. If the condition cannot be understood, or is an
5337 inequality floating-point comparison which needs to be reversed, 0 will
5338 be returned.
5339
5340 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5341 insn used in locating the condition was found. If a replacement test
5342 of the condition is desired, it should be placed in front of that
5343 insn and we will be sure that the inputs are still valid. If EARLIEST
5344 is null, the returned condition will be valid at INSN.
5345
5346 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5347 compare CC mode register.
5348
5349 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5350
5351 rtx
5352 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5353 int valid_at_insn_p)
5354 {
5355 rtx cond;
5356 int reverse;
5357 rtx set;
5358
5359 /* If this is not a standard conditional jump, we can't parse it. */
5360 if (!JUMP_P (jump)
5361 || ! any_condjump_p (jump))
5362 return 0;
5363 set = pc_set (jump);
5364
5365 cond = XEXP (SET_SRC (set), 0);
5366
5367 /* If this branches to JUMP_LABEL when the condition is false, reverse
5368 the condition. */
5369 reverse
5370 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5371 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5372
5373 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5374 allow_cc_mode, valid_at_insn_p);
5375 }
5376
5377 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5378 TARGET_MODE_REP_EXTENDED.
5379
5380 Note that we assume that the property of
5381 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5382 narrower than mode B. I.e., if A is a mode narrower than B then in
5383 order to be able to operate on it in mode B, mode A needs to
5384 satisfy the requirements set by the representation of mode B. */
5385
5386 static void
5387 init_num_sign_bit_copies_in_rep (void)
5388 {
5389 enum machine_mode mode, in_mode;
5390
5391 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5392 in_mode = GET_MODE_WIDER_MODE (mode))
5393 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5394 mode = GET_MODE_WIDER_MODE (mode))
5395 {
5396 enum machine_mode i;
5397
5398 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5399 extends to the next widest mode. */
5400 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5401 || GET_MODE_WIDER_MODE (mode) == in_mode);
5402
5403 /* We are in in_mode. Count how many bits outside of mode
5404 have to be copies of the sign-bit. */
5405 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5406 {
5407 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5408
5409 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5410 /* We can only check sign-bit copies starting from the
5411 top-bit. In order to be able to check the bits we
5412 have already seen we pretend that subsequent bits
5413 have to be sign-bit copies too. */
5414 || num_sign_bit_copies_in_rep [in_mode][mode])
5415 num_sign_bit_copies_in_rep [in_mode][mode]
5416 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5417 }
5418 }
5419 }
5420
5421 /* Suppose that truncation from the machine mode of X to MODE is not a
5422 no-op. See if there is anything special about X so that we can
5423 assume it already contains a truncated value of MODE. */
5424
5425 bool
5426 truncated_to_mode (enum machine_mode mode, const_rtx x)
5427 {
5428 /* This register has already been used in MODE without explicit
5429 truncation. */
5430 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5431 return true;
5432
5433 /* See if we already satisfy the requirements of MODE. If yes we
5434 can just switch to MODE. */
5435 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5436 && (num_sign_bit_copies (x, GET_MODE (x))
5437 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5438 return true;
5439
5440 return false;
5441 }
5442 \f
5443 /* Return true if RTX code CODE has a single sequence of zero or more
5444 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5445 entry in that case. */
5446
5447 static bool
5448 setup_reg_subrtx_bounds (unsigned int code)
5449 {
5450 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5451 unsigned int i = 0;
5452 for (; format[i] != 'e'; ++i)
5453 {
5454 if (!format[i])
5455 /* No subrtxes. Leave start and count as 0. */
5456 return true;
