]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sched-deps.c
Remove global call sets: sched-deps.c
[thirdparty/gcc.git] / gcc / sched-deps.c
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22 \f
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "backend.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "df.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "memmodel.h"
34 #include "ira.h"
35 #include "ira-int.h"
36 #include "insn-attr.h"
37 #include "cfgbuild.h"
38 #include "sched-int.h"
39 #include "params.h"
40 #include "cselib.h"
41 #include "function-abi.h"
42
43 #ifdef INSN_SCHEDULING
44
45 /* Holds current parameters for the dependency analyzer. */
46 struct sched_deps_info_def *sched_deps_info;
47
48 /* The data is specific to the Haifa scheduler. */
49 vec<haifa_deps_insn_data_def>
50 h_d_i_d = vNULL;
51
52 /* Return the major type present in the DS. */
53 enum reg_note
54 ds_to_dk (ds_t ds)
55 {
56 if (ds & DEP_TRUE)
57 return REG_DEP_TRUE;
58
59 if (ds & DEP_OUTPUT)
60 return REG_DEP_OUTPUT;
61
62 if (ds & DEP_CONTROL)
63 return REG_DEP_CONTROL;
64
65 gcc_assert (ds & DEP_ANTI);
66
67 return REG_DEP_ANTI;
68 }
69
70 /* Return equivalent dep_status. */
71 ds_t
72 dk_to_ds (enum reg_note dk)
73 {
74 switch (dk)
75 {
76 case REG_DEP_TRUE:
77 return DEP_TRUE;
78
79 case REG_DEP_OUTPUT:
80 return DEP_OUTPUT;
81
82 case REG_DEP_CONTROL:
83 return DEP_CONTROL;
84
85 default:
86 gcc_assert (dk == REG_DEP_ANTI);
87 return DEP_ANTI;
88 }
89 }
90
91 /* Functions to operate with dependence information container - dep_t. */
92
93 /* Init DEP with the arguments. */
94 void
95 init_dep_1 (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note type, ds_t ds)
96 {
97 DEP_PRO (dep) = pro;
98 DEP_CON (dep) = con;
99 DEP_TYPE (dep) = type;
100 DEP_STATUS (dep) = ds;
101 DEP_COST (dep) = UNKNOWN_DEP_COST;
102 DEP_NONREG (dep) = 0;
103 DEP_MULTIPLE (dep) = 0;
104 DEP_REPLACE (dep) = NULL;
105 }
106
107 /* Init DEP with the arguments.
108 While most of the scheduler (including targets) only need the major type
109 of the dependency, it is convenient to hide full dep_status from them. */
110 void
111 init_dep (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note kind)
112 {
113 ds_t ds;
114
115 if ((current_sched_info->flags & USE_DEPS_LIST))
116 ds = dk_to_ds (kind);
117 else
118 ds = 0;
119
120 init_dep_1 (dep, pro, con, kind, ds);
121 }
122
123 /* Make a copy of FROM in TO. */
124 static void
125 copy_dep (dep_t to, dep_t from)
126 {
127 memcpy (to, from, sizeof (*to));
128 }
129
130 static void dump_ds (FILE *, ds_t);
131
132 /* Define flags for dump_dep (). */
133
134 /* Dump producer of the dependence. */
135 #define DUMP_DEP_PRO (2)
136
137 /* Dump consumer of the dependence. */
138 #define DUMP_DEP_CON (4)
139
140 /* Dump type of the dependence. */
141 #define DUMP_DEP_TYPE (8)
142
143 /* Dump status of the dependence. */
144 #define DUMP_DEP_STATUS (16)
145
146 /* Dump all information about the dependence. */
147 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
148 |DUMP_DEP_STATUS)
149
150 /* Dump DEP to DUMP.
151 FLAGS is a bit mask specifying what information about DEP needs
152 to be printed.
