]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/rtlanal.c
Correct a function pre/postcondition [PR102403].
[thirdparty/gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "rtlanal.h"
28 #include "tree.h"
29 #include "predict.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "insn-config.h"
34 #include "regs.h"
35 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
36 #include "recog.h"
37 #include "addresses.h"
38 #include "rtl-iter.h"
39 #include "hard-reg-set.h"
40 #include "function-abi.h"
41
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int computed_jump_p_1 (const_rtx);
47 static void parms_set (rtx, const_rtx, void *);
48
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
50 const_rtx, machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
53 const_rtx, machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
56 const_rtx, machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
59 const_rtx, machine_mode,
60 unsigned int);
61
62 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
63 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
64
65 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
66 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
67 SIGN_EXTEND then while narrowing we also have to enforce the
68 representation and sign-extend the value to mode DESTINATION_REP.
69
70 If the value is already sign-extended to DESTINATION_REP mode we
71 can just switch to DESTINATION mode on it. For each pair of
72 integral modes SOURCE and DESTINATION, when truncating from SOURCE
73 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
74 contains the number of high-order bits in SOURCE that have to be
75 copies of the sign-bit so that we can do this mode-switch to
76 DESTINATION. */
77
78 static unsigned int
79 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
80 \f
81 /* Store X into index I of ARRAY. ARRAY is known to have at least I
82 elements. Return the new base of ARRAY. */
83
84 template <typename T>
85 typename T::value_type *
86 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
87 value_type *base,
88 size_t i, value_type x)
89 {
90 if (base == array.stack)
91 {
92 if (i < LOCAL_ELEMS)
93 {
94 base[i] = x;
95 return base;
96 }
97 gcc_checking_assert (i == LOCAL_ELEMS);
98 /* A previous iteration might also have moved from the stack to the
99 heap, in which case the heap array will already be big enough. */
100 if (vec_safe_length (array.heap) <= i)
101 vec_safe_grow (array.heap, i + 1, true);
102 base = array.heap->address ();
103 memcpy (base, array.stack, sizeof (array.stack));
104 base[LOCAL_ELEMS] = x;
105 return base;
106 }
107 unsigned int length = array.heap->length ();
108 if (length > i)
109 {
110 gcc_checking_assert (base == array.heap->address ());
111 base[i] = x;
112 return base;
113 }
114 else
115 {
116 gcc_checking_assert (i == length);
117 vec_safe_push (array.heap, x);
118 return array.heap->address ();
119 }
120 }
121
122 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
123 number of elements added to the worklist. */
124
125 template <typename T>
126 size_t
127 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
128 value_type *base,
129 size_t end, rtx_type x)
130 {
131 enum rtx_code code = GET_CODE (x);
132 const char *format = GET_RTX_FORMAT (code);
133 size_t orig_end = end;
134 if (__builtin_expect (INSN_P (x), false))
135 {
136 /* Put the pattern at the top of the queue, since that's what
137 we're likely to want most. It also allows for the SEQUENCE
138 code below. */
139 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
140 if (format[i] == 'e')
141 {
142 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
143 if (__builtin_expect (end < LOCAL_ELEMS, true))
144 base[end++] = subx;
145 else
146 base = add_single_to_queue (array, base, end++, subx);
147 }
148 }
149 else
150 for (int i = 0; format[i]; ++i)
151 if (format[i] == 'e')
152 {
153 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
154 if (__builtin_expect (end < LOCAL_ELEMS, true))
155 base[end++] = subx;
156 else
157 base = add_single_to_queue (array, base, end++, subx);
158 }
159 else if (format[i] == 'E')
160 {
161 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
162 rtx *vec = x->u.fld[i].rt_rtvec->elem;
163 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
164 for (unsigned int j = 0; j < length; j++)
165 base[end++] = T::get_value (vec[j]);
166 else
167 for (unsigned int j = 0; j < length; j++)
168 base = add_single_to_queue (array, base, end++,
169 T::get_value (vec[j]));
170 if (code == SEQUENCE && end == length)
171 /* If the subrtxes of the sequence fill the entire array then
172 we know that no other parts of a containing insn are queued.
173 The caller is therefore iterating over the sequence as a
174 PATTERN (...), so we also want the patterns of the
175 subinstructions. */
176 for (unsigned int j = 0; j < length; j++)
177 {
178 typename T::rtx_type x = T::get_rtx (base[j]);
179 if (INSN_P (x))
180 base[j] = T::get_value (PATTERN (x));
181 }
182 }
183 return end - orig_end;
184 }
185
186 template <typename T>
187 void
188 generic_subrtx_iterator <T>::free_array (array_type &array)
189 {
190 vec_free (array.heap);
191 }
192
193 template <typename T>
194 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
195
196 template class generic_subrtx_iterator <const_rtx_accessor>;
197 template class generic_subrtx_iterator <rtx_var_accessor>;
198 template class generic_subrtx_iterator <rtx_ptr_accessor>;
199
200 /* Return 1 if the value of X is unstable
201 (would be different at a different point in the program).
202 The frame pointer, arg pointer, etc. are considered stable
203 (within one function) and so is anything marked `unchanging'. */
204
205 int
206 rtx_unstable_p (const_rtx x)
207 {
208 const RTX_CODE code = GET_CODE (x);
209 int i;
210 const char *fmt;
211
212 switch (code)
213 {
214 case MEM:
215 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
216
217 case CONST:
218 CASE_CONST_ANY:
219 case SYMBOL_REF:
220 case LABEL_REF:
221 return 0;
222
223 case REG:
224 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
225 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
226 /* The arg pointer varies if it is not a fixed register. */
227 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
228 return 0;
229 /* ??? When call-clobbered, the value is stable modulo the restore
230 that must happen after a call. This currently screws up local-alloc
231 into believing that the restore is not needed. */
232 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
233 return 0;
234 return 1;
235
236 case ASM_OPERANDS:
237 if (MEM_VOLATILE_P (x))
238 return 1;
239
240 /* Fall through. */
241
242 default:
243 break;
244 }
245
246 fmt = GET_RTX_FORMAT (code);
247 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
248 if (fmt[i] == 'e')
249 {
250 if (rtx_unstable_p (XEXP (x, i)))
251 return 1;
252 }
253 else if (fmt[i] == 'E')
254 {
255 int j;
256 for (j = 0; j < XVECLEN (x, i); j++)
257 if (rtx_unstable_p (XVECEXP (x, i, j)))
258 return 1;
259 }
260
261 return 0;
262 }
263
264 /* Return 1 if X has a value that can vary even between two
265 executions of the program. 0 means X can be compared reliably
266 against certain constants or near-constants.
267 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
268 zero, we are slightly more conservative.
269 The frame pointer and the arg pointer are considered constant. */
270
271 bool
272 rtx_varies_p (const_rtx x, bool for_alias)
273 {
274 RTX_CODE code;
275 int i;
276 const char *fmt;
277
278 if (!x)
279 return 0;
280
281 code = GET_CODE (x);
282 switch (code)
283 {
284 case MEM:
285 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
286
287 case CONST:
288 CASE_CONST_ANY:
289 case SYMBOL_REF:
290 case LABEL_REF:
291 return 0;
292
293 case REG:
294 /* Note that we have to test for the actual rtx used for the frame
295 and arg pointers and not just the register number in case we have
296 eliminated the frame and/or arg pointer and are using it
297 for pseudos. */
298 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
299 /* The arg pointer varies if it is not a fixed register. */
300 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
301 return 0;
302 if (x == pic_offset_table_rtx
303 /* ??? When call-clobbered, the value is stable modulo the restore
304 that must happen after a call. This currently screws up
305 local-alloc into believing that the restore is not needed, so we
306 must return 0 only if we are called from alias analysis. */
307 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
308 return 0;
309 return 1;
310
311 case LO_SUM:
312 /* The operand 0 of a LO_SUM is considered constant
313 (in fact it is related specifically to operand 1)
314 during alias analysis. */
315 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
316 || rtx_varies_p (XEXP (x, 1), for_alias);
317
318 case ASM_OPERANDS:
319 if (MEM_VOLATILE_P (x))
320 return 1;
321
322 /* Fall through. */
323
324 default:
325 break;
326 }
327
328 fmt = GET_RTX_FORMAT (code);
329 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
330 if (fmt[i] == 'e')
331 {
332 if (rtx_varies_p (XEXP (x, i), for_alias))
333 return 1;
334 }
335 else if (fmt[i] == 'E')
336 {
337 int j;
338 for (j = 0; j < XVECLEN (x, i); j++)
339 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
340 return 1;
341 }
342
343 return 0;
344 }
345
346 /* Compute an approximation for the offset between the register
347 FROM and TO for the current function, as it was at the start
348 of the routine. */
349
350 static poly_int64
351 get_initial_register_offset (int from, int to)
352 {
353 static const struct elim_table_t
354 {
355 const int from;
356 const int to;
357 } table[] = ELIMINABLE_REGS;
358 poly_int64 offset1, offset2;
359 unsigned int i, j;
360
361 if (to == from)
362 return 0;
363
364 /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
365 is completed, but we need to give at least an estimate for the stack
366 pointer based on the frame size. */
367 if (!epilogue_completed)
368 {
369 offset1 = crtl->outgoing_args_size + get_frame_size ();
370 #if !STACK_GROWS_DOWNWARD
371 offset1 = - offset1;
372 #endif
373 if (to == STACK_POINTER_REGNUM)
374 return offset1;
375 else if (from == STACK_POINTER_REGNUM)
376 return - offset1;
377 else
378 return 0;
379 }
380
381 for (i = 0; i < ARRAY_SIZE (table); i++)
382 if (table[i].from == from)
383 {
384 if (table[i].to == to)
385 {
386 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
387 offset1);
388 return offset1;
389 }
390 for (j = 0; j < ARRAY_SIZE (table); j++)
391 {
392 if (table[j].to == to
393 && table[j].from == table[i].to)
394 {
395 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
396 offset1);
397 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
398 offset2);
399 return offset1 + offset2;
400 }
401 if (table[j].from == to
402 && table[j].to == table[i].to)
403 {
404 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
405 offset1);
406 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
407 offset2);
408 return offset1 - offset2;
409 }
410 }
411 }
412 else if (table[i].to == from)
413 {
414 if (table[i].from == to)
415 {
416 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
417 offset1);
418 return - offset1;
419 }
420 for (j = 0; j < ARRAY_SIZE (table); j++)
421 {
422 if (table[j].to == to
423 && table[j].from == table[i].from)
424 {
425 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
426 offset1);
427 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
428 offset2);
429 return - offset1 + offset2;
430 }
431 if (table[j].from == to
432 && table[j].to == table[i].from)
433 {
434 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
435 offset1);
436 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
437 offset2);
438 return - offset1 - offset2;
439 }
440 }
441 }
442
443 /* If the requested register combination was not found,
444 try a different more simple combination. */
445 if (from == ARG_POINTER_REGNUM)
446 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
447 else if (to == ARG_POINTER_REGNUM)
448 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
449 else if (from == HARD_FRAME_POINTER_REGNUM)
450 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
451 else if (to == HARD_FRAME_POINTER_REGNUM)
452 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
453 else
454 return 0;
455 }
456
457 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
458 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
459 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
460 references on strict alignment machines. */
461
462 static int
463 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
464 machine_mode mode, bool unaligned_mems)
465 {
466 enum rtx_code code = GET_CODE (x);
467 gcc_checking_assert (mode == BLKmode
468 || mode == VOIDmode
469 || known_size_p (size));
470 poly_int64 const_x1;
471
472 /* The offset must be a multiple of the mode size if we are considering
473 unaligned memory references on strict alignment machines. */
474 if (STRICT_ALIGNMENT
475 && unaligned_mems
476 && mode != BLKmode
477 && mode != VOIDmode)
478 {
479 poly_int64 actual_offset = offset;
480
481 #ifdef SPARC_STACK_BOUNDARY_HACK
482 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
483 the real alignment of %sp. However, when it does this, the
484 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
485 if (SPARC_STACK_BOUNDARY_HACK
486 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
487 actual_offset -= STACK_POINTER_OFFSET;
488 #endif
489
490 if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
491 return 1;
492 }
493
494 switch (code)
495 {
496 case SYMBOL_REF:
497 if (SYMBOL_REF_WEAK (x))
498 return 1;
499 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
500 {
501 tree decl;
502 poly_int64 decl_size;
503
504 if (maybe_lt (offset, 0))
505 return 1;
506 if (!known_size_p (size))
507 return maybe_ne (offset, 0);
508
509 /* If the size of the access or of the symbol is unknown,
510 assume the worst. */
511 decl = SYMBOL_REF_DECL (x);
512
513 /* Else check that the access is in bounds. TODO: restructure
514 expr_size/tree_expr_size/int_expr_size and just use the latter. */
515 if (!decl)
516 decl_size = -1;
517 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
518 {
519 if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
520 decl_size = -1;
521 }
522 else if (TREE_CODE (decl) == STRING_CST)
523 decl_size = TREE_STRING_LENGTH (decl);
524 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
525 decl_size = int_size_in_bytes (TREE_TYPE (decl));
526 else
527 decl_size = -1;
528
529 return (!known_size_p (decl_size) || known_eq (decl_size, 0)
530 ? maybe_ne (offset, 0)
531 : !known_subrange_p (offset, size, 0, decl_size));
532 }
533
534 return 0;
535
536 case LABEL_REF:
537 return 0;
538
539 case REG:
540 /* Stack references are assumed not to trap, but we need to deal with
541 nonsensical offsets. */
542 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
543 || x == stack_pointer_rtx
544 /* The arg pointer varies if it is not a fixed register. */
545 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
546 {
547 #ifdef RED_ZONE_SIZE
548 poly_int64 red_zone_size = RED_ZONE_SIZE;
549 #else
550 poly_int64 red_zone_size = 0;
551 #endif
552 poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
553 poly_int64 low_bound, high_bound;
554
555 if (!known_size_p (size))
556 return 1;
557
558 if (x == frame_pointer_rtx)
559 {
560 if (FRAME_GROWS_DOWNWARD)
561 {
562 high_bound = targetm.starting_frame_offset ();
563 low_bound = high_bound - get_frame_size ();
564 }
565 else
566 {
567 low_bound = targetm.starting_frame_offset ();
568 high_bound = low_bound + get_frame_size ();
569 }
570 }
571 else if (x == hard_frame_pointer_rtx)
572 {
573 poly_int64 sp_offset
574 = get_initial_register_offset (STACK_POINTER_REGNUM,
575 HARD_FRAME_POINTER_REGNUM);
576 poly_int64 ap_offset
577 = get_initial_register_offset (ARG_POINTER_REGNUM,
578 HARD_FRAME_POINTER_REGNUM);
579
580 #if STACK_GROWS_DOWNWARD
581 low_bound = sp_offset - red_zone_size - stack_boundary;
582 high_bound = ap_offset
583 + FIRST_PARM_OFFSET (current_function_decl)
584 #if !ARGS_GROW_DOWNWARD
585 + crtl->args.size
586 #endif
587 + stack_boundary;
588 #else
589 high_bound = sp_offset + red_zone_size + stack_boundary;
590 low_bound = ap_offset
591 + FIRST_PARM_OFFSET (current_function_decl)
592 #if ARGS_GROW_DOWNWARD
593 - crtl->args.size
594 #endif
595 - stack_boundary;
596 #endif
597 }
598 else if (x == stack_pointer_rtx)
599 {
600 poly_int64 ap_offset
601 = get_initial_register_offset (ARG_POINTER_REGNUM,
602 STACK_POINTER_REGNUM);
603
604 #if STACK_GROWS_DOWNWARD
605 low_bound = - red_zone_size - stack_boundary;
606 high_bound = ap_offset
607 + FIRST_PARM_OFFSET (current_function_decl)
608 #if !ARGS_GROW_DOWNWARD
609 + crtl->args.size
610 #endif
611 + stack_boundary;
612 #else
613 high_bound = red_zone_size + stack_boundary;
614 low_bound = ap_offset
615 + FIRST_PARM_OFFSET (current_function_decl)
616 #if ARGS_GROW_DOWNWARD
617 - crtl->args.size
618 #endif
619 - stack_boundary;
620 #endif
621 }
622 else
623 {
624 /* We assume that accesses are safe to at least the
625 next stack boundary.
626 Examples are varargs and __builtin_return_address. */
627 #if ARGS_GROW_DOWNWARD
628 high_bound = FIRST_PARM_OFFSET (current_function_decl)
629 + stack_boundary;
630 low_bound = FIRST_PARM_OFFSET (current_function_decl)
631 - crtl->args.size - stack_boundary;
632 #else
633 low_bound = FIRST_PARM_OFFSET (current_function_decl)
634 - stack_boundary;
635 high_bound = FIRST_PARM_OFFSET (current_function_decl)
636 + crtl->args.size + stack_boundary;
637 #endif
638 }
639
640 if (known_ge (offset, low_bound)
641 && known_le (offset, high_bound - size))
642 return 0;
643 return 1;
644 }
645 /* All of the virtual frame registers are stack references. */
646 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
647 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
648 return 0;
649 return 1;
650
651 case CONST:
652 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
653 mode, unaligned_mems);
654
655 case PLUS:
656 /* An address is assumed not to trap if:
657 - it is the pic register plus a const unspec without offset. */
658 if (XEXP (x, 0) == pic_offset_table_rtx
659 && GET_CODE (XEXP (x, 1)) == CONST
660 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
661 && known_eq (offset, 0))
662 return 0;
663
664 /* - or it is an address that can't trap plus a constant integer. */
665 if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
666 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
667 size, mode, unaligned_mems))
668 return 0;
669
670 return 1;
671
672 case LO_SUM:
673 case PRE_MODIFY:
674 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
675 mode, unaligned_mems);
676
677 case PRE_DEC:
678 case PRE_INC:
679 case POST_DEC:
680 case POST_INC:
681 case POST_MODIFY:
682 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
683 mode, unaligned_mems);
684
685 default:
686 break;
687 }
688
689 /* If it isn't one of the case above, it can cause a trap. */
690 return 1;
691 }
692
693 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
694
695 int
696 rtx_addr_can_trap_p (const_rtx x)
697 {
698 return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
699 }
700
701 /* Return true if X contains a MEM subrtx. */
702
703 bool
704 contains_mem_rtx_p (rtx x)
705 {
706 subrtx_iterator::array_type array;
707 FOR_EACH_SUBRTX (iter, array, x, ALL)
708 if (MEM_P (*iter))
709 return true;
710
711 return false;
712 }
713
714 /* Return true if X is an address that is known to not be zero. */
715
716 bool
717 nonzero_address_p (const_rtx x)
718 {
719 const enum rtx_code code = GET_CODE (x);
720
721 switch (code)
722 {
723 case SYMBOL_REF:
724 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
725
726 case LABEL_REF:
727 return true;
728
729 case REG:
730 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
731 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
732 || x == stack_pointer_rtx
733 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
734 return true;
735 /* All of the virtual frame registers are stack references. */
736 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
737 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
738 return true;
739 return false;
740
741 case CONST:
742 return nonzero_address_p (XEXP (x, 0));
743
744 case PLUS:
745 /* Handle PIC references. */
746 if (XEXP (x, 0) == pic_offset_table_rtx
747 && CONSTANT_P (XEXP (x, 1)))
748 return true;
749 return false;
750
751 case PRE_MODIFY:
752 /* Similar to the above; allow positive offsets. Further, since
753 auto-inc is only allowed in memories, the register must be a
754 pointer. */
755 if (CONST_INT_P (XEXP (x, 1))
756 && INTVAL (XEXP (x, 1)) > 0)
757 return true;
758 return nonzero_address_p (XEXP (x, 0));
759
760 case PRE_INC:
761 /* Similarly. Further, the offset is always positive. */
762 return true;
763
764 case PRE_DEC:
765 case POST_DEC:
766 case POST_INC:
767 case POST_MODIFY:
768 return nonzero_address_p (XEXP (x, 0));
769
770 case LO_SUM:
771 return nonzero_address_p (XEXP (x, 1));
772
773 default:
774 break;
775 }
776
777 /* If it isn't one of the case above, might be zero. */
778 return false;
779 }
780
781 /* Return 1 if X refers to a memory location whose address
782 cannot be compared reliably with constant addresses,
783 or if X refers to a BLKmode memory object.
784 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
785 zero, we are slightly more conservative. */
786
787 bool
788 rtx_addr_varies_p (const_rtx x, bool for_alias)
789 {
790 enum rtx_code code;
791 int i;
792 const char *fmt;
793
794 if (x == 0)
795 return 0;
796
797 code = GET_CODE (x);
798 if (code == MEM)
799 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
800
801 fmt = GET_RTX_FORMAT (code);
802 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
803 if (fmt[i] == 'e')
804 {
805 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
806 return 1;
807 }
808 else if (fmt[i] == 'E')
809 {
810 int j;
811 for (j = 0; j < XVECLEN (x, i); j++)
812 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
813 return 1;
814 }
815 return 0;
816 }
817 \f
818 /* Return the CALL in X if there is one. */
819
820 rtx
821 get_call_rtx_from (const rtx_insn *insn)
822 {
823 rtx x = PATTERN (insn);
824 if (GET_CODE (x) == PARALLEL)
825 x = XVECEXP (x, 0, 0);
826 if (GET_CODE (x) == SET)
827 x = SET_SRC (x);
828 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
829 return x;
830 return NULL_RTX;
831 }
832
833 /* Get the declaration of the function called by INSN. */
834
835 tree
836 get_call_fndecl (const rtx_insn *insn)
837 {
838 rtx note, datum;
839
840 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
841 if (note == NULL_RTX)
842 return NULL_TREE;
843
844 datum = XEXP (note, 0);
845 if (datum != NULL_RTX)
846 return SYMBOL_REF_DECL (datum);
847
848 return NULL_TREE;
849 }
850 \f
851 /* Return the value of the integer term in X, if one is apparent;
852 otherwise return 0.
853 Only obvious integer terms are detected.
854 This is used in cse.c with the `related_value' field. */
855
856 HOST_WIDE_INT
857 get_integer_term (const_rtx x)
858 {
859 if (GET_CODE (x) == CONST)
860 x = XEXP (x, 0);
861
862 if (GET_CODE (x) == MINUS
863 && CONST_INT_P (XEXP (x, 1)))
864 return - INTVAL (XEXP (x, 1));
865 if (GET_CODE (x) == PLUS
866 && CONST_INT_P (XEXP (x, 1)))
867 return INTVAL (XEXP (x, 1));
868 return 0;
869 }
870
871 /* If X is a constant, return the value sans apparent integer term;
872 otherwise return 0.
873 Only obvious integer terms are detected. */
874
875 rtx
876 get_related_value (const_rtx x)
877 {
878 if (GET_CODE (x) != CONST)
879 return 0;
880 x = XEXP (x, 0);
881 if (GET_CODE (x) == PLUS
882 && CONST_INT_P (XEXP (x, 1)))
883 return XEXP (x, 0);
884 else if (GET_CODE (x) == MINUS
885 && CONST_INT_P (XEXP (x, 1)))
886 return XEXP (x, 0);
887 return 0;
888 }
889 \f
890 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
891 to somewhere in the same object or object_block as SYMBOL. */
892
893 bool
894 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
895 {
896 tree decl;
897
898 if (GET_CODE (symbol) != SYMBOL_REF)
899 return false;
900
901 if (offset == 0)
902 return true;
903
904 if (offset > 0)
905 {
906 if (CONSTANT_POOL_ADDRESS_P (symbol)
907 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
908 return true;
909
910 decl = SYMBOL_REF_DECL (symbol);
911 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
912 return true;
913 }
914
915 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
916 && SYMBOL_REF_BLOCK (symbol)
917 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
918 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
919 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
920 return true;
921
922 return false;
923 }
924
925 /* Split X into a base and a constant offset, storing them in *BASE_OUT
926 and *OFFSET_OUT respectively. */
927
928 void
929 split_const (rtx x, rtx *base_out, rtx *offset_out)
930 {
931 if (GET_CODE (x) == CONST)
932 {
933 x = XEXP (x, 0);
934 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
935 {
936 *base_out = XEXP (x, 0);
937 *offset_out = XEXP (x, 1);
938 return;
939 }
940 }
941 *base_out = x;
942 *offset_out = const0_rtx;
943 }
944
945 /* Express integer value X as some value Y plus a polynomial offset,
946 where Y is either const0_rtx, X or something within X (as opposed
947 to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
948
949 rtx
950 strip_offset (rtx x, poly_int64_pod *offset_out)
951 {
952 rtx base = const0_rtx;
953 rtx test = x;
954 if (GET_CODE (test) == CONST)
955 test = XEXP (test, 0);
956 if (GET_CODE (test) == PLUS)
957 {
958 base = XEXP (test, 0);
959 test = XEXP (test, 1);
960 }
961 if (poly_int_rtx_p (test, offset_out))
962 return base;
963 *offset_out = 0;
964 return x;
965 }
966
967 /* Return the argument size in REG_ARGS_SIZE note X. */
968
969 poly_int64
970 get_args_size (const_rtx x)
971 {
972 gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
973 return rtx_to_poly_int64 (XEXP (x, 0));
974 }
975 \f
976 /* Return the number of places FIND appears within X. If COUNT_DEST is
977 zero, we do not count occurrences inside the destination of a SET. */
978
979 int
980 count_occurrences (const_rtx x, const_rtx find, int count_dest)
981 {
982 int i, j;
983 enum rtx_code code;
984 const char *format_ptr;
985 int count;
986
987 if (x == find)
988 return 1;
989
990 code = GET_CODE (x);
991
992 switch (code)
993 {
994 case REG:
995 CASE_CONST_ANY:
996 case SYMBOL_REF:
997 case CODE_LABEL:
998 case PC:
999 return 0;
1000
1001 case EXPR_LIST:
1002 count = count_occurrences (XEXP (x, 0), find, count_dest);
1003 if (XEXP (x, 1))
1004 count += count_occurrences (XEXP (x, 1), find, count_dest);
1005 return count;
1006
1007 case MEM:
1008 if (MEM_P (find) && rtx_equal_p (x, find))
1009 return 1;
1010 break;
1011
1012 case SET:
1013 if (SET_DEST (x) == find && ! count_dest)
1014 return count_occurrences (SET_SRC (x), find, count_dest);
1015 break;
1016
1017 default:
1018 break;
1019 }
1020
1021 format_ptr = GET_RTX_FORMAT (code);
1022 count = 0;
1023
1024 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1025 {
1026 switch (*format_ptr++)
1027 {
1028 case 'e':
1029 count += count_occurrences (XEXP (x, i), find, count_dest);
1030 break;
1031
1032 case 'E':
1033 for (j = 0; j < XVECLEN (x, i); j++)
1034 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1035 break;
1036 }
1037 }
1038 return count;
1039 }
1040
1041 \f
1042 /* Return TRUE if OP is a register or subreg of a register that
1043 holds an unsigned quantity. Otherwise, return FALSE. */
1044
1045 bool
1046 unsigned_reg_p (rtx op)
1047 {
1048 if (REG_P (op)
1049 && REG_EXPR (op)
1050 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1051 return true;
1052
1053 if (GET_CODE (op) == SUBREG
1054 && SUBREG_PROMOTED_SIGN (op))
1055 return true;
1056
1057 return false;
1058 }
1059
1060 \f
1061 /* Nonzero if register REG appears somewhere within IN.
