]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/rtlanal.c
Update copyright years.
[thirdparty/gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "target.h"
31 #include "output.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "regs.h"
35 #include "hashtab.h"
36 #include "hash-set.h"
37 #include "vec.h"
38 #include "machmode.h"
39 #include "input.h"
40 #include "function.h"
41 #include "predict.h"
42 #include "basic-block.h"
43 #include "df.h"
44 #include "tree.h"
45 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
46 #include "addresses.h"
47 #include "rtl-iter.h"
48
49 /* Forward declarations */
50 static void set_of_1 (rtx, const_rtx, void *);
51 static bool covers_regno_p (const_rtx, unsigned int);
52 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
53 static int computed_jump_p_1 (const_rtx);
54 static void parms_set (rtx, const_rtx, void *);
55
56 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
57 const_rtx, machine_mode,
58 unsigned HOST_WIDE_INT);
59 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
60 const_rtx, machine_mode,
61 unsigned HOST_WIDE_INT);
62 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
63 machine_mode,
64 unsigned int);
65 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
66 machine_mode, unsigned int);
67
68 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
69 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
70
71 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
72 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
73 SIGN_EXTEND then while narrowing we also have to enforce the
74 representation and sign-extend the value to mode DESTINATION_REP.
75
76 If the value is already sign-extended to DESTINATION_REP mode we
77 can just switch to DESTINATION mode on it. For each pair of
78 integral modes SOURCE and DESTINATION, when truncating from SOURCE
79 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
80 contains the number of high-order bits in SOURCE that have to be
81 copies of the sign-bit so that we can do this mode-switch to
82 DESTINATION. */
83
84 static unsigned int
85 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
86 \f
87 /* Store X into index I of ARRAY. ARRAY is known to have at least I
88 elements. Return the new base of ARRAY. */
89
90 template <typename T>
91 typename T::value_type *
92 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
93 value_type *base,
94 size_t i, value_type x)
95 {
96 if (base == array.stack)
97 {
98 if (i < LOCAL_ELEMS)
99 {
100 base[i] = x;
101 return base;
102 }
103 gcc_checking_assert (i == LOCAL_ELEMS);
104 vec_safe_grow (array.heap, i + 1);
105 base = array.heap->address ();
106 memcpy (base, array.stack, sizeof (array.stack));
107 base[LOCAL_ELEMS] = x;
108 return base;
109 }
110 unsigned int length = array.heap->length ();
111 if (length > i)
112 {
113 gcc_checking_assert (base == array.heap->address ());
114 base[i] = x;
115 return base;
116 }
117 else
118 {
119 gcc_checking_assert (i == length);
120 vec_safe_push (array.heap, x);
121 return array.heap->address ();
122 }
123 }
124
125 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
126 number of elements added to the worklist. */
127
128 template <typename T>
129 size_t
130 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
131 value_type *base,
132 size_t end, rtx_type x)
133 {
134 enum rtx_code code = GET_CODE (x);
135 const char *format = GET_RTX_FORMAT (code);
136 size_t orig_end = end;
137 if (__builtin_expect (INSN_P (x), false))
138 {
139 /* Put the pattern at the top of the queue, since that's what
140 we're likely to want most. It also allows for the SEQUENCE
141 code below. */
142 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
143 if (format[i] == 'e')
144 {
145 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
146 if (__builtin_expect (end < LOCAL_ELEMS, true))
147 base[end++] = subx;
148 else
149 base = add_single_to_queue (array, base, end++, subx);
150 }
151 }
152 else
153 for (int i = 0; format[i]; ++i)
154 if (format[i] == 'e')
155 {
156 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
157 if (__builtin_expect (end < LOCAL_ELEMS, true))
158 base[end++] = subx;
159 else
160 base = add_single_to_queue (array, base, end++, subx);
161 }
162 else if (format[i] == 'E')
163 {
164 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
165 rtx *vec = x->u.fld[i].rt_rtvec->elem;
166 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
167 for (unsigned int j = 0; j < length; j++)
168 base[end++] = T::get_value (vec[j]);
169 else
170 for (unsigned int j = 0; j < length; j++)
171 base = add_single_to_queue (array, base, end++,
172 T::get_value (vec[j]));
173 if (code == SEQUENCE && end == length)
174 /* If the subrtxes of the sequence fill the entire array then
175 we know that no other parts of a containing insn are queued.
176 The caller is therefore iterating over the sequence as a
177 PATTERN (...), so we also want the patterns of the
178 subinstructions. */
179 for (unsigned int j = 0; j < length; j++)
180 {
181 typename T::rtx_type x = T::get_rtx (base[j]);
182 if (INSN_P (x))
183 base[j] = T::get_value (PATTERN (x));
184 }
185 }
186 return end - orig_end;
187 }
188
189 template <typename T>
190 void
191 generic_subrtx_iterator <T>::free_array (array_type &array)
192 {
193 vec_free (array.heap);
194 }
195
196 template <typename T>
197 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
198
199 template class generic_subrtx_iterator <const_rtx_accessor>;
200 template class generic_subrtx_iterator <rtx_var_accessor>;
201 template class generic_subrtx_iterator <rtx_ptr_accessor>;
202
203 /* Return 1 if the value of X is unstable
204 (would be different at a different point in the program).
205 The frame pointer, arg pointer, etc. are considered stable
206 (within one function) and so is anything marked `unchanging'. */
207
208 int
209 rtx_unstable_p (const_rtx x)
210 {
211 const RTX_CODE code = GET_CODE (x);
212 int i;
213 const char *fmt;
214
215 switch (code)
216 {
217 case MEM:
218 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
219
220 case CONST:
221 CASE_CONST_ANY:
222 case SYMBOL_REF:
223 case LABEL_REF:
224 return 0;
225
226 case REG:
227 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
228 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
229 /* The arg pointer varies if it is not a fixed register. */
230 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
231 return 0;
232 /* ??? When call-clobbered, the value is stable modulo the restore
233 that must happen after a call. This currently screws up local-alloc
234 into believing that the restore is not needed. */
235 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
236 return 0;
237 return 1;
238
239 case ASM_OPERANDS:
240 if (MEM_VOLATILE_P (x))
241 return 1;
242
243 /* Fall through. */
244
245 default:
246 break;
247 }
248
249 fmt = GET_RTX_FORMAT (code);
250 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
251 if (fmt[i] == 'e')
252 {
253 if (rtx_unstable_p (XEXP (x, i)))
254 return 1;
255 }
256 else if (fmt[i] == 'E')
257 {
258 int j;
259 for (j = 0; j < XVECLEN (x, i); j++)
260 if (rtx_unstable_p (XVECEXP (x, i, j)))
261 return 1;
262 }
263
264 return 0;
265 }
266
267 /* Return 1 if X has a value that can vary even between two
268 executions of the program. 0 means X can be compared reliably
269 against certain constants or near-constants.
270 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
271 zero, we are slightly more conservative.
272 The frame pointer and the arg pointer are considered constant. */
273
274 bool
275 rtx_varies_p (const_rtx x, bool for_alias)
276 {
277 RTX_CODE code;
278 int i;
279 const char *fmt;
280
281 if (!x)
282 return 0;
283
284 code = GET_CODE (x);
285 switch (code)
286 {
287 case MEM:
288 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
289
290 case CONST:
291 CASE_CONST_ANY:
292 case SYMBOL_REF:
293 case LABEL_REF:
294 return 0;
295
296 case REG:
297 /* Note that we have to test for the actual rtx used for the frame
298 and arg pointers and not just the register number in case we have
299 eliminated the frame and/or arg pointer and are using it
300 for pseudos. */
301 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
302 /* The arg pointer varies if it is not a fixed register. */
303 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
304 return 0;
305 if (x == pic_offset_table_rtx
306 /* ??? When call-clobbered, the value is stable modulo the restore
307 that must happen after a call. This currently screws up
308 local-alloc into believing that the restore is not needed, so we
309 must return 0 only if we are called from alias analysis. */
310 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
311 return 0;
312 return 1;
313
314 case LO_SUM:
315 /* The operand 0 of a LO_SUM is considered constant
316 (in fact it is related specifically to operand 1)
317 during alias analysis. */
318 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
319 || rtx_varies_p (XEXP (x, 1), for_alias);
320
321 case ASM_OPERANDS:
322 if (MEM_VOLATILE_P (x))
323 return 1;
324
325 /* Fall through. */
326
327 default:
328 break;
329 }
330
331 fmt = GET_RTX_FORMAT (code);
332 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
333 if (fmt[i] == 'e')
334 {
335 if (rtx_varies_p (XEXP (x, i), for_alias))
336 return 1;
337 }
338 else if (fmt[i] == 'E')
339 {
340 int j;
341 for (j = 0; j < XVECLEN (x, i); j++)
342 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
343 return 1;
344 }
345
346 return 0;
347 }
348
349 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
350 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
351 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
352 references on strict alignment machines. */
353
354 static int
355 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
356 machine_mode mode, bool unaligned_mems)
357 {
358 enum rtx_code code = GET_CODE (x);
359
360 /* The offset must be a multiple of the mode size if we are considering
361 unaligned memory references on strict alignment machines. */
362 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
363 {
364 HOST_WIDE_INT actual_offset = offset;
365
366 #ifdef SPARC_STACK_BOUNDARY_HACK
367 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
368 the real alignment of %sp. However, when it does this, the
369 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
370 if (SPARC_STACK_BOUNDARY_HACK
371 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
372 actual_offset -= STACK_POINTER_OFFSET;
373 #endif
374
375 if (actual_offset % GET_MODE_SIZE (mode) != 0)
376 return 1;
377 }
378
379 switch (code)
380 {
381 case SYMBOL_REF:
382 if (SYMBOL_REF_WEAK (x))
383 return 1;
384 if (!CONSTANT_POOL_ADDRESS_P (x))
385 {
386 tree decl;
387 HOST_WIDE_INT decl_size;
388
389 if (offset < 0)
390 return 1;
391 if (size == 0)
392 size = GET_MODE_SIZE (mode);
393 if (size == 0)
394 return offset != 0;
395
396 /* If the size of the access or of the symbol is unknown,
397 assume the worst. */
398 decl = SYMBOL_REF_DECL (x);
399
400 /* Else check that the access is in bounds. TODO: restructure
401 expr_size/tree_expr_size/int_expr_size and just use the latter. */
402 if (!decl)
403 decl_size = -1;
404 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
405 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
406 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
407 : -1);
408 else if (TREE_CODE (decl) == STRING_CST)
409 decl_size = TREE_STRING_LENGTH (decl);
410 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
411 decl_size = int_size_in_bytes (TREE_TYPE (decl));
412 else
413 decl_size = -1;
414
415 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
416 }
417
418 return 0;
419
420 case LABEL_REF:
421 return 0;
422
423 case REG:
424 /* Stack references are assumed not to trap, but we need to deal with
425 nonsensical offsets. */
426 if (x == frame_pointer_rtx)
427 {
428 HOST_WIDE_INT adj_offset = offset - STARTING_FRAME_OFFSET;
429 if (size == 0)
430 size = GET_MODE_SIZE (mode);
431 if (FRAME_GROWS_DOWNWARD)
432 {
433 if (adj_offset < frame_offset || adj_offset + size - 1 >= 0)
434 return 1;
435 }
436 else
437 {
438 if (adj_offset < 0 || adj_offset + size - 1 >= frame_offset)
439 return 1;
440 }
441 return 0;
442 }
443 /* ??? Need to add a similar guard for nonsensical offsets. */
444 if (x == hard_frame_pointer_rtx
445 || x == stack_pointer_rtx
446 /* The arg pointer varies if it is not a fixed register. */
447 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
448 return 0;
449 /* All of the virtual frame registers are stack references. */
450 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
451 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
452 return 0;
453 return 1;
454
455 case CONST:
456 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
457 mode, unaligned_mems);
458
459 case PLUS:
460 /* An address is assumed not to trap if:
461 - it is the pic register plus a constant. */
462 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
463 return 0;
464
465 /* - or it is an address that can't trap plus a constant integer. */
466 if (CONST_INT_P (XEXP (x, 1))
467 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
468 size, mode, unaligned_mems))
469 return 0;
470
471 return 1;
472
473 case LO_SUM:
474 case PRE_MODIFY:
475 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
476 mode, unaligned_mems);
477
478 case PRE_DEC:
479 case PRE_INC:
480 case POST_DEC:
481 case POST_INC:
482 case POST_MODIFY:
483 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
484 mode, unaligned_mems);
485
486 default:
487 break;
488 }
489
490 /* If it isn't one of the case above, it can cause a trap. */
491 return 1;
492 }
493
494 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
495
496 int
497 rtx_addr_can_trap_p (const_rtx x)
498 {
499 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
500 }
501
502 /* Return true if X is an address that is known to not be zero. */
503
504 bool
505 nonzero_address_p (const_rtx x)
506 {
507 const enum rtx_code code = GET_CODE (x);
508
509 switch (code)
510 {
511 case SYMBOL_REF:
512 return !SYMBOL_REF_WEAK (x);
513
514 case LABEL_REF:
515 return true;
516
517 case REG:
518 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
519 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
520 || x == stack_pointer_rtx
521 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
522 return true;
523 /* All of the virtual frame registers are stack references. */
524 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
525 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
526 return true;
527 return false;
528
529 case CONST:
530 return nonzero_address_p (XEXP (x, 0));
531
532 case PLUS:
533 /* Handle PIC references. */
534 if (XEXP (x, 0) == pic_offset_table_rtx
535 && CONSTANT_P (XEXP (x, 1)))
536 return true;
537 return false;
538
539 case PRE_MODIFY:
540 /* Similar to the above; allow positive offsets. Further, since
541 auto-inc is only allowed in memories, the register must be a
542 pointer. */
543 if (CONST_INT_P (XEXP (x, 1))
544 && INTVAL (XEXP (x, 1)) > 0)
545 return true;
546 return nonzero_address_p (XEXP (x, 0));
547
548 case PRE_INC:
549 /* Similarly. Further, the offset is always positive. */
550 return true;
551
552 case PRE_DEC:
553 case POST_DEC:
554 case POST_INC:
555 case POST_MODIFY:
556 return nonzero_address_p (XEXP (x, 0));
557
558 case LO_SUM:
559 return nonzero_address_p (XEXP (x, 1));
560
561 default:
562 break;
563 }
564
565 /* If it isn't one of the case above, might be zero. */
566 return false;
567 }
568
569 /* Return 1 if X refers to a memory location whose address
570 cannot be compared reliably with constant addresses,
571 or if X refers to a BLKmode memory object.
572 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
573 zero, we are slightly more conservative. */
574
575 bool
576 rtx_addr_varies_p (const_rtx x, bool for_alias)
577 {
578 enum rtx_code code;
579 int i;
580 const char *fmt;
581
582 if (x == 0)
583 return 0;
584
585 code = GET_CODE (x);
586 if (code == MEM)
587 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
588
589 fmt = GET_RTX_FORMAT (code);
590 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
591 if (fmt[i] == 'e')
592 {
593 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
594 return 1;
595 }
596 else if (fmt[i] == 'E')
597 {
598 int j;
599 for (j = 0; j < XVECLEN (x, i); j++)
600 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
601 return 1;
602 }
603 return 0;
604 }
605 \f
606 /* Return the CALL in X if there is one. */
607
608 rtx
609 get_call_rtx_from (rtx x)
610 {
611 if (INSN_P (x))
612 x = PATTERN (x);
613 if (GET_CODE (x) == PARALLEL)
614 x = XVECEXP (x, 0, 0);
615 if (GET_CODE (x) == SET)
616 x = SET_SRC (x);
617 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
618 return x;
619 return NULL_RTX;
620 }
621 \f
622 /* Return the value of the integer term in X, if one is apparent;
623 otherwise return 0.
624 Only obvious integer terms are detected.
625 This is used in cse.c with the `related_value' field. */
626
627 HOST_WIDE_INT
628 get_integer_term (const_rtx x)
629 {
630 if (GET_CODE (x) == CONST)
631 x = XEXP (x, 0);
632
633 if (GET_CODE (x) == MINUS
634 && CONST_INT_P (XEXP (x, 1)))
635 return - INTVAL (XEXP (x, 1));
636 if (GET_CODE (x) == PLUS
637 && CONST_INT_P (XEXP (x, 1)))
638 return INTVAL (XEXP (x, 1));
639 return 0;
640 }
641
642 /* If X is a constant, return the value sans apparent integer term;
643 otherwise return 0.
644 Only obvious integer terms are detected. */
645
646 rtx
647 get_related_value (const_rtx x)
648 {
649 if (GET_CODE (x) != CONST)
650 return 0;
651 x = XEXP (x, 0);
652 if (GET_CODE (x) == PLUS
653 && CONST_INT_P (XEXP (x, 1)))
654 return XEXP (x, 0);
655 else if (GET_CODE (x) == MINUS
656 && CONST_INT_P (XEXP (x, 1)))
657 return XEXP (x, 0);
658 return 0;
659 }
660 \f
661 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
662 to somewhere in the same object or object_block as SYMBOL. */
663
664 bool
665 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
666 {
667 tree decl;
668
669 if (GET_CODE (symbol) != SYMBOL_REF)
670 return false;
671
672 if (offset == 0)
673 return true;
674
675 if (offset > 0)
676 {
677 if (CONSTANT_POOL_ADDRESS_P (symbol)
678 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
679 return true;
680
681 decl = SYMBOL_REF_DECL (symbol);
682 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
683 return true;
684 }
685
686 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
687 && SYMBOL_REF_BLOCK (symbol)
688 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
689 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
690 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
691 return true;
692
693 return false;
694 }
695
696 /* Split X into a base and a constant offset, storing them in *BASE_OUT
697 and *OFFSET_OUT respectively. */
698
699 void
700 split_const (rtx x, rtx *base_out, rtx *offset_out)
701 {
702 if (GET_CODE (x) == CONST)
703 {
704 x = XEXP (x, 0);
705 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
706 {
707 *base_out = XEXP (x, 0);
708 *offset_out = XEXP (x, 1);
709 return;
710 }
711 }
712 *base_out = x;
713 *offset_out = const0_rtx;
714 }
715 \f
716 /* Return the number of places FIND appears within X. If COUNT_DEST is
717 zero, we do not count occurrences inside the destination of a SET. */
718
719 int
720 count_occurrences (const_rtx x, const_rtx find, int count_dest)
721 {
722 int i, j;
723 enum rtx_code code;
724 const char *format_ptr;
725 int count;
726
727 if (x == find)
728 return 1;
729
730 code = GET_CODE (x);
731
732 switch (code)
733 {
734 case REG:
735 CASE_CONST_ANY:
736 case SYMBOL_REF:
737 case CODE_LABEL:
738 case PC:
739 case CC0:
740 return 0;
741
742 case EXPR_LIST:
743 count = count_occurrences (XEXP (x, 0), find, count_dest);
744 if (XEXP (x, 1))
745 count += count_occurrences (XEXP (x, 1), find, count_dest);
746 return count;
747
748 case MEM:
749 if (MEM_P (find) && rtx_equal_p (x, find))
750 return 1;
751 break;
752
753 case SET:
754 if (SET_DEST (x) == find && ! count_dest)
755 return count_occurrences (SET_SRC (x), find, count_dest);
756 break;
757
758 default:
759 break;
760 }
761
762 format_ptr = GET_RTX_FORMAT (code);
763 count = 0;
764
765 for (i = 0; i < GET_RTX_LENGTH (code); i++)
766 {
767 switch (*format_ptr++)
768 {
769 case 'e':
770 count += count_occurrences (XEXP (x, i), find, count_dest);
771 break;
772
773 case 'E':
774 for (j = 0; j < XVECLEN (x, i); j++)
775 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
776 break;
777 }
778 }
779 return count;
780 }
781
782 \f
783 /* Return TRUE if OP is a register or subreg of a register that
784 holds an unsigned quantity. Otherwise, return FALSE. */
785
786 bool
787 unsigned_reg_p (rtx op)
788 {
789 if (REG_P (op)
790 && REG_EXPR (op)
791 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
792 return true;
793
794 if (GET_CODE (op) == SUBREG
795 && SUBREG_PROMOTED_SIGN (op))
796 return true;
797
798 return false;
799 }
800
801 \f
802 /* Nonzero if register REG appears somewhere within IN.