153 If FLAGS has the very first bit set, then dump all information about DEP
154 and propagate this bit into the callee dump functions. */
155 static void
156 dump_dep (FILE *dump, dep_t dep, int flags)
157 {
158 if (flags & 1)
159 flags |= DUMP_DEP_ALL;
160
161 fprintf (dump, "<");
162
163 if (flags & DUMP_DEP_PRO)
164 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
165
166 if (flags & DUMP_DEP_CON)
167 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
168
169 if (flags & DUMP_DEP_TYPE)
170 {
171 char t;
172 enum reg_note type = DEP_TYPE (dep);
173
174 switch (type)
175 {
176 case REG_DEP_TRUE:
177 t = 't';
178 break;
179
180 case REG_DEP_OUTPUT:
181 t = 'o';
182 break;
183
184 case REG_DEP_CONTROL:
185 t = 'c';
186 break;
187
188 case REG_DEP_ANTI:
189 t = 'a';
190 break;
191
192 default:
193 gcc_unreachable ();
194 break;
195 }
196
197 fprintf (dump, "%c; ", t);
198 }
199
200 if (flags & DUMP_DEP_STATUS)
201 {
202 if (current_sched_info->flags & USE_DEPS_LIST)
203 dump_ds (dump, DEP_STATUS (dep));
204 }
205
206 fprintf (dump, ">");
207 }
208
209 /* Default flags for dump_dep (). */
210 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
211
212 /* Dump all fields of DEP to STDERR. */
213 void
214 sd_debug_dep (dep_t dep)
215 {
216 dump_dep (stderr, dep, 1);
217 fprintf (stderr, "\n");
218 }
219
220 /* Determine whether DEP is a dependency link of a non-debug insn on a
221 debug insn. */
222
223 static inline bool
224 depl_on_debug_p (dep_link_t dep)
225 {
226 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
227 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
228 }
229
230 /* Functions to operate with a single link from the dependencies lists -
231 dep_link_t. */
232
233 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
234 PREV_NEXT_P. */
235 static void
236 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
237 {
238 dep_link_t next = *prev_nextp;
239
240 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
241 && DEP_LINK_NEXT (l) == NULL);
242
243 /* Init node being inserted. */
244 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
245 DEP_LINK_NEXT (l) = next;
246
247 /* Fix next node. */
248 if (next != NULL)
249 {
250 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
251
252 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
253 }
254
255 /* Fix prev node. */
256 *prev_nextp = l;
257 }
258
259 /* Add dep_link LINK to deps_list L. */
260 static void
261 add_to_deps_list (dep_link_t link, deps_list_t l)
262 {
263 attach_dep_link (link, &DEPS_LIST_FIRST (l));
264
265 /* Don't count debug deps. */
266 if (!depl_on_debug_p (link))
267 ++DEPS_LIST_N_LINKS (l);
268 }
269
270 /* Detach dep_link L from the list. */
271 static void
272 detach_dep_link (dep_link_t l)
273 {
274 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
275 dep_link_t next = DEP_LINK_NEXT (l);
276
277 *prev_nextp = next;
278
279 if (next != NULL)
280 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
281
282 DEP_LINK_PREV_NEXTP (l) = NULL;
283 DEP_LINK_NEXT (l) = NULL;
284 }
285
286 /* Remove link LINK from list LIST. */
287 static void
288 remove_from_deps_list (dep_link_t link, deps_list_t list)
289 {
290 detach_dep_link (link);
291
292 /* Don't count debug deps. */
293 if (!depl_on_debug_p (link))
294 --DEPS_LIST_N_LINKS (list);
295 }
296
297 /* Move link LINK from list FROM to list TO. */
298 static void
299 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
300 {
301 remove_from_deps_list (link, from);
302 add_to_deps_list (link, to);
303 }
304
305 /* Return true of LINK is not attached to any list. */
306 static bool
307 dep_link_is_detached_p (dep_link_t link)
308 {
309 return DEP_LINK_PREV_NEXTP (link) == NULL;
310 }
311
312 /* Pool to hold all dependency nodes (dep_node_t). */