1062 Also works if REG is not a register; in this case it checks
1063 for a subexpression of IN that is Lisp "equal" to REG. */
1064
1065 int
1066 reg_mentioned_p (const_rtx reg, const_rtx in)
1067 {
1068 const char *fmt;
1069 int i;
1070 enum rtx_code code;
1071
1072 if (in == 0)
1073 return 0;
1074
1075 if (reg == in)
1076 return 1;
1077
1078 if (GET_CODE (in) == LABEL_REF)
1079 return reg == label_ref_label (in);
1080
1081 code = GET_CODE (in);
1082
1083 switch (code)
1084 {
1085 /* Compare registers by number. */
1086 case REG:
1087 return REG_P (reg) && REGNO (in) == REGNO (reg);
1088
1089 /* These codes have no constituent expressions
1090 and are unique. */
1091 case SCRATCH:
1092 case PC:
1093 return 0;
1094
1095 CASE_CONST_ANY:
1096 /* These are kept unique for a given value. */
1097 return 0;
1098
1099 default:
1100 break;
1101 }
1102
1103 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1104 return 1;
1105
1106 fmt = GET_RTX_FORMAT (code);
1107
1108 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1109 {
1110 if (fmt[i] == 'E')
1111 {
1112 int j;
1113 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1114 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1115 return 1;
1116 }
1117 else if (fmt[i] == 'e'
1118 && reg_mentioned_p (reg, XEXP (in, i)))
1119 return 1;
1120 }
1121 return 0;
1122 }
1123 \f
1124 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1125 no CODE_LABEL insn. */
1126
1127 int
1128 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1129 {
1130 rtx_insn *p;
1131 if (beg == end)
1132 return 0;
1133 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1134 if (LABEL_P (p))
1135 return 0;
1136 return 1;
1137 }
1138
1139 /* Nonzero if register REG is used in an insn between
1140 FROM_INSN and TO_INSN (exclusive of those two). */
1141
1142 int
1143 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1144 const rtx_insn *to_insn)
1145 {
1146 rtx_insn *insn;
1147
1148 if (from_insn == to_insn)
1149 return 0;
1150
1151 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1152 if (NONDEBUG_INSN_P (insn)
1153 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1154 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1155 return 1;
1156 return 0;
1157 }
1158 \f
1159 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1160 is entirely replaced by a new value and the only use is as a SET_DEST,
1161 we do not consider it a reference. */
1162
1163 int
1164 reg_referenced_p (const_rtx x, const_rtx body)
1165 {
1166 int i;
1167
1168 switch (GET_CODE (body))
1169 {
1170 case SET:
1171 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1172 return 1;
1173
1174 /* If the destination is anything other than PC, a REG or a SUBREG
1175 of a REG that occupies all of the REG, the insn references X if
1176 it is mentioned in the destination. */
1177 if (GET_CODE (SET_DEST (body)) != PC
1178 && !REG_P (SET_DEST (body))
1179 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1180 && REG_P (SUBREG_REG (SET_DEST (body)))
1181 && !read_modify_subreg_p (SET_DEST (body)))
1182 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1183 return 1;
1184 return 0;
1185
1186 case ASM_OPERANDS:
1187 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1188 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1189 return 1;
1190 return 0;
1191
1192 case CALL:
1193 case USE:
1194 case IF_THEN_ELSE:
1195 return reg_overlap_mentioned_p (x, body);
1196
1197 case TRAP_IF:
1198 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1199
1200 case PREFETCH:
1201 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1202
1203 case UNSPEC:
1204 case UNSPEC_VOLATILE:
1205 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1206 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1207 return 1;
1208 return 0;
1209
1210 case PARALLEL:
1211 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1212 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1213 return 1;
1214 return 0;
1215
1216 case CLOBBER:
1217 if (MEM_P (XEXP (body, 0)))
1218 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1219 return 1;
1220 return 0;
1221
1222 case COND_EXEC:
1223 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1224 return 1;
1225 return reg_referenced_p (x, COND_EXEC_CODE (body));
1226
1227 default:
1228 return 0;
1229 }
1230 }
1231 \f
1232 /* Nonzero if register REG is set or clobbered in an insn between
1233 FROM_INSN and TO_INSN (exclusive of those two). */
1234
1235 int
1236 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1237 const rtx_insn *to_insn)
1238 {
1239 const rtx_insn *insn;
1240
1241 if (from_insn == to_insn)
1242 return 0;
1243
1244 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1245 if (INSN_P (insn) && reg_set_p (reg, insn))
1246 return 1;
1247 return 0;
1248 }
1249
1250 /* Return true if REG is set or clobbered inside INSN. */
1251
1252 int
1253 reg_set_p (const_rtx reg, const_rtx insn)
1254 {
1255 /* After delay slot handling, call and branch insns might be in a
1256 sequence. Check all the elements there. */
1257 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1258 {
1259 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1260 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1261 return true;
1262
1263 return false;
1264 }
1265
1266 /* We can be passed an insn or part of one. If we are passed an insn,
1267 check if a side-effect of the insn clobbers REG. */
1268 if (INSN_P (insn)
1269 && (FIND_REG_INC_NOTE (insn, reg)
1270 || (CALL_P (insn)
1271 && ((REG_P (reg)
1272 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1273 && (insn_callee_abi (as_a<const rtx_insn *> (insn))
1274 .clobbers_reg_p (GET_MODE (reg), REGNO (reg))))
1275 || MEM_P (reg)
1276 || find_reg_fusage (insn, CLOBBER, reg)))))
1277 return true;
1278
1279 /* There are no REG_INC notes for SP autoinc. */
1280 if (reg == stack_pointer_rtx && INSN_P (insn))
1281 {
1282 subrtx_var_iterator::array_type array;
1283 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1284 {
1285 rtx mem = *iter;
1286 if (mem
1287 && MEM_P (mem)
1288 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1289 {
1290 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1291 return true;
1292 iter.skip_subrtxes ();
1293 }
1294 }
1295 }
1296
1297 return set_of (reg, insn) != NULL_RTX;
1298 }
1299
1300 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1301 only if none of them are modified between START and END. Return 1 if
1302 X contains a MEM; this routine does use memory aliasing. */
1303
1304 int
1305 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1306 {
1307 const enum rtx_code code = GET_CODE (x);
1308 const char *fmt;
1309 int i, j;
1310 rtx_insn *insn;
1311
1312 if (start == end)
1313 return 0;
1314
1315 switch (code)
1316 {
1317 CASE_CONST_ANY:
1318 case CONST:
1319 case SYMBOL_REF:
1320 case LABEL_REF:
1321 return 0;
1322
1323 case PC:
1324 return 1;
1325
1326 case MEM:
1327 if (modified_between_p (XEXP (x, 0), start, end))
1328 return 1;
1329 if (MEM_READONLY_P (x))
1330 return 0;
1331 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1332 if (memory_modified_in_insn_p (x, insn))
1333 return 1;
1334 return 0;
1335
1336 case REG:
1337 return reg_set_between_p (x, start, end);
1338
1339 default:
1340 break;
1341 }
1342
1343 fmt = GET_RTX_FORMAT (code);
1344 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1345 {
1346 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1347 return 1;
1348
1349 else if (fmt[i] == 'E')
1350 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1351 if (modified_between_p (XVECEXP (x, i, j), start, end))
1352 return 1;
1353 }
1354
1355 return 0;
1356 }
1357
1358 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1359 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1360 does use memory aliasing. */
1361
1362 int
1363 modified_in_p (const_rtx x, const_rtx insn)
1364 {
1365 const enum rtx_code code = GET_CODE (x);
1366 const char *fmt;
1367 int i, j;
1368
1369 switch (code)
1370 {
1371 CASE_CONST_ANY:
1372 case CONST:
1373 case SYMBOL_REF:
1374 case LABEL_REF:
1375 return 0;
1376
1377 case PC:
1378 return 1;
1379
1380 case MEM:
1381 if (modified_in_p (XEXP (x, 0), insn))
1382 return 1;
1383 if (MEM_READONLY_P (x))
1384 return 0;
1385 if (memory_modified_in_insn_p (x, insn))
1386 return 1;
1387 return 0;
1388
1389 case REG:
1390 return reg_set_p (x, insn);
1391
1392 default:
1393 break;
1394 }
1395
1396 fmt = GET_RTX_FORMAT (code);
1397 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1398 {
1399 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1400 return 1;
1401
1402 else if (fmt[i] == 'E')
1403 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1404 if (modified_in_p (XVECEXP (x, i, j), insn))
1405 return 1;
1406 }
1407
1408 return 0;
1409 }
1410
1411 /* Return true if X is a SUBREG and if storing a value to X would
1412 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1413 target, using a SUBREG to store to one half of a DImode REG would
1414 preserve the other half. */
1415
1416 bool
1417 read_modify_subreg_p (const_rtx x)
1418 {
1419 if (GET_CODE (x) != SUBREG)
1420 return false;
1421 poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1422 poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1423 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1424 /* The inner and outer modes of a subreg must be ordered, so that we
1425 can tell whether they're paradoxical or partial. */
1426 gcc_checking_assert (ordered_p (isize, osize));
1427 return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1428 }
1429 \f
1430 /* Helper function for set_of. */
1431 struct set_of_data
1432 {
1433 const_rtx found;
1434 const_rtx pat;
1435 };
1436
1437 static void
1438 set_of_1 (rtx x, const_rtx pat, void *data1)
1439 {
1440 struct set_of_data *const data = (struct set_of_data *) (data1);
1441 if (rtx_equal_p (x, data->pat)
1442 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1443 data->found = pat;
1444 }
1445
1446 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1447 (either directly or via STRICT_LOW_PART and similar modifiers). */
1448 const_rtx
1449 set_of (const_rtx pat, const_rtx insn)
1450 {
1451 struct set_of_data data;
1452 data.found = NULL_RTX;
1453 data.pat = pat;
1454 note_pattern_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1455 return data.found;
1456 }
1457
1458 /* Check whether instruction pattern PAT contains a SET with the following
1459 properties:
1460
1461 - the SET is executed unconditionally; and
1462 - either:
1463 - the destination of the SET is a REG that contains REGNO; or
1464 - both:
1465 - the destination of the SET is a SUBREG of such a REG; and
1466 - writing to the subreg clobbers all of the SUBREG_REG
1467 (in other words, read_modify_subreg_p is false).
1468
1469 If PAT does have a SET like that, return the set, otherwise return null.
1470
1471 This is intended to be an alternative to single_set for passes that
1472 can handle patterns with multiple_sets. */
1473 rtx
1474 simple_regno_set (rtx pat, unsigned int regno)
1475 {
1476 if (GET_CODE (pat) == PARALLEL)
1477 {
1478 int last = XVECLEN (pat, 0) - 1;
1479 for (int i = 0; i < last; ++i)
1480 if (rtx set = simple_regno_set (XVECEXP (pat, 0, i), regno))
1481 return set;
1482
1483 pat = XVECEXP (pat, 0, last);
1484 }
1485
1486 if (GET_CODE (pat) == SET
1487 && covers_regno_no_parallel_p (SET_DEST (pat), regno))
1488 return pat;
1489
1490 return nullptr;
1491 }
1492
1493 /* Add all hard register in X to *PSET. */
1494 void
1495 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1496 {
1497 subrtx_iterator::array_type array;
1498 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1499 {
1500 const_rtx x = *iter;
1501 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1502 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1503 }
1504 }
1505
1506 /* This function, called through note_stores, collects sets and
1507 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1508 by DATA. */
1509 void
1510 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1511 {
1512 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1513 if (REG_P (x) && HARD_REGISTER_P (x))
1514 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1515 }
1516
1517 /* Examine INSN, and compute the set of hard registers written by it.
1518 Store it in *PSET. Should only be called after reload.
1519
1520 IMPLICIT is true if we should include registers that are fully-clobbered
1521 by calls. This should be used with caution, since it doesn't include
1522 partially-clobbered registers. */
1523 void
1524 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1525 {
1526 rtx link;
1527
1528 CLEAR_HARD_REG_SET (*pset);
1529 note_stores (insn, record_hard_reg_sets, pset);
1530 if (CALL_P (insn) && implicit)
1531 *pset |= insn_callee_abi (insn).full_reg_clobbers ();
1532 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1533 if (REG_NOTE_KIND (link) == REG_INC)
1534 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1535 }
1536
1537 /* Like record_hard_reg_sets, but called through note_uses. */
1538 void
1539 record_hard_reg_uses (rtx *px, void *data)
1540 {
1541 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1542 }
1543 \f
1544 /* Given an INSN, return a SET expression if this insn has only a single SET.
1545 It may also have CLOBBERs, USEs, or SET whose output
1546 will not be used, which we ignore. */
1547
1548 rtx
1549 single_set_2 (const rtx_insn *insn, const_rtx pat)
1550 {
1551 rtx set = NULL;
1552 int set_verified = 1;
1553 int i;
1554
1555 if (GET_CODE (pat) == PARALLEL)
1556 {
1557 for (i = 0; i < XVECLEN (pat, 0); i++)
1558 {
1559 rtx sub = XVECEXP (pat, 0, i);
1560 switch (GET_CODE (sub))
1561 {
1562 case USE:
1563 case CLOBBER:
1564 break;
1565
1566 case SET:
1567 /* We can consider insns having multiple sets, where all
1568 but one are dead as single set insns. In common case
1569 only single set is present in the pattern so we want
1570 to avoid checking for REG_UNUSED notes unless necessary.
1571
1572 When we reach set first time, we just expect this is
1573 the single set we are looking for and only when more
1574 sets are found in the insn, we check them. */
1575 if (!set_verified)
1576 {
1577 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1578 && !side_effects_p (set))
1579 set = NULL;
1580 else
1581 set_verified = 1;
1582 }
1583 if (!set)
1584 set = sub, set_verified = 0;
1585 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1586 || side_effects_p (sub))
1587 return NULL_RTX;
1588 break;
1589
1590 default:
1591 return NULL_RTX;
1592 }
1593 }
1594 }
1595 return set;
1596 }
1597
1598 /* Given an INSN, return nonzero if it has more than one SET, else return
1599 zero. */
1600
1601 int
1602 multiple_sets (const_rtx insn)
1603 {
1604 int found;
1605 int i;
1606
1607 /* INSN must be an insn. */
1608 if (! INSN_P (insn))
1609 return 0;
1610
1611 /* Only a PARALLEL can have multiple SETs. */
1612 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1613 {
1614 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1615 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1616 {
1617 /* If we have already found a SET, then return now. */
1618 if (found)
1619 return 1;
1620 else
1621 found = 1;
1622 }
1623 }
1624
1625 /* Either zero or one SET. */
1626 return 0;
1627 }
1628 \f
1629 /* Return nonzero if the destination of SET equals the source
1630 and there are no side effects. */
1631
1632 int
1633 set_noop_p (const_rtx set)
1634 {
1635 rtx src = SET_SRC (set);
1636 rtx dst = SET_DEST (set);
1637
1638 if (dst == pc_rtx && src == pc_rtx)
1639 return 1;
1640
1641 if (MEM_P (dst) && MEM_P (src))
1642 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1643
1644 if (GET_CODE (dst) == ZERO_EXTRACT)
1645 return rtx_equal_p (XEXP (dst, 0), src)
1646 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1647 && !side_effects_p (src);
1648
1649 if (GET_CODE (dst) == STRICT_LOW_PART)
1650 dst = XEXP (dst, 0);
1651
1652 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1653 {
1654 if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1655 return 0;
1656 src = SUBREG_REG (src);
1657 dst = SUBREG_REG (dst);
1658 if (GET_MODE (src) != GET_MODE (dst))
1659 /* It is hard to tell whether subregs refer to the same bits, so act
1660 conservatively and return 0. */
1661 return 0;
1662 }
1663
1664 /* It is a NOOP if destination overlaps with selected src vector
1665 elements. */
1666 if (GET_CODE (src) == VEC_SELECT
1667 && REG_P (XEXP (src, 0)) && REG_P (dst)
1668 && HARD_REGISTER_P (XEXP (src, 0))
1669 && HARD_REGISTER_P (dst))
1670 {
1671 int i;
1672 rtx par = XEXP (src, 1);
1673 rtx src0 = XEXP (src, 0);
1674 poly_int64 c0;
1675 if (!poly_int_rtx_p (XVECEXP (par, 0, 0), &c0))
1676 return 0;
1677 poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1678
1679 for (i = 1; i < XVECLEN (par, 0); i++)
1680 {
1681 poly_int64 c0i;
1682 if (!poly_int_rtx_p (XVECEXP (par, 0, i), &c0i)
1683 || maybe_ne (c0i, c0 + i))
1684 return 0;
1685 }
1686 return
1687 REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
1688 && simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1689 offset, GET_MODE (dst)) == (int) REGNO (dst);
1690 }
1691
1692 return (REG_P (src) && REG_P (dst)
1693 && REGNO (src) == REGNO (dst));
1694 }
1695 \f
1696 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1697 value to itself. */
1698
1699 int
1700 noop_move_p (const rtx_insn *insn)
1701 {
1702 rtx pat = PATTERN (insn);
1703
1704 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1705 return 1;
1706
1707 /* Check the code to be executed for COND_EXEC. */
1708 if (GET_CODE (pat) == COND_EXEC)
1709 pat = COND_EXEC_CODE (pat);
1710
1711 if (GET_CODE (pat) == SET && set_noop_p (pat))
1712 return 1;
1713
1714 if (GET_CODE (pat) == PARALLEL)
1715 {
1716 int i;
1717 /* If nothing but SETs of registers to themselves,
1718 this insn can also be deleted. */
1719 for (i = 0; i < XVECLEN (pat, 0); i++)
1720 {
1721 rtx tem = XVECEXP (pat, 0, i);
1722
1723 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1724 continue;
1725
1726 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1727 return 0;
1728 }
1729
1730 return 1;
1731 }
1732 return 0;
1733 }
1734 \f
1735
1736 /* Return nonzero if register in range [REGNO, ENDREGNO)
1737 appears either explicitly or implicitly in X
1738 other than being stored into.
1739
1740 References contained within the substructure at LOC do not count.
1741 LOC may be zero, meaning don't ignore anything. */
1742
1743 bool
1744 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1745 rtx *loc)
1746 {
1747 int i;
1748 unsigned int x_regno;
1749 RTX_CODE code;
1750 const char *fmt;
1751
1752 repeat:
1753 /* The contents of a REG_NONNEG note is always zero, so we must come here
1754 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1755 if (x == 0)
1756 return false;
1757
1758 code = GET_CODE (x);
1759
1760 switch (code)
1761 {
1762 case REG:
1763 x_regno = REGNO (x);
1764
1765 /* If we modifying the stack, frame, or argument pointer, it will
1766 clobber a virtual register. In fact, we could be more precise,
1767 but it isn't worth it. */
1768 if ((x_regno == STACK_POINTER_REGNUM
1769 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1770 && x_regno == ARG_POINTER_REGNUM)
1771 || x_regno == FRAME_POINTER_REGNUM)
1772 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1773 return true;
1774
1775 return endregno > x_regno && regno < END_REGNO (x);
1776
1777 case SUBREG:
1778 /* If this is a SUBREG of a hard reg, we can see exactly which
1779 registers are being modified. Otherwise, handle normally. */
1780 if (REG_P (SUBREG_REG (x))
1781 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1782 {
1783 unsigned int inner_regno = subreg_regno (x);
1784 unsigned int inner_endregno
1785 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1786 ? subreg_nregs (x) : 1);
1787
1788 return endregno > inner_regno && regno < inner_endregno;
1789 }
1790 break;
1791
1792 case CLOBBER:
1793 case SET:
1794 if (&SET_DEST (x) != loc
1795 /* Note setting a SUBREG counts as referring to the REG it is in for
1796 a pseudo but not for hard registers since we can
1797 treat each word individually. */
1798 && ((GET_CODE (SET_DEST (x)) == SUBREG
1799 && loc != &SUBREG_REG (SET_DEST (x))
1800 && REG_P (SUBREG_REG (SET_DEST (x)))
1801 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1802 && refers_to_regno_p (regno, endregno,
1803 SUBREG_REG (SET_DEST (x)), loc))
1804 || (!REG_P (SET_DEST (x))
1805 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1806 return true;
1807
1808 if (code == CLOBBER || loc == &SET_SRC (x))
1809 return false;
1810 x = SET_SRC (x);
1811 goto repeat;
1812
1813 default:
1814 break;
1815 }
1816
1817 /* X does not match, so try its subexpressions. */
1818
1819 fmt = GET_RTX_FORMAT (code);
1820 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1821 {
1822 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1823 {
1824 if (i == 0)
1825 {
1826 x = XEXP (x, 0);
1827 goto repeat;
1828 }
1829 else
1830 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1831 return true;
1832 }
1833 else if (fmt[i] == 'E')
1834 {
1835 int j;
1836 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1837 if (loc != &XVECEXP (x, i, j)
1838 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1839 return true;
1840 }
1841 }
1842 return false;
1843 }
1844
1845 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1846 we check if any register number in X conflicts with the relevant register
1847 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1848 contains a MEM (we don't bother checking for memory addresses that can't
1849 conflict because we expect this to be a rare case. */
1850
1851 int
1852 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1853 {
1854 unsigned int regno, endregno;
1855
1856 /* If either argument is a constant, then modifying X cannot
1857 affect IN. Here we look at IN, we can profitably combine
1858 CONSTANT_P (x) with the switch statement below. */
1859 if (CONSTANT_P (in))
1860 return 0;
1861
1862 recurse:
1863 switch (GET_CODE (x))
1864 {
1865 case CLOBBER:
1866 case STRICT_LOW_PART:
1867 case ZERO_EXTRACT:
1868 case SIGN_EXTRACT:
1869 /* Overly conservative. */
1870 x = XEXP (x, 0);
1871 goto recurse;
1872
1873 case SUBREG:
1874 regno = REGNO (SUBREG_REG (x));
1875 if (regno < FIRST_PSEUDO_REGISTER)
1876 regno = subreg_regno (x);
1877 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1878 ? subreg_nregs (x) : 1);
1879 goto do_reg;
1880
1881 case REG:
1882 regno = REGNO (x);
1883 endregno = END_REGNO (x);
1884 do_reg:
1885 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1886
1887 case MEM:
1888 {
1889 const char *fmt;
1890 int i;
1891
1892 if (MEM_P (in))
1893 return 1;
1894
1895 fmt = GET_RTX_FORMAT (GET_CODE (in));
1896 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1897 if (fmt[i] == 'e')
1898 {
1899 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1900 return 1;
1901 }
1902 else if (fmt[i] == 'E')
1903 {
1904 int j;
1905 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1906 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1907 return 1;
1908 }
1909
1910 return 0;
1911 }
1912
1913 case SCRATCH:
1914 case PC:
1915 return reg_mentioned_p (x, in);
1916
1917 case PARALLEL:
1918 {
1919 int i;
1920
1921 /* If any register in here refers to it we return true. */
1922 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1923 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1924 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1925 return 1;
1926 return 0;
1927 }
1928
1929 default:
1930 gcc_assert (CONSTANT_P (x));
1931 return 0;
1932 }
1933 }
1934 \f
1935 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1936 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1937 ignored by note_stores, but passed to FUN.
1938
1939 FUN receives three arguments:
1940 1. the REG, MEM or PC being stored in or clobbered,
1941 2. the SET or CLOBBER rtx that does the store,
1942 3. the pointer DATA provided to note_stores.
