]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sched-deps.c
Remove DEP_PRO/CON scaffolding
[thirdparty/gcc.git] / gcc / sched-deps.c
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22 \f
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tree.h" /* FIXME: Used by call_may_noreturn_p. */
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "emit-rtl.h"
40 #include "sched-int.h"
41 #include "params.h"
42 #include "cselib.h"
43 #include "ira.h"
44 #include "target.h"
45
46 #ifdef INSN_SCHEDULING
47
48 #ifdef ENABLE_CHECKING
49 #define CHECK (true)
50 #else
51 #define CHECK (false)
52 #endif
53
54 /* Holds current parameters for the dependency analyzer. */
55 struct sched_deps_info_def *sched_deps_info;
56
57 /* The data is specific to the Haifa scheduler. */
58 vec<haifa_deps_insn_data_def>
59 h_d_i_d = vNULL;
60
61 /* Return the major type present in the DS. */
62 enum reg_note
63 ds_to_dk (ds_t ds)
64 {
65 if (ds & DEP_TRUE)
66 return REG_DEP_TRUE;
67
68 if (ds & DEP_OUTPUT)
69 return REG_DEP_OUTPUT;
70
71 if (ds & DEP_CONTROL)
72 return REG_DEP_CONTROL;
73
74 gcc_assert (ds & DEP_ANTI);
75
76 return REG_DEP_ANTI;
77 }
78
79 /* Return equivalent dep_status. */
80 ds_t
81 dk_to_ds (enum reg_note dk)
82 {
83 switch (dk)
84 {
85 case REG_DEP_TRUE:
86 return DEP_TRUE;
87
88 case REG_DEP_OUTPUT:
89 return DEP_OUTPUT;
90
91 case REG_DEP_CONTROL:
92 return DEP_CONTROL;
93
94 default:
95 gcc_assert (dk == REG_DEP_ANTI);
96 return DEP_ANTI;
97 }
98 }
99
100 /* Functions to operate with dependence information container - dep_t. */
101
102 /* Init DEP with the arguments. */
103 void
104 init_dep_1 (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note type, ds_t ds)
105 {
106 DEP_PRO (dep) = pro;
107 DEP_CON (dep) = con;
108 DEP_TYPE (dep) = type;
109 DEP_STATUS (dep) = ds;
110 DEP_COST (dep) = UNKNOWN_DEP_COST;
111 DEP_NONREG (dep) = 0;
112 DEP_MULTIPLE (dep) = 0;
113 DEP_REPLACE (dep) = NULL;
114 }
115
116 /* Init DEP with the arguments.
117 While most of the scheduler (including targets) only need the major type
118 of the dependency, it is convenient to hide full dep_status from them. */
119 void
120 init_dep (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note kind)
121 {
122 ds_t ds;
123
124 if ((current_sched_info->flags & USE_DEPS_LIST))
125 ds = dk_to_ds (kind);
126 else
127 ds = 0;
128
129 init_dep_1 (dep, pro, con, kind, ds);
130 }
131
132 /* Make a copy of FROM in TO. */
133 static void
134 copy_dep (dep_t to, dep_t from)
135 {
136 memcpy (to, from, sizeof (*to));
137 }
138
139 static void dump_ds (FILE *, ds_t);
140
141 /* Define flags for dump_dep (). */
142
143 /* Dump producer of the dependence. */
144 #define DUMP_DEP_PRO (2)
145
146 /* Dump consumer of the dependence. */
147 #define DUMP_DEP_CON (4)
148
149 /* Dump type of the dependence. */
150 #define DUMP_DEP_TYPE (8)
151
152 /* Dump status of the dependence. */
153 #define DUMP_DEP_STATUS (16)
154
155 /* Dump all information about the dependence. */
156 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
157 |DUMP_DEP_STATUS)
158
159 /* Dump DEP to DUMP.
160 FLAGS is a bit mask specifying what information about DEP needs
161 to be printed.
162 If FLAGS has the very first bit set, then dump all information about DEP
163 and propagate this bit into the callee dump functions. */
164 static void
165 dump_dep (FILE *dump, dep_t dep, int flags)
166 {
167 if (flags & 1)
168 flags |= DUMP_DEP_ALL;
169
170 fprintf (dump, "<");
171
172 if (flags & DUMP_DEP_PRO)
173 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
174
175 if (flags & DUMP_DEP_CON)
176 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
177
178 if (flags & DUMP_DEP_TYPE)
179 {
180 char t;
181 enum reg_note type = DEP_TYPE (dep);
182
183 switch (type)
184 {
185 case REG_DEP_TRUE:
186 t = 't';
187 break;
188
189 case REG_DEP_OUTPUT:
190 t = 'o';
191 break;
192
193 case REG_DEP_CONTROL:
194 t = 'c';
195 break;
196
197 case REG_DEP_ANTI:
198 t = 'a';
199 break;
200
201 default:
202 gcc_unreachable ();
203 break;
204 }
205
206 fprintf (dump, "%c; ", t);
207 }
208
209 if (flags & DUMP_DEP_STATUS)
210 {
211 if (current_sched_info->flags & USE_DEPS_LIST)
212 dump_ds (dump, DEP_STATUS (dep));
213 }
214
215 fprintf (dump, ">");
216 }
217
218 /* Default flags for dump_dep (). */
219 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
220
221 /* Dump all fields of DEP to STDERR. */
222 void
223 sd_debug_dep (dep_t dep)
224 {
225 dump_dep (stderr, dep, 1);
226 fprintf (stderr, "\n");
227 }
228
229 /* Determine whether DEP is a dependency link of a non-debug insn on a
230 debug insn. */
231
232 static inline bool
233 depl_on_debug_p (dep_link_t dep)
234 {
235 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
236 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
237 }
238
239 /* Functions to operate with a single link from the dependencies lists -
240 dep_link_t. */
241
242 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
243 PREV_NEXT_P. */
244 static void
245 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
246 {
247 dep_link_t next = *prev_nextp;
248
249 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
250 && DEP_LINK_NEXT (l) == NULL);
251
252 /* Init node being inserted. */
253 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
254 DEP_LINK_NEXT (l) = next;
255
256 /* Fix next node. */
257 if (next != NULL)
258 {
259 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
260
261 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
262 }
263
264 /* Fix prev node. */
265 *prev_nextp = l;
266 }
267
268 /* Add dep_link LINK to deps_list L. */
269 static void
270 add_to_deps_list (dep_link_t link, deps_list_t l)
271 {
272 attach_dep_link (link, &DEPS_LIST_FIRST (l));
273
274 /* Don't count debug deps. */
275 if (!depl_on_debug_p (link))
276 ++DEPS_LIST_N_LINKS (l);
277 }
278
279 /* Detach dep_link L from the list. */
280 static void
281 detach_dep_link (dep_link_t l)
282 {
283 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
284 dep_link_t next = DEP_LINK_NEXT (l);
285
286 *prev_nextp = next;
287
288 if (next != NULL)
289 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
290
291 DEP_LINK_PREV_NEXTP (l) = NULL;
292 DEP_LINK_NEXT (l) = NULL;
293 }
294
295 /* Remove link LINK from list LIST. */
296 static void
297 remove_from_deps_list (dep_link_t link, deps_list_t list)
298 {
299 detach_dep_link (link);
300
301 /* Don't count debug deps. */
302 if (!depl_on_debug_p (link))
303 --DEPS_LIST_N_LINKS (list);
304 }
305
306 /* Move link LINK from list FROM to list TO. */
307 static void
308 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
309 {
310 remove_from_deps_list (link, from);
311 add_to_deps_list (link, to);
312 }
313
314 /* Return true of LINK is not attached to any list. */
315 static bool
316 dep_link_is_detached_p (dep_link_t link)
317 {
318 return DEP_LINK_PREV_NEXTP (link) == NULL;
319 }
320
321 /* Pool to hold all dependency nodes (dep_node_t). */
322 static alloc_pool dn_pool;
323
324 /* Number of dep_nodes out there. */
325 static int dn_pool_diff = 0;
326
327 /* Create a dep_node. */
328 static dep_node_t
329 create_dep_node (void)
330 {
331 dep_node_t n = (dep_node_t) pool_alloc (dn_pool);
332 dep_link_t back = DEP_NODE_BACK (n);
333 dep_link_t forw = DEP_NODE_FORW (n);
334
335 DEP_LINK_NODE (back) = n;
336 DEP_LINK_NEXT (back) = NULL;
337 DEP_LINK_PREV_NEXTP (back) = NULL;
338
339 DEP_LINK_NODE (forw) = n;
340 DEP_LINK_NEXT (forw) = NULL;
341 DEP_LINK_PREV_NEXTP (forw) = NULL;
342
343 ++dn_pool_diff;
344
345 return n;
346 }
347
348 /* Delete dep_node N. N must not be connected to any deps_list. */
349 static void
350 delete_dep_node (dep_node_t n)
351 {
352 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
353 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
354
355 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
356
357 --dn_pool_diff;
358
359 pool_free (dn_pool, n);
360 }
361
362 /* Pool to hold dependencies lists (deps_list_t). */
363 static alloc_pool dl_pool;
364
365 /* Number of deps_lists out there. */
366 static int dl_pool_diff = 0;
367
368 /* Functions to operate with dependences lists - deps_list_t. */
369
370 /* Return true if list L is empty. */
371 static bool
372 deps_list_empty_p (deps_list_t l)
373 {
374 return DEPS_LIST_N_LINKS (l) == 0;
375 }
376
377 /* Create a new deps_list. */
378 static deps_list_t
379 create_deps_list (void)
380 {
381 deps_list_t l = (deps_list_t) pool_alloc (dl_pool);
382
383 DEPS_LIST_FIRST (l) = NULL;
384 DEPS_LIST_N_LINKS (l) = 0;
385
386 ++dl_pool_diff;
387 return l;
388 }
389
390 /* Free deps_list L. */
391 static void
392 free_deps_list (deps_list_t l)
393 {
394 gcc_assert (deps_list_empty_p (l));
395
396 --dl_pool_diff;
397
398 pool_free (dl_pool, l);
399 }
400
401 /* Return true if there is no dep_nodes and deps_lists out there.
402 After the region is scheduled all the dependency nodes and lists
403 should [generally] be returned to pool. */
404 bool
405 deps_pools_are_empty_p (void)
406 {
407 return dn_pool_diff == 0 && dl_pool_diff == 0;
408 }
409
410 /* Remove all elements from L. */
411 static void
412 clear_deps_list (deps_list_t l)
413 {
414 do
415 {
416 dep_link_t link = DEPS_LIST_FIRST (l);
417
418 if (link == NULL)
419 break;
420
421 remove_from_deps_list (link, l);
422 }
423 while (1);
424 }
425
426 /* Decide whether a dependency should be treated as a hard or a speculative
427 dependency. */
428 static bool
429 dep_spec_p (dep_t dep)
430 {
431 if (current_sched_info->flags & DO_SPECULATION)
432 {
433 if (DEP_STATUS (dep) & SPECULATIVE)
434 return true;
435 }
436 if (current_sched_info->flags & DO_PREDICATION)
437 {
438 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
439 return true;
440 }
441 if (DEP_REPLACE (dep) != NULL)
442 return true;
443 return false;
444 }
445
446 static regset reg_pending_sets;
447 static regset reg_pending_clobbers;
448 static regset reg_pending_uses;
449 static regset reg_pending_control_uses;
450 static enum reg_pending_barrier_mode reg_pending_barrier;
451
452 /* Hard registers implicitly clobbered or used (or may be implicitly
453 clobbered or used) by the currently analyzed insn. For example,
454 insn in its constraint has one register class. Even if there is
455 currently no hard register in the insn, the particular hard
456 register will be in the insn after reload pass because the
457 constraint requires it. */
458 static HARD_REG_SET implicit_reg_pending_clobbers;
459 static HARD_REG_SET implicit_reg_pending_uses;
460
461 /* To speed up the test for duplicate dependency links we keep a
462 record of dependencies created by add_dependence when the average
463 number of instructions in a basic block is very large.
464
465 Studies have shown that there is typically around 5 instructions between
466 branches for typical C code. So we can make a guess that the average
467 basic block is approximately 5 instructions long; we will choose 100X
468 the average size as a very large basic block.
469
470 Each insn has associated bitmaps for its dependencies. Each bitmap
471 has enough entries to represent a dependency on any other insn in
472 the insn chain. All bitmap for true dependencies cache is
473 allocated then the rest two ones are also allocated. */
474 static bitmap_head *true_dependency_cache = NULL;
475 static bitmap_head *output_dependency_cache = NULL;
476 static bitmap_head *anti_dependency_cache = NULL;
477 static bitmap_head *control_dependency_cache = NULL;
478 static bitmap_head *spec_dependency_cache = NULL;
479 static int cache_size;
480
481 /* True if we should mark added dependencies as a non-register deps. */
482 static bool mark_as_hard;
483
484 static int deps_may_trap_p (const_rtx);
485 static void add_dependence_1 (rtx_insn *, rtx_insn *, enum reg_note);
486 static void add_dependence_list (rtx_insn *, rtx, int, enum reg_note, bool);
487 static void add_dependence_list_and_free (struct deps_desc *, rtx_insn *,
488 rtx *, int, enum reg_note, bool);
489 static void delete_all_dependences (rtx);
490 static void chain_to_prev_insn (rtx_insn *);
491
492 static void flush_pending_lists (struct deps_desc *, rtx_insn *, int, int);
493 static void sched_analyze_1 (struct deps_desc *, rtx, rtx_insn *);
494 static void sched_analyze_2 (struct deps_desc *, rtx, rtx_insn *);
495 static void sched_analyze_insn (struct deps_desc *, rtx, rtx_insn *);
496
497 static bool sched_has_condition_p (const_rtx);
498 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
499
500 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
501 rtx, rtx);
502 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
503
504 #ifdef ENABLE_CHECKING
505 static void check_dep (dep_t, bool);
506 #endif
507 \f
508 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
509
510 static int
511 deps_may_trap_p (const_rtx mem)
512 {
513 const_rtx addr = XEXP (mem, 0);
514
515 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
516 {
517 const_rtx t = get_reg_known_value (REGNO (addr));
518 if (t)
519 addr = t;
520 }
521 return rtx_addr_can_trap_p (addr);
522 }
523 \f
524
525 /* Find the condition under which INSN is executed. If REV is not NULL,
526 it is set to TRUE when the returned comparison should be reversed
527 to get the actual condition. */
528 static rtx
529 sched_get_condition_with_rev_uncached (const_rtx insn, bool *rev)
530 {
531 rtx pat = PATTERN (insn);
532 rtx src;
533
534 if (rev)
535 *rev = false;
536
537 if (GET_CODE (pat) == COND_EXEC)
538 return COND_EXEC_TEST (pat);
539
540 if (!any_condjump_p (insn) || !onlyjump_p (insn))
541 return 0;
542
543 src = SET_SRC (pc_set (insn));
544
545 if (XEXP (src, 2) == pc_rtx)
546 return XEXP (src, 0);
547 else if (XEXP (src, 1) == pc_rtx)
548 {
549 rtx cond = XEXP (src, 0);
550 enum rtx_code revcode = reversed_comparison_code (cond, insn);
551
552 if (revcode == UNKNOWN)
553 return 0;
554
555 if (rev)
556 *rev = true;
557 return cond;
558 }
559
560 return 0;
561 }
562
563 /* Return the condition under which INSN does not execute (i.e. the
564 not-taken condition for a conditional branch), or NULL if we cannot
565 find such a condition. The caller should make a copy of the condition
566 before using it. */
567 rtx
568 sched_get_reverse_condition_uncached (const_rtx insn)
569 {
570 bool rev;
571 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
572 if (cond == NULL_RTX)
573 return cond;
574 if (!rev)
575 {
576 enum rtx_code revcode = reversed_comparison_code (cond, insn);
577 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
578 XEXP (cond, 0),
579 XEXP (cond, 1));
580 }
581 return cond;
582 }
583
584 /* Caching variant of sched_get_condition_with_rev_uncached.
585 We only do actual work the first time we come here for an insn; the
586 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
587 static rtx
588 sched_get_condition_with_rev (const_rtx insn, bool *rev)
589 {
590 bool tmp;
591
592 if (INSN_LUID (insn) == 0)
593 return sched_get_condition_with_rev_uncached (insn, rev);
594
595 if (INSN_CACHED_COND (insn) == const_true_rtx)
596 return NULL_RTX;
597
598 if (INSN_CACHED_COND (insn) != NULL_RTX)
599 {
600 if (rev)
601 *rev = INSN_REVERSE_COND (insn);
602 return INSN_CACHED_COND (insn);
603 }
604
605 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
606 INSN_REVERSE_COND (insn) = tmp;
607
608 if (INSN_CACHED_COND (insn) == NULL_RTX)
609 {
610 INSN_CACHED_COND (insn) = const_true_rtx;
611 return NULL_RTX;
612 }
613
614 if (rev)
615 *rev = INSN_REVERSE_COND (insn);
616 return INSN_CACHED_COND (insn);
617 }
618
619 /* True when we can find a condition under which INSN is executed. */
620 static bool
621 sched_has_condition_p (const_rtx insn)
622 {
623 return !! sched_get_condition_with_rev (insn, NULL);
624 }
625
626 \f
627
628 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
629 static int
630 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
631 {
632 if (COMPARISON_P (cond1)
633 && COMPARISON_P (cond2)
634 && GET_CODE (cond1) ==
635 (rev1==rev2
636 ? reversed_comparison_code (cond2, NULL)
637 : GET_CODE (cond2))
638 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
639 && XEXP (cond1, 1) == XEXP (cond2, 1))
640 return 1;
641 return 0;
642 }
643
644 /* Return true if insn1 and insn2 can never depend on one another because
645 the conditions under which they are executed are mutually exclusive. */
646 bool
647 sched_insns_conditions_mutex_p (const_rtx insn1, const_rtx insn2)
648 {
649 rtx cond1, cond2;
650 bool rev1 = false, rev2 = false;
651
652 /* df doesn't handle conditional lifetimes entirely correctly;
653 calls mess up the conditional lifetimes. */
654 if (!CALL_P (insn1) && !CALL_P (insn2))
655 {
656 cond1 = sched_get_condition_with_rev (insn1, &rev1);
657 cond2 = sched_get_condition_with_rev (insn2, &rev2);
658 if (cond1 && cond2
659 && conditions_mutex_p (cond1, cond2, rev1, rev2)
660 /* Make sure first instruction doesn't affect condition of second
661 instruction if switched. */
662 && !modified_in_p (cond1, insn2)
663 /* Make sure second instruction doesn't affect condition of first
664 instruction if switched. */
665 && !modified_in_p (cond2, insn1))
666 return true;
667 }
668 return false;
669 }
670 \f
671
672 /* Return true if INSN can potentially be speculated with type DS. */
673 bool
674 sched_insn_is_legitimate_for_speculation_p (const_rtx insn, ds_t ds)
675 {
676 if (HAS_INTERNAL_DEP (insn))
677 return false;
678
679 if (!NONJUMP_INSN_P (insn))
680 return false;
681
682 if (SCHED_GROUP_P (insn))
683 return false;
684
685 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX (insn)))
686 return false;
687
688 if (side_effects_p (PATTERN (insn)))
689 return false;
690
691 if (ds & BE_IN_SPEC)
692 /* The following instructions, which depend on a speculatively scheduled
693 instruction, cannot be speculatively scheduled along. */
694 {
695 if (may_trap_or_fault_p (PATTERN (insn)))
696 /* If instruction might fault, it cannot be speculatively scheduled.