5457 if (format[i] == 'E' || format[i] == 'V')
5458 return false;
5459 }
5460
5461 /* Record the sequence of 'e's. */
5462 rtx_all_subrtx_bounds[code].start = i;
5463 do
5464 ++i;
5465 while (format[i] == 'e');
5466 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5467 /* rtl-iter.h relies on this. */
5468 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5469
5470 for (; format[i]; ++i)
5471 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5472 return false;
5473
5474 return true;
5475 }
5476
5477 /* Initialize non_rtx_starting_operands, which is used to speed up
5478 for_each_rtx, and rtx_all_subrtx_bounds. */
5479 void
5480 init_rtlanal (void)
5481 {
5482 int i;
5483 for (i = 0; i < NUM_RTX_CODE; i++)
5484 {
5485 const char *format = GET_RTX_FORMAT (i);
5486 const char *first = strpbrk (format, "eEV");
5487 non_rtx_starting_operands[i] = first ? first - format : -1;
5488 if (!setup_reg_subrtx_bounds (i))
5489 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5490 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5491 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5492 }
5493
5494 init_num_sign_bit_copies_in_rep ();
5495 }
5496 \f
5497 /* Check whether this is a constant pool constant. */
5498 bool
5499 constant_pool_constant_p (rtx x)
5500 {
5501 x = avoid_constant_pool_reference (x);
5502 return CONST_DOUBLE_P (x);
5503 }
5504 \f
5505 /* If M is a bitmask that selects a field of low-order bits within an item but
5506 not the entire word, return the length of the field. Return -1 otherwise.
5507 M is used in machine mode MODE. */
5508
5509 int
5510 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5511 {
5512 if (mode != VOIDmode)
5513 {
5514 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5515 return -1;
5516 m &= GET_MODE_MASK (mode);
5517 }
5518
5519 return exact_log2 (m + 1);
5520 }
5521
5522 /* Return the mode of MEM's address. */
5523
5524 enum machine_mode
5525 get_address_mode (rtx mem)
5526 {
5527 enum machine_mode mode;
5528
5529 gcc_assert (MEM_P (mem));
5530 mode = GET_MODE (XEXP (mem, 0));
5531 if (mode != VOIDmode)
5532 return mode;
5533 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5534 }
5535 \f
5536 /* Split up a CONST_DOUBLE or integer constant rtx
5537 into two rtx's for single words,
5538 storing in *FIRST the word that comes first in memory in the target
5539 and in *SECOND the other.
5540
5541 TODO: This function needs to be rewritten to work on any size
5542 integer. */
5543
5544 void
5545 split_double (rtx value, rtx *first, rtx *second)
5546 {
5547 if (CONST_INT_P (value))
5548 {
5549 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5550 {
5551 /* In this case the CONST_INT holds both target words.
5552 Extract the bits from it into two word-sized pieces.
5553 Sign extend each half to HOST_WIDE_INT. */
5554 unsigned HOST_WIDE_INT low, high;
5555 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5556 unsigned bits_per_word = BITS_PER_WORD;
5557
5558 /* Set sign_bit to the most significant bit of a word. */
5559 sign_bit = 1;
5560 sign_bit <<= bits_per_word - 1;
5561
5562 /* Set mask so that all bits of the word are set. We could
5563 have used 1 << BITS_PER_WORD instead of basing the
5564 calculation on sign_bit. However, on machines where
5565 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5566 compiler warning, even though the code would never be
5567 executed. */
5568 mask = sign_bit << 1;
5569 mask--;
5570
5571 /* Set sign_extend as any remaining bits. */
5572 sign_extend = ~mask;
5573
5574 /* Pick the lower word and sign-extend it. */
5575 low = INTVAL (value);
5576 low &= mask;
5577 if (low & sign_bit)
5578 low |= sign_extend;
5579
5580 /* Pick the higher word, shifted to the least significant
5581 bits, and sign-extend it. */
5582 high = INTVAL (value);
5583 high >>= bits_per_word - 1;
5584 high >>= 1;
5585 high &= mask;
5586 if (high & sign_bit)
5587 high |= sign_extend;
5588
5589 /* Store the words in the target machine order. */
5590 if (WORDS_BIG_ENDIAN)
5591 {
5592 *first = GEN_INT (high);
5593 *second = GEN_INT (low);
5594 }
5595 else
5596 {
5597 *first = GEN_INT (low);
5598 *second = GEN_INT (high);
5599 }
5600 }
5601 else
5602 {
5603 /* The rule for using CONST_INT for a wider mode
5604 is that we regard the value as signed.