1943
1944 If the item being stored in or clobbered is a SUBREG of a hard register,
1945 the SUBREG will be passed. */
1946
1947 void
1948 note_pattern_stores (const_rtx x,
1949 void (*fun) (rtx, const_rtx, void *), void *data)
1950 {
1951 int i;
1952
1953 if (GET_CODE (x) == COND_EXEC)
1954 x = COND_EXEC_CODE (x);
1955
1956 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1957 {
1958 rtx dest = SET_DEST (x);
1959
1960 while ((GET_CODE (dest) == SUBREG
1961 && (!REG_P (SUBREG_REG (dest))
1962 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1963 || GET_CODE (dest) == ZERO_EXTRACT
1964 || GET_CODE (dest) == STRICT_LOW_PART)
1965 dest = XEXP (dest, 0);
1966
1967 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1968 each of whose first operand is a register. */
1969 if (GET_CODE (dest) == PARALLEL)
1970 {
1971 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1972 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1973 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1974 }
1975 else
1976 (*fun) (dest, x, data);
1977 }
1978
1979 else if (GET_CODE (x) == PARALLEL)
1980 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1981 note_pattern_stores (XVECEXP (x, 0, i), fun, data);
1982 }
1983
1984 /* Same, but for an instruction. If the instruction is a call, include
1985 any CLOBBERs in its CALL_INSN_FUNCTION_USAGE. */
1986
1987 void
1988 note_stores (const rtx_insn *insn,
1989 void (*fun) (rtx, const_rtx, void *), void *data)
1990 {
1991 if (CALL_P (insn))
1992 for (rtx link = CALL_INSN_FUNCTION_USAGE (insn);
1993 link; link = XEXP (link, 1))
1994 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1995 note_pattern_stores (XEXP (link, 0), fun, data);
1996 note_pattern_stores (PATTERN (insn), fun, data);
1997 }
1998 \f
1999 /* Like notes_stores, but call FUN for each expression that is being
2000 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
2001 FUN for each expression, not any interior subexpressions. FUN receives a
2002 pointer to the expression and the DATA passed to this function.
2003
2004 Note that this is not quite the same test as that done in reg_referenced_p
2005 since that considers something as being referenced if it is being
2006 partially set, while we do not. */
2007
2008 void
2009 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
2010 {
2011 rtx body = *pbody;
2012 int i;
2013
2014 switch (GET_CODE (body))
2015 {
2016 case COND_EXEC:
2017 (*fun) (&COND_EXEC_TEST (body), data);
2018 note_uses (&COND_EXEC_CODE (body), fun, data);
2019 return;
2020
2021 case PARALLEL:
2022 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2023 note_uses (&XVECEXP (body, 0, i), fun, data);
2024 return;
2025
2026 case SEQUENCE:
2027 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2028 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
2029 return;
2030
2031 case USE:
2032 (*fun) (&XEXP (body, 0), data);
2033 return;
2034
2035 case ASM_OPERANDS:
2036 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
2037 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
2038 return;
2039
2040 case TRAP_IF:
2041 (*fun) (&TRAP_CONDITION (body), data);
2042 return;
2043
2044 case PREFETCH:
2045 (*fun) (&XEXP (body, 0), data);
2046 return;
2047
2048 case UNSPEC:
2049 case UNSPEC_VOLATILE:
2050 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2051 (*fun) (&XVECEXP (body, 0, i), data);
2052 return;
2053
2054 case CLOBBER:
2055 if (MEM_P (XEXP (body, 0)))
2056 (*fun) (&XEXP (XEXP (body, 0), 0), data);
2057 return;
2058
2059 case SET:
2060 {
2061 rtx dest = SET_DEST (body);
2062
2063 /* For sets we replace everything in source plus registers in memory
2064 expression in store and operands of a ZERO_EXTRACT. */
2065 (*fun) (&SET_SRC (body), data);
2066
2067 if (GET_CODE (dest) == ZERO_EXTRACT)
2068 {
2069 (*fun) (&XEXP (dest, 1), data);
2070 (*fun) (&XEXP (dest, 2), data);
2071 }
2072
2073 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
2074 dest = XEXP (dest, 0);
2075
2076 if (MEM_P (dest))
2077 (*fun) (&XEXP (dest, 0), data);
2078 }
2079 return;
2080
2081 default:
2082 /* All the other possibilities never store. */
2083 (*fun) (pbody, data);
2084 return;
2085 }
2086 }
2087
2088 /* Try to add a description of REG X to this object, stopping once
2089 the REF_END limit has been reached. FLAGS is a bitmask of
2090 rtx_obj_reference flags that describe the context. */
2091
2092 void
2093 rtx_properties::try_to_add_reg (const_rtx x, unsigned int flags)
2094 {
2095 if (REG_NREGS (x) != 1)
2096 flags |= rtx_obj_flags::IS_MULTIREG;
2097 machine_mode mode = GET_MODE (x);
2098 unsigned int start_regno = REGNO (x);
2099 unsigned int end_regno = END_REGNO (x);
2100 for (unsigned int regno = start_regno; regno < end_regno; ++regno)
2101 if (ref_iter != ref_end)
2102 *ref_iter++ = rtx_obj_reference (regno, flags, mode,
2103 regno - start_regno);
2104 }
2105
2106 /* Add a description of destination X to this object. FLAGS is a bitmask
2107 of rtx_obj_reference flags that describe the context.
2108
2109 This routine accepts all rtxes that can legitimately appear in a
2110 SET_DEST. */
2111
2112 void
2113 rtx_properties::try_to_add_dest (const_rtx x, unsigned int flags)
2114 {
2115 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
2116 each of whose first operand is a register. */
2117 if (__builtin_expect (GET_CODE (x) == PARALLEL, 0))
2118 {
2119 for (int i = XVECLEN (x, 0) - 1; i >= 0; --i)
2120 if (rtx dest = XEXP (XVECEXP (x, 0, i), 0))
2121 try_to_add_dest (dest, flags);
2122 return;
2123 }
2124
2125 unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS;
2126 flags |= rtx_obj_flags::IS_WRITE;
2127 for (;;)
2128 if (GET_CODE (x) == ZERO_EXTRACT)
2129 {
2130 try_to_add_src (XEXP (x, 1), base_flags);
2131 try_to_add_src (XEXP (x, 2), base_flags);
2132 flags |= rtx_obj_flags::IS_READ;
2133 x = XEXP (x, 0);
2134 }
2135 else if (GET_CODE (x) == STRICT_LOW_PART)
2136 {
2137 flags |= rtx_obj_flags::IS_READ;
2138 x = XEXP (x, 0);
2139 }
2140 else if (GET_CODE (x) == SUBREG)
2141 {
2142 flags |= rtx_obj_flags::IN_SUBREG;
2143 if (read_modify_subreg_p (x))
2144 flags |= rtx_obj_flags::IS_READ;
2145 x = SUBREG_REG (x);
2146 }
2147 else
2148 break;
2149
2150 if (MEM_P (x))
2151 {
2152 if (ref_iter != ref_end)
2153 *ref_iter++ = rtx_obj_reference (MEM_REGNO, flags, GET_MODE (x));
2154
2155 unsigned int addr_flags = base_flags | rtx_obj_flags::IN_MEM_STORE;
2156 if (flags & rtx_obj_flags::IS_READ)
2157 addr_flags |= rtx_obj_flags::IN_MEM_LOAD;
2158 try_to_add_src (XEXP (x, 0), addr_flags);
2159 return;
2160 }
2161
2162 if (__builtin_expect (REG_P (x), 1))
2163 {
2164 /* We want to keep sp alive everywhere - by making all
2165 writes to sp also use sp. */
2166 if (REGNO (x) == STACK_POINTER_REGNUM)
2167 flags |= rtx_obj_flags::IS_READ;
2168 try_to_add_reg (x, flags);
2169 return;
2170 }
2171 }
2172
2173 /* Try to add a description of source X to this object, stopping once
2174 the REF_END limit has been reached. FLAGS is a bitmask of
2175 rtx_obj_reference flags that describe the context.
2176
2177 This routine accepts all rtxes that can legitimately appear in a SET_SRC. */
2178
2179 void
2180 rtx_properties::try_to_add_src (const_rtx x, unsigned int flags)
2181 {
2182 unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS;
2183 subrtx_iterator::array_type array;
2184 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2185 {
2186 const_rtx x = *iter;
2187 rtx_code code = GET_CODE (x);
2188 if (code == REG)
2189 try_to_add_reg (x, flags | rtx_obj_flags::IS_READ);
2190 else if (code == MEM)
2191 {
2192 if (MEM_VOLATILE_P (x))
2193 has_volatile_refs = true;
2194
2195 if (!MEM_READONLY_P (x) && ref_iter != ref_end)
2196 {
2197 auto mem_flags = flags | rtx_obj_flags::IS_READ;
2198 *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags,
2199 GET_MODE (x));
2200 }
2201
2202 try_to_add_src (XEXP (x, 0),
2203 base_flags | rtx_obj_flags::IN_MEM_LOAD);
2204 iter.skip_subrtxes ();
2205 }
2206 else if (code == SUBREG)
2207 {
2208 try_to_add_src (SUBREG_REG (x), flags | rtx_obj_flags::IN_SUBREG);
2209 iter.skip_subrtxes ();
2210 }
2211 else if (code == UNSPEC_VOLATILE)
2212 has_volatile_refs = true;
2213 else if (code == ASM_INPUT || code == ASM_OPERANDS)
2214 {
2215 has_asm = true;
2216 if (MEM_VOLATILE_P (x))
2217 has_volatile_refs = true;
2218 }
2219 else if (code == PRE_INC
2220 || code == PRE_DEC
2221 || code == POST_INC
2222 || code == POST_DEC
2223 || code == PRE_MODIFY
2224 || code == POST_MODIFY)
2225 {
2226 has_pre_post_modify = true;
2227
2228 unsigned int addr_flags = (base_flags
2229 | rtx_obj_flags::IS_PRE_POST_MODIFY
2230 | rtx_obj_flags::IS_READ);
2231 try_to_add_dest (XEXP (x, 0), addr_flags);
2232 if (code == PRE_MODIFY || code == POST_MODIFY)
2233 iter.substitute (XEXP (XEXP (x, 1), 1));
2234 else
2235 iter.skip_subrtxes ();
2236 }
2237 else if (code == CALL)
2238 has_call = true;
2239 }
2240 }
2241
2242 /* Try to add a description of instruction pattern PAT to this object,
2243 stopping once the REF_END limit has been reached. */
2244
2245 void
2246 rtx_properties::try_to_add_pattern (const_rtx pat)
2247 {
2248 switch (GET_CODE (pat))
2249 {
2250 case COND_EXEC:
2251 try_to_add_src (COND_EXEC_TEST (pat));
2252 try_to_add_pattern (COND_EXEC_CODE (pat));
2253 break;
2254
2255 case PARALLEL:
2256 {
2257 int last = XVECLEN (pat, 0) - 1;
2258 for (int i = 0; i < last; ++i)
2259 try_to_add_pattern (XVECEXP (pat, 0, i));
2260 try_to_add_pattern (XVECEXP (pat, 0, last));
2261 break;
2262 }
2263
2264 case ASM_OPERANDS:
2265 for (int i = 0, len = ASM_OPERANDS_INPUT_LENGTH (pat); i < len; ++i)
2266 try_to_add_src (ASM_OPERANDS_INPUT (pat, i));
2267 break;
2268
2269 case CLOBBER:
2270 try_to_add_dest (XEXP (pat, 0), rtx_obj_flags::IS_CLOBBER);
2271 break;
2272
2273 case SET:
2274 try_to_add_dest (SET_DEST (pat));
2275 try_to_add_src (SET_SRC (pat));
2276 break;
2277
2278 default:
2279 /* All the other possibilities never store and can use a normal
2280 rtx walk. This includes:
2281
2282 - USE
2283 - TRAP_IF
2284 - PREFETCH
2285 - UNSPEC
2286 - UNSPEC_VOLATILE. */
2287 try_to_add_src (pat);
2288 break;
2289 }
2290 }
2291
2292 /* Try to add a description of INSN to this object, stopping once
2293 the REF_END limit has been reached. INCLUDE_NOTES is true if the
2294 description should include REG_EQUAL and REG_EQUIV notes; all such
2295 references will then be marked with rtx_obj_flags::IN_NOTE.
2296
2297 For calls, this description includes all accesses in
2298 CALL_INSN_FUNCTION_USAGE. It also include all implicit accesses
2299 to global registers by the target function. However, it does not
2300 include clobbers performed by the target function; callers that want
2301 this information should instead use the function_abi interface. */
2302
2303 void
2304 rtx_properties::try_to_add_insn (const rtx_insn *insn, bool include_notes)
2305 {
2306 if (CALL_P (insn))
2307 {
2308 /* Non-const functions can read from global registers. Impure
2309 functions can also set them.
2310
2311 Adding the global registers first removes a situation in which
2312 a fixed-form clobber of register R could come before a real set
2313 of register R. */
2314 if (!hard_reg_set_empty_p (global_reg_set)
2315 && !RTL_CONST_CALL_P (insn))
2316 {
2317 unsigned int flags = rtx_obj_flags::IS_READ;
2318 if (!RTL_PURE_CALL_P (insn))
2319 flags |= rtx_obj_flags::IS_WRITE;
2320 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
2321 /* As a special case, the stack pointer is invariant across calls
2322 even if it has been marked global; see the corresponding
2323 handling in df_get_call_refs. */
2324 if (regno != STACK_POINTER_REGNUM
2325 && global_regs[regno]
2326 && ref_iter != ref_end)
2327 *ref_iter++ = rtx_obj_reference (regno, flags,
2328 reg_raw_mode[regno], 0);
2329 }
2330 /* Untyped calls implicitly set all function value registers.
2331 Again, we add them first in case the main pattern contains
2332 a fixed-form clobber. */
2333 if (find_reg_note (insn, REG_UNTYPED_CALL, NULL_RTX))
2334 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
2335 if (targetm.calls.function_value_regno_p (regno)
2336 && ref_iter != ref_end)
2337 *ref_iter++ = rtx_obj_reference (regno, rtx_obj_flags::IS_WRITE,
2338 reg_raw_mode[regno], 0);
2339 if (ref_iter != ref_end && !RTL_CONST_CALL_P (insn))
2340 {
2341 auto mem_flags = rtx_obj_flags::IS_READ;
2342 if (!RTL_PURE_CALL_P (insn))
2343 mem_flags |= rtx_obj_flags::IS_WRITE;
2344 *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, BLKmode);
2345 }
2346 try_to_add_pattern (PATTERN (insn));
2347 for (rtx link = CALL_INSN_FUNCTION_USAGE (insn); link;
2348 link = XEXP (link, 1))
2349 {
2350 rtx x = XEXP (link, 0);
2351 if (GET_CODE (x) == CLOBBER)
2352 try_to_add_dest (XEXP (x, 0), rtx_obj_flags::IS_CLOBBER);
2353 else if (GET_CODE (x) == USE)
2354 try_to_add_src (XEXP (x, 0));
2355 }
2356 }
2357 else
2358 try_to_add_pattern (PATTERN (insn));
2359
2360 if (include_notes)
2361 for (rtx note = REG_NOTES (insn); note; note = XEXP (note, 1))
2362 if (REG_NOTE_KIND (note) == REG_EQUAL
2363 || REG_NOTE_KIND (note) == REG_EQUIV)
2364 try_to_add_note (XEXP (note, 0));
2365 }
2366
2367 /* Grow the storage by a bit while keeping the contents of the first
2368 START elements. */
2369
2370 void
2371 vec_rtx_properties_base::grow (ptrdiff_t start)
2372 {
2373 /* The same heuristic that vec uses. */
2374 ptrdiff_t new_elems = (ref_end - ref_begin) * 3 / 2;
2375 if (ref_begin == m_storage)
2376 {
2377 ref_begin = XNEWVEC (rtx_obj_reference, new_elems);
2378 if (start)
2379 memcpy (ref_begin, m_storage, start * sizeof (rtx_obj_reference));
2380 }
2381 else
2382 ref_begin = reinterpret_cast<rtx_obj_reference *>
2383 (xrealloc (ref_begin, new_elems * sizeof (rtx_obj_reference)));
2384 ref_iter = ref_begin + start;
2385 ref_end = ref_begin + new_elems;
2386 }
2387 \f
2388 /* Return nonzero if X's old contents don't survive after INSN.
2389 This will be true if X is a register and X dies in INSN or because
2390 INSN entirely sets X.
2391
2392 "Entirely set" means set directly and not through a SUBREG, or
2393 ZERO_EXTRACT, so no trace of the old contents remains.
2394 Likewise, REG_INC does not count.
2395
2396 REG may be a hard or pseudo reg. Renumbering is not taken into account,
2397 but for this use that makes no difference, since regs don't overlap
2398 during their lifetimes. Therefore, this function may be used
2399 at any time after deaths have been computed.
2400
2401 If REG is a hard reg that occupies multiple machine registers, this
2402 function will only return 1 if each of those registers will be replaced
2403 by INSN. */
2404
2405 int
2406 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2407 {
2408 unsigned int regno, end_regno;
2409 unsigned int i;
2410
2411 gcc_assert (REG_P (x));
2412
2413 regno = REGNO (x);
2414 end_regno = END_REGNO (x);
2415 for (i = regno; i < end_regno; i++)
2416 if (! dead_or_set_regno_p (insn, i))
2417 return 0;
2418
2419 return 1;
2420 }
2421
2422 /* Return TRUE iff DEST is a register or subreg of a register, is a
2423 complete rather than read-modify-write destination, and contains
2424 register TEST_REGNO. */
2425
2426 static bool
2427 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2428 {
2429 unsigned int regno, endregno;
2430
2431 if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2432 dest = SUBREG_REG (dest);
2433
2434 if (!REG_P (dest))
2435 return false;
2436
2437 regno = REGNO (dest);
2438 endregno = END_REGNO (dest);
2439 return (test_regno >= regno && test_regno < endregno);
2440 }
2441
2442 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2443 any member matches the covers_regno_no_parallel_p criteria. */
2444
2445 static bool
2446 covers_regno_p (const_rtx dest, unsigned int test_regno)
2447 {
2448 if (GET_CODE (dest) == PARALLEL)
2449 {
2450 /* Some targets place small structures in registers for return
2451 values of functions, and those registers are wrapped in
2452 PARALLELs that we may see as the destination of a SET. */
2453 int i;
2454
2455 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2456 {
2457 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2458 if (inner != NULL_RTX
2459 && covers_regno_no_parallel_p (inner, test_regno))
2460 return true;
2461 }
2462
2463 return false;
2464 }
2465 else
2466 return covers_regno_no_parallel_p (dest, test_regno);
2467 }
2468
2469 /* Utility function for dead_or_set_p to check an individual register. */
2470
2471 int
2472 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2473 {
2474 const_rtx pattern;
2475
2476 /* See if there is a death note for something that includes TEST_REGNO. */
2477 if (find_regno_note (insn, REG_DEAD, test_regno))
2478 return 1;
2479
2480 if (CALL_P (insn)
2481 && find_regno_fusage (insn, CLOBBER, test_regno))
2482 return 1;
2483
2484 pattern = PATTERN (insn);
2485
2486 /* If a COND_EXEC is not executed, the value survives. */
2487 if (GET_CODE (pattern) == COND_EXEC)
2488 return 0;
2489
2490 if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2491 return covers_regno_p (SET_DEST (pattern), test_regno);
2492 else if (GET_CODE (pattern) == PARALLEL)
2493 {
2494 int i;
2495
2496 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2497 {
2498 rtx body = XVECEXP (pattern, 0, i);
2499
2500 if (GET_CODE (body) == COND_EXEC)
2501 body = COND_EXEC_CODE (body);
2502
2503 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2504 && covers_regno_p (SET_DEST (body), test_regno))
2505 return 1;
2506 }
2507 }
2508
2509 return 0;
2510 }
2511
2512 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2513 If DATUM is nonzero, look for one whose datum is DATUM. */
2514
2515 rtx
2516 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2517 {
2518 rtx link;
2519
2520 gcc_checking_assert (insn);
2521
2522 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2523 if (! INSN_P (insn))
2524 return 0;
2525 if (datum == 0)
2526 {
2527 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2528 if (REG_NOTE_KIND (link) == kind)
2529 return link;
2530 return 0;
2531 }
2532
2533 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2534 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2535 return link;
2536 return 0;
2537 }
2538
2539 /* Return the reg-note of kind KIND in insn INSN which applies to register
2540 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2541 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2542 it might be the case that the note overlaps REGNO. */
2543
2544 rtx
2545 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2546 {
2547 rtx link;
2548
2549 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2550 if (! INSN_P (insn))
2551 return 0;
2552
2553 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2554 if (REG_NOTE_KIND (link) == kind
2555 /* Verify that it is a register, so that scratch and MEM won't cause a
2556 problem here. */
2557 && REG_P (XEXP (link, 0))
2558 && REGNO (XEXP (link, 0)) <= regno
2559 && END_REGNO (XEXP (link, 0)) > regno)
2560 return link;
2561 return 0;
2562 }
2563
2564 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2565 has such a note. */
2566
2567 rtx
2568 find_reg_equal_equiv_note (const_rtx insn)
2569 {
2570 rtx link;
2571
2572 if (!INSN_P (insn))
2573 return 0;
2574
2575 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2576 if (REG_NOTE_KIND (link) == REG_EQUAL
2577 || REG_NOTE_KIND (link) == REG_EQUIV)
2578 {
2579 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2580 insns that have multiple sets. Checking single_set to
2581 make sure of this is not the proper check, as explained
2582 in the comment in set_unique_reg_note.
2583
2584 This should be changed into an assert. */
2585 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2586 return 0;
2587 return link;
2588 }
2589 return NULL;
2590 }
2591
2592 /* Check whether INSN is a single_set whose source is known to be
2593 equivalent to a constant. Return that constant if so, otherwise
2594 return null. */
2595
2596 rtx
2597 find_constant_src (const rtx_insn *insn)
2598 {
2599 rtx note, set, x;
2600
2601 set = single_set (insn);
2602 if (set)
2603 {
2604 x = avoid_constant_pool_reference (SET_SRC (set));
2605 if (CONSTANT_P (x))
2606 return x;
2607 }
2608
2609 note = find_reg_equal_equiv_note (insn);
2610 if (note && CONSTANT_P (XEXP (note, 0)))
2611 return XEXP (note, 0);
2612
2613 return NULL_RTX;
2614 }
2615
2616 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2617 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2618
2619 int
2620 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2621 {
2622 /* If it's not a CALL_INSN, it can't possibly have a
2623 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2624 if (!CALL_P (insn))
2625 return 0;
2626
2627 gcc_assert (datum);
2628
2629 if (!REG_P (datum))
2630 {
2631 rtx link;
2632
2633 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2634 link;
2635 link = XEXP (link, 1))
2636 if (GET_CODE (XEXP (link, 0)) == code
2637 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2638 return 1;
2639 }
2640 else
2641 {
2642 unsigned int regno = REGNO (datum);
2643
2644 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2645 to pseudo registers, so don't bother checking. */
2646
2647 if (regno < FIRST_PSEUDO_REGISTER)
2648 {
2649 unsigned int end_regno = END_REGNO (datum);
2650 unsigned int i;
2651
2652 for (i = regno; i < end_regno; i++)
2653 if (find_regno_fusage (insn, code, i))
2654 return 1;
2655 }
2656 }
2657
2658 return 0;
2659 }
2660
2661 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2662 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2663
2664 int
2665 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2666 {
2667 rtx link;
2668
2669 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2670 to pseudo registers, so don't bother checking. */
2671
2672 if (regno >= FIRST_PSEUDO_REGISTER
2673 || !CALL_P (insn) )
2674 return 0;
2675
2676 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2677 {
2678 rtx op, reg;
2679
2680 if (GET_CODE (op = XEXP (link, 0)) == code
2681 && REG_P (reg = XEXP (op, 0))
2682 && REGNO (reg) <= regno
2683 && END_REGNO (reg) > regno)
2684 return 1;
2685 }
2686
2687 return 0;
2688 }
2689
2690 \f
2691 /* Return true if KIND is an integer REG_NOTE. */
2692
2693 static bool
2694 int_reg_note_p (enum reg_note kind)
2695 {
2696 return kind == REG_BR_PROB;
2697 }
2698
2699 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2700 stored as the pointer to the next register note. */
2701
2702 rtx
2703 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2704 {
2705 rtx note;
2706
2707 gcc_checking_assert (!int_reg_note_p (kind));
2708 switch (kind)
2709 {
2710 case REG_LABEL_TARGET:
2711 case REG_LABEL_OPERAND:
2712 case REG_TM:
2713 /* These types of register notes use an INSN_LIST rather than an
2714 EXPR_LIST, so that copying is done right and dumps look
2715 better. */
2716 note = alloc_INSN_LIST (datum, list);
2717 PUT_REG_NOTE_KIND (note, kind);
2718 break;
2719
2720 default:
2721 note = alloc_EXPR_LIST (kind, datum, list);
2722 break;
2723 }
2724
2725 return note;
2726 }
2727
2728 /* Add register note with kind KIND and datum DATUM to INSN. */
2729
2730 void
2731 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2732 {
2733 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2734 }
2735
2736 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2737
2738 void
2739 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2740 {
2741 gcc_checking_assert (int_reg_note_p (kind));
2742 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2743 datum, REG_NOTES (insn));
2744 }
2745
2746 /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
2747
2748 void
2749 add_args_size_note (rtx_insn *insn, poly_int64 value)
2750 {
2751 gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2752 add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2753 }
2754
2755 /* Add a register note like NOTE to INSN. */
2756
2757 void
2758 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2759 {
2760 if (GET_CODE (note) == INT_LIST)
2761 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2762 else
2763 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2764 }
2765
2766 /* Duplicate NOTE and return the copy. */
2767 rtx
2768 duplicate_reg_note (rtx note)
2769 {
2770 reg_note kind = REG_NOTE_KIND (note);
2771
2772 if (GET_CODE (note) == INT_LIST)
2773 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2774 else if (GET_CODE (note) == EXPR_LIST)
2775 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2776 else
2777 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2778 }
2779
2780 /* Remove register note NOTE from the REG_NOTES of INSN. */
2781
2782 void
2783 remove_note (rtx_insn *insn, const_rtx note)
2784 {
2785 rtx link;
2786
2787 if (note == NULL_RTX)
2788 return;
2789
2790 if (REG_NOTES (insn) == note)
2791 REG_NOTES (insn) = XEXP (note, 1);
2792 else
2793 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2794 if (XEXP (link, 1) == note)
2795 {
2796 XEXP (link, 1) = XEXP (note, 1);
2797 break;
2798 }
2799
2800 switch (REG_NOTE_KIND (note))
2801 {
2802 case REG_EQUAL:
2803 case REG_EQUIV:
2804 df_notes_rescan (insn);
2805 break;
2806 default:
2807 break;
2808 }
2809 }
2810
2811 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2812 If NO_RESCAN is false and any notes were removed, call
2813 df_notes_rescan. Return true if any note has been removed. */
2814
2815 bool
2816 remove_reg_equal_equiv_notes (rtx_insn *insn, bool no_rescan)
2817 {
2818 rtx *loc;
2819 bool ret = false;
2820
2821 loc = &REG_NOTES (insn);
2822 while (*loc)
2823 {
2824 enum reg_note kind = REG_NOTE_KIND (*loc);
2825 if (kind == REG_EQUAL || kind == REG_EQUIV)
2826 {
2827 *loc = XEXP (*loc, 1);
2828 ret = true;
2829 }
2830 else
2831 loc = &XEXP (*loc, 1);
2832 }
2833 if (ret && !no_rescan)
2834 df_notes_rescan (insn);
2835 return ret;
2836 }
2837
2838 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2839
2840 void
2841 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2842 {
2843 df_ref eq_use;
2844
2845 if (!df)
2846 return;
2847
2848 /* This loop is a little tricky. We cannot just go down the chain because
2849 it is being modified by some actions in the loop. So we just iterate
2850 over the head. We plan to drain the list anyway. */
2851 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2852 {
2853 rtx_insn *insn = DF_REF_INSN (eq_use);
2854 rtx note = find_reg_equal_equiv_note (insn);
2855
2856 /* This assert is generally triggered when someone deletes a REG_EQUAL
2857 or REG_EQUIV note by hacking the list manually rather than calling
2858 remove_note. */
2859 gcc_assert (note);
2860
2861 remove_note (insn, note);
2862 }
2863 }
2864
2865 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2866 return 1 if it is found. A simple equality test is used to determine if
2867 NODE matches. */
2868
2869 bool
2870 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2871 {
2872 const_rtx x;
2873
2874 for (x = listp; x; x = XEXP (x, 1))
2875 if (node == XEXP (x, 0))
2876 return true;
2877
2878 return false;
2879 }
2880
2881 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2882 remove that entry from the list if it is found.