697 For control speculation it's obvious why and for data speculation
698 it's because the insn might get wrong input if speculation
699 wasn't successful. */
700 return false;
701
702 if ((ds & BE_IN_DATA)
703 && sched_has_condition_p (insn))
704 /* If this is a predicated instruction, then it cannot be
705 speculatively scheduled. See PR35659. */
706 return false;
707 }
708
709 return true;
710 }
711
712 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
713 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
714 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
715 This function is used to switch sd_iterator to the next list.
716 !!! For internal use only. Might consider moving it to sched-int.h. */
717 void
718 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
719 deps_list_t *list_ptr, bool *resolved_p_ptr)
720 {
721 sd_list_types_def types = *types_ptr;
722
723 if (types & SD_LIST_HARD_BACK)
724 {
725 *list_ptr = INSN_HARD_BACK_DEPS (insn);
726 *resolved_p_ptr = false;
727 *types_ptr = types & ~SD_LIST_HARD_BACK;
728 }
729 else if (types & SD_LIST_SPEC_BACK)
730 {
731 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
732 *resolved_p_ptr = false;
733 *types_ptr = types & ~SD_LIST_SPEC_BACK;
734 }
735 else if (types & SD_LIST_FORW)
736 {
737 *list_ptr = INSN_FORW_DEPS (insn);
738 *resolved_p_ptr = false;
739 *types_ptr = types & ~SD_LIST_FORW;
740 }
741 else if (types & SD_LIST_RES_BACK)
742 {
743 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
744 *resolved_p_ptr = true;
745 *types_ptr = types & ~SD_LIST_RES_BACK;
746 }
747 else if (types & SD_LIST_RES_FORW)
748 {
749 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
750 *resolved_p_ptr = true;
751 *types_ptr = types & ~SD_LIST_RES_FORW;
752 }
753 else
754 {
755 *list_ptr = NULL;
756 *resolved_p_ptr = false;
757 *types_ptr = SD_LIST_NONE;
758 }
759 }
760
761 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
762 int
763 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
764 {
765 int size = 0;
766
767 while (list_types != SD_LIST_NONE)
768 {
769 deps_list_t list;
770 bool resolved_p;
771
772 sd_next_list (insn, &list_types, &list, &resolved_p);
773 if (list)
774 size += DEPS_LIST_N_LINKS (list);
775 }
776
777 return size;
778 }
779
780 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
781
782 bool
783 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
784 {
785 while (list_types != SD_LIST_NONE)
786 {
787 deps_list_t list;
788 bool resolved_p;
789
790 sd_next_list (insn, &list_types, &list, &resolved_p);
791 if (!deps_list_empty_p (list))
792 return false;
793 }
794
795 return true;
796 }
797
798 /* Initialize data for INSN. */
799 void
800 sd_init_insn (rtx insn)
801 {
802 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
803 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
804 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
805 INSN_FORW_DEPS (insn) = create_deps_list ();
806 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
807
808 /* ??? It would be nice to allocate dependency caches here. */
809 }
810
811 /* Free data for INSN. */
812 void
813 sd_finish_insn (rtx insn)
814 {
815 /* ??? It would be nice to deallocate dependency caches here. */
816
817 free_deps_list (INSN_HARD_BACK_DEPS (insn));
818 INSN_HARD_BACK_DEPS (insn) = NULL;
819
820 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
821 INSN_SPEC_BACK_DEPS (insn) = NULL;
822
823 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
824 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
825
826 free_deps_list (INSN_FORW_DEPS (insn));
827 INSN_FORW_DEPS (insn) = NULL;
828
829 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
830 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
831 }
832
833 /* Find a dependency between producer PRO and consumer CON.
834 Search through resolved dependency lists if RESOLVED_P is true.
835 If no such dependency is found return NULL,
836 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
837 with an iterator pointing to it. */
838 static dep_t
839 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
840 sd_iterator_def *sd_it_ptr)
841 {
842 sd_list_types_def pro_list_type;
843 sd_list_types_def con_list_type;
844 sd_iterator_def sd_it;
845 dep_t dep;
846 bool found_p = false;
847
848 if (resolved_p)
849 {
850 pro_list_type = SD_LIST_RES_FORW;
851 con_list_type = SD_LIST_RES_BACK;
852 }
853 else
854 {
855 pro_list_type = SD_LIST_FORW;
856 con_list_type = SD_LIST_BACK;
857 }
858
859 /* Walk through either back list of INSN or forw list of ELEM
860 depending on which one is shorter. */
861 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
862 {
863 /* Find the dep_link with producer PRO in consumer's back_deps. */
864 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
865 if (DEP_PRO (dep) == pro)
866 {
867 found_p = true;
868 break;
869 }
870 }
871 else
872 {
873 /* Find the dep_link with consumer CON in producer's forw_deps. */
874 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
875 if (DEP_CON (dep) == con)
876 {
877 found_p = true;
878 break;
879 }
880 }
881
882 if (found_p)
883 {
884 if (sd_it_ptr != NULL)
885 *sd_it_ptr = sd_it;
886
887 return dep;
888 }
889
890 return NULL;
891 }
892
893 /* Find a dependency between producer PRO and consumer CON.
894 Use dependency [if available] to check if dependency is present at all.
895 Search through resolved dependency lists if RESOLVED_P is true.
896 If the dependency or NULL if none found. */
897 dep_t
898 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
899 {
900 if (true_dependency_cache != NULL)
901 /* Avoiding the list walk below can cut compile times dramatically
902 for some code. */
903 {
904 int elem_luid = INSN_LUID (pro);
905 int insn_luid = INSN_LUID (con);
906
907 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
908 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
909 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
910 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
911 return NULL;
912 }
913
914 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
915 }
916
917 /* Add or update a dependence described by DEP.
918 MEM1 and MEM2, if non-null, correspond to memory locations in case of
919 data speculation.
920
921 The function returns a value indicating if an old entry has been changed
922 or a new entry has been added to insn's backward deps.
923
924 This function merely checks if producer and consumer is the same insn
925 and doesn't create a dep in this case. Actual manipulation of
926 dependence data structures is performed in add_or_update_dep_1. */
927 static enum DEPS_ADJUST_RESULT
928 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
929 {
930 rtx_insn *elem = DEP_PRO (dep);
931 rtx_insn *insn = DEP_CON (dep);
932
933 gcc_assert (INSN_P (insn) && INSN_P (elem));
934
935 /* Don't depend an insn on itself. */
936 if (insn == elem)
937 {
938 if (sched_deps_info->generate_spec_deps)
939 /* INSN has an internal dependence, which we can't overcome. */
940 HAS_INTERNAL_DEP (insn) = 1;
941
942 return DEP_NODEP;
943 }
944
945 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
946 }
947
948 /* Ask dependency caches what needs to be done for dependence DEP.
949 Return DEP_CREATED if new dependence should be created and there is no
950 need to try to find one searching the dependencies lists.
951 Return DEP_PRESENT if there already is a dependence described by DEP and
952 hence nothing is to be done.
953 Return DEP_CHANGED if there already is a dependence, but it should be
954 updated to incorporate additional information from DEP. */
955 static enum DEPS_ADJUST_RESULT
956 ask_dependency_caches (dep_t dep)
957 {
958 int elem_luid = INSN_LUID (DEP_PRO (dep));
959 int insn_luid = INSN_LUID (DEP_CON (dep));
960
961 gcc_assert (true_dependency_cache != NULL
962 && output_dependency_cache != NULL
963 && anti_dependency_cache != NULL
964 && control_dependency_cache != NULL);
965
966 if (!(current_sched_info->flags & USE_DEPS_LIST))
967 {
968 enum reg_note present_dep_type;
969
970 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
971 present_dep_type = REG_DEP_TRUE;
972 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
973 present_dep_type = REG_DEP_OUTPUT;
974 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
975 present_dep_type = REG_DEP_ANTI;
976 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
977 present_dep_type = REG_DEP_CONTROL;
978 else
979 /* There is no existing dep so it should be created. */
980 return DEP_CREATED;
981
982 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
983 /* DEP does not add anything to the existing dependence. */
984 return DEP_PRESENT;
985 }
986 else
987 {
988 ds_t present_dep_types = 0;
989
990 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
991 present_dep_types |= DEP_TRUE;
992 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
993 present_dep_types |= DEP_OUTPUT;
994 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
995 present_dep_types |= DEP_ANTI;
996 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
997 present_dep_types |= DEP_CONTROL;
998
999 if (present_dep_types == 0)
1000 /* There is no existing dep so it should be created. */
1001 return DEP_CREATED;
1002
1003 if (!(current_sched_info->flags & DO_SPECULATION)
1004 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
1005 {
1006 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
1007 == present_dep_types)
1008 /* DEP does not add anything to the existing dependence. */
1009 return DEP_PRESENT;
1010 }
1011 else
1012 {
1013 /* Only true dependencies can be data speculative and
1014 only anti dependencies can be control speculative. */
1015 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1016 == present_dep_types);
1017
1018 /* if (DEP is SPECULATIVE) then
1019 ..we should update DEP_STATUS
1020 else
1021 ..we should reset existing dep to non-speculative. */
1022 }
1023 }
1024
1025 return DEP_CHANGED;
1026 }
1027
1028 /* Set dependency caches according to DEP. */
1029 static void
1030 set_dependency_caches (dep_t dep)
1031 {
1032 int elem_luid = INSN_LUID (DEP_PRO (dep));
1033 int insn_luid = INSN_LUID (DEP_CON (dep));
1034
1035 if (!(current_sched_info->flags & USE_DEPS_LIST))
1036 {
1037 switch (DEP_TYPE (dep))
1038 {
1039 case REG_DEP_TRUE:
1040 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1041 break;
1042
1043 case REG_DEP_OUTPUT:
1044 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1045 break;
1046
1047 case REG_DEP_ANTI:
1048 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1049 break;
1050
1051 case REG_DEP_CONTROL:
1052 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1053 break;
1054
1055 default:
1056 gcc_unreachable ();
1057 }
1058 }
1059 else
1060 {
1061 ds_t ds = DEP_STATUS (dep);
1062
1063 if (ds & DEP_TRUE)
1064 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1065 if (ds & DEP_OUTPUT)
1066 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1067 if (ds & DEP_ANTI)
1068 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1069 if (ds & DEP_CONTROL)
1070 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1071
1072 if (ds & SPECULATIVE)
1073 {
1074 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1075 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1076 }
1077 }
1078 }
1079
1080 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1081 caches accordingly. */
1082 static void
1083 update_dependency_caches (dep_t dep, enum reg_note old_type)
1084 {
1085 int elem_luid = INSN_LUID (DEP_PRO (dep));
1086 int insn_luid = INSN_LUID (DEP_CON (dep));
1087
1088 /* Clear corresponding cache entry because type of the link
1089 may have changed. Keep them if we use_deps_list. */
1090 if (!(current_sched_info->flags & USE_DEPS_LIST))
1091 {
1092 switch (old_type)
1093 {
1094 case REG_DEP_OUTPUT:
1095 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1096 break;
1097
1098 case REG_DEP_ANTI:
1099 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1100 break;
1101
1102 case REG_DEP_CONTROL:
1103 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1104 break;
1105
1106 default:
1107 gcc_unreachable ();
1108 }
1109 }
1110
1111 set_dependency_caches (dep);
1112 }
1113
1114 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1115 static void
1116 change_spec_dep_to_hard (sd_iterator_def sd_it)
1117 {
1118 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1119 dep_link_t link = DEP_NODE_BACK (node);
1120 dep_t dep = DEP_NODE_DEP (node);
1121 rtx_insn *elem = DEP_PRO (dep);
1122 rtx_insn *insn = DEP_CON (dep);
1123
1124 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1125
1126 DEP_STATUS (dep) &= ~SPECULATIVE;
1127
1128 if (true_dependency_cache != NULL)
1129 /* Clear the cache entry. */
1130 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1131 INSN_LUID (elem));
1132 }
1133
1134 /* Update DEP to incorporate information from NEW_DEP.
1135 SD_IT points to DEP in case it should be moved to another list.
1136 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1137 data-speculative dependence should be updated. */
1138 static enum DEPS_ADJUST_RESULT
1139 update_dep (dep_t dep, dep_t new_dep,
1140 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1141 rtx mem1 ATTRIBUTE_UNUSED,
1142 rtx mem2 ATTRIBUTE_UNUSED)
1143 {
1144 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1145 enum reg_note old_type = DEP_TYPE (dep);
1146 bool was_spec = dep_spec_p (dep);
1147
1148 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1149 DEP_MULTIPLE (dep) = 1;
1150
1151 /* If this is a more restrictive type of dependence than the
1152 existing one, then change the existing dependence to this
1153 type. */
1154 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1155 {
1156 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1157 res = DEP_CHANGED;
1158 }
1159
1160 if (current_sched_info->flags & USE_DEPS_LIST)
1161 /* Update DEP_STATUS. */
1162 {
1163 ds_t dep_status = DEP_STATUS (dep);
1164 ds_t ds = DEP_STATUS (new_dep);
1165 ds_t new_status = ds | dep_status;
1166
1167 if (new_status & SPECULATIVE)
1168 {
1169 /* Either existing dep or a dep we're adding or both are
1170 speculative. */
1171 if (!(ds & SPECULATIVE)
1172 || !(dep_status & SPECULATIVE))
1173 /* The new dep can't be speculative. */
1174 new_status &= ~SPECULATIVE;
1175 else
1176 {
1177 /* Both are speculative. Merge probabilities. */
1178 if (mem1 != NULL)
1179 {
1180 dw_t dw;
1181
1182 dw = estimate_dep_weak (mem1, mem2);
1183 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1184 }
1185
1186 new_status = ds_merge (dep_status, ds);
1187 }
1188 }
1189
1190 ds = new_status;
1191
1192 if (dep_status != ds)
1193 {
1194 DEP_STATUS (dep) = ds;
1195 res = DEP_CHANGED;
1196 }
1197 }
1198
1199 if (was_spec && !dep_spec_p (dep))
1200 /* The old dep was speculative, but now it isn't. */
1201 change_spec_dep_to_hard (sd_it);
1202
1203 if (true_dependency_cache != NULL
1204 && res == DEP_CHANGED)
1205 update_dependency_caches (dep, old_type);
1206
1207 return res;
1208 }
1209
1210 /* Add or update a dependence described by DEP.
1211 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1212 data speculation.
1213
1214 The function returns a value indicating if an old entry has been changed
1215 or a new entry has been added to insn's backward deps or nothing has
1216 been updated at all. */
1217 static enum DEPS_ADJUST_RESULT
1218 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1219 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1220 {
1221 bool maybe_present_p = true;
1222 bool present_p = false;
1223
1224 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1225 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1226
1227 #ifdef ENABLE_CHECKING
1228 check_dep (new_dep, mem1 != NULL);
1229 #endif
1230
1231 if (true_dependency_cache != NULL)
1232 {
1233 switch (ask_dependency_caches (new_dep))
1234 {
1235 case DEP_PRESENT:
1236 return DEP_PRESENT;
1237
1238 case DEP_CHANGED:
1239 maybe_present_p = true;
1240 present_p = true;
1241 break;
1242
1243 case DEP_CREATED:
1244 maybe_present_p = false;
1245 present_p = false;
1246 break;
1247
1248 default:
1249 gcc_unreachable ();
1250 break;
1251 }
1252 }
1253
1254 /* Check that we don't already have this dependence. */
1255 if (maybe_present_p)
1256 {
1257 dep_t present_dep;
1258 sd_iterator_def sd_it;
1259
1260 gcc_assert (true_dependency_cache == NULL || present_p);
1261
1262 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1263 DEP_CON (new_dep),
1264 resolved_p, &sd_it);
1265
1266 if (present_dep != NULL)
1267 /* We found an existing dependency between ELEM and INSN. */
1268 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1269 else
1270 /* We didn't find a dep, it shouldn't present in the cache. */
1271 gcc_assert (!present_p);
1272 }
1273
1274 /* Might want to check one level of transitivity to save conses.
1275 This check should be done in maybe_add_or_update_dep_1.
1276 Since we made it to add_or_update_dep_1, we must create
1277 (or update) a link. */
1278
1279 if (mem1 != NULL_RTX)
1280 {
1281 gcc_assert (sched_deps_info->generate_spec_deps);
1282 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1283 estimate_dep_weak (mem1, mem2));
1284 }
1285
1286 sd_add_dep (new_dep, resolved_p);
1287
1288 return DEP_CREATED;
1289 }
1290
1291 /* Initialize BACK_LIST_PTR with consumer's backward list and
1292 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1293 initialize with lists that hold resolved deps. */
1294 static void
1295 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1296 deps_list_t *back_list_ptr,
1297 deps_list_t *forw_list_ptr)
1298 {
1299 rtx_insn *con = DEP_CON (dep);
1300
1301 if (!resolved_p)
1302 {
1303 if (dep_spec_p (dep))
1304 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1305 else
1306 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1307
1308 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1309 }
1310 else
1311 {
1312 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1313 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1314 }
1315 }
1316
1317 /* Add dependence described by DEP.
1318 If RESOLVED_P is true treat the dependence as a resolved one. */
1319 void
1320 sd_add_dep (dep_t dep, bool resolved_p)
1321 {
1322 dep_node_t n = create_dep_node ();
1323 deps_list_t con_back_deps;
1324 deps_list_t pro_forw_deps;
1325 rtx_insn *elem = DEP_PRO (dep);
1326 rtx_insn *insn = DEP_CON (dep);
1327
1328 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1329
1330 if ((current_sched_info->flags & DO_SPECULATION) == 0
1331 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1332 DEP_STATUS (dep) &= ~SPECULATIVE;
1333
1334 copy_dep (DEP_NODE_DEP (n), dep);
1335
1336 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1337
1338 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1339
1340 #ifdef ENABLE_CHECKING
1341 check_dep (dep, false);
1342 #endif
1343
1344 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1345
1346 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1347 in the bitmap caches of dependency information. */
1348 if (true_dependency_cache != NULL)
1349 set_dependency_caches (dep);
1350 }
1351
1352 /* Add or update backward dependence between INSN and ELEM
1353 with given type DEP_TYPE and dep_status DS.
