]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/rtlanal.c
* defaults.h (LOAD_EXTEND_OP): Define if not already defined.
[thirdparty/gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
38
39 /* Forward declarations */
40 static void set_of_1 (rtx, const_rtx, void *);
41 static bool covers_regno_p (const_rtx, unsigned int);
42 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
43 static int computed_jump_p_1 (const_rtx);
44 static void parms_set (rtx, const_rtx, void *);
45
46 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
47 const_rtx, machine_mode,
48 unsigned HOST_WIDE_INT);
49 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
50 const_rtx, machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
53 machine_mode,
54 unsigned int);
55 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
56 machine_mode, unsigned int);
57
58 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
59 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
60
61 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
62 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
63 SIGN_EXTEND then while narrowing we also have to enforce the
64 representation and sign-extend the value to mode DESTINATION_REP.
65
66 If the value is already sign-extended to DESTINATION_REP mode we
67 can just switch to DESTINATION mode on it. For each pair of
68 integral modes SOURCE and DESTINATION, when truncating from SOURCE
69 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
70 contains the number of high-order bits in SOURCE that have to be
71 copies of the sign-bit so that we can do this mode-switch to
72 DESTINATION. */
73
74 static unsigned int
75 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
76 \f
77 /* Store X into index I of ARRAY. ARRAY is known to have at least I
78 elements. Return the new base of ARRAY. */
79
80 template <typename T>
81 typename T::value_type *
82 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
83 value_type *base,
84 size_t i, value_type x)
85 {
86 if (base == array.stack)
87 {
88 if (i < LOCAL_ELEMS)
89 {
90 base[i] = x;
91 return base;
92 }
93 gcc_checking_assert (i == LOCAL_ELEMS);
94 /* A previous iteration might also have moved from the stack to the
95 heap, in which case the heap array will already be big enough. */
96 if (vec_safe_length (array.heap) <= i)
97 vec_safe_grow (array.heap, i + 1);
98 base = array.heap->address ();
99 memcpy (base, array.stack, sizeof (array.stack));
100 base[LOCAL_ELEMS] = x;
101 return base;
102 }
103 unsigned int length = array.heap->length ();
104 if (length > i)
105 {
106 gcc_checking_assert (base == array.heap->address ());
107 base[i] = x;
108 return base;
109 }
110 else
111 {
112 gcc_checking_assert (i == length);
113 vec_safe_push (array.heap, x);
114 return array.heap->address ();
115 }
116 }
117
118 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
119 number of elements added to the worklist. */
120
121 template <typename T>
122 size_t
123 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
124 value_type *base,
125 size_t end, rtx_type x)
126 {
127 enum rtx_code code = GET_CODE (x);
128 const char *format = GET_RTX_FORMAT (code);
129 size_t orig_end = end;
130 if (__builtin_expect (INSN_P (x), false))
131 {
132 /* Put the pattern at the top of the queue, since that's what
133 we're likely to want most. It also allows for the SEQUENCE
134 code below. */
135 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
136 if (format[i] == 'e')
137 {
138 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
139 if (__builtin_expect (end < LOCAL_ELEMS, true))
140 base[end++] = subx;
141 else
142 base = add_single_to_queue (array, base, end++, subx);
143 }
144 }
145 else
146 for (int i = 0; format[i]; ++i)
147 if (format[i] == 'e')
148 {
149 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
150 if (__builtin_expect (end < LOCAL_ELEMS, true))
151 base[end++] = subx;
152 else
153 base = add_single_to_queue (array, base, end++, subx);
154 }
155 else if (format[i] == 'E')
156 {
157 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
158 rtx *vec = x->u.fld[i].rt_rtvec->elem;
159 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
160 for (unsigned int j = 0; j < length; j++)
161 base[end++] = T::get_value (vec[j]);
162 else
163 for (unsigned int j = 0; j < length; j++)
164 base = add_single_to_queue (array, base, end++,
165 T::get_value (vec[j]));
166 if (code == SEQUENCE && end == length)
167 /* If the subrtxes of the sequence fill the entire array then
168 we know that no other parts of a containing insn are queued.
169 The caller is therefore iterating over the sequence as a
170 PATTERN (...), so we also want the patterns of the
171 subinstructions. */
172 for (unsigned int j = 0; j < length; j++)
173 {
174 typename T::rtx_type x = T::get_rtx (base[j]);
175 if (INSN_P (x))
176 base[j] = T::get_value (PATTERN (x));
177 }
178 }
179 return end - orig_end;
180 }
181
182 template <typename T>
183 void
184 generic_subrtx_iterator <T>::free_array (array_type &array)
185 {
186 vec_free (array.heap);
187 }
188
189 template <typename T>
190 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
191
192 template class generic_subrtx_iterator <const_rtx_accessor>;
193 template class generic_subrtx_iterator <rtx_var_accessor>;
194 template class generic_subrtx_iterator <rtx_ptr_accessor>;
195
196 /* Return 1 if the value of X is unstable
197 (would be different at a different point in the program).
198 The frame pointer, arg pointer, etc. are considered stable
199 (within one function) and so is anything marked `unchanging'. */
200
201 int
202 rtx_unstable_p (const_rtx x)
203 {
204 const RTX_CODE code = GET_CODE (x);
205 int i;
206 const char *fmt;
207
208 switch (code)
209 {
210 case MEM:
211 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
212
213 case CONST:
214 CASE_CONST_ANY:
215 case SYMBOL_REF:
216 case LABEL_REF:
217 return 0;
218
219 case REG:
220 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
221 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
222 /* The arg pointer varies if it is not a fixed register. */
223 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
224 return 0;
225 /* ??? When call-clobbered, the value is stable modulo the restore
226 that must happen after a call. This currently screws up local-alloc
227 into believing that the restore is not needed. */
228 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
229 return 0;
230 return 1;
231
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
235
236 /* Fall through. */
237
238 default:
239 break;
240 }
241
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
245 {
246 if (rtx_unstable_p (XEXP (x, i)))
247 return 1;
248 }
249 else if (fmt[i] == 'E')
250 {
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_unstable_p (XVECEXP (x, i, j)))
254 return 1;
255 }
256
257 return 0;
258 }
259
260 /* Return 1 if X has a value that can vary even between two
261 executions of the program. 0 means X can be compared reliably
262 against certain constants or near-constants.
263 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
264 zero, we are slightly more conservative.
265 The frame pointer and the arg pointer are considered constant. */
266
267 bool
268 rtx_varies_p (const_rtx x, bool for_alias)
269 {
270 RTX_CODE code;
271 int i;
272 const char *fmt;
273
274 if (!x)
275 return 0;
276
277 code = GET_CODE (x);
278 switch (code)
279 {
280 case MEM:
281 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
282
283 case CONST:
284 CASE_CONST_ANY:
285 case SYMBOL_REF:
286 case LABEL_REF:
287 return 0;
288
289 case REG:
290 /* Note that we have to test for the actual rtx used for the frame
291 and arg pointers and not just the register number in case we have
292 eliminated the frame and/or arg pointer and are using it
293 for pseudos. */
294 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
295 /* The arg pointer varies if it is not a fixed register. */
296 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
297 return 0;
298 if (x == pic_offset_table_rtx
299 /* ??? When call-clobbered, the value is stable modulo the restore
300 that must happen after a call. This currently screws up
301 local-alloc into believing that the restore is not needed, so we
302 must return 0 only if we are called from alias analysis. */
303 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
304 return 0;
305 return 1;
306
307 case LO_SUM:
308 /* The operand 0 of a LO_SUM is considered constant
309 (in fact it is related specifically to operand 1)
310 during alias analysis. */
311 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
312 || rtx_varies_p (XEXP (x, 1), for_alias);
313
314 case ASM_OPERANDS:
315 if (MEM_VOLATILE_P (x))
316 return 1;
317
318 /* Fall through. */
319
320 default:
321 break;
322 }
323
324 fmt = GET_RTX_FORMAT (code);
325 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
326 if (fmt[i] == 'e')
327 {
328 if (rtx_varies_p (XEXP (x, i), for_alias))
329 return 1;
330 }
331 else if (fmt[i] == 'E')
332 {
333 int j;
334 for (j = 0; j < XVECLEN (x, i); j++)
335 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
336 return 1;
337 }
338
339 return 0;
340 }
341
342 /* Compute an approximation for the offset between the register
343 FROM and TO for the current function, as it was at the start
344 of the routine. */
345
346 static HOST_WIDE_INT
347 get_initial_register_offset (int from, int to)
348 {
349 static const struct elim_table_t
350 {
351 const int from;
352 const int to;
353 } table[] = ELIMINABLE_REGS;
354 HOST_WIDE_INT offset1, offset2;
355 unsigned int i, j;
356
357 if (to == from)
358 return 0;
359
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed)
364 {
365 offset1 = crtl->outgoing_args_size + get_frame_size ();
366 #if !STACK_GROWS_DOWNWARD
367 offset1 = - offset1;
368 #endif
369 if (to == STACK_POINTER_REGNUM)
370 return offset1;
371 else if (from == STACK_POINTER_REGNUM)
372 return - offset1;
373 else
374 return 0;
375 }
376
377 for (i = 0; i < ARRAY_SIZE (table); i++)
378 if (table[i].from == from)
379 {
380 if (table[i].to == to)
381 {
382 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
383 offset1);
384 return offset1;
385 }
386 for (j = 0; j < ARRAY_SIZE (table); j++)
387 {
388 if (table[j].to == to
389 && table[j].from == table[i].to)
390 {
391 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
392 offset1);
393 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
394 offset2);
395 return offset1 + offset2;
396 }
397 if (table[j].from == to
398 && table[j].to == table[i].to)
399 {
400 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
401 offset1);
402 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
403 offset2);
404 return offset1 - offset2;
405 }
406 }
407 }
408 else if (table[i].to == from)
409 {
410 if (table[i].from == to)
411 {
412 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
413 offset1);
414 return - offset1;
415 }
416 for (j = 0; j < ARRAY_SIZE (table); j++)
417 {
418 if (table[j].to == to
419 && table[j].from == table[i].from)
420 {
421 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
422 offset1);
423 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
424 offset2);
425 return - offset1 + offset2;
426 }
427 if (table[j].from == to
428 && table[j].to == table[i].from)
429 {
430 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
431 offset1);
432 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
433 offset2);
434 return - offset1 - offset2;
435 }
436 }
437 }
438
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from == ARG_POINTER_REGNUM)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
443 else if (to == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
445 else if (from == HARD_FRAME_POINTER_REGNUM)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
447 else if (to == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
449 else
450 return 0;
451 }
452
453 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
454 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
455 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
456 references on strict alignment machines. */
457
458 static int
459 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
460 machine_mode mode, bool unaligned_mems)
461 {
462 enum rtx_code code = GET_CODE (x);
463
464 /* The offset must be a multiple of the mode size if we are considering
465 unaligned memory references on strict alignment machines. */
466 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
467 {
468 HOST_WIDE_INT actual_offset = offset;
469
470 #ifdef SPARC_STACK_BOUNDARY_HACK
471 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
472 the real alignment of %sp. However, when it does this, the
473 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
474 if (SPARC_STACK_BOUNDARY_HACK
475 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
476 actual_offset -= STACK_POINTER_OFFSET;
477 #endif
478
479 if (actual_offset % GET_MODE_SIZE (mode) != 0)
480 return 1;
481 }
482
483 switch (code)
484 {
485 case SYMBOL_REF:
486 if (SYMBOL_REF_WEAK (x))
487 return 1;
488 if (!CONSTANT_POOL_ADDRESS_P (x))
489 {
490 tree decl;
491 HOST_WIDE_INT decl_size;
492
493 if (offset < 0)
494 return 1;
495 if (size == 0)
496 size = GET_MODE_SIZE (mode);
497 if (size == 0)
498 return offset != 0;
499
500 /* If the size of the access or of the symbol is unknown,
501 assume the worst. */
502 decl = SYMBOL_REF_DECL (x);
503
504 /* Else check that the access is in bounds. TODO: restructure
505 expr_size/tree_expr_size/int_expr_size and just use the latter. */
506 if (!decl)
507 decl_size = -1;
508 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
509 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
510 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
511 : -1);
512 else if (TREE_CODE (decl) == STRING_CST)
513 decl_size = TREE_STRING_LENGTH (decl);
514 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
515 decl_size = int_size_in_bytes (TREE_TYPE (decl));
516 else
517 decl_size = -1;
518
519 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
520 }
521
522 return 0;
523
524 case LABEL_REF:
525 return 0;
526
527 case REG:
528 /* Stack references are assumed not to trap, but we need to deal with
529 nonsensical offsets. */
530 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
531 || x == stack_pointer_rtx
532 /* The arg pointer varies if it is not a fixed register. */
533 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
534 {
535 #ifdef RED_ZONE_SIZE
536 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
537 #else
538 HOST_WIDE_INT red_zone_size = 0;
539 #endif
540 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
541 / BITS_PER_UNIT;
542 HOST_WIDE_INT low_bound, high_bound;
543
544 if (size == 0)
545 size = GET_MODE_SIZE (mode);
546
547 if (x == frame_pointer_rtx)
548 {
549 if (FRAME_GROWS_DOWNWARD)
550 {
551 high_bound = STARTING_FRAME_OFFSET;
552 low_bound = high_bound - get_frame_size ();
553 }
554 else
555 {
556 low_bound = STARTING_FRAME_OFFSET;
557 high_bound = low_bound + get_frame_size ();
558 }
559 }
560 else if (x == hard_frame_pointer_rtx)
561 {
562 HOST_WIDE_INT sp_offset
563 = get_initial_register_offset (STACK_POINTER_REGNUM,
564 HARD_FRAME_POINTER_REGNUM);
565 HOST_WIDE_INT ap_offset
566 = get_initial_register_offset (ARG_POINTER_REGNUM,
567 HARD_FRAME_POINTER_REGNUM);
568
569 #if STACK_GROWS_DOWNWARD
570 low_bound = sp_offset - red_zone_size - stack_boundary;
571 high_bound = ap_offset
572 + FIRST_PARM_OFFSET (current_function_decl)
573 #if !ARGS_GROW_DOWNWARD
574 + crtl->args.size
575 #endif
576 + stack_boundary;
577 #else
578 high_bound = sp_offset + red_zone_size + stack_boundary;
579 low_bound = ap_offset
580 + FIRST_PARM_OFFSET (current_function_decl)
581 #if ARGS_GROW_DOWNWARD
582 - crtl->args.size
583 #endif
584 - stack_boundary;
585 #endif
586 }
587 else if (x == stack_pointer_rtx)
588 {
589 HOST_WIDE_INT ap_offset
590 = get_initial_register_offset (ARG_POINTER_REGNUM,
591 STACK_POINTER_REGNUM);
592
593 #if STACK_GROWS_DOWNWARD
594 low_bound = - red_zone_size - stack_boundary;
595 high_bound = ap_offset
596 + FIRST_PARM_OFFSET (current_function_decl)
597 #if !ARGS_GROW_DOWNWARD
598 + crtl->args.size
599 #endif
600 + stack_boundary;
601 #else
602 high_bound = red_zone_size + stack_boundary;
603 low_bound = ap_offset
604 + FIRST_PARM_OFFSET (current_function_decl)
605 #if ARGS_GROW_DOWNWARD
606 - crtl->args.size
607 #endif
608 - stack_boundary;
609 #endif
610 }
611 else
612 {
613 /* We assume that accesses are safe to at least the
614 next stack boundary.
615 Examples are varargs and __builtin_return_address. */
616 #if ARGS_GROW_DOWNWARD
617 high_bound = FIRST_PARM_OFFSET (current_function_decl)
618 + stack_boundary;
619 low_bound = FIRST_PARM_OFFSET (current_function_decl)
620 - crtl->args.size - stack_boundary;
621 #else
622 low_bound = FIRST_PARM_OFFSET (current_function_decl)
623 - stack_boundary;
624 high_bound = FIRST_PARM_OFFSET (current_function_decl)
625 + crtl->args.size + stack_boundary;
626 #endif
627 }
628
629 if (offset >= low_bound && offset <= high_bound - size)
630 return 0;
631 return 1;
632 }
633 /* All of the virtual frame registers are stack references. */
634 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
635 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
636 return 0;
637 return 1;
638
639 case CONST:
640 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
641 mode, unaligned_mems);
642
643 case PLUS:
644 /* An address is assumed not to trap if:
645 - it is the pic register plus a constant. */
646 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
647 return 0;
648
649 /* - or it is an address that can't trap plus a constant integer. */
650 if (CONST_INT_P (XEXP (x, 1))
651 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
652 size, mode, unaligned_mems))
653 return 0;
654
655 return 1;
656
657 case LO_SUM:
658 case PRE_MODIFY:
659 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
660 mode, unaligned_mems);
661
662 case PRE_DEC:
663 case PRE_INC:
664 case POST_DEC:
665 case POST_INC:
666 case POST_MODIFY:
667 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
668 mode, unaligned_mems);
669
670 default:
671 break;
672 }
673
674 /* If it isn't one of the case above, it can cause a trap. */
675 return 1;
676 }
677
678 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
679
680 int
681 rtx_addr_can_trap_p (const_rtx x)
682 {
683 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
684 }
685
686 /* Return true if X is an address that is known to not be zero. */
687
688 bool
689 nonzero_address_p (const_rtx x)
690 {
691 const enum rtx_code code = GET_CODE (x);
692
693 switch (code)
694 {
695 case SYMBOL_REF:
696 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
697
698 case LABEL_REF:
699 return true;
700
701 case REG:
702 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
703 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
704 || x == stack_pointer_rtx
705 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
706 return true;
707 /* All of the virtual frame registers are stack references. */
708 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
709 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
710 return true;
711 return false;
712
713 case CONST:
714 return nonzero_address_p (XEXP (x, 0));
715
716 case PLUS:
717 /* Handle PIC references. */
718 if (XEXP (x, 0) == pic_offset_table_rtx
719 && CONSTANT_P (XEXP (x, 1)))
720 return true;
721 return false;
722
723 case PRE_MODIFY:
724 /* Similar to the above; allow positive offsets. Further, since
725 auto-inc is only allowed in memories, the register must be a
726 pointer. */
727 if (CONST_INT_P (XEXP (x, 1))
728 && INTVAL (XEXP (x, 1)) > 0)
729 return true;
730 return nonzero_address_p (XEXP (x, 0));
731
732 case PRE_INC:
733 /* Similarly. Further, the offset is always positive. */
734 return true;
735
736 case PRE_DEC:
737 case POST_DEC:
738 case POST_INC:
739 case POST_MODIFY:
740 return nonzero_address_p (XEXP (x, 0));
741
742 case LO_SUM:
743 return nonzero_address_p (XEXP (x, 1));
744
745 default:
746 break;
747 }
748
749 /* If it isn't one of the case above, might be zero. */
750 return false;
751 }
752
753 /* Return 1 if X refers to a memory location whose address
754 cannot be compared reliably with constant addresses,
755 or if X refers to a BLKmode memory object.
756 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
757 zero, we are slightly more conservative. */
758
759 bool
760 rtx_addr_varies_p (const_rtx x, bool for_alias)
761 {
762 enum rtx_code code;
763 int i;
764 const char *fmt;
765
766 if (x == 0)
767 return 0;
768
769 code = GET_CODE (x);
770 if (code == MEM)
771 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
772
773 fmt = GET_RTX_FORMAT (code);
774 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
775 if (fmt[i] == 'e')
776 {
777 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
778 return 1;
779 }
780 else if (fmt[i] == 'E')
781 {
782 int j;
783 for (j = 0; j < XVECLEN (x, i); j++)
784 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
785 return 1;
786 }
787 return 0;
788 }
789 \f
790 /* Return the CALL in X if there is one. */
791
792 rtx
793 get_call_rtx_from (rtx x)
794 {
795 if (INSN_P (x))
796 x = PATTERN (x);
797 if (GET_CODE (x) == PARALLEL)
798 x = XVECEXP (x, 0, 0);
799 if (GET_CODE (x) == SET)
800 x = SET_SRC (x);
801 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
802 return x;
803 return NULL_RTX;
804 }
805 \f
806 /* Return the value of the integer term in X, if one is apparent;
807 otherwise return 0.
808 Only obvious integer terms are detected.
809 This is used in cse.c with the `related_value' field. */
810
811 HOST_WIDE_INT
812 get_integer_term (const_rtx x)
813 {
814 if (GET_CODE (x) == CONST)
815 x = XEXP (x, 0);
816
817 if (GET_CODE (x) == MINUS
818 && CONST_INT_P (XEXP (x, 1)))
819 return - INTVAL (XEXP (x, 1));
820 if (GET_CODE (x) == PLUS
821 && CONST_INT_P (XEXP (x, 1)))
822 return INTVAL (XEXP (x, 1));
823 return 0;
824 }
825
826 /* If X is a constant, return the value sans apparent integer term;
827 otherwise return 0.