803 Also works if REG is not a register; in this case it checks
804 for a subexpression of IN that is Lisp "equal" to REG. */
805
806 int
807 reg_mentioned_p (const_rtx reg, const_rtx in)
808 {
809 const char *fmt;
810 int i;
811 enum rtx_code code;
812
813 if (in == 0)
814 return 0;
815
816 if (reg == in)
817 return 1;
818
819 if (GET_CODE (in) == LABEL_REF)
820 return reg == LABEL_REF_LABEL (in);
821
822 code = GET_CODE (in);
823
824 switch (code)
825 {
826 /* Compare registers by number. */
827 case REG:
828 return REG_P (reg) && REGNO (in) == REGNO (reg);
829
830 /* These codes have no constituent expressions
831 and are unique. */
832 case SCRATCH:
833 case CC0:
834 case PC:
835 return 0;
836
837 CASE_CONST_ANY:
838 /* These are kept unique for a given value. */
839 return 0;
840
841 default:
842 break;
843 }
844
845 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
846 return 1;
847
848 fmt = GET_RTX_FORMAT (code);
849
850 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
851 {
852 if (fmt[i] == 'E')
853 {
854 int j;
855 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
856 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
857 return 1;
858 }
859 else if (fmt[i] == 'e'
860 && reg_mentioned_p (reg, XEXP (in, i)))
861 return 1;
862 }
863 return 0;
864 }
865 \f
866 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
867 no CODE_LABEL insn. */
868
869 int
870 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
871 {
872 rtx_insn *p;
873 if (beg == end)
874 return 0;
875 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
876 if (LABEL_P (p))
877 return 0;
878 return 1;
879 }
880
881 /* Nonzero if register REG is used in an insn between
882 FROM_INSN and TO_INSN (exclusive of those two). */
883
884 int
885 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
886 const rtx_insn *to_insn)
887 {
888 rtx_insn *insn;
889
890 if (from_insn == to_insn)
891 return 0;
892
893 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
894 if (NONDEBUG_INSN_P (insn)
895 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
896 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
897 return 1;
898 return 0;
899 }
900 \f
901 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
902 is entirely replaced by a new value and the only use is as a SET_DEST,
903 we do not consider it a reference. */
904
905 int
906 reg_referenced_p (const_rtx x, const_rtx body)
907 {
908 int i;
909
910 switch (GET_CODE (body))
911 {
912 case SET:
913 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
914 return 1;
915
916 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
917 of a REG that occupies all of the REG, the insn references X if
918 it is mentioned in the destination. */
919 if (GET_CODE (SET_DEST (body)) != CC0
920 && GET_CODE (SET_DEST (body)) != PC
921 && !REG_P (SET_DEST (body))
922 && ! (GET_CODE (SET_DEST (body)) == SUBREG
923 && REG_P (SUBREG_REG (SET_DEST (body)))
924 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
925 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
926 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
927 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
928 && reg_overlap_mentioned_p (x, SET_DEST (body)))
929 return 1;
930 return 0;
931
932 case ASM_OPERANDS:
933 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
934 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
935 return 1;
936 return 0;
937
938 case CALL:
939 case USE:
940 case IF_THEN_ELSE:
941 return reg_overlap_mentioned_p (x, body);
942
943 case TRAP_IF:
944 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
945
946 case PREFETCH:
947 return reg_overlap_mentioned_p (x, XEXP (body, 0));
948
949 case UNSPEC:
950 case UNSPEC_VOLATILE:
951 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
952 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
953 return 1;
954 return 0;
955
956 case PARALLEL:
957 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
958 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
959 return 1;
960 return 0;
961
962 case CLOBBER:
963 if (MEM_P (XEXP (body, 0)))
964 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
965 return 1;
966 return 0;
967
968 case COND_EXEC:
969 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
970 return 1;
971 return reg_referenced_p (x, COND_EXEC_CODE (body));
972
973 default:
974 return 0;
975 }
976 }
977 \f
978 /* Nonzero if register REG is set or clobbered in an insn between
979 FROM_INSN and TO_INSN (exclusive of those two). */
980
981 int
982 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
983 const rtx_insn *to_insn)
984 {
985 const rtx_insn *insn;
986
987 if (from_insn == to_insn)
988 return 0;
989
990 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
991 if (INSN_P (insn) && reg_set_p (reg, insn))
992 return 1;
993 return 0;
994 }
995
996 /* Internals of reg_set_between_p. */
997 int
998 reg_set_p (const_rtx reg, const_rtx insn)
999 {
1000 /* We can be passed an insn or part of one. If we are passed an insn,
1001 check if a side-effect of the insn clobbers REG. */
1002 if (INSN_P (insn)
1003 && (FIND_REG_INC_NOTE (insn, reg)
1004 || (CALL_P (insn)
1005 && ((REG_P (reg)
1006 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1007 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1008 GET_MODE (reg), REGNO (reg)))
1009 || MEM_P (reg)
1010 || find_reg_fusage (insn, CLOBBER, reg)))))
1011 return 1;
1012
1013 return set_of (reg, insn) != NULL_RTX;
1014 }
1015
1016 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1017 only if none of them are modified between START and END. Return 1 if
1018 X contains a MEM; this routine does use memory aliasing. */
1019
1020 int
1021 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1022 {
1023 const enum rtx_code code = GET_CODE (x);
1024 const char *fmt;
1025 int i, j;
1026 rtx_insn *insn;
1027
1028 if (start == end)
1029 return 0;
1030
1031 switch (code)
1032 {
1033 CASE_CONST_ANY:
1034 case CONST:
1035 case SYMBOL_REF:
1036 case LABEL_REF:
1037 return 0;
1038
1039 case PC:
1040 case CC0:
1041 return 1;
1042
1043 case MEM:
1044 if (modified_between_p (XEXP (x, 0), start, end))
1045 return 1;
1046 if (MEM_READONLY_P (x))
1047 return 0;
1048 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1049 if (memory_modified_in_insn_p (x, insn))
1050 return 1;
1051 return 0;
1052 break;
1053
1054 case REG:
1055 return reg_set_between_p (x, start, end);
1056
1057 default:
1058 break;
1059 }
1060
1061 fmt = GET_RTX_FORMAT (code);
1062 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1063 {
1064 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1065 return 1;
1066
1067 else if (fmt[i] == 'E')
1068 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1069 if (modified_between_p (XVECEXP (x, i, j), start, end))
1070 return 1;
1071 }
1072
1073 return 0;
1074 }
1075
1076 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1077 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1078 does use memory aliasing. */
1079
1080 int
1081 modified_in_p (const_rtx x, const_rtx insn)
1082 {
1083 const enum rtx_code code = GET_CODE (x);
1084 const char *fmt;
1085 int i, j;
1086
1087 switch (code)
1088 {
1089 CASE_CONST_ANY:
1090 case CONST:
1091 case SYMBOL_REF:
1092 case LABEL_REF:
1093 return 0;
1094
1095 case PC:
1096 case CC0:
1097 return 1;
1098
1099 case MEM:
1100 if (modified_in_p (XEXP (x, 0), insn))
1101 return 1;
1102 if (MEM_READONLY_P (x))
1103 return 0;
1104 if (memory_modified_in_insn_p (x, insn))
1105 return 1;
1106 return 0;
1107 break;
1108
1109 case REG:
1110 return reg_set_p (x, insn);
1111
1112 default:
1113 break;
1114 }
1115
1116 fmt = GET_RTX_FORMAT (code);
1117 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1118 {
1119 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1120 return 1;
1121
1122 else if (fmt[i] == 'E')
1123 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1124 if (modified_in_p (XVECEXP (x, i, j), insn))
1125 return 1;
1126 }
1127
1128 return 0;
1129 }
1130 \f
1131 /* Helper function for set_of. */
1132 struct set_of_data
1133 {
1134 const_rtx found;
1135 const_rtx pat;
1136 };
1137
1138 static void
1139 set_of_1 (rtx x, const_rtx pat, void *data1)
1140 {
1141 struct set_of_data *const data = (struct set_of_data *) (data1);
1142 if (rtx_equal_p (x, data->pat)
1143 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1144 data->found = pat;
1145 }
1146
1147 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1148 (either directly or via STRICT_LOW_PART and similar modifiers). */
1149 const_rtx
1150 set_of (const_rtx pat, const_rtx insn)
1151 {
1152 struct set_of_data data;
1153 data.found = NULL_RTX;
1154 data.pat = pat;
1155 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1156 return data.found;
1157 }
1158
1159 /* Add all hard register in X to *PSET. */
1160 void
1161 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1162 {
1163 subrtx_iterator::array_type array;
1164 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1165 {
1166 const_rtx x = *iter;
1167 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1168 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1169 }
1170 }
1171
1172 /* This function, called through note_stores, collects sets and
1173 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1174 by DATA. */
1175 void
1176 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1177 {
1178 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1179 if (REG_P (x) && HARD_REGISTER_P (x))
1180 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1181 }
1182
1183 /* Examine INSN, and compute the set of hard registers written by it.
1184 Store it in *PSET. Should only be called after reload. */
1185 void
1186 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset, bool implicit)
1187 {
1188 rtx link;
1189
1190 CLEAR_HARD_REG_SET (*pset);
1191 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1192 if (CALL_P (insn))
1193 {
1194 if (implicit)
1195 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1196
1197 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1198 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1199 }
1200 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1201 if (REG_NOTE_KIND (link) == REG_INC)
1202 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1203 }
1204
1205 /* Like record_hard_reg_sets, but called through note_uses. */
1206 void
1207 record_hard_reg_uses (rtx *px, void *data)
1208 {
1209 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1210 }
1211 \f
1212 /* Given an INSN, return a SET expression if this insn has only a single SET.
1213 It may also have CLOBBERs, USEs, or SET whose output
1214 will not be used, which we ignore. */
1215
1216 rtx
1217 single_set_2 (const rtx_insn *insn, const_rtx pat)
1218 {
1219 rtx set = NULL;
1220 int set_verified = 1;
1221 int i;
1222
1223 if (GET_CODE (pat) == PARALLEL)
1224 {
1225 for (i = 0; i < XVECLEN (pat, 0); i++)
1226 {
1227 rtx sub = XVECEXP (pat, 0, i);
1228 switch (GET_CODE (sub))
1229 {
1230 case USE:
1231 case CLOBBER:
1232 break;
1233
1234 case SET:
1235 /* We can consider insns having multiple sets, where all
1236 but one are dead as single set insns. In common case
1237 only single set is present in the pattern so we want
1238 to avoid checking for REG_UNUSED notes unless necessary.
1239
1240 When we reach set first time, we just expect this is
1241 the single set we are looking for and only when more
1242 sets are found in the insn, we check them. */
1243 if (!set_verified)
1244 {
1245 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1246 && !side_effects_p (set))
1247 set = NULL;
1248 else
1249 set_verified = 1;
1250 }
1251 if (!set)
1252 set = sub, set_verified = 0;
1253 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1254 || side_effects_p (sub))
1255 return NULL_RTX;
1256 break;
1257
1258 default:
1259 return NULL_RTX;
1260 }
1261 }
1262 }
1263 return set;
1264 }
1265
1266 /* Given an INSN, return nonzero if it has more than one SET, else return
1267 zero. */
1268
1269 int
1270 multiple_sets (const_rtx insn)
1271 {
1272 int found;
1273 int i;
1274
1275 /* INSN must be an insn. */
1276 if (! INSN_P (insn))
1277 return 0;
1278
1279 /* Only a PARALLEL can have multiple SETs. */
1280 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1281 {
1282 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1283 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1284 {
1285 /* If we have already found a SET, then return now. */
1286 if (found)
1287 return 1;
1288 else
1289 found = 1;
1290 }
1291 }
1292
1293 /* Either zero or one SET. */
1294 return 0;
1295 }
1296 \f
1297 /* Return nonzero if the destination of SET equals the source
1298 and there are no side effects. */
1299
1300 int
1301 set_noop_p (const_rtx set)
1302 {
1303 rtx src = SET_SRC (set);
1304 rtx dst = SET_DEST (set);
1305
1306 if (dst == pc_rtx && src == pc_rtx)
1307 return 1;
1308
1309 if (MEM_P (dst) && MEM_P (src))
1310 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1311
1312 if (GET_CODE (dst) == ZERO_EXTRACT)
1313 return rtx_equal_p (XEXP (dst, 0), src)
1314 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1315 && !side_effects_p (src);
1316
1317 if (GET_CODE (dst) == STRICT_LOW_PART)
1318 dst = XEXP (dst, 0);
1319
1320 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1321 {
1322 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1323 return 0;
1324 src = SUBREG_REG (src);
1325 dst = SUBREG_REG (dst);
1326 }
1327
1328 /* It is a NOOP if destination overlaps with selected src vector
1329 elements. */
1330 if (GET_CODE (src) == VEC_SELECT
1331 && REG_P (XEXP (src, 0)) && REG_P (dst)
1332 && HARD_REGISTER_P (XEXP (src, 0))
1333 && HARD_REGISTER_P (dst))
1334 {
1335 int i;
1336 rtx par = XEXP (src, 1);
1337 rtx src0 = XEXP (src, 0);
1338 int c0 = INTVAL (XVECEXP (par, 0, 0));
1339 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1340
1341 for (i = 1; i < XVECLEN (par, 0); i++)
1342 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1343 return 0;
1344 return
1345 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1346 offset, GET_MODE (dst)) == (int) REGNO (dst);
1347 }
1348
1349 return (REG_P (src) && REG_P (dst)
1350 && REGNO (src) == REGNO (dst));
1351 }
1352 \f
1353 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1354 value to itself. */
1355
1356 int
1357 noop_move_p (const_rtx insn)
1358 {
1359 rtx pat = PATTERN (insn);
1360
1361 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1362 return 1;
1363
1364 /* Insns carrying these notes are useful later on. */
1365 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1366 return 0;
1367
1368 /* Check the code to be executed for COND_EXEC. */
1369 if (GET_CODE (pat) == COND_EXEC)
1370 pat = COND_EXEC_CODE (pat);
1371
1372 if (GET_CODE (pat) == SET && set_noop_p (pat))
1373 return 1;
1374
1375 if (GET_CODE (pat) == PARALLEL)
1376 {
1377 int i;
1378 /* If nothing but SETs of registers to themselves,
1379 this insn can also be deleted. */
1380 for (i = 0; i < XVECLEN (pat, 0); i++)
1381 {
1382 rtx tem = XVECEXP (pat, 0, i);
1383
1384 if (GET_CODE (tem) == USE
1385 || GET_CODE (tem) == CLOBBER)
1386 continue;
1387
1388 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1389 return 0;
1390 }
1391
1392 return 1;
1393 }
1394 return 0;
1395 }
1396 \f
1397
1398 /* Return nonzero if register in range [REGNO, ENDREGNO)
1399 appears either explicitly or implicitly in X
1400 other than being stored into.
1401
1402 References contained within the substructure at LOC do not count.
1403 LOC may be zero, meaning don't ignore anything. */
1404
1405 int
1406 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1407 rtx *loc)
1408 {
1409 int i;
1410 unsigned int x_regno;
1411 RTX_CODE code;
1412 const char *fmt;
1413
1414 repeat:
1415 /* The contents of a REG_NONNEG note is always zero, so we must come here
1416 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1417 if (x == 0)
1418 return 0;
1419
1420 code = GET_CODE (x);
1421
1422 switch (code)
1423 {
1424 case REG:
1425 x_regno = REGNO (x);
1426
1427 /* If we modifying the stack, frame, or argument pointer, it will
1428 clobber a virtual register. In fact, we could be more precise,
1429 but it isn't worth it. */
1430 if ((x_regno == STACK_POINTER_REGNUM
1431 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1432 || x_regno == ARG_POINTER_REGNUM
1433 #endif
1434 || x_regno == FRAME_POINTER_REGNUM)
1435 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1436 return 1;
1437
1438 return endregno > x_regno && regno < END_REGNO (x);
1439
1440 case SUBREG:
1441 /* If this is a SUBREG of a hard reg, we can see exactly which
1442 registers are being modified. Otherwise, handle normally. */
1443 if (REG_P (SUBREG_REG (x))
1444 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1445 {
1446 unsigned int inner_regno = subreg_regno (x);
1447 unsigned int inner_endregno
1448 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1449 ? subreg_nregs (x) : 1);
1450
1451 return endregno > inner_regno && regno < inner_endregno;
1452 }
1453 break;
1454
1455 case CLOBBER:
1456 case SET:
1457 if (&SET_DEST (x) != loc
1458 /* Note setting a SUBREG counts as referring to the REG it is in for
1459 a pseudo but not for hard registers since we can
1460 treat each word individually. */
1461 && ((GET_CODE (SET_DEST (x)) == SUBREG
1462 && loc != &SUBREG_REG (SET_DEST (x))
1463 && REG_P (SUBREG_REG (SET_DEST (x)))
1464 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1465 && refers_to_regno_p (regno, endregno,
1466 SUBREG_REG (SET_DEST (x)), loc))
1467 || (!REG_P (SET_DEST (x))
1468 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1469 return 1;
1470
1471 if (code == CLOBBER || loc == &SET_SRC (x))
1472 return 0;
1473 x = SET_SRC (x);
1474 goto repeat;
1475
1476 default:
1477 break;
1478 }
1479
1480 /* X does not match, so try its subexpressions. */
1481
1482 fmt = GET_RTX_FORMAT (code);
1483 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1484 {
1485 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1486 {
1487 if (i == 0)
1488 {
1489 x = XEXP (x, 0);
1490 goto repeat;
1491 }
1492 else
1493 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1494 return 1;
1495 }
1496 else if (fmt[i] == 'E')
1497 {
1498 int j;
1499 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1500 if (loc != &XVECEXP (x, i, j)
1501 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1502 return 1;
1503 }
1504 }
1505 return 0;
1506 }
1507
1508 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1509 we check if any register number in X conflicts with the relevant register
1510 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1511 contains a MEM (we don't bother checking for memory addresses that can't
1512 conflict because we expect this to be a rare case. */
1513
1514 int
1515 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1516 {
1517 unsigned int regno, endregno;
1518
1519 /* If either argument is a constant, then modifying X can not
1520 affect IN. Here we look at IN, we can profitably combine
1521 CONSTANT_P (x) with the switch statement below. */
1522 if (CONSTANT_P (in))
1523 return 0;
1524
1525 recurse:
1526 switch (GET_CODE (x))
1527 {
1528 case STRICT_LOW_PART:
1529 case ZERO_EXTRACT:
1530 case SIGN_EXTRACT:
1531 /* Overly conservative. */
1532 x = XEXP (x, 0);
1533 goto recurse;
1534
1535 case SUBREG:
1536 regno = REGNO (SUBREG_REG (x));
1537 if (regno < FIRST_PSEUDO_REGISTER)
1538 regno = subreg_regno (x);
1539 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1540 ? subreg_nregs (x) : 1);
1541 goto do_reg;
1542
1543 case REG:
1544 regno = REGNO (x);
1545 endregno = END_REGNO (x);
1546 do_reg:
1547 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1548
1549 case MEM:
1550 {
1551 const char *fmt;
1552 int i;
1553
1554 if (MEM_P (in))
1555 return 1;
1556
1557 fmt = GET_RTX_FORMAT (GET_CODE (in));
1558 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1559 if (fmt[i] == 'e')
1560 {
1561 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1562 return 1;
1563 }
1564 else if (fmt[i] == 'E')
1565 {
1566 int j;
1567 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1568 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1569 return 1;
1570 }
1571
1572 return 0;
1573 }
1574
1575 case SCRATCH:
1576 case PC:
1577 case CC0:
1578 return reg_mentioned_p (x, in);
1579
1580 case PARALLEL:
1581 {
1582 int i;
1583
1584 /* If any register in here refers to it we return true. */
1585 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1586 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1587 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1588 return 1;
1589 return 0;
1590 }
1591
1592 default:
1593 gcc_assert (CONSTANT_P (x));
1594 return 0;
1595 }
1596 }
1597 \f
1598 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1599 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1600 ignored by note_stores, but passed to FUN.
1601
1602 FUN receives three arguments:
1603 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1604 2. the SET or CLOBBER rtx that does the store,
1605 3. the pointer DATA provided to note_stores.
1606
1607 If the item being stored in or clobbered is a SUBREG of a hard register,
1608 the SUBREG will be passed. */
1609
1610 void
1611 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1612 {
1613 int i;
1614
1615 if (GET_CODE (x) == COND_EXEC)
1616 x = COND_EXEC_CODE (x);
1617
1618 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1619 {
1620 rtx dest = SET_DEST (x);
1621
1622 while ((GET_CODE (dest) == SUBREG
1623 && (!REG_P (SUBREG_REG (dest))
1624 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1625 || GET_CODE (dest) == ZERO_EXTRACT
1626 || GET_CODE (dest) == STRICT_LOW_PART)
1627 dest = XEXP (dest, 0);
1628
1629 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1630 each of whose first operand is a register. */
1631 if (GET_CODE (dest) == PARALLEL)
1632 {
1633 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1634 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1635 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1636 }
1637 else
1638 (*fun) (dest, x, data);
1639 }
1640
1641 else if (GET_CODE (x) == PARALLEL)
1642 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1643 note_stores (XVECEXP (x, 0, i), fun, data);
1644 }
1645 \f
1646 /* Like notes_stores, but call FUN for each expression that is being
1647 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1648 FUN for each expression, not any interior subexpressions. FUN receives a
1649 pointer to the expression and the DATA passed to this function.