1354 This function is a convenience wrapper. */
1355 enum DEPS_ADJUST_RESULT
1356 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1357 {
1358 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1359 }
1360
1361 /* Resolved dependence pointed to by SD_IT.
1362 SD_IT will advance to the next element. */
1363 void
1364 sd_resolve_dep (sd_iterator_def sd_it)
1365 {
1366 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1367 dep_t dep = DEP_NODE_DEP (node);
1368 rtx_insn *pro = DEP_PRO (dep);
1369 rtx_insn *con = DEP_CON (dep);
1370
1371 if (dep_spec_p (dep))
1372 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1373 INSN_RESOLVED_BACK_DEPS (con));
1374 else
1375 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1376 INSN_RESOLVED_BACK_DEPS (con));
1377
1378 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1379 INSN_RESOLVED_FORW_DEPS (pro));
1380 }
1381
1382 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1383 pointed to by SD_IT to unresolved state. */
1384 void
1385 sd_unresolve_dep (sd_iterator_def sd_it)
1386 {
1387 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1388 dep_t dep = DEP_NODE_DEP (node);
1389 rtx_insn *pro = DEP_PRO (dep);
1390 rtx_insn *con = DEP_CON (dep);
1391
1392 if (dep_spec_p (dep))
1393 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1394 INSN_SPEC_BACK_DEPS (con));
1395 else
1396 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1397 INSN_HARD_BACK_DEPS (con));
1398
1399 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1400 INSN_FORW_DEPS (pro));
1401 }
1402
1403 /* Make TO depend on all the FROM's producers.
1404 If RESOLVED_P is true add dependencies to the resolved lists. */
1405 void
1406 sd_copy_back_deps (rtx_insn *to, rtx_insn *from, bool resolved_p)
1407 {
1408 sd_list_types_def list_type;
1409 sd_iterator_def sd_it;
1410 dep_t dep;
1411
1412 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1413
1414 FOR_EACH_DEP (from, list_type, sd_it, dep)
1415 {
1416 dep_def _new_dep, *new_dep = &_new_dep;
1417
1418 copy_dep (new_dep, dep);
1419 DEP_CON (new_dep) = to;
1420 sd_add_dep (new_dep, resolved_p);
1421 }
1422 }
1423
1424 /* Remove a dependency referred to by SD_IT.
1425 SD_IT will point to the next dependence after removal. */
1426 void
1427 sd_delete_dep (sd_iterator_def sd_it)
1428 {
1429 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1430 dep_t dep = DEP_NODE_DEP (n);
1431 rtx_insn *pro = DEP_PRO (dep);
1432 rtx_insn *con = DEP_CON (dep);
1433 deps_list_t con_back_deps;
1434 deps_list_t pro_forw_deps;
1435
1436 if (true_dependency_cache != NULL)
1437 {
1438 int elem_luid = INSN_LUID (pro);
1439 int insn_luid = INSN_LUID (con);
1440
1441 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1442 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1443 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1444 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1445
1446 if (current_sched_info->flags & DO_SPECULATION)
1447 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1448 }
1449
1450 get_back_and_forw_lists (dep, sd_it.resolved_p,
1451 &con_back_deps, &pro_forw_deps);
1452
1453 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1454 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1455
1456 delete_dep_node (n);
1457 }
1458
1459 /* Dump size of the lists. */
1460 #define DUMP_LISTS_SIZE (2)
1461
1462 /* Dump dependencies of the lists. */
1463 #define DUMP_LISTS_DEPS (4)
1464
1465 /* Dump all information about the lists. */
1466 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1467
1468 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1469 FLAGS is a bit mask specifying what information about the lists needs
1470 to be printed.
1471 If FLAGS has the very first bit set, then dump all information about
1472 the lists and propagate this bit into the callee dump functions. */
1473 static void
1474 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1475 {
1476 sd_iterator_def sd_it;
1477 dep_t dep;
1478 int all;
1479
1480 all = (flags & 1);
1481
1482 if (all)
1483 flags |= DUMP_LISTS_ALL;
1484
1485 fprintf (dump, "[");
1486
1487 if (flags & DUMP_LISTS_SIZE)
1488 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1489
1490 if (flags & DUMP_LISTS_DEPS)
1491 {
1492 FOR_EACH_DEP (insn, types, sd_it, dep)
1493 {
1494 dump_dep (dump, dep, dump_dep_flags | all);
1495 fprintf (dump, " ");
1496 }
1497 }
1498 }
1499
1500 /* Dump all information about deps_lists of INSN specified by TYPES
1501 to STDERR. */
1502 void
1503 sd_debug_lists (rtx insn, sd_list_types_def types)
1504 {
1505 dump_lists (stderr, insn, types, 1);
1506 fprintf (stderr, "\n");
1507 }
1508
1509 /* A wrapper around add_dependence_1, to add a dependence of CON on
1510 PRO, with type DEP_TYPE. This function implements special handling
1511 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1512 the type to REG_DEP_ANTI if we can determine that predication is
1513 impossible; otherwise we add additional true dependencies on the
1514 INSN_COND_DEPS list of the jump (which PRO must be). */
1515 void
1516 add_dependence (rtx_insn *con, rtx_insn *pro, enum reg_note dep_type)
1517 {
1518 if (dep_type == REG_DEP_CONTROL
1519 && !(current_sched_info->flags & DO_PREDICATION))
1520 dep_type = REG_DEP_ANTI;
1521
1522 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1523 so we must also make the insn dependent on the setter of the
1524 condition. */
1525 if (dep_type == REG_DEP_CONTROL)
1526 {
1527 rtx real_pro = pro;
1528 rtx other = real_insn_for_shadow (real_pro);
1529 rtx cond;
1530
1531 if (other != NULL_RTX)
1532 real_pro = other;
1533 cond = sched_get_reverse_condition_uncached (real_pro);
1534 /* Verify that the insn does not use a different value in
1535 the condition register than the one that was present at
1536 the jump. */
1537 if (cond == NULL_RTX)
1538 dep_type = REG_DEP_ANTI;
1539 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1540 {
1541 HARD_REG_SET uses;
1542 CLEAR_HARD_REG_SET (uses);
1543 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1544 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1545 dep_type = REG_DEP_ANTI;
1546 }
1547 if (dep_type == REG_DEP_CONTROL)
1548 {
1549 if (sched_verbose >= 5)
1550 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1551 INSN_UID (real_pro));
1552 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1553 REG_DEP_TRUE, false);
1554 }
1555 }
1556
1557 add_dependence_1 (con, pro, dep_type);
1558 }
1559
1560 /* A convenience wrapper to operate on an entire list. HARD should be
1561 true if DEP_NONREG should be set on newly created dependencies. */
1562
1563 static void
1564 add_dependence_list (rtx_insn *insn, rtx list, int uncond, enum reg_note dep_type,
1565 bool hard)
1566 {
1567 mark_as_hard = hard;
1568 for (; list; list = XEXP (list, 1))
1569 {
1570 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1571 add_dependence (insn, as_a <rtx_insn *> (XEXP (list, 0)), dep_type);
1572 }
1573 mark_as_hard = false;
1574 }
1575
1576 /* Similar, but free *LISTP at the same time, when the context
1577 is not readonly. HARD should be true if DEP_NONREG should be set on
1578 newly created dependencies. */
1579
1580 static void
1581 add_dependence_list_and_free (struct deps_desc *deps, rtx_insn *insn, rtx *listp,
1582 int uncond, enum reg_note dep_type, bool hard)
1583 {
1584 add_dependence_list (insn, *listp, uncond, dep_type, hard);
1585
1586 /* We don't want to short-circuit dependencies involving debug
1587 insns, because they may cause actual dependencies to be
1588 disregarded. */
1589 if (deps->readonly || DEBUG_INSN_P (insn))
1590 return;
1591
1592 free_INSN_LIST_list (listp);
1593 }
1594
1595 /* Remove all occurrences of INSN from LIST. Return the number of
1596 occurrences removed. */
1597
1598 static int
1599 remove_from_dependence_list (rtx insn, rtx* listp)
1600 {
1601 int removed = 0;
1602
1603 while (*listp)
1604 {
1605 if (XEXP (*listp, 0) == insn)
1606 {
1607 remove_free_INSN_LIST_node (listp);
1608 removed++;
1609 continue;
1610 }
1611
1612 listp = &XEXP (*listp, 1);
1613 }
1614
1615 return removed;
1616 }
1617
1618 /* Same as above, but process two lists at once. */
1619 static int
1620 remove_from_both_dependence_lists (rtx insn, rtx *listp, rtx *exprp)
1621 {
1622 int removed = 0;
1623
1624 while (*listp)
1625 {
1626 if (XEXP (*listp, 0) == insn)
1627 {
1628 remove_free_INSN_LIST_node (listp);
1629 remove_free_EXPR_LIST_node (exprp);
1630 removed++;
1631 continue;
1632 }
1633
1634 listp = &XEXP (*listp, 1);
1635 exprp = &XEXP (*exprp, 1);
1636 }
1637
1638 return removed;
1639 }
1640
1641 /* Clear all dependencies for an insn. */
1642 static void
1643 delete_all_dependences (rtx insn)
1644 {
1645 sd_iterator_def sd_it;
1646 dep_t dep;
1647
1648 /* The below cycle can be optimized to clear the caches and back_deps
1649 in one call but that would provoke duplication of code from
1650 delete_dep (). */
1651
1652 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1653 sd_iterator_cond (&sd_it, &dep);)
1654 sd_delete_dep (sd_it);
1655 }
1656
1657 /* All insns in a scheduling group except the first should only have
1658 dependencies on the previous insn in the group. So we find the
1659 first instruction in the scheduling group by walking the dependence
1660 chains backwards. Then we add the dependencies for the group to
1661 the previous nonnote insn. */
1662
1663 static void
1664 chain_to_prev_insn (rtx_insn *insn)
1665 {
1666 sd_iterator_def sd_it;
1667 dep_t dep;
1668 rtx_insn *prev_nonnote;
1669
1670 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1671 {
1672 rtx_insn *i = insn;
1673 rtx_insn *pro = DEP_PRO (dep);
1674
1675 do
1676 {
1677 i = prev_nonnote_insn (i);
1678
1679 if (pro == i)
1680 goto next_link;
1681 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1682
1683 if (! sched_insns_conditions_mutex_p (i, pro))
1684 add_dependence (i, pro, DEP_TYPE (dep));
1685 next_link:;
1686 }
1687
1688 delete_all_dependences (insn);
1689
1690 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1691 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1692 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1693 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1694 }
1695 \f
1696 /* Process an insn's memory dependencies. There are four kinds of
1697 dependencies:
1698
1699 (0) read dependence: read follows read
1700 (1) true dependence: read follows write
1701 (2) output dependence: write follows write
1702 (3) anti dependence: write follows read
1703
1704 We are careful to build only dependencies which actually exist, and
1705 use transitivity to avoid building too many links. */
1706
1707 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1708 The MEM is a memory reference contained within INSN, which we are saving
1709 so that we can do memory aliasing on it. */
1710
1711 static void
1712 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1713 rtx insn, rtx mem)
1714 {
1715 rtx *insn_list;
1716 rtx *mem_list;
1717 rtx link;
1718
1719 gcc_assert (!deps->readonly);
1720 if (read_p)
1721 {
1722 insn_list = &deps->pending_read_insns;
1723 mem_list = &deps->pending_read_mems;
1724 if (!DEBUG_INSN_P (insn))
1725 deps->pending_read_list_length++;
1726 }
1727 else
1728 {
1729 insn_list = &deps->pending_write_insns;
1730 mem_list = &deps->pending_write_mems;
1731 deps->pending_write_list_length++;
1732 }
1733
1734 link = alloc_INSN_LIST (insn, *insn_list);
1735 *insn_list = link;
1736
1737 if (sched_deps_info->use_cselib)
1738 {
1739 mem = shallow_copy_rtx (mem);
1740 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1741 GET_MODE (mem), insn);
1742 }
1743 link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1744 *mem_list = link;
1745 }
1746
1747 /* Make a dependency between every memory reference on the pending lists
1748 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1749 dependencies for a read operation, similarly with FOR_WRITE. */
1750
1751 static void
1752 flush_pending_lists (struct deps_desc *deps, rtx_insn *insn, int for_read,
1753 int for_write)
1754 {
1755 if (for_write)
1756 {
1757 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1758 1, REG_DEP_ANTI, true);
1759 if (!deps->readonly)
1760 {
1761 free_EXPR_LIST_list (&deps->pending_read_mems);
1762 deps->pending_read_list_length = 0;
1763 }
1764 }
1765
1766 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1767 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1768 true);
1769
1770 add_dependence_list_and_free (deps, insn,
1771 &deps->last_pending_memory_flush, 1,
1772 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1773 true);
1774
1775 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1776 REG_DEP_ANTI, true);
1777
1778 if (DEBUG_INSN_P (insn))
1779 {
1780 if (for_write)
1781 free_INSN_LIST_list (&deps->pending_read_insns);
1782 free_INSN_LIST_list (&deps->pending_write_insns);
1783 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1784 free_INSN_LIST_list (&deps->pending_jump_insns);
1785 }
1786
1787 if (!deps->readonly)
1788 {
1789 free_EXPR_LIST_list (&deps->pending_write_mems);
1790 deps->pending_write_list_length = 0;
1791
1792 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1793 deps->pending_flush_length = 1;
1794 }
1795 mark_as_hard = false;
1796 }
1797 \f
1798 /* Instruction which dependencies we are analyzing. */
1799 static rtx_insn *cur_insn = NULL;
1800
1801 /* Implement hooks for haifa scheduler. */
1802
1803 static void
1804 haifa_start_insn (rtx_insn *insn)
1805 {
1806 gcc_assert (insn && !cur_insn);
1807
1808 cur_insn = insn;
1809 }
1810
1811 static void
1812 haifa_finish_insn (void)
1813 {
1814 cur_insn = NULL;
1815 }
1816
1817 void
1818 haifa_note_reg_set (int regno)
1819 {
1820 SET_REGNO_REG_SET (reg_pending_sets, regno);
1821 }
1822
1823 void
1824 haifa_note_reg_clobber (int regno)
1825 {
1826 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1827 }
1828
1829 void
1830 haifa_note_reg_use (int regno)
1831 {
1832 SET_REGNO_REG_SET (reg_pending_uses, regno);
1833 }
1834
1835 static void
1836 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx_insn *pending_insn, ds_t ds)
1837 {
1838 if (!(ds & SPECULATIVE))
1839 {
1840 mem = NULL_RTX;
1841 pending_mem = NULL_RTX;
1842 }
1843 else
1844 gcc_assert (ds & BEGIN_DATA);
1845
1846 {
1847 dep_def _dep, *dep = &_dep;
1848
1849 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1850 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1851 DEP_NONREG (dep) = 1;
1852 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1853 }
1854
1855 }
1856
1857 static void
1858 haifa_note_dep (rtx_insn *elem, ds_t ds)
1859 {
1860 dep_def _dep;
1861 dep_t dep = &_dep;
1862
1863 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1864 if (mark_as_hard)
1865 DEP_NONREG (dep) = 1;
1866 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1867 }
1868
1869 static void
1870 note_reg_use (int r)
1871 {
1872 if (sched_deps_info->note_reg_use)
1873 sched_deps_info->note_reg_use (r);
1874 }
1875
1876 static void
1877 note_reg_set (int r)
1878 {
1879 if (sched_deps_info->note_reg_set)
1880 sched_deps_info->note_reg_set (r);
1881 }
1882
1883 static void
1884 note_reg_clobber (int r)
1885 {
1886 if (sched_deps_info->note_reg_clobber)
1887 sched_deps_info->note_reg_clobber (r);
1888 }
1889
1890 static void
1891 note_mem_dep (rtx m1, rtx m2, rtx_insn *e, ds_t ds)
1892 {
1893 if (sched_deps_info->note_mem_dep)