828 Only obvious integer terms are detected. */
829
830 rtx
831 get_related_value (const_rtx x)
832 {
833 if (GET_CODE (x) != CONST)
834 return 0;
835 x = XEXP (x, 0);
836 if (GET_CODE (x) == PLUS
837 && CONST_INT_P (XEXP (x, 1)))
838 return XEXP (x, 0);
839 else if (GET_CODE (x) == MINUS
840 && CONST_INT_P (XEXP (x, 1)))
841 return XEXP (x, 0);
842 return 0;
843 }
844 \f
845 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
846 to somewhere in the same object or object_block as SYMBOL. */
847
848 bool
849 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
850 {
851 tree decl;
852
853 if (GET_CODE (symbol) != SYMBOL_REF)
854 return false;
855
856 if (offset == 0)
857 return true;
858
859 if (offset > 0)
860 {
861 if (CONSTANT_POOL_ADDRESS_P (symbol)
862 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
863 return true;
864
865 decl = SYMBOL_REF_DECL (symbol);
866 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
867 return true;
868 }
869
870 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
871 && SYMBOL_REF_BLOCK (symbol)
872 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
873 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
874 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
875 return true;
876
877 return false;
878 }
879
880 /* Split X into a base and a constant offset, storing them in *BASE_OUT
881 and *OFFSET_OUT respectively. */
882
883 void
884 split_const (rtx x, rtx *base_out, rtx *offset_out)
885 {
886 if (GET_CODE (x) == CONST)
887 {
888 x = XEXP (x, 0);
889 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
890 {
891 *base_out = XEXP (x, 0);
892 *offset_out = XEXP (x, 1);
893 return;
894 }
895 }
896 *base_out = x;
897 *offset_out = const0_rtx;
898 }
899 \f
900 /* Return the number of places FIND appears within X. If COUNT_DEST is
901 zero, we do not count occurrences inside the destination of a SET. */
902
903 int
904 count_occurrences (const_rtx x, const_rtx find, int count_dest)
905 {
906 int i, j;
907 enum rtx_code code;
908 const char *format_ptr;
909 int count;
910
911 if (x == find)
912 return 1;
913
914 code = GET_CODE (x);
915
916 switch (code)
917 {
918 case REG:
919 CASE_CONST_ANY:
920 case SYMBOL_REF:
921 case CODE_LABEL:
922 case PC:
923 case CC0:
924 return 0;
925
926 case EXPR_LIST:
927 count = count_occurrences (XEXP (x, 0), find, count_dest);
928 if (XEXP (x, 1))
929 count += count_occurrences (XEXP (x, 1), find, count_dest);
930 return count;
931
932 case MEM:
933 if (MEM_P (find) && rtx_equal_p (x, find))
934 return 1;
935 break;
936
937 case SET:
938 if (SET_DEST (x) == find && ! count_dest)
939 return count_occurrences (SET_SRC (x), find, count_dest);
940 break;
941
942 default:
943 break;
944 }
945
946 format_ptr = GET_RTX_FORMAT (code);
947 count = 0;
948
949 for (i = 0; i < GET_RTX_LENGTH (code); i++)
950 {
951 switch (*format_ptr++)
952 {
953 case 'e':
954 count += count_occurrences (XEXP (x, i), find, count_dest);
955 break;
956
957 case 'E':
958 for (j = 0; j < XVECLEN (x, i); j++)
959 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
960 break;
961 }
962 }
963 return count;
964 }
965
966 \f
967 /* Return TRUE if OP is a register or subreg of a register that
968 holds an unsigned quantity. Otherwise, return FALSE. */
969
970 bool
971 unsigned_reg_p (rtx op)
972 {
973 if (REG_P (op)
974 && REG_EXPR (op)
975 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
976 return true;
977
978 if (GET_CODE (op) == SUBREG
979 && SUBREG_PROMOTED_SIGN (op))
980 return true;
981
982 return false;
983 }
984
985 \f
986 /* Nonzero if register REG appears somewhere within IN.
987 Also works if REG is not a register; in this case it checks
988 for a subexpression of IN that is Lisp "equal" to REG. */
989
990 int
991 reg_mentioned_p (const_rtx reg, const_rtx in)
992 {
993 const char *fmt;
994 int i;
995 enum rtx_code code;
996
997 if (in == 0)
998 return 0;
999
1000 if (reg == in)
1001 return 1;
1002
1003 if (GET_CODE (in) == LABEL_REF)
1004 return reg == label_ref_label (in);
1005
1006 code = GET_CODE (in);
1007
1008 switch (code)
1009 {
1010 /* Compare registers by number. */
1011 case REG:
1012 return REG_P (reg) && REGNO (in) == REGNO (reg);
1013
1014 /* These codes have no constituent expressions
1015 and are unique. */
1016 case SCRATCH:
1017 case CC0:
1018 case PC:
1019 return 0;
1020
1021 CASE_CONST_ANY:
1022 /* These are kept unique for a given value. */
1023 return 0;
1024
1025 default:
1026 break;
1027 }
1028
1029 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1030 return 1;
1031
1032 fmt = GET_RTX_FORMAT (code);
1033
1034 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1035 {
1036 if (fmt[i] == 'E')
1037 {
1038 int j;
1039 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1040 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1041 return 1;
1042 }
1043 else if (fmt[i] == 'e'
1044 && reg_mentioned_p (reg, XEXP (in, i)))
1045 return 1;
1046 }
1047 return 0;
1048 }
1049 \f
1050 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1051 no CODE_LABEL insn. */
1052
1053 int
1054 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1055 {
1056 rtx_insn *p;
1057 if (beg == end)
1058 return 0;
1059 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1060 if (LABEL_P (p))
1061 return 0;
1062 return 1;
1063 }
1064
1065 /* Nonzero if register REG is used in an insn between
1066 FROM_INSN and TO_INSN (exclusive of those two). */
1067
1068 int
1069 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1070 const rtx_insn *to_insn)
1071 {
1072 rtx_insn *insn;
1073
1074 if (from_insn == to_insn)
1075 return 0;
1076
1077 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1078 if (NONDEBUG_INSN_P (insn)
1079 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1080 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1081 return 1;
1082 return 0;
1083 }
1084 \f
1085 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1086 is entirely replaced by a new value and the only use is as a SET_DEST,
1087 we do not consider it a reference. */
1088
1089 int
1090 reg_referenced_p (const_rtx x, const_rtx body)
1091 {
1092 int i;
1093
1094 switch (GET_CODE (body))
1095 {
1096 case SET:
1097 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1098 return 1;
1099
1100 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1101 of a REG that occupies all of the REG, the insn references X if
1102 it is mentioned in the destination. */
1103 if (GET_CODE (SET_DEST (body)) != CC0
1104 && GET_CODE (SET_DEST (body)) != PC
1105 && !REG_P (SET_DEST (body))
1106 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1107 && REG_P (SUBREG_REG (SET_DEST (body)))
1108 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1109 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1110 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1111 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1112 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1113 return 1;
1114 return 0;
1115
1116 case ASM_OPERANDS:
1117 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1118 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1119 return 1;
1120 return 0;
1121
1122 case CALL:
1123 case USE:
1124 case IF_THEN_ELSE:
1125 return reg_overlap_mentioned_p (x, body);
1126
1127 case TRAP_IF:
1128 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1129
1130 case PREFETCH:
1131 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1132
1133 case UNSPEC:
1134 case UNSPEC_VOLATILE:
1135 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1136 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1137 return 1;
1138 return 0;
1139
1140 case PARALLEL:
1141 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1142 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1143 return 1;
1144 return 0;
1145
1146 case CLOBBER:
1147 if (MEM_P (XEXP (body, 0)))
1148 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1149 return 1;
1150 return 0;
1151
1152 case COND_EXEC:
1153 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1154 return 1;
1155 return reg_referenced_p (x, COND_EXEC_CODE (body));
1156
1157 default:
1158 return 0;
1159 }
1160 }
1161 \f
1162 /* Nonzero if register REG is set or clobbered in an insn between
1163 FROM_INSN and TO_INSN (exclusive of those two). */
1164
1165 int
1166 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1167 const rtx_insn *to_insn)
1168 {
1169 const rtx_insn *insn;
1170
1171 if (from_insn == to_insn)
1172 return 0;
1173
1174 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn) && reg_set_p (reg, insn))
1176 return 1;
1177 return 0;
1178 }
1179
1180 /* Return true if REG is set or clobbered inside INSN. */
1181
1182 int
1183 reg_set_p (const_rtx reg, const_rtx insn)
1184 {
1185 /* After delay slot handling, call and branch insns might be in a
1186 sequence. Check all the elements there. */
1187 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1188 {
1189 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1190 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1191 return true;
1192
1193 return false;
1194 }
1195
1196 /* We can be passed an insn or part of one. If we are passed an insn,
1197 check if a side-effect of the insn clobbers REG. */
1198 if (INSN_P (insn)
1199 && (FIND_REG_INC_NOTE (insn, reg)
1200 || (CALL_P (insn)
1201 && ((REG_P (reg)
1202 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1203 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1204 GET_MODE (reg), REGNO (reg)))
1205 || MEM_P (reg)
1206 || find_reg_fusage (insn, CLOBBER, reg)))))
1207 return true;
1208
1209 return set_of (reg, insn) != NULL_RTX;
1210 }
1211
1212 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1213 only if none of them are modified between START and END. Return 1 if
1214 X contains a MEM; this routine does use memory aliasing. */
1215
1216 int
1217 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1218 {
1219 const enum rtx_code code = GET_CODE (x);
1220 const char *fmt;
1221 int i, j;
1222 rtx_insn *insn;
1223
1224 if (start == end)
1225 return 0;
1226
1227 switch (code)
1228 {
1229 CASE_CONST_ANY:
1230 case CONST:
1231 case SYMBOL_REF:
1232 case LABEL_REF:
1233 return 0;
1234
1235 case PC:
1236 case CC0:
1237 return 1;
1238
1239 case MEM:
1240 if (modified_between_p (XEXP (x, 0), start, end))
1241 return 1;
1242 if (MEM_READONLY_P (x))
1243 return 0;
1244 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1245 if (memory_modified_in_insn_p (x, insn))
1246 return 1;
1247 return 0;
1248
1249 case REG:
1250 return reg_set_between_p (x, start, end);
1251
1252 default:
1253 break;
1254 }
1255
1256 fmt = GET_RTX_FORMAT (code);
1257 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1258 {
1259 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1260 return 1;
1261
1262 else if (fmt[i] == 'E')
1263 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1264 if (modified_between_p (XVECEXP (x, i, j), start, end))
1265 return 1;
1266 }
1267
1268 return 0;
1269 }
1270
1271 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1272 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1273 does use memory aliasing. */
1274
1275 int
1276 modified_in_p (const_rtx x, const_rtx insn)
1277 {
1278 const enum rtx_code code = GET_CODE (x);
1279 const char *fmt;
1280 int i, j;
1281
1282 switch (code)
1283 {
1284 CASE_CONST_ANY:
1285 case CONST:
1286 case SYMBOL_REF:
1287 case LABEL_REF:
1288 return 0;
1289
1290 case PC:
1291 case CC0:
1292 return 1;
1293
1294 case MEM:
1295 if (modified_in_p (XEXP (x, 0), insn))
1296 return 1;
1297 if (MEM_READONLY_P (x))
1298 return 0;
1299 if (memory_modified_in_insn_p (x, insn))
1300 return 1;
1301 return 0;
1302
1303 case REG:
1304 return reg_set_p (x, insn);
1305
1306 default:
1307 break;
1308 }
1309
1310 fmt = GET_RTX_FORMAT (code);
1311 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1312 {
1313 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1314 return 1;
1315
1316 else if (fmt[i] == 'E')
1317 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1318 if (modified_in_p (XVECEXP (x, i, j), insn))
1319 return 1;
1320 }
1321
1322 return 0;
1323 }
1324 \f
1325 /* Helper function for set_of. */
1326 struct set_of_data
1327 {
1328 const_rtx found;
1329 const_rtx pat;
1330 };
1331
1332 static void
1333 set_of_1 (rtx x, const_rtx pat, void *data1)
1334 {
1335 struct set_of_data *const data = (struct set_of_data *) (data1);
1336 if (rtx_equal_p (x, data->pat)
1337 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1338 data->found = pat;
1339 }
1340
1341 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1342 (either directly or via STRICT_LOW_PART and similar modifiers). */
1343 const_rtx
1344 set_of (const_rtx pat, const_rtx insn)
1345 {
1346 struct set_of_data data;
1347 data.found = NULL_RTX;
1348 data.pat = pat;
1349 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1350 return data.found;
1351 }
1352
1353 /* Add all hard register in X to *PSET. */
1354 void
1355 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1356 {
1357 subrtx_iterator::array_type array;
1358 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1359 {
1360 const_rtx x = *iter;
1361 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1362 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1363 }
1364 }
1365
1366 /* This function, called through note_stores, collects sets and
1367 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1368 by DATA. */
1369 void
1370 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1371 {
1372 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1373 if (REG_P (x) && HARD_REGISTER_P (x))
1374 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1375 }
1376
1377 /* Examine INSN, and compute the set of hard registers written by it.
1378 Store it in *PSET. Should only be called after reload. */
1379 void
1380 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1381 {
1382 rtx link;
1383
1384 CLEAR_HARD_REG_SET (*pset);
1385 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1386 if (CALL_P (insn))
1387 {
1388 if (implicit)
1389 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1390
1391 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1392 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1393 }
1394 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1395 if (REG_NOTE_KIND (link) == REG_INC)
1396 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1397 }
1398
1399 /* Like record_hard_reg_sets, but called through note_uses. */
1400 void
1401 record_hard_reg_uses (rtx *px, void *data)
1402 {
1403 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1404 }
1405 \f
1406 /* Given an INSN, return a SET expression if this insn has only a single SET.
1407 It may also have CLOBBERs, USEs, or SET whose output
1408 will not be used, which we ignore. */
1409
1410 rtx
1411 single_set_2 (const rtx_insn *insn, const_rtx pat)
1412 {
1413 rtx set = NULL;
1414 int set_verified = 1;
1415 int i;
1416
1417 if (GET_CODE (pat) == PARALLEL)
1418 {
1419 for (i = 0; i < XVECLEN (pat, 0); i++)
1420 {
1421 rtx sub = XVECEXP (pat, 0, i);
1422 switch (GET_CODE (sub))
1423 {
1424 case USE:
1425 case CLOBBER:
1426 break;
1427
1428 case SET:
1429 /* We can consider insns having multiple sets, where all
1430 but one are dead as single set insns. In common case
1431 only single set is present in the pattern so we want
1432 to avoid checking for REG_UNUSED notes unless necessary.
1433
1434 When we reach set first time, we just expect this is
1435 the single set we are looking for and only when more
1436 sets are found in the insn, we check them. */
1437 if (!set_verified)
1438 {
1439 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1440 && !side_effects_p (set))
1441 set = NULL;
1442 else
1443 set_verified = 1;
1444 }
1445 if (!set)
1446 set = sub, set_verified = 0;
1447 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1448 || side_effects_p (sub))
1449 return NULL_RTX;
1450 break;
1451
1452 default:
1453 return NULL_RTX;
1454 }
1455 }
1456 }
1457 return set;
1458 }
1459
1460 /* Given an INSN, return nonzero if it has more than one SET, else return
1461 zero. */
1462
1463 int
1464 multiple_sets (const_rtx insn)
1465 {
1466 int found;
1467 int i;
1468
1469 /* INSN must be an insn. */
1470 if (! INSN_P (insn))
1471 return 0;
1472
1473 /* Only a PARALLEL can have multiple SETs. */
1474 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1475 {
1476 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1477 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1478 {
1479 /* If we have already found a SET, then return now. */
1480 if (found)
1481 return 1;
1482 else
1483 found = 1;
1484 }
1485 }
1486
1487 /* Either zero or one SET. */
1488 return 0;
1489 }
1490 \f
1491 /* Return nonzero if the destination of SET equals the source
1492 and there are no side effects. */
1493
1494 int
1495 set_noop_p (const_rtx set)
1496 {
1497 rtx src = SET_SRC (set);
1498 rtx dst = SET_DEST (set);
1499
1500 if (dst == pc_rtx && src == pc_rtx)
1501 return 1;
1502
1503 if (MEM_P (dst) && MEM_P (src))
1504 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1505
1506 if (GET_CODE (dst) == ZERO_EXTRACT)
1507 return rtx_equal_p (XEXP (dst, 0), src)
1508 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1509 && !side_effects_p (src);
1510
1511 if (GET_CODE (dst) == STRICT_LOW_PART)
1512 dst = XEXP (dst, 0);
1513
1514 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1515 {
1516 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1517 return 0;
1518 src = SUBREG_REG (src);
1519 dst = SUBREG_REG (dst);
1520 }
1521
1522 /* It is a NOOP if destination overlaps with selected src vector
1523 elements. */
1524 if (GET_CODE (src) == VEC_SELECT
1525 && REG_P (XEXP (src, 0)) && REG_P (dst)
1526 && HARD_REGISTER_P (XEXP (src, 0))
1527 && HARD_REGISTER_P (dst))
1528 {
1529 int i;
1530 rtx par = XEXP (src, 1);
1531 rtx src0 = XEXP (src, 0);
1532 int c0 = INTVAL (XVECEXP (par, 0, 0));
1533 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1534
1535 for (i = 1; i < XVECLEN (par, 0); i++)
1536 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1537 return 0;
1538 return
1539 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1540 offset, GET_MODE (dst)) == (int) REGNO (dst);
1541 }
1542
1543 return (REG_P (src) && REG_P (dst)
1544 && REGNO (src) == REGNO (dst));
1545 }
1546 \f
1547 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1548 value to itself. */
1549
1550 int
1551 noop_move_p (const rtx_insn *insn)
1552 {
1553 rtx pat = PATTERN (insn);
1554
1555 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1556 return 1;
1557
1558 /* Insns carrying these notes are useful later on. */
1559 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1560 return 0;
1561
1562 /* Check the code to be executed for COND_EXEC. */
1563 if (GET_CODE (pat) == COND_EXEC)
1564 pat = COND_EXEC_CODE (pat);
1565
1566 if (GET_CODE (pat) == SET && set_noop_p (pat))
1567 return 1;
1568
1569 if (GET_CODE (pat) == PARALLEL)
1570 {
1571 int i;
1572 /* If nothing but SETs of registers to themselves,
1573 this insn can also be deleted. */
1574 for (i = 0; i < XVECLEN (pat, 0); i++)
1575 {
1576 rtx tem = XVECEXP (pat, 0, i);
1577
1578 if (GET_CODE (tem) == USE
1579 || GET_CODE (tem) == CLOBBER)
1580 continue;
1581
1582 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1583 return 0;
1584 }
1585
1586 return 1;
1587 }
1588 return 0;
1589 }
1590 \f
1591
1592 /* Return nonzero if register in range [REGNO, ENDREGNO)
1593 appears either explicitly or implicitly in X
1594 other than being stored into.
1595
1596 References contained within the substructure at LOC do not count.
1597 LOC may be zero, meaning don't ignore anything. */
1598
1599 bool
1600 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1601 rtx *loc)
1602 {
1603 int i;
1604 unsigned int x_regno;
1605 RTX_CODE code;
1606 const char *fmt;
1607
1608 repeat:
1609 /* The contents of a REG_NONNEG note is always zero, so we must come here
1610 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1611 if (x == 0)
1612 return false;
1613
1614 code = GET_CODE (x);
1615
1616 switch (code)
1617 {
1618 case REG:
1619 x_regno = REGNO (x);
1620
1621 /* If we modifying the stack, frame, or argument pointer, it will
1622 clobber a virtual register. In fact, we could be more precise,
1623 but it isn't worth it. */
1624 if ((x_regno == STACK_POINTER_REGNUM
1625 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1626 && x_regno == ARG_POINTER_REGNUM)
1627 || x_regno == FRAME_POINTER_REGNUM)
1628 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1629 return true;
1630
1631 return endregno > x_regno && regno < END_REGNO (x);
1632
1633 case SUBREG:
1634 /* If this is a SUBREG of a hard reg, we can see exactly which
1635 registers are being modified. Otherwise, handle normally. */
1636 if (REG_P (SUBREG_REG (x))
1637 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1638 {
1639 unsigned int inner_regno = subreg_regno (x);
1640 unsigned int inner_endregno
1641 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1642 ? subreg_nregs (x) : 1);
1643
1644 return endregno > inner_regno && regno < inner_endregno;
1645 }
1646 break;
1647
1648 case CLOBBER:
1649 case SET:
1650 if (&SET_DEST (x) != loc
1651 /* Note setting a SUBREG counts as referring to the REG it is in for
1652 a pseudo but not for hard registers since we can
1653 treat each word individually. */
1654 && ((GET_CODE (SET_DEST (x)) == SUBREG
1655 && loc != &SUBREG_REG (SET_DEST (x))
1656 && REG_P (SUBREG_REG (SET_DEST (x)))
1657 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1658 && refers_to_regno_p (regno, endregno,
1659 SUBREG_REG (SET_DEST (x)), loc))
1660 || (!REG_P (SET_DEST (x))
1661 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1662 return true;
1663
1664 if (code == CLOBBER || loc == &SET_SRC (x))
1665 return false;
1666 x = SET_SRC (x);
1667 goto repeat;
1668
1669 default:
1670 break;
1671 }
1672
1673 /* X does not match, so try its subexpressions. */
1674
1675 fmt = GET_RTX_FORMAT (code);
1676 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1677 {
1678 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1679 {
1680 if (i == 0)
1681 {
1682 x = XEXP (x, 0);
1683 goto repeat;
1684 }
1685 else
1686 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1687 return true;
1688 }
1689 else if (fmt[i] == 'E')
1690 {
1691 int j;
1692 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1693 if (loc != &XVECEXP (x, i, j)
1694 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1695 return true;
1696 }
1697 }
1698 return false;
1699 }
1700
1701 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1702 we check if any register number in X conflicts with the relevant register
1703 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1704 contains a MEM (we don't bother checking for memory addresses that can't
1705 conflict because we expect this to be a rare case. */
1706
1707 int
1708 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1709 {
1710 unsigned int regno, endregno;
1711
1712 /* If either argument is a constant, then modifying X can not
1713 affect IN. Here we look at IN, we can profitably combine
1714 CONSTANT_P (x) with the switch statement below. */
1715 if (CONSTANT_P (in))
1716 return 0;
1717
1718 recurse:
1719 switch (GET_CODE (x))
1720 {
1721 case STRICT_LOW_PART:
1722 case ZERO_EXTRACT:
1723 case SIGN_EXTRACT:
1724 /* Overly conservative. */
1725 x = XEXP (x, 0);
1726 goto recurse;
1727
1728 case SUBREG:
1729 regno = REGNO (SUBREG_REG (x));
1730 if (regno < FIRST_PSEUDO_REGISTER)
1731 regno = subreg_regno (x);
1732 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1733 ? subreg_nregs (x) : 1);
1734 goto do_reg;
1735
1736 case REG:
1737 regno = REGNO (x);
1738 endregno = END_REGNO (x);
1739 do_reg:
1740 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1741
1742 case MEM:
1743 {
1744 const char *fmt;
1745 int i;
1746
1747 if (MEM_P (in))
1748 return 1;
1749
1750 fmt = GET_RTX_FORMAT (GET_CODE (in));
1751 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1752 if (fmt[i] == 'e')
1753 {
1754 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1755 return 1;
1756 }
1757 else if (fmt[i] == 'E')
1758 {
1759 int j;
1760 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1761 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1762 return 1;
1763 }
1764
1765 return 0;
1766 }
1767
1768 case SCRATCH:
1769 case PC:
1770 case CC0:
1771 return reg_mentioned_p (x, in);
1772
1773 case PARALLEL:
1774 {
1775 int i;
1776
1777 /* If any register in here refers to it we return true. */
1778 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1779 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1780 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1781 return 1;
1782 return 0;
1783 }
1784
1785 default:
1786 gcc_assert (CONSTANT_P (x));
1787 return 0;
1788 }
1789 }
1790 \f
1791 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1792 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1793 ignored by note_stores, but passed to FUN.