5605 So sign-extend it. */
5606 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5607 if (WORDS_BIG_ENDIAN)
5608 {
5609 *first = high;
5610 *second = value;
5611 }
5612 else
5613 {
5614 *first = value;
5615 *second = high;
5616 }
5617 }
5618 }
5619 else if (GET_CODE (value) == CONST_WIDE_INT)
5620 {
5621 /* All of this is scary code and needs to be converted to
5622 properly work with any size integer. */
5623 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5624 if (WORDS_BIG_ENDIAN)
5625 {
5626 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5627 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5628 }
5629 else
5630 {
5631 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5632 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5633 }
5634 }
5635 else if (!CONST_DOUBLE_P (value))
5636 {
5637 if (WORDS_BIG_ENDIAN)
5638 {
5639 *first = const0_rtx;
5640 *second = value;
5641 }
5642 else
5643 {
5644 *first = value;
5645 *second = const0_rtx;
5646 }
5647 }
5648 else if (GET_MODE (value) == VOIDmode
5649 /* This is the old way we did CONST_DOUBLE integers. */
5650 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5651 {
5652 /* In an integer, the words are defined as most and least significant.
5653 So order them by the target's convention. */
5654 if (WORDS_BIG_ENDIAN)
5655 {
5656 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5657 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5658 }
5659 else
5660 {
5661 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5662 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5663 }
5664 }
5665 else
5666 {
5667 REAL_VALUE_TYPE r;
5668 long l[2];
5669 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5670
5671 /* Note, this converts the REAL_VALUE_TYPE to the target's
5672 format, splits up the floating point double and outputs
5673 exactly 32 bits of it into each of l[0] and l[1] --
5674 not necessarily BITS_PER_WORD bits. */
5675 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5676
5677 /* If 32 bits is an entire word for the target, but not for the host,
5678 then sign-extend on the host so that the number will look the same
5679 way on the host that it would on the target. See for instance
5680 simplify_unary_operation. The #if is needed to avoid compiler
5681 warnings. */
5682
5683 #if HOST_BITS_PER_LONG > 32
5684 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5685 {
5686 if (l[0] & ((long) 1 << 31))
5687 l[0] |= ((long) (-1) << 32);
5688 if (l[1] & ((long) 1 << 31))
5689 l[1] |= ((long) (-1) << 32);
5690 }
5691 #endif
5692
5693 *first = GEN_INT (l[0]);
5694 *second = GEN_INT (l[1]);
5695 }
5696 }
5697
5698 /* Return true if X is a sign_extract or zero_extract from the least
5699 significant bit. */
5700
5701 static bool
5702 lsb_bitfield_op_p (rtx x)
5703 {
5704 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5705 {
5706 enum machine_mode mode = GET_MODE (XEXP (x, 0));
5707 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5708 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5709
5710 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5711 }
5712 return false;
5713 }
5714
5715 /* Strip outer address "mutations" from LOC and return a pointer to the
5716 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5717 stripped expression there.