1894 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1895 }
1896
1897 static void
1898 note_dep (rtx_insn *e, ds_t ds)
1899 {
1900 if (sched_deps_info->note_dep)
1901 sched_deps_info->note_dep (e, ds);
1902 }
1903
1904 /* Return corresponding to DS reg_note. */
1905 enum reg_note
1906 ds_to_dt (ds_t ds)
1907 {
1908 if (ds & DEP_TRUE)
1909 return REG_DEP_TRUE;
1910 else if (ds & DEP_OUTPUT)
1911 return REG_DEP_OUTPUT;
1912 else if (ds & DEP_ANTI)
1913 return REG_DEP_ANTI;
1914 else
1915 {
1916 gcc_assert (ds & DEP_CONTROL);
1917 return REG_DEP_CONTROL;
1918 }
1919 }
1920
1921 \f
1922
1923 /* Functions for computation of info needed for register pressure
1924 sensitive insn scheduling. */
1925
1926
1927 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1928 static struct reg_use_data *
1929 create_insn_reg_use (int regno, rtx insn)
1930 {
1931 struct reg_use_data *use;
1932
1933 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1934 use->regno = regno;
1935 use->insn = insn;
1936 use->next_insn_use = INSN_REG_USE_LIST (insn);
1937 INSN_REG_USE_LIST (insn) = use;
1938 return use;
1939 }
1940
1941 /* Allocate reg_set_data structure for REGNO and INSN. */
1942 static void
1943 create_insn_reg_set (int regno, rtx insn)
1944 {
1945 struct reg_set_data *set;
1946
1947 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1948 set->regno = regno;
1949 set->insn = insn;
1950 set->next_insn_set = INSN_REG_SET_LIST (insn);
1951 INSN_REG_SET_LIST (insn) = set;
1952 }
1953
1954 /* Set up insn register uses for INSN and dependency context DEPS. */
1955 static void
1956 setup_insn_reg_uses (struct deps_desc *deps, rtx insn)
1957 {
1958 unsigned i;
1959 reg_set_iterator rsi;
1960 rtx list;
1961 struct reg_use_data *use, *use2, *next;
1962 struct deps_reg *reg_last;
1963
1964 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1965 {
1966 if (i < FIRST_PSEUDO_REGISTER
1967 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1968 continue;
1969
1970 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1971 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1972 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1973 /* Ignore use which is not dying. */
1974 continue;
1975
1976 use = create_insn_reg_use (i, insn);
1977 use->next_regno_use = use;
1978 reg_last = &deps->reg_last[i];
1979
1980 /* Create the cycle list of uses. */
1981 for (list = reg_last->uses; list; list = XEXP (list, 1))
1982 {
1983 use2 = create_insn_reg_use (i, XEXP (list, 0));
1984 next = use->next_regno_use;
1985 use->next_regno_use = use2;
1986 use2->next_regno_use = next;
1987 }
1988 }
1989 }
1990
1991 /* Register pressure info for the currently processed insn. */
1992 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1993
1994 /* Return TRUE if INSN has the use structure for REGNO. */
1995 static bool
1996 insn_use_p (rtx insn, int regno)
1997 {
1998 struct reg_use_data *use;
1999
2000 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2001 if (use->regno == regno)
2002 return true;
2003 return false;
2004 }
2005
2006 /* Update the register pressure info after birth of pseudo register REGNO
2007 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2008 the register is in clobber or unused after the insn. */
2009 static void
2010 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2011 {
2012 int incr, new_incr;
2013 enum reg_class cl;
2014
2015 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2016 cl = sched_regno_pressure_class[regno];
2017 if (cl != NO_REGS)
2018 {
2019 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2020 if (clobber_p)
2021 {
2022 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2023 reg_pressure_info[cl].clobber_increase = new_incr;
2024 }
2025 else if (unused_p)
2026 {
2027 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2028 reg_pressure_info[cl].unused_set_increase = new_incr;
2029 }
2030 else
2031 {
2032 new_incr = reg_pressure_info[cl].set_increase + incr;
2033 reg_pressure_info[cl].set_increase = new_incr;
2034 if (! insn_use_p (insn, regno))
2035 reg_pressure_info[cl].change += incr;
2036 create_insn_reg_set (regno, insn);
2037 }
2038 gcc_assert (new_incr < (1 << INCREASE_BITS));
2039 }
2040 }
2041
2042 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2043 hard registers involved in the birth. */
2044 static void
2045 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2046 bool clobber_p, bool unused_p)
2047 {
2048 enum reg_class cl;
2049 int new_incr, last = regno + nregs;
2050
2051 while (regno < last)
2052 {
2053 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2054 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2055 {
2056 cl = sched_regno_pressure_class[regno];
2057 if (cl != NO_REGS)
2058 {
2059 if (clobber_p)
2060 {
2061 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2062 reg_pressure_info[cl].clobber_increase = new_incr;
2063 }
2064 else if (unused_p)
2065 {
2066 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2067 reg_pressure_info[cl].unused_set_increase = new_incr;
2068 }
2069 else
2070 {
2071 new_incr = reg_pressure_info[cl].set_increase + 1;
2072 reg_pressure_info[cl].set_increase = new_incr;
2073 if (! insn_use_p (insn, regno))
2074 reg_pressure_info[cl].change += 1;
2075 create_insn_reg_set (regno, insn);
2076 }
2077 gcc_assert (new_incr < (1 << INCREASE_BITS));
2078 }
2079 }
2080 regno++;
2081 }
2082 }
2083
2084 /* Update the register pressure info after birth of pseudo or hard
2085 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2086 correspondingly that the register is in clobber or unused after the
2087 insn. */
2088 static void
2089 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2090 {
2091 int regno;
2092
2093 if (GET_CODE (reg) == SUBREG)
2094 reg = SUBREG_REG (reg);
2095
2096 if (! REG_P (reg))
2097 return;
2098
2099 regno = REGNO (reg);
2100 if (regno < FIRST_PSEUDO_REGISTER)
2101 mark_insn_hard_regno_birth (insn, regno,
2102 hard_regno_nregs[regno][GET_MODE (reg)],
2103 clobber_p, unused_p);
2104 else
2105 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2106 }
2107
2108 /* Update the register pressure info after death of pseudo register
2109 REGNO. */
2110 static void
2111 mark_pseudo_death (int regno)
2112 {
2113 int incr;
2114 enum reg_class cl;
2115
2116 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2117 cl = sched_regno_pressure_class[regno];
2118 if (cl != NO_REGS)
2119 {
2120 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2121 reg_pressure_info[cl].change -= incr;
2122 }
2123 }
2124
2125 /* Like mark_pseudo_death except that NREGS saying how many hard
2126 registers involved in the death. */
2127 static void
2128 mark_hard_regno_death (int regno, int nregs)
2129 {
2130 enum reg_class cl;
2131 int last = regno + nregs;
2132
2133 while (regno < last)
2134 {
2135 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2136 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2137 {
2138 cl = sched_regno_pressure_class[regno];
2139 if (cl != NO_REGS)
2140 reg_pressure_info[cl].change -= 1;
2141 }
2142 regno++;
2143 }
2144 }
2145
2146 /* Update the register pressure info after death of pseudo or hard
2147 register REG. */
2148 static void
2149 mark_reg_death (rtx reg)
2150 {
2151 int regno;
2152
2153 if (GET_CODE (reg) == SUBREG)
2154 reg = SUBREG_REG (reg);
2155
2156 if (! REG_P (reg))
2157 return;
2158
2159 regno = REGNO (reg);
2160 if (regno < FIRST_PSEUDO_REGISTER)
2161 mark_hard_regno_death (regno, hard_regno_nregs[regno][GET_MODE (reg)]);
2162 else
2163 mark_pseudo_death (regno);
2164 }
2165
2166 /* Process SETTER of REG. DATA is an insn containing the setter. */
2167 static void
2168 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2169 {
2170 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2171 return;
2172 mark_insn_reg_birth
2173 ((rtx) data, reg, false,
2174 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2175 }
2176
2177 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2178 static void
2179 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2180 {
2181 if (GET_CODE (setter) == CLOBBER)
2182 mark_insn_reg_birth ((rtx) data, reg, true, false);
2183 }
2184
2185 /* Set up reg pressure info related to INSN. */
2186 void
2187 init_insn_reg_pressure_info (rtx insn)
2188 {
2189 int i, len;
2190 enum reg_class cl;
2191 static struct reg_pressure_data *pressure_info;
2192 rtx link;
2193
2194 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2195
2196 if (! INSN_P (insn))
2197 return;
2198
2199 for (i = 0; i < ira_pressure_classes_num; i++)
2200 {
2201 cl = ira_pressure_classes[i];
2202 reg_pressure_info[cl].clobber_increase = 0;
2203 reg_pressure_info[cl].set_increase = 0;
2204 reg_pressure_info[cl].unused_set_increase = 0;
2205 reg_pressure_info[cl].change = 0;
2206 }
2207
2208 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2209
2210 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2211
2212 #ifdef AUTO_INC_DEC
2213 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2214 if (REG_NOTE_KIND (link) == REG_INC)
2215 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2216 #endif
2217
2218 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2219 if (REG_NOTE_KIND (link) == REG_DEAD)
2220 mark_reg_death (XEXP (link, 0));
2221
2222 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2223 pressure_info
2224 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2225 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2226 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2227 * sizeof (int), 1);
2228 for (i = 0; i < ira_pressure_classes_num; i++)
2229 {
2230 cl = ira_pressure_classes[i];
2231 pressure_info[i].clobber_increase
2232 = reg_pressure_info[cl].clobber_increase;
2233 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2234 pressure_info[i].unused_set_increase
2235 = reg_pressure_info[cl].unused_set_increase;
2236 pressure_info[i].change = reg_pressure_info[cl].change;
2237 }
2238 }
2239
2240
2241 \f
2242
2243 /* Internal variable for sched_analyze_[12] () functions.
2244 If it is nonzero, this means that sched_analyze_[12] looks
2245 at the most toplevel SET. */
2246 static bool can_start_lhs_rhs_p;
2247
2248 /* Extend reg info for the deps context DEPS given that
2249 we have just generated a register numbered REGNO. */
2250 static void
2251 extend_deps_reg_info (struct deps_desc *deps, int regno)
2252 {
2253 int max_regno = regno + 1;
2254
2255 gcc_assert (!reload_completed);
2256
2257 /* In a readonly context, it would not hurt to extend info,
2258 but it should not be needed. */
2259 if (reload_completed && deps->readonly)
2260 {
2261 deps->max_reg = max_regno;
2262 return;
2263 }
2264
2265 if (max_regno > deps->max_reg)
2266 {
2267 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2268 max_regno);
2269 memset (&deps->reg_last[deps->max_reg],
2270 0, (max_regno - deps->max_reg)
2271 * sizeof (struct deps_reg));
2272 deps->max_reg = max_regno;
2273 }
2274 }
2275
2276 /* Extends REG_INFO_P if needed. */
2277 void
2278 maybe_extend_reg_info_p (void)
2279 {
2280 /* Extend REG_INFO_P, if needed. */
2281 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2282 {
2283 size_t new_reg_info_p_size = max_regno + 128;
2284
2285 gcc_assert (!reload_completed && sel_sched_p ());
2286
2287 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2288 new_reg_info_p_size,
2289 reg_info_p_size,
2290 sizeof (*reg_info_p));
2291 reg_info_p_size = new_reg_info_p_size;
2292 }
2293 }
2294
2295 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2296 The type of the reference is specified by REF and can be SET,
2297 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2298
2299 static void
2300 sched_analyze_reg (struct deps_desc *deps, int regno, enum machine_mode mode,
2301 enum rtx_code ref, rtx_insn *insn)
2302 {
2303 /* We could emit new pseudos in renaming. Extend the reg structures. */
2304 if (!reload_completed && sel_sched_p ()
2305 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2306 extend_deps_reg_info (deps, regno);
2307
2308 maybe_extend_reg_info_p ();
2309
2310 /* A hard reg in a wide mode may really be multiple registers.
2311 If so, mark all of them just like the first. */
2312 if (regno < FIRST_PSEUDO_REGISTER)
2313 {
2314 int i = hard_regno_nregs[regno][mode];
2315 if (ref == SET)
2316 {
2317 while (--i >= 0)
2318 note_reg_set (regno + i);
2319 }
2320 else if (ref == USE)
2321 {
2322 while (--i >= 0)
2323 note_reg_use (regno + i);
2324 }
2325 else
2326 {
2327 while (--i >= 0)
2328 note_reg_clobber (regno + i);
2329 }
2330 }
2331
2332 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2333 it does not reload. Ignore these as they have served their
2334 purpose already. */
2335 else if (regno >= deps->max_reg)
2336 {
2337 enum rtx_code code = GET_CODE (PATTERN (insn));
2338 gcc_assert (code == USE || code == CLOBBER);
2339 }
2340
2341 else
2342 {
2343 if (ref == SET)
2344 note_reg_set (regno);
2345 else if (ref == USE)
2346 note_reg_use (regno);
2347 else
2348 note_reg_clobber (regno);
2349
2350 /* Pseudos that are REG_EQUIV to something may be replaced
2351 by that during reloading. We need only add dependencies for
2352 the address in the REG_EQUIV note. */
2353 if (!reload_completed && get_reg_known_equiv_p (regno))
2354 {
2355 rtx t = get_reg_known_value (regno);
2356 if (MEM_P (t))
2357 sched_analyze_2 (deps, XEXP (t, 0), insn);
2358 }
2359
2360 /* Don't let it cross a call after scheduling if it doesn't
2361 already cross one. */
2362 if (REG_N_CALLS_CROSSED (regno) == 0)
2363 {
2364 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2365 deps->sched_before_next_call
2366 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2367 else
2368 add_dependence_list (insn, deps->last_function_call, 1,
2369 REG_DEP_ANTI, false);
2370 }
2371 }
2372 }
2373
2374 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2375 rtx, X, creating all dependencies generated by the write to the
2376 destination of X, and reads of everything mentioned. */
2377
2378 static void
2379 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2380 {
2381 rtx dest = XEXP (x, 0);
2382 enum rtx_code code = GET_CODE (x);
2383 bool cslr_p = can_start_lhs_rhs_p;
2384
2385 can_start_lhs_rhs_p = false;
2386
2387 gcc_assert (dest);
2388 if (dest == 0)
2389 return;
2390
2391 if (cslr_p && sched_deps_info->start_lhs)
2392 sched_deps_info->start_lhs (dest);
2393
2394 if (GET_CODE (dest) == PARALLEL)
2395 {
2396 int i;
2397
2398 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2399 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2400 sched_analyze_1 (deps,
2401 gen_rtx_CLOBBER (VOIDmode,
2402 XEXP (XVECEXP (dest, 0, i), 0)),
2403 insn);
2404
2405 if (cslr_p && sched_deps_info->finish_lhs)
2406 sched_deps_info->finish_lhs ();
2407
2408 if (code == SET)
2409 {
2410 can_start_lhs_rhs_p = cslr_p;
2411
2412 sched_analyze_2 (deps, SET_SRC (x), insn);
2413
2414 can_start_lhs_rhs_p = false;
2415 }
2416
2417 return;
2418 }
2419
2420 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2421 || GET_CODE (dest) == ZERO_EXTRACT)
2422 {
2423 if (GET_CODE (dest) == STRICT_LOW_PART
2424 || GET_CODE (dest) == ZERO_EXTRACT
2425 || df_read_modify_subreg_p (dest))
2426 {
2427 /* These both read and modify the result. We must handle
2428 them as writes to get proper dependencies for following
2429 instructions. We must handle them as reads to get proper
2430 dependencies from this to previous instructions.