2883
2884 A simple equality test is used to determine if NODE matches. */
2885
2886 void
2887 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2888 {
2889 rtx_expr_list *temp = *listp;
2890 rtx_expr_list *prev = NULL;
2891
2892 while (temp)
2893 {
2894 if (node == temp->element ())
2895 {
2896 /* Splice the node out of the list. */
2897 if (prev)
2898 XEXP (prev, 1) = temp->next ();
2899 else
2900 *listp = temp->next ();
2901
2902 return;
2903 }
2904
2905 prev = temp;
2906 temp = temp->next ();
2907 }
2908 }
2909
2910 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2911 remove that entry from the list if it is found.
2912
2913 A simple equality test is used to determine if NODE matches. */
2914
2915 void
2916 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2917 {
2918 rtx_insn_list *temp = *listp;
2919 rtx_insn_list *prev = NULL;
2920
2921 while (temp)
2922 {
2923 if (node == temp->insn ())
2924 {
2925 /* Splice the node out of the list. */
2926 if (prev)
2927 XEXP (prev, 1) = temp->next ();
2928 else
2929 *listp = temp->next ();
2930
2931 return;
2932 }
2933
2934 prev = temp;
2935 temp = temp->next ();
2936 }
2937 }
2938 \f
2939 /* Nonzero if X contains any volatile instructions. These are instructions
2940 which may cause unpredictable machine state instructions, and thus no
2941 instructions or register uses should be moved or combined across them.
2942 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2943
2944 int
2945 volatile_insn_p (const_rtx x)
2946 {
2947 const RTX_CODE code = GET_CODE (x);
2948 switch (code)
2949 {
2950 case LABEL_REF:
2951 case SYMBOL_REF:
2952 case CONST:
2953 CASE_CONST_ANY:
2954 case PC:
2955 case REG:
2956 case SCRATCH:
2957 case CLOBBER:
2958 case ADDR_VEC:
2959 case ADDR_DIFF_VEC:
2960 case CALL:
2961 case MEM:
2962 return 0;
2963
2964 case UNSPEC_VOLATILE:
2965 return 1;
2966
2967 case ASM_INPUT:
2968 case ASM_OPERANDS:
2969 if (MEM_VOLATILE_P (x))
2970 return 1;
2971
2972 default:
2973 break;
2974 }
2975
2976 /* Recursively scan the operands of this expression. */
2977
2978 {
2979 const char *const fmt = GET_RTX_FORMAT (code);
2980 int i;
2981
2982 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2983 {
2984 if (fmt[i] == 'e')
2985 {
2986 if (volatile_insn_p (XEXP (x, i)))
2987 return 1;
2988 }
2989 else if (fmt[i] == 'E')
2990 {
2991 int j;
2992 for (j = 0; j < XVECLEN (x, i); j++)
2993 if (volatile_insn_p (XVECEXP (x, i, j)))
2994 return 1;
2995 }
2996 }
2997 }
2998 return 0;
2999 }
3000
3001 /* Nonzero if X contains any volatile memory references
3002 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
3003
3004 int
3005 volatile_refs_p (const_rtx x)
3006 {
3007 const RTX_CODE code = GET_CODE (x);
3008 switch (code)
3009 {
3010 case LABEL_REF:
3011 case SYMBOL_REF:
3012 case CONST:
3013 CASE_CONST_ANY:
3014 case PC:
3015 case REG:
3016 case SCRATCH:
3017 case CLOBBER:
3018 case ADDR_VEC:
3019 case ADDR_DIFF_VEC:
3020 return 0;
3021
3022 case UNSPEC_VOLATILE:
3023 return 1;
3024
3025 case MEM:
3026 case ASM_INPUT:
3027 case ASM_OPERANDS:
3028 if (MEM_VOLATILE_P (x))
3029 return 1;
3030
3031 default:
3032 break;
3033 }
3034
3035 /* Recursively scan the operands of this expression. */
3036
3037 {
3038 const char *const fmt = GET_RTX_FORMAT (code);
3039 int i;
3040
3041 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3042 {
3043 if (fmt[i] == 'e')
3044 {
3045 if (volatile_refs_p (XEXP (x, i)))
3046 return 1;
3047 }
3048 else if (fmt[i] == 'E')
3049 {
3050 int j;
3051 for (j = 0; j < XVECLEN (x, i); j++)
3052 if (volatile_refs_p (XVECEXP (x, i, j)))
3053 return 1;
3054 }
3055 }
3056 }
3057 return 0;
3058 }
3059
3060 /* Similar to above, except that it also rejects register pre- and post-
3061 incrementing. */
3062
3063 int
3064 side_effects_p (const_rtx x)
3065 {
3066 const RTX_CODE code = GET_CODE (x);
3067 switch (code)
3068 {
3069 case LABEL_REF:
3070 case SYMBOL_REF:
3071 case CONST:
3072 CASE_CONST_ANY:
3073 case PC:
3074 case REG:
3075 case SCRATCH:
3076 case ADDR_VEC:
3077 case ADDR_DIFF_VEC:
3078 case VAR_LOCATION:
3079 return 0;
3080
3081 case CLOBBER:
3082 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
3083 when some combination can't be done. If we see one, don't think
3084 that we can simplify the expression. */
3085 return (GET_MODE (x) != VOIDmode);
3086
3087 case PRE_INC:
3088 case PRE_DEC:
3089 case POST_INC:
3090 case POST_DEC:
3091 case PRE_MODIFY:
3092 case POST_MODIFY:
3093 case CALL:
3094 case UNSPEC_VOLATILE:
3095 return 1;
3096
3097 case MEM:
3098 case ASM_INPUT:
3099 case ASM_OPERANDS:
3100 if (MEM_VOLATILE_P (x))
3101 return 1;
3102
3103 default:
3104 break;
3105 }
3106
3107 /* Recursively scan the operands of this expression. */
3108
3109 {
3110 const char *fmt = GET_RTX_FORMAT (code);
3111 int i;
3112
3113 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3114 {
3115 if (fmt[i] == 'e')
3116 {
3117 if (side_effects_p (XEXP (x, i)))
3118 return 1;
3119 }
3120 else if (fmt[i] == 'E')
3121 {
3122 int j;
3123 for (j = 0; j < XVECLEN (x, i); j++)
3124 if (side_effects_p (XVECEXP (x, i, j)))
3125 return 1;
3126 }
3127 }
3128 }
3129 return 0;
3130 }
3131 \f
3132 /* Return nonzero if evaluating rtx X might cause a trap.
3133 FLAGS controls how to consider MEMs. A nonzero means the context
3134 of the access may have changed from the original, such that the
3135 address may have become invalid. */
3136
3137 int
3138 may_trap_p_1 (const_rtx x, unsigned flags)
3139 {
3140 int i;
3141 enum rtx_code code;
3142 const char *fmt;
3143
3144 /* We make no distinction currently, but this function is part of
3145 the internal target-hooks ABI so we keep the parameter as
3146 "unsigned flags". */
3147 bool code_changed = flags != 0;
3148
3149 if (x == 0)
3150 return 0;
3151 code = GET_CODE (x);
3152 switch (code)
3153 {
3154 /* Handle these cases quickly. */
3155 CASE_CONST_ANY:
3156 case SYMBOL_REF:
3157 case LABEL_REF:
3158 case CONST:
3159 case PC:
3160 case REG:
3161 case SCRATCH:
3162 return 0;
3163
3164 case UNSPEC:
3165 return targetm.unspec_may_trap_p (x, flags);
3166
3167 case UNSPEC_VOLATILE:
3168 case ASM_INPUT:
3169 case TRAP_IF:
3170 return 1;
3171
3172 case ASM_OPERANDS:
3173 return MEM_VOLATILE_P (x);
3174
3175 /* Memory ref can trap unless it's a static var or a stack slot. */
3176 case MEM:
3177 /* Recognize specific pattern of stack checking probes. */
3178 if (flag_stack_check
3179 && MEM_VOLATILE_P (x)
3180 && XEXP (x, 0) == stack_pointer_rtx)
3181 return 1;
3182 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
3183 reference; moving it out of context such as when moving code
3184 when optimizing, might cause its address to become invalid. */
3185 code_changed
3186 || !MEM_NOTRAP_P (x))
3187 {
3188 poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
3189 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
3190 GET_MODE (x), code_changed);
3191 }
3192
3193 return 0;
3194
3195 /* Division by a non-constant might trap. */
3196 case DIV:
3197 case MOD:
3198 case UDIV:
3199 case UMOD:
3200 if (HONOR_SNANS (x))
3201 return 1;
3202 if (FLOAT_MODE_P (GET_MODE (x)))
3203 return flag_trapping_math;
3204 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
3205 return 1;
3206 if (GET_CODE (XEXP (x, 1)) == CONST_VECTOR)
3207 {
3208 /* For CONST_VECTOR, return 1 if any element is or might be zero. */
3209 unsigned int n_elts;
3210 rtx op = XEXP (x, 1);
3211 if (!GET_MODE_NUNITS (GET_MODE (op)).is_constant (&n_elts))
3212 {
3213 if (!CONST_VECTOR_DUPLICATE_P (op))
3214 return 1;
3215 for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0); i++)
3216 if (CONST_VECTOR_ENCODED_ELT (op, i) == const0_rtx)
3217 return 1;
3218 }
3219 else
3220 for (unsigned i = 0; i < n_elts; i++)
3221 if (CONST_VECTOR_ELT (op, i) == const0_rtx)
3222 return 1;
3223 }
3224 break;
3225
3226 case EXPR_LIST:
3227 /* An EXPR_LIST is used to represent a function call. This
3228 certainly may trap. */
3229 return 1;
3230
3231 case GE:
3232 case GT:
3233 case LE:
3234 case LT:
3235 case LTGT:
3236 case COMPARE:
3237 /* Some floating point comparisons may trap. */
3238 if (!flag_trapping_math)
3239 break;
3240 /* ??? There is no machine independent way to check for tests that trap
3241 when COMPARE is used, though many targets do make this distinction.
3242 For instance, sparc uses CCFPE for compares which generate exceptions
3243 and CCFP for compares which do not generate exceptions. */
3244 if (HONOR_NANS (x))
3245 return 1;
3246 /* But often the compare has some CC mode, so check operand
3247 modes as well. */
3248 if (HONOR_NANS (XEXP (x, 0))
3249 || HONOR_NANS (XEXP (x, 1)))
3250 return 1;
3251 break;
3252
3253 case EQ:
3254 case NE:
3255 if (HONOR_SNANS (x))
3256 return 1;
3257 /* Often comparison is CC mode, so check operand modes. */
3258 if (HONOR_SNANS (XEXP (x, 0))
3259 || HONOR_SNANS (XEXP (x, 1)))
3260 return 1;
3261 break;
3262
3263 case FIX:
3264 case UNSIGNED_FIX:
3265 /* Conversion of floating point might trap. */
3266 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
3267 return 1;
3268 break;
3269
3270 case NEG:
3271 case ABS:
3272 case SUBREG:
3273 case VEC_MERGE:
3274 case VEC_SELECT:
3275 case VEC_CONCAT:
3276 case VEC_DUPLICATE:
3277 /* These operations don't trap even with floating point. */
3278 break;
3279
3280 default:
3281 /* Any floating arithmetic may trap. */
3282 if (FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
3283 return 1;
3284 }
3285
3286 fmt = GET_RTX_FORMAT (code);
3287 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3288 {
3289 if (fmt[i] == 'e')
3290 {
3291 if (may_trap_p_1 (XEXP (x, i), flags))
3292 return 1;
3293 }
3294 else if (fmt[i] == 'E')
3295 {
3296 int j;
3297 for (j = 0; j < XVECLEN (x, i); j++)
3298 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
3299 return 1;
3300 }
3301 }
3302 return 0;
3303 }
3304
3305 /* Return nonzero if evaluating rtx X might cause a trap. */
3306
3307 int
3308 may_trap_p (const_rtx x)
3309 {
3310 return may_trap_p_1 (x, 0);
3311 }
3312
3313 /* Same as above, but additionally return nonzero if evaluating rtx X might
3314 cause a fault. We define a fault for the purpose of this function as a
3315 erroneous execution condition that cannot be encountered during the normal
3316 execution of a valid program; the typical example is an unaligned memory
3317 access on a strict alignment machine. The compiler guarantees that it
3318 doesn't generate code that will fault from a valid program, but this
3319 guarantee doesn't mean anything for individual instructions. Consider
3320 the following example:
3321
3322 struct S { int d; union { char *cp; int *ip; }; };
3323
3324 int foo(struct S *s)
3325 {
3326 if (s->d == 1)
3327 return *s->ip;
3328 else
3329 return *s->cp;
3330 }
3331
3332 on a strict alignment machine. In a valid program, foo will never be
3333 invoked on a structure for which d is equal to 1 and the underlying
3334 unique field of the union not aligned on a 4-byte boundary, but the
3335 expression *s->ip might cause a fault if considered individually.
3336
3337 At the RTL level, potentially problematic expressions will almost always
3338 verify may_trap_p; for example, the above dereference can be emitted as
3339 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
3340 However, suppose that foo is inlined in a caller that causes s->cp to
3341 point to a local character variable and guarantees that s->d is not set
3342 to 1; foo may have been effectively translated into pseudo-RTL as:
3343
3344 if ((reg:SI) == 1)
3345 (set (reg:SI) (mem:SI (%fp - 7)))
3346 else
3347 (set (reg:QI) (mem:QI (%fp - 7)))
3348
3349 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
3350 memory reference to a stack slot, but it will certainly cause a fault
3351 on a strict alignment machine. */
3352
3353 int
3354 may_trap_or_fault_p (const_rtx x)
3355 {
3356 return may_trap_p_1 (x, 1);
3357 }
3358 \f
3359 /* Replace any occurrence of FROM in X with TO. The function does
3360 not enter into CONST_DOUBLE for the replace.
3361
3362 Note that copying is not done so X must not be shared unless all copies
3363 are to be modified.
3364
3365 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3366 those pointer-equal ones. */
3367
3368 rtx
3369 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3370 {
3371 int i, j;
3372 const char *fmt;
3373
3374 if (x == from)
3375 return to;
3376
3377 /* Allow this function to make replacements in EXPR_LISTs. */
3378 if (x == 0)
3379 return 0;
3380
3381 if (all_regs
3382 && REG_P (x)
3383 && REG_P (from)
3384 && REGNO (x) == REGNO (from))
3385 {
3386 gcc_assert (GET_MODE (x) == GET_MODE (from));
3387 return to;
3388 }
3389 else if (GET_CODE (x) == SUBREG)
3390 {
3391 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3392
3393 if (CONST_INT_P (new_rtx))
3394 {
3395 x = simplify_subreg (GET_MODE (x), new_rtx,
3396 GET_MODE (SUBREG_REG (x)),
3397 SUBREG_BYTE (x));
3398 gcc_assert (x);
3399 }
3400 else
3401 SUBREG_REG (x) = new_rtx;
3402
3403 return x;
3404 }
3405 else if (GET_CODE (x) == ZERO_EXTEND)
3406 {
3407 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3408
3409 if (CONST_INT_P (new_rtx))
3410 {
3411 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3412 new_rtx, GET_MODE (XEXP (x, 0)));
3413 gcc_assert (x);
3414 }
3415 else
3416 XEXP (x, 0) = new_rtx;
3417
3418 return x;
3419 }
3420
3421 fmt = GET_RTX_FORMAT (GET_CODE (x));
3422 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3423 {
3424 if (fmt[i] == 'e')
3425 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3426 else if (fmt[i] == 'E')
3427 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3428 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3429 from, to, all_regs);
3430 }
3431
3432 return x;
3433 }
3434 \f
3435 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3436 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3437
3438 void
3439 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3440 {
3441 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3442 rtx x = *loc;
3443 if (JUMP_TABLE_DATA_P (x))
3444 {
3445 x = PATTERN (x);
3446 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3447 int len = GET_NUM_ELEM (vec);
3448 for (int i = 0; i < len; ++i)
3449 {
3450 rtx ref = RTVEC_ELT (vec, i);
3451 if (XEXP (ref, 0) == old_label)
3452 {
3453 XEXP (ref, 0) = new_label;
3454 if (update_label_nuses)
3455 {
3456 ++LABEL_NUSES (new_label);
3457 --LABEL_NUSES (old_label);
3458 }
3459 }
3460 }
3461 return;
3462 }
3463
3464 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3465 field. This is not handled by the iterator because it doesn't
3466 handle unprinted ('0') fields. */
3467 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3468 JUMP_LABEL (x) = new_label;
3469
3470 subrtx_ptr_iterator::array_type array;
3471 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3472 {
3473 rtx *loc = *iter;
3474 if (rtx x = *loc)
3475 {
3476 if (GET_CODE (x) == SYMBOL_REF
3477 && CONSTANT_POOL_ADDRESS_P (x))
3478 {
3479 rtx c = get_pool_constant (x);
3480 if (rtx_referenced_p (old_label, c))
3481 {
3482 /* Create a copy of constant C; replace the label inside
3483 but do not update LABEL_NUSES because uses in constant pool
3484 are not counted. */
3485 rtx new_c = copy_rtx (c);
3486 replace_label (&new_c, old_label, new_label, false);
3487
3488 /* Add the new constant NEW_C to constant pool and replace
3489 the old reference to constant by new reference. */
3490 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3491 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3492 }
3493 }
3494
3495 if ((GET_CODE (x) == LABEL_REF
3496 || GET_CODE (x) == INSN_LIST)
3497 && XEXP (x, 0) == old_label)
3498 {
3499 XEXP (x, 0) = new_label;
3500 if (update_label_nuses)
3501 {
3502 ++LABEL_NUSES (new_label);
3503 --LABEL_NUSES (old_label);
3504 }
3505 }
3506 }
3507 }
3508 }
3509
3510 void
3511 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3512 rtx_insn *new_label, bool update_label_nuses)
3513 {
3514 rtx insn_as_rtx = insn;
3515 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3516 gcc_checking_assert (insn_as_rtx == insn);
3517 }
3518
3519 /* Return true if X is referenced in BODY. */
3520
3521 bool
3522 rtx_referenced_p (const_rtx x, const_rtx body)
3523 {
3524 subrtx_iterator::array_type array;
3525 FOR_EACH_SUBRTX (iter, array, body, ALL)
3526 if (const_rtx y = *iter)
3527 {
3528 /* Check if a label_ref Y refers to label X. */
3529 if (GET_CODE (y) == LABEL_REF
3530 && LABEL_P (x)
3531 && label_ref_label (y) == x)
3532 return true;
3533
3534 if (rtx_equal_p (x, y))
3535 return true;
3536
3537 /* If Y is a reference to pool constant traverse the constant. */
3538 if (GET_CODE (y) == SYMBOL_REF
3539 && CONSTANT_POOL_ADDRESS_P (y))
3540 iter.substitute (get_pool_constant (y));
3541 }
3542 return false;
3543 }
3544
3545 /* If INSN is a tablejump return true and store the label (before jump table) to
3546 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3547
3548 bool
3549 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3550 rtx_jump_table_data **tablep)
3551 {
3552 if (!JUMP_P (insn))
3553 return false;
3554
3555 rtx target = JUMP_LABEL (insn);
3556 if (target == NULL_RTX || ANY_RETURN_P (target))
3557 return false;
3558
3559 rtx_insn *label = as_a<rtx_insn *> (target);
3560 rtx_insn *table = next_insn (label);
3561 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3562 return false;
3563
3564 if (labelp)
3565 *labelp = label;
3566 if (tablep)
3567 *tablep = as_a <rtx_jump_table_data *> (table);
3568 return true;
3569 }
3570
3571 /* For INSN known to satisfy tablejump_p, determine if it actually is a
3572 CASESI. Return the insn pattern if so, NULL_RTX otherwise. */
3573
3574 rtx
3575 tablejump_casesi_pattern (const rtx_insn *insn)
3576 {
3577 rtx tmp;
3578
3579 if ((tmp = single_set (insn)) != NULL
3580 && SET_DEST (tmp) == pc_rtx
3581 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
3582 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
3583 return tmp;
3584
3585 return NULL_RTX;
3586 }
3587
3588 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3589 constant that is not in the constant pool and not in the condition
3590 of an IF_THEN_ELSE. */
3591
3592 static int
3593 computed_jump_p_1 (const_rtx x)
3594 {
3595 const enum rtx_code code = GET_CODE (x);
3596 int i, j;
3597 const char *fmt;
3598
3599 switch (code)
3600 {
3601 case LABEL_REF:
3602 case PC:
3603 return 0;
3604
3605 case CONST:
3606 CASE_CONST_ANY:
3607 case SYMBOL_REF:
3608 case REG:
3609 return 1;
3610
3611 case MEM:
3612 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3613 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3614
3615 case IF_THEN_ELSE:
3616 return (computed_jump_p_1 (XEXP (x, 1))
3617 || computed_jump_p_1 (XEXP (x, 2)));
3618
3619 default:
3620 break;
3621 }
3622
3623 fmt = GET_RTX_FORMAT (code);
3624 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3625 {
3626 if (fmt[i] == 'e'
3627 && computed_jump_p_1 (XEXP (x, i)))
3628 return 1;
3629
3630 else if (fmt[i] == 'E')
3631 for (j = 0; j < XVECLEN (x, i); j++)
3632 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3633 return 1;
3634 }
3635
3636 return 0;
3637 }
3638
3639 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3640
3641 Tablejumps and casesi insns are not considered indirect jumps;
3642 we can recognize them by a (use (label_ref)). */
3643
3644 int
3645 computed_jump_p (const rtx_insn *insn)
3646 {
3647 int i;
3648 if (JUMP_P (insn))
3649 {
3650 rtx pat = PATTERN (insn);
3651
3652 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3653 if (JUMP_LABEL (insn) != NULL)
3654 return 0;
3655
3656 if (GET_CODE (pat) == PARALLEL)
3657 {
3658 int len = XVECLEN (pat, 0);
3659 int has_use_labelref = 0;
3660
3661 for (i = len - 1; i >= 0; i--)
3662 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3663 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3664 == LABEL_REF))
3665 {
3666 has_use_labelref = 1;
3667 break;
3668 }
3669
3670 if (! has_use_labelref)
3671 for (i = len - 1; i >= 0; i--)
3672 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3673 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3674 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3675 return 1;
3676 }
3677 else if (GET_CODE (pat) == SET
3678 && SET_DEST (pat) == pc_rtx
3679 && computed_jump_p_1 (SET_SRC (pat)))
3680 return 1;
3681 }
3682 return 0;
3683 }
3684
3685 \f
3686
3687 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3688 the equivalent add insn and pass the result to FN, using DATA as the
3689 final argument. */
3690
3691 static int
3692 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3693 {
3694 rtx x = XEXP (mem, 0);
3695 switch (GET_CODE (x))
3696 {
3697 case PRE_INC:
3698 case POST_INC:
3699 {
3700 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3701 rtx r1 = XEXP (x, 0);
3702 rtx c = gen_int_mode (size, GET_MODE (r1));
3703 return fn (mem, x, r1, r1, c, data);
3704 }
3705
3706 case PRE_DEC:
3707 case POST_DEC:
3708 {
3709 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3710 rtx r1 = XEXP (x, 0);
3711 rtx c = gen_int_mode (-size, GET_MODE (r1));
3712 return fn (mem, x, r1, r1, c, data);
3713 }
3714
3715 case PRE_MODIFY:
3716 case POST_MODIFY:
3717 {
3718 rtx r1 = XEXP (x, 0);
3719 rtx add = XEXP (x, 1);
3720 return fn (mem, x, r1, add, NULL, data);
3721 }
3722
3723 default:
3724 gcc_unreachable ();
3725 }
3726 }
3727
3728 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3729 For each such autoinc operation found, call FN, passing it
3730 the innermost enclosing MEM, the operation itself, the RTX modified
3731 by the operation, two RTXs (the second may be NULL) that, once
3732 added, represent the value to be held by the modified RTX
3733 afterwards, and DATA. FN is to return 0 to continue the
3734 traversal or any other value to have it returned to the caller of
3735 for_each_inc_dec. */
3736
3737 int
3738 for_each_inc_dec (rtx x,
3739 for_each_inc_dec_fn fn,
3740 void *data)
3741 {
3742 subrtx_var_iterator::array_type array;
3743 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3744 {
3745 rtx mem = *iter;
3746 if (mem
3747 && MEM_P (mem)
3748 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3749 {
3750 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3751 if (res != 0)
3752 return res;
3753 iter.skip_subrtxes ();
3754 }
3755 }
3756 return 0;
3757 }
3758
3759 \f
3760 /* Searches X for any reference to REGNO, returning the rtx of the
3761 reference found if any. Otherwise, returns NULL_RTX. */
3762
3763 rtx
3764 regno_use_in (unsigned int regno, rtx x)
3765 {
3766 const char *fmt;
3767 int i, j;
3768 rtx tem;
3769
3770 if (REG_P (x) && REGNO (x) == regno)
3771 return x;
3772
3773 fmt = GET_RTX_FORMAT (GET_CODE (x));
3774 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3775 {
3776 if (fmt[i] == 'e')
3777 {
3778 if ((tem = regno_use_in (regno, XEXP (x, i))))
3779 return tem;
3780 }
3781 else if (fmt[i] == 'E')
3782 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3783 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3784 return tem;
3785 }
3786
3787 return NULL_RTX;
3788 }
3789
3790 /* Return a value indicating whether OP, an operand of a commutative
3791 operation, is preferred as the first or second operand. The more
3792 positive the value, the stronger the preference for being the first
3793 operand. */
3794
3795 int
3796 commutative_operand_precedence (rtx op)
3797 {
3798 enum rtx_code code = GET_CODE (op);
3799
3800 /* Constants always become the second operand. Prefer "nice" constants. */
3801 if (code == CONST_INT)
3802 return -10;
3803 if (code == CONST_WIDE_INT)
3804 return -9;
3805 if (code == CONST_POLY_INT)
3806 return -8;
3807 if (code == CONST_DOUBLE)
3808 return -8;
3809 if (code == CONST_FIXED)
3810 return -8;
3811 op = avoid_constant_pool_reference (op);
3812 code = GET_CODE (op);
3813
3814 switch (GET_RTX_CLASS (code))
3815 {
3816 case RTX_CONST_OBJ:
3817 if (code == CONST_INT)
3818 return -7;
3819 if (code == CONST_WIDE_INT)
3820 return -6;
3821 if (code == CONST_POLY_INT)
3822 return -5;
3823 if (code == CONST_DOUBLE)
3824 return -5;
3825 if (code == CONST_FIXED)
3826 return -5;
3827 return -4;
3828
3829 case RTX_EXTRA:
3830 /* SUBREGs of objects should come second. */
3831 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3832 return -3;
3833 return 0;
3834
3835 case RTX_OBJ:
3836 /* Complex expressions should be the first, so decrease priority
3837 of objects. Prefer pointer objects over non pointer objects. */
3838 if ((REG_P (op) && REG_POINTER (op))
3839 || (MEM_P (op) && MEM_POINTER (op)))
3840 return -1;
3841 return -2;
3842
3843 case RTX_COMM_ARITH:
3844 /* Prefer operands that are themselves commutative to be first.