1650
1651 Note that this is not quite the same test as that done in reg_referenced_p
1652 since that considers something as being referenced if it is being
1653 partially set, while we do not. */
1654
1655 void
1656 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1657 {
1658 rtx body = *pbody;
1659 int i;
1660
1661 switch (GET_CODE (body))
1662 {
1663 case COND_EXEC:
1664 (*fun) (&COND_EXEC_TEST (body), data);
1665 note_uses (&COND_EXEC_CODE (body), fun, data);
1666 return;
1667
1668 case PARALLEL:
1669 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1670 note_uses (&XVECEXP (body, 0, i), fun, data);
1671 return;
1672
1673 case SEQUENCE:
1674 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1675 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1676 return;
1677
1678 case USE:
1679 (*fun) (&XEXP (body, 0), data);
1680 return;
1681
1682 case ASM_OPERANDS:
1683 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1684 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1685 return;
1686
1687 case TRAP_IF:
1688 (*fun) (&TRAP_CONDITION (body), data);
1689 return;
1690
1691 case PREFETCH:
1692 (*fun) (&XEXP (body, 0), data);
1693 return;
1694
1695 case UNSPEC:
1696 case UNSPEC_VOLATILE:
1697 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1698 (*fun) (&XVECEXP (body, 0, i), data);
1699 return;
1700
1701 case CLOBBER:
1702 if (MEM_P (XEXP (body, 0)))
1703 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1704 return;
1705
1706 case SET:
1707 {
1708 rtx dest = SET_DEST (body);
1709
1710 /* For sets we replace everything in source plus registers in memory
1711 expression in store and operands of a ZERO_EXTRACT. */
1712 (*fun) (&SET_SRC (body), data);
1713
1714 if (GET_CODE (dest) == ZERO_EXTRACT)
1715 {
1716 (*fun) (&XEXP (dest, 1), data);
1717 (*fun) (&XEXP (dest, 2), data);
1718 }
1719
1720 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1721 dest = XEXP (dest, 0);
1722
1723 if (MEM_P (dest))
1724 (*fun) (&XEXP (dest, 0), data);
1725 }
1726 return;
1727
1728 default:
1729 /* All the other possibilities never store. */
1730 (*fun) (pbody, data);
1731 return;
1732 }
1733 }
1734 \f
1735 /* Return nonzero if X's old contents don't survive after INSN.
1736 This will be true if X is (cc0) or if X is a register and
1737 X dies in INSN or because INSN entirely sets X.
1738
1739 "Entirely set" means set directly and not through a SUBREG, or
1740 ZERO_EXTRACT, so no trace of the old contents remains.
1741 Likewise, REG_INC does not count.
1742
1743 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1744 but for this use that makes no difference, since regs don't overlap
1745 during their lifetimes. Therefore, this function may be used
1746 at any time after deaths have been computed.
1747
1748 If REG is a hard reg that occupies multiple machine registers, this
1749 function will only return 1 if each of those registers will be replaced
1750 by INSN. */
1751
1752 int
1753 dead_or_set_p (const_rtx insn, const_rtx x)
1754 {
1755 unsigned int regno, end_regno;
1756 unsigned int i;
1757
1758 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1759 if (GET_CODE (x) == CC0)
1760 return 1;
1761
1762 gcc_assert (REG_P (x));
1763
1764 regno = REGNO (x);
1765 end_regno = END_REGNO (x);
1766 for (i = regno; i < end_regno; i++)
1767 if (! dead_or_set_regno_p (insn, i))
1768 return 0;
1769
1770 return 1;
1771 }
1772
1773 /* Return TRUE iff DEST is a register or subreg of a register and
1774 doesn't change the number of words of the inner register, and any
1775 part of the register is TEST_REGNO. */
1776
1777 static bool
1778 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1779 {
1780 unsigned int regno, endregno;
1781
1782 if (GET_CODE (dest) == SUBREG
1783 && (((GET_MODE_SIZE (GET_MODE (dest))
1784 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1785 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1786 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1787 dest = SUBREG_REG (dest);
1788
1789 if (!REG_P (dest))
1790 return false;
1791
1792 regno = REGNO (dest);
1793 endregno = END_REGNO (dest);
1794 return (test_regno >= regno && test_regno < endregno);
1795 }
1796
1797 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1798 any member matches the covers_regno_no_parallel_p criteria. */
1799
1800 static bool
1801 covers_regno_p (const_rtx dest, unsigned int test_regno)
1802 {
1803 if (GET_CODE (dest) == PARALLEL)
1804 {
1805 /* Some targets place small structures in registers for return
1806 values of functions, and those registers are wrapped in
1807 PARALLELs that we may see as the destination of a SET. */
1808 int i;
1809
1810 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1811 {
1812 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1813 if (inner != NULL_RTX
1814 && covers_regno_no_parallel_p (inner, test_regno))
1815 return true;
1816 }
1817
1818 return false;
1819 }
1820 else
1821 return covers_regno_no_parallel_p (dest, test_regno);
1822 }
1823
1824 /* Utility function for dead_or_set_p to check an individual register. */
1825
1826 int
1827 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1828 {
1829 const_rtx pattern;
1830
1831 /* See if there is a death note for something that includes TEST_REGNO. */
1832 if (find_regno_note (insn, REG_DEAD, test_regno))
1833 return 1;
1834
1835 if (CALL_P (insn)
1836 && find_regno_fusage (insn, CLOBBER, test_regno))
1837 return 1;
1838
1839 pattern = PATTERN (insn);
1840
1841 /* If a COND_EXEC is not executed, the value survives. */
1842 if (GET_CODE (pattern) == COND_EXEC)
1843 return 0;
1844
1845 if (GET_CODE (pattern) == SET)
1846 return covers_regno_p (SET_DEST (pattern), test_regno);
1847 else if (GET_CODE (pattern) == PARALLEL)
1848 {
1849 int i;
1850
1851 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1852 {
1853 rtx body = XVECEXP (pattern, 0, i);
1854
1855 if (GET_CODE (body) == COND_EXEC)
1856 body = COND_EXEC_CODE (body);
1857
1858 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1859 && covers_regno_p (SET_DEST (body), test_regno))
1860 return 1;
1861 }
1862 }
1863
1864 return 0;
1865 }
1866
1867 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1868 If DATUM is nonzero, look for one whose datum is DATUM. */
1869
1870 rtx
1871 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1872 {
1873 rtx link;
1874
1875 gcc_checking_assert (insn);
1876
1877 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1878 if (! INSN_P (insn))
1879 return 0;
1880 if (datum == 0)
1881 {
1882 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1883 if (REG_NOTE_KIND (link) == kind)
1884 return link;
1885 return 0;
1886 }
1887
1888 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1889 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1890 return link;
1891 return 0;
1892 }
1893
1894 /* Return the reg-note of kind KIND in insn INSN which applies to register
1895 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1896 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1897 it might be the case that the note overlaps REGNO. */
1898
1899 rtx
1900 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1901 {
1902 rtx link;
1903
1904 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1905 if (! INSN_P (insn))
1906 return 0;
1907
1908 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1909 if (REG_NOTE_KIND (link) == kind
1910 /* Verify that it is a register, so that scratch and MEM won't cause a
1911 problem here. */
1912 && REG_P (XEXP (link, 0))
1913 && REGNO (XEXP (link, 0)) <= regno
1914 && END_REGNO (XEXP (link, 0)) > regno)
1915 return link;
1916 return 0;
1917 }
1918
1919 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1920 has such a note. */
1921
1922 rtx
1923 find_reg_equal_equiv_note (const_rtx insn)
1924 {
1925 rtx link;
1926
1927 if (!INSN_P (insn))
1928 return 0;
1929
1930 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1931 if (REG_NOTE_KIND (link) == REG_EQUAL
1932 || REG_NOTE_KIND (link) == REG_EQUIV)
1933 {
1934 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1935 insns that have multiple sets. Checking single_set to
1936 make sure of this is not the proper check, as explained
1937 in the comment in set_unique_reg_note.
1938
1939 This should be changed into an assert. */
1940 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1941 return 0;
1942 return link;
1943 }
1944 return NULL;
1945 }
1946
1947 /* Check whether INSN is a single_set whose source is known to be
1948 equivalent to a constant. Return that constant if so, otherwise
1949 return null. */
1950
1951 rtx
1952 find_constant_src (const rtx_insn *insn)
1953 {
1954 rtx note, set, x;
1955
1956 set = single_set (insn);
1957 if (set)
1958 {
1959 x = avoid_constant_pool_reference (SET_SRC (set));
1960 if (CONSTANT_P (x))
1961 return x;
1962 }
1963
1964 note = find_reg_equal_equiv_note (insn);
1965 if (note && CONSTANT_P (XEXP (note, 0)))
1966 return XEXP (note, 0);
1967
1968 return NULL_RTX;
1969 }
1970
1971 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1972 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1973
1974 int
1975 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1976 {
1977 /* If it's not a CALL_INSN, it can't possibly have a
1978 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1979 if (!CALL_P (insn))
1980 return 0;
1981
1982 gcc_assert (datum);
1983
1984 if (!REG_P (datum))
1985 {
1986 rtx link;
1987
1988 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1989 link;
1990 link = XEXP (link, 1))
1991 if (GET_CODE (XEXP (link, 0)) == code
1992 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1993 return 1;
1994 }
1995 else
1996 {
1997 unsigned int regno = REGNO (datum);
1998
1999 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2000 to pseudo registers, so don't bother checking. */
2001
2002 if (regno < FIRST_PSEUDO_REGISTER)
2003 {
2004 unsigned int end_regno = END_HARD_REGNO (datum);
2005 unsigned int i;
2006
2007 for (i = regno; i < end_regno; i++)
2008 if (find_regno_fusage (insn, code, i))
2009 return 1;
2010 }
2011 }
2012
2013 return 0;
2014 }
2015
2016 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2017 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2018
2019 int
2020 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2021 {
2022 rtx link;
2023
2024 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2025 to pseudo registers, so don't bother checking. */
2026
2027 if (regno >= FIRST_PSEUDO_REGISTER
2028 || !CALL_P (insn) )
2029 return 0;
2030
2031 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2032 {
2033 rtx op, reg;
2034
2035 if (GET_CODE (op = XEXP (link, 0)) == code
2036 && REG_P (reg = XEXP (op, 0))
2037 && REGNO (reg) <= regno
2038 && END_HARD_REGNO (reg) > regno)
2039 return 1;
2040 }
2041
2042 return 0;
2043 }
2044
2045 \f
2046 /* Return true if KIND is an integer REG_NOTE. */
2047
2048 static bool
2049 int_reg_note_p (enum reg_note kind)
2050 {
2051 return kind == REG_BR_PROB;
2052 }
2053
2054 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2055 stored as the pointer to the next register note. */
2056
2057 rtx
2058 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2059 {
2060 rtx note;
2061
2062 gcc_checking_assert (!int_reg_note_p (kind));
2063 switch (kind)
2064 {
2065 case REG_CC_SETTER:
2066 case REG_CC_USER:
2067 case REG_LABEL_TARGET:
2068 case REG_LABEL_OPERAND:
2069 case REG_TM:
2070 /* These types of register notes use an INSN_LIST rather than an
2071 EXPR_LIST, so that copying is done right and dumps look
2072 better. */
2073 note = alloc_INSN_LIST (datum, list);
2074 PUT_REG_NOTE_KIND (note, kind);
2075 break;
2076
2077 default:
2078 note = alloc_EXPR_LIST (kind, datum, list);
2079 break;
2080 }
2081
2082 return note;
2083 }
2084
2085 /* Add register note with kind KIND and datum DATUM to INSN. */
2086
2087 void
2088 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2089 {
2090 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2091 }
2092
2093 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2094
2095 void
2096 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2097 {
2098 gcc_checking_assert (int_reg_note_p (kind));
2099 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2100 datum, REG_NOTES (insn));
2101 }
2102
2103 /* Add a register note like NOTE to INSN. */
2104
2105 void
2106 add_shallow_copy_of_reg_note (rtx insn, rtx note)
2107 {
2108 if (GET_CODE (note) == INT_LIST)
2109 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2110 else
2111 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2112 }
2113
2114 /* Remove register note NOTE from the REG_NOTES of INSN. */
2115
2116 void
2117 remove_note (rtx insn, const_rtx note)
2118 {
2119 rtx link;
2120
2121 if (note == NULL_RTX)
2122 return;
2123
2124 if (REG_NOTES (insn) == note)
2125 REG_NOTES (insn) = XEXP (note, 1);
2126 else
2127 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2128 if (XEXP (link, 1) == note)
2129 {
2130 XEXP (link, 1) = XEXP (note, 1);
2131 break;
2132 }
2133
2134 switch (REG_NOTE_KIND (note))
2135 {
2136 case REG_EQUAL:
2137 case REG_EQUIV:
2138 df_notes_rescan (as_a <rtx_insn *> (insn));
2139 break;
2140 default:
2141 break;
2142 }
2143 }
2144
2145 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2146
2147 void
2148 remove_reg_equal_equiv_notes (rtx insn)
2149 {
2150 rtx *loc;
2151
2152 loc = &REG_NOTES (insn);
2153 while (*loc)
2154 {
2155 enum reg_note kind = REG_NOTE_KIND (*loc);
2156 if (kind == REG_EQUAL || kind == REG_EQUIV)
2157 *loc = XEXP (*loc, 1);
2158 else
2159 loc = &XEXP (*loc, 1);
2160 }
2161 }
2162
2163 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2164
2165 void
2166 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2167 {
2168 df_ref eq_use;
2169
2170 if (!df)
2171 return;
2172
2173 /* This loop is a little tricky. We cannot just go down the chain because
2174 it is being modified by some actions in the loop. So we just iterate
2175 over the head. We plan to drain the list anyway. */
2176 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2177 {
2178 rtx_insn *insn = DF_REF_INSN (eq_use);
2179 rtx note = find_reg_equal_equiv_note (insn);
2180
2181 /* This assert is generally triggered when someone deletes a REG_EQUAL
2182 or REG_EQUIV note by hacking the list manually rather than calling
2183 remove_note. */
2184 gcc_assert (note);
2185
2186 remove_note (insn, note);
2187 }
2188 }
2189
2190 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2191 return 1 if it is found. A simple equality test is used to determine if
2192 NODE matches. */
2193
2194 int
2195 in_expr_list_p (const_rtx listp, const_rtx node)
2196 {
2197 const_rtx x;
2198
2199 for (x = listp; x; x = XEXP (x, 1))
2200 if (node == XEXP (x, 0))
2201 return 1;
2202
2203 return 0;
2204 }
2205
2206 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2207 remove that entry from the list if it is found.
2208
2209 A simple equality test is used to determine if NODE matches. */
2210
2211 void
2212 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2213 {
2214 rtx_expr_list *temp = *listp;
2215 rtx prev = NULL_RTX;
2216
2217 while (temp)
2218 {
2219 if (node == temp->element ())
2220 {
2221 /* Splice the node out of the list. */
2222 if (prev)
2223 XEXP (prev, 1) = temp->next ();
2224 else
2225 *listp = temp->next ();
2226
2227 return;
2228 }
2229
2230 prev = temp;
2231 temp = temp->next ();
2232 }
2233 }
2234
2235 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2236 remove that entry from the list if it is found.
2237
2238 A simple equality test is used to determine if NODE matches. */
2239
2240 void
2241 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2242 {
2243 rtx_insn_list *temp = *listp;
2244 rtx prev = NULL;
2245
2246 while (temp)
2247 {
2248 if (node == temp->insn ())
2249 {
2250 /* Splice the node out of the list. */
2251 if (prev)
2252 XEXP (prev, 1) = temp->next ();
2253 else
2254 *listp = temp->next ();
2255
2256 return;
2257 }
2258
2259 prev = temp;
2260 temp = temp->next ();
2261 }
2262 }
2263 \f
2264 /* Nonzero if X contains any volatile instructions. These are instructions
2265 which may cause unpredictable machine state instructions, and thus no
2266 instructions or register uses should be moved or combined across them.
2267 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2268
2269 int
2270 volatile_insn_p (const_rtx x)
2271 {
2272 const RTX_CODE code = GET_CODE (x);
2273 switch (code)
2274 {
2275 case LABEL_REF:
2276 case SYMBOL_REF:
2277 case CONST:
2278 CASE_CONST_ANY:
2279 case CC0:
2280 case PC:
2281 case REG:
2282 case SCRATCH:
2283 case CLOBBER:
2284 case ADDR_VEC:
2285 case ADDR_DIFF_VEC:
2286 case CALL:
2287 case MEM:
2288 return 0;
2289
2290 case UNSPEC_VOLATILE:
2291 return 1;
2292
2293 case ASM_INPUT:
2294 case ASM_OPERANDS:
2295 if (MEM_VOLATILE_P (x))
2296 return 1;
2297
2298 default:
2299 break;
2300 }
2301
2302 /* Recursively scan the operands of this expression. */
2303
2304 {
2305 const char *const fmt = GET_RTX_FORMAT (code);
2306 int i;
2307
2308 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2309 {
2310 if (fmt[i] == 'e')
2311 {
2312 if (volatile_insn_p (XEXP (x, i)))
2313 return 1;
2314 }
2315 else if (fmt[i] == 'E')
2316 {
2317 int j;
2318 for (j = 0; j < XVECLEN (x, i); j++)
2319 if (volatile_insn_p (XVECEXP (x, i, j)))
2320 return 1;
2321 }
2322 }
2323 }
2324 return 0;
2325 }
2326
2327 /* Nonzero if X contains any volatile memory references
2328 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2329
2330 int
2331 volatile_refs_p (const_rtx x)
2332 {
2333 const RTX_CODE code = GET_CODE (x);
2334 switch (code)
2335 {
2336 case LABEL_REF:
2337 case SYMBOL_REF:
2338 case CONST:
2339 CASE_CONST_ANY:
2340 case CC0:
2341 case PC:
2342 case REG:
2343 case SCRATCH:
2344 case CLOBBER:
2345 case ADDR_VEC:
2346 case ADDR_DIFF_VEC:
2347 return 0;
2348
2349 case UNSPEC_VOLATILE:
2350 return 1;
2351
2352 case MEM:
2353 case ASM_INPUT:
2354 case ASM_OPERANDS:
2355 if (MEM_VOLATILE_P (x))
2356 return 1;
2357
2358 default:
2359 break;
2360 }
2361
2362 /* Recursively scan the operands of this expression. */
2363
2364 {
2365 const char *const fmt = GET_RTX_FORMAT (code);
2366 int i;
2367
2368 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2369 {
2370 if (fmt[i] == 'e')
2371 {
2372 if (volatile_refs_p (XEXP (x, i)))
2373 return 1;
2374 }
2375 else if (fmt[i] == 'E')
2376 {
2377 int j;
2378 for (j = 0; j < XVECLEN (x, i); j++)
2379 if (volatile_refs_p (XVECEXP (x, i, j)))
2380 return 1;
2381 }
2382 }
2383 }
2384 return 0;
2385 }
2386
2387 /* Similar to above, except that it also rejects register pre- and post-
2388 incrementing. */
2389
2390 int
2391 side_effects_p (const_rtx x)
2392 {
2393 const RTX_CODE code = GET_CODE (x);
2394 switch (code)
2395 {
2396 case LABEL_REF:
2397 case SYMBOL_REF:
2398 case CONST:
2399 CASE_CONST_ANY:
2400 case CC0:
2401 case PC:
2402 case REG:
2403 case SCRATCH:
2404 case ADDR_VEC:
2405 case ADDR_DIFF_VEC:
2406 case VAR_LOCATION:
2407 return 0;
2408
2409 case CLOBBER:
2410 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2411 when some combination can't be done. If we see one, don't think
2412 that we can simplify the expression. */
2413 return (GET_MODE (x) != VOIDmode);
2414
2415 case PRE_INC:
2416 case PRE_DEC:
2417 case POST_INC:
2418 case POST_DEC:
2419 case PRE_MODIFY:
2420 case POST_MODIFY:
2421 case CALL:
2422 case UNSPEC_VOLATILE:
2423 return 1;
2424
2425 case MEM:
2426 case ASM_INPUT:
2427 case ASM_OPERANDS:
2428 if (MEM_VOLATILE_P (x))
2429 return 1;
2430
2431 default:
2432 break;
2433 }
2434
2435 /* Recursively scan the operands of this expression. */
2436
2437 {
2438 const char *fmt = GET_RTX_FORMAT (code);
2439 int i;
2440
2441 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2442 {
2443 if (fmt[i] == 'e')
2444 {
2445 if (side_effects_p (XEXP (x, i)))
2446 return 1;
2447 }
2448 else if (fmt[i] == 'E')
2449 {
2450 int j;
2451 for (j = 0; j < XVECLEN (x, i); j++)
2452 if (side_effects_p (XVECEXP (x, i, j)))
2453 return 1;
2454 }
2455 }
2456 }
2457 return 0;
2458 }
2459 \f
2460 /* Return nonzero if evaluating rtx X might cause a trap.