5718
5719 "Mutations" either convert between modes or apply some kind of
5720 extension, truncation or alignment. */
5721
5722 rtx *
5723 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5724 {
5725 for (;;)
5726 {
5727 enum rtx_code code = GET_CODE (*loc);
5728 if (GET_RTX_CLASS (code) == RTX_UNARY)
5729 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5730 used to convert between pointer sizes. */
5731 loc = &XEXP (*loc, 0);
5732 else if (lsb_bitfield_op_p (*loc))
5733 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5734 acts as a combined truncation and extension. */
5735 loc = &XEXP (*loc, 0);
5736 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5737 /* (and ... (const_int -X)) is used to align to X bytes. */
5738 loc = &XEXP (*loc, 0);
5739 else if (code == SUBREG
5740 && !OBJECT_P (SUBREG_REG (*loc))
5741 && subreg_lowpart_p (*loc))
5742 /* (subreg (operator ...) ...) inside and is used for mode
5743 conversion too. */
5744 loc = &SUBREG_REG (*loc);
5745 else
5746 return loc;
5747 if (outer_code)
5748 *outer_code = code;
5749 }
5750 }
5751
5752 /* Return true if CODE applies some kind of scale. The scaled value is
5753 is the first operand and the scale is the second. */
5754
5755 static bool
5756 binary_scale_code_p (enum rtx_code code)
5757 {
5758 return (code == MULT
5759 || code == ASHIFT
5760 /* Needed by ARM targets. */
5761 || code == ASHIFTRT
5762 || code == LSHIFTRT
5763 || code == ROTATE
5764 || code == ROTATERT);
5765 }
5766
5767 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5768 (see address_info). Return null otherwise. */
5769
5770 static rtx *
5771 get_base_term (rtx *inner)
5772 {
5773 if (GET_CODE (*inner) == LO_SUM)
5774 inner = strip_address_mutations (&XEXP (*inner, 0));
5775 if (REG_P (*inner)
5776 || MEM_P (*inner)
5777 || GET_CODE (*inner) == SUBREG)
5778 return inner;
5779 return 0;
5780 }
5781
5782 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5783 (see address_info). Return null otherwise. */
5784
5785 static rtx *
5786 get_index_term (rtx *inner)
5787 {
5788 /* At present, only constant scales are allowed. */
5789 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5790 inner = strip_address_mutations (&XEXP (*inner, 0));
5791 if (REG_P (*inner)
5792 || MEM_P (*inner)
5793 || GET_CODE (*inner) == SUBREG)
5794 return inner;
5795 return 0;
5796 }
5797
5798 /* Set the segment part of address INFO to LOC, given that INNER is the
5799 unmutated value. */
5800
5801 static void
5802 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5803 {
5804 gcc_assert (!info->segment);
5805 info->segment = loc;
5806 info->segment_term = inner;
5807 }
5808
5809 /* Set the base part of address INFO to LOC, given that INNER is the
5810 unmutated value. */
5811
5812 static void
5813 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5814 {
5815 gcc_assert (!info->base);
5816 info->base = loc;
5817 info->base_term = inner;
5818 }
5819
5820 /* Set the index part of address INFO to LOC, given that INNER is the
5821 unmutated value. */
5822
5823 static void
5824 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5825 {
5826 gcc_assert (!info->index);
5827 info->index = loc;
5828 info->index_term = inner;
5829 }
5830
5831 /* Set the displacement part of address INFO to LOC, given that INNER
5832 is the constant term. */
5833
5834 static void
5835 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5836 {
5837 gcc_assert (!info->disp);
5838 info->disp = loc;
5839 info->disp_term = inner;
5840 }
5841
5842 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5843 rest of INFO accordingly. */
5844
5845 static void
5846 decompose_incdec_address (struct address_info *info)
5847 {
5848 info->autoinc_p = true;
5849
5850 rtx *base = &XEXP (*info->inner, 0);
5851 set_address_base (info, base, base);
5852 gcc_checking_assert (info->base == info->base_term);
5853
5854 /* These addresses are only valid when the size of the addressed
5855 value is known. */
5856 gcc_checking_assert (info->mode != VOIDmode);
5857 }
5858
5859 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5860 of INFO accordingly. */
5861
5862 static void
5863 decompose_automod_address (struct address_info *info)
5864 {
5865 info->autoinc_p = true;
5866
5867 rtx *base = &XEXP (*info->inner, 0);
5868 set_address_base (info, base, base);
5869 gcc_checking_assert (info->base == info->base_term);
5870
5871 rtx plus = XEXP (*info->inner, 1);
5872 gcc_assert (GET_CODE (plus) == PLUS);
5873
5874 info->base_term2 = &XEXP (plus, 0);
5875 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5876
5877 rtx *step = &XEXP (plus, 1);
5878 rtx *inner_step = strip_address_mutations (step);
5879 if (CONSTANT_P (*inner_step))
5880 set_address_disp (info, step, inner_step);
5881 else
5882 set_address_index (info, step, inner_step);
5883 }
5884
5885 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5886 values in [PTR, END). Return a pointer to the end of the used array. */
5887
5888 static rtx **
5889 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5890 {
5891 rtx x = *loc;
5892 if (GET_CODE (x) == PLUS)
5893 {
5894 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5895 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5896 }
5897 else
5898 {
5899 gcc_assert (ptr != end);
5900 *ptr++ = loc;
5901 }
5902 return ptr;
5903 }
5904
5905 /* Evaluate the likelihood of X being a base or index value, returning
5906 positive if it is likely to be a base, negative if it is likely to be
5907 an index, and 0 if we can't tell. Make the magnitude of the return
5908 value reflect the amount of confidence we have in the answer.