3845 This helps to make things linear. In particular,
3846 (and (and (reg) (reg)) (not (reg))) is canonical. */
3847 return 4;
3848
3849 case RTX_BIN_ARITH:
3850 /* If only one operand is a binary expression, it will be the first
3851 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3852 is canonical, although it will usually be further simplified. */
3853 return 2;
3854
3855 case RTX_UNARY:
3856 /* Then prefer NEG and NOT. */
3857 if (code == NEG || code == NOT)
3858 return 1;
3859 /* FALLTHRU */
3860
3861 default:
3862 return 0;
3863 }
3864 }
3865
3866 /* Return 1 iff it is necessary to swap operands of commutative operation
3867 in order to canonicalize expression. */
3868
3869 bool
3870 swap_commutative_operands_p (rtx x, rtx y)
3871 {
3872 return (commutative_operand_precedence (x)
3873 < commutative_operand_precedence (y));
3874 }
3875
3876 /* Return 1 if X is an autoincrement side effect and the register is
3877 not the stack pointer. */
3878 int
3879 auto_inc_p (const_rtx x)
3880 {
3881 switch (GET_CODE (x))
3882 {
3883 case PRE_INC:
3884 case POST_INC:
3885 case PRE_DEC:
3886 case POST_DEC:
3887 case PRE_MODIFY:
3888 case POST_MODIFY:
3889 /* There are no REG_INC notes for SP. */
3890 if (XEXP (x, 0) != stack_pointer_rtx)
3891 return 1;
3892 default:
3893 break;
3894 }
3895 return 0;
3896 }
3897
3898 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3899 int
3900 loc_mentioned_in_p (rtx *loc, const_rtx in)
3901 {
3902 enum rtx_code code;
3903 const char *fmt;
3904 int i, j;
3905
3906 if (!in)
3907 return 0;
3908
3909 code = GET_CODE (in);
3910 fmt = GET_RTX_FORMAT (code);
3911 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3912 {
3913 if (fmt[i] == 'e')
3914 {
3915 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3916 return 1;
3917 }
3918 else if (fmt[i] == 'E')
3919 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3920 if (loc == &XVECEXP (in, i, j)
3921 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3922 return 1;
3923 }
3924 return 0;
3925 }
3926
3927 /* Reinterpret a subreg as a bit extraction from an integer and return
3928 the position of the least significant bit of the extracted value.
3929 In other words, if the extraction were performed as a shift right
3930 and mask, return the number of bits to shift right.
3931
3932 The outer value of the subreg has OUTER_BYTES bytes and starts at
3933 byte offset SUBREG_BYTE within an inner value of INNER_BYTES bytes. */
3934
3935 poly_uint64
3936 subreg_size_lsb (poly_uint64 outer_bytes,
3937 poly_uint64 inner_bytes,
3938 poly_uint64 subreg_byte)
3939 {
3940 poly_uint64 subreg_end, trailing_bytes, byte_pos;
3941
3942 /* A paradoxical subreg begins at bit position 0. */
3943 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3944 if (maybe_gt (outer_bytes, inner_bytes))
3945 {
3946 gcc_checking_assert (known_eq (subreg_byte, 0U));
3947 return 0;
3948 }
3949
3950 subreg_end = subreg_byte + outer_bytes;
3951 trailing_bytes = inner_bytes - subreg_end;
3952 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3953 byte_pos = trailing_bytes;
3954 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3955 byte_pos = subreg_byte;
3956 else
3957 {
3958 /* When bytes and words have opposite endianness, we must be able
3959 to split offsets into words and bytes at compile time. */
3960 poly_uint64 leading_word_part
3961 = force_align_down (subreg_byte, UNITS_PER_WORD);
3962 poly_uint64 trailing_word_part
3963 = force_align_down (trailing_bytes, UNITS_PER_WORD);
3964 /* If the subreg crosses a word boundary ensure that
3965 it also begins and ends on a word boundary. */
3966 gcc_assert (known_le (subreg_end - leading_word_part,
3967 (unsigned int) UNITS_PER_WORD)
3968 || (known_eq (leading_word_part, subreg_byte)
3969 && known_eq (trailing_word_part, trailing_bytes)));
3970 if (WORDS_BIG_ENDIAN)
3971 byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3972 else
3973 byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3974 }
3975
3976 return byte_pos * BITS_PER_UNIT;
3977 }
3978
3979 /* Given a subreg X, return the bit offset where the subreg begins
3980 (counting from the least significant bit of the reg). */
3981
3982 poly_uint64
3983 subreg_lsb (const_rtx x)
3984 {
3985 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3986 SUBREG_BYTE (x));
3987 }
3988
3989 /* Return the subreg byte offset for a subreg whose outer value has
3990 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3991 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3992 lsb of the inner value. This is the inverse of the calculation
3993 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3994
3995 poly_uint64
3996 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3997 poly_uint64 lsb_shift)
3998 {
3999 /* A paradoxical subreg begins at bit position 0. */
4000 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
4001 if (maybe_gt (outer_bytes, inner_bytes))
4002 {
4003 gcc_checking_assert (known_eq (lsb_shift, 0U));
4004 return 0;
4005 }
4006
4007 poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
4008 poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
4009 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
4010 return upper_bytes;
4011 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
4012 return lower_bytes;
4013 else
4014 {
4015 /* When bytes and words have opposite endianness, we must be able
4016 to split offsets into words and bytes at compile time. */
4017 poly_uint64 lower_word_part = force_align_down (lower_bytes,
4018 UNITS_PER_WORD);
4019 poly_uint64 upper_word_part = force_align_down (upper_bytes,
4020 UNITS_PER_WORD);
4021 if (WORDS_BIG_ENDIAN)
4022 return upper_word_part + (lower_bytes - lower_word_part);
4023 else
4024 return lower_word_part + (upper_bytes - upper_word_part);
4025 }
4026 }
4027
4028 /* Fill in information about a subreg of a hard register.
4029 xregno - A regno of an inner hard subreg_reg (or what will become one).
4030 xmode - The mode of xregno.
4031 offset - The byte offset.
4032 ymode - The mode of a top level SUBREG (or what may become one).
4033 info - Pointer to structure to fill in.
4034
4035 Rather than considering one particular inner register (and thus one
4036 particular "outer" register) in isolation, this function really uses
4037 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
4038 function does not check whether adding INFO->offset to XREGNO gives
4039 a valid hard register; even if INFO->offset + XREGNO is out of range,
4040 there might be another register of the same type that is in range.
4041 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
4042 the new register, since that can depend on things like whether the final
4043 register number is even or odd. Callers that want to check whether
4044 this particular subreg can be replaced by a simple (reg ...) should
4045 use simplify_subreg_regno. */
4046
4047 void
4048 subreg_get_info (unsigned int xregno, machine_mode xmode,
4049 poly_uint64 offset, machine_mode ymode,
4050 struct subreg_info *info)
4051 {
4052 unsigned int nregs_xmode, nregs_ymode;
4053
4054 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
4055
4056 poly_uint64 xsize = GET_MODE_SIZE (xmode);
4057 poly_uint64 ysize = GET_MODE_SIZE (ymode);
4058
4059 bool rknown = false;
4060
4061 /* If the register representation of a non-scalar mode has holes in it,
4062 we expect the scalar units to be concatenated together, with the holes
4063 distributed evenly among the scalar units. Each scalar unit must occupy
4064 at least one register. */
4065 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
4066 {
4067 /* As a consequence, we must be dealing with a constant number of
4068 scalars, and thus a constant offset and number of units. */
4069 HOST_WIDE_INT coffset = offset.to_constant ();
4070 HOST_WIDE_INT cysize = ysize.to_constant ();
4071 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
4072 unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
4073 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
4074 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
4075 gcc_assert (nregs_xmode
4076 == (nunits
4077 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
4078 gcc_assert (hard_regno_nregs (xregno, xmode)
4079 == hard_regno_nregs (xregno, xmode_unit) * nunits);
4080
4081 /* You can only ask for a SUBREG of a value with holes in the middle
4082 if you don't cross the holes. (Such a SUBREG should be done by
4083 picking a different register class, or doing it in memory if
4084 necessary.) An example of a value with holes is XCmode on 32-bit
4085 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
4086 3 for each part, but in memory it's two 128-bit parts.
4087 Padding is assumed to be at the end (not necessarily the 'high part')
4088 of each unit. */
4089 if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
4090 && (coffset / GET_MODE_SIZE (xmode_unit)
4091 != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
4092 {
4093 info->representable_p = false;
4094 rknown = true;
4095 }
4096 }
4097 else
4098 nregs_xmode = hard_regno_nregs (xregno, xmode);
4099
4100 nregs_ymode = hard_regno_nregs (xregno, ymode);
4101
4102 /* Subreg sizes must be ordered, so that we can tell whether they are
4103 partial, paradoxical or complete. */
4104 gcc_checking_assert (ordered_p (xsize, ysize));
4105
4106 /* Paradoxical subregs are otherwise valid. */
4107 if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
4108 {
4109 info->representable_p = true;
4110 /* If this is a big endian paradoxical subreg, which uses more
4111 actual hard registers than the original register, we must
4112 return a negative offset so that we find the proper highpart
4113 of the register.
4114
4115 We assume that the ordering of registers within a multi-register
4116 value has a consistent endianness: if bytes and register words
4117 have different endianness, the hard registers that make up a
4118 multi-register value must be at least word-sized. */
4119 if (REG_WORDS_BIG_ENDIAN)
4120 info->offset = (int) nregs_xmode - (int) nregs_ymode;
4121 else
4122 info->offset = 0;
4123 info->nregs = nregs_ymode;
4124 return;
4125 }
4126
4127 /* If registers store different numbers of bits in the different
4128 modes, we cannot generally form this subreg. */
4129 poly_uint64 regsize_xmode, regsize_ymode;
4130 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
4131 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
4132 && multiple_p (xsize, nregs_xmode, &regsize_xmode)
4133 && multiple_p (ysize, nregs_ymode, &regsize_ymode))
4134 {
4135 if (!rknown
4136 && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
4137 || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
4138 {
4139 info->representable_p = false;
4140 if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
4141 || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
4142 /* Checked by validate_subreg. We must know at compile time
4143 which inner registers are being accessed. */
4144 gcc_unreachable ();
4145 return;
4146 }
4147 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
4148 would go outside of XMODE. */
4149 if (!rknown && maybe_gt (ysize + offset, xsize))
4150 {
4151 info->representable_p = false;
4152 info->nregs = nregs_ymode;
4153 if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
4154 /* Checked by validate_subreg. We must know at compile time
4155 which inner registers are being accessed. */
4156 gcc_unreachable ();
4157 return;
4158 }
4159 /* Quick exit for the simple and common case of extracting whole
4160 subregisters from a multiregister value. */
4161 /* ??? It would be better to integrate this into the code below,
4162 if we can generalize the concept enough and figure out how
4163 odd-sized modes can coexist with the other weird cases we support. */
4164 HOST_WIDE_INT count;
4165 if (!rknown
4166 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
4167 && known_eq (regsize_xmode, regsize_ymode)
4168 && constant_multiple_p (offset, regsize_ymode, &count))
4169 {
4170 info->representable_p = true;
4171 info->nregs = nregs_ymode;
4172 info->offset = count;
4173 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
4174 return;
4175 }
4176 }
4177
4178 /* Lowpart subregs are otherwise valid. */
4179 if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
4180 {
4181 info->representable_p = true;
4182 rknown = true;
4183
4184 if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
4185 {
4186 info->offset = 0;
4187 info->nregs = nregs_ymode;
4188 return;
4189 }
4190 }
4191
4192 /* Set NUM_BLOCKS to the number of independently-representable YMODE
4193 values there are in (reg:XMODE XREGNO). We can view the register
4194 as consisting of this number of independent "blocks", where each
4195 block occupies NREGS_YMODE registers and contains exactly one
4196 representable YMODE value. */
4197 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
4198 unsigned int num_blocks = nregs_xmode / nregs_ymode;
4199
4200 /* Calculate the number of bytes in each block. This must always
4201 be exact, otherwise we don't know how to verify the constraint.
4202 These conditions may be relaxed but subreg_regno_offset would
4203 need to be redesigned. */
4204 poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
4205
4206 /* Get the number of the first block that contains the subreg and the byte
4207 offset of the subreg from the start of that block. */
4208 unsigned int block_number;
4209 poly_uint64 subblock_offset;
4210 if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
4211 &subblock_offset))
4212 /* Checked by validate_subreg. We must know at compile time which
4213 inner registers are being accessed. */
4214 gcc_unreachable ();
4215
4216 if (!rknown)
4217 {
4218 /* Only the lowpart of each block is representable. */
4219 info->representable_p
4220 = known_eq (subblock_offset,
4221 subreg_size_lowpart_offset (ysize, bytes_per_block));
4222 rknown = true;
4223 }
4224
4225 /* We assume that the ordering of registers within a multi-register
4226 value has a consistent endianness: if bytes and register words
4227 have different endianness, the hard registers that make up a
4228 multi-register value must be at least word-sized. */
4229 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
4230 /* The block number we calculated above followed memory endianness.
4231 Convert it to register endianness by counting back from the end.
4232 (Note that, because of the assumption above, each block must be
4233 at least word-sized.) */
4234 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
4235 else
4236 info->offset = block_number * nregs_ymode;
4237 info->nregs = nregs_ymode;
4238 }
4239
4240 /* This function returns the regno offset of a subreg expression.
4241 xregno - A regno of an inner hard subreg_reg (or what will become one).
4242 xmode - The mode of xregno.
4243 offset - The byte offset.
4244 ymode - The mode of a top level SUBREG (or what may become one).
4245 RETURN - The regno offset which would be used. */
4246 unsigned int
4247 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
4248 poly_uint64 offset, machine_mode ymode)
4249 {
4250 struct subreg_info info;
4251 subreg_get_info (xregno, xmode, offset, ymode, &info);
4252 return info.offset;
4253 }
4254
4255 /* This function returns true when the offset is representable via
4256 subreg_offset in the given regno.
4257 xregno - A regno of an inner hard subreg_reg (or what will become one).
4258 xmode - The mode of xregno.
4259 offset - The byte offset.
4260 ymode - The mode of a top level SUBREG (or what may become one).
4261 RETURN - Whether the offset is representable. */
4262 bool
4263 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
4264 poly_uint64 offset, machine_mode ymode)
4265 {
4266 struct subreg_info info;
4267 subreg_get_info (xregno, xmode, offset, ymode, &info);
4268 return info.representable_p;
4269 }
4270
4271 /* Return the number of a YMODE register to which
4272
4273 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
4274
4275 can be simplified. Return -1 if the subreg can't be simplified.
4276
4277 XREGNO is a hard register number. */
4278
4279 int
4280 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
4281 poly_uint64 offset, machine_mode ymode)
4282 {
4283 struct subreg_info info;
4284 unsigned int yregno;
4285
4286 /* Give the backend a chance to disallow the mode change. */
4287 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
4288 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
4289 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode))
4290 return -1;
4291
4292 /* We shouldn't simplify stack-related registers. */
4293 if ((!reload_completed || frame_pointer_needed)
4294 && xregno == FRAME_POINTER_REGNUM)
4295 return -1;
4296
4297 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4298 && xregno == ARG_POINTER_REGNUM)
4299 return -1;
4300
4301 if (xregno == STACK_POINTER_REGNUM
4302 /* We should convert hard stack register in LRA if it is
4303 possible. */
4304 && ! lra_in_progress)
4305 return -1;
4306
4307 /* Try to get the register offset. */
4308 subreg_get_info (xregno, xmode, offset, ymode, &info);
4309 if (!info.representable_p)
4310 return -1;
4311
4312 /* Make sure that the offsetted register value is in range. */
4313 yregno = xregno + info.offset;
4314 if (!HARD_REGISTER_NUM_P (yregno))
4315 return -1;
4316
4317 /* See whether (reg:YMODE YREGNO) is valid.
4318
4319 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
4320 This is a kludge to work around how complex FP arguments are passed
4321 on IA-64 and should be fixed. See PR target/49226. */
4322 if (!targetm.hard_regno_mode_ok (yregno, ymode)
4323 && targetm.hard_regno_mode_ok (xregno, xmode))
4324 return -1;
4325
4326 return (int) yregno;
4327 }
4328
4329 /* A wrapper around simplify_subreg_regno that uses subreg_lowpart_offset
4330 (xmode, ymode) as the offset. */
4331
4332 int
4333 lowpart_subreg_regno (unsigned int regno, machine_mode xmode,
4334 machine_mode ymode)
4335 {
4336 poly_uint64 offset = subreg_lowpart_offset (xmode, ymode);
4337 return simplify_subreg_regno (regno, xmode, offset, ymode);
4338 }
4339
4340 /* Return the final regno that a subreg expression refers to. */
4341 unsigned int
4342 subreg_regno (const_rtx x)
4343 {
4344 unsigned int ret;
4345 rtx subreg = SUBREG_REG (x);
4346 int regno = REGNO (subreg);
4347
4348 ret = regno + subreg_regno_offset (regno,
4349 GET_MODE (subreg),
4350 SUBREG_BYTE (x),
4351 GET_MODE (x));
4352 return ret;
4353
4354 }
4355
4356 /* Return the number of registers that a subreg expression refers
4357 to. */
4358 unsigned int
4359 subreg_nregs (const_rtx x)
4360 {
4361 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
4362 }
4363
4364 /* Return the number of registers that a subreg REG with REGNO
4365 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
4366 changed so that the regno can be passed in. */
4367
4368 unsigned int
4369 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4370 {
4371 struct subreg_info info;
4372 rtx subreg = SUBREG_REG (x);
4373
4374 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4375 &info);
4376 return info.nregs;
4377 }
4378
4379 struct parms_set_data
4380 {
4381 int nregs;
4382 HARD_REG_SET regs;
4383 };
4384
4385 /* Helper function for noticing stores to parameter registers. */
4386 static void
4387 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4388 {
4389 struct parms_set_data *const d = (struct parms_set_data *) data;
4390 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4391 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4392 {
4393 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4394 d->nregs--;
4395 }
4396 }
4397
4398 /* Look backward for first parameter to be loaded.
4399 Note that loads of all parameters will not necessarily be
4400 found if CSE has eliminated some of them (e.g., an argument
4401 to the outer function is passed down as a parameter).
4402 Do not skip BOUNDARY. */
4403 rtx_insn *
4404 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4405 {
4406 struct parms_set_data parm;
4407 rtx p;
4408 rtx_insn *before, *first_set;
4409
4410 /* Since different machines initialize their parameter registers
4411 in different orders, assume nothing. Collect the set of all
4412 parameter registers. */
4413 CLEAR_HARD_REG_SET (parm.regs);
4414 parm.nregs = 0;
4415 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4416 if (GET_CODE (XEXP (p, 0)) == USE
4417 && REG_P (XEXP (XEXP (p, 0), 0))
4418 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4419 {
4420 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4421
4422 /* We only care about registers which can hold function
4423 arguments. */
4424 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4425 continue;
4426
4427 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4428 parm.nregs++;
4429 }
4430 before = call_insn;
4431 first_set = call_insn;
4432
4433 /* Search backward for the first set of a register in this set. */
4434 while (parm.nregs && before != boundary)
4435 {
4436 before = PREV_INSN (before);
4437
4438 /* It is possible that some loads got CSEed from one call to
4439 another. Stop in that case. */
4440 if (CALL_P (before))
4441 break;
4442
4443 /* Our caller needs either ensure that we will find all sets
4444 (in case code has not been optimized yet), or take care
4445 for possible labels in a way by setting boundary to preceding
4446 CODE_LABEL. */
4447 if (LABEL_P (before))
4448 {
4449 gcc_assert (before == boundary);
4450 break;
4451 }
4452
4453 if (INSN_P (before))
4454 {
4455 int nregs_old = parm.nregs;
4456 note_stores (before, parms_set, &parm);
4457 /* If we found something that did not set a parameter reg,
4458 we're done. Do not keep going, as that might result
4459 in hoisting an insn before the setting of a pseudo
4460 that is used by the hoisted insn. */
4461 if (nregs_old != parm.nregs)
4462 first_set = before;
4463 else
4464 break;
4465 }
4466 }
4467 return first_set;
4468 }
4469
4470 /* Return true if we should avoid inserting code between INSN and preceding
4471 call instruction. */
4472
4473 bool
4474 keep_with_call_p (const rtx_insn *insn)
4475 {
4476 rtx set;
4477
4478 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4479 {
4480 if (REG_P (SET_DEST (set))
4481 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4482 && fixed_regs[REGNO (SET_DEST (set))]
4483 && general_operand (SET_SRC (set), VOIDmode))
4484 return true;
4485 if (REG_P (SET_SRC (set))
4486 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4487 && REG_P (SET_DEST (set))
4488 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4489 return true;
4490 /* There may be a stack pop just after the call and before the store
4491 of the return register. Search for the actual store when deciding
4492 if we can break or not. */
4493 if (SET_DEST (set) == stack_pointer_rtx)
4494 {
4495 /* This CONST_CAST is okay because next_nonnote_insn just
4496 returns its argument and we assign it to a const_rtx
4497 variable. */
4498 const rtx_insn *i2
4499 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4500 if (i2 && keep_with_call_p (i2))
4501 return true;
4502 }
4503 }
4504 return false;
4505 }
4506
4507 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4508 to non-complex jumps. That is, direct unconditional, conditional,
4509 and tablejumps, but not computed jumps or returns. It also does
4510 not apply to the fallthru case of a conditional jump. */
4511
4512 bool
4513 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4514 {
4515 rtx tmp = JUMP_LABEL (jump_insn);
4516 rtx_jump_table_data *table;
4517
4518 if (label == tmp)
4519 return true;
4520
4521 if (tablejump_p (jump_insn, NULL, &table))
4522 {
4523 rtvec vec = table->get_labels ();
4524 int i, veclen = GET_NUM_ELEM (vec);
4525
4526 for (i = 0; i < veclen; ++i)
4527 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4528 return true;
4529 }
4530
4531 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4532 return true;
4533
4534 return false;
4535 }
4536
4537 \f
4538 /* Return an estimate of the cost of computing rtx X.