313 static object_allocator<_dep_node> *dn_pool;
314
315 /* Number of dep_nodes out there. */
316 static int dn_pool_diff = 0;
317
318 /* Create a dep_node. */
319 static dep_node_t
320 create_dep_node (void)
321 {
322 dep_node_t n = dn_pool->allocate ();
323 dep_link_t back = DEP_NODE_BACK (n);
324 dep_link_t forw = DEP_NODE_FORW (n);
325
326 DEP_LINK_NODE (back) = n;
327 DEP_LINK_NEXT (back) = NULL;
328 DEP_LINK_PREV_NEXTP (back) = NULL;
329
330 DEP_LINK_NODE (forw) = n;
331 DEP_LINK_NEXT (forw) = NULL;
332 DEP_LINK_PREV_NEXTP (forw) = NULL;
333
334 ++dn_pool_diff;
335
336 return n;
337 }
338
339 /* Delete dep_node N. N must not be connected to any deps_list. */
340 static void
341 delete_dep_node (dep_node_t n)
342 {
343 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
344 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
345
346 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
347
348 --dn_pool_diff;
349
350 dn_pool->remove (n);
351 }
352
353 /* Pool to hold dependencies lists (deps_list_t). */
354 static object_allocator<_deps_list> *dl_pool;
355
356 /* Number of deps_lists out there. */
357 static int dl_pool_diff = 0;
358
359 /* Functions to operate with dependences lists - deps_list_t. */
360
361 /* Return true if list L is empty. */
362 static bool
363 deps_list_empty_p (deps_list_t l)
364 {
365 return DEPS_LIST_N_LINKS (l) == 0;
366 }
367
368 /* Create a new deps_list. */
369 static deps_list_t
370 create_deps_list (void)
371 {
372 deps_list_t l = dl_pool->allocate ();
373
374 DEPS_LIST_FIRST (l) = NULL;
375 DEPS_LIST_N_LINKS (l) = 0;
376
377 ++dl_pool_diff;
378 return l;
379 }
380
381 /* Free deps_list L. */
382 static void
383 free_deps_list (deps_list_t l)
384 {
385 gcc_assert (deps_list_empty_p (l));
386
387 --dl_pool_diff;
388
389 dl_pool->remove (l);
390 }
391
392 /* Return true if there is no dep_nodes and deps_lists out there.
393 After the region is scheduled all the dependency nodes and lists
394 should [generally] be returned to pool. */
395 bool
396 deps_pools_are_empty_p (void)
397 {
398 return dn_pool_diff == 0 && dl_pool_diff == 0;
399 }
400
401 /* Remove all elements from L. */
402 static void
403 clear_deps_list (deps_list_t l)
404 {
405 do
406 {
407 dep_link_t link = DEPS_LIST_FIRST (l);
408
409 if (link == NULL)
410 break;
411
412 remove_from_deps_list (link, l);
413 }
414 while (1);
415 }
416
417 /* Decide whether a dependency should be treated as a hard or a speculative
418 dependency. */
419 static bool
420 dep_spec_p (dep_t dep)
421 {
422 if (current_sched_info->flags & DO_SPECULATION)
423 {
424 if (DEP_STATUS (dep) & SPECULATIVE)
425 return true;
426 }
427 if (current_sched_info->flags & DO_PREDICATION)
428 {
429 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
430 return true;
431 }
432 if (DEP_REPLACE (dep) != NULL)
433 return true;
434 return false;
435 }
436
437 static regset reg_pending_sets;
438 static regset reg_pending_clobbers;
439 static regset reg_pending_uses;
440 static regset reg_pending_control_uses;
441 static enum reg_pending_barrier_mode reg_pending_barrier;
442
443 /* Hard registers implicitly clobbered or used (or may be implicitly
444 clobbered or used) by the currently analyzed insn. For example,
445 insn in its constraint has one register class. Even if there is
446 currently no hard register in the insn, the particular hard
447 register will be in the insn after reload pass because the
448 constraint requires it. */
449 static HARD_REG_SET implicit_reg_pending_clobbers;
450 static HARD_REG_SET implicit_reg_pending_uses;
451
452 /* To speed up the test for duplicate dependency links we keep a
453 record of dependencies created by add_dependence when the average
454 number of instructions in a basic block is very large.