5909
5910 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5911
5912 static int
5913 baseness (rtx x, enum machine_mode mode, addr_space_t as,
5914 enum rtx_code outer_code, enum rtx_code index_code)
5915 {
5916 /* Believe *_POINTER unless the address shape requires otherwise. */
5917 if (REG_P (x) && REG_POINTER (x))
5918 return 2;
5919 if (MEM_P (x) && MEM_POINTER (x))
5920 return 2;
5921
5922 if (REG_P (x) && HARD_REGISTER_P (x))
5923 {
5924 /* X is a hard register. If it only fits one of the base
5925 or index classes, choose that interpretation. */
5926 int regno = REGNO (x);
5927 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5928 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5929 if (base_p != index_p)
5930 return base_p ? 1 : -1;
5931 }
5932 return 0;
5933 }
5934
5935 /* INFO->INNER describes a normal, non-automodified address.
5936 Fill in the rest of INFO accordingly. */
5937
5938 static void
5939 decompose_normal_address (struct address_info *info)
5940 {
5941 /* Treat the address as the sum of up to four values. */
5942 rtx *ops[4];
5943 size_t n_ops = extract_plus_operands (info->inner, ops,
5944 ops + ARRAY_SIZE (ops)) - ops;
5945
5946 /* If there is more than one component, any base component is in a PLUS. */
5947 if (n_ops > 1)
5948 info->base_outer_code = PLUS;
5949
5950 /* Try to classify each sum operand now. Leave those that could be
5951 either a base or an index in OPS. */
5952 rtx *inner_ops[4];
5953 size_t out = 0;
5954 for (size_t in = 0; in < n_ops; ++in)
5955 {
5956 rtx *loc = ops[in];
5957 rtx *inner = strip_address_mutations (loc);
5958 if (CONSTANT_P (*inner))
5959 set_address_disp (info, loc, inner);
5960 else if (GET_CODE (*inner) == UNSPEC)
5961 set_address_segment (info, loc, inner);
5962 else
5963 {
5964 /* The only other possibilities are a base or an index. */
5965 rtx *base_term = get_base_term (inner);
5966 rtx *index_term = get_index_term (inner);
5967 gcc_assert (base_term || index_term);
5968 if (!base_term)
5969 set_address_index (info, loc, index_term);
5970 else if (!index_term)
5971 set_address_base (info, loc, base_term);
5972 else
5973 {
5974 gcc_assert (base_term == index_term);
5975 ops[out] = loc;
5976 inner_ops[out] = base_term;
5977 ++out;
5978 }
5979 }
5980 }
5981
5982 /* Classify the remaining OPS members as bases and indexes. */
5983 if (out == 1)
5984 {
5985 /* If we haven't seen a base or an index yet, assume that this is
5986 the base. If we were confident that another term was the base
5987 or index, treat the remaining operand as the other kind. */
5988 if (!info->base)
5989 set_address_base (info, ops[0], inner_ops[0]);
5990 else
5991 set_address_index (info, ops[0], inner_ops[0]);
5992 }
5993 else if (out == 2)
5994 {
5995 /* In the event of a tie, assume the base comes first. */
5996 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5997 GET_CODE (*ops[1]))
5998 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5999 GET_CODE (*ops[0])))
6000 {
6001 set_address_base (info, ops[0], inner_ops[0]);
6002 set_address_index (info, ops[1], inner_ops[1]);
6003 }
6004 else
6005 {
6006 set_address_base (info, ops[1], inner_ops[1]);
6007 set_address_index (info, ops[0], inner_ops[0]);
6008 }
6009 }
6010 else
6011 gcc_assert (out == 0);
6012 }
6013
6014 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6015 or VOIDmode if not known. AS is the address space associated with LOC.