2461 FLAGS controls how to consider MEMs. A nonzero means the context
2462 of the access may have changed from the original, such that the
2463 address may have become invalid. */
2464
2465 int
2466 may_trap_p_1 (const_rtx x, unsigned flags)
2467 {
2468 int i;
2469 enum rtx_code code;
2470 const char *fmt;
2471
2472 /* We make no distinction currently, but this function is part of
2473 the internal target-hooks ABI so we keep the parameter as
2474 "unsigned flags". */
2475 bool code_changed = flags != 0;
2476
2477 if (x == 0)
2478 return 0;
2479 code = GET_CODE (x);
2480 switch (code)
2481 {
2482 /* Handle these cases quickly. */
2483 CASE_CONST_ANY:
2484 case SYMBOL_REF:
2485 case LABEL_REF:
2486 case CONST:
2487 case PC:
2488 case CC0:
2489 case REG:
2490 case SCRATCH:
2491 return 0;
2492
2493 case UNSPEC:
2494 return targetm.unspec_may_trap_p (x, flags);
2495
2496 case UNSPEC_VOLATILE:
2497 case ASM_INPUT:
2498 case TRAP_IF:
2499 return 1;
2500
2501 case ASM_OPERANDS:
2502 return MEM_VOLATILE_P (x);
2503
2504 /* Memory ref can trap unless it's a static var or a stack slot. */
2505 case MEM:
2506 /* Recognize specific pattern of stack checking probes. */
2507 if (flag_stack_check
2508 && MEM_VOLATILE_P (x)
2509 && XEXP (x, 0) == stack_pointer_rtx)
2510 return 1;
2511 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2512 reference; moving it out of context such as when moving code
2513 when optimizing, might cause its address to become invalid. */
2514 code_changed
2515 || !MEM_NOTRAP_P (x))
2516 {
2517 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2518 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2519 GET_MODE (x), code_changed);
2520 }
2521
2522 return 0;
2523
2524 /* Division by a non-constant might trap. */
2525 case DIV:
2526 case MOD:
2527 case UDIV:
2528 case UMOD:
2529 if (HONOR_SNANS (x))
2530 return 1;
2531 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2532 return flag_trapping_math;
2533 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2534 return 1;
2535 break;
2536
2537 case EXPR_LIST:
2538 /* An EXPR_LIST is used to represent a function call. This
2539 certainly may trap. */
2540 return 1;
2541
2542 case GE:
2543 case GT:
2544 case LE:
2545 case LT:
2546 case LTGT:
2547 case COMPARE:
2548 /* Some floating point comparisons may trap. */
2549 if (!flag_trapping_math)
2550 break;
2551 /* ??? There is no machine independent way to check for tests that trap
2552 when COMPARE is used, though many targets do make this distinction.
2553 For instance, sparc uses CCFPE for compares which generate exceptions
2554 and CCFP for compares which do not generate exceptions. */
2555 if (HONOR_NANS (x))
2556 return 1;
2557 /* But often the compare has some CC mode, so check operand
2558 modes as well. */
2559 if (HONOR_NANS (XEXP (x, 0))
2560 || HONOR_NANS (XEXP (x, 1)))
2561 return 1;
2562 break;
2563
2564 case EQ:
2565 case NE:
2566 if (HONOR_SNANS (x))
2567 return 1;
2568 /* Often comparison is CC mode, so check operand modes. */
2569 if (HONOR_SNANS (XEXP (x, 0))
2570 || HONOR_SNANS (XEXP (x, 1)))
2571 return 1;
2572 break;
2573
2574 case FIX:
2575 /* Conversion of floating point might trap. */
2576 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2577 return 1;
2578 break;
2579
2580 case NEG:
2581 case ABS:
2582 case SUBREG:
2583 /* These operations don't trap even with floating point. */
2584 break;
2585
2586 default:
2587 /* Any floating arithmetic may trap. */
2588 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2589 return 1;
2590 }
2591
2592 fmt = GET_RTX_FORMAT (code);
2593 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2594 {
2595 if (fmt[i] == 'e')
2596 {
2597 if (may_trap_p_1 (XEXP (x, i), flags))
2598 return 1;
2599 }
2600 else if (fmt[i] == 'E')
2601 {
2602 int j;
2603 for (j = 0; j < XVECLEN (x, i); j++)
2604 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2605 return 1;
2606 }
2607 }
2608 return 0;
2609 }
2610
2611 /* Return nonzero if evaluating rtx X might cause a trap. */
2612
2613 int
2614 may_trap_p (const_rtx x)
2615 {
2616 return may_trap_p_1 (x, 0);
2617 }
2618
2619 /* Same as above, but additionally return nonzero if evaluating rtx X might
2620 cause a fault. We define a fault for the purpose of this function as a
2621 erroneous execution condition that cannot be encountered during the normal
2622 execution of a valid program; the typical example is an unaligned memory
2623 access on a strict alignment machine. The compiler guarantees that it
2624 doesn't generate code that will fault from a valid program, but this
2625 guarantee doesn't mean anything for individual instructions. Consider
2626 the following example:
2627
2628 struct S { int d; union { char *cp; int *ip; }; };
2629
2630 int foo(struct S *s)
2631 {
2632 if (s->d == 1)
2633 return *s->ip;
2634 else
2635 return *s->cp;
2636 }
2637
2638 on a strict alignment machine. In a valid program, foo will never be
2639 invoked on a structure for which d is equal to 1 and the underlying
2640 unique field of the union not aligned on a 4-byte boundary, but the
2641 expression *s->ip might cause a fault if considered individually.
2642
2643 At the RTL level, potentially problematic expressions will almost always
2644 verify may_trap_p; for example, the above dereference can be emitted as
2645 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2646 However, suppose that foo is inlined in a caller that causes s->cp to
2647 point to a local character variable and guarantees that s->d is not set
2648 to 1; foo may have been effectively translated into pseudo-RTL as:
2649
2650 if ((reg:SI) == 1)
2651 (set (reg:SI) (mem:SI (%fp - 7)))
2652 else
2653 (set (reg:QI) (mem:QI (%fp - 7)))
2654
2655 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2656 memory reference to a stack slot, but it will certainly cause a fault
2657 on a strict alignment machine. */
2658
2659 int
2660 may_trap_or_fault_p (const_rtx x)
2661 {
2662 return may_trap_p_1 (x, 1);
2663 }
2664 \f
2665 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2666 i.e., an inequality. */
2667
2668 int
2669 inequality_comparisons_p (const_rtx x)
2670 {
2671 const char *fmt;
2672 int len, i;
2673 const enum rtx_code code = GET_CODE (x);
2674
2675 switch (code)
2676 {
2677 case REG:
2678 case SCRATCH:
2679 case PC:
2680 case CC0:
2681 CASE_CONST_ANY:
2682 case CONST:
2683 case LABEL_REF:
2684 case SYMBOL_REF:
2685 return 0;
2686
2687 case LT:
2688 case LTU:
2689 case GT:
2690 case GTU:
2691 case LE:
2692 case LEU:
2693 case GE:
2694 case GEU:
2695 return 1;
2696
2697 default:
2698 break;
2699 }
2700
2701 len = GET_RTX_LENGTH (code);
2702 fmt = GET_RTX_FORMAT (code);
2703
2704 for (i = 0; i < len; i++)
2705 {
2706 if (fmt[i] == 'e')
2707 {
2708 if (inequality_comparisons_p (XEXP (x, i)))
2709 return 1;
2710 }
2711 else if (fmt[i] == 'E')
2712 {
2713 int j;
2714 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2715 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2716 return 1;
2717 }
2718 }
2719
2720 return 0;
2721 }
2722 \f
2723 /* Replace any occurrence of FROM in X with TO. The function does
2724 not enter into CONST_DOUBLE for the replace.
2725
2726 Note that copying is not done so X must not be shared unless all copies
2727 are to be modified. */
2728
2729 rtx
2730 replace_rtx (rtx x, rtx from, rtx to)
2731 {
2732 int i, j;
2733 const char *fmt;
2734
2735 if (x == from)
2736 return to;
2737
2738 /* Allow this function to make replacements in EXPR_LISTs. */
2739 if (x == 0)
2740 return 0;
2741
2742 if (GET_CODE (x) == SUBREG)
2743 {
2744 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2745
2746 if (CONST_INT_P (new_rtx))
2747 {
2748 x = simplify_subreg (GET_MODE (x), new_rtx,
2749 GET_MODE (SUBREG_REG (x)),
2750 SUBREG_BYTE (x));
2751 gcc_assert (x);
2752 }
2753 else
2754 SUBREG_REG (x) = new_rtx;
2755
2756 return x;
2757 }
2758 else if (GET_CODE (x) == ZERO_EXTEND)
2759 {
2760 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2761
2762 if (CONST_INT_P (new_rtx))
2763 {
2764 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2765 new_rtx, GET_MODE (XEXP (x, 0)));
2766 gcc_assert (x);
2767 }
2768 else
2769 XEXP (x, 0) = new_rtx;
2770
2771 return x;
2772 }
2773
2774 fmt = GET_RTX_FORMAT (GET_CODE (x));
2775 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2776 {
2777 if (fmt[i] == 'e')
2778 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2779 else if (fmt[i] == 'E')
2780 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2781 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2782 }
2783
2784 return x;
2785 }
2786 \f
2787 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2788 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
2789
2790 void
2791 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
2792 {
2793 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2794 rtx x = *loc;
2795 if (JUMP_TABLE_DATA_P (x))
2796 {
2797 x = PATTERN (x);
2798 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
2799 int len = GET_NUM_ELEM (vec);
2800 for (int i = 0; i < len; ++i)
2801 {
2802 rtx ref = RTVEC_ELT (vec, i);
2803 if (XEXP (ref, 0) == old_label)
2804 {
2805 XEXP (ref, 0) = new_label;
2806 if (update_label_nuses)
2807 {
2808 ++LABEL_NUSES (new_label);
2809 --LABEL_NUSES (old_label);
2810 }
2811 }
2812 }
2813 return;
2814 }
2815
2816 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2817 field. This is not handled by the iterator because it doesn't
2818 handle unprinted ('0') fields. */
2819 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
2820 JUMP_LABEL (x) = new_label;
2821
2822 subrtx_ptr_iterator::array_type array;
2823 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
2824 {
2825 rtx *loc = *iter;
2826 if (rtx x = *loc)
2827 {
2828 if (GET_CODE (x) == SYMBOL_REF
2829 && CONSTANT_POOL_ADDRESS_P (x))
2830 {
2831 rtx c = get_pool_constant (x);
2832 if (rtx_referenced_p (old_label, c))
2833 {
2834 /* Create a copy of constant C; replace the label inside
2835 but do not update LABEL_NUSES because uses in constant pool
2836 are not counted. */
2837 rtx new_c = copy_rtx (c);
2838 replace_label (&new_c, old_label, new_label, false);
2839
2840 /* Add the new constant NEW_C to constant pool and replace
2841 the old reference to constant by new reference. */
2842 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
2843 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
2844 }
2845 }
2846
2847 if ((GET_CODE (x) == LABEL_REF
2848 || GET_CODE (x) == INSN_LIST)
2849 && XEXP (x, 0) == old_label)
2850 {
2851 XEXP (x, 0) = new_label;
2852 if (update_label_nuses)
2853 {
2854 ++LABEL_NUSES (new_label);
2855 --LABEL_NUSES (old_label);
2856 }
2857 }
2858 }
2859 }
2860 }
2861
2862 void
2863 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
2864 bool update_label_nuses)
2865 {
2866 rtx insn_as_rtx = insn;
2867 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
2868 gcc_checking_assert (insn_as_rtx == insn);
2869 }
2870
2871 /* Return true if X is referenced in BODY. */
2872
2873 bool
2874 rtx_referenced_p (const_rtx x, const_rtx body)
2875 {
2876 subrtx_iterator::array_type array;
2877 FOR_EACH_SUBRTX (iter, array, body, ALL)
2878 if (const_rtx y = *iter)
2879 {
2880 /* Check if a label_ref Y refers to label X. */
2881 if (GET_CODE (y) == LABEL_REF
2882 && LABEL_P (x)
2883 && LABEL_REF_LABEL (y) == x)
2884 return true;
2885
2886 if (rtx_equal_p (x, y))
2887 return true;
2888
2889 /* If Y is a reference to pool constant traverse the constant. */
2890 if (GET_CODE (y) == SYMBOL_REF
2891 && CONSTANT_POOL_ADDRESS_P (y))
2892 iter.substitute (get_pool_constant (y));
2893 }
2894 return false;
2895 }
2896
2897 /* If INSN is a tablejump return true and store the label (before jump table) to
2898 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2899
2900 bool
2901 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
2902 {
2903 rtx label, table;
2904
2905 if (!JUMP_P (insn))
2906 return false;
2907
2908 label = JUMP_LABEL (insn);
2909 if (label != NULL_RTX && !ANY_RETURN_P (label)
2910 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
2911 && JUMP_TABLE_DATA_P (table))
2912 {
2913 if (labelp)
2914 *labelp = label;
2915 if (tablep)
2916 *tablep = as_a <rtx_jump_table_data *> (table);
2917 return true;
2918 }
2919 return false;
2920 }
2921
2922 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2923 constant that is not in the constant pool and not in the condition
2924 of an IF_THEN_ELSE. */
2925
2926 static int
2927 computed_jump_p_1 (const_rtx x)
2928 {
2929 const enum rtx_code code = GET_CODE (x);
2930 int i, j;
2931 const char *fmt;
2932
2933 switch (code)
2934 {
2935 case LABEL_REF:
2936 case PC:
2937 return 0;
2938
2939 case CONST:
2940 CASE_CONST_ANY:
2941 case SYMBOL_REF:
2942 case REG:
2943 return 1;
2944
2945 case MEM:
2946 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2947 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2948
2949 case IF_THEN_ELSE:
2950 return (computed_jump_p_1 (XEXP (x, 1))
2951 || computed_jump_p_1 (XEXP (x, 2)));
2952
2953 default:
2954 break;
2955 }
2956
2957 fmt = GET_RTX_FORMAT (code);
2958 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2959 {
2960 if (fmt[i] == 'e'
2961 && computed_jump_p_1 (XEXP (x, i)))
2962 return 1;
2963
2964 else if (fmt[i] == 'E')
2965 for (j = 0; j < XVECLEN (x, i); j++)
2966 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2967 return 1;
2968 }
2969
2970 return 0;
2971 }
2972
2973 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2974
2975 Tablejumps and casesi insns are not considered indirect jumps;
2976 we can recognize them by a (use (label_ref)). */
2977
2978 int
2979 computed_jump_p (const_rtx insn)
2980 {
2981 int i;
2982 if (JUMP_P (insn))
2983 {
2984 rtx pat = PATTERN (insn);
2985
2986 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2987 if (JUMP_LABEL (insn) != NULL)
2988 return 0;
2989
2990 if (GET_CODE (pat) == PARALLEL)
2991 {
2992 int len = XVECLEN (pat, 0);
2993 int has_use_labelref = 0;
2994
2995 for (i = len - 1; i >= 0; i--)
2996 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2997 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2998 == LABEL_REF))
2999 {
3000 has_use_labelref = 1;
3001 break;
3002 }
3003
3004 if (! has_use_labelref)
3005 for (i = len - 1; i >= 0; i--)
3006 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3007 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3008 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3009 return 1;
3010 }
3011 else if (GET_CODE (pat) == SET
3012 && SET_DEST (pat) == pc_rtx
3013 && computed_jump_p_1 (SET_SRC (pat)))
3014 return 1;
3015 }
3016 return 0;
3017 }
3018
3019 \f
3020
3021 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3022 the equivalent add insn and pass the result to FN, using DATA as the
3023 final argument. */
3024
3025 static int
3026 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3027 {
3028 rtx x = XEXP (mem, 0);
3029 switch (GET_CODE (x))
3030 {
3031 case PRE_INC:
3032 case POST_INC:
3033 {
3034 int size = GET_MODE_SIZE (GET_MODE (mem));
3035 rtx r1 = XEXP (x, 0);
3036 rtx c = gen_int_mode (size, GET_MODE (r1));
3037 return fn (mem, x, r1, r1, c, data);
3038 }
3039
3040 case PRE_DEC:
3041 case POST_DEC:
3042 {
3043 int size = GET_MODE_SIZE (GET_MODE (mem));
3044 rtx r1 = XEXP (x, 0);
3045 rtx c = gen_int_mode (-size, GET_MODE (r1));
3046 return fn (mem, x, r1, r1, c, data);
3047 }
3048
3049 case PRE_MODIFY:
3050 case POST_MODIFY:
3051 {
3052 rtx r1 = XEXP (x, 0);
3053 rtx add = XEXP (x, 1);
3054 return fn (mem, x, r1, add, NULL, data);
3055 }
3056
3057 default:
3058 gcc_unreachable ();
3059 }
3060 }
3061
3062 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3063 For each such autoinc operation found, call FN, passing it
3064 the innermost enclosing MEM, the operation itself, the RTX modified
3065 by the operation, two RTXs (the second may be NULL) that, once
3066 added, represent the value to be held by the modified RTX
3067 afterwards, and DATA. FN is to return 0 to continue the
3068 traversal or any other value to have it returned to the caller of
3069 for_each_inc_dec. */
3070
3071 int
3072 for_each_inc_dec (rtx x,
3073 for_each_inc_dec_fn fn,
3074 void *data)
3075 {
3076 subrtx_var_iterator::array_type array;
3077 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3078 {
3079 rtx mem = *iter;
3080 if (mem
3081 && MEM_P (mem)
3082 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3083 {
3084 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3085 if (res != 0)
3086 return res;
3087 iter.skip_subrtxes ();
3088 }
3089 }
3090 return 0;
3091 }
3092
3093 \f
3094 /* Searches X for any reference to REGNO, returning the rtx of the
3095 reference found if any. Otherwise, returns NULL_RTX. */
3096
3097 rtx
3098 regno_use_in (unsigned int regno, rtx x)
3099 {
3100 const char *fmt;
3101 int i, j;
3102 rtx tem;
3103
3104 if (REG_P (x) && REGNO (x) == regno)
3105 return x;
3106
3107 fmt = GET_RTX_FORMAT (GET_CODE (x));
3108 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3109 {
3110 if (fmt[i] == 'e')
3111 {
3112 if ((tem = regno_use_in (regno, XEXP (x, i))))
3113 return tem;
3114 }
3115 else if (fmt[i] == 'E')
3116 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3117 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3118 return tem;
3119 }
3120
3121 return NULL_RTX;
3122 }
3123
3124 /* Return a value indicating whether OP, an operand of a commutative
3125 operation, is preferred as the first or second operand. The higher
3126 the value, the stronger the preference for being the first operand.
3127 We use negative values to indicate a preference for the first operand
3128 and positive values for the second operand. */
3129
3130 int
3131 commutative_operand_precedence (rtx op)
3132 {
3133 enum rtx_code code = GET_CODE (op);
3134
3135 /* Constants always come the second operand. Prefer "nice" constants. */
3136 if (code == CONST_INT)
3137 return -8;
3138 if (code == CONST_WIDE_INT)
3139 return -8;
3140 if (code == CONST_DOUBLE)
3141 return -7;
3142 if (code == CONST_FIXED)
3143 return -7;
3144 op = avoid_constant_pool_reference (op);
3145 code = GET_CODE (op);
3146
3147 switch (GET_RTX_CLASS (code))
3148 {
3149 case RTX_CONST_OBJ:
3150 if (code == CONST_INT)
3151 return -6;
3152 if (code == CONST_WIDE_INT)
3153 return -6;
3154 if (code == CONST_DOUBLE)
3155 return -5;
3156 if (code == CONST_FIXED)
3157 return -5;
3158 return -4;
3159
3160 case RTX_EXTRA:
3161 /* SUBREGs of objects should come second. */
3162 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3163 return -3;
3164 return 0;
3165
3166 case RTX_OBJ:
3167 /* Complex expressions should be the first, so decrease priority
3168 of objects. Prefer pointer objects over non pointer objects. */
3169 if ((REG_P (op) && REG_POINTER (op))
3170 || (MEM_P (op) && MEM_POINTER (op)))
3171 return -1;
3172 return -2;
3173
3174 case RTX_COMM_ARITH:
3175 /* Prefer operands that are themselves commutative to be first.