455
456 Studies have shown that there is typically around 5 instructions between
457 branches for typical C code. So we can make a guess that the average
458 basic block is approximately 5 instructions long; we will choose 100X
459 the average size as a very large basic block.
460
461 Each insn has associated bitmaps for its dependencies. Each bitmap
462 has enough entries to represent a dependency on any other insn in
463 the insn chain. All bitmap for true dependencies cache is
464 allocated then the rest two ones are also allocated. */
465 static bitmap true_dependency_cache = NULL;
466 static bitmap output_dependency_cache = NULL;
467 static bitmap anti_dependency_cache = NULL;
468 static bitmap control_dependency_cache = NULL;
469 static bitmap spec_dependency_cache = NULL;
470 static int cache_size;
471
472 /* True if we should mark added dependencies as a non-register deps. */
473 static bool mark_as_hard;
474
475 static int deps_may_trap_p (const_rtx);
476 static void add_dependence_1 (rtx_insn *, rtx_insn *, enum reg_note);
477 static void add_dependence_list (rtx_insn *, rtx_insn_list *, int,
478 enum reg_note, bool);
479 static void add_dependence_list_and_free (class deps_desc *, rtx_insn *,
480 rtx_insn_list **, int, enum reg_note,
481 bool);
482 static void delete_all_dependences (rtx_insn *);
483 static void chain_to_prev_insn (rtx_insn *);
484
485 static void flush_pending_lists (class deps_desc *, rtx_insn *, int, int);
486 static void sched_analyze_1 (class deps_desc *, rtx, rtx_insn *);
487 static void sched_analyze_2 (class deps_desc *, rtx, rtx_insn *);
488 static void sched_analyze_insn (class deps_desc *, rtx, rtx_insn *);
489
490 static bool sched_has_condition_p (const rtx_insn *);
491 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
492
493 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
494 rtx, rtx);
495 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
496
497 static void check_dep (dep_t, bool);
498
499 \f
500 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
501
502 static int
503 deps_may_trap_p (const_rtx mem)
504 {
505 const_rtx addr = XEXP (mem, 0);
506
507 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
508 {
509 const_rtx t = get_reg_known_value (REGNO (addr));
510 if (t)
511 addr = t;
512 }
513 return rtx_addr_can_trap_p (addr);
514 }
515 \f
516
517 /* Find the condition under which INSN is executed. If REV is not NULL,
518 it is set to TRUE when the returned comparison should be reversed
519 to get the actual condition. */
520 static rtx
521 sched_get_condition_with_rev_uncached (const rtx_insn *insn, bool *rev)
522 {
523 rtx pat = PATTERN (insn);
524 rtx src;
525
526 if (rev)
527 *rev = false;
528
529 if (GET_CODE (pat) == COND_EXEC)
530 return COND_EXEC_TEST (pat);
531
532 if (!any_condjump_p (insn) || !onlyjump_p (insn))
533 return 0;
534
535 src = SET_SRC (pc_set (insn));
536
537 if (XEXP (src, 2) == pc_rtx)
538 return XEXP (src, 0);
539 else if (XEXP (src, 1) == pc_rtx)
540 {
541 rtx cond = XEXP (src, 0);
542 enum rtx_code revcode = reversed_comparison_code (cond, insn);
543
544 if (revcode == UNKNOWN)
545 return 0;
546
547 if (rev)
548 *rev = true;
549 return cond;
550 }
551
552 return 0;
553 }
554
555 /* Return the condition under which INSN does not execute (i.e. the
556 not-taken condition for a conditional branch), or NULL if we cannot
557 find such a condition. The caller should make a copy of the condition
558 before using it. */
559 rtx
560 sched_get_reverse_condition_uncached (const rtx_insn *insn)
561 {
562 bool rev;
563 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
564 if (cond == NULL_RTX)
565 return cond;
566 if (!rev)
567 {
568 enum rtx_code revcode = reversed_comparison_code (cond, insn);
569 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
570 XEXP (cond, 0),
571 XEXP (cond, 1));
572 }
573 return cond;
574 }
575
576 /* Caching variant of sched_get_condition_with_rev_uncached.