1794
1795 FUN receives three arguments:
1796 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1797 2. the SET or CLOBBER rtx that does the store,
1798 3. the pointer DATA provided to note_stores.
1799
1800 If the item being stored in or clobbered is a SUBREG of a hard register,
1801 the SUBREG will be passed. */
1802
1803 void
1804 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1805 {
1806 int i;
1807
1808 if (GET_CODE (x) == COND_EXEC)
1809 x = COND_EXEC_CODE (x);
1810
1811 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1812 {
1813 rtx dest = SET_DEST (x);
1814
1815 while ((GET_CODE (dest) == SUBREG
1816 && (!REG_P (SUBREG_REG (dest))
1817 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1818 || GET_CODE (dest) == ZERO_EXTRACT
1819 || GET_CODE (dest) == STRICT_LOW_PART)
1820 dest = XEXP (dest, 0);
1821
1822 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1823 each of whose first operand is a register. */
1824 if (GET_CODE (dest) == PARALLEL)
1825 {
1826 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1827 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1828 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1829 }
1830 else
1831 (*fun) (dest, x, data);
1832 }
1833
1834 else if (GET_CODE (x) == PARALLEL)
1835 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1836 note_stores (XVECEXP (x, 0, i), fun, data);
1837 }
1838 \f
1839 /* Like notes_stores, but call FUN for each expression that is being
1840 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1841 FUN for each expression, not any interior subexpressions. FUN receives a
1842 pointer to the expression and the DATA passed to this function.
1843
1844 Note that this is not quite the same test as that done in reg_referenced_p
1845 since that considers something as being referenced if it is being
1846 partially set, while we do not. */
1847
1848 void
1849 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1850 {
1851 rtx body = *pbody;
1852 int i;
1853
1854 switch (GET_CODE (body))
1855 {
1856 case COND_EXEC:
1857 (*fun) (&COND_EXEC_TEST (body), data);
1858 note_uses (&COND_EXEC_CODE (body), fun, data);
1859 return;
1860
1861 case PARALLEL:
1862 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1863 note_uses (&XVECEXP (body, 0, i), fun, data);
1864 return;
1865
1866 case SEQUENCE:
1867 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1868 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1869 return;
1870
1871 case USE:
1872 (*fun) (&XEXP (body, 0), data);
1873 return;
1874
1875 case ASM_OPERANDS:
1876 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1877 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1878 return;
1879
1880 case TRAP_IF:
1881 (*fun) (&TRAP_CONDITION (body), data);
1882 return;
1883
1884 case PREFETCH:
1885 (*fun) (&XEXP (body, 0), data);
1886 return;
1887
1888 case UNSPEC:
1889 case UNSPEC_VOLATILE:
1890 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1891 (*fun) (&XVECEXP (body, 0, i), data);
1892 return;
1893
1894 case CLOBBER:
1895 if (MEM_P (XEXP (body, 0)))
1896 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1897 return;
1898
1899 case SET:
1900 {
1901 rtx dest = SET_DEST (body);
1902
1903 /* For sets we replace everything in source plus registers in memory
1904 expression in store and operands of a ZERO_EXTRACT. */
1905 (*fun) (&SET_SRC (body), data);
1906
1907 if (GET_CODE (dest) == ZERO_EXTRACT)
1908 {
1909 (*fun) (&XEXP (dest, 1), data);
1910 (*fun) (&XEXP (dest, 2), data);
1911 }
1912
1913 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1914 dest = XEXP (dest, 0);
1915
1916 if (MEM_P (dest))
1917 (*fun) (&XEXP (dest, 0), data);
1918 }
1919 return;
1920
1921 default:
1922 /* All the other possibilities never store. */
1923 (*fun) (pbody, data);
1924 return;
1925 }
1926 }
1927 \f
1928 /* Return nonzero if X's old contents don't survive after INSN.
1929 This will be true if X is (cc0) or if X is a register and
1930 X dies in INSN or because INSN entirely sets X.
1931
1932 "Entirely set" means set directly and not through a SUBREG, or
1933 ZERO_EXTRACT, so no trace of the old contents remains.
1934 Likewise, REG_INC does not count.
1935
1936 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1937 but for this use that makes no difference, since regs don't overlap
1938 during their lifetimes. Therefore, this function may be used
1939 at any time after deaths have been computed.
1940
1941 If REG is a hard reg that occupies multiple machine registers, this
1942 function will only return 1 if each of those registers will be replaced
1943 by INSN. */
1944
1945 int
1946 dead_or_set_p (const_rtx insn, const_rtx x)
1947 {
1948 unsigned int regno, end_regno;
1949 unsigned int i;
1950
1951 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1952 if (GET_CODE (x) == CC0)
1953 return 1;
1954
1955 gcc_assert (REG_P (x));
1956
1957 regno = REGNO (x);
1958 end_regno = END_REGNO (x);
1959 for (i = regno; i < end_regno; i++)
1960 if (! dead_or_set_regno_p (insn, i))
1961 return 0;
1962
1963 return 1;
1964 }
1965
1966 /* Return TRUE iff DEST is a register or subreg of a register and
1967 doesn't change the number of words of the inner register, and any
1968 part of the register is TEST_REGNO. */
1969
1970 static bool
1971 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1972 {
1973 unsigned int regno, endregno;
1974
1975 if (GET_CODE (dest) == SUBREG
1976 && (((GET_MODE_SIZE (GET_MODE (dest))
1977 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1978 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1979 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1980 dest = SUBREG_REG (dest);
1981
1982 if (!REG_P (dest))
1983 return false;
1984
1985 regno = REGNO (dest);
1986 endregno = END_REGNO (dest);
1987 return (test_regno >= regno && test_regno < endregno);
1988 }
1989
1990 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1991 any member matches the covers_regno_no_parallel_p criteria. */
1992
1993 static bool
1994 covers_regno_p (const_rtx dest, unsigned int test_regno)
1995 {
1996 if (GET_CODE (dest) == PARALLEL)
1997 {
1998 /* Some targets place small structures in registers for return
1999 values of functions, and those registers are wrapped in
2000 PARALLELs that we may see as the destination of a SET. */
2001 int i;
2002
2003 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2004 {
2005 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2006 if (inner != NULL_RTX
2007 && covers_regno_no_parallel_p (inner, test_regno))
2008 return true;
2009 }
2010
2011 return false;
2012 }
2013 else
2014 return covers_regno_no_parallel_p (dest, test_regno);
2015 }
2016
2017 /* Utility function for dead_or_set_p to check an individual register. */
2018
2019 int
2020 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2021 {
2022 const_rtx pattern;
2023
2024 /* See if there is a death note for something that includes TEST_REGNO. */
2025 if (find_regno_note (insn, REG_DEAD, test_regno))
2026 return 1;
2027
2028 if (CALL_P (insn)
2029 && find_regno_fusage (insn, CLOBBER, test_regno))
2030 return 1;
2031
2032 pattern = PATTERN (insn);
2033
2034 /* If a COND_EXEC is not executed, the value survives. */
2035 if (GET_CODE (pattern) == COND_EXEC)
2036 return 0;
2037
2038 if (GET_CODE (pattern) == SET)
2039 return covers_regno_p (SET_DEST (pattern), test_regno);
2040 else if (GET_CODE (pattern) == PARALLEL)
2041 {
2042 int i;
2043
2044 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2045 {
2046 rtx body = XVECEXP (pattern, 0, i);
2047
2048 if (GET_CODE (body) == COND_EXEC)
2049 body = COND_EXEC_CODE (body);
2050
2051 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2052 && covers_regno_p (SET_DEST (body), test_regno))
2053 return 1;
2054 }
2055 }
2056
2057 return 0;
2058 }
2059
2060 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2061 If DATUM is nonzero, look for one whose datum is DATUM. */
2062
2063 rtx
2064 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2065 {
2066 rtx link;
2067
2068 gcc_checking_assert (insn);
2069
2070 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2071 if (! INSN_P (insn))
2072 return 0;
2073 if (datum == 0)
2074 {
2075 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2076 if (REG_NOTE_KIND (link) == kind)
2077 return link;
2078 return 0;
2079 }
2080
2081 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2082 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2083 return link;
2084 return 0;
2085 }
2086
2087 /* Return the reg-note of kind KIND in insn INSN which applies to register
2088 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2089 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2090 it might be the case that the note overlaps REGNO. */
2091
2092 rtx
2093 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2094 {
2095 rtx link;
2096
2097 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2098 if (! INSN_P (insn))
2099 return 0;
2100
2101 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2102 if (REG_NOTE_KIND (link) == kind
2103 /* Verify that it is a register, so that scratch and MEM won't cause a
2104 problem here. */
2105 && REG_P (XEXP (link, 0))
2106 && REGNO (XEXP (link, 0)) <= regno
2107 && END_REGNO (XEXP (link, 0)) > regno)
2108 return link;
2109 return 0;
2110 }
2111
2112 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2113 has such a note. */
2114
2115 rtx
2116 find_reg_equal_equiv_note (const_rtx insn)
2117 {
2118 rtx link;
2119
2120 if (!INSN_P (insn))
2121 return 0;
2122
2123 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2124 if (REG_NOTE_KIND (link) == REG_EQUAL
2125 || REG_NOTE_KIND (link) == REG_EQUIV)
2126 {
2127 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2128 insns that have multiple sets. Checking single_set to
2129 make sure of this is not the proper check, as explained
2130 in the comment in set_unique_reg_note.
2131
2132 This should be changed into an assert. */
2133 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2134 return 0;
2135 return link;
2136 }
2137 return NULL;
2138 }
2139
2140 /* Check whether INSN is a single_set whose source is known to be
2141 equivalent to a constant. Return that constant if so, otherwise
2142 return null. */
2143
2144 rtx
2145 find_constant_src (const rtx_insn *insn)
2146 {
2147 rtx note, set, x;
2148
2149 set = single_set (insn);
2150 if (set)
2151 {
2152 x = avoid_constant_pool_reference (SET_SRC (set));
2153 if (CONSTANT_P (x))
2154 return x;
2155 }
2156
2157 note = find_reg_equal_equiv_note (insn);
2158 if (note && CONSTANT_P (XEXP (note, 0)))
2159 return XEXP (note, 0);
2160
2161 return NULL_RTX;
2162 }
2163
2164 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2165 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2166
2167 int
2168 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2169 {
2170 /* If it's not a CALL_INSN, it can't possibly have a
2171 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2172 if (!CALL_P (insn))
2173 return 0;
2174
2175 gcc_assert (datum);
2176
2177 if (!REG_P (datum))
2178 {
2179 rtx link;
2180
2181 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2182 link;
2183 link = XEXP (link, 1))
2184 if (GET_CODE (XEXP (link, 0)) == code
2185 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2186 return 1;
2187 }
2188 else
2189 {
2190 unsigned int regno = REGNO (datum);
2191
2192 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2193 to pseudo registers, so don't bother checking. */
2194
2195 if (regno < FIRST_PSEUDO_REGISTER)
2196 {
2197 unsigned int end_regno = END_REGNO (datum);
2198 unsigned int i;
2199
2200 for (i = regno; i < end_regno; i++)
2201 if (find_regno_fusage (insn, code, i))
2202 return 1;
2203 }
2204 }
2205
2206 return 0;
2207 }
2208
2209 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2210 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2211
2212 int
2213 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2214 {
2215 rtx link;
2216
2217 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2218 to pseudo registers, so don't bother checking. */
2219
2220 if (regno >= FIRST_PSEUDO_REGISTER
2221 || !CALL_P (insn) )
2222 return 0;
2223
2224 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2225 {
2226 rtx op, reg;
2227
2228 if (GET_CODE (op = XEXP (link, 0)) == code
2229 && REG_P (reg = XEXP (op, 0))
2230 && REGNO (reg) <= regno
2231 && END_REGNO (reg) > regno)
2232 return 1;
2233 }
2234
2235 return 0;
2236 }
2237
2238 \f
2239 /* Return true if KIND is an integer REG_NOTE. */
2240
2241 static bool
2242 int_reg_note_p (enum reg_note kind)
2243 {
2244 return kind == REG_BR_PROB;
2245 }
2246
2247 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2248 stored as the pointer to the next register note. */
2249
2250 rtx
2251 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2252 {
2253 rtx note;
2254
2255 gcc_checking_assert (!int_reg_note_p (kind));
2256 switch (kind)
2257 {
2258 case REG_CC_SETTER:
2259 case REG_CC_USER:
2260 case REG_LABEL_TARGET:
2261 case REG_LABEL_OPERAND:
2262 case REG_TM:
2263 /* These types of register notes use an INSN_LIST rather than an
2264 EXPR_LIST, so that copying is done right and dumps look
2265 better. */
2266 note = alloc_INSN_LIST (datum, list);
2267 PUT_REG_NOTE_KIND (note, kind);
2268 break;
2269
2270 default:
2271 note = alloc_EXPR_LIST (kind, datum, list);
2272 break;
2273 }
2274
2275 return note;
2276 }
2277
2278 /* Add register note with kind KIND and datum DATUM to INSN. */
2279
2280 void
2281 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2282 {
2283 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2284 }
2285
2286 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2287
2288 void
2289 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2290 {
2291 gcc_checking_assert (int_reg_note_p (kind));
2292 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2293 datum, REG_NOTES (insn));
2294 }
2295
2296 /* Add a register note like NOTE to INSN. */
2297
2298 void
2299 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2300 {
2301 if (GET_CODE (note) == INT_LIST)
2302 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2303 else
2304 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2305 }
2306
2307 /* Remove register note NOTE from the REG_NOTES of INSN. */
2308
2309 void
2310 remove_note (rtx_insn *insn, const_rtx note)
2311 {
2312 rtx link;
2313
2314 if (note == NULL_RTX)
2315 return;
2316
2317 if (REG_NOTES (insn) == note)
2318 REG_NOTES (insn) = XEXP (note, 1);
2319 else
2320 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2321 if (XEXP (link, 1) == note)
2322 {
2323 XEXP (link, 1) = XEXP (note, 1);
2324 break;
2325 }
2326
2327 switch (REG_NOTE_KIND (note))
2328 {
2329 case REG_EQUAL:
2330 case REG_EQUIV:
2331 df_notes_rescan (insn);
2332 break;
2333 default:
2334 break;
2335 }
2336 }
2337
2338 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2339
2340 void
2341 remove_reg_equal_equiv_notes (rtx_insn *insn)
2342 {
2343 rtx *loc;
2344
2345 loc = &REG_NOTES (insn);
2346 while (*loc)
2347 {
2348 enum reg_note kind = REG_NOTE_KIND (*loc);
2349 if (kind == REG_EQUAL || kind == REG_EQUIV)
2350 *loc = XEXP (*loc, 1);
2351 else
2352 loc = &XEXP (*loc, 1);
2353 }
2354 }
2355
2356 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2357
2358 void
2359 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2360 {
2361 df_ref eq_use;
2362
2363 if (!df)
2364 return;
2365
2366 /* This loop is a little tricky. We cannot just go down the chain because
2367 it is being modified by some actions in the loop. So we just iterate
2368 over the head. We plan to drain the list anyway. */
2369 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2370 {
2371 rtx_insn *insn = DF_REF_INSN (eq_use);
2372 rtx note = find_reg_equal_equiv_note (insn);
2373
2374 /* This assert is generally triggered when someone deletes a REG_EQUAL
2375 or REG_EQUIV note by hacking the list manually rather than calling
2376 remove_note. */
2377 gcc_assert (note);
2378
2379 remove_note (insn, note);
2380 }
2381 }
2382
2383 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2384 return 1 if it is found. A simple equality test is used to determine if
2385 NODE matches. */
2386
2387 bool
2388 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2389 {
2390 const_rtx x;
2391
2392 for (x = listp; x; x = XEXP (x, 1))
2393 if (node == XEXP (x, 0))
2394 return true;
2395
2396 return false;
2397 }
2398
2399 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2400 remove that entry from the list if it is found.
2401
2402 A simple equality test is used to determine if NODE matches. */
2403
2404 void
2405 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2406 {
2407 rtx_expr_list *temp = *listp;
2408 rtx_expr_list *prev = NULL;
2409
2410 while (temp)
2411 {
2412 if (node == temp->element ())
2413 {
2414 /* Splice the node out of the list. */
2415 if (prev)
2416 XEXP (prev, 1) = temp->next ();
2417 else
2418 *listp = temp->next ();
2419
2420 return;
2421 }
2422
2423 prev = temp;
2424 temp = temp->next ();
2425 }
2426 }
2427
2428 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2429 remove that entry from the list if it is found.
2430
2431 A simple equality test is used to determine if NODE matches. */
2432
2433 void
2434 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2435 {
2436 rtx_insn_list *temp = *listp;
2437 rtx_insn_list *prev = NULL;
2438
2439 while (temp)
2440 {
2441 if (node == temp->insn ())
2442 {
2443 /* Splice the node out of the list. */
2444 if (prev)
2445 XEXP (prev, 1) = temp->next ();
2446 else
2447 *listp = temp->next ();
2448
2449 return;
2450 }
2451
2452 prev = temp;
2453 temp = temp->next ();
2454 }
2455 }
2456 \f
2457 /* Nonzero if X contains any volatile instructions. These are instructions
2458 which may cause unpredictable machine state instructions, and thus no
2459 instructions or register uses should be moved or combined across them.
2460 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2461
2462 int
2463 volatile_insn_p (const_rtx x)
2464 {
2465 const RTX_CODE code = GET_CODE (x);
2466 switch (code)
2467 {
2468 case LABEL_REF:
2469 case SYMBOL_REF:
2470 case CONST:
2471 CASE_CONST_ANY:
2472 case CC0:
2473 case PC:
2474 case REG:
2475 case SCRATCH:
2476 case CLOBBER:
2477 case ADDR_VEC:
2478 case ADDR_DIFF_VEC:
2479 case CALL:
2480 case MEM:
2481 return 0;
2482
2483 case UNSPEC_VOLATILE:
2484 return 1;
2485
2486 case ASM_INPUT:
2487 case ASM_OPERANDS:
2488 if (MEM_VOLATILE_P (x))
2489 return 1;
2490
2491 default:
2492 break;
2493 }
2494
2495 /* Recursively scan the operands of this expression. */
2496
2497 {
2498 const char *const fmt = GET_RTX_FORMAT (code);
2499 int i;
2500
2501 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2502 {
2503 if (fmt[i] == 'e')
2504 {
2505 if (volatile_insn_p (XEXP (x, i)))
2506 return 1;
2507 }
2508 else if (fmt[i] == 'E')
2509 {
2510 int j;
2511 for (j = 0; j < XVECLEN (x, i); j++)
2512 if (volatile_insn_p (XVECEXP (x, i, j)))
2513 return 1;
2514 }
2515 }
2516 }
2517 return 0;
2518 }
2519
2520 /* Nonzero if X contains any volatile memory references
2521 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2522
2523 int
2524 volatile_refs_p (const_rtx x)
2525 {
2526 const RTX_CODE code = GET_CODE (x);
2527 switch (code)
2528 {
2529 case LABEL_REF:
2530 case SYMBOL_REF:
2531 case CONST:
2532 CASE_CONST_ANY:
2533 case CC0:
2534 case PC:
2535 case REG:
2536 case SCRATCH:
2537 case CLOBBER:
2538 case ADDR_VEC:
2539 case ADDR_DIFF_VEC:
2540 return 0;
2541
2542 case UNSPEC_VOLATILE:
2543 return 1;
2544
2545 case MEM:
2546 case ASM_INPUT:
2547 case ASM_OPERANDS:
2548 if (MEM_VOLATILE_P (x))
2549 return 1;
2550
2551 default:
2552 break;
2553 }
2554
2555 /* Recursively scan the operands of this expression. */
2556
2557 {
2558 const char *const fmt = GET_RTX_FORMAT (code);
2559 int i;
2560
2561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2562 {
2563 if (fmt[i] == 'e')
2564 {
2565 if (volatile_refs_p (XEXP (x, i)))
2566 return 1;
2567 }
2568 else if (fmt[i] == 'E')
2569 {
2570 int j;
2571 for (j = 0; j < XVECLEN (x, i); j++)
2572 if (volatile_refs_p (XVECEXP (x, i, j)))
2573 return 1;
2574 }
2575 }
2576 }
2577 return 0;
2578 }
2579
2580 /* Similar to above, except that it also rejects register pre- and post-
2581 incrementing. */
2582
2583 int
2584 side_effects_p (const_rtx x)
2585 {
2586 const RTX_CODE code = GET_CODE (x);
2587 switch (code)
2588 {
2589 case LABEL_REF:
2590 case SYMBOL_REF:
2591 case CONST:
2592 CASE_CONST_ANY:
2593 case CC0:
2594 case PC:
2595 case REG:
2596 case SCRATCH:
2597 case ADDR_VEC:
2598 case ADDR_DIFF_VEC:
2599 case VAR_LOCATION:
2600 return 0;
2601
2602 case CLOBBER:
2603 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2604 when some combination can't be done. If we see one, don't think
2605 that we can simplify the expression. */
2606 return (GET_MODE (x) != VOIDmode);
2607
2608 case PRE_INC:
2609 case PRE_DEC:
2610 case POST_INC:
2611 case POST_DEC:
2612 case PRE_MODIFY:
2613 case POST_MODIFY:
2614 case CALL:
2615 case UNSPEC_VOLATILE:
2616 return 1;
2617
2618 case MEM:
2619 case ASM_INPUT:
2620 case ASM_OPERANDS:
2621 if (MEM_VOLATILE_P (x))
2622 return 1;
2623
2624 default:
2625 break;
2626 }
2627
2628 /* Recursively scan the operands of this expression. */
2629
2630 {
2631 const char *fmt = GET_RTX_FORMAT (code);
2632 int i;
2633
2634 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2635 {
2636 if (fmt[i] == 'e')
2637 {
2638 if (side_effects_p (XEXP (x, i)))
2639 return 1;
2640 }
2641 else if (fmt[i] == 'E')
2642 {
2643 int j;
2644 for (j = 0; j < XVECLEN (x, i); j++)
2645 if (side_effects_p (XVECEXP (x, i, j)))
2646 return 1;
2647 }
2648 }
2649 }
2650 return 0;
2651 }
2652 \f
2653 /* Return nonzero if evaluating rtx X might cause a trap.