3176 This helps to make things linear. In particular,
3177 (and (and (reg) (reg)) (not (reg))) is canonical. */
3178 return 4;
3179
3180 case RTX_BIN_ARITH:
3181 /* If only one operand is a binary expression, it will be the first
3182 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3183 is canonical, although it will usually be further simplified. */
3184 return 2;
3185
3186 case RTX_UNARY:
3187 /* Then prefer NEG and NOT. */
3188 if (code == NEG || code == NOT)
3189 return 1;
3190
3191 default:
3192 return 0;
3193 }
3194 }
3195
3196 /* Return 1 iff it is necessary to swap operands of commutative operation
3197 in order to canonicalize expression. */
3198
3199 bool
3200 swap_commutative_operands_p (rtx x, rtx y)
3201 {
3202 return (commutative_operand_precedence (x)
3203 < commutative_operand_precedence (y));
3204 }
3205
3206 /* Return 1 if X is an autoincrement side effect and the register is
3207 not the stack pointer. */
3208 int
3209 auto_inc_p (const_rtx x)
3210 {
3211 switch (GET_CODE (x))
3212 {
3213 case PRE_INC:
3214 case POST_INC:
3215 case PRE_DEC:
3216 case POST_DEC:
3217 case PRE_MODIFY:
3218 case POST_MODIFY:
3219 /* There are no REG_INC notes for SP. */
3220 if (XEXP (x, 0) != stack_pointer_rtx)
3221 return 1;
3222 default:
3223 break;
3224 }
3225 return 0;
3226 }
3227
3228 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3229 int
3230 loc_mentioned_in_p (rtx *loc, const_rtx in)
3231 {
3232 enum rtx_code code;
3233 const char *fmt;
3234 int i, j;
3235
3236 if (!in)
3237 return 0;
3238
3239 code = GET_CODE (in);
3240 fmt = GET_RTX_FORMAT (code);
3241 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3242 {
3243 if (fmt[i] == 'e')
3244 {
3245 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3246 return 1;
3247 }
3248 else if (fmt[i] == 'E')
3249 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3250 if (loc == &XVECEXP (in, i, j)
3251 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3252 return 1;
3253 }
3254 return 0;
3255 }
3256
3257 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3258 and SUBREG_BYTE, return the bit offset where the subreg begins
3259 (counting from the least significant bit of the operand). */
3260
3261 unsigned int
3262 subreg_lsb_1 (machine_mode outer_mode,
3263 machine_mode inner_mode,
3264 unsigned int subreg_byte)
3265 {
3266 unsigned int bitpos;
3267 unsigned int byte;
3268 unsigned int word;
3269
3270 /* A paradoxical subreg begins at bit position 0. */
3271 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3272 return 0;
3273
3274 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3275 /* If the subreg crosses a word boundary ensure that
3276 it also begins and ends on a word boundary. */
3277 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3278 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3279 && (subreg_byte % UNITS_PER_WORD
3280 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3281
3282 if (WORDS_BIG_ENDIAN)
3283 word = (GET_MODE_SIZE (inner_mode)
3284 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3285 else
3286 word = subreg_byte / UNITS_PER_WORD;
3287 bitpos = word * BITS_PER_WORD;
3288
3289 if (BYTES_BIG_ENDIAN)
3290 byte = (GET_MODE_SIZE (inner_mode)
3291 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3292 else
3293 byte = subreg_byte % UNITS_PER_WORD;
3294 bitpos += byte * BITS_PER_UNIT;
3295
3296 return bitpos;
3297 }
3298
3299 /* Given a subreg X, return the bit offset where the subreg begins
3300 (counting from the least significant bit of the reg). */
3301
3302 unsigned int
3303 subreg_lsb (const_rtx x)
3304 {
3305 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3306 SUBREG_BYTE (x));
3307 }
3308
3309 /* Fill in information about a subreg of a hard register.
3310 xregno - A regno of an inner hard subreg_reg (or what will become one).
3311 xmode - The mode of xregno.
3312 offset - The byte offset.
3313 ymode - The mode of a top level SUBREG (or what may become one).
3314 info - Pointer to structure to fill in.
3315
3316 Rather than considering one particular inner register (and thus one
3317 particular "outer" register) in isolation, this function really uses
3318 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3319 function does not check whether adding INFO->offset to XREGNO gives
3320 a valid hard register; even if INFO->offset + XREGNO is out of range,
3321 there might be another register of the same type that is in range.
3322 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3323 register, since that can depend on things like whether the final
3324 register number is even or odd. Callers that want to check whether
3325 this particular subreg can be replaced by a simple (reg ...) should
3326 use simplify_subreg_regno. */
3327
3328 void
3329 subreg_get_info (unsigned int xregno, machine_mode xmode,
3330 unsigned int offset, machine_mode ymode,
3331 struct subreg_info *info)
3332 {
3333 int nregs_xmode, nregs_ymode;
3334 int mode_multiple, nregs_multiple;
3335 int offset_adj, y_offset, y_offset_adj;
3336 int regsize_xmode, regsize_ymode;
3337 bool rknown;
3338
3339 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3340
3341 rknown = false;
3342
3343 /* If there are holes in a non-scalar mode in registers, we expect
3344 that it is made up of its units concatenated together. */
3345 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3346 {
3347 machine_mode xmode_unit;
3348
3349 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3350 if (GET_MODE_INNER (xmode) == VOIDmode)
3351 xmode_unit = xmode;
3352 else
3353 xmode_unit = GET_MODE_INNER (xmode);
3354 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3355 gcc_assert (nregs_xmode
3356 == (GET_MODE_NUNITS (xmode)
3357 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3358 gcc_assert (hard_regno_nregs[xregno][xmode]
3359 == (hard_regno_nregs[xregno][xmode_unit]
3360 * GET_MODE_NUNITS (xmode)));
3361
3362 /* You can only ask for a SUBREG of a value with holes in the middle
3363 if you don't cross the holes. (Such a SUBREG should be done by
3364 picking a different register class, or doing it in memory if
3365 necessary.) An example of a value with holes is XCmode on 32-bit
3366 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3367 3 for each part, but in memory it's two 128-bit parts.
3368 Padding is assumed to be at the end (not necessarily the 'high part')
3369 of each unit. */
3370 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3371 < GET_MODE_NUNITS (xmode))
3372 && (offset / GET_MODE_SIZE (xmode_unit)
3373 != ((offset + GET_MODE_SIZE (ymode) - 1)
3374 / GET_MODE_SIZE (xmode_unit))))
3375 {
3376 info->representable_p = false;
3377 rknown = true;
3378 }
3379 }
3380 else
3381 nregs_xmode = hard_regno_nregs[xregno][xmode];
3382
3383 nregs_ymode = hard_regno_nregs[xregno][ymode];
3384
3385 /* Paradoxical subregs are otherwise valid. */
3386 if (!rknown
3387 && offset == 0
3388 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3389 {
3390 info->representable_p = true;
3391 /* If this is a big endian paradoxical subreg, which uses more
3392 actual hard registers than the original register, we must
3393 return a negative offset so that we find the proper highpart
3394 of the register. */
3395 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3396 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3397 info->offset = nregs_xmode - nregs_ymode;
3398 else
3399 info->offset = 0;
3400 info->nregs = nregs_ymode;
3401 return;
3402 }
3403
3404 /* If registers store different numbers of bits in the different
3405 modes, we cannot generally form this subreg. */
3406 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3407 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3408 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3409 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3410 {
3411 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3412 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3413 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3414 {
3415 info->representable_p = false;
3416 info->nregs
3417 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3418 info->offset = offset / regsize_xmode;
3419 return;
3420 }
3421 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3422 {
3423 info->representable_p = false;
3424 info->nregs
3425 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3426 info->offset = offset / regsize_xmode;
3427 return;
3428 }
3429 }
3430
3431 /* Lowpart subregs are otherwise valid. */
3432 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3433 {
3434 info->representable_p = true;
3435 rknown = true;
3436
3437 if (offset == 0 || nregs_xmode == nregs_ymode)
3438 {
3439 info->offset = 0;
3440 info->nregs = nregs_ymode;
3441 return;
3442 }
3443 }
3444
3445 /* This should always pass, otherwise we don't know how to verify
3446 the constraint. These conditions may be relaxed but
3447 subreg_regno_offset would need to be redesigned. */
3448 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3449 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3450
3451 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3452 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3453 {
3454 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3455 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3456 HOST_WIDE_INT off_low = offset & (ysize - 1);
3457 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3458 offset = (xsize - ysize - off_high) | off_low;
3459 }
3460 /* The XMODE value can be seen as a vector of NREGS_XMODE
3461 values. The subreg must represent a lowpart of given field.
3462 Compute what field it is. */
3463 offset_adj = offset;
3464 offset_adj -= subreg_lowpart_offset (ymode,
3465 mode_for_size (GET_MODE_BITSIZE (xmode)
3466 / nregs_xmode,
3467 MODE_INT, 0));
3468
3469 /* Size of ymode must not be greater than the size of xmode. */
3470 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3471 gcc_assert (mode_multiple != 0);
3472
3473 y_offset = offset / GET_MODE_SIZE (ymode);
3474 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3475 nregs_multiple = nregs_xmode / nregs_ymode;
3476
3477 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3478 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3479
3480 if (!rknown)
3481 {
3482 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3483 rknown = true;
3484 }
3485 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3486 info->nregs = nregs_ymode;
3487 }
3488
3489 /* This function returns the regno offset of a subreg expression.
3490 xregno - A regno of an inner hard subreg_reg (or what will become one).
3491 xmode - The mode of xregno.
3492 offset - The byte offset.
3493 ymode - The mode of a top level SUBREG (or what may become one).
3494 RETURN - The regno offset which would be used. */
3495 unsigned int
3496 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3497 unsigned int offset, machine_mode ymode)
3498 {
3499 struct subreg_info info;
3500 subreg_get_info (xregno, xmode, offset, ymode, &info);
3501 return info.offset;
3502 }
3503
3504 /* This function returns true when the offset is representable via
3505 subreg_offset in the given regno.
3506 xregno - A regno of an inner hard subreg_reg (or what will become one).
3507 xmode - The mode of xregno.
3508 offset - The byte offset.
3509 ymode - The mode of a top level SUBREG (or what may become one).
3510 RETURN - Whether the offset is representable. */
3511 bool
3512 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3513 unsigned int offset, machine_mode ymode)
3514 {
3515 struct subreg_info info;
3516 subreg_get_info (xregno, xmode, offset, ymode, &info);
3517 return info.representable_p;
3518 }
3519
3520 /* Return the number of a YMODE register to which
3521
3522 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3523
3524 can be simplified. Return -1 if the subreg can't be simplified.
3525
3526 XREGNO is a hard register number. */
3527
3528 int
3529 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3530 unsigned int offset, machine_mode ymode)
3531 {
3532 struct subreg_info info;
3533 unsigned int yregno;
3534
3535 #ifdef CANNOT_CHANGE_MODE_CLASS
3536 /* Give the backend a chance to disallow the mode change. */
3537 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3538 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3539 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3540 /* We can use mode change in LRA for some transformations. */
3541 && ! lra_in_progress)
3542 return -1;
3543 #endif
3544
3545 /* We shouldn't simplify stack-related registers. */
3546 if ((!reload_completed || frame_pointer_needed)
3547 && xregno == FRAME_POINTER_REGNUM)
3548 return -1;
3549
3550 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3551 && xregno == ARG_POINTER_REGNUM)
3552 return -1;
3553
3554 if (xregno == STACK_POINTER_REGNUM
3555 /* We should convert hard stack register in LRA if it is
3556 possible. */
3557 && ! lra_in_progress)
3558 return -1;
3559
3560 /* Try to get the register offset. */
3561 subreg_get_info (xregno, xmode, offset, ymode, &info);
3562 if (!info.representable_p)
3563 return -1;
3564
3565 /* Make sure that the offsetted register value is in range. */
3566 yregno = xregno + info.offset;
3567 if (!HARD_REGISTER_NUM_P (yregno))
3568 return -1;
3569
3570 /* See whether (reg:YMODE YREGNO) is valid.
3571
3572 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3573 This is a kludge to work around how complex FP arguments are passed
3574 on IA-64 and should be fixed. See PR target/49226. */
3575 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3576 && HARD_REGNO_MODE_OK (xregno, xmode))
3577 return -1;
3578
3579 return (int) yregno;
3580 }
3581
3582 /* Return the final regno that a subreg expression refers to. */
3583 unsigned int
3584 subreg_regno (const_rtx x)
3585 {
3586 unsigned int ret;
3587 rtx subreg = SUBREG_REG (x);
3588 int regno = REGNO (subreg);
3589
3590 ret = regno + subreg_regno_offset (regno,
3591 GET_MODE (subreg),
3592 SUBREG_BYTE (x),
3593 GET_MODE (x));
3594 return ret;
3595
3596 }
3597
3598 /* Return the number of registers that a subreg expression refers
3599 to. */
3600 unsigned int
3601 subreg_nregs (const_rtx x)
3602 {
3603 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3604 }
3605
3606 /* Return the number of registers that a subreg REG with REGNO
3607 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3608 changed so that the regno can be passed in. */
3609
3610 unsigned int
3611 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3612 {
3613 struct subreg_info info;
3614 rtx subreg = SUBREG_REG (x);
3615
3616 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3617 &info);
3618 return info.nregs;
3619 }
3620
3621
3622 struct parms_set_data
3623 {
3624 int nregs;
3625 HARD_REG_SET regs;
3626 };
3627
3628 /* Helper function for noticing stores to parameter registers. */
3629 static void
3630 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3631 {
3632 struct parms_set_data *const d = (struct parms_set_data *) data;
3633 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3634 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3635 {
3636 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3637 d->nregs--;
3638 }
3639 }
3640
3641 /* Look backward for first parameter to be loaded.
3642 Note that loads of all parameters will not necessarily be
3643 found if CSE has eliminated some of them (e.g., an argument
3644 to the outer function is passed down as a parameter).
3645 Do not skip BOUNDARY. */
3646 rtx_insn *
3647 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3648 {
3649 struct parms_set_data parm;
3650 rtx p;
3651 rtx_insn *before, *first_set;
3652
3653 /* Since different machines initialize their parameter registers
3654 in different orders, assume nothing. Collect the set of all
3655 parameter registers. */
3656 CLEAR_HARD_REG_SET (parm.regs);
3657 parm.nregs = 0;
3658 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3659 if (GET_CODE (XEXP (p, 0)) == USE
3660 && REG_P (XEXP (XEXP (p, 0), 0)))
3661 {
3662 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3663
3664 /* We only care about registers which can hold function
3665 arguments. */
3666 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3667 continue;
3668
3669 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3670 parm.nregs++;
3671 }
3672 before = call_insn;
3673 first_set = call_insn;
3674
3675 /* Search backward for the first set of a register in this set. */
3676 while (parm.nregs && before != boundary)
3677 {
3678 before = PREV_INSN (before);
3679
3680 /* It is possible that some loads got CSEed from one call to
3681 another. Stop in that case. */
3682 if (CALL_P (before))
3683 break;
3684
3685 /* Our caller needs either ensure that we will find all sets
3686 (in case code has not been optimized yet), or take care
3687 for possible labels in a way by setting boundary to preceding
3688 CODE_LABEL. */
3689 if (LABEL_P (before))
3690 {
3691 gcc_assert (before == boundary);
3692 break;
3693 }
3694
3695 if (INSN_P (before))
3696 {
3697 int nregs_old = parm.nregs;
3698 note_stores (PATTERN (before), parms_set, &parm);
3699 /* If we found something that did not set a parameter reg,
3700 we're done. Do not keep going, as that might result
3701 in hoisting an insn before the setting of a pseudo
3702 that is used by the hoisted insn. */
3703 if (nregs_old != parm.nregs)
3704 first_set = before;
3705 else
3706 break;
3707 }
3708 }
3709 return first_set;
3710 }
3711
3712 /* Return true if we should avoid inserting code between INSN and preceding
3713 call instruction. */
3714
3715 bool
3716 keep_with_call_p (const rtx_insn *insn)
3717 {
3718 rtx set;
3719
3720 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3721 {
3722 if (REG_P (SET_DEST (set))
3723 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3724 && fixed_regs[REGNO (SET_DEST (set))]
3725 && general_operand (SET_SRC (set), VOIDmode))
3726 return true;
3727 if (REG_P (SET_SRC (set))
3728 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3729 && REG_P (SET_DEST (set))
3730 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3731 return true;
3732 /* There may be a stack pop just after the call and before the store
3733 of the return register. Search for the actual store when deciding
3734 if we can break or not. */
3735 if (SET_DEST (set) == stack_pointer_rtx)
3736 {
3737 /* This CONST_CAST is okay because next_nonnote_insn just
3738 returns its argument and we assign it to a const_rtx
3739 variable. */
3740 const rtx_insn *i2
3741 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3742 if (i2 && keep_with_call_p (i2))
3743 return true;
3744 }
3745 }
3746 return false;
3747 }
3748
3749 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3750 to non-complex jumps. That is, direct unconditional, conditional,
3751 and tablejumps, but not computed jumps or returns. It also does
3752 not apply to the fallthru case of a conditional jump. */
3753
3754 bool
3755 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
3756 {
3757 rtx tmp = JUMP_LABEL (jump_insn);
3758 rtx_jump_table_data *table;
3759
3760 if (label == tmp)
3761 return true;
3762
3763 if (tablejump_p (jump_insn, NULL, &table))
3764 {
3765 rtvec vec = table->get_labels ();
3766 int i, veclen = GET_NUM_ELEM (vec);
3767
3768 for (i = 0; i < veclen; ++i)
3769 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3770 return true;
3771 }
3772
3773 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3774 return true;
3775
3776 return false;
3777 }
3778
3779 \f
3780 /* Return an estimate of the cost of computing rtx X.
3781 One use is in cse, to decide which expression to keep in the hash table.
3782 Another is in rtl generation, to pick the cheapest way to multiply.
3783 Other uses like the latter are expected in the future.
3784
3785 X appears as operand OPNO in an expression with code OUTER_CODE.
3786 SPEED specifies whether costs optimized for speed or size should
3787 be returned. */
3788
3789 int
3790 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3791 {
3792 int i, j;
3793 enum rtx_code code;
3794 const char *fmt;
3795 int total;
3796 int factor;
3797
3798 if (x == 0)
3799 return 0;
3800
3801 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3802 many insns, taking N times as long. */
3803 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3804 if (factor == 0)
3805 factor = 1;
3806
3807 /* Compute the default costs of certain things.
3808 Note that targetm.rtx_costs can override the defaults. */
3809
3810 code = GET_CODE (x);
3811 switch (code)
3812 {
3813 case MULT:
3814 /* Multiplication has time-complexity O(N*N), where N is the
3815 number of units (translated from digits) when using
3816 schoolbook long multiplication. */
3817 total = factor * factor * COSTS_N_INSNS (5);
3818 break;
3819 case DIV:
3820 case UDIV:
3821 case MOD:
3822 case UMOD:
3823 /* Similarly, complexity for schoolbook long division. */
3824 total = factor * factor * COSTS_N_INSNS (7);
3825 break;
3826 case USE:
3827 /* Used in combine.c as a marker. */
3828 total = 0;
3829 break;
3830 case SET:
3831 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3832 the mode for the factor. */
3833 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3834 if (factor == 0)
3835 factor = 1;
3836 /* Pass through. */
3837 default:
3838 total = factor * COSTS_N_INSNS (1);
3839 }
3840
3841 switch (code)
3842 {
3843 case REG:
3844 return 0;
3845
3846 case SUBREG:
3847 total = 0;
3848 /* If we can't tie these modes, make this expensive. The larger
3849 the mode, the more expensive it is. */
3850 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3851 return COSTS_N_INSNS (2 + factor);
3852 break;
3853
3854 default:
3855 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3856 return total;
3857 break;
3858 }
3859
3860 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3861 which is already in total. */
3862
3863 fmt = GET_RTX_FORMAT (code);
3864 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3865 if (fmt[i] == 'e')
3866 total += rtx_cost (XEXP (x, i), code, i, speed);
3867 else if (fmt[i] == 'E')
3868 for (j = 0; j < XVECLEN (x, i); j++)
3869 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3870
3871 return total;
3872 }
3873
3874 /* Fill in the structure C with information about both speed and size rtx
3875 costs for X, which is operand OPNO in an expression with code OUTER. */
3876
3877 void
3878 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3879 struct full_rtx_costs *c)
3880 {
3881 c->speed = rtx_cost (x, outer, opno, true);
3882 c->size = rtx_cost (x, outer, opno, false);
3883 }
3884
3885 \f
3886 /* Return cost of address expression X.