2431 Thus we need to call sched_analyze_2. */
2432
2433 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2434 }
2435 if (GET_CODE (dest) == ZERO_EXTRACT)
2436 {
2437 /* The second and third arguments are values read by this insn. */
2438 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2439 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2440 }
2441 dest = XEXP (dest, 0);
2442 }
2443
2444 if (REG_P (dest))
2445 {
2446 int regno = REGNO (dest);
2447 enum machine_mode mode = GET_MODE (dest);
2448
2449 sched_analyze_reg (deps, regno, mode, code, insn);
2450
2451 #ifdef STACK_REGS
2452 /* Treat all writes to a stack register as modifying the TOS. */
2453 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2454 {
2455 /* Avoid analyzing the same register twice. */
2456 if (regno != FIRST_STACK_REG)
2457 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2458
2459 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2460 FIRST_STACK_REG);
2461 }
2462 #endif
2463 }
2464 else if (MEM_P (dest))
2465 {
2466 /* Writing memory. */
2467 rtx t = dest;
2468
2469 if (sched_deps_info->use_cselib)
2470 {
2471 enum machine_mode address_mode = get_address_mode (dest);
2472
2473 t = shallow_copy_rtx (dest);
2474 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2475 GET_MODE (t), insn);
2476 XEXP (t, 0)
2477 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2478 insn);
2479 }
2480 t = canon_rtx (t);
2481
2482 /* Pending lists can't get larger with a readonly context. */
2483 if (!deps->readonly
2484 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2485 > MAX_PENDING_LIST_LENGTH))
2486 {
2487 /* Flush all pending reads and writes to prevent the pending lists
2488 from getting any larger. Insn scheduling runs too slowly when
2489 these lists get long. When compiling GCC with itself,
2490 this flush occurs 8 times for sparc, and 10 times for m88k using
2491 the default value of 32. */
2492 flush_pending_lists (deps, insn, false, true);
2493 }
2494 else
2495 {
2496 rtx pending, pending_mem;
2497
2498 pending = deps->pending_read_insns;
2499 pending_mem = deps->pending_read_mems;
2500 while (pending)
2501 {
2502 if (anti_dependence (XEXP (pending_mem, 0), t)
2503 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2504 note_mem_dep (t, XEXP (pending_mem, 0), as_a <rtx_insn *> (XEXP (pending, 0)),
2505 DEP_ANTI);
2506
2507 pending = XEXP (pending, 1);
2508 pending_mem = XEXP (pending_mem, 1);
2509 }
2510
2511 pending = deps->pending_write_insns;
2512 pending_mem = deps->pending_write_mems;
2513 while (pending)
2514 {
2515 if (output_dependence (XEXP (pending_mem, 0), t)
2516 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2517 note_mem_dep (t, XEXP (pending_mem, 0),
2518 as_a <rtx_insn *> (XEXP (pending, 0)),
2519 DEP_OUTPUT);
2520
2521 pending = XEXP (pending, 1);
2522 pending_mem = XEXP (pending_mem, 1);
2523 }
2524
2525 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2526 REG_DEP_ANTI, true);
2527 add_dependence_list (insn, deps->pending_jump_insns, 1,
2528 REG_DEP_CONTROL, true);
2529
2530 if (!deps->readonly)
2531 add_insn_mem_dependence (deps, false, insn, dest);
2532 }
2533 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2534 }
2535
2536 if (cslr_p && sched_deps_info->finish_lhs)
2537 sched_deps_info->finish_lhs ();
2538
2539 /* Analyze reads. */
2540 if (GET_CODE (x) == SET)
2541 {
2542 can_start_lhs_rhs_p = cslr_p;
2543
2544 sched_analyze_2 (deps, SET_SRC (x), insn);
2545
2546 can_start_lhs_rhs_p = false;
2547 }
2548 }
2549
2550 /* Analyze the uses of memory and registers in rtx X in INSN. */
2551 static void
2552 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2553 {
2554 int i;
2555 int j;
2556 enum rtx_code code;
2557 const char *fmt;
2558 bool cslr_p = can_start_lhs_rhs_p;
2559
2560 can_start_lhs_rhs_p = false;
2561
2562 gcc_assert (x);
2563 if (x == 0)
2564 return;
2565
2566 if (cslr_p && sched_deps_info->start_rhs)
2567 sched_deps_info->start_rhs (x);
2568
2569 code = GET_CODE (x);
2570
2571 switch (code)
2572 {
2573 CASE_CONST_ANY:
2574 case SYMBOL_REF:
2575 case CONST:
2576 case LABEL_REF:
2577 /* Ignore constants. */
2578 if (cslr_p && sched_deps_info->finish_rhs)
2579 sched_deps_info->finish_rhs ();
2580
2581 return;
2582
2583 #ifdef HAVE_cc0
2584 case CC0:
2585 /* User of CC0 depends on immediately preceding insn. */
2586 SCHED_GROUP_P (insn) = 1;
2587 /* Don't move CC0 setter to another block (it can set up the
2588 same flag for previous CC0 users which is safe). */
2589 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2590
2591 if (cslr_p && sched_deps_info->finish_rhs)
2592 sched_deps_info->finish_rhs ();
2593
2594 return;
2595 #endif
2596
2597 case REG:
2598 {
2599 int regno = REGNO (x);
2600 enum machine_mode mode = GET_MODE (x);
2601
2602 sched_analyze_reg (deps, regno, mode, USE, insn);
2603
2604 #ifdef STACK_REGS
2605 /* Treat all reads of a stack register as modifying the TOS. */
2606 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2607 {
2608 /* Avoid analyzing the same register twice. */
2609 if (regno != FIRST_STACK_REG)
2610 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2611 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2612 }
2613 #endif
2614
2615 if (cslr_p && sched_deps_info->finish_rhs)
2616 sched_deps_info->finish_rhs ();
2617
2618 return;
2619 }
2620
2621 case MEM:
2622 {
2623 /* Reading memory. */
2624 rtx u;
2625 rtx pending, pending_mem;
2626 rtx t = x;
2627
2628 if (sched_deps_info->use_cselib)
2629 {
2630 enum machine_mode address_mode = get_address_mode (t);
2631
2632 t = shallow_copy_rtx (t);
2633 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2634 GET_MODE (t), insn);
2635 XEXP (t, 0)
2636 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2637 insn);
2638 }
2639
2640 if (!DEBUG_INSN_P (insn))
2641 {
2642 t = canon_rtx (t);
2643 pending = deps->pending_read_insns;
2644 pending_mem = deps->pending_read_mems;
2645 while (pending)
2646 {
2647 if (read_dependence (XEXP (pending_mem, 0), t)
2648 && ! sched_insns_conditions_mutex_p (insn,
2649 XEXP (pending, 0)))
2650 note_mem_dep (t, XEXP (pending_mem, 0),
2651 as_a <rtx_insn *> (XEXP (pending, 0)),
2652 DEP_ANTI);
2653
2654 pending = XEXP (pending, 1);
2655 pending_mem = XEXP (pending_mem, 1);
2656 }
2657
2658 pending = deps->pending_write_insns;
2659 pending_mem = deps->pending_write_mems;
2660 while (pending)
2661 {
2662 if (true_dependence (XEXP (pending_mem, 0), VOIDmode, t)
2663 && ! sched_insns_conditions_mutex_p (insn,
2664 XEXP (pending, 0)))
2665 note_mem_dep (t, XEXP (pending_mem, 0),
2666 as_a <rtx_insn *> (XEXP (pending, 0)),
2667 sched_deps_info->generate_spec_deps
2668 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2669
2670 pending = XEXP (pending, 1);
2671 pending_mem = XEXP (pending_mem, 1);
2672 }
2673
2674 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2675 add_dependence (insn, as_a <rtx_insn *> (XEXP (u, 0)),
2676 REG_DEP_ANTI);
2677
2678 for (u = deps->pending_jump_insns; u; u = XEXP (u, 1))
2679 if (deps_may_trap_p (x))
2680 {
2681 if ((sched_deps_info->generate_spec_deps)
2682 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2683 {
2684 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2685 MAX_DEP_WEAK);
2686
2687 note_dep (as_a <rtx_insn *> (XEXP (u, 0)), ds);
2688 }
2689 else
2690 add_dependence (insn, as_a <rtx_insn *> (XEXP (u, 0)),
2691 REG_DEP_CONTROL);
2692 }
2693 }
2694
2695 /* Always add these dependencies to pending_reads, since
2696 this insn may be followed by a write. */
2697 if (!deps->readonly)
2698 {
2699 if ((deps->pending_read_list_length
2700 + deps->pending_write_list_length)
2701 > MAX_PENDING_LIST_LENGTH
2702 && !DEBUG_INSN_P (insn))
2703 flush_pending_lists (deps, insn, true, true);
2704 add_insn_mem_dependence (deps, true, insn, x);
2705 }
2706
2707 sched_analyze_2 (deps, XEXP (x, 0), insn);
2708
2709 if (cslr_p && sched_deps_info->finish_rhs)
2710 sched_deps_info->finish_rhs ();
2711
2712 return;
2713 }
2714
2715 /* Force pending stores to memory in case a trap handler needs them. */
2716 case TRAP_IF:
2717 flush_pending_lists (deps, insn, true, false);
2718 break;
2719
2720 case PREFETCH:
2721 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2722 reg_pending_barrier = TRUE_BARRIER;
2723 /* Prefetch insn contains addresses only. So if the prefetch
2724 address has no registers, there will be no dependencies on
2725 the prefetch insn. This is wrong with result code
2726 correctness point of view as such prefetch can be moved below
2727 a jump insn which usually generates MOVE_BARRIER preventing
2728 to move insns containing registers or memories through the
2729 barrier. It is also wrong with generated code performance
2730 point of view as prefetch withouth dependecies will have a
2731 tendency to be issued later instead of earlier. It is hard
2732 to generate accurate dependencies for prefetch insns as
2733 prefetch has only the start address but it is better to have
2734 something than nothing. */
2735 if (!deps->readonly)
2736 {
2737 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2738 if (sched_deps_info->use_cselib)
2739 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2740 add_insn_mem_dependence (deps, true, insn, x);
2741 }
2742 break;
2743
2744 case UNSPEC_VOLATILE:
2745 flush_pending_lists (deps, insn, true, true);
2746 /* FALLTHRU */
2747
2748 case ASM_OPERANDS:
2749 case ASM_INPUT:
2750 {
2751 /* Traditional and volatile asm instructions must be considered to use
2752 and clobber all hard registers, all pseudo-registers and all of
2753 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2754
2755 Consider for instance a volatile asm that changes the fpu rounding
2756 mode. An insn should not be moved across this even if it only uses
2757 pseudo-regs because it might give an incorrectly rounded result. */
2758 if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2759 && !DEBUG_INSN_P (insn))
2760 reg_pending_barrier = TRUE_BARRIER;
2761
2762 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2763 We can not just fall through here since then we would be confused
2764 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2765 traditional asms unlike their normal usage. */
2766
2767 if (code == ASM_OPERANDS)
2768 {
2769 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2770 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2771
2772 if (cslr_p && sched_deps_info->finish_rhs)
2773 sched_deps_info->finish_rhs ();
2774
2775 return;
2776 }
2777 break;
2778 }
2779
2780 case PRE_DEC:
2781 case POST_DEC:
2782 case PRE_INC:
2783 case POST_INC:
2784 /* These both read and modify the result. We must handle them as writes
2785 to get proper dependencies for following instructions. We must handle
2786 them as reads to get proper dependencies from this to previous
2787 instructions. Thus we need to pass them to both sched_analyze_1
2788 and sched_analyze_2. We must call sched_analyze_2 first in order
2789 to get the proper antecedent for the read. */
2790 sched_analyze_2 (deps, XEXP (x, 0), insn);
2791 sched_analyze_1 (deps, x, insn);
2792
2793 if (cslr_p && sched_deps_info->finish_rhs)
2794 sched_deps_info->finish_rhs ();
2795
2796 return;
2797
2798 case POST_MODIFY:
2799 case PRE_MODIFY:
2800 /* op0 = op0 + op1 */
2801 sched_analyze_2 (deps, XEXP (x, 0), insn);
2802 sched_analyze_2 (deps, XEXP (x, 1), insn);
2803 sched_analyze_1 (deps, x, insn);
2804
2805 if (cslr_p && sched_deps_info->finish_rhs)
2806 sched_deps_info->finish_rhs ();
2807
2808 return;
2809
2810 default:
2811 break;
2812 }
2813
2814 /* Other cases: walk the insn. */
2815 fmt = GET_RTX_FORMAT (code);
2816 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2817 {
2818 if (fmt[i] == 'e')
2819 sched_analyze_2 (deps, XEXP (x, i), insn);
2820 else if (fmt[i] == 'E')
2821 for (j = 0; j < XVECLEN (x, i); j++)
2822 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2823 }
2824
2825 if (cslr_p && sched_deps_info->finish_rhs)
2826 sched_deps_info->finish_rhs ();
2827 }
2828
2829 /* Try to group two fuseable insns together to prevent scheduler
2830 from scheduling them apart. */
2831
2832 static void
2833 sched_macro_fuse_insns (rtx insn)
2834 {
2835 rtx prev;
2836
2837 if (any_condjump_p (insn))
2838 {
2839 unsigned int condreg1, condreg2;
2840 rtx cc_reg_1;
2841 targetm.fixed_condition_code_regs (&condreg1, &condreg2);
2842 cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2843 prev = prev_nonnote_nondebug_insn (insn);
2844 if (!reg_referenced_p (cc_reg_1, PATTERN (insn))
2845 || !prev
2846 || !modified_in_p (cc_reg_1, prev))
2847 return;
2848 }
2849 else
2850 {
2851 rtx insn_set = single_set (insn);
2852
2853 prev = prev_nonnote_nondebug_insn (insn);
2854 if (!prev
2855 || !insn_set
2856 || !single_set (prev)
2857 || !modified_in_p (SET_DEST (insn_set), prev))
2858 return;
2859
2860 }
2861
2862 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2863 SCHED_GROUP_P (insn) = 1;
2864
2865 }
2866
2867 /* Analyze an INSN with pattern X to find all dependencies. */
2868 static void
2869 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx_insn *insn)
2870 {
2871 RTX_CODE code = GET_CODE (x);
2872 rtx link;
2873 unsigned i;
2874 reg_set_iterator rsi;
2875
2876 if (! reload_completed)
2877 {
2878 HARD_REG_SET temp;
2879
2880 extract_insn (insn);
2881 preprocess_constraints (insn);
2882 ira_implicitly_set_insn_hard_regs (&temp);
2883 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2884 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2885 }
2886
2887 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2888 && code == SET);
2889
2890 /* Group compare and branch insns for macro-fusion. */
2891 if (targetm.sched.macro_fusion_p
2892 && targetm.sched.macro_fusion_p ())
2893 sched_macro_fuse_insns (insn);
2894
2895 if (may_trap_p (x))
2896 /* Avoid moving trapping instructions across function calls that might
2897 not always return. */
2898 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2899 1, REG_DEP_ANTI, true);
2900
2901 /* We must avoid creating a situation in which two successors of the
2902 current block have different unwind info after scheduling. If at any
2903 point the two paths re-join this leads to incorrect unwind info. */
2904 /* ??? There are certain situations involving a forced frame pointer in
2905 which, with extra effort, we could fix up the unwind info at a later
2906 CFG join. However, it seems better to notice these cases earlier
2907 during prologue generation and avoid marking the frame pointer setup
2908 as frame-related at all. */
2909 if (RTX_FRAME_RELATED_P (insn))
2910 {
2911 /* Make sure prologue insn is scheduled before next jump. */
2912 deps->sched_before_next_jump
2913 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2914
2915 /* Make sure epilogue insn is scheduled after preceding jumps. */
2916 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2917 true);
2918 }
2919
2920 if (code == COND_EXEC)
2921 {
2922 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2923
2924 /* ??? Should be recording conditions so we reduce the number of
2925 false dependencies. */
2926 x = COND_EXEC_CODE (x);
2927 code = GET_CODE (x);
2928 }
2929 if (code == SET || code == CLOBBER)
2930 {
2931 sched_analyze_1 (deps, x, insn);
2932
2933 /* Bare clobber insns are used for letting life analysis, reg-stack
2934 and others know that a value is dead. Depend on the last call
2935 instruction so that reg-stack won't get confused. */
2936 if (code == CLOBBER)
2937 add_dependence_list (insn, deps->last_function_call, 1,
2938 REG_DEP_OUTPUT, true);
2939 }
2940 else if (code == PARALLEL)
2941 {
2942 for (i = XVECLEN (x, 0); i--;)
2943 {
2944 rtx sub = XVECEXP (x, 0, i);
2945 code = GET_CODE (sub);
2946
2947 if (code == COND_EXEC)
2948 {
2949 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2950 sub = COND_EXEC_CODE (sub);
2951 code = GET_CODE (sub);
2952 }
2953 if (code == SET || code == CLOBBER)
2954 sched_analyze_1 (deps, sub, insn);
2955 else
2956 sched_analyze_2 (deps, sub, insn);
2957 }
2958 }
2959 else
2960 sched_analyze_2 (deps, x, insn);
2961
2962 /* Mark registers CLOBBERED or used by called function. */
2963 if (CALL_P (insn))
2964 {
2965 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2966 {
2967 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2968 sched_analyze_1 (deps, XEXP (link, 0), insn);
2969 else if (GET_CODE (XEXP (link, 0)) != SET)
2970 sched_analyze_2 (deps, XEXP (link, 0), insn);
2971 }
2972 /* Don't schedule anything after a tail call, tail call needs
2973 to use at least all call-saved registers. */
2974 if (SIBLING_CALL_P (insn))
2975 reg_pending_barrier = TRUE_BARRIER;
2976 else if (find_reg_note (insn, REG_SETJMP, NULL))
2977 reg_pending_barrier = MOVE_BARRIER;
2978 }
2979
2980 if (JUMP_P (insn))
2981 {
2982 rtx next;
2983 next = next_nonnote_nondebug_insn (insn);
2984 if (next && BARRIER_P (next))
2985 reg_pending_barrier = MOVE_BARRIER;
2986 else
2987 {
2988 rtx pending, pending_mem;
2989
2990 if (sched_deps_info->compute_jump_reg_dependencies)
2991 {
2992 (*sched_deps_info->compute_jump_reg_dependencies)
2993 (insn, reg_pending_control_uses);
2994
2995 /* Make latency of jump equal to 0 by using anti-dependence. */
2996 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
2997 {
2998 struct deps_reg *reg_last = &deps->reg_last[i];
2999 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
3000 false);
3001 add_dependence_list (insn, reg_last->implicit_sets,
3002 0, REG_DEP_ANTI, false);
3003 add_dependence_list (insn, reg_last->clobbers, 0,
3004 REG_DEP_ANTI, false);
3005 }
3006 }
3007
3008 /* All memory writes and volatile reads must happen before the
3009 jump. Non-volatile reads must happen before the jump iff
3010 the result is needed by the above register used mask. */
3011
3012 pending = deps->pending_write_insns;
3013 pending_mem = deps->pending_write_mems;
3014 while (pending)
3015 {
3016 if (! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
3017 add_dependence (insn, as_a <rtx_insn *> (XEXP (pending, 0)),
3018 REG_DEP_OUTPUT);
3019 pending = XEXP (pending, 1);
3020 pending_mem = XEXP (pending_mem, 1);
3021 }
3022
3023 pending = deps->pending_read_insns;
3024 pending_mem = deps->pending_read_mems;
3025 while (pending)
3026 {
3027 if (MEM_VOLATILE_P (XEXP (pending_mem, 0))
3028 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
3029 add_dependence (insn, as_a <rtx_insn *> (XEXP (pending, 0)),
3030 REG_DEP_OUTPUT);
3031 pending = XEXP (pending, 1);
3032 pending_mem = XEXP (pending_mem, 1);
3033 }
3034
3035 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
3036 REG_DEP_ANTI, true);
3037 add_dependence_list (insn, deps->pending_jump_insns, 1,
3038 REG_DEP_ANTI, true);
3039 }
3040 }
3041
3042 /* If this instruction can throw an exception, then moving it changes
3043 where block boundaries fall. This is mighty confusing elsewhere.
3044 Therefore, prevent such an instruction from being moved. Same for
3045 non-jump instructions that define block boundaries.