577 We only do actual work the first time we come here for an insn; the
578 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
579 static rtx
580 sched_get_condition_with_rev (const rtx_insn *insn, bool *rev)
581 {
582 bool tmp;
583
584 if (INSN_LUID (insn) == 0)
585 return sched_get_condition_with_rev_uncached (insn, rev);
586
587 if (INSN_CACHED_COND (insn) == const_true_rtx)
588 return NULL_RTX;
589
590 if (INSN_CACHED_COND (insn) != NULL_RTX)
591 {
592 if (rev)
593 *rev = INSN_REVERSE_COND (insn);
594 return INSN_CACHED_COND (insn);
595 }
596
597 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
598 INSN_REVERSE_COND (insn) = tmp;
599
600 if (INSN_CACHED_COND (insn) == NULL_RTX)
601 {
602 INSN_CACHED_COND (insn) = const_true_rtx;
603 return NULL_RTX;
604 }
605
606 if (rev)
607 *rev = INSN_REVERSE_COND (insn);
608 return INSN_CACHED_COND (insn);
609 }
610
611 /* True when we can find a condition under which INSN is executed. */
612 static bool
613 sched_has_condition_p (const rtx_insn *insn)
614 {
615 return !! sched_get_condition_with_rev (insn, NULL);
616 }
617
618 \f
619
620 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
621 static int
622 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
623 {
624 if (COMPARISON_P (cond1)
625 && COMPARISON_P (cond2)
626 && GET_CODE (cond1) ==
627 (rev1==rev2
628 ? reversed_comparison_code (cond2, NULL)
629 : GET_CODE (cond2))
630 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
631 && XEXP (cond1, 1) == XEXP (cond2, 1))
632 return 1;
633 return 0;
634 }
635
636 /* Return true if insn1 and insn2 can never depend on one another because
637 the conditions under which they are executed are mutually exclusive. */
638 bool
639 sched_insns_conditions_mutex_p (const rtx_insn *insn1, const rtx_insn *insn2)
640 {
641 rtx cond1, cond2;
642 bool rev1 = false, rev2 = false;
643
644 /* df doesn't handle conditional lifetimes entirely correctly;
645 calls mess up the conditional lifetimes. */
646 if (!CALL_P (insn1) && !CALL_P (insn2))
647 {
648 cond1 = sched_get_condition_with_rev (insn1, &rev1);
649 cond2 = sched_get_condition_with_rev (insn2, &rev2);
650 if (cond1 && cond2
651 && conditions_mutex_p (cond1, cond2, rev1, rev2)
652 /* Make sure first instruction doesn't affect condition of second
653 instruction if switched. */
654 && !modified_in_p (cond1, insn2)
655 /* Make sure second instruction doesn't affect condition of first
656 instruction if switched. */
657 && !modified_in_p (cond2, insn1))
658 return true;
659 }
660 return false;
661 }
662 \f
663
664 /* Return true if INSN can potentially be speculated with type DS. */
665 bool
666 sched_insn_is_legitimate_for_speculation_p (const rtx_insn *insn, ds_t ds)
667 {
668 if (HAS_INTERNAL_DEP (insn))
669 return false;
670
671 if (!NONJUMP_INSN_P (insn))
672 return false;
673
674 if (SCHED_GROUP_P (insn))
675 return false;
676
677 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX_INSN (insn)))
678 return false;
679
680 if (side_effects_p (PATTERN (insn)))
681 return false;
682
683 if (ds & BE_IN_SPEC)
684 /* The following instructions, which depend on a speculatively scheduled
685 instruction, cannot be speculatively scheduled along. */
686 {
687 if (may_trap_or_fault_p (PATTERN (insn)))
688 /* If instruction might fault, it cannot be speculatively scheduled.