2654 FLAGS controls how to consider MEMs. A nonzero means the context
2655 of the access may have changed from the original, such that the
2656 address may have become invalid. */
2657
2658 int
2659 may_trap_p_1 (const_rtx x, unsigned flags)
2660 {
2661 int i;
2662 enum rtx_code code;
2663 const char *fmt;
2664
2665 /* We make no distinction currently, but this function is part of
2666 the internal target-hooks ABI so we keep the parameter as
2667 "unsigned flags". */
2668 bool code_changed = flags != 0;
2669
2670 if (x == 0)
2671 return 0;
2672 code = GET_CODE (x);
2673 switch (code)
2674 {
2675 /* Handle these cases quickly. */
2676 CASE_CONST_ANY:
2677 case SYMBOL_REF:
2678 case LABEL_REF:
2679 case CONST:
2680 case PC:
2681 case CC0:
2682 case REG:
2683 case SCRATCH:
2684 return 0;
2685
2686 case UNSPEC:
2687 return targetm.unspec_may_trap_p (x, flags);
2688
2689 case UNSPEC_VOLATILE:
2690 case ASM_INPUT:
2691 case TRAP_IF:
2692 return 1;
2693
2694 case ASM_OPERANDS:
2695 return MEM_VOLATILE_P (x);
2696
2697 /* Memory ref can trap unless it's a static var or a stack slot. */
2698 case MEM:
2699 /* Recognize specific pattern of stack checking probes. */
2700 if (flag_stack_check
2701 && MEM_VOLATILE_P (x)
2702 && XEXP (x, 0) == stack_pointer_rtx)
2703 return 1;
2704 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2705 reference; moving it out of context such as when moving code
2706 when optimizing, might cause its address to become invalid. */
2707 code_changed
2708 || !MEM_NOTRAP_P (x))
2709 {
2710 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2711 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2712 GET_MODE (x), code_changed);
2713 }
2714
2715 return 0;
2716
2717 /* Division by a non-constant might trap. */
2718 case DIV:
2719 case MOD:
2720 case UDIV:
2721 case UMOD:
2722 if (HONOR_SNANS (x))
2723 return 1;
2724 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2725 return flag_trapping_math;
2726 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2727 return 1;
2728 break;
2729
2730 case EXPR_LIST:
2731 /* An EXPR_LIST is used to represent a function call. This
2732 certainly may trap. */
2733 return 1;
2734
2735 case GE:
2736 case GT:
2737 case LE:
2738 case LT:
2739 case LTGT:
2740 case COMPARE:
2741 /* Some floating point comparisons may trap. */
2742 if (!flag_trapping_math)
2743 break;
2744 /* ??? There is no machine independent way to check for tests that trap
2745 when COMPARE is used, though many targets do make this distinction.
2746 For instance, sparc uses CCFPE for compares which generate exceptions
2747 and CCFP for compares which do not generate exceptions. */
2748 if (HONOR_NANS (x))
2749 return 1;
2750 /* But often the compare has some CC mode, so check operand
2751 modes as well. */
2752 if (HONOR_NANS (XEXP (x, 0))
2753 || HONOR_NANS (XEXP (x, 1)))
2754 return 1;
2755 break;
2756
2757 case EQ:
2758 case NE:
2759 if (HONOR_SNANS (x))
2760 return 1;
2761 /* Often comparison is CC mode, so check operand modes. */
2762 if (HONOR_SNANS (XEXP (x, 0))
2763 || HONOR_SNANS (XEXP (x, 1)))
2764 return 1;
2765 break;
2766
2767 case FIX:
2768 /* Conversion of floating point might trap. */
2769 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2770 return 1;
2771 break;
2772
2773 case NEG:
2774 case ABS:
2775 case SUBREG:
2776 /* These operations don't trap even with floating point. */
2777 break;
2778
2779 default:
2780 /* Any floating arithmetic may trap. */
2781 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2782 return 1;
2783 }
2784
2785 fmt = GET_RTX_FORMAT (code);
2786 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2787 {
2788 if (fmt[i] == 'e')
2789 {
2790 if (may_trap_p_1 (XEXP (x, i), flags))
2791 return 1;
2792 }
2793 else if (fmt[i] == 'E')
2794 {
2795 int j;
2796 for (j = 0; j < XVECLEN (x, i); j++)
2797 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2798 return 1;
2799 }
2800 }
2801 return 0;
2802 }
2803
2804 /* Return nonzero if evaluating rtx X might cause a trap. */
2805
2806 int
2807 may_trap_p (const_rtx x)
2808 {
2809 return may_trap_p_1 (x, 0);
2810 }
2811
2812 /* Same as above, but additionally return nonzero if evaluating rtx X might
2813 cause a fault. We define a fault for the purpose of this function as a
2814 erroneous execution condition that cannot be encountered during the normal
2815 execution of a valid program; the typical example is an unaligned memory
2816 access on a strict alignment machine. The compiler guarantees that it
2817 doesn't generate code that will fault from a valid program, but this
2818 guarantee doesn't mean anything for individual instructions. Consider
2819 the following example:
2820
2821 struct S { int d; union { char *cp; int *ip; }; };
2822
2823 int foo(struct S *s)
2824 {
2825 if (s->d == 1)
2826 return *s->ip;
2827 else
2828 return *s->cp;
2829 }
2830
2831 on a strict alignment machine. In a valid program, foo will never be
2832 invoked on a structure for which d is equal to 1 and the underlying
2833 unique field of the union not aligned on a 4-byte boundary, but the
2834 expression *s->ip might cause a fault if considered individually.
2835
2836 At the RTL level, potentially problematic expressions will almost always
2837 verify may_trap_p; for example, the above dereference can be emitted as
2838 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2839 However, suppose that foo is inlined in a caller that causes s->cp to
2840 point to a local character variable and guarantees that s->d is not set
2841 to 1; foo may have been effectively translated into pseudo-RTL as:
2842
2843 if ((reg:SI) == 1)
2844 (set (reg:SI) (mem:SI (%fp - 7)))
2845 else
2846 (set (reg:QI) (mem:QI (%fp - 7)))
2847
2848 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2849 memory reference to a stack slot, but it will certainly cause a fault
2850 on a strict alignment machine. */
2851
2852 int
2853 may_trap_or_fault_p (const_rtx x)
2854 {
2855 return may_trap_p_1 (x, 1);
2856 }
2857 \f
2858 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2859 i.e., an inequality. */
2860
2861 int
2862 inequality_comparisons_p (const_rtx x)
2863 {
2864 const char *fmt;
2865 int len, i;
2866 const enum rtx_code code = GET_CODE (x);
2867
2868 switch (code)
2869 {
2870 case REG:
2871 case SCRATCH:
2872 case PC:
2873 case CC0:
2874 CASE_CONST_ANY:
2875 case CONST:
2876 case LABEL_REF:
2877 case SYMBOL_REF:
2878 return 0;
2879
2880 case LT:
2881 case LTU:
2882 case GT:
2883 case GTU:
2884 case LE:
2885 case LEU:
2886 case GE:
2887 case GEU:
2888 return 1;
2889
2890 default:
2891 break;
2892 }
2893
2894 len = GET_RTX_LENGTH (code);
2895 fmt = GET_RTX_FORMAT (code);
2896
2897 for (i = 0; i < len; i++)
2898 {
2899 if (fmt[i] == 'e')
2900 {
2901 if (inequality_comparisons_p (XEXP (x, i)))
2902 return 1;
2903 }
2904 else if (fmt[i] == 'E')
2905 {
2906 int j;
2907 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2908 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2909 return 1;
2910 }
2911 }
2912
2913 return 0;
2914 }
2915 \f
2916 /* Replace any occurrence of FROM in X with TO. The function does
2917 not enter into CONST_DOUBLE for the replace.
2918
2919 Note that copying is not done so X must not be shared unless all copies
2920 are to be modified.
2921
2922 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2923 those pointer-equal ones. */
2924
2925 rtx
2926 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
2927 {
2928 int i, j;
2929 const char *fmt;
2930
2931 if (x == from)
2932 return to;
2933
2934 /* Allow this function to make replacements in EXPR_LISTs. */
2935 if (x == 0)
2936 return 0;
2937
2938 if (all_regs
2939 && REG_P (x)
2940 && REG_P (from)
2941 && REGNO (x) == REGNO (from))
2942 {
2943 gcc_assert (GET_MODE (x) == GET_MODE (from));
2944 return to;
2945 }
2946 else if (GET_CODE (x) == SUBREG)
2947 {
2948 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
2949
2950 if (CONST_INT_P (new_rtx))
2951 {
2952 x = simplify_subreg (GET_MODE (x), new_rtx,
2953 GET_MODE (SUBREG_REG (x)),
2954 SUBREG_BYTE (x));
2955 gcc_assert (x);
2956 }
2957 else
2958 SUBREG_REG (x) = new_rtx;
2959
2960 return x;
2961 }
2962 else if (GET_CODE (x) == ZERO_EXTEND)
2963 {
2964 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
2965
2966 if (CONST_INT_P (new_rtx))
2967 {
2968 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2969 new_rtx, GET_MODE (XEXP (x, 0)));
2970 gcc_assert (x);
2971 }
2972 else
2973 XEXP (x, 0) = new_rtx;
2974
2975 return x;
2976 }
2977
2978 fmt = GET_RTX_FORMAT (GET_CODE (x));
2979 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2980 {
2981 if (fmt[i] == 'e')
2982 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
2983 else if (fmt[i] == 'E')
2984 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2985 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
2986 from, to, all_regs);
2987 }
2988
2989 return x;
2990 }
2991 \f
2992 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2993 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
2994
2995 void
2996 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
2997 {
2998 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2999 rtx x = *loc;
3000 if (JUMP_TABLE_DATA_P (x))
3001 {
3002 x = PATTERN (x);
3003 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3004 int len = GET_NUM_ELEM (vec);
3005 for (int i = 0; i < len; ++i)
3006 {
3007 rtx ref = RTVEC_ELT (vec, i);
3008 if (XEXP (ref, 0) == old_label)
3009 {
3010 XEXP (ref, 0) = new_label;
3011 if (update_label_nuses)
3012 {
3013 ++LABEL_NUSES (new_label);
3014 --LABEL_NUSES (old_label);
3015 }
3016 }
3017 }
3018 return;
3019 }
3020
3021 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3022 field. This is not handled by the iterator because it doesn't
3023 handle unprinted ('0') fields. */
3024 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3025 JUMP_LABEL (x) = new_label;
3026
3027 subrtx_ptr_iterator::array_type array;
3028 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3029 {
3030 rtx *loc = *iter;
3031 if (rtx x = *loc)
3032 {
3033 if (GET_CODE (x) == SYMBOL_REF
3034 && CONSTANT_POOL_ADDRESS_P (x))
3035 {
3036 rtx c = get_pool_constant (x);
3037 if (rtx_referenced_p (old_label, c))
3038 {
3039 /* Create a copy of constant C; replace the label inside
3040 but do not update LABEL_NUSES because uses in constant pool
3041 are not counted. */
3042 rtx new_c = copy_rtx (c);
3043 replace_label (&new_c, old_label, new_label, false);
3044
3045 /* Add the new constant NEW_C to constant pool and replace
3046 the old reference to constant by new reference. */
3047 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3048 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3049 }
3050 }
3051
3052 if ((GET_CODE (x) == LABEL_REF
3053 || GET_CODE (x) == INSN_LIST)
3054 && XEXP (x, 0) == old_label)
3055 {
3056 XEXP (x, 0) = new_label;
3057 if (update_label_nuses)
3058 {
3059 ++LABEL_NUSES (new_label);
3060 --LABEL_NUSES (old_label);
3061 }
3062 }
3063 }
3064 }
3065 }
3066
3067 void
3068 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
3069 bool update_label_nuses)
3070 {
3071 rtx insn_as_rtx = insn;
3072 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3073 gcc_checking_assert (insn_as_rtx == insn);
3074 }
3075
3076 /* Return true if X is referenced in BODY. */
3077
3078 bool
3079 rtx_referenced_p (const_rtx x, const_rtx body)
3080 {
3081 subrtx_iterator::array_type array;
3082 FOR_EACH_SUBRTX (iter, array, body, ALL)
3083 if (const_rtx y = *iter)
3084 {
3085 /* Check if a label_ref Y refers to label X. */
3086 if (GET_CODE (y) == LABEL_REF
3087 && LABEL_P (x)
3088 && label_ref_label (y) == x)
3089 return true;
3090
3091 if (rtx_equal_p (x, y))
3092 return true;
3093
3094 /* If Y is a reference to pool constant traverse the constant. */
3095 if (GET_CODE (y) == SYMBOL_REF
3096 && CONSTANT_POOL_ADDRESS_P (y))
3097 iter.substitute (get_pool_constant (y));
3098 }
3099 return false;
3100 }
3101
3102 /* If INSN is a tablejump return true and store the label (before jump table) to
3103 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3104
3105 bool
3106 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3107 rtx_jump_table_data **tablep)
3108 {
3109 if (!JUMP_P (insn))
3110 return false;
3111
3112 rtx target = JUMP_LABEL (insn);
3113 if (target == NULL_RTX || ANY_RETURN_P (target))
3114 return false;
3115
3116 rtx_insn *label = as_a<rtx_insn *> (target);
3117 rtx_insn *table = next_insn (label);
3118 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3119 return false;
3120
3121 if (labelp)
3122 *labelp = label;
3123 if (tablep)
3124 *tablep = as_a <rtx_jump_table_data *> (table);
3125 return true;
3126 }
3127
3128 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3129 constant that is not in the constant pool and not in the condition
3130 of an IF_THEN_ELSE. */
3131
3132 static int
3133 computed_jump_p_1 (const_rtx x)
3134 {
3135 const enum rtx_code code = GET_CODE (x);
3136 int i, j;
3137 const char *fmt;
3138
3139 switch (code)
3140 {
3141 case LABEL_REF:
3142 case PC:
3143 return 0;
3144
3145 case CONST:
3146 CASE_CONST_ANY:
3147 case SYMBOL_REF:
3148 case REG:
3149 return 1;
3150
3151 case MEM:
3152 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3153 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3154
3155 case IF_THEN_ELSE:
3156 return (computed_jump_p_1 (XEXP (x, 1))
3157 || computed_jump_p_1 (XEXP (x, 2)));
3158
3159 default:
3160 break;
3161 }
3162
3163 fmt = GET_RTX_FORMAT (code);
3164 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3165 {
3166 if (fmt[i] == 'e'
3167 && computed_jump_p_1 (XEXP (x, i)))
3168 return 1;
3169
3170 else if (fmt[i] == 'E')
3171 for (j = 0; j < XVECLEN (x, i); j++)
3172 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3173 return 1;
3174 }
3175
3176 return 0;
3177 }
3178
3179 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3180
3181 Tablejumps and casesi insns are not considered indirect jumps;
3182 we can recognize them by a (use (label_ref)). */
3183
3184 int
3185 computed_jump_p (const rtx_insn *insn)
3186 {
3187 int i;
3188 if (JUMP_P (insn))
3189 {
3190 rtx pat = PATTERN (insn);
3191
3192 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3193 if (JUMP_LABEL (insn) != NULL)
3194 return 0;
3195
3196 if (GET_CODE (pat) == PARALLEL)
3197 {
3198 int len = XVECLEN (pat, 0);
3199 int has_use_labelref = 0;
3200
3201 for (i = len - 1; i >= 0; i--)
3202 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3203 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3204 == LABEL_REF))
3205 {
3206 has_use_labelref = 1;
3207 break;
3208 }
3209
3210 if (! has_use_labelref)
3211 for (i = len - 1; i >= 0; i--)
3212 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3213 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3214 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3215 return 1;
3216 }
3217 else if (GET_CODE (pat) == SET
3218 && SET_DEST (pat) == pc_rtx
3219 && computed_jump_p_1 (SET_SRC (pat)))
3220 return 1;
3221 }
3222 return 0;
3223 }
3224
3225 \f
3226
3227 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3228 the equivalent add insn and pass the result to FN, using DATA as the
3229 final argument. */
3230
3231 static int
3232 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3233 {
3234 rtx x = XEXP (mem, 0);
3235 switch (GET_CODE (x))
3236 {
3237 case PRE_INC:
3238 case POST_INC:
3239 {
3240 int size = GET_MODE_SIZE (GET_MODE (mem));
3241 rtx r1 = XEXP (x, 0);
3242 rtx c = gen_int_mode (size, GET_MODE (r1));
3243 return fn (mem, x, r1, r1, c, data);
3244 }
3245
3246 case PRE_DEC:
3247 case POST_DEC:
3248 {
3249 int size = GET_MODE_SIZE (GET_MODE (mem));
3250 rtx r1 = XEXP (x, 0);
3251 rtx c = gen_int_mode (-size, GET_MODE (r1));
3252 return fn (mem, x, r1, r1, c, data);
3253 }
3254
3255 case PRE_MODIFY:
3256 case POST_MODIFY:
3257 {
3258 rtx r1 = XEXP (x, 0);
3259 rtx add = XEXP (x, 1);
3260 return fn (mem, x, r1, add, NULL, data);
3261 }
3262
3263 default:
3264 gcc_unreachable ();
3265 }
3266 }
3267
3268 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3269 For each such autoinc operation found, call FN, passing it
3270 the innermost enclosing MEM, the operation itself, the RTX modified
3271 by the operation, two RTXs (the second may be NULL) that, once
3272 added, represent the value to be held by the modified RTX
3273 afterwards, and DATA. FN is to return 0 to continue the
3274 traversal or any other value to have it returned to the caller of
3275 for_each_inc_dec. */
3276
3277 int
3278 for_each_inc_dec (rtx x,
3279 for_each_inc_dec_fn fn,
3280 void *data)
3281 {
3282 subrtx_var_iterator::array_type array;
3283 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3284 {
3285 rtx mem = *iter;
3286 if (mem
3287 && MEM_P (mem)
3288 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3289 {
3290 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3291 if (res != 0)
3292 return res;
3293 iter.skip_subrtxes ();
3294 }
3295 }
3296 return 0;
3297 }
3298
3299 \f
3300 /* Searches X for any reference to REGNO, returning the rtx of the
3301 reference found if any. Otherwise, returns NULL_RTX. */
3302
3303 rtx
3304 regno_use_in (unsigned int regno, rtx x)
3305 {
3306 const char *fmt;
3307 int i, j;
3308 rtx tem;
3309
3310 if (REG_P (x) && REGNO (x) == regno)
3311 return x;
3312
3313 fmt = GET_RTX_FORMAT (GET_CODE (x));
3314 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3315 {
3316 if (fmt[i] == 'e')
3317 {
3318 if ((tem = regno_use_in (regno, XEXP (x, i))))
3319 return tem;
3320 }
3321 else if (fmt[i] == 'E')
3322 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3323 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3324 return tem;
3325 }
3326
3327 return NULL_RTX;
3328 }
3329
3330 /* Return a value indicating whether OP, an operand of a commutative
3331 operation, is preferred as the first or second operand. The more
3332 positive the value, the stronger the preference for being the first
3333 operand. */
3334
3335 int
3336 commutative_operand_precedence (rtx op)
3337 {
3338 enum rtx_code code = GET_CODE (op);
3339
3340 /* Constants always become the second operand. Prefer "nice" constants. */
3341 if (code == CONST_INT)
3342 return -8;
3343 if (code == CONST_WIDE_INT)
3344 return -7;
3345 if (code == CONST_DOUBLE)
3346 return -7;
3347 if (code == CONST_FIXED)
3348 return -7;
3349 op = avoid_constant_pool_reference (op);
3350 code = GET_CODE (op);
3351
3352 switch (GET_RTX_CLASS (code))
3353 {
3354 case RTX_CONST_OBJ:
3355 if (code == CONST_INT)
3356 return -6;
3357 if (code == CONST_WIDE_INT)
3358 return -6;
3359 if (code == CONST_DOUBLE)
3360 return -5;
3361 if (code == CONST_FIXED)
3362 return -5;
3363 return -4;
3364
3365 case RTX_EXTRA:
3366 /* SUBREGs of objects should come second. */
3367 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3368 return -3;
3369 return 0;
3370
3371 case RTX_OBJ:
3372 /* Complex expressions should be the first, so decrease priority
3373 of objects. Prefer pointer objects over non pointer objects. */
3374 if ((REG_P (op) && REG_POINTER (op))
3375 || (MEM_P (op) && MEM_POINTER (op)))
3376 return -1;
3377 return -2;
3378
3379 case RTX_COMM_ARITH:
3380 /* Prefer operands that are themselves commutative to be first.