3046 ??? Unclear whether this is still necessary in EBB mode. If not,
3047 add_branch_dependences should be adjusted for RGN mode instead. */
3048 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3049 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3050 reg_pending_barrier = MOVE_BARRIER;
3051
3052 if (sched_pressure != SCHED_PRESSURE_NONE)
3053 {
3054 setup_insn_reg_uses (deps, insn);
3055 init_insn_reg_pressure_info (insn);
3056 }
3057
3058 /* Add register dependencies for insn. */
3059 if (DEBUG_INSN_P (insn))
3060 {
3061 rtx_insn *prev = deps->last_debug_insn;
3062 rtx u;
3063
3064 if (!deps->readonly)
3065 deps->last_debug_insn = insn;
3066
3067 if (prev)
3068 add_dependence (insn, prev, REG_DEP_ANTI);
3069
3070 add_dependence_list (insn, deps->last_function_call, 1,
3071 REG_DEP_ANTI, false);
3072
3073 if (!sel_sched_p ())
3074 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
3075 add_dependence (insn, as_a <rtx_insn *> (XEXP (u, 0)), REG_DEP_ANTI);
3076
3077 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3078 {
3079 struct deps_reg *reg_last = &deps->reg_last[i];
3080 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3081 /* There's no point in making REG_DEP_CONTROL dependencies for
3082 debug insns. */
3083 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3084 false);
3085
3086 if (!deps->readonly)
3087 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3088 }
3089 CLEAR_REG_SET (reg_pending_uses);
3090
3091 /* Quite often, a debug insn will refer to stuff in the
3092 previous instruction, but the reason we want this
3093 dependency here is to make sure the scheduler doesn't
3094 gratuitously move a debug insn ahead. This could dirty
3095 DF flags and cause additional analysis that wouldn't have
3096 occurred in compilation without debug insns, and such
3097 additional analysis can modify the generated code. */
3098 prev = PREV_INSN (insn);
3099
3100 if (prev && NONDEBUG_INSN_P (prev))
3101 add_dependence (insn, prev, REG_DEP_ANTI);
3102 }
3103 else
3104 {
3105 regset_head set_or_clobbered;
3106
3107 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3108 {
3109 struct deps_reg *reg_last = &deps->reg_last[i];
3110 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3111 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3112 false);
3113 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3114 false);
3115
3116 if (!deps->readonly)
3117 {
3118 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3119 reg_last->uses_length++;
3120 }
3121 }
3122
3123 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3124 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3125 {
3126 struct deps_reg *reg_last = &deps->reg_last[i];
3127 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3128 add_dependence_list (insn, reg_last->implicit_sets, 0,
3129 REG_DEP_ANTI, false);
3130 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3131 false);
3132
3133 if (!deps->readonly)
3134 {
3135 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3136 reg_last->uses_length++;
3137 }
3138 }
3139
3140 if (targetm.sched.exposed_pipeline)
3141 {
3142 INIT_REG_SET (&set_or_clobbered);
3143 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3144 reg_pending_sets);
3145 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3146 {
3147 struct deps_reg *reg_last = &deps->reg_last[i];
3148 rtx list;
3149 for (list = reg_last->uses; list; list = XEXP (list, 1))
3150 {
3151 rtx other = XEXP (list, 0);
3152 if (INSN_CACHED_COND (other) != const_true_rtx
3153 && refers_to_regno_p (i, i + 1, INSN_CACHED_COND (other), NULL))
3154 INSN_CACHED_COND (other) = const_true_rtx;
3155 }
3156 }
3157 }
3158
3159 /* If the current insn is conditional, we can't free any
3160 of the lists. */
3161 if (sched_has_condition_p (insn))
3162 {
3163 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3164 {
3165 struct deps_reg *reg_last = &deps->reg_last[i];
3166 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3167 false);
3168 add_dependence_list (insn, reg_last->implicit_sets, 0,
3169 REG_DEP_ANTI, false);
3170 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3171 false);
3172 add_dependence_list (insn, reg_last->control_uses, 0,
3173 REG_DEP_CONTROL, false);
3174
3175 if (!deps->readonly)
3176 {
3177 reg_last->clobbers
3178 = alloc_INSN_LIST (insn, reg_last->clobbers);
3179 reg_last->clobbers_length++;
3180 }
3181 }
3182 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3183 {
3184 struct deps_reg *reg_last = &deps->reg_last[i];
3185 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3186 false);
3187 add_dependence_list (insn, reg_last->implicit_sets, 0,
3188 REG_DEP_ANTI, false);
3189 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3190 false);
3191 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3192 false);
3193 add_dependence_list (insn, reg_last->control_uses, 0,
3194 REG_DEP_CONTROL, false);
3195
3196 if (!deps->readonly)
3197 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3198 }
3199 }
3200 else
3201 {
3202 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3203 {
3204 struct deps_reg *reg_last = &deps->reg_last[i];
3205 if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
3206 || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
3207 {
3208 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3209 REG_DEP_OUTPUT, false);
3210 add_dependence_list_and_free (deps, insn,
3211 &reg_last->implicit_sets, 0,
3212 REG_DEP_ANTI, false);
3213 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3214 REG_DEP_ANTI, false);
3215 add_dependence_list_and_free (deps, insn,
3216 &reg_last->control_uses, 0,
3217 REG_DEP_ANTI, false);
3218 add_dependence_list_and_free (deps, insn,
3219 &reg_last->clobbers, 0,
3220 REG_DEP_OUTPUT, false);
3221
3222 if (!deps->readonly)
3223 {
3224 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3225 reg_last->clobbers_length = 0;
3226 reg_last->uses_length = 0;
3227 }
3228 }
3229 else
3230 {
3231 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3232 false);
3233 add_dependence_list (insn, reg_last->implicit_sets, 0,
3234 REG_DEP_ANTI, false);
3235 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3236 false);
3237 add_dependence_list (insn, reg_last->control_uses, 0,
3238 REG_DEP_CONTROL, false);
3239 }
3240
3241 if (!deps->readonly)
3242 {
3243 reg_last->clobbers_length++;
3244 reg_last->clobbers
3245 = alloc_INSN_LIST (insn, reg_last->clobbers);
3246 }
3247 }
3248 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3249 {
3250 struct deps_reg *reg_last = &deps->reg_last[i];
3251
3252 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3253 REG_DEP_OUTPUT, false);
3254 add_dependence_list_and_free (deps, insn,
3255 &reg_last->implicit_sets,
3256 0, REG_DEP_ANTI, false);
3257 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3258 REG_DEP_OUTPUT, false);
3259 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3260 REG_DEP_ANTI, false);
3261 add_dependence_list (insn, reg_last->control_uses, 0,
3262 REG_DEP_CONTROL, false);
3263
3264 if (!deps->readonly)
3265 {
3266 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3267 reg_last->uses_length = 0;
3268 reg_last->clobbers_length = 0;
3269 }
3270 }
3271 }
3272 if (!deps->readonly)
3273 {
3274 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3275 {
3276 struct deps_reg *reg_last = &deps->reg_last[i];
3277 reg_last->control_uses
3278 = alloc_INSN_LIST (insn, reg_last->control_uses);
3279 }
3280 }
3281 }
3282
3283 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3284 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3285 {
3286 struct deps_reg *reg_last = &deps->reg_last[i];
3287 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3288 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3289 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3290 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3291 false);
3292
3293 if (!deps->readonly)
3294 reg_last->implicit_sets
3295 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3296 }
3297
3298 if (!deps->readonly)
3299 {
3300 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3301 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3302 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3303 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3304 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3305 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3306 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3307
3308 /* Set up the pending barrier found. */
3309 deps->last_reg_pending_barrier = reg_pending_barrier;
3310 }
3311
3312 CLEAR_REG_SET (reg_pending_uses);
3313 CLEAR_REG_SET (reg_pending_clobbers);
3314 CLEAR_REG_SET (reg_pending_sets);
3315 CLEAR_REG_SET (reg_pending_control_uses);
3316 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3317 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3318
3319 /* Add dependencies if a scheduling barrier was found. */
3320 if (reg_pending_barrier)
3321 {
3322 /* In the case of barrier the most added dependencies are not
3323 real, so we use anti-dependence here. */
3324 if (sched_has_condition_p (insn))
3325 {
3326 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3327 {
3328 struct deps_reg *reg_last = &deps->reg_last[i];
3329 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3330 true);
3331 add_dependence_list (insn, reg_last->sets, 0,
3332 reg_pending_barrier == TRUE_BARRIER
3333 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3334 add_dependence_list (insn, reg_last->implicit_sets, 0,
3335 REG_DEP_ANTI, true);
3336 add_dependence_list (insn, reg_last->clobbers, 0,
3337 reg_pending_barrier == TRUE_BARRIER
3338 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3339 }
3340 }
3341 else
3342 {
3343 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3344 {
3345 struct deps_reg *reg_last = &deps->reg_last[i];
3346 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3347 REG_DEP_ANTI, true);
3348 add_dependence_list_and_free (deps, insn,
3349 &reg_last->control_uses, 0,
3350 REG_DEP_CONTROL, true);
3351 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3352 reg_pending_barrier == TRUE_BARRIER
3353 ? REG_DEP_TRUE : REG_DEP_ANTI,
3354 true);
3355 add_dependence_list_and_free (deps, insn,
3356 &reg_last->implicit_sets, 0,
3357 REG_DEP_ANTI, true);
3358 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3359 reg_pending_barrier == TRUE_BARRIER
3360 ? REG_DEP_TRUE : REG_DEP_ANTI,
3361 true);
3362
3363 if (!deps->readonly)
3364 {
3365 reg_last->uses_length = 0;
3366 reg_last->clobbers_length = 0;
3367 }
3368 }
3369 }
3370
3371 if (!deps->readonly)
3372 for (i = 0; i < (unsigned)deps->max_reg; i++)
3373 {
3374 struct deps_reg *reg_last = &deps->reg_last[i];
3375 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3376 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3377 }
3378
3379 /* Don't flush pending lists on speculative checks for
3380 selective scheduling. */
3381 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3382 flush_pending_lists (deps, insn, true, true);
3383
3384 reg_pending_barrier = NOT_A_BARRIER;
3385 }
3386
3387 /* If a post-call group is still open, see if it should remain so.
3388 This insn must be a simple move of a hard reg to a pseudo or
3389 vice-versa.
3390
3391 We must avoid moving these insns for correctness on targets
3392 with small register classes, and for special registers like
3393 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3394 hard regs for all targets. */
3395
3396 if (deps->in_post_call_group_p)
3397 {
3398 rtx tmp, set = single_set (insn);
3399 int src_regno, dest_regno;
3400
3401 if (set == NULL)
3402 {
3403 if (DEBUG_INSN_P (insn))
3404 /* We don't want to mark debug insns as part of the same
3405 sched group. We know they really aren't, but if we use
3406 debug insns to tell that a call group is over, we'll
3407 get different code if debug insns are not there and
3408 instructions that follow seem like they should be part
3409 of the call group.
3410
3411 Also, if we did, chain_to_prev_insn would move the
3412 deps of the debug insn to the call insn, modifying
3413 non-debug post-dependency counts of the debug insn
3414 dependencies and otherwise messing with the scheduling
3415 order.
3416
3417 Instead, let such debug insns be scheduled freely, but
3418 keep the call group open in case there are insns that
3419 should be part of it afterwards. Since we grant debug
3420 insns higher priority than even sched group insns, it
3421 will all turn out all right. */
3422 goto debug_dont_end_call_group;
3423 else
3424 goto end_call_group;
3425 }
3426
3427 tmp = SET_DEST (set);
3428 if (GET_CODE (tmp) == SUBREG)
3429 tmp = SUBREG_REG (tmp);
3430 if (REG_P (tmp))
3431 dest_regno = REGNO (tmp);
3432 else
3433 goto end_call_group;
3434
3435 tmp = SET_SRC (set);
3436 if (GET_CODE (tmp) == SUBREG)
3437 tmp = SUBREG_REG (tmp);
3438 if ((GET_CODE (tmp) == PLUS
3439 || GET_CODE (tmp) == MINUS)
3440 && REG_P (XEXP (tmp, 0))
3441 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3442 && dest_regno == STACK_POINTER_REGNUM)
3443 src_regno = STACK_POINTER_REGNUM;
3444 else if (REG_P (tmp))
3445 src_regno = REGNO (tmp);
3446 else
3447 goto end_call_group;
3448
3449 if (src_regno < FIRST_PSEUDO_REGISTER
3450 || dest_regno < FIRST_PSEUDO_REGISTER)
3451 {
3452 if (!deps->readonly
3453 && deps->in_post_call_group_p == post_call_initial)
3454 deps->in_post_call_group_p = post_call;
3455
3456 if (!sel_sched_p () || sched_emulate_haifa_p)
3457 {
3458 SCHED_GROUP_P (insn) = 1;
3459 CANT_MOVE (insn) = 1;
3460 }
3461 }
3462 else
3463 {
3464 end_call_group:
3465 if (!deps->readonly)
3466 deps->in_post_call_group_p = not_post_call;
3467 }
3468 }
3469
3470 debug_dont_end_call_group:
3471 if ((current_sched_info->flags & DO_SPECULATION)
3472 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3473 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3474 be speculated. */
3475 {
3476 if (sel_sched_p ())
3477 sel_mark_hard_insn (insn);
3478 else
3479 {
3480 sd_iterator_def sd_it;
3481 dep_t dep;
3482
3483 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3484 sd_iterator_cond (&sd_it, &dep);)
3485 change_spec_dep_to_hard (sd_it);
3486 }
3487 }
3488
3489 /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3490 honor their original ordering. */
3491 if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
3492 {
3493 if (deps->last_args_size)
3494 add_dependence (insn, deps->last_args_size, REG_DEP_OUTPUT);
3495 deps->last_args_size = insn;
3496 }
3497 }
3498
3499 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3500 longjmp, loop forever, ...). */
3501 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3502 test for ECF_NORETURN? */
3503 static bool
3504 call_may_noreturn_p (rtx insn)
3505 {
3506 rtx call;
3507
3508 /* const or pure calls that aren't looping will always return. */
3509 if (RTL_CONST_OR_PURE_CALL_P (insn)
3510 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3511 return false;
3512
3513 call = get_call_rtx_from (insn);
3514 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3515 {
3516 rtx symbol = XEXP (XEXP (call, 0), 0);
3517 if (SYMBOL_REF_DECL (symbol)
3518 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3519 {
3520 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3521 == BUILT_IN_NORMAL)
3522 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3523 {
3524 case BUILT_IN_BCMP:
3525 case BUILT_IN_BCOPY:
3526 case BUILT_IN_BZERO:
3527 case BUILT_IN_INDEX:
3528 case BUILT_IN_MEMCHR:
3529 case BUILT_IN_MEMCMP:
3530 case BUILT_IN_MEMCPY:
3531 case BUILT_IN_MEMMOVE:
3532 case BUILT_IN_MEMPCPY:
3533 case BUILT_IN_MEMSET:
3534 case BUILT_IN_RINDEX:
3535 case BUILT_IN_STPCPY:
3536 case BUILT_IN_STPNCPY:
3537 case BUILT_IN_STRCAT:
3538 case BUILT_IN_STRCHR:
3539 case BUILT_IN_STRCMP:
3540 case BUILT_IN_STRCPY:
3541 case BUILT_IN_STRCSPN:
3542 case BUILT_IN_STRLEN:
3543 case BUILT_IN_STRNCAT:
3544 case BUILT_IN_STRNCMP:
3545 case BUILT_IN_STRNCPY:
3546 case BUILT_IN_STRPBRK:
3547 case BUILT_IN_STRRCHR:
3548 case BUILT_IN_STRSPN:
3549 case BUILT_IN_STRSTR:
3550 /* Assume certain string/memory builtins always return. */
3551 return false;
3552 default:
3553 break;
3554 }
3555 }
3556 }
3557
3558 /* For all other calls assume that they might not always return. */
3559 return true;
3560 }
3561
3562 /* Return true if INSN should be made dependent on the previous instruction
3563 group, and if all INSN's dependencies should be moved to the first
3564 instruction of that group. */
3565
3566 static bool
3567 chain_to_prev_insn_p (rtx insn)
3568 {
3569 rtx prev, x;
3570
3571 /* INSN forms a group with the previous instruction. */
3572 if (SCHED_GROUP_P (insn))
3573 return true;
3574
3575 /* If the previous instruction clobbers a register R and this one sets
3576 part of R, the clobber was added specifically to help us track the
3577 liveness of R. There's no point scheduling the clobber and leaving
3578 INSN behind, especially if we move the clobber to another block. */
3579 prev = prev_nonnote_nondebug_insn (insn);
3580 if (prev
3581 && INSN_P (prev)
3582 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3583 && GET_CODE (PATTERN (prev)) == CLOBBER)
3584 {
3585 x = XEXP (PATTERN (prev), 0);
3586 if (set_of (x, insn))
3587 return true;
3588 }
3589
3590 return false;
3591 }
3592
3593 /* Analyze INSN with DEPS as a context. */
3594 void
3595 deps_analyze_insn (struct deps_desc *deps, rtx_insn *insn)
3596 {
3597 if (sched_deps_info->start_insn)
3598 sched_deps_info->start_insn (insn);
3599
3600 /* Record the condition for this insn. */
3601 if (NONDEBUG_INSN_P (insn))
3602 {
3603 rtx t;
3604 sched_get_condition_with_rev (insn, NULL);
3605 t = INSN_CACHED_COND (insn);
3606 INSN_COND_DEPS (insn) = NULL_RTX;
3607 if (reload_completed
3608 && (current_sched_info->flags & DO_PREDICATION)
3609 && COMPARISON_P (t)
3610 && REG_P (XEXP (t, 0))
3611 && CONSTANT_P (XEXP (t, 1)))
3612 {
3613 unsigned int regno;
3614 int nregs;
3615 t = XEXP (t, 0);
3616 regno = REGNO (t);
3617 nregs = hard_regno_nregs[regno][GET_MODE (t)];
3618 t = NULL_RTX;
3619 while (nregs-- > 0)
3620 {
3621 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3622 t = concat_INSN_LIST (reg_last->sets, t);
3623 t = concat_INSN_LIST (reg_last->clobbers, t);
3624 t = concat_INSN_LIST (reg_last->implicit_sets, t);
3625 }
3626 INSN_COND_DEPS (insn) = t;
3627 }
3628 }
3629
3630 if (JUMP_P (insn))
3631 {
3632 /* Make each JUMP_INSN (but not a speculative check)
3633 a scheduling barrier for memory references. */
3634 if (!deps->readonly
3635 && !(sel_sched_p ()
3636 && sel_insn_is_speculation_check (insn)))
3637 {
3638 /* Keep the list a reasonable size. */
3639 if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
3640 flush_pending_lists (deps, insn, true, true);
3641 else
3642 deps->pending_jump_insns
3643 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3644 }
3645
3646 /* For each insn which shouldn't cross a jump, add a dependence. */
3647 add_dependence_list_and_free (deps, insn,
3648 &deps->sched_before_next_jump, 1,
3649 REG_DEP_ANTI, true);
3650
3651 sched_analyze_insn (deps, PATTERN (insn), insn);
3652 }
3653 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3654 {
3655 sched_analyze_insn (deps, PATTERN (insn), insn);
3656 }
3657 else if (CALL_P (insn))
3658 {
3659 int i;
3660
3661 CANT_MOVE (insn) = 1;
3662
3663 if (find_reg_note (insn, REG_SETJMP, NULL))
3664 {
3665 /* This is setjmp. Assume that all registers, not just
3666 hard registers, may be clobbered by this call. */
3667 reg_pending_barrier = MOVE_BARRIER;
3668 }
3669 else
3670 {
3671 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3672 /* A call may read and modify global register variables. */
3673 if (global_regs[i])
3674 {
3675 SET_REGNO_REG_SET (reg_pending_sets, i);
3676 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3677 }
3678 /* Other call-clobbered hard regs may be clobbered.
3679 Since we only have a choice between 'might be clobbered'
3680 and 'definitely not clobbered', we must include all
3681 partly call-clobbered registers here. */
3682 else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
3683 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3684 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3685 /* We don't know what set of fixed registers might be used
3686 by the function, but it is certain that the stack pointer
3687 is among them, but be conservative. */
3688 else if (fixed_regs[i])
3689 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3690 /* The frame pointer is normally not used by the function
3691 itself, but by the debugger. */
3692 /* ??? MIPS o32 is an exception. It uses the frame pointer
3693 in the macro expansion of jal but does not represent this
3694 fact in the call_insn rtl. */
3695 else if (i == FRAME_POINTER_REGNUM
3696 || (i == HARD_FRAME_POINTER_REGNUM
3697 && (! reload_completed || frame_pointer_needed)))
3698 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3699 }
3700
3701 /* For each insn which shouldn't cross a call, add a dependence
3702 between that insn and this call insn. */
3703 add_dependence_list_and_free (deps, insn,
3704 &deps->sched_before_next_call, 1,
3705 REG_DEP_ANTI, true);
3706
3707 sched_analyze_insn (deps, PATTERN (insn), insn);
3708
3709 /* If CALL would be in a sched group, then this will violate
3710 convention that sched group insns have dependencies only on the
3711 previous instruction.