689 For control speculation it's obvious why and for data speculation
690 it's because the insn might get wrong input if speculation
691 wasn't successful. */
692 return false;
693
694 if ((ds & BE_IN_DATA)
695 && sched_has_condition_p (insn))
696 /* If this is a predicated instruction, then it cannot be
697 speculatively scheduled. See PR35659. */
698 return false;
699 }
700
701 return true;
702 }
703
704 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
705 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
706 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
707 This function is used to switch sd_iterator to the next list.
708 !!! For internal use only. Might consider moving it to sched-int.h. */
709 void
710 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
711 deps_list_t *list_ptr, bool *resolved_p_ptr)
712 {
713 sd_list_types_def types = *types_ptr;
714
715 if (types & SD_LIST_HARD_BACK)
716 {
717 *list_ptr = INSN_HARD_BACK_DEPS (insn);
718 *resolved_p_ptr = false;
719 *types_ptr = types & ~SD_LIST_HARD_BACK;
720 }
721 else if (types & SD_LIST_SPEC_BACK)
722 {
723 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
724 *resolved_p_ptr = false;
725 *types_ptr = types & ~SD_LIST_SPEC_BACK;
726 }
727 else if (types & SD_LIST_FORW)
728 {
729 *list_ptr = INSN_FORW_DEPS (insn);
730 *resolved_p_ptr = false;
731 *types_ptr = types & ~SD_LIST_FORW;
732 }
733 else if (types & SD_LIST_RES_BACK)
734 {
735 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
736 *resolved_p_ptr = true;
737 *types_ptr = types & ~SD_LIST_RES_BACK;
738 }
739 else if (types & SD_LIST_RES_FORW)
740 {
741 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
742 *resolved_p_ptr = true;
743 *types_ptr = types & ~SD_LIST_RES_FORW;
744 }
745 else
746 {
747 *list_ptr = NULL;
748 *resolved_p_ptr = false;
749 *types_ptr = SD_LIST_NONE;
750 }
751 }
752
753 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
754 int
755 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
756 {
757 int size = 0;
758
759 while (list_types != SD_LIST_NONE)
760 {
761 deps_list_t list;
762 bool resolved_p;
763
764 sd_next_list (insn, &list_types, &list, &resolved_p);
765 if (list)
766 size += DEPS_LIST_N_LINKS (list);
767 }
768
769 return size;
770 }
771
772 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
773
774 bool
775 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
776 {
777 while (list_types != SD_LIST_NONE)
778 {
779 deps_list_t list;
780 bool resolved_p;
781
782 sd_next_list (insn, &list_types, &list, &resolved_p);
783 if (!deps_list_empty_p (list))
784 return false;
785 }
786
787 return true;
788 }
789
790 /* Initialize data for INSN. */
791 void
792 sd_init_insn (rtx_insn *insn)
793 {
794 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
795 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
796 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
797 INSN_FORW_DEPS (insn) = create_deps_list ();
798 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
799
800 /* ??? It would be nice to allocate dependency caches here. */
801 }
802
803 /* Free data for INSN. */
804 void
805 sd_finish_insn (rtx_insn *insn)
806 {
807 /* ??? It would be nice to deallocate dependency caches here. */
808
809 free_deps_list (INSN_HARD_BACK_DEPS (insn));
810 INSN_HARD_BACK_DEPS (insn) = NULL;
811
812 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
813 INSN_SPEC_BACK_DEPS (insn) = NULL;
814
815 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
816 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
817
818 free_deps_list (INSN_FORW_DEPS (insn));
819 INSN_FORW_DEPS (insn) = NULL;
820
821 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
822 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
823 }
824
825 /* Find a dependency between producer PRO and consumer CON.