3381 This helps to make things linear. In particular,
3382 (and (and (reg) (reg)) (not (reg))) is canonical. */
3383 return 4;
3384
3385 case RTX_BIN_ARITH:
3386 /* If only one operand is a binary expression, it will be the first
3387 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3388 is canonical, although it will usually be further simplified. */
3389 return 2;
3390
3391 case RTX_UNARY:
3392 /* Then prefer NEG and NOT. */
3393 if (code == NEG || code == NOT)
3394 return 1;
3395 /* FALLTHRU */
3396
3397 default:
3398 return 0;
3399 }
3400 }
3401
3402 /* Return 1 iff it is necessary to swap operands of commutative operation
3403 in order to canonicalize expression. */
3404
3405 bool
3406 swap_commutative_operands_p (rtx x, rtx y)
3407 {
3408 return (commutative_operand_precedence (x)
3409 < commutative_operand_precedence (y));
3410 }
3411
3412 /* Return 1 if X is an autoincrement side effect and the register is
3413 not the stack pointer. */
3414 int
3415 auto_inc_p (const_rtx x)
3416 {
3417 switch (GET_CODE (x))
3418 {
3419 case PRE_INC:
3420 case POST_INC:
3421 case PRE_DEC:
3422 case POST_DEC:
3423 case PRE_MODIFY:
3424 case POST_MODIFY:
3425 /* There are no REG_INC notes for SP. */
3426 if (XEXP (x, 0) != stack_pointer_rtx)
3427 return 1;
3428 default:
3429 break;
3430 }
3431 return 0;
3432 }
3433
3434 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3435 int
3436 loc_mentioned_in_p (rtx *loc, const_rtx in)
3437 {
3438 enum rtx_code code;
3439 const char *fmt;
3440 int i, j;
3441
3442 if (!in)
3443 return 0;
3444
3445 code = GET_CODE (in);
3446 fmt = GET_RTX_FORMAT (code);
3447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3448 {
3449 if (fmt[i] == 'e')
3450 {
3451 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3452 return 1;
3453 }
3454 else if (fmt[i] == 'E')
3455 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3456 if (loc == &XVECEXP (in, i, j)
3457 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3458 return 1;
3459 }
3460 return 0;
3461 }
3462
3463 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3464 and SUBREG_BYTE, return the bit offset where the subreg begins
3465 (counting from the least significant bit of the operand). */
3466
3467 unsigned int
3468 subreg_lsb_1 (machine_mode outer_mode,
3469 machine_mode inner_mode,
3470 unsigned int subreg_byte)
3471 {
3472 unsigned int bitpos;
3473 unsigned int byte;
3474 unsigned int word;
3475
3476 /* A paradoxical subreg begins at bit position 0. */
3477 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3478 return 0;
3479
3480 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3481 /* If the subreg crosses a word boundary ensure that
3482 it also begins and ends on a word boundary. */
3483 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3484 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3485 && (subreg_byte % UNITS_PER_WORD
3486 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3487
3488 if (WORDS_BIG_ENDIAN)
3489 word = (GET_MODE_SIZE (inner_mode)
3490 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3491 else
3492 word = subreg_byte / UNITS_PER_WORD;
3493 bitpos = word * BITS_PER_WORD;
3494
3495 if (BYTES_BIG_ENDIAN)
3496 byte = (GET_MODE_SIZE (inner_mode)
3497 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3498 else
3499 byte = subreg_byte % UNITS_PER_WORD;
3500 bitpos += byte * BITS_PER_UNIT;
3501
3502 return bitpos;
3503 }
3504
3505 /* Given a subreg X, return the bit offset where the subreg begins
3506 (counting from the least significant bit of the reg). */
3507
3508 unsigned int
3509 subreg_lsb (const_rtx x)
3510 {
3511 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3512 SUBREG_BYTE (x));
3513 }
3514
3515 /* Fill in information about a subreg of a hard register.
3516 xregno - A regno of an inner hard subreg_reg (or what will become one).
3517 xmode - The mode of xregno.
3518 offset - The byte offset.
3519 ymode - The mode of a top level SUBREG (or what may become one).
3520 info - Pointer to structure to fill in.
3521
3522 Rather than considering one particular inner register (and thus one
3523 particular "outer" register) in isolation, this function really uses
3524 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3525 function does not check whether adding INFO->offset to XREGNO gives
3526 a valid hard register; even if INFO->offset + XREGNO is out of range,
3527 there might be another register of the same type that is in range.
3528 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3529 register, since that can depend on things like whether the final
3530 register number is even or odd. Callers that want to check whether
3531 this particular subreg can be replaced by a simple (reg ...) should
3532 use simplify_subreg_regno. */
3533
3534 void
3535 subreg_get_info (unsigned int xregno, machine_mode xmode,
3536 unsigned int offset, machine_mode ymode,
3537 struct subreg_info *info)
3538 {
3539 int nregs_xmode, nregs_ymode;
3540 int mode_multiple, nregs_multiple;
3541 int offset_adj, y_offset, y_offset_adj;
3542 int regsize_xmode, regsize_ymode;
3543 bool rknown;
3544
3545 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3546
3547 rknown = false;
3548
3549 /* If there are holes in a non-scalar mode in registers, we expect
3550 that it is made up of its units concatenated together. */
3551 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3552 {
3553 machine_mode xmode_unit;
3554
3555 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3556 xmode_unit = GET_MODE_INNER (xmode);
3557 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3558 gcc_assert (nregs_xmode
3559 == (GET_MODE_NUNITS (xmode)
3560 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3561 gcc_assert (hard_regno_nregs[xregno][xmode]
3562 == (hard_regno_nregs[xregno][xmode_unit]
3563 * GET_MODE_NUNITS (xmode)));
3564
3565 /* You can only ask for a SUBREG of a value with holes in the middle
3566 if you don't cross the holes. (Such a SUBREG should be done by
3567 picking a different register class, or doing it in memory if
3568 necessary.) An example of a value with holes is XCmode on 32-bit
3569 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3570 3 for each part, but in memory it's two 128-bit parts.
3571 Padding is assumed to be at the end (not necessarily the 'high part')
3572 of each unit. */
3573 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3574 < GET_MODE_NUNITS (xmode))
3575 && (offset / GET_MODE_SIZE (xmode_unit)
3576 != ((offset + GET_MODE_SIZE (ymode) - 1)
3577 / GET_MODE_SIZE (xmode_unit))))
3578 {
3579 info->representable_p = false;
3580 rknown = true;
3581 }
3582 }
3583 else
3584 nregs_xmode = hard_regno_nregs[xregno][xmode];
3585
3586 nregs_ymode = hard_regno_nregs[xregno][ymode];
3587
3588 /* Paradoxical subregs are otherwise valid. */
3589 if (!rknown
3590 && offset == 0
3591 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3592 {
3593 info->representable_p = true;
3594 /* If this is a big endian paradoxical subreg, which uses more
3595 actual hard registers than the original register, we must
3596 return a negative offset so that we find the proper highpart
3597 of the register. */
3598 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3599 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3600 info->offset = nregs_xmode - nregs_ymode;
3601 else
3602 info->offset = 0;
3603 info->nregs = nregs_ymode;
3604 return;
3605 }
3606
3607 /* If registers store different numbers of bits in the different
3608 modes, we cannot generally form this subreg. */
3609 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3610 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3611 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3612 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3613 {
3614 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3615 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3616 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3617 {
3618 info->representable_p = false;
3619 info->nregs
3620 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3621 info->offset = offset / regsize_xmode;
3622 return;
3623 }
3624 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3625 {
3626 info->representable_p = false;
3627 info->nregs
3628 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3629 info->offset = offset / regsize_xmode;
3630 return;
3631 }
3632 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3633 would go outside of XMODE. */
3634 if (!rknown
3635 && GET_MODE_SIZE (ymode) + offset > GET_MODE_SIZE (xmode))
3636 {
3637 info->representable_p = false;
3638 info->nregs = nregs_ymode;
3639 info->offset = offset / regsize_xmode;
3640 return;
3641 }
3642 /* Quick exit for the simple and common case of extracting whole
3643 subregisters from a multiregister value. */
3644 /* ??? It would be better to integrate this into the code below,
3645 if we can generalize the concept enough and figure out how
3646 odd-sized modes can coexist with the other weird cases we support. */
3647 if (!rknown
3648 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3649 && regsize_xmode == regsize_ymode
3650 && (offset % regsize_ymode) == 0)
3651 {
3652 info->representable_p = true;
3653 info->nregs = nregs_ymode;
3654 info->offset = offset / regsize_ymode;
3655 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3656 return;
3657 }
3658 }
3659
3660 /* Lowpart subregs are otherwise valid. */
3661 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3662 {
3663 info->representable_p = true;
3664 rknown = true;
3665
3666 if (offset == 0 || nregs_xmode == nregs_ymode)
3667 {
3668 info->offset = 0;
3669 info->nregs = nregs_ymode;
3670 return;
3671 }
3672 }
3673
3674 /* This should always pass, otherwise we don't know how to verify
3675 the constraint. These conditions may be relaxed but
3676 subreg_regno_offset would need to be redesigned. */
3677 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3678 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3679
3680 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3681 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3682 {
3683 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3684 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3685 HOST_WIDE_INT off_low = offset & (ysize - 1);
3686 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3687 offset = (xsize - ysize - off_high) | off_low;
3688 }
3689 /* The XMODE value can be seen as a vector of NREGS_XMODE
3690 values. The subreg must represent a lowpart of given field.
3691 Compute what field it is. */
3692 offset_adj = offset;
3693 offset_adj -= subreg_lowpart_offset (ymode,
3694 mode_for_size (GET_MODE_BITSIZE (xmode)
3695 / nregs_xmode,
3696 MODE_INT, 0));
3697
3698 /* Size of ymode must not be greater than the size of xmode. */
3699 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3700 gcc_assert (mode_multiple != 0);
3701
3702 y_offset = offset / GET_MODE_SIZE (ymode);
3703 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3704 nregs_multiple = nregs_xmode / nregs_ymode;
3705
3706 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3707 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3708
3709 if (!rknown)
3710 {
3711 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3712 rknown = true;
3713 }
3714 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3715 info->nregs = nregs_ymode;
3716 }
3717
3718 /* This function returns the regno offset of a subreg expression.
3719 xregno - A regno of an inner hard subreg_reg (or what will become one).
3720 xmode - The mode of xregno.
3721 offset - The byte offset.
3722 ymode - The mode of a top level SUBREG (or what may become one).
3723 RETURN - The regno offset which would be used. */
3724 unsigned int
3725 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3726 unsigned int offset, machine_mode ymode)
3727 {
3728 struct subreg_info info;
3729 subreg_get_info (xregno, xmode, offset, ymode, &info);
3730 return info.offset;
3731 }
3732
3733 /* This function returns true when the offset is representable via
3734 subreg_offset in the given regno.
3735 xregno - A regno of an inner hard subreg_reg (or what will become one).
3736 xmode - The mode of xregno.
3737 offset - The byte offset.
3738 ymode - The mode of a top level SUBREG (or what may become one).
3739 RETURN - Whether the offset is representable. */
3740 bool
3741 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3742 unsigned int offset, machine_mode ymode)
3743 {
3744 struct subreg_info info;
3745 subreg_get_info (xregno, xmode, offset, ymode, &info);
3746 return info.representable_p;
3747 }
3748
3749 /* Return the number of a YMODE register to which
3750
3751 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3752
3753 can be simplified. Return -1 if the subreg can't be simplified.
3754
3755 XREGNO is a hard register number. */
3756
3757 int
3758 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3759 unsigned int offset, machine_mode ymode)
3760 {
3761 struct subreg_info info;
3762 unsigned int yregno;
3763
3764 #ifdef CANNOT_CHANGE_MODE_CLASS
3765 /* Give the backend a chance to disallow the mode change. */
3766 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3767 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3768 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3769 /* We can use mode change in LRA for some transformations. */
3770 && ! lra_in_progress)
3771 return -1;
3772 #endif
3773
3774 /* We shouldn't simplify stack-related registers. */
3775 if ((!reload_completed || frame_pointer_needed)
3776 && xregno == FRAME_POINTER_REGNUM)
3777 return -1;
3778
3779 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3780 && xregno == ARG_POINTER_REGNUM)
3781 return -1;
3782
3783 if (xregno == STACK_POINTER_REGNUM
3784 /* We should convert hard stack register in LRA if it is
3785 possible. */
3786 && ! lra_in_progress)
3787 return -1;
3788
3789 /* Try to get the register offset. */
3790 subreg_get_info (xregno, xmode, offset, ymode, &info);
3791 if (!info.representable_p)
3792 return -1;
3793
3794 /* Make sure that the offsetted register value is in range. */
3795 yregno = xregno + info.offset;
3796 if (!HARD_REGISTER_NUM_P (yregno))
3797 return -1;
3798
3799 /* See whether (reg:YMODE YREGNO) is valid.
3800
3801 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3802 This is a kludge to work around how complex FP arguments are passed
3803 on IA-64 and should be fixed. See PR target/49226. */
3804 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3805 && HARD_REGNO_MODE_OK (xregno, xmode))
3806 return -1;
3807
3808 return (int) yregno;
3809 }
3810
3811 /* Return the final regno that a subreg expression refers to. */
3812 unsigned int
3813 subreg_regno (const_rtx x)
3814 {
3815 unsigned int ret;
3816 rtx subreg = SUBREG_REG (x);
3817 int regno = REGNO (subreg);
3818
3819 ret = regno + subreg_regno_offset (regno,
3820 GET_MODE (subreg),
3821 SUBREG_BYTE (x),
3822 GET_MODE (x));
3823 return ret;
3824
3825 }
3826
3827 /* Return the number of registers that a subreg expression refers
3828 to. */
3829 unsigned int
3830 subreg_nregs (const_rtx x)
3831 {
3832 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3833 }
3834
3835 /* Return the number of registers that a subreg REG with REGNO
3836 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3837 changed so that the regno can be passed in. */
3838
3839 unsigned int
3840 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3841 {
3842 struct subreg_info info;
3843 rtx subreg = SUBREG_REG (x);
3844
3845 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3846 &info);
3847 return info.nregs;
3848 }
3849
3850
3851 struct parms_set_data
3852 {
3853 int nregs;
3854 HARD_REG_SET regs;
3855 };
3856
3857 /* Helper function for noticing stores to parameter registers. */
3858 static void
3859 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3860 {
3861 struct parms_set_data *const d = (struct parms_set_data *) data;
3862 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3863 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3864 {
3865 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3866 d->nregs--;
3867 }
3868 }
3869
3870 /* Look backward for first parameter to be loaded.
3871 Note that loads of all parameters will not necessarily be
3872 found if CSE has eliminated some of them (e.g., an argument
3873 to the outer function is passed down as a parameter).
3874 Do not skip BOUNDARY. */
3875 rtx_insn *
3876 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3877 {
3878 struct parms_set_data parm;
3879 rtx p;
3880 rtx_insn *before, *first_set;
3881
3882 /* Since different machines initialize their parameter registers
3883 in different orders, assume nothing. Collect the set of all
3884 parameter registers. */
3885 CLEAR_HARD_REG_SET (parm.regs);
3886 parm.nregs = 0;
3887 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3888 if (GET_CODE (XEXP (p, 0)) == USE
3889 && REG_P (XEXP (XEXP (p, 0), 0))
3890 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
3891 {
3892 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3893
3894 /* We only care about registers which can hold function
3895 arguments. */
3896 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3897 continue;
3898
3899 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3900 parm.nregs++;
3901 }
3902 before = call_insn;
3903 first_set = call_insn;
3904
3905 /* Search backward for the first set of a register in this set. */
3906 while (parm.nregs && before != boundary)
3907 {
3908 before = PREV_INSN (before);
3909
3910 /* It is possible that some loads got CSEed from one call to
3911 another. Stop in that case. */
3912 if (CALL_P (before))
3913 break;
3914
3915 /* Our caller needs either ensure that we will find all sets
3916 (in case code has not been optimized yet), or take care
3917 for possible labels in a way by setting boundary to preceding
3918 CODE_LABEL. */
3919 if (LABEL_P (before))
3920 {
3921 gcc_assert (before == boundary);
3922 break;
3923 }
3924
3925 if (INSN_P (before))
3926 {
3927 int nregs_old = parm.nregs;
3928 note_stores (PATTERN (before), parms_set, &parm);
3929 /* If we found something that did not set a parameter reg,
3930 we're done. Do not keep going, as that might result
3931 in hoisting an insn before the setting of a pseudo
3932 that is used by the hoisted insn. */
3933 if (nregs_old != parm.nregs)
3934 first_set = before;
3935 else
3936 break;
3937 }
3938 }
3939 return first_set;
3940 }
3941
3942 /* Return true if we should avoid inserting code between INSN and preceding
3943 call instruction. */
3944
3945 bool
3946 keep_with_call_p (const rtx_insn *insn)
3947 {
3948 rtx set;
3949
3950 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3951 {
3952 if (REG_P (SET_DEST (set))
3953 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3954 && fixed_regs[REGNO (SET_DEST (set))]
3955 && general_operand (SET_SRC (set), VOIDmode))
3956 return true;
3957 if (REG_P (SET_SRC (set))
3958 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3959 && REG_P (SET_DEST (set))
3960 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3961 return true;
3962 /* There may be a stack pop just after the call and before the store
3963 of the return register. Search for the actual store when deciding
3964 if we can break or not. */
3965 if (SET_DEST (set) == stack_pointer_rtx)
3966 {
3967 /* This CONST_CAST is okay because next_nonnote_insn just
3968 returns its argument and we assign it to a const_rtx
3969 variable. */
3970 const rtx_insn *i2
3971 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3972 if (i2 && keep_with_call_p (i2))
3973 return true;
3974 }
3975 }
3976 return false;
3977 }
3978
3979 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3980 to non-complex jumps. That is, direct unconditional, conditional,
3981 and tablejumps, but not computed jumps or returns. It also does
3982 not apply to the fallthru case of a conditional jump. */
3983
3984 bool
3985 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
3986 {
3987 rtx tmp = JUMP_LABEL (jump_insn);
3988 rtx_jump_table_data *table;
3989
3990 if (label == tmp)
3991 return true;
3992
3993 if (tablejump_p (jump_insn, NULL, &table))
3994 {
3995 rtvec vec = table->get_labels ();
3996 int i, veclen = GET_NUM_ELEM (vec);
3997
3998 for (i = 0; i < veclen; ++i)
3999 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4000 return true;
4001 }
4002
4003 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4004 return true;
4005
4006 return false;
4007 }
4008
4009 \f
4010 /* Return an estimate of the cost of computing rtx X.
4011 One use is in cse, to decide which expression to keep in the hash table.
4012 Another is in rtl generation, to pick the cheapest way to multiply.
4013 Other uses like the latter are expected in the future.
4014
4015 X appears as operand OPNO in an expression with code OUTER_CODE.
4016 SPEED specifies whether costs optimized for speed or size should
4017 be returned. */
4018
4019 int
4020 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4021 int opno, bool speed)
4022 {
4023 int i, j;
4024 enum rtx_code code;
4025 const char *fmt;
4026 int total;
4027 int factor;
4028
4029 if (x == 0)
4030 return 0;
4031
4032 if (GET_MODE (x) != VOIDmode)
4033 mode = GET_MODE (x);
4034
4035 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4036 many insns, taking N times as long. */
4037 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4038 if (factor == 0)
4039 factor = 1;
4040
4041 /* Compute the default costs of certain things.
4042 Note that targetm.rtx_costs can override the defaults. */
4043
4044 code = GET_CODE (x);
4045 switch (code)
4046 {
4047 case MULT:
4048 /* Multiplication has time-complexity O(N*N), where N is the
4049 number of units (translated from digits) when using
4050 schoolbook long multiplication. */
4051 total = factor * factor * COSTS_N_INSNS (5);
4052 break;
4053 case DIV:
4054 case UDIV:
4055 case MOD:
4056 case UMOD:
4057 /* Similarly, complexity for schoolbook long division. */
4058 total = factor * factor * COSTS_N_INSNS (7);
4059 break;
4060 case USE:
4061 /* Used in combine.c as a marker. */
4062 total = 0;
4063 break;
4064 case SET:
4065 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4066 the mode for the factor. */
4067 mode = GET_MODE (SET_DEST (x));
4068 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4069 if (factor == 0)
4070 factor = 1;
4071 /* FALLTHRU */
4072 default:
4073 total = factor * COSTS_N_INSNS (1);
4074 }
4075
4076 switch (code)
4077 {
4078 case REG:
4079 return 0;
4080
4081 case SUBREG:
4082 total = 0;
4083 /* If we can't tie these modes, make this expensive. The larger
4084 the mode, the more expensive it is. */
4085 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
4086 return COSTS_N_INSNS (2 + factor);
4087 break;
4088
4089 default:
4090 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4091 return total;
4092 break;
4093 }
4094
4095 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4096 which is already in total. */
4097
4098 fmt = GET_RTX_FORMAT (code);
4099 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4100 if (fmt[i] == 'e')
4101 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4102 else if (fmt[i] == 'E')
4103 for (j = 0; j < XVECLEN (x, i); j++)
4104 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4105
4106 return total;
4107 }
4108
4109 /* Fill in the structure C with information about both speed and size rtx
4110 costs for X, which is operand OPNO in an expression with code OUTER. */
4111
4112 void
4113 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4114 struct full_rtx_costs *c)
4115 {
4116 c->speed = rtx_cost (x, mode, outer, opno, true);
4117 c->size = rtx_cost (x, mode, outer, opno, false);
4118 }
4119
4120 \f
4121 /* Return cost of address expression X.