6016 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6017
6018 void
6019 decompose_address (struct address_info *info, rtx *loc, enum machine_mode mode,
6020 addr_space_t as, enum rtx_code outer_code)
6021 {
6022 memset (info, 0, sizeof (*info));
6023 info->mode = mode;
6024 info->as = as;
6025 info->addr_outer_code = outer_code;
6026 info->outer = loc;
6027 info->inner = strip_address_mutations (loc, &outer_code);
6028 info->base_outer_code = outer_code;
6029 switch (GET_CODE (*info->inner))
6030 {
6031 case PRE_DEC:
6032 case PRE_INC:
6033 case POST_DEC:
6034 case POST_INC:
6035 decompose_incdec_address (info);
6036 break;
6037
6038 case PRE_MODIFY:
6039 case POST_MODIFY:
6040 decompose_automod_address (info);
6041 break;
6042
6043 default:
6044 decompose_normal_address (info);
6045 break;
6046 }
6047 }
6048
6049 /* Describe address operand LOC in INFO. */
6050
6051 void
6052 decompose_lea_address (struct address_info *info, rtx *loc)
6053 {
6054 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6055 }
6056
6057 /* Describe the address of MEM X in INFO. */
6058
6059 void
6060 decompose_mem_address (struct address_info *info, rtx x)
6061 {
6062 gcc_assert (MEM_P (x));
6063 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6064 MEM_ADDR_SPACE (x), MEM);
6065 }
6066
6067 /* Update INFO after a change to the address it describes. */
6068
6069 void
6070 update_address (struct address_info *info)
6071 {
6072 decompose_address (info, info->outer, info->mode, info->as,
6073 info->addr_outer_code);
6074 }
6075
6076 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6077 more complicated than that. */
6078
6079 HOST_WIDE_INT
6080 get_index_scale (const struct address_info *info)
6081 {
6082 rtx index = *info->index;
6083 if (GET_CODE (index) == MULT
6084 && CONST_INT_P (XEXP (index, 1))
6085 && info->index_term == &XEXP (index, 0))
6086 return INTVAL (XEXP (index, 1));
6087
6088 if (GET_CODE (index) == ASHIFT
6089 && CONST_INT_P (XEXP (index, 1))
6090 && info->index_term == &XEXP (index, 0))
6091 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6092
6093 if (info->index == info->index_term)
6094 return 1;
6095
6096 return 0;
6097 }
6098
6099 /* Return the "index code" of INFO, in the form required by
6100 ok_for_base_p_1. */
6101
6102 enum rtx_code
6103 get_index_code (const struct address_info *info)
6104 {
6105 if (info->index)
6106 return GET_CODE (*info->index);
6107
6108 if (info->disp)
6109 return GET_CODE (*info->disp);
6110
6111 return SCRATCH;
6112 }
6113
6114 /* Return true if X contains a thread-local symbol. */
6115
6116 bool
6117 tls_referenced_p (const_rtx x)
6118 {
6119 if (!targetm.have_tls)
6120 return false;
6121
6122 subrtx_iterator::array_type array;
6123 FOR_EACH_SUBRTX (iter, array, x, ALL)
6124 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6125 return true;
6126 return false;
6127 }