826 Search through resolved dependency lists if RESOLVED_P is true.
827 If no such dependency is found return NULL,
828 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
829 with an iterator pointing to it. */
830 static dep_t
831 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
832 sd_iterator_def *sd_it_ptr)
833 {
834 sd_list_types_def pro_list_type;
835 sd_list_types_def con_list_type;
836 sd_iterator_def sd_it;
837 dep_t dep;
838 bool found_p = false;
839
840 if (resolved_p)
841 {
842 pro_list_type = SD_LIST_RES_FORW;
843 con_list_type = SD_LIST_RES_BACK;
844 }
845 else
846 {
847 pro_list_type = SD_LIST_FORW;
848 con_list_type = SD_LIST_BACK;
849 }
850
851 /* Walk through either back list of INSN or forw list of ELEM
852 depending on which one is shorter. */
853 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
854 {
855 /* Find the dep_link with producer PRO in consumer's back_deps. */
856 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
857 if (DEP_PRO (dep) == pro)
858 {
859 found_p = true;
860 break;
861 }
862 }
863 else
864 {
865 /* Find the dep_link with consumer CON in producer's forw_deps. */
866 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
867 if (DEP_CON (dep) == con)
868 {
869 found_p = true;
870 break;
871 }
872 }
873
874 if (found_p)
875 {
876 if (sd_it_ptr != NULL)
877 *sd_it_ptr = sd_it;
878
879 return dep;
880 }
881
882 return NULL;
883 }
884
885 /* Find a dependency between producer PRO and consumer CON.
886 Use dependency [if available] to check if dependency is present at all.
887 Search through resolved dependency lists if RESOLVED_P is true.
888 If the dependency or NULL if none found. */
889 dep_t
890 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
891 {
892 if (true_dependency_cache != NULL)
893 /* Avoiding the list walk below can cut compile times dramatically
894 for some code. */
895 {
896 int elem_luid = INSN_LUID (pro);
897 int insn_luid = INSN_LUID (con);
898
899 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
900 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
901 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
902 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
903 return NULL;
904 }
905
906 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
907 }
908
909 /* Add or update a dependence described by DEP.
910 MEM1 and MEM2, if non-null, correspond to memory locations in case of
911 data speculation.
912
913 The function returns a value indicating if an old entry has been changed
914 or a new entry has been added to insn's backward deps.
915
916 This function merely checks if producer and consumer is the same insn
917 and doesn't create a dep in this case. Actual manipulation of
918 dependence data structures is performed in add_or_update_dep_1. */
919 static enum DEPS_ADJUST_RESULT
920 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
921 {
922 rtx_insn *elem = DEP_PRO (dep);
923 rtx_insn *insn = DEP_CON (dep);
924
925 gcc_assert (INSN_P (insn) && INSN_P (elem));
926
927 /* Don't depend an insn on itself. */
928 if (insn == elem)
929 {
930 if (sched_deps_info->generate_spec_deps)
931 /* INSN has an internal dependence, which we can't overcome. */
932 HAS_INTERNAL_DEP (insn) = 1;
933
934 return DEP_NODEP;
935 }
936
937 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
938 }
939
940 /* Ask dependency caches what needs to be done for dependence DEP.
941 Return DEP_CREATED if new dependence should be created and there is no
942 need to try to find one searching the dependencies lists.
943 Return DEP_PRESENT if there already is a dependence described by DEP and
944 hence nothing is to be done.