3887 Expect that X is properly formed address reference.
3888
3889 SPEED parameter specify whether costs optimized for speed or size should
3890 be returned. */
3891
3892 int
3893 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
3894 {
3895 /* We may be asked for cost of various unusual addresses, such as operands
3896 of push instruction. It is not worthwhile to complicate writing
3897 of the target hook by such cases. */
3898
3899 if (!memory_address_addr_space_p (mode, x, as))
3900 return 1000;
3901
3902 return targetm.address_cost (x, mode, as, speed);
3903 }
3904
3905 /* If the target doesn't override, compute the cost as with arithmetic. */
3906
3907 int
3908 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
3909 {
3910 return rtx_cost (x, MEM, 0, speed);
3911 }
3912 \f
3913
3914 unsigned HOST_WIDE_INT
3915 nonzero_bits (const_rtx x, machine_mode mode)
3916 {
3917 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3918 }
3919
3920 unsigned int
3921 num_sign_bit_copies (const_rtx x, machine_mode mode)
3922 {
3923 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3924 }
3925
3926 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3927 It avoids exponential behavior in nonzero_bits1 when X has
3928 identical subexpressions on the first or the second level. */
3929
3930 static unsigned HOST_WIDE_INT
3931 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
3932 machine_mode known_mode,
3933 unsigned HOST_WIDE_INT known_ret)
3934 {
3935 if (x == known_x && mode == known_mode)
3936 return known_ret;
3937
3938 /* Try to find identical subexpressions. If found call
3939 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3940 precomputed value for the subexpression as KNOWN_RET. */
3941
3942 if (ARITHMETIC_P (x))
3943 {
3944 rtx x0 = XEXP (x, 0);
3945 rtx x1 = XEXP (x, 1);
3946
3947 /* Check the first level. */
3948 if (x0 == x1)
3949 return nonzero_bits1 (x, mode, x0, mode,
3950 cached_nonzero_bits (x0, mode, known_x,
3951 known_mode, known_ret));
3952
3953 /* Check the second level. */
3954 if (ARITHMETIC_P (x0)
3955 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3956 return nonzero_bits1 (x, mode, x1, mode,
3957 cached_nonzero_bits (x1, mode, known_x,
3958 known_mode, known_ret));
3959
3960 if (ARITHMETIC_P (x1)
3961 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3962 return nonzero_bits1 (x, mode, x0, mode,
3963 cached_nonzero_bits (x0, mode, known_x,
3964 known_mode, known_ret));
3965 }
3966
3967 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3968 }
3969
3970 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3971 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3972 is less useful. We can't allow both, because that results in exponential
3973 run time recursion. There is a nullstone testcase that triggered
3974 this. This macro avoids accidental uses of num_sign_bit_copies. */
3975 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3976
3977 /* Given an expression, X, compute which bits in X can be nonzero.
3978 We don't care about bits outside of those defined in MODE.
3979
3980 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3981 an arithmetic operation, we can do better. */
3982
3983 static unsigned HOST_WIDE_INT
3984 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
3985 machine_mode known_mode,
3986 unsigned HOST_WIDE_INT known_ret)
3987 {
3988 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3989 unsigned HOST_WIDE_INT inner_nz;
3990 enum rtx_code code;
3991 machine_mode inner_mode;
3992 unsigned int mode_width = GET_MODE_PRECISION (mode);
3993
3994 /* For floating-point and vector values, assume all bits are needed. */
3995 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3996 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3997 return nonzero;
3998
3999 /* If X is wider than MODE, use its mode instead. */
4000 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4001 {
4002 mode = GET_MODE (x);
4003 nonzero = GET_MODE_MASK (mode);
4004 mode_width = GET_MODE_PRECISION (mode);
4005 }
4006
4007 if (mode_width > HOST_BITS_PER_WIDE_INT)
4008 /* Our only callers in this case look for single bit values. So
4009 just return the mode mask. Those tests will then be false. */
4010 return nonzero;
4011
4012 #ifndef WORD_REGISTER_OPERATIONS
4013 /* If MODE is wider than X, but both are a single word for both the host
4014 and target machines, we can compute this from which bits of the
4015 object might be nonzero in its own mode, taking into account the fact
4016 that on many CISC machines, accessing an object in a wider mode
4017 causes the high-order bits to become undefined. So they are
4018 not known to be zero. */
4019
4020 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
4021 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4022 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4023 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4024 {
4025 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4026 known_x, known_mode, known_ret);
4027 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4028 return nonzero;
4029 }
4030 #endif
4031
4032 code = GET_CODE (x);
4033 switch (code)
4034 {
4035 case REG:
4036 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4037 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4038 all the bits above ptr_mode are known to be zero. */
4039 /* As we do not know which address space the pointer is referring to,
4040 we can do this only if the target does not support different pointer
4041 or address modes depending on the address space. */
4042 if (target_default_pointer_address_modes_p ()
4043 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4044 && REG_POINTER (x))
4045 nonzero &= GET_MODE_MASK (ptr_mode);
4046 #endif
4047
4048 /* Include declared information about alignment of pointers. */
4049 /* ??? We don't properly preserve REG_POINTER changes across
4050 pointer-to-integer casts, so we can't trust it except for
4051 things that we know must be pointers. See execute/960116-1.c. */
4052 if ((x == stack_pointer_rtx
4053 || x == frame_pointer_rtx
4054 || x == arg_pointer_rtx)
4055 && REGNO_POINTER_ALIGN (REGNO (x)))
4056 {
4057 unsigned HOST_WIDE_INT alignment
4058 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4059
4060 #ifdef PUSH_ROUNDING
4061 /* If PUSH_ROUNDING is defined, it is possible for the
4062 stack to be momentarily aligned only to that amount,
4063 so we pick the least alignment. */
4064 if (x == stack_pointer_rtx && PUSH_ARGS)
4065 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4066 alignment);
4067 #endif
4068
4069 nonzero &= ~(alignment - 1);
4070 }
4071
4072 {
4073 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4074 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4075 known_mode, known_ret,
4076 &nonzero_for_hook);
4077
4078 if (new_rtx)
4079 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4080 known_mode, known_ret);
4081
4082 return nonzero_for_hook;
4083 }
4084
4085 case CONST_INT:
4086 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4087 /* If X is negative in MODE, sign-extend the value. */
4088 if (INTVAL (x) > 0
4089 && mode_width < BITS_PER_WORD
4090 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4091 != 0)
4092 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4093 #endif
4094
4095 return UINTVAL (x);
4096
4097 case MEM:
4098 #ifdef LOAD_EXTEND_OP
4099 /* In many, if not most, RISC machines, reading a byte from memory
4100 zeros the rest of the register. Noticing that fact saves a lot
4101 of extra zero-extends. */
4102 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4103 nonzero &= GET_MODE_MASK (GET_MODE (x));
4104 #endif
4105 break;
4106
4107 case EQ: case NE:
4108 case UNEQ: case LTGT:
4109 case GT: case GTU: case UNGT:
4110 case LT: case LTU: case UNLT:
4111 case GE: case GEU: case UNGE:
4112 case LE: case LEU: case UNLE:
4113 case UNORDERED: case ORDERED:
4114 /* If this produces an integer result, we know which bits are set.
4115 Code here used to clear bits outside the mode of X, but that is
4116 now done above. */
4117 /* Mind that MODE is the mode the caller wants to look at this
4118 operation in, and not the actual operation mode. We can wind
4119 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4120 that describes the results of a vector compare. */
4121 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4122 && mode_width <= HOST_BITS_PER_WIDE_INT)
4123 nonzero = STORE_FLAG_VALUE;
4124 break;
4125
4126 case NEG:
4127 #if 0
4128 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4129 and num_sign_bit_copies. */
4130 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4131 == GET_MODE_PRECISION (GET_MODE (x)))
4132 nonzero = 1;
4133 #endif
4134
4135 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4136 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4137 break;
4138
4139 case ABS:
4140 #if 0
4141 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4142 and num_sign_bit_copies. */
4143 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4144 == GET_MODE_PRECISION (GET_MODE (x)))
4145 nonzero = 1;
4146 #endif
4147 break;
4148
4149 case TRUNCATE:
4150 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4151 known_x, known_mode, known_ret)
4152 & GET_MODE_MASK (mode));
4153 break;
4154
4155 case ZERO_EXTEND:
4156 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4157 known_x, known_mode, known_ret);
4158 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4159 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4160 break;
4161
4162 case SIGN_EXTEND:
4163 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4164 Otherwise, show all the bits in the outer mode but not the inner
4165 may be nonzero. */
4166 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4167 known_x, known_mode, known_ret);
4168 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4169 {
4170 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4171 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4172 inner_nz |= (GET_MODE_MASK (mode)
4173 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4174 }
4175
4176 nonzero &= inner_nz;
4177 break;
4178
4179 case AND:
4180 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4181 known_x, known_mode, known_ret)
4182 & cached_nonzero_bits (XEXP (x, 1), mode,
4183 known_x, known_mode, known_ret);
4184 break;
4185
4186 case XOR: case IOR:
4187 case UMIN: case UMAX: case SMIN: case SMAX:
4188 {
4189 unsigned HOST_WIDE_INT nonzero0
4190 = cached_nonzero_bits (XEXP (x, 0), mode,
4191 known_x, known_mode, known_ret);
4192
4193 /* Don't call nonzero_bits for the second time if it cannot change
4194 anything. */
4195 if ((nonzero & nonzero0) != nonzero)
4196 nonzero &= nonzero0
4197 | cached_nonzero_bits (XEXP (x, 1), mode,
4198 known_x, known_mode, known_ret);
4199 }
4200 break;
4201
4202 case PLUS: case MINUS:
4203 case MULT:
4204 case DIV: case UDIV:
4205 case MOD: case UMOD:
4206 /* We can apply the rules of arithmetic to compute the number of
4207 high- and low-order zero bits of these operations. We start by
4208 computing the width (position of the highest-order nonzero bit)
4209 and the number of low-order zero bits for each value. */
4210 {
4211 unsigned HOST_WIDE_INT nz0
4212 = cached_nonzero_bits (XEXP (x, 0), mode,
4213 known_x, known_mode, known_ret);
4214 unsigned HOST_WIDE_INT nz1
4215 = cached_nonzero_bits (XEXP (x, 1), mode,
4216 known_x, known_mode, known_ret);
4217 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4218 int width0 = floor_log2 (nz0) + 1;
4219 int width1 = floor_log2 (nz1) + 1;
4220 int low0 = floor_log2 (nz0 & -nz0);
4221 int low1 = floor_log2 (nz1 & -nz1);
4222 unsigned HOST_WIDE_INT op0_maybe_minusp
4223 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4224 unsigned HOST_WIDE_INT op1_maybe_minusp
4225 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4226 unsigned int result_width = mode_width;
4227 int result_low = 0;
4228
4229 switch (code)
4230 {
4231 case PLUS:
4232 result_width = MAX (width0, width1) + 1;
4233 result_low = MIN (low0, low1);
4234 break;
4235 case MINUS:
4236 result_low = MIN (low0, low1);
4237 break;
4238 case MULT:
4239 result_width = width0 + width1;
4240 result_low = low0 + low1;
4241 break;
4242 case DIV:
4243 if (width1 == 0)
4244 break;
4245 if (!op0_maybe_minusp && !op1_maybe_minusp)
4246 result_width = width0;
4247 break;
4248 case UDIV:
4249 if (width1 == 0)
4250 break;
4251 result_width = width0;
4252 break;
4253 case MOD:
4254 if (width1 == 0)
4255 break;
4256 if (!op0_maybe_minusp && !op1_maybe_minusp)
4257 result_width = MIN (width0, width1);
4258 result_low = MIN (low0, low1);
4259 break;
4260 case UMOD:
4261 if (width1 == 0)
4262 break;
4263 result_width = MIN (width0, width1);
4264 result_low = MIN (low0, low1);
4265 break;
4266 default:
4267 gcc_unreachable ();
4268 }
4269
4270 if (result_width < mode_width)
4271 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4272
4273 if (result_low > 0)
4274 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4275 }
4276 break;
4277
4278 case ZERO_EXTRACT:
4279 if (CONST_INT_P (XEXP (x, 1))
4280 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4281 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4282 break;
4283
4284 case SUBREG:
4285 /* If this is a SUBREG formed for a promoted variable that has
4286 been zero-extended, we know that at least the high-order bits
4287 are zero, though others might be too. */
4288
4289 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4290 nonzero = GET_MODE_MASK (GET_MODE (x))
4291 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4292 known_x, known_mode, known_ret);
4293
4294 inner_mode = GET_MODE (SUBREG_REG (x));
4295 /* If the inner mode is a single word for both the host and target
4296 machines, we can compute this from which bits of the inner
4297 object might be nonzero. */
4298 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4299 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4300 {
4301 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4302 known_x, known_mode, known_ret);
4303
4304 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4305 /* If this is a typical RISC machine, we only have to worry
4306 about the way loads are extended. */
4307 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4308 ? val_signbit_known_set_p (inner_mode, nonzero)
4309 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4310 || !MEM_P (SUBREG_REG (x)))
4311 #endif
4312 {
4313 /* On many CISC machines, accessing an object in a wider mode
4314 causes the high-order bits to become undefined. So they are
4315 not known to be zero. */
4316 if (GET_MODE_PRECISION (GET_MODE (x))
4317 > GET_MODE_PRECISION (inner_mode))
4318 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4319 & ~GET_MODE_MASK (inner_mode));
4320 }
4321 }
4322 break;
4323
4324 case ASHIFTRT:
4325 case LSHIFTRT:
4326 case ASHIFT:
4327 case ROTATE:
4328 /* The nonzero bits are in two classes: any bits within MODE
4329 that aren't in GET_MODE (x) are always significant. The rest of the
4330 nonzero bits are those that are significant in the operand of
4331 the shift when shifted the appropriate number of bits. This
4332 shows that high-order bits are cleared by the right shift and
4333 low-order bits by left shifts. */
4334 if (CONST_INT_P (XEXP (x, 1))
4335 && INTVAL (XEXP (x, 1)) >= 0
4336 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4337 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4338 {
4339 machine_mode inner_mode = GET_MODE (x);
4340 unsigned int width = GET_MODE_PRECISION (inner_mode);
4341 int count = INTVAL (XEXP (x, 1));
4342 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4343 unsigned HOST_WIDE_INT op_nonzero
4344 = cached_nonzero_bits (XEXP (x, 0), mode,
4345 known_x, known_mode, known_ret);
4346 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4347 unsigned HOST_WIDE_INT outer = 0;
4348
4349 if (mode_width > width)
4350 outer = (op_nonzero & nonzero & ~mode_mask);
4351
4352 if (code == LSHIFTRT)
4353 inner >>= count;
4354 else if (code == ASHIFTRT)
4355 {
4356 inner >>= count;
4357
4358 /* If the sign bit may have been nonzero before the shift, we
4359 need to mark all the places it could have been copied to
4360 by the shift as possibly nonzero. */
4361 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4362 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4363 << (width - count);
4364 }
4365 else if (code == ASHIFT)
4366 inner <<= count;
4367 else
4368 inner = ((inner << (count % width)
4369 | (inner >> (width - (count % width)))) & mode_mask);
4370
4371 nonzero &= (outer | inner);
4372 }
4373 break;
4374
4375 case FFS:
4376 case POPCOUNT:
4377 /* This is at most the number of bits in the mode. */
4378 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4379 break;
4380
4381 case CLZ:
4382 /* If CLZ has a known value at zero, then the nonzero bits are
4383 that value, plus the number of bits in the mode minus one. */
4384 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4385 nonzero
4386 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4387 else
4388 nonzero = -1;
4389 break;
4390
4391 case CTZ:
4392 /* If CTZ has a known value at zero, then the nonzero bits are
4393 that value, plus the number of bits in the mode minus one. */
4394 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4395 nonzero
4396 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4397 else
4398 nonzero = -1;
4399 break;
4400
4401 case CLRSB:
4402 /* This is at most the number of bits in the mode minus 1. */
4403 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4404 break;
4405
4406 case PARITY:
4407 nonzero = 1;
4408 break;
4409
4410 case IF_THEN_ELSE:
4411 {
4412 unsigned HOST_WIDE_INT nonzero_true
4413 = cached_nonzero_bits (XEXP (x, 1), mode,
4414 known_x, known_mode, known_ret);
4415
4416 /* Don't call nonzero_bits for the second time if it cannot change
4417 anything. */
4418 if ((nonzero & nonzero_true) != nonzero)
4419 nonzero &= nonzero_true
4420 | cached_nonzero_bits (XEXP (x, 2), mode,
4421 known_x, known_mode, known_ret);
4422 }
4423 break;
4424
4425 default:
4426 break;
4427 }
4428
4429 return nonzero;
4430 }
4431
4432 /* See the macro definition above. */
4433 #undef cached_num_sign_bit_copies
4434
4435 \f
4436 /* The function cached_num_sign_bit_copies is a wrapper around
4437 num_sign_bit_copies1. It avoids exponential behavior in
4438 num_sign_bit_copies1 when X has identical subexpressions on the
4439 first or the second level. */
4440
4441 static unsigned int
4442 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4443 machine_mode known_mode,
4444 unsigned int known_ret)
4445 {
4446 if (x == known_x && mode == known_mode)
4447 return known_ret;
4448
4449 /* Try to find identical subexpressions. If found call
4450 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4451 the precomputed value for the subexpression as KNOWN_RET. */
4452
4453 if (ARITHMETIC_P (x))
4454 {
4455 rtx x0 = XEXP (x, 0);
4456 rtx x1 = XEXP (x, 1);
4457
4458 /* Check the first level. */
4459 if (x0 == x1)
4460 return
4461 num_sign_bit_copies1 (x, mode, x0, mode,
4462 cached_num_sign_bit_copies (x0, mode, known_x,
4463 known_mode,
4464 known_ret));
4465
4466 /* Check the second level. */
4467 if (ARITHMETIC_P (x0)
4468 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4469 return
4470 num_sign_bit_copies1 (x, mode, x1, mode,
4471 cached_num_sign_bit_copies (x1, mode, known_x,
4472 known_mode,
4473 known_ret));
4474
4475 if (ARITHMETIC_P (x1)
4476 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4477 return
4478 num_sign_bit_copies1 (x, mode, x0, mode,
4479 cached_num_sign_bit_copies (x0, mode, known_x,
4480 known_mode,
4481 known_ret));
4482 }
4483
4484 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4485 }
4486
4487 /* Return the number of bits at the high-order end of X that are known to
4488 be equal to the sign bit. X will be used in mode MODE; if MODE is
4489 VOIDmode, X will be used in its own mode. The returned value will always
4490 be between 1 and the number of bits in MODE. */
4491
4492 static unsigned int
4493 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4494 machine_mode known_mode,
4495 unsigned int known_ret)
4496 {
4497 enum rtx_code code = GET_CODE (x);
4498 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4499 int num0, num1, result;
4500 unsigned HOST_WIDE_INT nonzero;
4501
4502 /* If we weren't given a mode, use the mode of X. If the mode is still
4503 VOIDmode, we don't know anything. Likewise if one of the modes is
4504 floating-point. */
4505
4506 if (mode == VOIDmode)
4507 mode = GET_MODE (x);
4508
4509 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4510 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4511 return 1;
4512
4513 /* For a smaller object, just ignore the high bits. */
4514 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4515 {
4516 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4517 known_x, known_mode, known_ret);
4518 return MAX (1,
4519 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4520 }
4521
4522 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4523 {
4524 #ifndef WORD_REGISTER_OPERATIONS
4525 /* If this machine does not do all register operations on the entire
4526 register and MODE is wider than the mode of X, we can say nothing
4527 at all about the high-order bits. */
4528 return 1;
4529 #else
4530 /* Likewise on machines that do, if the mode of the object is smaller
4531 than a word and loads of that size don't sign extend, we can say
4532 nothing about the high order bits. */
4533 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4534 #ifdef LOAD_EXTEND_OP
4535 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4536 #endif
4537 )
4538 return 1;
4539 #endif
4540 }
4541
4542 switch (code)
4543 {
4544 case REG:
4545
4546 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4547 /* If pointers extend signed and this is a pointer in Pmode, say that
4548 all the bits above ptr_mode are known to be sign bit copies. */
4549 /* As we do not know which address space the pointer is referring to,
4550 we can do this only if the target does not support different pointer
4551 or address modes depending on the address space. */
4552 if (target_default_pointer_address_modes_p ()
4553 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4554 && mode == Pmode && REG_POINTER (x))
4555 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4556 #endif
4557
4558 {
4559 unsigned int copies_for_hook = 1, copies = 1;
4560 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4561 known_mode, known_ret,
4562 &copies_for_hook);
4563
4564 if (new_rtx)
4565 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4566 known_mode, known_ret);
4567
4568 if (copies > 1 || copies_for_hook > 1)
4569 return MAX (copies, copies_for_hook);
4570
4571 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4572 }
4573 break;
4574
4575 case MEM:
4576 #ifdef LOAD_EXTEND_OP
4577 /* Some RISC machines sign-extend all loads of smaller than a word. */
4578 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4579 return MAX (1, ((int) bitwidth
4580 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4581 #endif
4582 break;
4583
4584 case CONST_INT:
4585 /* If the constant is negative, take its 1's complement and remask.