4122 Expect that X is properly formed address reference.
4123
4124 SPEED parameter specify whether costs optimized for speed or size should
4125 be returned. */
4126
4127 int
4128 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4129 {
4130 /* We may be asked for cost of various unusual addresses, such as operands
4131 of push instruction. It is not worthwhile to complicate writing
4132 of the target hook by such cases. */
4133
4134 if (!memory_address_addr_space_p (mode, x, as))
4135 return 1000;
4136
4137 return targetm.address_cost (x, mode, as, speed);
4138 }
4139
4140 /* If the target doesn't override, compute the cost as with arithmetic. */
4141
4142 int
4143 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4144 {
4145 return rtx_cost (x, Pmode, MEM, 0, speed);
4146 }
4147 \f
4148
4149 unsigned HOST_WIDE_INT
4150 nonzero_bits (const_rtx x, machine_mode mode)
4151 {
4152 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4153 }
4154
4155 unsigned int
4156 num_sign_bit_copies (const_rtx x, machine_mode mode)
4157 {
4158 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4159 }
4160
4161 /* Return true if nonzero_bits1 might recurse into both operands
4162 of X. */
4163
4164 static inline bool
4165 nonzero_bits_binary_arith_p (const_rtx x)
4166 {
4167 if (!ARITHMETIC_P (x))
4168 return false;
4169 switch (GET_CODE (x))
4170 {
4171 case AND:
4172 case XOR:
4173 case IOR:
4174 case UMIN:
4175 case UMAX:
4176 case SMIN:
4177 case SMAX:
4178 case PLUS:
4179 case MINUS:
4180 case MULT:
4181 case DIV:
4182 case UDIV:
4183 case MOD:
4184 case UMOD:
4185 return true;
4186 default:
4187 return false;
4188 }
4189 }
4190
4191 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4192 It avoids exponential behavior in nonzero_bits1 when X has
4193 identical subexpressions on the first or the second level. */
4194
4195 static unsigned HOST_WIDE_INT
4196 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4197 machine_mode known_mode,
4198 unsigned HOST_WIDE_INT known_ret)
4199 {
4200 if (x == known_x && mode == known_mode)
4201 return known_ret;
4202
4203 /* Try to find identical subexpressions. If found call
4204 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4205 precomputed value for the subexpression as KNOWN_RET. */
4206
4207 if (nonzero_bits_binary_arith_p (x))
4208 {
4209 rtx x0 = XEXP (x, 0);
4210 rtx x1 = XEXP (x, 1);
4211
4212 /* Check the first level. */
4213 if (x0 == x1)
4214 return nonzero_bits1 (x, mode, x0, mode,
4215 cached_nonzero_bits (x0, mode, known_x,
4216 known_mode, known_ret));
4217
4218 /* Check the second level. */
4219 if (nonzero_bits_binary_arith_p (x0)
4220 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4221 return nonzero_bits1 (x, mode, x1, mode,
4222 cached_nonzero_bits (x1, mode, known_x,
4223 known_mode, known_ret));
4224
4225 if (nonzero_bits_binary_arith_p (x1)
4226 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4227 return nonzero_bits1 (x, mode, x0, mode,
4228 cached_nonzero_bits (x0, mode, known_x,
4229 known_mode, known_ret));
4230 }
4231
4232 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4233 }
4234
4235 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4236 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4237 is less useful. We can't allow both, because that results in exponential
4238 run time recursion. There is a nullstone testcase that triggered
4239 this. This macro avoids accidental uses of num_sign_bit_copies. */
4240 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4241
4242 /* Given an expression, X, compute which bits in X can be nonzero.
4243 We don't care about bits outside of those defined in MODE.
4244
4245 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4246 an arithmetic operation, we can do better. */
4247
4248 static unsigned HOST_WIDE_INT
4249 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4250 machine_mode known_mode,
4251 unsigned HOST_WIDE_INT known_ret)
4252 {
4253 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4254 unsigned HOST_WIDE_INT inner_nz;
4255 enum rtx_code code;
4256 machine_mode inner_mode;
4257 unsigned int mode_width = GET_MODE_PRECISION (mode);
4258
4259 /* For floating-point and vector values, assume all bits are needed. */
4260 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4261 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4262 return nonzero;
4263
4264 /* If X is wider than MODE, use its mode instead. */
4265 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4266 {
4267 mode = GET_MODE (x);
4268 nonzero = GET_MODE_MASK (mode);
4269 mode_width = GET_MODE_PRECISION (mode);
4270 }
4271
4272 if (mode_width > HOST_BITS_PER_WIDE_INT)
4273 /* Our only callers in this case look for single bit values. So
4274 just return the mode mask. Those tests will then be false. */
4275 return nonzero;
4276
4277 /* If MODE is wider than X, but both are a single word for both the host
4278 and target machines, we can compute this from which bits of the
4279 object might be nonzero in its own mode, taking into account the fact
4280 that on many CISC machines, accessing an object in a wider mode
4281 causes the high-order bits to become undefined. So they are
4282 not known to be zero. */
4283
4284 if (!WORD_REGISTER_OPERATIONS
4285 && GET_MODE (x) != VOIDmode
4286 && GET_MODE (x) != mode
4287 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4288 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4289 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4290 {
4291 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4292 known_x, known_mode, known_ret);
4293 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4294 return nonzero;
4295 }
4296
4297 /* Please keep nonzero_bits_binary_arith_p above in sync with
4298 the code in the switch below. */
4299 code = GET_CODE (x);
4300 switch (code)
4301 {
4302 case REG:
4303 #if defined(POINTERS_EXTEND_UNSIGNED)
4304 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4305 all the bits above ptr_mode are known to be zero. */
4306 /* As we do not know which address space the pointer is referring to,
4307 we can do this only if the target does not support different pointer
4308 or address modes depending on the address space. */
4309 if (target_default_pointer_address_modes_p ()
4310 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4311 && REG_POINTER (x)
4312 && !targetm.have_ptr_extend ())
4313 nonzero &= GET_MODE_MASK (ptr_mode);
4314 #endif
4315
4316 /* Include declared information about alignment of pointers. */
4317 /* ??? We don't properly preserve REG_POINTER changes across
4318 pointer-to-integer casts, so we can't trust it except for
4319 things that we know must be pointers. See execute/960116-1.c. */
4320 if ((x == stack_pointer_rtx
4321 || x == frame_pointer_rtx
4322 || x == arg_pointer_rtx)
4323 && REGNO_POINTER_ALIGN (REGNO (x)))
4324 {
4325 unsigned HOST_WIDE_INT alignment
4326 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4327
4328 #ifdef PUSH_ROUNDING
4329 /* If PUSH_ROUNDING is defined, it is possible for the
4330 stack to be momentarily aligned only to that amount,
4331 so we pick the least alignment. */
4332 if (x == stack_pointer_rtx && PUSH_ARGS)
4333 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4334 alignment);
4335 #endif
4336
4337 nonzero &= ~(alignment - 1);
4338 }
4339
4340 {
4341 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4342 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4343 known_mode, known_ret,
4344 &nonzero_for_hook);
4345
4346 if (new_rtx)
4347 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4348 known_mode, known_ret);
4349
4350 return nonzero_for_hook;
4351 }
4352
4353 case CONST_INT:
4354 /* If X is negative in MODE, sign-extend the value. */
4355 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
4356 && mode_width < BITS_PER_WORD
4357 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1)))
4358 != 0)
4359 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4360
4361 return UINTVAL (x);
4362
4363 case MEM:
4364 /* In many, if not most, RISC machines, reading a byte from memory
4365 zeros the rest of the register. Noticing that fact saves a lot
4366 of extra zero-extends. */
4367 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4368 nonzero &= GET_MODE_MASK (GET_MODE (x));
4369 break;
4370
4371 case EQ: case NE:
4372 case UNEQ: case LTGT:
4373 case GT: case GTU: case UNGT:
4374 case LT: case LTU: case UNLT:
4375 case GE: case GEU: case UNGE:
4376 case LE: case LEU: case UNLE:
4377 case UNORDERED: case ORDERED:
4378 /* If this produces an integer result, we know which bits are set.
4379 Code here used to clear bits outside the mode of X, but that is
4380 now done above. */
4381 /* Mind that MODE is the mode the caller wants to look at this
4382 operation in, and not the actual operation mode. We can wind
4383 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4384 that describes the results of a vector compare. */
4385 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4386 && mode_width <= HOST_BITS_PER_WIDE_INT)
4387 nonzero = STORE_FLAG_VALUE;
4388 break;
4389
4390 case NEG:
4391 #if 0
4392 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4393 and num_sign_bit_copies. */
4394 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4395 == GET_MODE_PRECISION (GET_MODE (x)))
4396 nonzero = 1;
4397 #endif
4398
4399 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4400 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4401 break;
4402
4403 case ABS:
4404 #if 0
4405 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4406 and num_sign_bit_copies. */
4407 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4408 == GET_MODE_PRECISION (GET_MODE (x)))
4409 nonzero = 1;
4410 #endif
4411 break;
4412
4413 case TRUNCATE:
4414 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4415 known_x, known_mode, known_ret)
4416 & GET_MODE_MASK (mode));
4417 break;
4418
4419 case ZERO_EXTEND:
4420 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4421 known_x, known_mode, known_ret);
4422 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4423 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4424 break;
4425
4426 case SIGN_EXTEND:
4427 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4428 Otherwise, show all the bits in the outer mode but not the inner
4429 may be nonzero. */
4430 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4431 known_x, known_mode, known_ret);
4432 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4433 {
4434 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4435 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4436 inner_nz |= (GET_MODE_MASK (mode)
4437 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4438 }
4439
4440 nonzero &= inner_nz;
4441 break;
4442
4443 case AND:
4444 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4445 known_x, known_mode, known_ret)
4446 & cached_nonzero_bits (XEXP (x, 1), mode,
4447 known_x, known_mode, known_ret);
4448 break;
4449
4450 case XOR: case IOR:
4451 case UMIN: case UMAX: case SMIN: case SMAX:
4452 {
4453 unsigned HOST_WIDE_INT nonzero0
4454 = cached_nonzero_bits (XEXP (x, 0), mode,
4455 known_x, known_mode, known_ret);
4456
4457 /* Don't call nonzero_bits for the second time if it cannot change
4458 anything. */
4459 if ((nonzero & nonzero0) != nonzero)
4460 nonzero &= nonzero0
4461 | cached_nonzero_bits (XEXP (x, 1), mode,
4462 known_x, known_mode, known_ret);
4463 }
4464 break;
4465
4466 case PLUS: case MINUS:
4467 case MULT:
4468 case DIV: case UDIV:
4469 case MOD: case UMOD:
4470 /* We can apply the rules of arithmetic to compute the number of
4471 high- and low-order zero bits of these operations. We start by
4472 computing the width (position of the highest-order nonzero bit)
4473 and the number of low-order zero bits for each value. */
4474 {
4475 unsigned HOST_WIDE_INT nz0
4476 = cached_nonzero_bits (XEXP (x, 0), mode,
4477 known_x, known_mode, known_ret);
4478 unsigned HOST_WIDE_INT nz1
4479 = cached_nonzero_bits (XEXP (x, 1), mode,
4480 known_x, known_mode, known_ret);
4481 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4482 int width0 = floor_log2 (nz0) + 1;
4483 int width1 = floor_log2 (nz1) + 1;
4484 int low0 = ctz_or_zero (nz0);
4485 int low1 = ctz_or_zero (nz1);
4486 unsigned HOST_WIDE_INT op0_maybe_minusp
4487 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4488 unsigned HOST_WIDE_INT op1_maybe_minusp
4489 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4490 unsigned int result_width = mode_width;
4491 int result_low = 0;
4492
4493 switch (code)
4494 {
4495 case PLUS:
4496 result_width = MAX (width0, width1) + 1;
4497 result_low = MIN (low0, low1);
4498 break;
4499 case MINUS:
4500 result_low = MIN (low0, low1);
4501 break;
4502 case MULT:
4503 result_width = width0 + width1;
4504 result_low = low0 + low1;
4505 break;
4506 case DIV:
4507 if (width1 == 0)
4508 break;
4509 if (!op0_maybe_minusp && !op1_maybe_minusp)
4510 result_width = width0;
4511 break;
4512 case UDIV:
4513 if (width1 == 0)
4514 break;
4515 result_width = width0;
4516 break;
4517 case MOD:
4518 if (width1 == 0)
4519 break;
4520 if (!op0_maybe_minusp && !op1_maybe_minusp)
4521 result_width = MIN (width0, width1);
4522 result_low = MIN (low0, low1);
4523 break;
4524 case UMOD:
4525 if (width1 == 0)
4526 break;
4527 result_width = MIN (width0, width1);
4528 result_low = MIN (low0, low1);
4529 break;
4530 default:
4531 gcc_unreachable ();
4532 }
4533
4534 if (result_width < mode_width)
4535 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4536
4537 if (result_low > 0)
4538 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4539 }
4540 break;
4541
4542 case ZERO_EXTRACT:
4543 if (CONST_INT_P (XEXP (x, 1))
4544 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4545 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4546 break;
4547
4548 case SUBREG:
4549 /* If this is a SUBREG formed for a promoted variable that has
4550 been zero-extended, we know that at least the high-order bits
4551 are zero, though others might be too. */
4552
4553 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4554 nonzero = GET_MODE_MASK (GET_MODE (x))
4555 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4556 known_x, known_mode, known_ret);
4557
4558 inner_mode = GET_MODE (SUBREG_REG (x));
4559 /* If the inner mode is a single word for both the host and target
4560 machines, we can compute this from which bits of the inner
4561 object might be nonzero. */
4562 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4563 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4564 {
4565 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4566 known_x, known_mode, known_ret);
4567
4568 /* On many CISC machines, accessing an object in a wider mode
4569 causes the high-order bits to become undefined. So they are
4570 not known to be zero. */
4571 if (!WORD_REGISTER_OPERATIONS
4572 /* If this is a typical RISC machine, we only have to worry
4573 about the way loads are extended. */
4574 || ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4575 ? val_signbit_known_set_p (inner_mode, nonzero)
4576 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4577 || !MEM_P (SUBREG_REG (x))))
4578 {
4579 if (GET_MODE_PRECISION (GET_MODE (x))
4580 > GET_MODE_PRECISION (inner_mode))
4581 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4582 & ~GET_MODE_MASK (inner_mode));
4583 }
4584 }
4585 break;
4586
4587 case ASHIFTRT:
4588 case LSHIFTRT:
4589 case ASHIFT:
4590 case ROTATE:
4591 /* The nonzero bits are in two classes: any bits within MODE
4592 that aren't in GET_MODE (x) are always significant. The rest of the
4593 nonzero bits are those that are significant in the operand of
4594 the shift when shifted the appropriate number of bits. This
4595 shows that high-order bits are cleared by the right shift and
4596 low-order bits by left shifts. */
4597 if (CONST_INT_P (XEXP (x, 1))
4598 && INTVAL (XEXP (x, 1)) >= 0
4599 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4600 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4601 {
4602 machine_mode inner_mode = GET_MODE (x);
4603 unsigned int width = GET_MODE_PRECISION (inner_mode);
4604 int count = INTVAL (XEXP (x, 1));
4605 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4606 unsigned HOST_WIDE_INT op_nonzero
4607 = cached_nonzero_bits (XEXP (x, 0), mode,
4608 known_x, known_mode, known_ret);
4609 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4610 unsigned HOST_WIDE_INT outer = 0;
4611
4612 if (mode_width > width)
4613 outer = (op_nonzero & nonzero & ~mode_mask);
4614
4615 if (code == LSHIFTRT)
4616 inner >>= count;
4617 else if (code == ASHIFTRT)
4618 {
4619 inner >>= count;
4620
4621 /* If the sign bit may have been nonzero before the shift, we
4622 need to mark all the places it could have been copied to
4623 by the shift as possibly nonzero. */
4624 if (inner & (HOST_WIDE_INT_1U << (width - 1 - count)))
4625 inner |= ((HOST_WIDE_INT_1U << count) - 1)
4626 << (width - count);
4627 }
4628 else if (code == ASHIFT)
4629 inner <<= count;
4630 else
4631 inner = ((inner << (count % width)
4632 | (inner >> (width - (count % width)))) & mode_mask);
4633
4634 nonzero &= (outer | inner);
4635 }
4636 break;
4637
4638 case FFS:
4639 case POPCOUNT:
4640 /* This is at most the number of bits in the mode. */
4641 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4642 break;
4643
4644 case CLZ:
4645 /* If CLZ has a known value at zero, then the nonzero bits are
4646 that value, plus the number of bits in the mode minus one. */
4647 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4648 nonzero
4649 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4650 else
4651 nonzero = -1;
4652 break;
4653
4654 case CTZ:
4655 /* If CTZ has a known value at zero, then the nonzero bits are
4656 that value, plus the number of bits in the mode minus one. */
4657 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4658 nonzero
4659 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4660 else
4661 nonzero = -1;
4662 break;
4663
4664 case CLRSB:
4665 /* This is at most the number of bits in the mode minus 1. */
4666 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4667 break;
4668
4669 case PARITY:
4670 nonzero = 1;
4671 break;
4672
4673 case IF_THEN_ELSE:
4674 {
4675 unsigned HOST_WIDE_INT nonzero_true
4676 = cached_nonzero_bits (XEXP (x, 1), mode,
4677 known_x, known_mode, known_ret);
4678
4679 /* Don't call nonzero_bits for the second time if it cannot change
4680 anything. */
4681 if ((nonzero & nonzero_true) != nonzero)
4682 nonzero &= nonzero_true
4683 | cached_nonzero_bits (XEXP (x, 2), mode,
4684 known_x, known_mode, known_ret);
4685 }
4686 break;
4687
4688 default:
4689 break;
4690 }
4691
4692 return nonzero;
4693 }
4694
4695 /* See the macro definition above. */
4696 #undef cached_num_sign_bit_copies
4697
4698 \f
4699 /* Return true if num_sign_bit_copies1 might recurse into both operands
4700 of X. */
4701
4702 static inline bool
4703 num_sign_bit_copies_binary_arith_p (const_rtx x)
4704 {
4705 if (!ARITHMETIC_P (x))
4706 return false;
4707 switch (GET_CODE (x))
4708 {
4709 case IOR:
4710 case AND:
4711 case XOR:
4712 case SMIN:
4713 case SMAX:
4714 case UMIN:
4715 case UMAX:
4716 case PLUS:
4717 case MINUS:
4718 case MULT:
4719 return true;
4720 default:
4721 return false;
4722 }
4723 }
4724
4725 /* The function cached_num_sign_bit_copies is a wrapper around
4726 num_sign_bit_copies1. It avoids exponential behavior in
4727 num_sign_bit_copies1 when X has identical subexpressions on the
4728 first or the second level. */
4729
4730 static unsigned int
4731 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4732 machine_mode known_mode,
4733 unsigned int known_ret)
4734 {
4735 if (x == known_x && mode == known_mode)
4736 return known_ret;
4737
4738 /* Try to find identical subexpressions. If found call
4739 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4740 the precomputed value for the subexpression as KNOWN_RET. */
4741
4742 if (num_sign_bit_copies_binary_arith_p (x))
4743 {
4744 rtx x0 = XEXP (x, 0);
4745 rtx x1 = XEXP (x, 1);
4746
4747 /* Check the first level. */
4748 if (x0 == x1)
4749 return
4750 num_sign_bit_copies1 (x, mode, x0, mode,
4751 cached_num_sign_bit_copies (x0, mode, known_x,
4752 known_mode,
4753 known_ret));
4754
4755 /* Check the second level. */
4756 if (num_sign_bit_copies_binary_arith_p (x0)
4757 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4758 return
4759 num_sign_bit_copies1 (x, mode, x1, mode,
4760 cached_num_sign_bit_copies (x1, mode, known_x,
4761 known_mode,
4762 known_ret));
4763
4764 if (num_sign_bit_copies_binary_arith_p (x1)
4765 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4766 return
4767 num_sign_bit_copies1 (x, mode, x0, mode,
4768 cached_num_sign_bit_copies (x0, mode, known_x,
4769 known_mode,
4770 known_ret));
4771 }
4772
4773 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4774 }
4775
4776 /* Return the number of bits at the high-order end of X that are known to
4777 be equal to the sign bit. X will be used in mode MODE; if MODE is
4778 VOIDmode, X will be used in its own mode. The returned value will always
4779 be between 1 and the number of bits in MODE. */
4780
4781 static unsigned int
4782 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4783 machine_mode known_mode,
4784 unsigned int known_ret)
4785 {
4786 enum rtx_code code = GET_CODE (x);
4787 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4788 int num0, num1, result;
4789 unsigned HOST_WIDE_INT nonzero;
4790
4791 /* If we weren't given a mode, use the mode of X. If the mode is still
4792 VOIDmode, we don't know anything. Likewise if one of the modes is
4793 floating-point. */
4794
4795 if (mode == VOIDmode)
4796 mode = GET_MODE (x);
4797
4798 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4799 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4800 return 1;
4801
4802 /* For a smaller object, just ignore the high bits. */
4803 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4804 {
4805 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4806 known_x, known_mode, known_ret);
4807 return MAX (1,
4808 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4809 }
4810
4811 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4812 {
4813 /* If this machine does not do all register operations on the entire
4814 register and MODE is wider than the mode of X, we can say nothing
4815 at all about the high-order bits. */
4816 if (!WORD_REGISTER_OPERATIONS)
4817 return 1;
4818
4819 /* Likewise on machines that do, if the mode of the object is smaller
4820 than a word and loads of that size don't sign extend, we can say
4821 nothing about the high order bits. */
4822 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4823 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND)
4824 return 1;
4825 }
4826
4827 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4828 the code in the switch below. */
4829 switch (code)
4830 {
4831 case REG:
4832
4833 #if defined(POINTERS_EXTEND_UNSIGNED)
4834 /* If pointers extend signed and this is a pointer in Pmode, say that
4835 all the bits above ptr_mode are known to be sign bit copies. */
4836 /* As we do not know which address space the pointer is referring to,
4837 we can do this only if the target does not support different pointer
4838 or address modes depending on the address space. */
4839 if (target_default_pointer_address_modes_p ()
4840 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4841 && mode == Pmode && REG_POINTER (x)
4842 && !targetm.have_ptr_extend ())
4843 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4844 #endif
4845
4846 {
4847 unsigned int copies_for_hook = 1, copies = 1;
4848 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4849 known_mode, known_ret,
4850 &copies_for_hook);
4851
4852 if (new_rtx)
4853 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4854 known_mode, known_ret);
4855
4856 if (copies > 1 || copies_for_hook > 1)
4857 return MAX (copies, copies_for_hook);
4858
4859 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4860 }
4861 break;
4862
4863 case MEM:
4864 /* Some RISC machines sign-extend all loads of smaller than a word. */
4865 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4866 return MAX (1, ((int) bitwidth
4867 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4868 break;
4869
4870 case CONST_INT:
4871 /* If the constant is negative, take its 1's complement and remask.