3712
3713 Of course one can say: "Hey! What about head of the sched group?"
3714 And I will answer: "Basic principles (one dep per insn) are always
3715 the same." */
3716 gcc_assert (!SCHED_GROUP_P (insn));
3717
3718 /* In the absence of interprocedural alias analysis, we must flush
3719 all pending reads and writes, and start new dependencies starting
3720 from here. But only flush writes for constant calls (which may
3721 be passed a pointer to something we haven't written yet). */
3722 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3723
3724 if (!deps->readonly)
3725 {
3726 /* Remember the last function call for limiting lifetimes. */
3727 free_INSN_LIST_list (&deps->last_function_call);
3728 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3729
3730 if (call_may_noreturn_p (insn))
3731 {
3732 /* Remember the last function call that might not always return
3733 normally for limiting moves of trapping insns. */
3734 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3735 deps->last_function_call_may_noreturn
3736 = alloc_INSN_LIST (insn, NULL_RTX);
3737 }
3738
3739 /* Before reload, begin a post-call group, so as to keep the
3740 lifetimes of hard registers correct. */
3741 if (! reload_completed)
3742 deps->in_post_call_group_p = post_call;
3743 }
3744 }
3745
3746 if (sched_deps_info->use_cselib)
3747 cselib_process_insn (insn);
3748
3749 if (sched_deps_info->finish_insn)
3750 sched_deps_info->finish_insn ();
3751
3752 /* Fixup the dependencies in the sched group. */
3753 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3754 && chain_to_prev_insn_p (insn)
3755 && !sel_sched_p ())
3756 chain_to_prev_insn (insn);
3757 }
3758
3759 /* Initialize DEPS for the new block beginning with HEAD. */
3760 void
3761 deps_start_bb (struct deps_desc *deps, rtx head)
3762 {
3763 gcc_assert (!deps->readonly);
3764
3765 /* Before reload, if the previous block ended in a call, show that
3766 we are inside a post-call group, so as to keep the lifetimes of
3767 hard registers correct. */
3768 if (! reload_completed && !LABEL_P (head))
3769 {
3770 rtx insn = prev_nonnote_nondebug_insn (head);
3771
3772 if (insn && CALL_P (insn))
3773 deps->in_post_call_group_p = post_call_initial;
3774 }
3775 }
3776
3777 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3778 dependencies for each insn. */
3779 void
3780 sched_analyze (struct deps_desc *deps, rtx_insn *head, rtx_insn *tail)
3781 {
3782 rtx_insn *insn;
3783
3784 if (sched_deps_info->use_cselib)
3785 cselib_init (CSELIB_RECORD_MEMORY);
3786
3787 deps_start_bb (deps, head);
3788
3789 for (insn = head;; insn = NEXT_INSN (insn))
3790 {
3791
3792 if (INSN_P (insn))
3793 {
3794 /* And initialize deps_lists. */
3795 sd_init_insn (insn);
3796 /* Clean up SCHED_GROUP_P which may be set by last
3797 scheduler pass. */
3798 if (SCHED_GROUP_P (insn))
3799 SCHED_GROUP_P (insn) = 0;
3800 }
3801
3802 deps_analyze_insn (deps, insn);
3803
3804 if (insn == tail)
3805 {
3806 if (sched_deps_info->use_cselib)
3807 cselib_finish ();
3808 return;
3809 }
3810 }
3811 gcc_unreachable ();
3812 }
3813
3814 /* Helper for sched_free_deps ().
3815 Delete INSN's (RESOLVED_P) backward dependencies. */
3816 static void
3817 delete_dep_nodes_in_back_deps (rtx insn, bool resolved_p)
3818 {
3819 sd_iterator_def sd_it;
3820 dep_t dep;
3821 sd_list_types_def types;
3822
3823 if (resolved_p)
3824 types = SD_LIST_RES_BACK;
3825 else
3826 types = SD_LIST_BACK;
3827
3828 for (sd_it = sd_iterator_start (insn, types);
3829 sd_iterator_cond (&sd_it, &dep);)
3830 {
3831 dep_link_t link = *sd_it.linkp;
3832 dep_node_t node = DEP_LINK_NODE (link);
3833 deps_list_t back_list;
3834 deps_list_t forw_list;
3835
3836 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3837 remove_from_deps_list (link, back_list);
3838 delete_dep_node (node);
3839 }
3840 }
3841
3842 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3843 deps_lists. */
3844 void
3845 sched_free_deps (rtx head, rtx tail, bool resolved_p)
3846 {
3847 rtx insn;
3848 rtx next_tail = NEXT_INSN (tail);
3849
3850 /* We make two passes since some insns may be scheduled before their
3851 dependencies are resolved. */
3852 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3853 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3854 {
3855 /* Clear forward deps and leave the dep_nodes to the
3856 corresponding back_deps list. */
3857 if (resolved_p)
3858 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3859 else
3860 clear_deps_list (INSN_FORW_DEPS (insn));
3861 }
3862 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3863 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3864 {
3865 /* Clear resolved back deps together with its dep_nodes. */
3866 delete_dep_nodes_in_back_deps (insn, resolved_p);
3867
3868 sd_finish_insn (insn);
3869 }
3870 }
3871 \f
3872 /* Initialize variables for region data dependence analysis.
3873 When LAZY_REG_LAST is true, do not allocate reg_last array
3874 of struct deps_desc immediately. */
3875
3876 void
3877 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3878 {
3879 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3880
3881 deps->max_reg = max_reg;
3882 if (lazy_reg_last)
3883 deps->reg_last = NULL;
3884 else
3885 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3886 INIT_REG_SET (&deps->reg_last_in_use);
3887
3888 deps->pending_read_insns = 0;
3889 deps->pending_read_mems = 0;
3890 deps->pending_write_insns = 0;
3891 deps->pending_write_mems = 0;
3892 deps->pending_jump_insns = 0;
3893 deps->pending_read_list_length = 0;
3894 deps->pending_write_list_length = 0;
3895 deps->pending_flush_length = 0;
3896 deps->last_pending_memory_flush = 0;
3897 deps->last_function_call = 0;
3898 deps->last_function_call_may_noreturn = 0;
3899 deps->sched_before_next_call = 0;
3900 deps->sched_before_next_jump = 0;
3901 deps->in_post_call_group_p = not_post_call;
3902 deps->last_debug_insn = 0;
3903 deps->last_args_size = 0;
3904 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3905 deps->readonly = 0;
3906 }
3907
3908 /* Init only reg_last field of DEPS, which was not allocated before as
3909 we inited DEPS lazily. */
3910 void
3911 init_deps_reg_last (struct deps_desc *deps)
3912 {
3913 gcc_assert (deps && deps->max_reg > 0);
3914 gcc_assert (deps->reg_last == NULL);
3915
3916 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3917 }
3918
3919
3920 /* Free insn lists found in DEPS. */
3921
3922 void
3923 free_deps (struct deps_desc *deps)
3924 {
3925 unsigned i;
3926 reg_set_iterator rsi;
3927
3928 /* We set max_reg to 0 when this context was already freed. */
3929 if (deps->max_reg == 0)
3930 {
3931 gcc_assert (deps->reg_last == NULL);
3932 return;
3933 }
3934 deps->max_reg = 0;
3935
3936 free_INSN_LIST_list (&deps->pending_read_insns);
3937 free_EXPR_LIST_list (&deps->pending_read_mems);
3938 free_INSN_LIST_list (&deps->pending_write_insns);
3939 free_EXPR_LIST_list (&deps->pending_write_mems);
3940 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3941
3942 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3943 times. For a testcase with 42000 regs and 8000 small basic blocks,
3944 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3945 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3946 {
3947 struct deps_reg *reg_last = &deps->reg_last[i];
3948 if (reg_last->uses)
3949 free_INSN_LIST_list (&reg_last->uses);
3950 if (reg_last->sets)
3951 free_INSN_LIST_list (&reg_last->sets);
3952 if (reg_last->implicit_sets)
3953 free_INSN_LIST_list (&reg_last->implicit_sets);
3954 if (reg_last->control_uses)
3955 free_INSN_LIST_list (&reg_last->control_uses);
3956 if (reg_last->clobbers)
3957 free_INSN_LIST_list (&reg_last->clobbers);
3958 }
3959 CLEAR_REG_SET (&deps->reg_last_in_use);
3960
3961 /* As we initialize reg_last lazily, it is possible that we didn't allocate
3962 it at all. */
3963 free (deps->reg_last);
3964 deps->reg_last = NULL;
3965
3966 deps = NULL;
3967 }
3968
3969 /* Remove INSN from dependence contexts DEPS. */
3970 void
3971 remove_from_deps (struct deps_desc *deps, rtx insn)
3972 {
3973 int removed;
3974 unsigned i;
3975 reg_set_iterator rsi;
3976
3977 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
3978 &deps->pending_read_mems);
3979 if (!DEBUG_INSN_P (insn))
3980 deps->pending_read_list_length -= removed;
3981 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
3982 &deps->pending_write_mems);
3983 deps->pending_write_list_length -= removed;
3984
3985 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
3986 deps->pending_flush_length -= removed;
3987 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
3988 deps->pending_flush_length -= removed;
3989
3990 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3991 {
3992 struct deps_reg *reg_last = &deps->reg_last[i];
3993 if (reg_last->uses)
3994 remove_from_dependence_list (insn, &reg_last->uses);
3995 if (reg_last->sets)
3996 remove_from_dependence_list (insn, &reg_last->sets);
3997 if (reg_last->implicit_sets)
3998 remove_from_dependence_list (insn, &reg_last->implicit_sets);
3999 if (reg_last->clobbers)
4000 remove_from_dependence_list (insn, &reg_last->clobbers);
4001 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
4002 && !reg_last->clobbers)
4003 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, i);
4004 }
4005
4006 if (CALL_P (insn))
4007 {
4008 remove_from_dependence_list (insn, &deps->last_function_call);
4009 remove_from_dependence_list (insn,
4010 &deps->last_function_call_may_noreturn);
4011 }
4012 remove_from_dependence_list (insn, &deps->sched_before_next_call);
4013 }
4014
4015 /* Init deps data vector. */
4016 static void
4017 init_deps_data_vector (void)
4018 {
4019 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
4020 if (reserve > 0 && ! h_d_i_d.space (reserve))
4021 h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
4022 }
4023
4024 /* If it is profitable to use them, initialize or extend (depending on
4025 GLOBAL_P) dependency data. */
4026 void
4027 sched_deps_init (bool global_p)
4028 {
4029 /* Average number of insns in the basic block.
4030 '+ 1' is used to make it nonzero. */
4031 int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4032
4033 init_deps_data_vector ();
4034
4035 /* We use another caching mechanism for selective scheduling, so
4036 we don't use this one. */
4037 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4038 {
4039 /* ?!? We could save some memory by computing a per-region luid mapping
4040 which could reduce both the number of vectors in the cache and the
4041 size of each vector. Instead we just avoid the cache entirely unless
4042 the average number of instructions in a basic block is very high. See
4043 the comment before the declaration of true_dependency_cache for
4044 what we consider "very high". */
4045 cache_size = 0;
4046 extend_dependency_caches (sched_max_luid, true);
4047 }
4048
4049 if (global_p)
4050 {
4051 dl_pool = create_alloc_pool ("deps_list", sizeof (struct _deps_list),
4052 /* Allocate lists for one block at a time. */
4053 insns_in_block);
4054 dn_pool = create_alloc_pool ("dep_node", sizeof (struct _dep_node),
4055 /* Allocate nodes for one block at a time.
4056 We assume that average insn has
4057 5 producers. */
4058 5 * insns_in_block);
4059 }
4060 }
4061
4062
4063 /* Create or extend (depending on CREATE_P) dependency caches to
4064 size N. */
4065 void
4066 extend_dependency_caches (int n, bool create_p)
4067 {
4068 if (create_p || true_dependency_cache)
4069 {
4070 int i, luid = cache_size + n;
4071
4072 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4073 luid);
4074 output_dependency_cache = XRESIZEVEC (bitmap_head,
4075 output_dependency_cache, luid);
4076 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4077 luid);
4078 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4079 luid);
4080
4081 if (current_sched_info->flags & DO_SPECULATION)
4082 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4083 luid);
4084
4085 for (i = cache_size; i < luid; i++)
4086 {
4087 bitmap_initialize (&true_dependency_cache[i], 0);
4088 bitmap_initialize (&output_dependency_cache[i], 0);
4089 bitmap_initialize (&anti_dependency_cache[i], 0);
4090 bitmap_initialize (&control_dependency_cache[i], 0);
4091
4092 if (current_sched_info->flags & DO_SPECULATION)
4093 bitmap_initialize (&spec_dependency_cache[i], 0);
4094 }
4095 cache_size = luid;
4096 }
4097 }
4098
4099 /* Finalize dependency information for the whole function. */
4100 void
4101 sched_deps_finish (void)
4102 {
4103 gcc_assert (deps_pools_are_empty_p ());
4104 free_alloc_pool_if_empty (&dn_pool);
4105 free_alloc_pool_if_empty (&dl_pool);
4106 gcc_assert (dn_pool == NULL && dl_pool == NULL);
4107
4108 h_d_i_d.release ();
4109 cache_size = 0;
4110
4111 if (true_dependency_cache)
4112 {
4113 int i;
4114
4115 for (i = 0; i < cache_size; i++)
4116 {
4117 bitmap_clear (&true_dependency_cache[i]);
4118 bitmap_clear (&output_dependency_cache[i]);
4119 bitmap_clear (&anti_dependency_cache[i]);
4120 bitmap_clear (&control_dependency_cache[i]);
4121
4122 if (sched_deps_info->generate_spec_deps)
4123 bitmap_clear (&spec_dependency_cache[i]);
4124 }
4125 free (true_dependency_cache);
4126 true_dependency_cache = NULL;
4127 free (output_dependency_cache);
4128 output_dependency_cache = NULL;
4129 free (anti_dependency_cache);
4130 anti_dependency_cache = NULL;
4131 free (control_dependency_cache);
4132 control_dependency_cache = NULL;
4133
4134 if (sched_deps_info->generate_spec_deps)
4135 {
4136 free (spec_dependency_cache);
4137 spec_dependency_cache = NULL;
4138 }
4139
4140 }
4141 }
4142
4143 /* Initialize some global variables needed by the dependency analysis
4144 code. */
4145
4146 void
4147 init_deps_global (void)
4148 {
4149 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4150 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4151 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4152 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4153 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4154 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4155 reg_pending_barrier = NOT_A_BARRIER;
4156
4157 if (!sel_sched_p () || sched_emulate_haifa_p)
4158 {
4159 sched_deps_info->start_insn = haifa_start_insn;
4160 sched_deps_info->finish_insn = haifa_finish_insn;
4161
4162 sched_deps_info->note_reg_set = haifa_note_reg_set;
4163 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4164 sched_deps_info->note_reg_use = haifa_note_reg_use;
4165
4166 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4167 sched_deps_info->note_dep = haifa_note_dep;
4168 }
4169 }
4170
4171 /* Free everything used by the dependency analysis code. */
4172
4173 void
4174 finish_deps_global (void)
4175 {
4176 FREE_REG_SET (reg_pending_sets);
4177 FREE_REG_SET (reg_pending_clobbers);
4178 FREE_REG_SET (reg_pending_uses);
4179 FREE_REG_SET (reg_pending_control_uses);
4180 }
4181
4182 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4183 dw_t
4184 estimate_dep_weak (rtx mem1, rtx mem2)
4185 {
4186 rtx r1, r2;
4187
4188 if (mem1 == mem2)
4189 /* MEMs are the same - don't speculate. */
4190 return MIN_DEP_WEAK;
4191
4192 r1 = XEXP (mem1, 0);
4193 r2 = XEXP (mem2, 0);
4194
4195 if (r1 == r2
4196 || (REG_P (r1) && REG_P (r2)
4197 && REGNO (r1) == REGNO (r2)))
4198 /* Again, MEMs are the same. */
4199 return MIN_DEP_WEAK;
4200 else if ((REG_P (r1) && !REG_P (r2))
4201 || (!REG_P (r1) && REG_P (r2)))
4202 /* Different addressing modes - reason to be more speculative,
4203 than usual. */
4204 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4205 else
4206 /* We can't say anything about the dependence. */
4207 return UNCERTAIN_DEP_WEAK;
4208 }
4209
4210 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4211 This function can handle same INSN and ELEM (INSN == ELEM).
4212 It is a convenience wrapper. */
4213 static void
4214 add_dependence_1 (rtx_insn *insn, rtx_insn *elem, enum reg_note dep_type)
4215 {
4216 ds_t ds;
4217 bool internal;
4218
4219 if (dep_type == REG_DEP_TRUE)
4220 ds = DEP_TRUE;
4221 else if (dep_type == REG_DEP_OUTPUT)
4222 ds = DEP_OUTPUT;
4223 else if (dep_type == REG_DEP_CONTROL)
4224 ds = DEP_CONTROL;
4225 else
4226 {
4227 gcc_assert (dep_type == REG_DEP_ANTI);
4228 ds = DEP_ANTI;
4229 }
4230
4231 /* When add_dependence is called from inside sched-deps.c, we expect
4232 cur_insn to be non-null. */
4233 internal = cur_insn != NULL;
4234 if (internal)
4235 gcc_assert (insn == cur_insn);
4236 else
4237 cur_insn = insn;
4238
4239 note_dep (elem, ds);
4240 if (!internal)
4241 cur_insn = NULL;
4242 }
4243
4244 /* Return weakness of speculative type TYPE in the dep_status DS,
4245 without checking to prevent ICEs on malformed input. */
4246 static dw_t
4247 get_dep_weak_1 (ds_t ds, ds_t type)
4248 {
4249 ds = ds & type;
4250
4251 switch (type)
4252 {
4253 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4254 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4255 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4256 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4257 default: gcc_unreachable ();
4258 }
4259
4260 return (dw_t) ds;
4261 }
4262
4263 /* Return weakness of speculative type TYPE in the dep_status DS. */
4264 dw_t
4265 get_dep_weak (ds_t ds, ds_t type)
4266 {
4267 dw_t dw = get_dep_weak_1 (ds, type);
4268
4269 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4270 return dw;
4271 }
4272
4273 /* Return the dep_status, which has the same parameters as DS, except for
4274 speculative type TYPE, that will have weakness DW. */
4275 ds_t
4276 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4277 {
4278 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4279
4280 ds &= ~type;
4281 switch (type)
4282 {
4283 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4284 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4285 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4286 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4287 default: gcc_unreachable ();
4288 }
4289 return ds;
4290 }
4291
4292 /* Return the join of two dep_statuses DS1 and DS2.
4293 If MAX_P is true then choose the greater probability,
4294 otherwise multiply probabilities.
4295 This function assumes that both DS1 and DS2 contain speculative bits. */
4296 static ds_t
4297 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4298 {
4299 ds_t ds, t;
4300
4301 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4302
4303 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4304
4305 t = FIRST_SPEC_TYPE;
4306 do
4307 {
4308 if ((ds1 & t) && !(ds2 & t))
4309 ds |= ds1 & t;
4310 else if (!(ds1 & t) && (ds2 & t))
4311 ds |= ds2 & t;
4312 else if ((ds1 & t) && (ds2 & t))
4313 {
4314 dw_t dw1 = get_dep_weak (ds1, t);
4315 dw_t dw2 = get_dep_weak (ds2, t);
4316 ds_t dw;
4317
4318 if (!max_p)
4319 {
4320 dw = ((ds_t) dw1) * ((ds_t) dw2);
4321 dw /= MAX_DEP_WEAK;
4322 if (dw < MIN_DEP_WEAK)
4323 dw = MIN_DEP_WEAK;
4324 }
4325 else
4326 {
4327 if (dw1 >= dw2)
4328 dw = dw1;
4329 else
4330 dw = dw2;
4331 }
4332
4333 ds = set_dep_weak (ds, t, (dw_t) dw);
4334 }
4335
4336 if (t == LAST_SPEC_TYPE)
4337 break;
4338 t <<= SPEC_TYPE_SHIFT;
4339 }
4340 while (1);
4341
4342 return ds;
4343 }
4344
4345 /* Return the join of two dep_statuses DS1 and DS2.