4586 Then see how many zero bits we have. */
4587 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4588 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4589 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4590 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4591
4592 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4593
4594 case SUBREG:
4595 /* If this is a SUBREG for a promoted object that is sign-extended
4596 and we are looking at it in a wider mode, we know that at least the
4597 high-order bits are known to be sign bit copies. */
4598
4599 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4600 {
4601 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4602 known_x, known_mode, known_ret);
4603 return MAX ((int) bitwidth
4604 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4605 num0);
4606 }
4607
4608 /* For a smaller object, just ignore the high bits. */
4609 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4610 {
4611 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4612 known_x, known_mode, known_ret);
4613 return MAX (1, (num0
4614 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4615 - bitwidth)));
4616 }
4617
4618 #ifdef WORD_REGISTER_OPERATIONS
4619 #ifdef LOAD_EXTEND_OP
4620 /* For paradoxical SUBREGs on machines where all register operations
4621 affect the entire register, just look inside. Note that we are
4622 passing MODE to the recursive call, so the number of sign bit copies
4623 will remain relative to that mode, not the inner mode. */
4624
4625 /* This works only if loads sign extend. Otherwise, if we get a
4626 reload for the inner part, it may be loaded from the stack, and
4627 then we lose all sign bit copies that existed before the store
4628 to the stack. */
4629
4630 if (paradoxical_subreg_p (x)
4631 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4632 && MEM_P (SUBREG_REG (x)))
4633 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4634 known_x, known_mode, known_ret);
4635 #endif
4636 #endif
4637 break;
4638
4639 case SIGN_EXTRACT:
4640 if (CONST_INT_P (XEXP (x, 1)))
4641 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4642 break;
4643
4644 case SIGN_EXTEND:
4645 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4646 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4647 known_x, known_mode, known_ret));
4648
4649 case TRUNCATE:
4650 /* For a smaller object, just ignore the high bits. */
4651 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4652 known_x, known_mode, known_ret);
4653 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4654 - bitwidth)));
4655
4656 case NOT:
4657 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4658 known_x, known_mode, known_ret);
4659
4660 case ROTATE: case ROTATERT:
4661 /* If we are rotating left by a number of bits less than the number
4662 of sign bit copies, we can just subtract that amount from the
4663 number. */
4664 if (CONST_INT_P (XEXP (x, 1))
4665 && INTVAL (XEXP (x, 1)) >= 0
4666 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4667 {
4668 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4669 known_x, known_mode, known_ret);
4670 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4671 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4672 }
4673 break;
4674
4675 case NEG:
4676 /* In general, this subtracts one sign bit copy. But if the value
4677 is known to be positive, the number of sign bit copies is the
4678 same as that of the input. Finally, if the input has just one bit
4679 that might be nonzero, all the bits are copies of the sign bit. */
4680 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4681 known_x, known_mode, known_ret);
4682 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4683 return num0 > 1 ? num0 - 1 : 1;
4684
4685 nonzero = nonzero_bits (XEXP (x, 0), mode);
4686 if (nonzero == 1)
4687 return bitwidth;
4688
4689 if (num0 > 1
4690 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4691 num0--;
4692
4693 return num0;
4694
4695 case IOR: case AND: case XOR:
4696 case SMIN: case SMAX: case UMIN: case UMAX:
4697 /* Logical operations will preserve the number of sign-bit copies.
4698 MIN and MAX operations always return one of the operands. */
4699 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4700 known_x, known_mode, known_ret);
4701 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4702 known_x, known_mode, known_ret);
4703
4704 /* If num1 is clearing some of the top bits then regardless of
4705 the other term, we are guaranteed to have at least that many
4706 high-order zero bits. */
4707 if (code == AND
4708 && num1 > 1
4709 && bitwidth <= HOST_BITS_PER_WIDE_INT
4710 && CONST_INT_P (XEXP (x, 1))
4711 && (UINTVAL (XEXP (x, 1))
4712 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4713 return num1;
4714
4715 /* Similarly for IOR when setting high-order bits. */
4716 if (code == IOR
4717 && num1 > 1
4718 && bitwidth <= HOST_BITS_PER_WIDE_INT
4719 && CONST_INT_P (XEXP (x, 1))
4720 && (UINTVAL (XEXP (x, 1))
4721 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4722 return num1;
4723
4724 return MIN (num0, num1);
4725
4726 case PLUS: case MINUS:
4727 /* For addition and subtraction, we can have a 1-bit carry. However,
4728 if we are subtracting 1 from a positive number, there will not
4729 be such a carry. Furthermore, if the positive number is known to
4730 be 0 or 1, we know the result is either -1 or 0. */
4731
4732 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4733 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4734 {
4735 nonzero = nonzero_bits (XEXP (x, 0), mode);
4736 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4737 return (nonzero == 1 || nonzero == 0 ? bitwidth
4738 : bitwidth - floor_log2 (nonzero) - 1);
4739 }
4740
4741 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4742 known_x, known_mode, known_ret);
4743 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4744 known_x, known_mode, known_ret);
4745 result = MAX (1, MIN (num0, num1) - 1);
4746
4747 return result;
4748
4749 case MULT:
4750 /* The number of bits of the product is the sum of the number of
4751 bits of both terms. However, unless one of the terms if known
4752 to be positive, we must allow for an additional bit since negating
4753 a negative number can remove one sign bit copy. */
4754
4755 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4756 known_x, known_mode, known_ret);
4757 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4758 known_x, known_mode, known_ret);
4759
4760 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4761 if (result > 0
4762 && (bitwidth > HOST_BITS_PER_WIDE_INT
4763 || (((nonzero_bits (XEXP (x, 0), mode)
4764 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4765 && ((nonzero_bits (XEXP (x, 1), mode)
4766 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4767 != 0))))
4768 result--;
4769
4770 return MAX (1, result);
4771
4772 case UDIV:
4773 /* The result must be <= the first operand. If the first operand
4774 has the high bit set, we know nothing about the number of sign
4775 bit copies. */
4776 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4777 return 1;
4778 else if ((nonzero_bits (XEXP (x, 0), mode)
4779 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4780 return 1;
4781 else
4782 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4783 known_x, known_mode, known_ret);
4784
4785 case UMOD:
4786 /* The result must be <= the second operand. If the second operand
4787 has (or just might have) the high bit set, we know nothing about
4788 the number of sign bit copies. */
4789 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4790 return 1;
4791 else if ((nonzero_bits (XEXP (x, 1), mode)
4792 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4793 return 1;
4794 else
4795 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4796 known_x, known_mode, known_ret);
4797
4798 case DIV:
4799 /* Similar to unsigned division, except that we have to worry about
4800 the case where the divisor is negative, in which case we have
4801 to add 1. */
4802 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4803 known_x, known_mode, known_ret);
4804 if (result > 1
4805 && (bitwidth > HOST_BITS_PER_WIDE_INT
4806 || (nonzero_bits (XEXP (x, 1), mode)
4807 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4808 result--;
4809
4810 return result;
4811
4812 case MOD:
4813 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4814 known_x, known_mode, known_ret);
4815 if (result > 1
4816 && (bitwidth > HOST_BITS_PER_WIDE_INT
4817 || (nonzero_bits (XEXP (x, 1), mode)
4818 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4819 result--;
4820
4821 return result;
4822
4823 case ASHIFTRT:
4824 /* Shifts by a constant add to the number of bits equal to the
4825 sign bit. */
4826 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4827 known_x, known_mode, known_ret);
4828 if (CONST_INT_P (XEXP (x, 1))
4829 && INTVAL (XEXP (x, 1)) > 0
4830 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4831 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4832
4833 return num0;
4834
4835 case ASHIFT:
4836 /* Left shifts destroy copies. */
4837 if (!CONST_INT_P (XEXP (x, 1))
4838 || INTVAL (XEXP (x, 1)) < 0
4839 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4840 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4841 return 1;
4842
4843 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4844 known_x, known_mode, known_ret);
4845 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4846
4847 case IF_THEN_ELSE:
4848 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4849 known_x, known_mode, known_ret);
4850 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4851 known_x, known_mode, known_ret);
4852 return MIN (num0, num1);
4853
4854 case EQ: case NE: case GE: case GT: case LE: case LT:
4855 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4856 case GEU: case GTU: case LEU: case LTU:
4857 case UNORDERED: case ORDERED:
4858 /* If the constant is negative, take its 1's complement and remask.
4859 Then see how many zero bits we have. */
4860 nonzero = STORE_FLAG_VALUE;
4861 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4862 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4863 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4864
4865 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4866
4867 default:
4868 break;
4869 }
4870
4871 /* If we haven't been able to figure it out by one of the above rules,
4872 see if some of the high-order bits are known to be zero. If so,
4873 count those bits and return one less than that amount. If we can't
4874 safely compute the mask for this mode, always return BITWIDTH. */
4875
4876 bitwidth = GET_MODE_PRECISION (mode);
4877 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4878 return 1;
4879
4880 nonzero = nonzero_bits (x, mode);
4881 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4882 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4883 }
4884
4885 /* Calculate the rtx_cost of a single instruction. A return value of
4886 zero indicates an instruction pattern without a known cost. */
4887
4888 int
4889 insn_rtx_cost (rtx pat, bool speed)
4890 {
4891 int i, cost;
4892 rtx set;
4893
4894 /* Extract the single set rtx from the instruction pattern.
4895 We can't use single_set since we only have the pattern. */
4896 if (GET_CODE (pat) == SET)
4897 set = pat;
4898 else if (GET_CODE (pat) == PARALLEL)
4899 {
4900 set = NULL_RTX;
4901 for (i = 0; i < XVECLEN (pat, 0); i++)
4902 {
4903 rtx x = XVECEXP (pat, 0, i);
4904 if (GET_CODE (x) == SET)
4905 {
4906 if (set)
4907 return 0;
4908 set = x;
4909 }
4910 }
4911 if (!set)
4912 return 0;
4913 }
4914 else
4915 return 0;
4916
4917 cost = set_src_cost (SET_SRC (set), speed);
4918 return cost > 0 ? cost : COSTS_N_INSNS (1);
4919 }
4920
4921 /* Returns estimate on cost of computing SEQ. */
4922
4923 unsigned
4924 seq_cost (const rtx_insn *seq, bool speed)
4925 {
4926 unsigned cost = 0;
4927 rtx set;
4928
4929 for (; seq; seq = NEXT_INSN (seq))
4930 {
4931 set = single_set (seq);
4932 if (set)
4933 cost += set_rtx_cost (set, speed);
4934 else
4935 cost++;
4936 }
4937
4938 return cost;
4939 }
4940
4941 /* Given an insn INSN and condition COND, return the condition in a
4942 canonical form to simplify testing by callers. Specifically:
4943
4944 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4945 (2) Both operands will be machine operands; (cc0) will have been replaced.
4946 (3) If an operand is a constant, it will be the second operand.
4947 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4948 for GE, GEU, and LEU.
4949
4950 If the condition cannot be understood, or is an inequality floating-point
4951 comparison which needs to be reversed, 0 will be returned.
4952
4953 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4954
4955 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4956 insn used in locating the condition was found. If a replacement test
4957 of the condition is desired, it should be placed in front of that
4958 insn and we will be sure that the inputs are still valid.
4959
4960 If WANT_REG is nonzero, we wish the condition to be relative to that
4961 register, if possible. Therefore, do not canonicalize the condition
4962 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4963 to be a compare to a CC mode register.
4964
4965 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4966 and at INSN. */
4967
4968 rtx
4969 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
4970 rtx_insn **earliest,
4971 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4972 {
4973 enum rtx_code code;
4974 rtx_insn *prev = insn;
4975 const_rtx set;
4976 rtx tem;
4977 rtx op0, op1;
4978 int reverse_code = 0;
4979 machine_mode mode;
4980 basic_block bb = BLOCK_FOR_INSN (insn);
4981
4982 code = GET_CODE (cond);
4983 mode = GET_MODE (cond);
4984 op0 = XEXP (cond, 0);
4985 op1 = XEXP (cond, 1);
4986
4987 if (reverse)
4988 code = reversed_comparison_code (cond, insn);
4989 if (code == UNKNOWN)
4990 return 0;
4991
4992 if (earliest)
4993 *earliest = insn;
4994
4995 /* If we are comparing a register with zero, see if the register is set
4996 in the previous insn to a COMPARE or a comparison operation. Perform
4997 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4998 in cse.c */
4999
5000 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5001 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5002 && op1 == CONST0_RTX (GET_MODE (op0))
5003 && op0 != want_reg)
5004 {
5005 /* Set nonzero when we find something of interest. */
5006 rtx x = 0;
5007
5008 #ifdef HAVE_cc0
5009 /* If comparison with cc0, import actual comparison from compare
5010 insn. */
5011 if (op0 == cc0_rtx)
5012 {
5013 if ((prev = prev_nonnote_insn (prev)) == 0
5014 || !NONJUMP_INSN_P (prev)
5015 || (set = single_set (prev)) == 0
5016 || SET_DEST (set) != cc0_rtx)
5017 return 0;
5018
5019 op0 = SET_SRC (set);
5020 op1 = CONST0_RTX (GET_MODE (op0));
5021 if (earliest)
5022 *earliest = prev;
5023 }
5024 #endif
5025
5026 /* If this is a COMPARE, pick up the two things being compared. */
5027 if (GET_CODE (op0) == COMPARE)
5028 {
5029 op1 = XEXP (op0, 1);
5030 op0 = XEXP (op0, 0);
5031 continue;
5032 }
5033 else if (!REG_P (op0))
5034 break;
5035
5036 /* Go back to the previous insn. Stop if it is not an INSN. We also
5037 stop if it isn't a single set or if it has a REG_INC note because
5038 we don't want to bother dealing with it. */
5039
5040 prev = prev_nonnote_nondebug_insn (prev);
5041
5042 if (prev == 0
5043 || !NONJUMP_INSN_P (prev)
5044 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5045 /* In cfglayout mode, there do not have to be labels at the
5046 beginning of a block, or jumps at the end, so the previous
5047 conditions would not stop us when we reach bb boundary. */
5048 || BLOCK_FOR_INSN (prev) != bb)
5049 break;
5050
5051 set = set_of (op0, prev);
5052
5053 if (set
5054 && (GET_CODE (set) != SET
5055 || !rtx_equal_p (SET_DEST (set), op0)))
5056 break;
5057
5058 /* If this is setting OP0, get what it sets it to if it looks
5059 relevant. */
5060 if (set)
5061 {
5062 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5063 #ifdef FLOAT_STORE_FLAG_VALUE
5064 REAL_VALUE_TYPE fsfv;
5065 #endif
5066
5067 /* ??? We may not combine comparisons done in a CCmode with
5068 comparisons not done in a CCmode. This is to aid targets
5069 like Alpha that have an IEEE compliant EQ instruction, and
5070 a non-IEEE compliant BEQ instruction. The use of CCmode is
5071 actually artificial, simply to prevent the combination, but
5072 should not affect other platforms.
5073
5074 However, we must allow VOIDmode comparisons to match either
5075 CCmode or non-CCmode comparison, because some ports have
5076 modeless comparisons inside branch patterns.
5077
5078 ??? This mode check should perhaps look more like the mode check
5079 in simplify_comparison in combine. */
5080 if (((GET_MODE_CLASS (mode) == MODE_CC)
5081 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5082 && mode != VOIDmode
5083 && inner_mode != VOIDmode)
5084 break;
5085 if (GET_CODE (SET_SRC (set)) == COMPARE
5086 || (((code == NE
5087 || (code == LT
5088 && val_signbit_known_set_p (inner_mode,
5089 STORE_FLAG_VALUE))
5090 #ifdef FLOAT_STORE_FLAG_VALUE
5091 || (code == LT
5092 && SCALAR_FLOAT_MODE_P (inner_mode)
5093 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5094 REAL_VALUE_NEGATIVE (fsfv)))
5095 #endif
5096 ))
5097 && COMPARISON_P (SET_SRC (set))))
5098 x = SET_SRC (set);
5099 else if (((code == EQ
5100 || (code == GE
5101 && val_signbit_known_set_p (inner_mode,
5102 STORE_FLAG_VALUE))
5103 #ifdef FLOAT_STORE_FLAG_VALUE
5104 || (code == GE
5105 && SCALAR_FLOAT_MODE_P (inner_mode)
5106 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5107 REAL_VALUE_NEGATIVE (fsfv)))
5108 #endif
5109 ))
5110 && COMPARISON_P (SET_SRC (set)))
5111 {
5112 reverse_code = 1;
5113 x = SET_SRC (set);
5114 }
5115 else if ((code == EQ || code == NE)
5116 && GET_CODE (SET_SRC (set)) == XOR)
5117 /* Handle sequences like:
5118
5119 (set op0 (xor X Y))
5120 ...(eq|ne op0 (const_int 0))...
5121
5122 in which case:
5123
5124 (eq op0 (const_int 0)) reduces to (eq X Y)
5125 (ne op0 (const_int 0)) reduces to (ne X Y)
5126
5127 This is the form used by MIPS16, for example. */
5128 x = SET_SRC (set);
5129 else
5130 break;
5131 }
5132
5133 else if (reg_set_p (op0, prev))
5134 /* If this sets OP0, but not directly, we have to give up. */
5135 break;
5136
5137 if (x)
5138 {
5139 /* If the caller is expecting the condition to be valid at INSN,
5140 make sure X doesn't change before INSN. */
5141 if (valid_at_insn_p)
5142 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5143 break;
5144 if (COMPARISON_P (x))
5145 code = GET_CODE (x);
5146 if (reverse_code)
5147 {
5148 code = reversed_comparison_code (x, prev);
5149 if (code == UNKNOWN)
5150 return 0;
5151 reverse_code = 0;
5152 }
5153
5154 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5155 if (earliest)
5156 *earliest = prev;
5157 }
5158 }
5159
5160 /* If constant is first, put it last. */
5161 if (CONSTANT_P (op0))
5162 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5163
5164 /* If OP0 is the result of a comparison, we weren't able to find what
5165 was really being compared, so fail. */
5166 if (!allow_cc_mode
5167 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5168 return 0;
5169
5170 /* Canonicalize any ordered comparison with integers involving equality
5171 if we can do computations in the relevant mode and we do not
5172 overflow. */
5173
5174 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5175 && CONST_INT_P (op1)
5176 && GET_MODE (op0) != VOIDmode
5177 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5178 {
5179 HOST_WIDE_INT const_val = INTVAL (op1);
5180 unsigned HOST_WIDE_INT uconst_val = const_val;
5181 unsigned HOST_WIDE_INT max_val
5182 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5183
5184 switch (code)
5185 {
5186 case LE:
5187 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5188 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5189 break;
5190
5191 /* When cross-compiling, const_val might be sign-extended from
5192 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5193 case GE:
5194 if ((const_val & max_val)
5195 != ((unsigned HOST_WIDE_INT) 1
5196 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5197 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5198 break;
5199
5200 case LEU:
5201 if (uconst_val < max_val)
5202 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5203 break;
5204
5205 case GEU:
5206 if (uconst_val != 0)
5207 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5208 break;
5209
5210 default:
5211 break;
5212 }
5213 }
5214
5215 /* Never return CC0; return zero instead. */
5216 if (CC0_P (op0))
5217 return 0;
5218
5219 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5220 }
5221
5222 /* Given a jump insn JUMP, return the condition that will cause it to branch
5223 to its JUMP_LABEL. If the condition cannot be understood, or is an
5224 inequality floating-point comparison which needs to be reversed, 0 will
5225 be returned.
5226
5227 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5228 insn used in locating the condition was found. If a replacement test
5229 of the condition is desired, it should be placed in front of that
5230 insn and we will be sure that the inputs are still valid. If EARLIEST
5231 is null, the returned condition will be valid at INSN.
5232
5233 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5234 compare CC mode register.
5235
5236 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5237
5238 rtx
5239 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5240 int valid_at_insn_p)
5241 {
5242 rtx cond;
5243 int reverse;
5244 rtx set;
5245
5246 /* If this is not a standard conditional jump, we can't parse it. */
5247 if (!JUMP_P (jump)
5248 || ! any_condjump_p (jump))
5249 return 0;
5250 set = pc_set (jump);
5251
5252 cond = XEXP (SET_SRC (set), 0);
5253
5254 /* If this branches to JUMP_LABEL when the condition is false, reverse
5255 the condition. */
5256 reverse
5257 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5258 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5259
5260 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5261 allow_cc_mode, valid_at_insn_p);
5262 }
5263
5264 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5265 TARGET_MODE_REP_EXTENDED.