4872 Then see how many zero bits we have. */
4873 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4874 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4875 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
4876 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4877
4878 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4879
4880 case SUBREG:
4881 /* If this is a SUBREG for a promoted object that is sign-extended
4882 and we are looking at it in a wider mode, we know that at least the
4883 high-order bits are known to be sign bit copies. */
4884
4885 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4886 {
4887 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4888 known_x, known_mode, known_ret);
4889 return MAX ((int) bitwidth
4890 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4891 num0);
4892 }
4893
4894 /* For a smaller object, just ignore the high bits. */
4895 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4896 {
4897 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4898 known_x, known_mode, known_ret);
4899 return MAX (1, (num0
4900 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4901 - bitwidth)));
4902 }
4903
4904 /* For paradoxical SUBREGs on machines where all register operations
4905 affect the entire register, just look inside. Note that we are
4906 passing MODE to the recursive call, so the number of sign bit copies
4907 will remain relative to that mode, not the inner mode. */
4908
4909 /* This works only if loads sign extend. Otherwise, if we get a
4910 reload for the inner part, it may be loaded from the stack, and
4911 then we lose all sign bit copies that existed before the store
4912 to the stack. */
4913
4914 if (WORD_REGISTER_OPERATIONS
4915 && paradoxical_subreg_p (x)
4916 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4917 && MEM_P (SUBREG_REG (x)))
4918 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4919 known_x, known_mode, known_ret);
4920 break;
4921
4922 case SIGN_EXTRACT:
4923 if (CONST_INT_P (XEXP (x, 1)))
4924 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4925 break;
4926
4927 case SIGN_EXTEND:
4928 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4929 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4930 known_x, known_mode, known_ret));
4931
4932 case TRUNCATE:
4933 /* For a smaller object, just ignore the high bits. */
4934 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4935 known_x, known_mode, known_ret);
4936 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4937 - bitwidth)));
4938
4939 case NOT:
4940 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4941 known_x, known_mode, known_ret);
4942
4943 case ROTATE: case ROTATERT:
4944 /* If we are rotating left by a number of bits less than the number
4945 of sign bit copies, we can just subtract that amount from the
4946 number. */
4947 if (CONST_INT_P (XEXP (x, 1))
4948 && INTVAL (XEXP (x, 1)) >= 0
4949 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4950 {
4951 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4952 known_x, known_mode, known_ret);
4953 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4954 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4955 }
4956 break;
4957
4958 case NEG:
4959 /* In general, this subtracts one sign bit copy. But if the value
4960 is known to be positive, the number of sign bit copies is the
4961 same as that of the input. Finally, if the input has just one bit
4962 that might be nonzero, all the bits are copies of the sign bit. */
4963 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4964 known_x, known_mode, known_ret);
4965 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4966 return num0 > 1 ? num0 - 1 : 1;
4967
4968 nonzero = nonzero_bits (XEXP (x, 0), mode);
4969 if (nonzero == 1)
4970 return bitwidth;
4971
4972 if (num0 > 1
4973 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
4974 num0--;
4975
4976 return num0;
4977
4978 case IOR: case AND: case XOR:
4979 case SMIN: case SMAX: case UMIN: case UMAX:
4980 /* Logical operations will preserve the number of sign-bit copies.
4981 MIN and MAX operations always return one of the operands. */
4982 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4983 known_x, known_mode, known_ret);
4984 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4985 known_x, known_mode, known_ret);
4986
4987 /* If num1 is clearing some of the top bits then regardless of
4988 the other term, we are guaranteed to have at least that many
4989 high-order zero bits. */
4990 if (code == AND
4991 && num1 > 1
4992 && bitwidth <= HOST_BITS_PER_WIDE_INT
4993 && CONST_INT_P (XEXP (x, 1))
4994 && (UINTVAL (XEXP (x, 1))
4995 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
4996 return num1;
4997
4998 /* Similarly for IOR when setting high-order bits. */
4999 if (code == IOR
5000 && num1 > 1
5001 && bitwidth <= HOST_BITS_PER_WIDE_INT
5002 && CONST_INT_P (XEXP (x, 1))
5003 && (UINTVAL (XEXP (x, 1))
5004 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5005 return num1;
5006
5007 return MIN (num0, num1);
5008
5009 case PLUS: case MINUS:
5010 /* For addition and subtraction, we can have a 1-bit carry. However,
5011 if we are subtracting 1 from a positive number, there will not
5012 be such a carry. Furthermore, if the positive number is known to
5013 be 0 or 1, we know the result is either -1 or 0. */
5014
5015 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5016 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5017 {
5018 nonzero = nonzero_bits (XEXP (x, 0), mode);
5019 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5020 return (nonzero == 1 || nonzero == 0 ? bitwidth
5021 : bitwidth - floor_log2 (nonzero) - 1);
5022 }
5023
5024 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5025 known_x, known_mode, known_ret);
5026 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5027 known_x, known_mode, known_ret);
5028 result = MAX (1, MIN (num0, num1) - 1);
5029
5030 return result;
5031
5032 case MULT:
5033 /* The number of bits of the product is the sum of the number of
5034 bits of both terms. However, unless one of the terms if known
5035 to be positive, we must allow for an additional bit since negating
5036 a negative number can remove one sign bit copy. */
5037
5038 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5039 known_x, known_mode, known_ret);
5040 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5041 known_x, known_mode, known_ret);
5042
5043 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5044 if (result > 0
5045 && (bitwidth > HOST_BITS_PER_WIDE_INT
5046 || (((nonzero_bits (XEXP (x, 0), mode)
5047 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5048 && ((nonzero_bits (XEXP (x, 1), mode)
5049 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5050 != 0))))
5051 result--;
5052
5053 return MAX (1, result);
5054
5055 case UDIV:
5056 /* The result must be <= the first operand. If the first operand
5057 has the high bit set, we know nothing about the number of sign
5058 bit copies. */
5059 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5060 return 1;
5061 else if ((nonzero_bits (XEXP (x, 0), mode)
5062 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5063 return 1;
5064 else
5065 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5066 known_x, known_mode, known_ret);
5067
5068 case UMOD:
5069 /* The result must be <= the second operand. If the second operand
5070 has (or just might have) the high bit set, we know nothing about
5071 the number of sign bit copies. */
5072 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5073 return 1;
5074 else if ((nonzero_bits (XEXP (x, 1), mode)
5075 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5076 return 1;
5077 else
5078 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5079 known_x, known_mode, known_ret);
5080
5081 case DIV:
5082 /* Similar to unsigned division, except that we have to worry about
5083 the case where the divisor is negative, in which case we have
5084 to add 1. */
5085 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5086 known_x, known_mode, known_ret);
5087 if (result > 1
5088 && (bitwidth > HOST_BITS_PER_WIDE_INT
5089 || (nonzero_bits (XEXP (x, 1), mode)
5090 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5091 result--;
5092
5093 return result;
5094
5095 case MOD:
5096 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5097 known_x, known_mode, known_ret);
5098 if (result > 1
5099 && (bitwidth > HOST_BITS_PER_WIDE_INT
5100 || (nonzero_bits (XEXP (x, 1), mode)
5101 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5102 result--;
5103
5104 return result;
5105
5106 case ASHIFTRT:
5107 /* Shifts by a constant add to the number of bits equal to the
5108 sign bit. */
5109 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5110 known_x, known_mode, known_ret);
5111 if (CONST_INT_P (XEXP (x, 1))
5112 && INTVAL (XEXP (x, 1)) > 0
5113 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
5114 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5115
5116 return num0;
5117
5118 case ASHIFT:
5119 /* Left shifts destroy copies. */
5120 if (!CONST_INT_P (XEXP (x, 1))
5121 || INTVAL (XEXP (x, 1)) < 0
5122 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5123 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
5124 return 1;
5125
5126 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5127 known_x, known_mode, known_ret);
5128 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5129
5130 case IF_THEN_ELSE:
5131 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5132 known_x, known_mode, known_ret);
5133 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5134 known_x, known_mode, known_ret);
5135 return MIN (num0, num1);
5136
5137 case EQ: case NE: case GE: case GT: case LE: case LT:
5138 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5139 case GEU: case GTU: case LEU: case LTU:
5140 case UNORDERED: case ORDERED:
5141 /* If the constant is negative, take its 1's complement and remask.
5142 Then see how many zero bits we have. */
5143 nonzero = STORE_FLAG_VALUE;
5144 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5145 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5146 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5147
5148 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5149
5150 default:
5151 break;
5152 }
5153
5154 /* If we haven't been able to figure it out by one of the above rules,
5155 see if some of the high-order bits are known to be zero. If so,
5156 count those bits and return one less than that amount. If we can't
5157 safely compute the mask for this mode, always return BITWIDTH. */
5158
5159 bitwidth = GET_MODE_PRECISION (mode);
5160 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5161 return 1;
5162
5163 nonzero = nonzero_bits (x, mode);
5164 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5165 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5166 }
5167
5168 /* Calculate the rtx_cost of a single instruction. A return value of
5169 zero indicates an instruction pattern without a known cost. */
5170
5171 int
5172 insn_rtx_cost (rtx pat, bool speed)
5173 {
5174 int i, cost;
5175 rtx set;
5176
5177 /* Extract the single set rtx from the instruction pattern.
5178 We can't use single_set since we only have the pattern. */
5179 if (GET_CODE (pat) == SET)
5180 set = pat;
5181 else if (GET_CODE (pat) == PARALLEL)
5182 {
5183 set = NULL_RTX;
5184 for (i = 0; i < XVECLEN (pat, 0); i++)
5185 {
5186 rtx x = XVECEXP (pat, 0, i);
5187 if (GET_CODE (x) == SET)
5188 {
5189 if (set)
5190 return 0;
5191 set = x;
5192 }
5193 }
5194 if (!set)
5195 return 0;
5196 }
5197 else
5198 return 0;
5199
5200 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5201 return cost > 0 ? cost : COSTS_N_INSNS (1);
5202 }
5203
5204 /* Returns estimate on cost of computing SEQ. */
5205
5206 unsigned
5207 seq_cost (const rtx_insn *seq, bool speed)
5208 {
5209 unsigned cost = 0;
5210 rtx set;
5211
5212 for (; seq; seq = NEXT_INSN (seq))
5213 {
5214 set = single_set (seq);
5215 if (set)
5216 cost += set_rtx_cost (set, speed);
5217 else
5218 cost++;
5219 }
5220
5221 return cost;
5222 }
5223
5224 /* Given an insn INSN and condition COND, return the condition in a
5225 canonical form to simplify testing by callers. Specifically:
5226
5227 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5228 (2) Both operands will be machine operands; (cc0) will have been replaced.
5229 (3) If an operand is a constant, it will be the second operand.
5230 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5231 for GE, GEU, and LEU.
5232
5233 If the condition cannot be understood, or is an inequality floating-point
5234 comparison which needs to be reversed, 0 will be returned.
5235
5236 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5237
5238 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5239 insn used in locating the condition was found. If a replacement test
5240 of the condition is desired, it should be placed in front of that
5241 insn and we will be sure that the inputs are still valid.
5242
5243 If WANT_REG is nonzero, we wish the condition to be relative to that
5244 register, if possible. Therefore, do not canonicalize the condition
5245 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5246 to be a compare to a CC mode register.
5247
5248 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5249 and at INSN. */
5250
5251 rtx
5252 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5253 rtx_insn **earliest,
5254 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5255 {
5256 enum rtx_code code;
5257 rtx_insn *prev = insn;
5258 const_rtx set;
5259 rtx tem;
5260 rtx op0, op1;
5261 int reverse_code = 0;
5262 machine_mode mode;
5263 basic_block bb = BLOCK_FOR_INSN (insn);
5264
5265 code = GET_CODE (cond);
5266 mode = GET_MODE (cond);
5267 op0 = XEXP (cond, 0);
5268 op1 = XEXP (cond, 1);
5269
5270 if (reverse)
5271 code = reversed_comparison_code (cond, insn);
5272 if (code == UNKNOWN)
5273 return 0;
5274
5275 if (earliest)
5276 *earliest = insn;
5277
5278 /* If we are comparing a register with zero, see if the register is set
5279 in the previous insn to a COMPARE or a comparison operation. Perform
5280 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5281 in cse.c */
5282
5283 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5284 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5285 && op1 == CONST0_RTX (GET_MODE (op0))
5286 && op0 != want_reg)
5287 {
5288 /* Set nonzero when we find something of interest. */
5289 rtx x = 0;
5290
5291 /* If comparison with cc0, import actual comparison from compare
5292 insn. */
5293 if (op0 == cc0_rtx)
5294 {
5295 if ((prev = prev_nonnote_insn (prev)) == 0
5296 || !NONJUMP_INSN_P (prev)
5297 || (set = single_set (prev)) == 0
5298 || SET_DEST (set) != cc0_rtx)
5299 return 0;
5300
5301 op0 = SET_SRC (set);
5302 op1 = CONST0_RTX (GET_MODE (op0));
5303 if (earliest)
5304 *earliest = prev;
5305 }
5306
5307 /* If this is a COMPARE, pick up the two things being compared. */
5308 if (GET_CODE (op0) == COMPARE)
5309 {
5310 op1 = XEXP (op0, 1);
5311 op0 = XEXP (op0, 0);
5312 continue;
5313 }
5314 else if (!REG_P (op0))
5315 break;
5316
5317 /* Go back to the previous insn. Stop if it is not an INSN. We also
5318 stop if it isn't a single set or if it has a REG_INC note because
5319 we don't want to bother dealing with it. */
5320
5321 prev = prev_nonnote_nondebug_insn (prev);
5322
5323 if (prev == 0
5324 || !NONJUMP_INSN_P (prev)
5325 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5326 /* In cfglayout mode, there do not have to be labels at the
5327 beginning of a block, or jumps at the end, so the previous
5328 conditions would not stop us when we reach bb boundary. */
5329 || BLOCK_FOR_INSN (prev) != bb)
5330 break;
5331
5332 set = set_of (op0, prev);
5333
5334 if (set
5335 && (GET_CODE (set) != SET
5336 || !rtx_equal_p (SET_DEST (set), op0)))
5337 break;
5338
5339 /* If this is setting OP0, get what it sets it to if it looks
5340 relevant. */
5341 if (set)
5342 {
5343 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5344 #ifdef FLOAT_STORE_FLAG_VALUE
5345 REAL_VALUE_TYPE fsfv;
5346 #endif
5347
5348 /* ??? We may not combine comparisons done in a CCmode with
5349 comparisons not done in a CCmode. This is to aid targets
5350 like Alpha that have an IEEE compliant EQ instruction, and
5351 a non-IEEE compliant BEQ instruction. The use of CCmode is
5352 actually artificial, simply to prevent the combination, but
5353 should not affect other platforms.
5354
5355 However, we must allow VOIDmode comparisons to match either
5356 CCmode or non-CCmode comparison, because some ports have
5357 modeless comparisons inside branch patterns.
5358
5359 ??? This mode check should perhaps look more like the mode check
5360 in simplify_comparison in combine. */
5361 if (((GET_MODE_CLASS (mode) == MODE_CC)
5362 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5363 && mode != VOIDmode
5364 && inner_mode != VOIDmode)
5365 break;
5366 if (GET_CODE (SET_SRC (set)) == COMPARE
5367 || (((code == NE
5368 || (code == LT
5369 && val_signbit_known_set_p (inner_mode,
5370 STORE_FLAG_VALUE))
5371 #ifdef FLOAT_STORE_FLAG_VALUE
5372 || (code == LT
5373 && SCALAR_FLOAT_MODE_P (inner_mode)
5374 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5375 REAL_VALUE_NEGATIVE (fsfv)))
5376 #endif
5377 ))
5378 && COMPARISON_P (SET_SRC (set))))
5379 x = SET_SRC (set);
5380 else if (((code == EQ
5381 || (code == GE
5382 && val_signbit_known_set_p (inner_mode,
5383 STORE_FLAG_VALUE))
5384 #ifdef FLOAT_STORE_FLAG_VALUE
5385 || (code == GE
5386 && SCALAR_FLOAT_MODE_P (inner_mode)
5387 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5388 REAL_VALUE_NEGATIVE (fsfv)))
5389 #endif
5390 ))
5391 && COMPARISON_P (SET_SRC (set)))
5392 {
5393 reverse_code = 1;
5394 x = SET_SRC (set);
5395 }
5396 else if ((code == EQ || code == NE)
5397 && GET_CODE (SET_SRC (set)) == XOR)
5398 /* Handle sequences like:
5399
5400 (set op0 (xor X Y))
5401 ...(eq|ne op0 (const_int 0))...
5402
5403 in which case:
5404
5405 (eq op0 (const_int 0)) reduces to (eq X Y)
5406 (ne op0 (const_int 0)) reduces to (ne X Y)
5407
5408 This is the form used by MIPS16, for example. */
5409 x = SET_SRC (set);
5410 else
5411 break;
5412 }
5413
5414 else if (reg_set_p (op0, prev))
5415 /* If this sets OP0, but not directly, we have to give up. */
5416 break;
5417
5418 if (x)
5419 {
5420 /* If the caller is expecting the condition to be valid at INSN,
5421 make sure X doesn't change before INSN. */
5422 if (valid_at_insn_p)
5423 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5424 break;
5425 if (COMPARISON_P (x))
5426 code = GET_CODE (x);
5427 if (reverse_code)
5428 {
5429 code = reversed_comparison_code (x, prev);
5430 if (code == UNKNOWN)
5431 return 0;
5432 reverse_code = 0;
5433 }
5434
5435 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5436 if (earliest)
5437 *earliest = prev;
5438 }
5439 }
5440
5441 /* If constant is first, put it last. */
5442 if (CONSTANT_P (op0))
5443 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5444
5445 /* If OP0 is the result of a comparison, we weren't able to find what
5446 was really being compared, so fail. */
5447 if (!allow_cc_mode
5448 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5449 return 0;
5450
5451 /* Canonicalize any ordered comparison with integers involving equality
5452 if we can do computations in the relevant mode and we do not
5453 overflow. */
5454
5455 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5456 && CONST_INT_P (op1)
5457 && GET_MODE (op0) != VOIDmode
5458 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5459 {
5460 HOST_WIDE_INT const_val = INTVAL (op1);
5461 unsigned HOST_WIDE_INT uconst_val = const_val;
5462 unsigned HOST_WIDE_INT max_val
5463 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5464
5465 switch (code)
5466 {
5467 case LE:
5468 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5469 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5470 break;
5471
5472 /* When cross-compiling, const_val might be sign-extended from
5473 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5474 case GE:
5475 if ((const_val & max_val)
5476 != (HOST_WIDE_INT_1U
5477 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5478 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5479 break;
5480
5481 case LEU:
5482 if (uconst_val < max_val)
5483 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5484 break;
5485
5486 case GEU:
5487 if (uconst_val != 0)
5488 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5489 break;
5490
5491 default:
5492 break;
5493 }
5494 }
5495
5496 /* Never return CC0; return zero instead. */
5497 if (CC0_P (op0))
5498 return 0;
5499
5500 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5501 }
5502
5503 /* Given a jump insn JUMP, return the condition that will cause it to branch
5504 to its JUMP_LABEL. If the condition cannot be understood, or is an
5505 inequality floating-point comparison which needs to be reversed, 0 will
5506 be returned.
5507
5508 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5509 insn used in locating the condition was found. If a replacement test
5510 of the condition is desired, it should be placed in front of that
5511 insn and we will be sure that the inputs are still valid. If EARLIEST
5512 is null, the returned condition will be valid at INSN.
5513
5514 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5515 compare CC mode register.
5516
5517 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5518
5519 rtx
5520 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5521 int valid_at_insn_p)
5522 {
5523 rtx cond;
5524 int reverse;
5525 rtx set;
5526
5527 /* If this is not a standard conditional jump, we can't parse it. */
5528 if (!JUMP_P (jump)
5529 || ! any_condjump_p (jump))
5530 return 0;
5531 set = pc_set (jump);
5532
5533 cond = XEXP (SET_SRC (set), 0);
5534
5535 /* If this branches to JUMP_LABEL when the condition is false, reverse
5536 the condition. */
5537 reverse
5538 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5539 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5540
5541 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5542 allow_cc_mode, valid_at_insn_p);
5543 }
5544
5545 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5546 TARGET_MODE_REP_EXTENDED.