4346 This function assumes that both DS1 and DS2 contain speculative bits. */
4347 ds_t
4348 ds_merge (ds_t ds1, ds_t ds2)
4349 {
4350 return ds_merge_1 (ds1, ds2, false);
4351 }
4352
4353 /* Return the join of two dep_statuses DS1 and DS2. */
4354 ds_t
4355 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4356 {
4357 ds_t new_status = ds | ds2;
4358
4359 if (new_status & SPECULATIVE)
4360 {
4361 if ((ds && !(ds & SPECULATIVE))
4362 || (ds2 && !(ds2 & SPECULATIVE)))
4363 /* Then this dep can't be speculative. */
4364 new_status &= ~SPECULATIVE;
4365 else
4366 {
4367 /* Both are speculative. Merging probabilities. */
4368 if (mem1)
4369 {
4370 dw_t dw;
4371
4372 dw = estimate_dep_weak (mem1, mem2);
4373 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4374 }
4375
4376 if (!ds)
4377 new_status = ds2;
4378 else if (!ds2)
4379 new_status = ds;
4380 else
4381 new_status = ds_merge (ds2, ds);
4382 }
4383 }
4384
4385 return new_status;
4386 }
4387
4388 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4389 probabilities. */
4390 ds_t
4391 ds_max_merge (ds_t ds1, ds_t ds2)
4392 {
4393 if (ds1 == 0 && ds2 == 0)
4394 return 0;
4395
4396 if (ds1 == 0 && ds2 != 0)
4397 return ds2;
4398
4399 if (ds1 != 0 && ds2 == 0)
4400 return ds1;
4401
4402 return ds_merge_1 (ds1, ds2, true);
4403 }
4404
4405 /* Return the probability of speculation success for the speculation
4406 status DS. */
4407 dw_t
4408 ds_weak (ds_t ds)
4409 {
4410 ds_t res = 1, dt;
4411 int n = 0;
4412
4413 dt = FIRST_SPEC_TYPE;
4414 do
4415 {
4416 if (ds & dt)
4417 {
4418 res *= (ds_t) get_dep_weak (ds, dt);
4419 n++;
4420 }
4421
4422 if (dt == LAST_SPEC_TYPE)
4423 break;
4424 dt <<= SPEC_TYPE_SHIFT;
4425 }
4426 while (1);
4427
4428 gcc_assert (n);
4429 while (--n)
4430 res /= MAX_DEP_WEAK;
4431
4432 if (res < MIN_DEP_WEAK)
4433 res = MIN_DEP_WEAK;
4434
4435 gcc_assert (res <= MAX_DEP_WEAK);
4436
4437 return (dw_t) res;
4438 }
4439
4440 /* Return a dep status that contains all speculation types of DS. */
4441 ds_t
4442 ds_get_speculation_types (ds_t ds)
4443 {
4444 if (ds & BEGIN_DATA)
4445 ds |= BEGIN_DATA;
4446 if (ds & BE_IN_DATA)
4447 ds |= BE_IN_DATA;
4448 if (ds & BEGIN_CONTROL)
4449 ds |= BEGIN_CONTROL;
4450 if (ds & BE_IN_CONTROL)
4451 ds |= BE_IN_CONTROL;
4452
4453 return ds & SPECULATIVE;
4454 }
4455
4456 /* Return a dep status that contains maximal weakness for each speculation
4457 type present in DS. */
4458 ds_t
4459 ds_get_max_dep_weak (ds_t ds)
4460 {
4461 if (ds & BEGIN_DATA)
4462 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4463 if (ds & BE_IN_DATA)
4464 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4465 if (ds & BEGIN_CONTROL)
4466 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4467 if (ds & BE_IN_CONTROL)
4468 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4469
4470 return ds;
4471 }
4472
4473 /* Dump information about the dependence status S. */
4474 static void
4475 dump_ds (FILE *f, ds_t s)
4476 {
4477 fprintf (f, "{");
4478
4479 if (s & BEGIN_DATA)
4480 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4481 if (s & BE_IN_DATA)
4482 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4483 if (s & BEGIN_CONTROL)
4484 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4485 if (s & BE_IN_CONTROL)
4486 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4487
4488 if (s & HARD_DEP)
4489 fprintf (f, "HARD_DEP; ");
4490
4491 if (s & DEP_TRUE)
4492 fprintf (f, "DEP_TRUE; ");
4493 if (s & DEP_OUTPUT)
4494 fprintf (f, "DEP_OUTPUT; ");
4495 if (s & DEP_ANTI)
4496 fprintf (f, "DEP_ANTI; ");
4497 if (s & DEP_CONTROL)
4498 fprintf (f, "DEP_CONTROL; ");
4499
4500 fprintf (f, "}");
4501 }
4502
4503 DEBUG_FUNCTION void
4504 debug_ds (ds_t s)
4505 {
4506 dump_ds (stderr, s);
4507 fprintf (stderr, "\n");
4508 }
4509
4510 #ifdef ENABLE_CHECKING
4511 /* Verify that dependence type and status are consistent.
4512 If RELAXED_P is true, then skip dep_weakness checks. */
4513 static void
4514 check_dep (dep_t dep, bool relaxed_p)
4515 {
4516 enum reg_note dt = DEP_TYPE (dep);
4517 ds_t ds = DEP_STATUS (dep);
4518
4519 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4520
4521 if (!(current_sched_info->flags & USE_DEPS_LIST))
4522 {
4523 gcc_assert (ds == 0);
4524 return;
4525 }
4526
4527 /* Check that dependence type contains the same bits as the status. */
4528 if (dt == REG_DEP_TRUE)
4529 gcc_assert (ds & DEP_TRUE);
4530 else if (dt == REG_DEP_OUTPUT)
4531 gcc_assert ((ds & DEP_OUTPUT)
4532 && !(ds & DEP_TRUE));
4533 else if (dt == REG_DEP_ANTI)
4534 gcc_assert ((ds & DEP_ANTI)
4535 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4536 else
4537 gcc_assert (dt == REG_DEP_CONTROL
4538 && (ds & DEP_CONTROL)
4539 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4540
4541 /* HARD_DEP can not appear in dep_status of a link. */
4542 gcc_assert (!(ds & HARD_DEP));
4543
4544 /* Check that dependence status is set correctly when speculation is not
4545 supported. */
4546 if (!sched_deps_info->generate_spec_deps)
4547 gcc_assert (!(ds & SPECULATIVE));
4548 else if (ds & SPECULATIVE)
4549 {
4550 if (!relaxed_p)
4551 {
4552 ds_t type = FIRST_SPEC_TYPE;
4553
4554 /* Check that dependence weakness is in proper range. */
4555 do
4556 {
4557 if (ds & type)
4558 get_dep_weak (ds, type);
4559
4560 if (type == LAST_SPEC_TYPE)
4561 break;
4562 type <<= SPEC_TYPE_SHIFT;
4563 }
4564 while (1);
4565 }
4566
4567 if (ds & BEGIN_SPEC)
4568 {
4569 /* Only true dependence can be data speculative. */
4570 if (ds & BEGIN_DATA)
4571 gcc_assert (ds & DEP_TRUE);
4572
4573 /* Control dependencies in the insn scheduler are represented by
4574 anti-dependencies, therefore only anti dependence can be
4575 control speculative. */
4576 if (ds & BEGIN_CONTROL)
4577 gcc_assert (ds & DEP_ANTI);
4578 }
4579 else
4580 {
4581 /* Subsequent speculations should resolve true dependencies. */
4582 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4583 }
4584
4585 /* Check that true and anti dependencies can't have other speculative
4586 statuses. */
4587 if (ds & DEP_TRUE)
4588 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4589 /* An output dependence can't be speculative at all. */
4590 gcc_assert (!(ds & DEP_OUTPUT));
4591 if (ds & DEP_ANTI)
4592 gcc_assert (ds & BEGIN_CONTROL);
4593 }
4594 }
4595 #endif /* ENABLE_CHECKING */
4596
4597 /* The following code discovers opportunities to switch a memory reference
4598 and an increment by modifying the address. We ensure that this is done
4599 only for dependencies that are only used to show a single register
4600 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4601 instruction involved is subject to only one dep that can cause a pattern
4602 change.
4603
4604 When we discover a suitable dependency, we fill in the dep_replacement
4605 structure to show how to modify the memory reference. */
4606
4607 /* Holds information about a pair of memory reference and register increment
4608 insns which depend on each other, but could possibly be interchanged. */
4609 struct mem_inc_info
4610 {
4611 rtx_insn *inc_insn;
4612 rtx_insn *mem_insn;
4613
4614 rtx *mem_loc;
4615 /* A register occurring in the memory address for which we wish to break
4616 the dependence. This must be identical to the destination register of
4617 the increment. */
4618 rtx mem_reg0;
4619 /* Any kind of index that is added to that register. */
4620 rtx mem_index;
4621 /* The constant offset used in the memory address. */
4622 HOST_WIDE_INT mem_constant;
4623 /* The constant added in the increment insn. Negated if the increment is
4624 after the memory address. */
4625 HOST_WIDE_INT inc_constant;
4626 /* The source register used in the increment. May be different from mem_reg0
4627 if the increment occurs before the memory address. */
4628 rtx inc_input;
4629 };
4630
4631 /* Verify that the memory location described in MII can be replaced with
4632 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4633 insn remains unchanged by this function. */
4634
4635 static rtx
4636 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4637 {
4638 rtx mem = *mii->mem_loc;
4639 rtx new_mem;
4640
4641 /* Jump through a lot of hoops to keep the attributes up to date. We
4642 do not want to call one of the change address variants that take
4643 an offset even though we know the offset in many cases. These
4644 assume you are changing where the address is pointing by the
4645 offset. */
4646 new_mem = replace_equiv_address_nv (mem, new_addr);
4647 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4648 {
4649 if (sched_verbose >= 5)
4650 fprintf (sched_dump, "validation failure\n");
4651 return NULL_RTX;
4652 }
4653
4654 /* Put back the old one. */
4655 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4656
4657 return new_mem;
4658 }
4659
4660 /* Return true if INSN is of a form "a = b op c" where a and b are
4661 regs. op is + if c is a reg and +|- if c is a const. Fill in
4662 informantion in MII about what is found.
4663 BEFORE_MEM indicates whether the increment is found before or after
4664 a corresponding memory reference. */
4665
4666 static bool
4667 parse_add_or_inc (struct mem_inc_info *mii, rtx_insn *insn, bool before_mem)
4668 {
4669 rtx pat = single_set (insn);
4670 rtx src, cst;
4671 bool regs_equal;
4672
4673 if (RTX_FRAME_RELATED_P (insn) || !pat)
4674 return false;
4675
4676 /* Result must be single reg. */
4677 if (!REG_P (SET_DEST (pat)))
4678 return false;
4679
4680 if (GET_CODE (SET_SRC (pat)) != PLUS)
4681 return false;
4682
4683 mii->inc_insn = insn;
4684 src = SET_SRC (pat);
4685 mii->inc_input = XEXP (src, 0);
4686
4687 if (!REG_P (XEXP (src, 0)))
4688 return false;
4689
4690 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4691 return false;
4692
4693 cst = XEXP (src, 1);
4694 if (!CONST_INT_P (cst))
4695 return false;
4696 mii->inc_constant = INTVAL (cst);
4697
4698 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4699
4700 if (!before_mem)
4701 {
4702 mii->inc_constant = -mii->inc_constant;
4703 if (!regs_equal)
4704 return false;
4705 }
4706
4707 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4708 {
4709 /* Note that the sign has already been reversed for !before_mem. */
4710 #ifdef STACK_GROWS_DOWNWARD
4711 return mii->inc_constant > 0;
4712 #else
4713 return mii->inc_constant < 0;
4714 #endif
4715 }
4716 return true;
4717 }
4718
4719 /* Once a suitable mem reference has been found and the corresponding data
4720 in MII has been filled in, this function is called to find a suitable
4721 add or inc insn involving the register we found in the memory
4722 reference. */
4723
4724 static bool
4725 find_inc (struct mem_inc_info *mii, bool backwards)
4726 {
4727 sd_iterator_def sd_it;
4728 dep_t dep;
4729
4730 sd_it = sd_iterator_start (mii->mem_insn,
4731 backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4732 while (sd_iterator_cond (&sd_it, &dep))
4733 {
4734 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4735 rtx_insn *pro = DEP_PRO (dep);
4736 rtx_insn *con = DEP_CON (dep);
4737 rtx_insn *inc_cand = backwards ? pro : con;
4738 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4739 goto next;
4740 if (parse_add_or_inc (mii, inc_cand, backwards))
4741 {
4742 struct dep_replacement *desc;
4743 df_ref def;
4744 rtx newaddr, newmem;
4745
4746 if (sched_verbose >= 5)
4747 fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4748 INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4749
4750 /* Need to assure that none of the operands of the inc
4751 instruction are assigned to by the mem insn. */
4752 FOR_EACH_INSN_DEF (def, mii->mem_insn)
4753 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4754 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4755 {
4756 if (sched_verbose >= 5)
4757 fprintf (sched_dump,
4758 "inc conflicts with store failure.\n");
4759 goto next;
4760 }
4761
4762 /* The inc instruction could have clobbers, make sure those
4763 registers are not used in mem insn. */
4764 FOR_EACH_INSN_DEF (def, mii->inc_insn)
4765 if (!reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4766 {
4767 df_ref use;
4768 FOR_EACH_INSN_USE (use, mii->mem_insn)
4769 if (reg_overlap_mentioned_p (DF_REF_REG (def),
4770 DF_REF_REG (use)))
4771 {
4772 if (sched_verbose >= 5)
4773 fprintf (sched_dump,
4774 "inc clobber used in store failure.\n");
4775 goto next;
4776 }
4777 }
4778
4779 newaddr = mii->inc_input;
4780 if (mii->mem_index != NULL_RTX)
4781 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4782 mii->mem_index);
4783 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4784 mii->mem_constant + mii->inc_constant);
4785 newmem = attempt_change (mii, newaddr);
4786 if (newmem == NULL_RTX)
4787 goto next;
4788 if (sched_verbose >= 5)
4789 fprintf (sched_dump, "successful address replacement\n");
4790 desc = XCNEW (struct dep_replacement);
4791 DEP_REPLACE (dep) = desc;
4792 desc->loc = mii->mem_loc;
4793 desc->newval = newmem;
4794 desc->orig = *desc->loc;
4795 desc->insn = mii->mem_insn;
4796 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4797 INSN_SPEC_BACK_DEPS (con));
4798 if (backwards)
4799 {
4800 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4801 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4802 REG_DEP_TRUE);
4803 }
4804 else
4805 {
4806 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4807 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4808 REG_DEP_ANTI);
4809 }
4810 return true;
4811 }
4812 next:
4813 sd_iterator_next (&sd_it);
4814 }
4815 return false;
4816 }
4817
4818 /* A recursive function that walks ADDRESS_OF_X to find memory references
4819 which could be modified during scheduling. We call find_inc for each
4820 one we find that has a recognizable form. MII holds information about
4821 the pair of memory/increment instructions.
4822 We ensure that every instruction with a memory reference (which will be
4823 the location of the replacement) is assigned at most one breakable
4824 dependency. */
4825
4826 static bool
4827 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4828 {
4829 rtx x = *address_of_x;
4830 enum rtx_code code = GET_CODE (x);
4831 const char *const fmt = GET_RTX_FORMAT (code);
4832 int i;
4833
4834 if (code == MEM)
4835 {
4836 rtx reg0 = XEXP (x, 0);
4837
4838 mii->mem_loc = address_of_x;
4839 mii->mem_index = NULL_RTX;
4840 mii->mem_constant = 0;
4841 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4842 {
4843 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4844 reg0 = XEXP (reg0, 0);
4845 }
4846 if (GET_CODE (reg0) == PLUS)
4847 {
4848 mii->mem_index = XEXP (reg0, 1);
4849 reg0 = XEXP (reg0, 0);
4850 }
4851 if (REG_P (reg0))
4852 {
4853 df_ref use;
4854 int occurrences = 0;
4855
4856 /* Make sure this reg appears only once in this insn. Can't use
4857 count_occurrences since that only works for pseudos. */
4858 FOR_EACH_INSN_USE (use, mii->mem_insn)
4859 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
4860 if (++occurrences > 1)
4861 {
4862 if (sched_verbose >= 5)
4863 fprintf (sched_dump, "mem count failure\n");
4864 return false;
4865 }
4866
4867 mii->mem_reg0 = reg0;
4868 return find_inc (mii, true) || find_inc (mii, false);
4869 }
4870 return false;
4871 }
4872
4873 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4874 {
4875 /* If REG occurs inside a MEM used in a bit-field reference,
4876 that is unacceptable. */
4877 return false;
4878 }
4879
4880 /* Time for some deep diving. */
4881 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4882 {
4883 if (fmt[i] == 'e')
4884 {
4885 if (find_mem (mii, &XEXP (x, i)))
4886 return true;
4887 }
4888 else if (fmt[i] == 'E')
4889 {
4890 int j;
4891 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4892 if (find_mem (mii, &XVECEXP (x, i, j)))
4893 return true;
4894 }
4895 }
4896 return false;
4897 }
4898
4899
4900 /* Examine the instructions between HEAD and TAIL and try to find
4901 dependencies that can be broken by modifying one of the patterns. */
4902
4903 void
4904 find_modifiable_mems (rtx_insn *head, rtx_insn *tail)
4905 {
4906 rtx_insn *insn, *next_tail = NEXT_INSN (tail);
4907 int success_in_block = 0;
4908
4909 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4910 {
4911 struct mem_inc_info mii;
4912
4913 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4914 continue;
4915
4916 mii.mem_insn = insn;
4917 if (find_mem (&mii, &PATTERN (insn)))
4918 success_in_block++;
4919 }
4920 if (success_in_block && sched_verbose >= 5)
4921 fprintf (sched_dump, "%d candidates for address modification found.\n",
4922 success_in_block);
4923 }
4924
4925 #endif /* INSN_SCHEDULING */