4539 One use is in cse, to decide which expression to keep in the hash table.
4540 Another is in rtl generation, to pick the cheapest way to multiply.
4541 Other uses like the latter are expected in the future.
4542
4543 X appears as operand OPNO in an expression with code OUTER_CODE.
4544 SPEED specifies whether costs optimized for speed or size should
4545 be returned. */
4546
4547 int
4548 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4549 int opno, bool speed)
4550 {
4551 int i, j;
4552 enum rtx_code code;
4553 const char *fmt;
4554 int total;
4555 int factor;
4556 unsigned mode_size;
4557
4558 if (x == 0)
4559 return 0;
4560
4561 if (GET_CODE (x) == SET)
4562 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4563 the mode for the factor. */
4564 mode = GET_MODE (SET_DEST (x));
4565 else if (GET_MODE (x) != VOIDmode)
4566 mode = GET_MODE (x);
4567
4568 mode_size = estimated_poly_value (GET_MODE_SIZE (mode));
4569
4570 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4571 many insns, taking N times as long. */
4572 factor = mode_size > UNITS_PER_WORD ? mode_size / UNITS_PER_WORD : 1;
4573
4574 /* Compute the default costs of certain things.
4575 Note that targetm.rtx_costs can override the defaults. */
4576
4577 code = GET_CODE (x);
4578 switch (code)
4579 {
4580 case MULT:
4581 /* Multiplication has time-complexity O(N*N), where N is the
4582 number of units (translated from digits) when using
4583 schoolbook long multiplication. */
4584 total = factor * factor * COSTS_N_INSNS (5);
4585 break;
4586 case DIV:
4587 case UDIV:
4588 case MOD:
4589 case UMOD:
4590 /* Similarly, complexity for schoolbook long division. */
4591 total = factor * factor * COSTS_N_INSNS (7);
4592 break;
4593 case USE:
4594 /* Used in combine.c as a marker. */
4595 total = 0;
4596 break;
4597 default:
4598 total = factor * COSTS_N_INSNS (1);
4599 }
4600
4601 switch (code)
4602 {
4603 case REG:
4604 return 0;
4605
4606 case SUBREG:
4607 total = 0;
4608 /* If we can't tie these modes, make this expensive. The larger
4609 the mode, the more expensive it is. */
4610 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4611 return COSTS_N_INSNS (2 + factor);
4612 break;
4613
4614 case TRUNCATE:
4615 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4616 {
4617 total = 0;
4618 break;
4619 }
4620 /* FALLTHRU */
4621 default:
4622 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4623 return total;
4624 break;
4625 }
4626
4627 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4628 which is already in total. */
4629
4630 fmt = GET_RTX_FORMAT (code);
4631 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4632 if (fmt[i] == 'e')
4633 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4634 else if (fmt[i] == 'E')
4635 for (j = 0; j < XVECLEN (x, i); j++)
4636 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4637
4638 return total;
4639 }
4640
4641 /* Fill in the structure C with information about both speed and size rtx
4642 costs for X, which is operand OPNO in an expression with code OUTER. */
4643
4644 void
4645 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4646 struct full_rtx_costs *c)
4647 {
4648 c->speed = rtx_cost (x, mode, outer, opno, true);
4649 c->size = rtx_cost (x, mode, outer, opno, false);
4650 }
4651
4652 \f
4653 /* Return cost of address expression X.
4654 Expect that X is properly formed address reference.
4655
4656 SPEED parameter specify whether costs optimized for speed or size should
4657 be returned. */
4658
4659 int
4660 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4661 {
4662 /* We may be asked for cost of various unusual addresses, such as operands
4663 of push instruction. It is not worthwhile to complicate writing
4664 of the target hook by such cases. */
4665
4666 if (!memory_address_addr_space_p (mode, x, as))
4667 return 1000;
4668
4669 return targetm.address_cost (x, mode, as, speed);
4670 }
4671
4672 /* If the target doesn't override, compute the cost as with arithmetic. */
4673
4674 int
4675 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4676 {
4677 return rtx_cost (x, Pmode, MEM, 0, speed);
4678 }
4679 \f
4680
4681 unsigned HOST_WIDE_INT
4682 nonzero_bits (const_rtx x, machine_mode mode)
4683 {
4684 if (mode == VOIDmode)
4685 mode = GET_MODE (x);
4686 scalar_int_mode int_mode;
4687 if (!is_a <scalar_int_mode> (mode, &int_mode))
4688 return GET_MODE_MASK (mode);
4689 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4690 }
4691
4692 unsigned int
4693 num_sign_bit_copies (const_rtx x, machine_mode mode)
4694 {
4695 if (mode == VOIDmode)
4696 mode = GET_MODE (x);
4697 scalar_int_mode int_mode;
4698 if (!is_a <scalar_int_mode> (mode, &int_mode))
4699 return 1;
4700 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4701 }
4702
4703 /* Return true if nonzero_bits1 might recurse into both operands
4704 of X. */
4705
4706 static inline bool
4707 nonzero_bits_binary_arith_p (const_rtx x)
4708 {
4709 if (!ARITHMETIC_P (x))
4710 return false;
4711 switch (GET_CODE (x))
4712 {
4713 case AND:
4714 case XOR:
4715 case IOR:
4716 case UMIN:
4717 case UMAX:
4718 case SMIN:
4719 case SMAX:
4720 case PLUS:
4721 case MINUS:
4722 case MULT:
4723 case DIV:
4724 case UDIV:
4725 case MOD:
4726 case UMOD:
4727 return true;
4728 default:
4729 return false;
4730 }
4731 }
4732
4733 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4734 It avoids exponential behavior in nonzero_bits1 when X has
4735 identical subexpressions on the first or the second level. */
4736
4737 static unsigned HOST_WIDE_INT
4738 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4739 machine_mode known_mode,
4740 unsigned HOST_WIDE_INT known_ret)
4741 {
4742 if (x == known_x && mode == known_mode)
4743 return known_ret;
4744
4745 /* Try to find identical subexpressions. If found call
4746 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4747 precomputed value for the subexpression as KNOWN_RET. */
4748
4749 if (nonzero_bits_binary_arith_p (x))
4750 {
4751 rtx x0 = XEXP (x, 0);
4752 rtx x1 = XEXP (x, 1);
4753
4754 /* Check the first level. */
4755 if (x0 == x1)
4756 return nonzero_bits1 (x, mode, x0, mode,
4757 cached_nonzero_bits (x0, mode, known_x,
4758 known_mode, known_ret));
4759
4760 /* Check the second level. */
4761 if (nonzero_bits_binary_arith_p (x0)
4762 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4763 return nonzero_bits1 (x, mode, x1, mode,
4764 cached_nonzero_bits (x1, mode, known_x,
4765 known_mode, known_ret));
4766
4767 if (nonzero_bits_binary_arith_p (x1)
4768 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4769 return nonzero_bits1 (x, mode, x0, mode,
4770 cached_nonzero_bits (x0, mode, known_x,
4771 known_mode, known_ret));
4772 }
4773
4774 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4775 }
4776
4777 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4778 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4779 is less useful. We can't allow both, because that results in exponential
4780 run time recursion. There is a nullstone testcase that triggered
4781 this. This macro avoids accidental uses of num_sign_bit_copies. */
4782 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4783
4784 /* Given an expression, X, compute which bits in X can be nonzero.
4785 We don't care about bits outside of those defined in MODE.
4786
4787 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4788 an arithmetic operation, we can do better. */
4789
4790 static unsigned HOST_WIDE_INT
4791 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4792 machine_mode known_mode,
4793 unsigned HOST_WIDE_INT known_ret)
4794 {
4795 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4796 unsigned HOST_WIDE_INT inner_nz;
4797 enum rtx_code code = GET_CODE (x);
4798 machine_mode inner_mode;
4799 unsigned int inner_width;
4800 scalar_int_mode xmode;
4801
4802 unsigned int mode_width = GET_MODE_PRECISION (mode);
4803
4804 if (CONST_INT_P (x))
4805 {
4806 if (SHORT_IMMEDIATES_SIGN_EXTEND
4807 && INTVAL (x) > 0
4808 && mode_width < BITS_PER_WORD
4809 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4810 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4811
4812 return UINTVAL (x);
4813 }
4814
4815 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4816 return nonzero;
4817 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4818
4819 /* If X is wider than MODE, use its mode instead. */
4820 if (xmode_width > mode_width)
4821 {
4822 mode = xmode;
4823 nonzero = GET_MODE_MASK (mode);
4824 mode_width = xmode_width;
4825 }
4826
4827 if (mode_width > HOST_BITS_PER_WIDE_INT)
4828 /* Our only callers in this case look for single bit values. So
4829 just return the mode mask. Those tests will then be false. */
4830 return nonzero;
4831
4832 /* If MODE is wider than X, but both are a single word for both the host
4833 and target machines, we can compute this from which bits of the object
4834 might be nonzero in its own mode, taking into account the fact that, on
4835 CISC machines, accessing an object in a wider mode generally causes the
4836 high-order bits to become undefined, so they are not known to be zero.
4837 We extend this reasoning to RISC machines for operations that might not
4838 operate on the full registers. */
4839 if (mode_width > xmode_width
4840 && xmode_width <= BITS_PER_WORD
4841 && xmode_width <= HOST_BITS_PER_WIDE_INT
4842 && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
4843 {
4844 nonzero &= cached_nonzero_bits (x, xmode,
4845 known_x, known_mode, known_ret);
4846 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4847 return nonzero;
4848 }
4849
4850 /* Please keep nonzero_bits_binary_arith_p above in sync with
4851 the code in the switch below. */
4852 switch (code)
4853 {
4854 case REG:
4855 #if defined(POINTERS_EXTEND_UNSIGNED)
4856 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4857 all the bits above ptr_mode are known to be zero. */
4858 /* As we do not know which address space the pointer is referring to,
4859 we can do this only if the target does not support different pointer
4860 or address modes depending on the address space. */
4861 if (target_default_pointer_address_modes_p ()
4862 && POINTERS_EXTEND_UNSIGNED
4863 && xmode == Pmode
4864 && REG_POINTER (x)
4865 && !targetm.have_ptr_extend ())
4866 nonzero &= GET_MODE_MASK (ptr_mode);
4867 #endif
4868
4869 /* Include declared information about alignment of pointers. */
4870 /* ??? We don't properly preserve REG_POINTER changes across
4871 pointer-to-integer casts, so we can't trust it except for
4872 things that we know must be pointers. See execute/960116-1.c. */
4873 if ((x == stack_pointer_rtx
4874 || x == frame_pointer_rtx
4875 || x == arg_pointer_rtx)
4876 && REGNO_POINTER_ALIGN (REGNO (x)))
4877 {
4878 unsigned HOST_WIDE_INT alignment
4879 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4880
4881 #ifdef PUSH_ROUNDING
4882 /* If PUSH_ROUNDING is defined, it is possible for the
4883 stack to be momentarily aligned only to that amount,
4884 so we pick the least alignment. */
4885 if (x == stack_pointer_rtx && targetm.calls.push_argument (0))
4886 {
4887 poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4888 alignment = MIN (known_alignment (rounded_1), alignment);
4889 }
4890 #endif
4891
4892 nonzero &= ~(alignment - 1);
4893 }
4894
4895 {
4896 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4897 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4898 &nonzero_for_hook);
4899
4900 if (new_rtx)
4901 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4902 known_mode, known_ret);
4903
4904 return nonzero_for_hook;
4905 }
4906
4907 case MEM:
4908 /* In many, if not most, RISC machines, reading a byte from memory
4909 zeros the rest of the register. Noticing that fact saves a lot
4910 of extra zero-extends. */
4911 if (load_extend_op (xmode) == ZERO_EXTEND)
4912 nonzero &= GET_MODE_MASK (xmode);
4913 break;
4914
4915 case EQ: case NE:
4916 case UNEQ: case LTGT:
4917 case GT: case GTU: case UNGT:
4918 case LT: case LTU: case UNLT:
4919 case GE: case GEU: case UNGE:
4920 case LE: case LEU: case UNLE:
4921 case UNORDERED: case ORDERED:
4922 /* If this produces an integer result, we know which bits are set.
4923 Code here used to clear bits outside the mode of X, but that is
4924 now done above. */
4925 /* Mind that MODE is the mode the caller wants to look at this
4926 operation in, and not the actual operation mode. We can wind
4927 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4928 that describes the results of a vector compare. */
4929 if (GET_MODE_CLASS (xmode) == MODE_INT
4930 && mode_width <= HOST_BITS_PER_WIDE_INT)
4931 nonzero = STORE_FLAG_VALUE;
4932 break;
4933
4934 case NEG:
4935 #if 0
4936 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4937 and num_sign_bit_copies. */
4938 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4939 nonzero = 1;
4940 #endif
4941
4942 if (xmode_width < mode_width)
4943 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4944 break;
4945
4946 case ABS:
4947 #if 0
4948 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4949 and num_sign_bit_copies. */
4950 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4951 nonzero = 1;
4952 #endif
4953 break;
4954
4955 case TRUNCATE:
4956 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4957 known_x, known_mode, known_ret)
4958 & GET_MODE_MASK (mode));
4959 break;
4960
4961 case ZERO_EXTEND:
4962 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4963 known_x, known_mode, known_ret);
4964 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4965 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4966 break;
4967
4968 case SIGN_EXTEND:
4969 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4970 Otherwise, show all the bits in the outer mode but not the inner
4971 may be nonzero. */
4972 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4973 known_x, known_mode, known_ret);
4974 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4975 {
4976 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4977 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4978 inner_nz |= (GET_MODE_MASK (mode)
4979 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4980 }
4981
4982 nonzero &= inner_nz;
4983 break;
4984
4985 case AND:
4986 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4987 known_x, known_mode, known_ret)
4988 & cached_nonzero_bits (XEXP (x, 1), mode,
4989 known_x, known_mode, known_ret);
4990 break;
4991
4992 case XOR: case IOR:
4993 case UMIN: case UMAX: case SMIN: case SMAX:
4994 {
4995 unsigned HOST_WIDE_INT nonzero0
4996 = cached_nonzero_bits (XEXP (x, 0), mode,
4997 known_x, known_mode, known_ret);
4998
4999 /* Don't call nonzero_bits for the second time if it cannot change
5000 anything. */
5001 if ((nonzero & nonzero0) != nonzero)
5002 nonzero &= nonzero0
5003 | cached_nonzero_bits (XEXP (x, 1), mode,
5004 known_x, known_mode, known_ret);
5005 }
5006 break;
5007
5008 case PLUS: case MINUS:
5009 case MULT:
5010 case DIV: case UDIV:
5011 case MOD: case UMOD:
5012 /* We can apply the rules of arithmetic to compute the number of
5013 high- and low-order zero bits of these operations. We start by
5014 computing the width (position of the highest-order nonzero bit)
5015 and the number of low-order zero bits for each value. */
5016 {
5017 unsigned HOST_WIDE_INT nz0
5018 = cached_nonzero_bits (XEXP (x, 0), mode,
5019 known_x, known_mode, known_ret);
5020 unsigned HOST_WIDE_INT nz1
5021 = cached_nonzero_bits (XEXP (x, 1), mode,
5022 known_x, known_mode, known_ret);
5023 int sign_index = xmode_width - 1;
5024 int width0 = floor_log2 (nz0) + 1;
5025 int width1 = floor_log2 (nz1) + 1;
5026 int low0 = ctz_or_zero (nz0);
5027 int low1 = ctz_or_zero (nz1);
5028 unsigned HOST_WIDE_INT op0_maybe_minusp
5029 = nz0 & (HOST_WIDE_INT_1U << sign_index);
5030 unsigned HOST_WIDE_INT op1_maybe_minusp
5031 = nz1 & (HOST_WIDE_INT_1U << sign_index);
5032 unsigned int result_width = mode_width;
5033 int result_low = 0;
5034
5035 switch (code)
5036 {
5037 case PLUS:
5038 result_width = MAX (width0, width1) + 1;
5039 result_low = MIN (low0, low1);
5040 break;
5041 case MINUS:
5042 result_low = MIN (low0, low1);
5043 break;
5044 case MULT:
5045 result_width = width0 + width1;
5046 result_low = low0 + low1;
5047 break;
5048 case DIV:
5049 if (width1 == 0)
5050 break;
5051 if (!op0_maybe_minusp && !op1_maybe_minusp)
5052 result_width = width0;
5053 break;
5054 case UDIV:
5055 if (width1 == 0)
5056 break;
5057 result_width = width0;
5058 break;
5059 case MOD:
5060 if (width1 == 0)
5061 break;
5062 if (!op0_maybe_minusp && !op1_maybe_minusp)
5063 result_width = MIN (width0, width1);
5064 result_low = MIN (low0, low1);
5065 break;
5066 case UMOD:
5067 if (width1 == 0)
5068 break;
5069 result_width = MIN (width0, width1);
5070 result_low = MIN (low0, low1);
5071 break;
5072 default:
5073 gcc_unreachable ();
5074 }
5075
5076 /* Note that mode_width <= HOST_BITS_PER_WIDE_INT, see above. */
5077 if (result_width < mode_width)
5078 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
5079
5080 if (result_low > 0)
5081 {
5082 if (result_low < HOST_BITS_PER_WIDE_INT)
5083 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
5084 else
5085 nonzero = 0;
5086 }
5087 }
5088 break;
5089
5090 case ZERO_EXTRACT:
5091 if (CONST_INT_P (XEXP (x, 1))
5092 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
5093 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
5094 break;
5095
5096 case SUBREG:
5097 /* If this is a SUBREG formed for a promoted variable that has
5098 been zero-extended, we know that at least the high-order bits
5099 are zero, though others might be too. */
5100 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
5101 nonzero = GET_MODE_MASK (xmode)
5102 & cached_nonzero_bits (SUBREG_REG (x), xmode,
5103 known_x, known_mode, known_ret);
5104
5105 /* If the inner mode is a single word for both the host and target
5106 machines, we can compute this from which bits of the inner
5107 object might be nonzero. */
5108 inner_mode = GET_MODE (SUBREG_REG (x));
5109 if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
5110 && inner_width <= BITS_PER_WORD
5111 && inner_width <= HOST_BITS_PER_WIDE_INT)
5112 {
5113 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
5114 known_x, known_mode, known_ret);
5115
5116 /* On a typical CISC machine, accessing an object in a wider mode
5117 causes the high-order bits to become undefined. So they are
5118 not known to be zero.
5119
5120 On a typical RISC machine, we only have to worry about the way
5121 loads are extended. Otherwise, if we get a reload for the inner
5122 part, it may be loaded from the stack, and then we may lose all
5123 the zero bits that existed before the store to the stack. */
5124 rtx_code extend_op;
5125 if ((!WORD_REGISTER_OPERATIONS
5126 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
5127 ? val_signbit_known_set_p (inner_mode, nonzero)
5128 : extend_op != ZERO_EXTEND)
5129 || !MEM_P (SUBREG_REG (x)))
5130 && xmode_width > inner_width)
5131 nonzero
5132 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
5133 }
5134 break;
5135
5136 case ASHIFT:
5137 case ASHIFTRT:
5138 case LSHIFTRT:
5139 case ROTATE:
5140 case ROTATERT:
5141 /* The nonzero bits are in two classes: any bits within MODE
5142 that aren't in xmode are always significant. The rest of the
5143 nonzero bits are those that are significant in the operand of
5144 the shift when shifted the appropriate number of bits. This
5145 shows that high-order bits are cleared by the right shift and
5146 low-order bits by left shifts. */
5147 if (CONST_INT_P (XEXP (x, 1))
5148 && INTVAL (XEXP (x, 1)) >= 0
5149 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5150 && INTVAL (XEXP (x, 1)) < xmode_width)
5151 {
5152 int count = INTVAL (XEXP (x, 1));
5153 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
5154 unsigned HOST_WIDE_INT op_nonzero
5155 = cached_nonzero_bits (XEXP (x, 0), mode,
5156 known_x, known_mode, known_ret);
5157 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
5158 unsigned HOST_WIDE_INT outer = 0;
5159
5160 if (mode_width > xmode_width)
5161 outer = (op_nonzero & nonzero & ~mode_mask);
5162
5163 switch (code)
5164 {
5165 case ASHIFT:
5166 inner <<= count;
5167 break;
5168
5169 case LSHIFTRT:
5170 inner >>= count;
5171 break;
5172
5173 case ASHIFTRT:
5174 inner >>= count;
5175
5176 /* If the sign bit may have been nonzero before the shift, we
5177 need to mark all the places it could have been copied to
5178 by the shift as possibly nonzero. */
5179 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
5180 inner |= (((HOST_WIDE_INT_1U << count) - 1)
5181 << (xmode_width - count));
5182 break;
5183
5184 case ROTATE:
5185 inner = (inner << (count % xmode_width)
5186 | (inner >> (xmode_width - (count % xmode_width))))
5187 & mode_mask;
5188 break;
5189
5190 case ROTATERT:
5191 inner = (inner >> (count % xmode_width)
5192 | (inner << (xmode_width - (count % xmode_width))))
5193 & mode_mask;
5194 break;
5195
5196 default:
5197 gcc_unreachable ();
5198 }
5199
5200 nonzero &= (outer | inner);
5201 }
5202 break;
5203
5204 case FFS:
5205 case POPCOUNT:
5206 /* This is at most the number of bits in the mode. */
5207 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
5208 break;
5209
5210 case CLZ:
5211 /* If CLZ has a known value at zero, then the nonzero bits are
5212 that value, plus the number of bits in the mode minus one. */
5213 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
5214 nonzero
5215 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
5216 else
5217 nonzero = -1;
5218 break;
5219
5220 case CTZ:
5221 /* If CTZ has a known value at zero, then the nonzero bits are
5222 that value, plus the number of bits in the mode minus one. */
5223 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
5224 nonzero
5225 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
5226 else
5227 nonzero = -1;
5228 break;
5229
5230 case CLRSB:
5231 /* This is at most the number of bits in the mode minus 1. */
5232 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
5233 break;
5234
5235 case PARITY:
5236 nonzero = 1;
5237 break;
5238
5239 case IF_THEN_ELSE:
5240 {
5241 unsigned HOST_WIDE_INT nonzero_true
5242 = cached_nonzero_bits (XEXP (x, 1), mode,
5243 known_x, known_mode, known_ret);
5244
5245 /* Don't call nonzero_bits for the second time if it cannot change
5246 anything. */
5247 if ((nonzero & nonzero_true) != nonzero)
5248 nonzero &= nonzero_true
5249 | cached_nonzero_bits (XEXP (x, 2), mode,
5250 known_x, known_mode, known_ret);
5251 }
5252 break;
5253
5254 default:
5255 break;
5256 }
5257
5258 return nonzero;
5259 }
5260
5261 /* See the macro definition above. */
5262 #undef cached_num_sign_bit_copies
5263
5264 \f
5265 /* Return true if num_sign_bit_copies1 might recurse into both operands
5266 of X. */
5267
5268 static inline bool
5269 num_sign_bit_copies_binary_arith_p (const_rtx x)
5270 {
5271 if (!ARITHMETIC_P (x))
5272 return false;
5273 switch (GET_CODE (x))
5274 {
5275 case IOR:
5276 case AND:
5277 case XOR:
5278 case SMIN:
5279 case SMAX:
5280 case UMIN:
5281 case UMAX:
5282 case PLUS:
5283 case MINUS:
5284 case MULT:
5285 return true;
5286 default:
5287 return false;
5288 }
5289 }
5290
5291 /* The function cached_num_sign_bit_copies is a wrapper around
5292 num_sign_bit_copies1. It avoids exponential behavior in
5293 num_sign_bit_copies1 when X has identical subexpressions on the
5294 first or the second level. */
5295
5296 static unsigned int
5297 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
5298 const_rtx known_x, machine_mode known_mode,
5299 unsigned int known_ret)
5300 {
5301 if (x == known_x && mode == known_mode)
5302 return known_ret;
5303
5304 /* Try to find identical subexpressions. If found call
5305 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
5306 the precomputed value for the subexpression as KNOWN_RET. */
5307
5308 if (num_sign_bit_copies_binary_arith_p (x))
5309 {
5310 rtx x0 = XEXP (x, 0);
5311 rtx x1 = XEXP (x, 1);
5312
5313 /* Check the first level. */
5314 if (x0 == x1)
5315 return
5316 num_sign_bit_copies1 (x, mode, x0, mode,
5317 cached_num_sign_bit_copies (x0, mode, known_x,
5318 known_mode,
5319 known_ret));
5320
5321 /* Check the second level. */
5322 if (num_sign_bit_copies_binary_arith_p (x0)
5323 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
5324 return
5325 num_sign_bit_copies1 (x, mode, x1, mode,
5326 cached_num_sign_bit_copies (x1, mode, known_x,
5327 known_mode,
5328 known_ret));
5329
5330 if (num_sign_bit_copies_binary_arith_p (x1)
5331 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
5332 return
5333 num_sign_bit_copies1 (x, mode, x0, mode,
5334 cached_num_sign_bit_copies (x0, mode, known_x,
5335 known_mode,
5336 known_ret));
5337 }
5338
5339 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
5340 }
5341
5342 /* Return the number of bits at the high-order end of X that are known to
5343 be equal to the sign bit. X will be used in mode MODE. The returned
5344 value will always be between 1 and the number of bits in MODE. */
5345
5346 static unsigned int
5347 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
5348 machine_mode known_mode,
5349 unsigned int known_ret)
5350 {
5351 enum rtx_code code = GET_CODE (x);
5352 unsigned int bitwidth = GET_MODE_PRECISION (mode);
5353 int num0, num1, result;
5354 unsigned HOST_WIDE_INT nonzero;
5355
5356 if (CONST_INT_P (x))
5357 {
5358 /* If the constant is negative, take its 1's complement and remask.