5547
5548 Note that we assume that the property of
5549 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5550 narrower than mode B. I.e., if A is a mode narrower than B then in
5551 order to be able to operate on it in mode B, mode A needs to
5552 satisfy the requirements set by the representation of mode B. */
5553
5554 static void
5555 init_num_sign_bit_copies_in_rep (void)
5556 {
5557 machine_mode mode, in_mode;
5558
5559 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5560 in_mode = GET_MODE_WIDER_MODE (mode))
5561 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5562 mode = GET_MODE_WIDER_MODE (mode))
5563 {
5564 machine_mode i;
5565
5566 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5567 extends to the next widest mode. */
5568 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5569 || GET_MODE_WIDER_MODE (mode) == in_mode);
5570
5571 /* We are in in_mode. Count how many bits outside of mode
5572 have to be copies of the sign-bit. */
5573 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5574 {
5575 machine_mode wider = GET_MODE_WIDER_MODE (i);
5576
5577 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5578 /* We can only check sign-bit copies starting from the
5579 top-bit. In order to be able to check the bits we
5580 have already seen we pretend that subsequent bits
5581 have to be sign-bit copies too. */
5582 || num_sign_bit_copies_in_rep [in_mode][mode])
5583 num_sign_bit_copies_in_rep [in_mode][mode]
5584 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5585 }
5586 }
5587 }
5588
5589 /* Suppose that truncation from the machine mode of X to MODE is not a
5590 no-op. See if there is anything special about X so that we can
5591 assume it already contains a truncated value of MODE. */
5592
5593 bool
5594 truncated_to_mode (machine_mode mode, const_rtx x)
5595 {
5596 /* This register has already been used in MODE without explicit
5597 truncation. */
5598 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5599 return true;
5600
5601 /* See if we already satisfy the requirements of MODE. If yes we
5602 can just switch to MODE. */
5603 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5604 && (num_sign_bit_copies (x, GET_MODE (x))
5605 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5606 return true;
5607
5608 return false;
5609 }
5610 \f
5611 /* Return true if RTX code CODE has a single sequence of zero or more
5612 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5613 entry in that case. */
5614
5615 static bool
5616 setup_reg_subrtx_bounds (unsigned int code)
5617 {
5618 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5619 unsigned int i = 0;
5620 for (; format[i] != 'e'; ++i)
5621 {
5622 if (!format[i])
5623 /* No subrtxes. Leave start and count as 0. */
5624 return true;
5625 if (format[i] == 'E' || format[i] == 'V')
5626 return false;
5627 }
5628
5629 /* Record the sequence of 'e's. */
5630 rtx_all_subrtx_bounds[code].start = i;
5631 do
5632 ++i;
5633 while (format[i] == 'e');
5634 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5635 /* rtl-iter.h relies on this. */
5636 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5637
5638 for (; format[i]; ++i)
5639 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5640 return false;
5641
5642 return true;
5643 }
5644
5645 /* Initialize rtx_all_subrtx_bounds. */
5646 void
5647 init_rtlanal (void)
5648 {
5649 int i;
5650 for (i = 0; i < NUM_RTX_CODE; i++)
5651 {
5652 if (!setup_reg_subrtx_bounds (i))
5653 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5654 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5655 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5656 }
5657
5658 init_num_sign_bit_copies_in_rep ();
5659 }
5660 \f
5661 /* Check whether this is a constant pool constant. */
5662 bool
5663 constant_pool_constant_p (rtx x)
5664 {
5665 x = avoid_constant_pool_reference (x);
5666 return CONST_DOUBLE_P (x);
5667 }
5668 \f
5669 /* If M is a bitmask that selects a field of low-order bits within an item but
5670 not the entire word, return the length of the field. Return -1 otherwise.
5671 M is used in machine mode MODE. */
5672
5673 int
5674 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5675 {
5676 if (mode != VOIDmode)
5677 {
5678 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5679 return -1;
5680 m &= GET_MODE_MASK (mode);
5681 }
5682
5683 return exact_log2 (m + 1);
5684 }
5685
5686 /* Return the mode of MEM's address. */
5687
5688 machine_mode
5689 get_address_mode (rtx mem)
5690 {
5691 machine_mode mode;
5692
5693 gcc_assert (MEM_P (mem));
5694 mode = GET_MODE (XEXP (mem, 0));
5695 if (mode != VOIDmode)
5696 return mode;
5697 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5698 }
5699 \f
5700 /* Split up a CONST_DOUBLE or integer constant rtx
5701 into two rtx's for single words,
5702 storing in *FIRST the word that comes first in memory in the target
5703 and in *SECOND the other.
5704
5705 TODO: This function needs to be rewritten to work on any size
5706 integer. */
5707
5708 void
5709 split_double (rtx value, rtx *first, rtx *second)
5710 {
5711 if (CONST_INT_P (value))
5712 {
5713 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5714 {
5715 /* In this case the CONST_INT holds both target words.
5716 Extract the bits from it into two word-sized pieces.
5717 Sign extend each half to HOST_WIDE_INT. */
5718 unsigned HOST_WIDE_INT low, high;
5719 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5720 unsigned bits_per_word = BITS_PER_WORD;
5721
5722 /* Set sign_bit to the most significant bit of a word. */
5723 sign_bit = 1;
5724 sign_bit <<= bits_per_word - 1;
5725
5726 /* Set mask so that all bits of the word are set. We could
5727 have used 1 << BITS_PER_WORD instead of basing the
5728 calculation on sign_bit. However, on machines where
5729 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5730 compiler warning, even though the code would never be
5731 executed. */
5732 mask = sign_bit << 1;
5733 mask--;
5734
5735 /* Set sign_extend as any remaining bits. */
5736 sign_extend = ~mask;
5737
5738 /* Pick the lower word and sign-extend it. */
5739 low = INTVAL (value);
5740 low &= mask;
5741 if (low & sign_bit)
5742 low |= sign_extend;
5743
5744 /* Pick the higher word, shifted to the least significant
5745 bits, and sign-extend it. */
5746 high = INTVAL (value);
5747 high >>= bits_per_word - 1;
5748 high >>= 1;
5749 high &= mask;
5750 if (high & sign_bit)
5751 high |= sign_extend;
5752
5753 /* Store the words in the target machine order. */
5754 if (WORDS_BIG_ENDIAN)
5755 {
5756 *first = GEN_INT (high);
5757 *second = GEN_INT (low);
5758 }
5759 else
5760 {
5761 *first = GEN_INT (low);
5762 *second = GEN_INT (high);
5763 }
5764 }
5765 else
5766 {
5767 /* The rule for using CONST_INT for a wider mode
5768 is that we regard the value as signed.
5769 So sign-extend it. */
5770 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5771 if (WORDS_BIG_ENDIAN)
5772 {
5773 *first = high;
5774 *second = value;
5775 }
5776 else
5777 {
5778 *first = value;
5779 *second = high;
5780 }
5781 }
5782 }
5783 else if (GET_CODE (value) == CONST_WIDE_INT)
5784 {
5785 /* All of this is scary code and needs to be converted to
5786 properly work with any size integer. */
5787 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5788 if (WORDS_BIG_ENDIAN)
5789 {
5790 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5791 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5792 }
5793 else
5794 {
5795 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5796 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5797 }
5798 }
5799 else if (!CONST_DOUBLE_P (value))
5800 {
5801 if (WORDS_BIG_ENDIAN)
5802 {
5803 *first = const0_rtx;
5804 *second = value;
5805 }
5806 else
5807 {
5808 *first = value;
5809 *second = const0_rtx;
5810 }
5811 }
5812 else if (GET_MODE (value) == VOIDmode
5813 /* This is the old way we did CONST_DOUBLE integers. */
5814 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5815 {
5816 /* In an integer, the words are defined as most and least significant.
5817 So order them by the target's convention. */
5818 if (WORDS_BIG_ENDIAN)
5819 {
5820 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5821 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5822 }
5823 else
5824 {
5825 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5826 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5827 }
5828 }
5829 else
5830 {
5831 long l[2];
5832
5833 /* Note, this converts the REAL_VALUE_TYPE to the target's
5834 format, splits up the floating point double and outputs
5835 exactly 32 bits of it into each of l[0] and l[1] --
5836 not necessarily BITS_PER_WORD bits. */
5837 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5838
5839 /* If 32 bits is an entire word for the target, but not for the host,
5840 then sign-extend on the host so that the number will look the same
5841 way on the host that it would on the target. See for instance
5842 simplify_unary_operation. The #if is needed to avoid compiler
5843 warnings. */
5844
5845 #if HOST_BITS_PER_LONG > 32
5846 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5847 {
5848 if (l[0] & ((long) 1 << 31))
5849 l[0] |= ((unsigned long) (-1) << 32);
5850 if (l[1] & ((long) 1 << 31))
5851 l[1] |= ((unsigned long) (-1) << 32);
5852 }
5853 #endif
5854
5855 *first = GEN_INT (l[0]);
5856 *second = GEN_INT (l[1]);
5857 }
5858 }
5859
5860 /* Return true if X is a sign_extract or zero_extract from the least
5861 significant bit. */
5862
5863 static bool
5864 lsb_bitfield_op_p (rtx x)
5865 {
5866 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5867 {
5868 machine_mode mode = GET_MODE (XEXP (x, 0));
5869 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5870 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5871
5872 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5873 }
5874 return false;
5875 }
5876
5877 /* Strip outer address "mutations" from LOC and return a pointer to the
5878 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5879 stripped expression there.
5880
5881 "Mutations" either convert between modes or apply some kind of
5882 extension, truncation or alignment. */
5883
5884 rtx *
5885 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5886 {
5887 for (;;)
5888 {
5889 enum rtx_code code = GET_CODE (*loc);
5890 if (GET_RTX_CLASS (code) == RTX_UNARY)
5891 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5892 used to convert between pointer sizes. */
5893 loc = &XEXP (*loc, 0);
5894 else if (lsb_bitfield_op_p (*loc))
5895 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5896 acts as a combined truncation and extension. */
5897 loc = &XEXP (*loc, 0);
5898 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5899 /* (and ... (const_int -X)) is used to align to X bytes. */
5900 loc = &XEXP (*loc, 0);
5901 else if (code == SUBREG
5902 && !OBJECT_P (SUBREG_REG (*loc))
5903 && subreg_lowpart_p (*loc))
5904 /* (subreg (operator ...) ...) inside and is used for mode
5905 conversion too. */
5906 loc = &SUBREG_REG (*loc);
5907 else
5908 return loc;
5909 if (outer_code)
5910 *outer_code = code;
5911 }
5912 }
5913
5914 /* Return true if CODE applies some kind of scale. The scaled value is
5915 is the first operand and the scale is the second. */
5916
5917 static bool
5918 binary_scale_code_p (enum rtx_code code)
5919 {
5920 return (code == MULT
5921 || code == ASHIFT
5922 /* Needed by ARM targets. */
5923 || code == ASHIFTRT
5924 || code == LSHIFTRT
5925 || code == ROTATE
5926 || code == ROTATERT);
5927 }
5928
5929 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5930 (see address_info). Return null otherwise. */
5931
5932 static rtx *
5933 get_base_term (rtx *inner)
5934 {
5935 if (GET_CODE (*inner) == LO_SUM)
5936 inner = strip_address_mutations (&XEXP (*inner, 0));
5937 if (REG_P (*inner)
5938 || MEM_P (*inner)
5939 || GET_CODE (*inner) == SUBREG
5940 || GET_CODE (*inner) == SCRATCH)
5941 return inner;
5942 return 0;
5943 }
5944
5945 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5946 (see address_info). Return null otherwise. */
5947
5948 static rtx *
5949 get_index_term (rtx *inner)
5950 {
5951 /* At present, only constant scales are allowed. */
5952 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5953 inner = strip_address_mutations (&XEXP (*inner, 0));
5954 if (REG_P (*inner)
5955 || MEM_P (*inner)
5956 || GET_CODE (*inner) == SUBREG
5957 || GET_CODE (*inner) == SCRATCH)
5958 return inner;
5959 return 0;
5960 }
5961
5962 /* Set the segment part of address INFO to LOC, given that INNER is the
5963 unmutated value. */
5964
5965 static void
5966 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5967 {
5968 gcc_assert (!info->segment);
5969 info->segment = loc;
5970 info->segment_term = inner;
5971 }
5972
5973 /* Set the base part of address INFO to LOC, given that INNER is the
5974 unmutated value. */
5975
5976 static void
5977 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5978 {
5979 gcc_assert (!info->base);
5980 info->base = loc;
5981 info->base_term = inner;
5982 }
5983
5984 /* Set the index part of address INFO to LOC, given that INNER is the
5985 unmutated value. */
5986
5987 static void
5988 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5989 {
5990 gcc_assert (!info->index);
5991 info->index = loc;
5992 info->index_term = inner;
5993 }
5994
5995 /* Set the displacement part of address INFO to LOC, given that INNER
5996 is the constant term. */
5997
5998 static void
5999 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6000 {
6001 gcc_assert (!info->disp);
6002 info->disp = loc;
6003 info->disp_term = inner;
6004 }
6005
6006 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6007 rest of INFO accordingly. */
6008
6009 static void
6010 decompose_incdec_address (struct address_info *info)
6011 {
6012 info->autoinc_p = true;
6013
6014 rtx *base = &XEXP (*info->inner, 0);
6015 set_address_base (info, base, base);
6016 gcc_checking_assert (info->base == info->base_term);
6017
6018 /* These addresses are only valid when the size of the addressed
6019 value is known. */
6020 gcc_checking_assert (info->mode != VOIDmode);
6021 }
6022
6023 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6024 of INFO accordingly. */
6025
6026 static void
6027 decompose_automod_address (struct address_info *info)
6028 {
6029 info->autoinc_p = true;
6030
6031 rtx *base = &XEXP (*info->inner, 0);
6032 set_address_base (info, base, base);
6033 gcc_checking_assert (info->base == info->base_term);
6034
6035 rtx plus = XEXP (*info->inner, 1);
6036 gcc_assert (GET_CODE (plus) == PLUS);
6037
6038 info->base_term2 = &XEXP (plus, 0);
6039 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6040
6041 rtx *step = &XEXP (plus, 1);
6042 rtx *inner_step = strip_address_mutations (step);
6043 if (CONSTANT_P (*inner_step))
6044 set_address_disp (info, step, inner_step);
6045 else
6046 set_address_index (info, step, inner_step);
6047 }
6048
6049 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6050 values in [PTR, END). Return a pointer to the end of the used array. */
6051
6052 static rtx **
6053 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6054 {
6055 rtx x = *loc;
6056 if (GET_CODE (x) == PLUS)
6057 {
6058 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6059 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6060 }
6061 else
6062 {
6063 gcc_assert (ptr != end);
6064 *ptr++ = loc;
6065 }
6066 return ptr;
6067 }
6068
6069 /* Evaluate the likelihood of X being a base or index value, returning
6070 positive if it is likely to be a base, negative if it is likely to be
6071 an index, and 0 if we can't tell. Make the magnitude of the return
6072 value reflect the amount of confidence we have in the answer.
6073
6074 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6075
6076 static int
6077 baseness (rtx x, machine_mode mode, addr_space_t as,
6078 enum rtx_code outer_code, enum rtx_code index_code)
6079 {
6080 /* Believe *_POINTER unless the address shape requires otherwise. */
6081 if (REG_P (x) && REG_POINTER (x))
6082 return 2;
6083 if (MEM_P (x) && MEM_POINTER (x))
6084 return 2;
6085
6086 if (REG_P (x) && HARD_REGISTER_P (x))
6087 {
6088 /* X is a hard register. If it only fits one of the base
6089 or index classes, choose that interpretation. */
6090 int regno = REGNO (x);
6091 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6092 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6093 if (base_p != index_p)
6094 return base_p ? 1 : -1;
6095 }
6096 return 0;
6097 }
6098
6099 /* INFO->INNER describes a normal, non-automodified address.
6100 Fill in the rest of INFO accordingly. */
6101
6102 static void
6103 decompose_normal_address (struct address_info *info)
6104 {
6105 /* Treat the address as the sum of up to four values. */
6106 rtx *ops[4];
6107 size_t n_ops = extract_plus_operands (info->inner, ops,
6108 ops + ARRAY_SIZE (ops)) - ops;
6109
6110 /* If there is more than one component, any base component is in a PLUS. */
6111 if (n_ops > 1)
6112 info->base_outer_code = PLUS;
6113
6114 /* Try to classify each sum operand now. Leave those that could be
6115 either a base or an index in OPS. */
6116 rtx *inner_ops[4];
6117 size_t out = 0;
6118 for (size_t in = 0; in < n_ops; ++in)
6119 {
6120 rtx *loc = ops[in];
6121 rtx *inner = strip_address_mutations (loc);
6122 if (CONSTANT_P (*inner))
6123 set_address_disp (info, loc, inner);
6124 else if (GET_CODE (*inner) == UNSPEC)
6125 set_address_segment (info, loc, inner);
6126 else
6127 {
6128 /* The only other possibilities are a base or an index. */
6129 rtx *base_term = get_base_term (inner);
6130 rtx *index_term = get_index_term (inner);
6131 gcc_assert (base_term || index_term);
6132 if (!base_term)
6133 set_address_index (info, loc, index_term);
6134 else if (!index_term)
6135 set_address_base (info, loc, base_term);
6136 else
6137 {
6138 gcc_assert (base_term == index_term);
6139 ops[out] = loc;
6140 inner_ops[out] = base_term;
6141 ++out;
6142 }
6143 }
6144 }
6145
6146 /* Classify the remaining OPS members as bases and indexes. */
6147 if (out == 1)
6148 {
6149 /* If we haven't seen a base or an index yet, assume that this is
6150 the base. If we were confident that another term was the base
6151 or index, treat the remaining operand as the other kind. */
6152 if (!info->base)
6153 set_address_base (info, ops[0], inner_ops[0]);
6154 else
6155 set_address_index (info, ops[0], inner_ops[0]);
6156 }
6157 else if (out == 2)
6158 {
6159 /* In the event of a tie, assume the base comes first. */
6160 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6161 GET_CODE (*ops[1]))
6162 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6163 GET_CODE (*ops[0])))
6164 {
6165 set_address_base (info, ops[0], inner_ops[0]);
6166 set_address_index (info, ops[1], inner_ops[1]);
6167 }
6168 else
6169 {
6170 set_address_base (info, ops[1], inner_ops[1]);
6171 set_address_index (info, ops[0], inner_ops[0]);
6172 }
6173 }
6174 else
6175 gcc_assert (out == 0);
6176 }
6177
6178 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6179 or VOIDmode if not known. AS is the address space associated with LOC.
6180 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6181
6182 void
6183 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6184 addr_space_t as, enum rtx_code outer_code)
6185 {
6186 memset (info, 0, sizeof (*info));
6187 info->mode = mode;
6188 info->as = as;
6189 info->addr_outer_code = outer_code;
6190 info->outer = loc;
6191 info->inner = strip_address_mutations (loc, &outer_code);
6192 info->base_outer_code = outer_code;
6193 switch (GET_CODE (*info->inner))
6194 {
6195 case PRE_DEC:
6196 case PRE_INC:
6197 case POST_DEC:
6198 case POST_INC:
6199 decompose_incdec_address (info);
6200 break;
6201
6202 case PRE_MODIFY:
6203 case POST_MODIFY:
6204 decompose_automod_address (info);
6205 break;
6206
6207 default:
6208 decompose_normal_address (info);
6209 break;
6210 }
6211 }
6212
6213 /* Describe address operand LOC in INFO. */
6214
6215 void
6216 decompose_lea_address (struct address_info *info, rtx *loc)
6217 {
6218 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6219 }
6220
6221 /* Describe the address of MEM X in INFO. */
6222
6223 void
6224 decompose_mem_address (struct address_info *info, rtx x)
6225 {
6226 gcc_assert (MEM_P (x));
6227 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6228 MEM_ADDR_SPACE (x), MEM);
6229 }
6230
6231 /* Update INFO after a change to the address it describes. */
6232
6233 void
6234 update_address (struct address_info *info)
6235 {
6236 decompose_address (info, info->outer, info->mode, info->as,
6237 info->addr_outer_code);
6238 }
6239
6240 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6241 more complicated than that. */
6242
6243 HOST_WIDE_INT
6244 get_index_scale (const struct address_info *info)
6245 {
6246 rtx index = *info->index;
6247 if (GET_CODE (index) == MULT
6248 && CONST_INT_P (XEXP (index, 1))
6249 && info->index_term == &XEXP (index, 0))
6250 return INTVAL (XEXP (index, 1));
6251
6252 if (GET_CODE (index) == ASHIFT
6253 && CONST_INT_P (XEXP (index, 1))
6254 && info->index_term == &XEXP (index, 0))
6255 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6256
6257 if (info->index == info->index_term)
6258 return 1;
6259
6260 return 0;
6261 }
6262
6263 /* Return the "index code" of INFO, in the form required by
6264 ok_for_base_p_1. */
6265
6266 enum rtx_code
6267 get_index_code (const struct address_info *info)
6268 {
6269 if (info->index)
6270 return GET_CODE (*info->index);
6271
6272 if (info->disp)
6273 return GET_CODE (*info->disp);
6274
6275 return SCRATCH;
6276 }
6277
6278 /* Return true if RTL X contains a SYMBOL_REF. */
6279
6280 bool
6281 contains_symbol_ref_p (const_rtx x)
6282 {
6283 subrtx_iterator::array_type array;
6284 FOR_EACH_SUBRTX (iter, array, x, ALL)
6285 if (SYMBOL_REF_P (*iter))
6286 return true;
6287
6288 return false;
6289 }
6290
6291 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6292
6293 bool
6294 contains_symbolic_reference_p (const_rtx x)
6295 {
6296 subrtx_iterator::array_type array;
6297 FOR_EACH_SUBRTX (iter, array, x, ALL)
6298 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6299 return true;
6300
6301 return false;
6302 }
6303
6304 /* Return true if X contains a thread-local symbol. */
6305
6306 bool
6307 tls_referenced_p (const_rtx x)
6308 {
6309 if (!targetm.have_tls)
6310 return false;
6311
6312 subrtx_iterator::array_type array;
6313 FOR_EACH_SUBRTX (iter, array, x, ALL)
6314 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6315 return true;
6316 return false;
6317 }