5266
5267 Note that we assume that the property of
5268 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5269 narrower than mode B. I.e., if A is a mode narrower than B then in
5270 order to be able to operate on it in mode B, mode A needs to
5271 satisfy the requirements set by the representation of mode B. */
5272
5273 static void
5274 init_num_sign_bit_copies_in_rep (void)
5275 {
5276 machine_mode mode, in_mode;
5277
5278 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5279 in_mode = GET_MODE_WIDER_MODE (mode))
5280 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5281 mode = GET_MODE_WIDER_MODE (mode))
5282 {
5283 machine_mode i;
5284
5285 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5286 extends to the next widest mode. */
5287 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5288 || GET_MODE_WIDER_MODE (mode) == in_mode);
5289
5290 /* We are in in_mode. Count how many bits outside of mode
5291 have to be copies of the sign-bit. */
5292 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5293 {
5294 machine_mode wider = GET_MODE_WIDER_MODE (i);
5295
5296 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5297 /* We can only check sign-bit copies starting from the
5298 top-bit. In order to be able to check the bits we
5299 have already seen we pretend that subsequent bits
5300 have to be sign-bit copies too. */
5301 || num_sign_bit_copies_in_rep [in_mode][mode])
5302 num_sign_bit_copies_in_rep [in_mode][mode]
5303 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5304 }
5305 }
5306 }
5307
5308 /* Suppose that truncation from the machine mode of X to MODE is not a
5309 no-op. See if there is anything special about X so that we can
5310 assume it already contains a truncated value of MODE. */
5311
5312 bool
5313 truncated_to_mode (machine_mode mode, const_rtx x)
5314 {
5315 /* This register has already been used in MODE without explicit
5316 truncation. */
5317 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5318 return true;
5319
5320 /* See if we already satisfy the requirements of MODE. If yes we
5321 can just switch to MODE. */
5322 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5323 && (num_sign_bit_copies (x, GET_MODE (x))
5324 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5325 return true;
5326
5327 return false;
5328 }
5329 \f
5330 /* Return true if RTX code CODE has a single sequence of zero or more
5331 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5332 entry in that case. */
5333
5334 static bool
5335 setup_reg_subrtx_bounds (unsigned int code)
5336 {
5337 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5338 unsigned int i = 0;
5339 for (; format[i] != 'e'; ++i)
5340 {
5341 if (!format[i])
5342 /* No subrtxes. Leave start and count as 0. */
5343 return true;
5344 if (format[i] == 'E' || format[i] == 'V')
5345 return false;
5346 }
5347
5348 /* Record the sequence of 'e's. */
5349 rtx_all_subrtx_bounds[code].start = i;
5350 do
5351 ++i;
5352 while (format[i] == 'e');
5353 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5354 /* rtl-iter.h relies on this. */
5355 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5356
5357 for (; format[i]; ++i)
5358 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5359 return false;
5360
5361 return true;
5362 }
5363
5364 /* Initialize rtx_all_subrtx_bounds. */
5365 void
5366 init_rtlanal (void)
5367 {
5368 int i;
5369 for (i = 0; i < NUM_RTX_CODE; i++)
5370 {
5371 if (!setup_reg_subrtx_bounds (i))
5372 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5373 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5374 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5375 }
5376
5377 init_num_sign_bit_copies_in_rep ();
5378 }
5379 \f
5380 /* Check whether this is a constant pool constant. */
5381 bool
5382 constant_pool_constant_p (rtx x)
5383 {
5384 x = avoid_constant_pool_reference (x);
5385 return CONST_DOUBLE_P (x);
5386 }
5387 \f
5388 /* If M is a bitmask that selects a field of low-order bits within an item but
5389 not the entire word, return the length of the field. Return -1 otherwise.
5390 M is used in machine mode MODE. */
5391
5392 int
5393 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5394 {
5395 if (mode != VOIDmode)
5396 {
5397 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5398 return -1;
5399 m &= GET_MODE_MASK (mode);
5400 }
5401
5402 return exact_log2 (m + 1);
5403 }
5404
5405 /* Return the mode of MEM's address. */
5406
5407 machine_mode
5408 get_address_mode (rtx mem)
5409 {
5410 machine_mode mode;
5411
5412 gcc_assert (MEM_P (mem));
5413 mode = GET_MODE (XEXP (mem, 0));
5414 if (mode != VOIDmode)
5415 return mode;
5416 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5417 }
5418 \f
5419 /* Split up a CONST_DOUBLE or integer constant rtx
5420 into two rtx's for single words,
5421 storing in *FIRST the word that comes first in memory in the target
5422 and in *SECOND the other.
5423
5424 TODO: This function needs to be rewritten to work on any size
5425 integer. */
5426
5427 void
5428 split_double (rtx value, rtx *first, rtx *second)
5429 {
5430 if (CONST_INT_P (value))
5431 {
5432 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5433 {
5434 /* In this case the CONST_INT holds both target words.
5435 Extract the bits from it into two word-sized pieces.
5436 Sign extend each half to HOST_WIDE_INT. */
5437 unsigned HOST_WIDE_INT low, high;
5438 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5439 unsigned bits_per_word = BITS_PER_WORD;
5440
5441 /* Set sign_bit to the most significant bit of a word. */
5442 sign_bit = 1;
5443 sign_bit <<= bits_per_word - 1;
5444
5445 /* Set mask so that all bits of the word are set. We could
5446 have used 1 << BITS_PER_WORD instead of basing the
5447 calculation on sign_bit. However, on machines where
5448 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5449 compiler warning, even though the code would never be
5450 executed. */
5451 mask = sign_bit << 1;
5452 mask--;
5453
5454 /* Set sign_extend as any remaining bits. */
5455 sign_extend = ~mask;
5456
5457 /* Pick the lower word and sign-extend it. */
5458 low = INTVAL (value);
5459 low &= mask;
5460 if (low & sign_bit)
5461 low |= sign_extend;
5462
5463 /* Pick the higher word, shifted to the least significant
5464 bits, and sign-extend it. */
5465 high = INTVAL (value);
5466 high >>= bits_per_word - 1;
5467 high >>= 1;
5468 high &= mask;
5469 if (high & sign_bit)
5470 high |= sign_extend;
5471
5472 /* Store the words in the target machine order. */
5473 if (WORDS_BIG_ENDIAN)
5474 {
5475 *first = GEN_INT (high);
5476 *second = GEN_INT (low);
5477 }
5478 else
5479 {
5480 *first = GEN_INT (low);
5481 *second = GEN_INT (high);
5482 }
5483 }
5484 else
5485 {
5486 /* The rule for using CONST_INT for a wider mode
5487 is that we regard the value as signed.
5488 So sign-extend it. */
5489 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5490 if (WORDS_BIG_ENDIAN)
5491 {
5492 *first = high;
5493 *second = value;
5494 }
5495 else
5496 {
5497 *first = value;
5498 *second = high;
5499 }
5500 }
5501 }
5502 else if (GET_CODE (value) == CONST_WIDE_INT)
5503 {
5504 /* All of this is scary code and needs to be converted to
5505 properly work with any size integer. */
5506 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5507 if (WORDS_BIG_ENDIAN)
5508 {
5509 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5510 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5511 }
5512 else
5513 {
5514 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5515 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5516 }
5517 }
5518 else if (!CONST_DOUBLE_P (value))
5519 {
5520 if (WORDS_BIG_ENDIAN)
5521 {
5522 *first = const0_rtx;
5523 *second = value;
5524 }
5525 else
5526 {
5527 *first = value;
5528 *second = const0_rtx;
5529 }
5530 }
5531 else if (GET_MODE (value) == VOIDmode
5532 /* This is the old way we did CONST_DOUBLE integers. */
5533 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5534 {
5535 /* In an integer, the words are defined as most and least significant.
5536 So order them by the target's convention. */
5537 if (WORDS_BIG_ENDIAN)
5538 {
5539 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5540 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5541 }
5542 else
5543 {
5544 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5545 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5546 }
5547 }
5548 else
5549 {
5550 REAL_VALUE_TYPE r;
5551 long l[2];
5552 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5553
5554 /* Note, this converts the REAL_VALUE_TYPE to the target's
5555 format, splits up the floating point double and outputs
5556 exactly 32 bits of it into each of l[0] and l[1] --
5557 not necessarily BITS_PER_WORD bits. */
5558 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5559
5560 /* If 32 bits is an entire word for the target, but not for the host,
5561 then sign-extend on the host so that the number will look the same
5562 way on the host that it would on the target. See for instance
5563 simplify_unary_operation. The #if is needed to avoid compiler
5564 warnings. */
5565
5566 #if HOST_BITS_PER_LONG > 32
5567 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5568 {
5569 if (l[0] & ((long) 1 << 31))
5570 l[0] |= ((long) (-1) << 32);
5571 if (l[1] & ((long) 1 << 31))
5572 l[1] |= ((long) (-1) << 32);
5573 }
5574 #endif
5575
5576 *first = GEN_INT (l[0]);
5577 *second = GEN_INT (l[1]);
5578 }
5579 }
5580
5581 /* Return true if X is a sign_extract or zero_extract from the least
5582 significant bit. */
5583
5584 static bool
5585 lsb_bitfield_op_p (rtx x)
5586 {
5587 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5588 {
5589 machine_mode mode = GET_MODE (XEXP (x, 0));
5590 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5591 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5592
5593 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5594 }
5595 return false;
5596 }
5597
5598 /* Strip outer address "mutations" from LOC and return a pointer to the
5599 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5600 stripped expression there.
5601
5602 "Mutations" either convert between modes or apply some kind of
5603 extension, truncation or alignment. */
5604
5605 rtx *
5606 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5607 {
5608 for (;;)
5609 {
5610 enum rtx_code code = GET_CODE (*loc);
5611 if (GET_RTX_CLASS (code) == RTX_UNARY)
5612 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5613 used to convert between pointer sizes. */
5614 loc = &XEXP (*loc, 0);
5615 else if (lsb_bitfield_op_p (*loc))
5616 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5617 acts as a combined truncation and extension. */
5618 loc = &XEXP (*loc, 0);
5619 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5620 /* (and ... (const_int -X)) is used to align to X bytes. */
5621 loc = &XEXP (*loc, 0);
5622 else if (code == SUBREG
5623 && !OBJECT_P (SUBREG_REG (*loc))
5624 && subreg_lowpart_p (*loc))
5625 /* (subreg (operator ...) ...) inside and is used for mode
5626 conversion too. */
5627 loc = &SUBREG_REG (*loc);
5628 else
5629 return loc;
5630 if (outer_code)
5631 *outer_code = code;
5632 }
5633 }
5634
5635 /* Return true if CODE applies some kind of scale. The scaled value is
5636 is the first operand and the scale is the second. */
5637
5638 static bool
5639 binary_scale_code_p (enum rtx_code code)
5640 {
5641 return (code == MULT
5642 || code == ASHIFT
5643 /* Needed by ARM targets. */
5644 || code == ASHIFTRT
5645 || code == LSHIFTRT
5646 || code == ROTATE
5647 || code == ROTATERT);
5648 }
5649
5650 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5651 (see address_info). Return null otherwise. */
5652
5653 static rtx *
5654 get_base_term (rtx *inner)
5655 {
5656 if (GET_CODE (*inner) == LO_SUM)
5657 inner = strip_address_mutations (&XEXP (*inner, 0));
5658 if (REG_P (*inner)
5659 || MEM_P (*inner)
5660 || GET_CODE (*inner) == SUBREG
5661 || GET_CODE (*inner) == SCRATCH)
5662 return inner;
5663 return 0;
5664 }
5665
5666 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5667 (see address_info). Return null otherwise. */
5668
5669 static rtx *
5670 get_index_term (rtx *inner)
5671 {
5672 /* At present, only constant scales are allowed. */
5673 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5674 inner = strip_address_mutations (&XEXP (*inner, 0));
5675 if (REG_P (*inner)
5676 || MEM_P (*inner)
5677 || GET_CODE (*inner) == SUBREG)
5678 return inner;
5679 return 0;
5680 }
5681
5682 /* Set the segment part of address INFO to LOC, given that INNER is the
5683 unmutated value. */
5684
5685 static void
5686 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5687 {
5688 gcc_assert (!info->segment);
5689 info->segment = loc;
5690 info->segment_term = inner;
5691 }
5692
5693 /* Set the base part of address INFO to LOC, given that INNER is the
5694 unmutated value. */
5695
5696 static void
5697 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5698 {
5699 gcc_assert (!info->base);
5700 info->base = loc;
5701 info->base_term = inner;
5702 }
5703
5704 /* Set the index part of address INFO to LOC, given that INNER is the
5705 unmutated value. */
5706
5707 static void
5708 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5709 {
5710 gcc_assert (!info->index);
5711 info->index = loc;
5712 info->index_term = inner;
5713 }
5714
5715 /* Set the displacement part of address INFO to LOC, given that INNER
5716 is the constant term. */
5717
5718 static void
5719 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5720 {
5721 gcc_assert (!info->disp);
5722 info->disp = loc;
5723 info->disp_term = inner;
5724 }
5725
5726 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5727 rest of INFO accordingly. */
5728
5729 static void
5730 decompose_incdec_address (struct address_info *info)
5731 {
5732 info->autoinc_p = true;
5733
5734 rtx *base = &XEXP (*info->inner, 0);
5735 set_address_base (info, base, base);
5736 gcc_checking_assert (info->base == info->base_term);
5737
5738 /* These addresses are only valid when the size of the addressed
5739 value is known. */
5740 gcc_checking_assert (info->mode != VOIDmode);
5741 }
5742
5743 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5744 of INFO accordingly. */
5745
5746 static void
5747 decompose_automod_address (struct address_info *info)
5748 {
5749 info->autoinc_p = true;
5750
5751 rtx *base = &XEXP (*info->inner, 0);
5752 set_address_base (info, base, base);
5753 gcc_checking_assert (info->base == info->base_term);
5754
5755 rtx plus = XEXP (*info->inner, 1);
5756 gcc_assert (GET_CODE (plus) == PLUS);
5757
5758 info->base_term2 = &XEXP (plus, 0);
5759 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5760
5761 rtx *step = &XEXP (plus, 1);
5762 rtx *inner_step = strip_address_mutations (step);
5763 if (CONSTANT_P (*inner_step))
5764 set_address_disp (info, step, inner_step);
5765 else
5766 set_address_index (info, step, inner_step);
5767 }
5768
5769 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5770 values in [PTR, END). Return a pointer to the end of the used array. */
5771
5772 static rtx **
5773 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5774 {
5775 rtx x = *loc;
5776 if (GET_CODE (x) == PLUS)
5777 {
5778 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5779 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5780 }
5781 else
5782 {
5783 gcc_assert (ptr != end);
5784 *ptr++ = loc;
5785 }
5786 return ptr;
5787 }
5788
5789 /* Evaluate the likelihood of X being a base or index value, returning
5790 positive if it is likely to be a base, negative if it is likely to be
5791 an index, and 0 if we can't tell. Make the magnitude of the return
5792 value reflect the amount of confidence we have in the answer.
5793
5794 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5795
5796 static int
5797 baseness (rtx x, machine_mode mode, addr_space_t as,
5798 enum rtx_code outer_code, enum rtx_code index_code)
5799 {
5800 /* Believe *_POINTER unless the address shape requires otherwise. */
5801 if (REG_P (x) && REG_POINTER (x))
5802 return 2;
5803 if (MEM_P (x) && MEM_POINTER (x))
5804 return 2;
5805
5806 if (REG_P (x) && HARD_REGISTER_P (x))
5807 {
5808 /* X is a hard register. If it only fits one of the base
5809 or index classes, choose that interpretation. */
5810 int regno = REGNO (x);
5811 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5812 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5813 if (base_p != index_p)
5814 return base_p ? 1 : -1;
5815 }
5816 return 0;
5817 }
5818
5819 /* INFO->INNER describes a normal, non-automodified address.
5820 Fill in the rest of INFO accordingly. */
5821
5822 static void
5823 decompose_normal_address (struct address_info *info)
5824 {
5825 /* Treat the address as the sum of up to four values. */
5826 rtx *ops[4];
5827 size_t n_ops = extract_plus_operands (info->inner, ops,
5828 ops + ARRAY_SIZE (ops)) - ops;
5829
5830 /* If there is more than one component, any base component is in a PLUS. */
5831 if (n_ops > 1)
5832 info->base_outer_code = PLUS;
5833
5834 /* Try to classify each sum operand now. Leave those that could be
5835 either a base or an index in OPS. */
5836 rtx *inner_ops[4];
5837 size_t out = 0;
5838 for (size_t in = 0; in < n_ops; ++in)
5839 {
5840 rtx *loc = ops[in];
5841 rtx *inner = strip_address_mutations (loc);
5842 if (CONSTANT_P (*inner))
5843 set_address_disp (info, loc, inner);
5844 else if (GET_CODE (*inner) == UNSPEC)
5845 set_address_segment (info, loc, inner);
5846 else
5847 {
5848 /* The only other possibilities are a base or an index. */
5849 rtx *base_term = get_base_term (inner);
5850 rtx *index_term = get_index_term (inner);
5851 gcc_assert (base_term || index_term);
5852 if (!base_term)
5853 set_address_index (info, loc, index_term);
5854 else if (!index_term)
5855 set_address_base (info, loc, base_term);
5856 else
5857 {
5858 gcc_assert (base_term == index_term);
5859 ops[out] = loc;
5860 inner_ops[out] = base_term;
5861 ++out;
5862 }
5863 }
5864 }
5865
5866 /* Classify the remaining OPS members as bases and indexes. */
5867 if (out == 1)
5868 {
5869 /* If we haven't seen a base or an index yet, assume that this is
5870 the base. If we were confident that another term was the base
5871 or index, treat the remaining operand as the other kind. */
5872 if (!info->base)
5873 set_address_base (info, ops[0], inner_ops[0]);
5874 else
5875 set_address_index (info, ops[0], inner_ops[0]);
5876 }
5877 else if (out == 2)
5878 {
5879 /* In the event of a tie, assume the base comes first. */
5880 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5881 GET_CODE (*ops[1]))
5882 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5883 GET_CODE (*ops[0])))
5884 {
5885 set_address_base (info, ops[0], inner_ops[0]);
5886 set_address_index (info, ops[1], inner_ops[1]);
5887 }
5888 else
5889 {
5890 set_address_base (info, ops[1], inner_ops[1]);
5891 set_address_index (info, ops[0], inner_ops[0]);
5892 }
5893 }
5894 else
5895 gcc_assert (out == 0);
5896 }
5897
5898 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5899 or VOIDmode if not known. AS is the address space associated with LOC.
5900 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5901
5902 void
5903 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
5904 addr_space_t as, enum rtx_code outer_code)
5905 {
5906 memset (info, 0, sizeof (*info));
5907 info->mode = mode;
5908 info->as = as;
5909 info->addr_outer_code = outer_code;
5910 info->outer = loc;
5911 info->inner = strip_address_mutations (loc, &outer_code);
5912 info->base_outer_code = outer_code;
5913 switch (GET_CODE (*info->inner))
5914 {
5915 case PRE_DEC:
5916 case PRE_INC:
5917 case POST_DEC:
5918 case POST_INC:
5919 decompose_incdec_address (info);
5920 break;
5921
5922 case PRE_MODIFY:
5923 case POST_MODIFY:
5924 decompose_automod_address (info);
5925 break;
5926
5927 default:
5928 decompose_normal_address (info);
5929 break;
5930 }
5931 }
5932
5933 /* Describe address operand LOC in INFO. */
5934
5935 void
5936 decompose_lea_address (struct address_info *info, rtx *loc)
5937 {
5938 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
5939 }
5940
5941 /* Describe the address of MEM X in INFO. */
5942
5943 void
5944 decompose_mem_address (struct address_info *info, rtx x)
5945 {
5946 gcc_assert (MEM_P (x));
5947 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
5948 MEM_ADDR_SPACE (x), MEM);
5949 }
5950
5951 /* Update INFO after a change to the address it describes. */
5952
5953 void
5954 update_address (struct address_info *info)
5955 {
5956 decompose_address (info, info->outer, info->mode, info->as,
5957 info->addr_outer_code);
5958 }
5959
5960 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5961 more complicated than that. */
5962
5963 HOST_WIDE_INT
5964 get_index_scale (const struct address_info *info)
5965 {
5966 rtx index = *info->index;
5967 if (GET_CODE (index) == MULT
5968 && CONST_INT_P (XEXP (index, 1))
5969 && info->index_term == &XEXP (index, 0))
5970 return INTVAL (XEXP (index, 1));
5971
5972 if (GET_CODE (index) == ASHIFT
5973 && CONST_INT_P (XEXP (index, 1))
5974 && info->index_term == &XEXP (index, 0))
5975 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
5976
5977 if (info->index == info->index_term)
5978 return 1;
5979
5980 return 0;
5981 }
5982
5983 /* Return the "index code" of INFO, in the form required by
5984 ok_for_base_p_1. */
5985
5986 enum rtx_code
5987 get_index_code (const struct address_info *info)
5988 {
5989 if (info->index)
5990 return GET_CODE (*info->index);
5991
5992 if (info->disp)
5993 return GET_CODE (*info->disp);
5994
5995 return SCRATCH;
5996 }
5997
5998 /* Return true if X contains a thread-local symbol. */
5999
6000 bool
6001 tls_referenced_p (const_rtx x)
6002 {
6003 if (!targetm.have_tls)
6004 return false;
6005
6006 subrtx_iterator::array_type array;
6007 FOR_EACH_SUBRTX (iter, array, x, ALL)
6008 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6009 return true;
6010 return false;
6011 }