5359 Then see how many zero bits we have. */
5360 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
5361 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5362 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5363 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5364
5365 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5366 }
5367
5368 scalar_int_mode xmode, inner_mode;
5369 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
5370 return 1;
5371
5372 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5373
5374 /* For a smaller mode, just ignore the high bits. */
5375 if (bitwidth < xmode_width)
5376 {
5377 num0 = cached_num_sign_bit_copies (x, xmode,
5378 known_x, known_mode, known_ret);
5379 return MAX (1, num0 - (int) (xmode_width - bitwidth));
5380 }
5381
5382 if (bitwidth > xmode_width)
5383 {
5384 /* If this machine does not do all register operations on the entire
5385 register and MODE is wider than the mode of X, we can say nothing
5386 at all about the high-order bits. We extend this reasoning to RISC
5387 machines for operations that might not operate on full registers. */
5388 if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
5389 return 1;
5390
5391 /* Likewise on machines that do, if the mode of the object is smaller
5392 than a word and loads of that size don't sign extend, we can say
5393 nothing about the high order bits. */
5394 if (xmode_width < BITS_PER_WORD
5395 && load_extend_op (xmode) != SIGN_EXTEND)
5396 return 1;
5397 }
5398
5399 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5400 the code in the switch below. */
5401 switch (code)
5402 {
5403 case REG:
5404
5405 #if defined(POINTERS_EXTEND_UNSIGNED)
5406 /* If pointers extend signed and this is a pointer in Pmode, say that
5407 all the bits above ptr_mode are known to be sign bit copies. */
5408 /* As we do not know which address space the pointer is referring to,
5409 we can do this only if the target does not support different pointer
5410 or address modes depending on the address space. */
5411 if (target_default_pointer_address_modes_p ()
5412 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5413 && mode == Pmode && REG_POINTER (x)
5414 && !targetm.have_ptr_extend ())
5415 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5416 #endif
5417
5418 {
5419 unsigned int copies_for_hook = 1, copies = 1;
5420 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5421 &copies_for_hook);
5422
5423 if (new_rtx)
5424 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5425 known_mode, known_ret);
5426
5427 if (copies > 1 || copies_for_hook > 1)
5428 return MAX (copies, copies_for_hook);
5429
5430 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
5431 }
5432 break;
5433
5434 case MEM:
5435 /* Some RISC machines sign-extend all loads of smaller than a word. */
5436 if (load_extend_op (xmode) == SIGN_EXTEND)
5437 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5438 break;
5439
5440 case SUBREG:
5441 /* If this is a SUBREG for a promoted object that is sign-extended
5442 and we are looking at it in a wider mode, we know that at least the
5443 high-order bits are known to be sign bit copies. */
5444
5445 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5446 {
5447 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5448 known_x, known_mode, known_ret);
5449 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5450 }
5451
5452 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5453 {
5454 /* For a smaller object, just ignore the high bits. */
5455 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5456 {
5457 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5458 known_x, known_mode,
5459 known_ret);
5460 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5461 - bitwidth));
5462 }
5463
5464 /* For paradoxical SUBREGs on machines where all register operations
5465 affect the entire register, just look inside. Note that we are
5466 passing MODE to the recursive call, so the number of sign bit
5467 copies will remain relative to that mode, not the inner mode.
5468
5469 This works only if loads sign extend. Otherwise, if we get a
5470 reload for the inner part, it may be loaded from the stack, and
5471 then we lose all sign bit copies that existed before the store
5472 to the stack. */
5473 if (WORD_REGISTER_OPERATIONS
5474 && load_extend_op (inner_mode) == SIGN_EXTEND
5475 && paradoxical_subreg_p (x)
5476 && MEM_P (SUBREG_REG (x)))
5477 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5478 known_x, known_mode, known_ret);
5479 }
5480 break;
5481
5482 case SIGN_EXTRACT:
5483 if (CONST_INT_P (XEXP (x, 1)))
5484 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5485 break;
5486
5487 case SIGN_EXTEND:
5488 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5489 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5490 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5491 known_x, known_mode, known_ret));
5492 break;
5493
5494 case TRUNCATE:
5495 /* For a smaller object, just ignore the high bits. */
5496 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5497 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5498 known_x, known_mode, known_ret);
5499 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5500 - bitwidth)));
5501
5502 case NOT:
5503 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5504 known_x, known_mode, known_ret);
5505
5506 case ROTATE: case ROTATERT:
5507 /* If we are rotating left by a number of bits less than the number
5508 of sign bit copies, we can just subtract that amount from the
5509 number. */
5510 if (CONST_INT_P (XEXP (x, 1))
5511 && INTVAL (XEXP (x, 1)) >= 0
5512 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5513 {
5514 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5515 known_x, known_mode, known_ret);
5516 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5517 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5518 }
5519 break;
5520
5521 case NEG:
5522 /* In general, this subtracts one sign bit copy. But if the value
5523 is known to be positive, the number of sign bit copies is the
5524 same as that of the input. Finally, if the input has just one bit
5525 that might be nonzero, all the bits are copies of the sign bit. */
5526 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5527 known_x, known_mode, known_ret);
5528 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5529 return num0 > 1 ? num0 - 1 : 1;
5530
5531 nonzero = nonzero_bits (XEXP (x, 0), mode);
5532 if (nonzero == 1)
5533 return bitwidth;
5534
5535 if (num0 > 1
5536 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5537 num0--;
5538
5539 return num0;
5540
5541 case IOR: case AND: case XOR:
5542 case SMIN: case SMAX: case UMIN: case UMAX:
5543 /* Logical operations will preserve the number of sign-bit copies.
5544 MIN and MAX operations always return one of the operands. */
5545 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5546 known_x, known_mode, known_ret);
5547 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5548 known_x, known_mode, known_ret);
5549
5550 /* If num1 is clearing some of the top bits then regardless of
5551 the other term, we are guaranteed to have at least that many
5552 high-order zero bits. */
5553 if (code == AND
5554 && num1 > 1
5555 && bitwidth <= HOST_BITS_PER_WIDE_INT
5556 && CONST_INT_P (XEXP (x, 1))
5557 && (UINTVAL (XEXP (x, 1))
5558 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5559 return num1;
5560
5561 /* Similarly for IOR when setting high-order bits. */
5562 if (code == IOR
5563 && num1 > 1
5564 && bitwidth <= HOST_BITS_PER_WIDE_INT
5565 && CONST_INT_P (XEXP (x, 1))
5566 && (UINTVAL (XEXP (x, 1))
5567 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5568 return num1;
5569
5570 return MIN (num0, num1);
5571
5572 case PLUS: case MINUS:
5573 /* For addition and subtraction, we can have a 1-bit carry. However,
5574 if we are subtracting 1 from a positive number, there will not
5575 be such a carry. Furthermore, if the positive number is known to
5576 be 0 or 1, we know the result is either -1 or 0. */
5577
5578 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5579 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5580 {
5581 nonzero = nonzero_bits (XEXP (x, 0), mode);
5582 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5583 return (nonzero == 1 || nonzero == 0 ? bitwidth
5584 : bitwidth - floor_log2 (nonzero) - 1);
5585 }
5586
5587 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5588 known_x, known_mode, known_ret);
5589 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5590 known_x, known_mode, known_ret);
5591 result = MAX (1, MIN (num0, num1) - 1);
5592
5593 return result;
5594
5595 case MULT:
5596 /* The number of bits of the product is the sum of the number of
5597 bits of both terms. However, unless one of the terms if known
5598 to be positive, we must allow for an additional bit since negating
5599 a negative number can remove one sign bit copy. */
5600
5601 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5602 known_x, known_mode, known_ret);
5603 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5604 known_x, known_mode, known_ret);
5605
5606 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5607 if (result > 0
5608 && (bitwidth > HOST_BITS_PER_WIDE_INT
5609 || (((nonzero_bits (XEXP (x, 0), mode)
5610 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5611 && ((nonzero_bits (XEXP (x, 1), mode)
5612 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5613 != 0))))
5614 result--;
5615
5616 return MAX (1, result);
5617
5618 case UDIV:
5619 /* The result must be <= the first operand. If the first operand
5620 has the high bit set, we know nothing about the number of sign
5621 bit copies. */
5622 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5623 return 1;
5624 else if ((nonzero_bits (XEXP (x, 0), mode)
5625 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5626 return 1;
5627 else
5628 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5629 known_x, known_mode, known_ret);
5630
5631 case UMOD:
5632 /* The result must be <= the second operand. If the second operand
5633 has (or just might have) the high bit set, we know nothing about
5634 the number of sign bit copies. */
5635 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5636 return 1;
5637 else if ((nonzero_bits (XEXP (x, 1), mode)
5638 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5639 return 1;
5640 else
5641 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5642 known_x, known_mode, known_ret);
5643
5644 case DIV:
5645 /* Similar to unsigned division, except that we have to worry about
5646 the case where the divisor is negative, in which case we have
5647 to add 1. */
5648 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5649 known_x, known_mode, known_ret);
5650 if (result > 1
5651 && (bitwidth > HOST_BITS_PER_WIDE_INT
5652 || (nonzero_bits (XEXP (x, 1), mode)
5653 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5654 result--;
5655
5656 return result;
5657
5658 case MOD:
5659 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5660 known_x, known_mode, known_ret);
5661 if (result > 1
5662 && (bitwidth > HOST_BITS_PER_WIDE_INT
5663 || (nonzero_bits (XEXP (x, 1), mode)
5664 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5665 result--;
5666
5667 return result;
5668
5669 case ASHIFTRT:
5670 /* Shifts by a constant add to the number of bits equal to the
5671 sign bit. */
5672 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5673 known_x, known_mode, known_ret);
5674 if (CONST_INT_P (XEXP (x, 1))
5675 && INTVAL (XEXP (x, 1)) > 0
5676 && INTVAL (XEXP (x, 1)) < xmode_width)
5677 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5678
5679 return num0;
5680
5681 case ASHIFT:
5682 /* Left shifts destroy copies. */
5683 if (!CONST_INT_P (XEXP (x, 1))
5684 || INTVAL (XEXP (x, 1)) < 0
5685 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5686 || INTVAL (XEXP (x, 1)) >= xmode_width)
5687 return 1;
5688
5689 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5690 known_x, known_mode, known_ret);
5691 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5692
5693 case IF_THEN_ELSE:
5694 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5695 known_x, known_mode, known_ret);
5696 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5697 known_x, known_mode, known_ret);
5698 return MIN (num0, num1);
5699
5700 case EQ: case NE: case GE: case GT: case LE: case LT:
5701 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5702 case GEU: case GTU: case LEU: case LTU:
5703 case UNORDERED: case ORDERED:
5704 /* If the constant is negative, take its 1's complement and remask.
5705 Then see how many zero bits we have. */
5706 nonzero = STORE_FLAG_VALUE;
5707 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5708 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5709 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5710
5711 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5712
5713 default:
5714 break;
5715 }
5716
5717 /* If we haven't been able to figure it out by one of the above rules,
5718 see if some of the high-order bits are known to be zero. If so,
5719 count those bits and return one less than that amount. If we can't
5720 safely compute the mask for this mode, always return BITWIDTH. */
5721
5722 bitwidth = GET_MODE_PRECISION (mode);
5723 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5724 return 1;
5725
5726 nonzero = nonzero_bits (x, mode);
5727 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5728 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5729 }
5730
5731 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5732 zero indicates an instruction pattern without a known cost. */
5733
5734 int
5735 pattern_cost (rtx pat, bool speed)
5736 {
5737 int i, cost;
5738 rtx set;
5739
5740 /* Extract the single set rtx from the instruction pattern. We
5741 can't use single_set since we only have the pattern. We also
5742 consider PARALLELs of a normal set and a single comparison. In
5743 that case we use the cost of the non-comparison SET operation,
5744 which is most-likely to be the real cost of this operation. */
5745 if (GET_CODE (pat) == SET)
5746 set = pat;
5747 else if (GET_CODE (pat) == PARALLEL)
5748 {
5749 set = NULL_RTX;
5750 rtx comparison = NULL_RTX;
5751
5752 for (i = 0; i < XVECLEN (pat, 0); i++)
5753 {
5754 rtx x = XVECEXP (pat, 0, i);
5755 if (GET_CODE (x) == SET)
5756 {
5757 if (GET_CODE (SET_SRC (x)) == COMPARE)
5758 {
5759 if (comparison)
5760 return 0;
5761 comparison = x;
5762 }
5763 else
5764 {
5765 if (set)
5766 return 0;
5767 set = x;
5768 }
5769 }
5770 }
5771
5772 if (!set && comparison)
5773 set = comparison;
5774
5775 if (!set)
5776 return 0;
5777 }
5778 else
5779 return 0;
5780
5781 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5782 return cost > 0 ? cost : COSTS_N_INSNS (1);
5783 }
5784
5785 /* Calculate the cost of a single instruction. A return value of zero
5786 indicates an instruction pattern without a known cost. */
5787
5788 int
5789 insn_cost (rtx_insn *insn, bool speed)
5790 {
5791 if (targetm.insn_cost)
5792 return targetm.insn_cost (insn, speed);
5793
5794 return pattern_cost (PATTERN (insn), speed);
5795 }
5796
5797 /* Returns estimate on cost of computing SEQ. */
5798
5799 unsigned
5800 seq_cost (const rtx_insn *seq, bool speed)
5801 {
5802 unsigned cost = 0;
5803 rtx set;
5804
5805 for (; seq; seq = NEXT_INSN (seq))
5806 {
5807 set = single_set (seq);
5808 if (set)
5809 cost += set_rtx_cost (set, speed);
5810 else if (NONDEBUG_INSN_P (seq))
5811 {
5812 int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5813 if (this_cost > 0)
5814 cost += this_cost;
5815 else
5816 cost++;
5817 }
5818 }
5819
5820 return cost;
5821 }
5822
5823 /* Given an insn INSN and condition COND, return the condition in a
5824 canonical form to simplify testing by callers. Specifically:
5825
5826 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5827 (2) Both operands will be machine operands.
5828 (3) If an operand is a constant, it will be the second operand.
5829 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5830 for GE, GEU, and LEU.
5831
5832 If the condition cannot be understood, or is an inequality floating-point
5833 comparison which needs to be reversed, 0 will be returned.
5834
5835 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5836
5837 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5838 insn used in locating the condition was found. If a replacement test
5839 of the condition is desired, it should be placed in front of that
5840 insn and we will be sure that the inputs are still valid.
5841
5842 If WANT_REG is nonzero, we wish the condition to be relative to that
5843 register, if possible. Therefore, do not canonicalize the condition
5844 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5845 to be a compare to a CC mode register.
5846
5847 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5848 and at INSN. */
5849
5850 rtx
5851 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5852 rtx_insn **earliest,
5853 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5854 {
5855 enum rtx_code code;
5856 rtx_insn *prev = insn;
5857 const_rtx set;
5858 rtx tem;
5859 rtx op0, op1;
5860 int reverse_code = 0;
5861 machine_mode mode;
5862 basic_block bb = BLOCK_FOR_INSN (insn);
5863
5864 code = GET_CODE (cond);
5865 mode = GET_MODE (cond);
5866 op0 = XEXP (cond, 0);
5867 op1 = XEXP (cond, 1);
5868
5869 if (reverse)
5870 code = reversed_comparison_code (cond, insn);
5871 if (code == UNKNOWN)
5872 return 0;
5873
5874 if (earliest)
5875 *earliest = insn;
5876
5877 /* If we are comparing a register with zero, see if the register is set
5878 in the previous insn to a COMPARE or a comparison operation. Perform
5879 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5880 in cse.c */
5881
5882 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5883 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5884 && op1 == CONST0_RTX (GET_MODE (op0))
5885 && op0 != want_reg)
5886 {
5887 /* Set nonzero when we find something of interest. */
5888 rtx x = 0;
5889
5890 /* If this is a COMPARE, pick up the two things being compared. */
5891 if (GET_CODE (op0) == COMPARE)
5892 {
5893 op1 = XEXP (op0, 1);
5894 op0 = XEXP (op0, 0);
5895 continue;
5896 }
5897 else if (!REG_P (op0))
5898 break;
5899
5900 /* Go back to the previous insn. Stop if it is not an INSN. We also
5901 stop if it isn't a single set or if it has a REG_INC note because
5902 we don't want to bother dealing with it. */
5903
5904 prev = prev_nonnote_nondebug_insn (prev);
5905
5906 if (prev == 0
5907 || !NONJUMP_INSN_P (prev)
5908 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5909 /* In cfglayout mode, there do not have to be labels at the
5910 beginning of a block, or jumps at the end, so the previous
5911 conditions would not stop us when we reach bb boundary. */
5912 || BLOCK_FOR_INSN (prev) != bb)
5913 break;
5914
5915 set = set_of (op0, prev);
5916
5917 if (set
5918 && (GET_CODE (set) != SET
5919 || !rtx_equal_p (SET_DEST (set), op0)))
5920 break;
5921
5922 /* If this is setting OP0, get what it sets it to if it looks
5923 relevant. */
5924 if (set)
5925 {
5926 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5927 #ifdef FLOAT_STORE_FLAG_VALUE
5928 REAL_VALUE_TYPE fsfv;
5929 #endif
5930
5931 /* ??? We may not combine comparisons done in a CCmode with
5932 comparisons not done in a CCmode. This is to aid targets
5933 like Alpha that have an IEEE compliant EQ instruction, and
5934 a non-IEEE compliant BEQ instruction. The use of CCmode is
5935 actually artificial, simply to prevent the combination, but
5936 should not affect other platforms.
5937
5938 However, we must allow VOIDmode comparisons to match either
5939 CCmode or non-CCmode comparison, because some ports have
5940 modeless comparisons inside branch patterns.
5941
5942 ??? This mode check should perhaps look more like the mode check
5943 in simplify_comparison in combine. */
5944 if (((GET_MODE_CLASS (mode) == MODE_CC)
5945 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5946 && mode != VOIDmode
5947 && inner_mode != VOIDmode)
5948 break;
5949 if (GET_CODE (SET_SRC (set)) == COMPARE
5950 || (((code == NE
5951 || (code == LT
5952 && val_signbit_known_set_p (inner_mode,
5953 STORE_FLAG_VALUE))
5954 #ifdef FLOAT_STORE_FLAG_VALUE
5955 || (code == LT
5956 && SCALAR_FLOAT_MODE_P (inner_mode)
5957 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5958 REAL_VALUE_NEGATIVE (fsfv)))
5959 #endif
5960 ))
5961 && COMPARISON_P (SET_SRC (set))))
5962 x = SET_SRC (set);
5963 else if (((code == EQ
5964 || (code == GE
5965 && val_signbit_known_set_p (inner_mode,
5966 STORE_FLAG_VALUE))
5967 #ifdef FLOAT_STORE_FLAG_VALUE
5968 || (code == GE
5969 && SCALAR_FLOAT_MODE_P (inner_mode)
5970 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5971 REAL_VALUE_NEGATIVE (fsfv)))
5972 #endif
5973 ))
5974 && COMPARISON_P (SET_SRC (set)))
5975 {
5976 reverse_code = 1;
5977 x = SET_SRC (set);
5978 }
5979 else if ((code == EQ || code == NE)
5980 && GET_CODE (SET_SRC (set)) == XOR)
5981 /* Handle sequences like:
5982
5983 (set op0 (xor X Y))
5984 ...(eq|ne op0 (const_int 0))...
5985
5986 in which case:
5987
5988 (eq op0 (const_int 0)) reduces to (eq X Y)
5989 (ne op0 (const_int 0)) reduces to (ne X Y)
5990
5991 This is the form used by MIPS16, for example. */
5992 x = SET_SRC (set);
5993 else
5994 break;
5995 }
5996
5997 else if (reg_set_p (op0, prev))
5998 /* If this sets OP0, but not directly, we have to give up. */
5999 break;
6000
6001 if (x)
6002 {
6003 /* If the caller is expecting the condition to be valid at INSN,
6004 make sure X doesn't change before INSN. */
6005 if (valid_at_insn_p)
6006 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
6007 break;
6008 if (COMPARISON_P (x))
6009 code = GET_CODE (x);
6010 if (reverse_code)
6011 {
6012 code = reversed_comparison_code (x, prev);
6013 if (code == UNKNOWN)
6014 return 0;
6015 reverse_code = 0;
6016 }
6017
6018 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6019 if (earliest)
6020 *earliest = prev;
6021 }
6022 }
6023
6024 /* If constant is first, put it last. */
6025 if (CONSTANT_P (op0))
6026 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6027
6028 /* If OP0 is the result of a comparison, we weren't able to find what
6029 was really being compared, so fail. */
6030 if (!allow_cc_mode
6031 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6032 return 0;
6033
6034 /* Canonicalize any ordered comparison with integers involving equality
6035 if we can do computations in the relevant mode and we do not
6036 overflow. */
6037
6038 scalar_int_mode op0_mode;
6039 if (CONST_INT_P (op1)
6040 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
6041 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
6042 {
6043 HOST_WIDE_INT const_val = INTVAL (op1);
6044 unsigned HOST_WIDE_INT uconst_val = const_val;
6045 unsigned HOST_WIDE_INT max_val
6046 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
6047
6048 switch (code)
6049 {
6050 case LE:
6051 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
6052 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
6053 break;
6054
6055 /* When cross-compiling, const_val might be sign-extended from
6056 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
6057 case GE:
6058 if ((const_val & max_val)
6059 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
6060 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
6061 break;
6062
6063 case LEU:
6064 if (uconst_val < max_val)
6065 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
6066 break;
6067
6068 case GEU:
6069 if (uconst_val != 0)
6070 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
6071 break;
6072
6073 default:
6074 break;
6075 }
6076 }
6077
6078 /* We promised to return a comparison. */
6079 rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
6080 if (COMPARISON_P (ret))
6081 return ret;
6082 return 0;
6083 }
6084
6085 /* Given a jump insn JUMP, return the condition that will cause it to branch
6086 to its JUMP_LABEL. If the condition cannot be understood, or is an
6087 inequality floating-point comparison which needs to be reversed, 0 will
6088 be returned.
6089
6090 If EARLIEST is nonzero, it is a pointer to a place where the earliest
6091 insn used in locating the condition was found. If a replacement test
6092 of the condition is desired, it should be placed in front of that
6093 insn and we will be sure that the inputs are still valid. If EARLIEST
6094 is null, the returned condition will be valid at INSN.
6095
6096 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
6097 compare CC mode register.
6098
6099 VALID_AT_INSN_P is the same as for canonicalize_condition. */
6100
6101 rtx
6102 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
6103 int valid_at_insn_p)
6104 {
6105 rtx cond;
6106 int reverse;
6107 rtx set;
6108
6109 /* If this is not a standard conditional jump, we can't parse it. */
6110 if (!JUMP_P (jump)
6111 || ! any_condjump_p (jump))
6112 return 0;
6113 set = pc_set (jump);
6114
6115 cond = XEXP (SET_SRC (set), 0);
6116
6117 /* If this branches to JUMP_LABEL when the condition is false, reverse
6118 the condition. */
6119 reverse
6120 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
6121 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
6122
6123 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
6124 allow_cc_mode, valid_at_insn_p);
6125 }
6126
6127 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
6128 TARGET_MODE_REP_EXTENDED.
6129
6130 Note that we assume that the property of
6131 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
6132 narrower than mode B. I.e., if A is a mode narrower than B then in
6133 order to be able to operate on it in mode B, mode A needs to
6134 satisfy the requirements set by the representation of mode B. */
6135
6136 static void
6137 init_num_sign_bit_copies_in_rep (void)
6138 {
6139 opt_scalar_int_mode in_mode_iter;
6140 scalar_int_mode mode;
6141
6142 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
6143 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
6144 {
6145 scalar_int_mode in_mode = in_mode_iter.require ();
6146 scalar_int_mode i;
6147
6148 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
6149 extends to the next widest mode. */
6150 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
6151 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
6152
6153 /* We are in in_mode. Count how many bits outside of mode
6154 have to be copies of the sign-bit. */
6155 FOR_EACH_MODE (i, mode, in_mode)
6156 {
6157 /* This must always exist (for the last iteration it will be
6158 IN_MODE). */
6159 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
6160
6161 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
6162 /* We can only check sign-bit copies starting from the
6163 top-bit. In order to be able to check the bits we
6164 have already seen we pretend that subsequent bits
6165 have to be sign-bit copies too. */
6166 || num_sign_bit_copies_in_rep [in_mode][mode])
6167 num_sign_bit_copies_in_rep [in_mode][mode]
6168 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
6169 }
6170 }
6171 }
6172
6173 /* Suppose that truncation from the machine mode of X to MODE is not a
6174 no-op. See if there is anything special about X so that we can
6175 assume it already contains a truncated value of MODE. */
6176
6177 bool
6178 truncated_to_mode (machine_mode mode, const_rtx x)
6179 {
6180 /* This register has already been used in MODE without explicit
6181 truncation. */
6182 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
6183 return true;
6184
6185 /* See if we already satisfy the requirements of MODE. If yes we
6186 can just switch to MODE. */
6187 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
6188 && (num_sign_bit_copies (x, GET_MODE (x))
6189 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
6190 return true;
6191
6192 return false;
6193 }
6194 \f
6195 /* Return true if RTX code CODE has a single sequence of zero or more
6196 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
6197 entry in that case. */
6198
6199 static bool
6200 setup_reg_subrtx_bounds (unsigned int code)
6201 {
6202 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
6203 unsigned int i = 0;
6204 for (; format[i] != 'e'; ++i)
6205 {
6206 if (!format[i])
6207 /* No subrtxes. Leave start and count as 0. */
6208 return true;
6209 if (format[i] == 'E' || format[i] == 'V')
6210 return false;
6211 }
6212
6213 /* Record the sequence of 'e's. */
6214 rtx_all_subrtx_bounds[code].start = i;
6215 do
6216 ++i;
6217 while (format[i] == 'e');
6218 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
6219 /* rtl-iter.h relies on this. */
6220 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
6221
6222 for (; format[i]; ++i)
6223 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
6224 return false;
6225
6226 return true;
6227 }
6228
6229 /* Initialize rtx_all_subrtx_bounds. */
6230 void
6231 init_rtlanal (void)
6232 {
6233 int i;
6234 for (i = 0; i < NUM_RTX_CODE; i++)
6235 {
6236 if (!setup_reg_subrtx_bounds (i))
6237 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
6238 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
6239 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
6240 }
6241
6242 init_num_sign_bit_copies_in_rep ();
6243 }
6244 \f
6245 /* Check whether this is a constant pool constant. */
6246 bool
6247 constant_pool_constant_p (rtx x)
6248 {
6249 x = avoid_constant_pool_reference (x);
6250 return CONST_DOUBLE_P (x);
6251 }
6252 \f
6253 /* If M is a bitmask that selects a field of low-order bits within an item but
6254 not the entire word, return the length of the field. Return -1 otherwise.
6255 M is used in machine mode MODE. */
6256
6257 int
6258 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
6259 {
6260 if (mode != VOIDmode)
6261 {
6262 if (!HWI_COMPUTABLE_MODE_P (mode))
6263 return -1;
6264 m &= GET_MODE_MASK (mode);
6265 }
6266
6267 return exact_log2 (m + 1);
6268 }
6269
6270 /* Return the mode of MEM's address. */
6271
6272 scalar_int_mode
6273 get_address_mode (rtx mem)
6274 {
6275 machine_mode mode;
6276
6277 gcc_assert (MEM_P (mem));
6278 mode = GET_MODE (XEXP (mem, 0));
6279 if (mode != VOIDmode)
6280 return as_a <scalar_int_mode> (mode);
6281 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
6282 }
6283 \f
6284 /* Split up a CONST_DOUBLE or integer constant rtx
6285 into two rtx's for single words,
6286 storing in *FIRST the word that comes first in memory in the target
6287 and in *SECOND the other.
6288
6289 TODO: This function needs to be rewritten to work on any size
6290 integer. */
6291
6292 void
6293 split_double (rtx value, rtx *first, rtx *second)
6294 {
6295 if (CONST_INT_P (value))
6296 {
6297 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
6298 {
6299 /* In this case the CONST_INT holds both target words.
6300 Extract the bits from it into two word-sized pieces.
6301 Sign extend each half to HOST_WIDE_INT. */
6302 unsigned HOST_WIDE_INT low, high;
6303 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
6304 unsigned bits_per_word = BITS_PER_WORD;
6305
6306 /* Set sign_bit to the most significant bit of a word. */
6307 sign_bit = 1;
6308 sign_bit <<= bits_per_word - 1;
6309
6310 /* Set mask so that all bits of the word are set. We could
6311 have used 1 << BITS_PER_WORD instead of basing the
6312 calculation on sign_bit. However, on machines where
6313 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
6314 compiler warning, even though the code would never be
6315 executed. */
6316 mask = sign_bit << 1;
6317 mask--;
6318
6319 /* Set sign_extend as any remaining bits. */
6320 sign_extend = ~mask;
6321
6322 /* Pick the lower word and sign-extend it. */
6323 low = INTVAL (value);
6324 low &= mask;
6325 if (low & sign_bit)
6326 low |= sign_extend;
6327
6328 /* Pick the higher word, shifted to the least significant
6329 bits, and sign-extend it. */
6330 high = INTVAL (value);
6331 high >>= bits_per_word - 1;
6332 high >>= 1;
6333 high &= mask;
6334 if (high & sign_bit)
6335 high |= sign_extend;
6336
6337 /* Store the words in the target machine order. */
6338 if (WORDS_BIG_ENDIAN)
6339 {
6340 *first = GEN_INT (high);
6341 *second = GEN_INT (low);
6342 }
6343 else
6344 {
6345 *first = GEN_INT (low);
6346 *second = GEN_INT (high);
6347 }
6348 }
6349 else
6350 {
6351 /* The rule for using CONST_INT for a wider mode
6352 is that we regard the value as signed.
6353 So sign-extend it. */
6354 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6355 if (WORDS_BIG_ENDIAN)
6356 {
6357 *first = high;
6358 *second = value;
6359 }
6360 else
6361 {
6362 *first = value;
6363 *second = high;
6364 }
6365 }
6366 }
6367 else if (GET_CODE (value) == CONST_WIDE_INT)
6368 {
6369 /* All of this is scary code and needs to be converted to
6370 properly work with any size integer. */
6371 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6372 if (WORDS_BIG_ENDIAN)
6373 {
6374 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6375 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6376 }
6377 else
6378 {
6379 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6380 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6381 }
6382 }
6383 else if (!CONST_DOUBLE_P (value))
6384 {
6385 if (WORDS_BIG_ENDIAN)
6386 {
6387 *first = const0_rtx;
6388 *second = value;
6389 }
6390 else
6391 {
6392 *first = value;
6393 *second = const0_rtx;
6394 }
6395 }
6396 else if (GET_MODE (value) == VOIDmode
6397 /* This is the old way we did CONST_DOUBLE integers. */
6398 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6399 {
6400 /* In an integer, the words are defined as most and least significant.
6401 So order them by the target's convention. */
6402 if (WORDS_BIG_ENDIAN)
6403 {
6404 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6405 *second = GEN_INT (CONST_DOUBLE_LOW (value));
6406 }
6407 else
6408 {
6409 *first = GEN_INT (CONST_DOUBLE_LOW (value));
6410 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6411 }
6412 }
6413 else
6414 {
6415 long l[2];
6416
6417 /* Note, this converts the REAL_VALUE_TYPE to the target's
6418 format, splits up the floating point double and outputs
6419 exactly 32 bits of it into each of l[0] and l[1] --
6420 not necessarily BITS_PER_WORD bits. */
6421 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6422
6423 /* If 32 bits is an entire word for the target, but not for the host,
6424 then sign-extend on the host so that the number will look the same
6425 way on the host that it would on the target. See for instance
6426 simplify_unary_operation. The #if is needed to avoid compiler
6427 warnings. */
6428
6429 #if HOST_BITS_PER_LONG > 32
6430 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6431 {
6432 if (l[0] & ((long) 1 << 31))
6433 l[0] |= ((unsigned long) (-1) << 32);
6434 if (l[1] & ((long) 1 << 31))
6435 l[1] |= ((unsigned long) (-1) << 32);
6436 }
6437 #endif
6438
6439 *first = GEN_INT (l[0]);
6440 *second = GEN_INT (l[1]);
6441 }
6442 }
6443
6444 /* Return true if X is a sign_extract or zero_extract from the least
6445 significant bit. */
6446
6447 static bool
6448 lsb_bitfield_op_p (rtx x)
6449 {
6450 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6451 {
6452 machine_mode mode = GET_MODE (XEXP (x, 0));
6453 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6454 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6455 poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6456
6457 return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6458 }
6459 return false;
6460 }
6461
6462 /* Strip outer address "mutations" from LOC and return a pointer to the
6463 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6464 stripped expression there.
6465
6466 "Mutations" either convert between modes or apply some kind of
6467 extension, truncation or alignment. */
6468
6469 rtx *
6470 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6471 {
6472 for (;;)
6473 {
6474 enum rtx_code code = GET_CODE (*loc);
6475 if (GET_RTX_CLASS (code) == RTX_UNARY)
6476 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6477 used to convert between pointer sizes. */
6478 loc = &XEXP (*loc, 0);
6479 else if (lsb_bitfield_op_p (*loc))
6480 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6481 acts as a combined truncation and extension. */
6482 loc = &XEXP (*loc, 0);
6483 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6484 /* (and ... (const_int -X)) is used to align to X bytes. */
6485 loc = &XEXP (*loc, 0);
6486 else if (code == SUBREG
6487 && !OBJECT_P (SUBREG_REG (*loc))
6488 && subreg_lowpart_p (*loc))
6489 /* (subreg (operator ...) ...) inside and is used for mode
6490 conversion too. */
6491 loc = &SUBREG_REG (*loc);
6492 else
6493 return loc;
6494 if (outer_code)
6495 *outer_code = code;
6496 }
6497 }
6498
6499 /* Return true if CODE applies some kind of scale. The scaled value is
6500 is the first operand and the scale is the second. */
6501
6502 static bool
6503 binary_scale_code_p (enum rtx_code code)
6504 {
6505 return (code == MULT
6506 || code == ASHIFT
6507 /* Needed by ARM targets. */
6508 || code == ASHIFTRT
6509 || code == LSHIFTRT
6510 || code == ROTATE
6511 || code == ROTATERT);
6512 }
6513
6514 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6515 (see address_info). Return null otherwise. */
6516
6517 static rtx *
6518 get_base_term (rtx *inner)
6519 {
6520 if (GET_CODE (*inner) == LO_SUM)
6521 inner = strip_address_mutations (&XEXP (*inner, 0));
6522 if (REG_P (*inner)
6523 || MEM_P (*inner)
6524 || GET_CODE (*inner) == SUBREG
6525 || GET_CODE (*inner) == SCRATCH)
6526 return inner;
6527 return 0;
6528 }
6529
6530 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6531 (see address_info). Return null otherwise. */
6532
6533 static rtx *
6534 get_index_term (rtx *inner)
6535 {
6536 /* At present, only constant scales are allowed. */
6537 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6538 inner = strip_address_mutations (&XEXP (*inner, 0));
6539 if (REG_P (*inner)
6540 || MEM_P (*inner)
6541 || GET_CODE (*inner) == SUBREG
6542 || GET_CODE (*inner) == SCRATCH)
6543 return inner;
6544 return 0;
6545 }
6546
6547 /* Set the segment part of address INFO to LOC, given that INNER is the
6548 unmutated value. */
6549
6550 static void
6551 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6552 {
6553 gcc_assert (!info->segment);
6554 info->segment = loc;
6555 info->segment_term = inner;
6556 }
6557
6558 /* Set the base part of address INFO to LOC, given that INNER is the
6559 unmutated value. */
6560
6561 static void
6562 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6563 {
6564 gcc_assert (!info->base);
6565 info->base = loc;
6566 info->base_term = inner;
6567 }
6568
6569 /* Set the index part of address INFO to LOC, given that INNER is the
6570 unmutated value. */
6571
6572 static void
6573 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6574 {
6575 gcc_assert (!info->index);
6576 info->index = loc;
6577 info->index_term = inner;
6578 }
6579
6580 /* Set the displacement part of address INFO to LOC, given that INNER
6581 is the constant term. */
6582
6583 static void
6584 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6585 {
6586 gcc_assert (!info->disp);
6587 info->disp = loc;
6588 info->disp_term = inner;
6589 }
6590
6591 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6592 rest of INFO accordingly. */
6593
6594 static void
6595 decompose_incdec_address (struct address_info *info)
6596 {
6597 info->autoinc_p = true;
6598
6599 rtx *base = &XEXP (*info->inner, 0);
6600 set_address_base (info, base, base);
6601 gcc_checking_assert (info->base == info->base_term);
6602
6603 /* These addresses are only valid when the size of the addressed
6604 value is known. */
6605 gcc_checking_assert (info->mode != VOIDmode);
6606 }
6607
6608 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6609 of INFO accordingly. */
6610
6611 static void
6612 decompose_automod_address (struct address_info *info)
6613 {
6614 info->autoinc_p = true;
6615
6616 rtx *base = &XEXP (*info->inner, 0);
6617 set_address_base (info, base, base);
6618 gcc_checking_assert (info->base == info->base_term);
6619
6620 rtx plus = XEXP (*info->inner, 1);
6621 gcc_assert (GET_CODE (plus) == PLUS);
6622
6623 info->base_term2 = &XEXP (plus, 0);
6624 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6625
6626 rtx *step = &XEXP (plus, 1);
6627 rtx *inner_step = strip_address_mutations (step);
6628 if (CONSTANT_P (*inner_step))
6629 set_address_disp (info, step, inner_step);
6630 else
6631 set_address_index (info, step, inner_step);
6632 }
6633
6634 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6635 values in [PTR, END). Return a pointer to the end of the used array. */
6636
6637 static rtx **
6638 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6639 {
6640 rtx x = *loc;
6641 if (GET_CODE (x) == PLUS)
6642 {
6643 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6644 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6645 }
6646 else
6647 {
6648 gcc_assert (ptr != end);
6649 *ptr++ = loc;
6650 }
6651 return ptr;
6652 }
6653
6654 /* Evaluate the likelihood of X being a base or index value, returning
6655 positive if it is likely to be a base, negative if it is likely to be
6656 an index, and 0 if we can't tell. Make the magnitude of the return
6657 value reflect the amount of confidence we have in the answer.
6658
6659 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6660
6661 static int
6662 baseness (rtx x, machine_mode mode, addr_space_t as,
6663 enum rtx_code outer_code, enum rtx_code index_code)
6664 {
6665 /* Believe *_POINTER unless the address shape requires otherwise. */
6666 if (REG_P (x) && REG_POINTER (x))
6667 return 2;
6668 if (MEM_P (x) && MEM_POINTER (x))
6669 return 2;
6670
6671 if (REG_P (x) && HARD_REGISTER_P (x))
6672 {
6673 /* X is a hard register. If it only fits one of the base
6674 or index classes, choose that interpretation. */
6675 int regno = REGNO (x);
6676 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6677 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6678 if (base_p != index_p)
6679 return base_p ? 1 : -1;
6680 }
6681 return 0;
6682 }
6683
6684 /* INFO->INNER describes a normal, non-automodified address.
6685 Fill in the rest of INFO accordingly. */
6686
6687 static void
6688 decompose_normal_address (struct address_info *info)
6689 {
6690 /* Treat the address as the sum of up to four values. */
6691 rtx *ops[4];
6692 size_t n_ops = extract_plus_operands (info->inner, ops,
6693 ops + ARRAY_SIZE (ops)) - ops;
6694
6695 /* If there is more than one component, any base component is in a PLUS. */
6696 if (n_ops > 1)
6697 info->base_outer_code = PLUS;
6698
6699 /* Try to classify each sum operand now. Leave those that could be
6700 either a base or an index in OPS. */
6701 rtx *inner_ops[4];
6702 size_t out = 0;
6703 for (size_t in = 0; in < n_ops; ++in)
6704 {
6705 rtx *loc = ops[in];
6706 rtx *inner = strip_address_mutations (loc);
6707 if (CONSTANT_P (*inner))
6708 set_address_disp (info, loc, inner);
6709 else if (GET_CODE (*inner) == UNSPEC)
6710 set_address_segment (info, loc, inner);
6711 else
6712 {
6713 /* The only other possibilities are a base or an index. */
6714 rtx *base_term = get_base_term (inner);
6715 rtx *index_term = get_index_term (inner);
6716 gcc_assert (base_term || index_term);
6717 if (!base_term)
6718 set_address_index (info, loc, index_term);
6719 else if (!index_term)
6720 set_address_base (info, loc, base_term);
6721 else
6722 {
6723 gcc_assert (base_term == index_term);
6724 ops[out] = loc;
6725 inner_ops[out] = base_term;
6726 ++out;
6727 }
6728 }
6729 }
6730
6731 /* Classify the remaining OPS members as bases and indexes. */
6732 if (out == 1)
6733 {
6734 /* If we haven't seen a base or an index yet, assume that this is
6735 the base. If we were confident that another term was the base
6736 or index, treat the remaining operand as the other kind. */
6737 if (!info->base)
6738 set_address_base (info, ops[0], inner_ops[0]);
6739 else
6740 set_address_index (info, ops[0], inner_ops[0]);
6741 }
6742 else if (out == 2)
6743 {
6744 /* In the event of a tie, assume the base comes first. */
6745 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6746 GET_CODE (*ops[1]))
6747 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6748 GET_CODE (*ops[0])))
6749 {
6750 set_address_base (info, ops[0], inner_ops[0]);
6751 set_address_index (info, ops[1], inner_ops[1]);
6752 }
6753 else
6754 {
6755 set_address_base (info, ops[1], inner_ops[1]);
6756 set_address_index (info, ops[0], inner_ops[0]);
6757 }
6758 }
6759 else
6760 gcc_assert (out == 0);
6761 }
6762
6763 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6764 or VOIDmode if not known. AS is the address space associated with LOC.
6765 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6766
6767 void
6768 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6769 addr_space_t as, enum rtx_code outer_code)
6770 {
6771 memset (info, 0, sizeof (*info));
6772 info->mode = mode;
6773 info->as = as;
6774 info->addr_outer_code = outer_code;
6775 info->outer = loc;
6776 info->inner = strip_address_mutations (loc, &outer_code);
6777 info->base_outer_code = outer_code;
6778 switch (GET_CODE (*info->inner))
6779 {
6780 case PRE_DEC:
6781 case PRE_INC:
6782 case POST_DEC:
6783 case POST_INC:
6784 decompose_incdec_address (info);
6785 break;
6786
6787 case PRE_MODIFY:
6788 case POST_MODIFY:
6789 decompose_automod_address (info);
6790 break;
6791
6792 default:
6793 decompose_normal_address (info);
6794 break;
6795 }
6796 }
6797
6798 /* Describe address operand LOC in INFO. */
6799
6800 void
6801 decompose_lea_address (struct address_info *info, rtx *loc)
6802 {
6803 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6804 }
6805
6806 /* Describe the address of MEM X in INFO. */
6807
6808 void
6809 decompose_mem_address (struct address_info *info, rtx x)
6810 {
6811 gcc_assert (MEM_P (x));
6812 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6813 MEM_ADDR_SPACE (x), MEM);
6814 }
6815
6816 /* Update INFO after a change to the address it describes. */
6817
6818 void
6819 update_address (struct address_info *info)
6820 {
6821 decompose_address (info, info->outer, info->mode, info->as,
6822 info->addr_outer_code);
6823 }
6824
6825 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6826 more complicated than that. */
6827
6828 HOST_WIDE_INT
6829 get_index_scale (const struct address_info *info)
6830 {
6831 rtx index = *info->index;
6832 if (GET_CODE (index) == MULT
6833 && CONST_INT_P (XEXP (index, 1))
6834 && info->index_term == &XEXP (index, 0))
6835 return INTVAL (XEXP (index, 1));
6836
6837 if (GET_CODE (index) == ASHIFT
6838 && CONST_INT_P (XEXP (index, 1))
6839 && info->index_term == &XEXP (index, 0))
6840 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6841
6842 if (info->index == info->index_term)
6843 return 1;
6844
6845 return 0;
6846 }
6847
6848 /* Return the "index code" of INFO, in the form required by
6849 ok_for_base_p_1. */
6850
6851 enum rtx_code
6852 get_index_code (const struct address_info *info)
6853 {
6854 if (info->index)
6855 return GET_CODE (*info->index);
6856
6857 if (info->disp)
6858 return GET_CODE (*info->disp);
6859
6860 return SCRATCH;
6861 }
6862
6863 /* Return true if RTL X contains a SYMBOL_REF. */
6864
6865 bool
6866 contains_symbol_ref_p (const_rtx x)
6867 {
6868 subrtx_iterator::array_type array;
6869 FOR_EACH_SUBRTX (iter, array, x, ALL)
6870 if (SYMBOL_REF_P (*iter))
6871 return true;
6872
6873 return false;
6874 }
6875
6876 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6877
6878 bool
6879 contains_symbolic_reference_p (const_rtx x)
6880 {
6881 subrtx_iterator::array_type array;
6882 FOR_EACH_SUBRTX (iter, array, x, ALL)
6883 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6884 return true;
6885
6886 return false;
6887 }
6888
6889 /* Return true if RTL X contains a constant pool address. */
6890
6891 bool
6892 contains_constant_pool_address_p (const_rtx x)
6893 {
6894 subrtx_iterator::array_type array;
6895 FOR_EACH_SUBRTX (iter, array, x, ALL)
6896 if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter))
6897 return true;
6898
6899 return false;
6900 }
6901
6902
6903 /* Return true if X contains a thread-local symbol. */
6904
6905 bool
6906 tls_referenced_p (const_rtx x)
6907 {
6908 if (!targetm.have_tls)
6909 return false;
6910
6911 subrtx_iterator::array_type array;
6912 FOR_EACH_SUBRTX (iter, array, x, ALL)
6913 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6914 return true;
6915 return false;
6916 }
6917
6918 /* Process recursively X of INSN and add REG_INC notes if necessary. */
6919 void
6920 add_auto_inc_notes (rtx_insn *insn, rtx x)
6921 {
6922 enum rtx_code code = GET_CODE (x);
6923 const char *fmt;
6924 int i, j;
6925
6926 if (code == MEM && auto_inc_p (XEXP (x, 0)))
6927 {
6928 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
6929 return;
6930 }
6931
6932 /* Scan all X sub-expressions. */
6933 fmt = GET_RTX_FORMAT (code);
6934 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6935 {
6936 if (fmt[i] == 'e')
6937 add_auto_inc_notes (insn, XEXP (x, i));
6938 else if (fmt[i] == 'E')
6939 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6940 add_auto_inc_notes (insn, XVECEXP (x, i, j));
6941 }
6942 }
6943
6944 /* Return true if X is register asm. */
6945
6946 bool
6947 register_asm_p (const_rtx x)
6948 {
6949 return (REG_P (x)
6950 && REG_EXPR (x) != NULL_TREE
6951 && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (x))
6952 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (x))
6953 && DECL_REGISTER (REG_EXPR (x)));
6954 }
6955
6956 /* Return true if, for all OP of mode OP_MODE:
6957
6958 (vec_select:RESULT_MODE OP SEL)
6959
6960 is equivalent to the highpart RESULT_MODE of OP. */
6961
6962 bool
6963 vec_series_highpart_p (machine_mode result_mode, machine_mode op_mode, rtx sel)
6964 {
6965 int nunits;
6966 if (GET_MODE_NUNITS (op_mode).is_constant (&nunits)
6967 && targetm.can_change_mode_class (op_mode, result_mode, ALL_REGS))
6968 {
6969 int offset = BYTES_BIG_ENDIAN ? 0 : nunits - XVECLEN (sel, 0);
6970 return rtvec_series_p (XVEC (sel, 0), offset);
6971 }
6972 return false;
6973 }
6974
6975 /* Return true if, for all OP of mode OP_MODE:
6976
6977 (vec_select:RESULT_MODE OP SEL)
6978
6979 is equivalent to the lowpart RESULT_MODE of OP. */
6980
6981 bool
6982 vec_series_lowpart_p (machine_mode result_mode, machine_mode op_mode, rtx sel)
6983 {
6984 int nunits;
6985 if (GET_MODE_NUNITS (op_mode).is_constant (&nunits)
6986 && targetm.can_change_mode_class (op_mode, result_mode, ALL_REGS))
6987 {
6988 int offset = BYTES_BIG_ENDIAN ? nunits - XVECLEN (sel, 0) : 0;
6989 return rtvec_series_p (XVEC (sel, 0), offset);
6990 }
6991 return false;
6992 }