945 Return DEP_CHANGED if there already is a dependence, but it should be
946 updated to incorporate additional information from DEP. */
947 static enum DEPS_ADJUST_RESULT
948 ask_dependency_caches (dep_t dep)
949 {
950 int elem_luid = INSN_LUID (DEP_PRO (dep));
951 int insn_luid = INSN_LUID (DEP_CON (dep));
952
953 gcc_assert (true_dependency_cache != NULL
954 && output_dependency_cache != NULL
955 && anti_dependency_cache != NULL
956 && control_dependency_cache != NULL);
957
958 if (!(current_sched_info->flags & USE_DEPS_LIST))
959 {
960 enum reg_note present_dep_type;
961
962 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
963 present_dep_type = REG_DEP_TRUE;
964 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
965 present_dep_type = REG_DEP_OUTPUT;
966 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
967 present_dep_type = REG_DEP_ANTI;
968 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
969 present_dep_type = REG_DEP_CONTROL;
970 else
971 /* There is no existing dep so it should be created. */
972 return DEP_CREATED;
973
974 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
975 /* DEP does not add anything to the existing dependence. */
976 return DEP_PRESENT;
977 }
978 else
979 {
980 ds_t present_dep_types = 0;
981
982 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
983 present_dep_types |= DEP_TRUE;
984 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
985 present_dep_types |= DEP_OUTPUT;
986 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
987 present_dep_types |= DEP_ANTI;
988 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
989 present_dep_types |= DEP_CONTROL;
990
991 if (present_dep_types == 0)
992 /* There is no existing dep so it should be created. */
993 return DEP_CREATED;
994
995 if (!(current_sched_info->flags & DO_SPECULATION)
996 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
997 {
998 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
999 == present_dep_types)
1000 /* DEP does not add anything to the existing dependence. */
1001 return DEP_PRESENT;
1002 }
1003 else
1004 {
1005 /* Only true dependencies can be data speculative and
1006 only anti dependencies can be control speculative. */
1007 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1008 == present_dep_types);
1009
1010 /* if (DEP is SPECULATIVE) then
1011 ..we should update DEP_STATUS
1012 else
1013 ..we should reset existing dep to non-speculative. */
1014 }
1015 }
1016
1017 return DEP_CHANGED;
1018 }
1019
1020 /* Set dependency caches according to DEP. */
1021 static void
1022 set_dependency_caches (dep_t dep)
1023 {
1024 int elem_luid = INSN_LUID (DEP_PRO (dep));
1025 int insn_luid = INSN_LUID (DEP_CON (dep));
1026
1027 if (!(current_sched_info->flags & USE_DEPS_LIST))
1028 {
1029 switch (DEP_TYPE (dep))
1030 {
1031 case REG_DEP_TRUE:
1032 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1033 break;
1034
1035 case REG_DEP_OUTPUT:
1036 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1037 break;
1038
1039 case REG_DEP_ANTI:
1040 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1041 break;
1042
1043 case REG_DEP_CONTROL:
1044 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1045 break;
1046
1047 default:
1048 gcc_unreachable ();
1049 }
1050 }
1051 else
1052 {
1053 ds_t ds = DEP_STATUS (dep);
1054
1055 if (ds & DEP_TRUE)
1056 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1057 if (ds & DEP_OUTPUT)
1058 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1059 if (ds & DEP_ANTI)
1060 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1061 if (ds & DEP_CONTROL)
1062 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1063
1064 if (ds & SPECULATIVE)
1065 {
1066 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1067 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1068 }
1069 }
1070 }
1071
1072 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1073 caches accordingly. */
1074 static void
1075 update_dependency_caches (dep_t dep, enum reg_note old_type)
1076 {
1077 int elem_luid = INSN_LUID (DEP_PRO (dep));
1078 int insn_luid = INSN_LUID (DEP_CON (dep));
1079
1080 /* Clear corresponding cache entry because type of the link
1081 may have changed. Keep them if we use_deps_list. */
1082 if (!(current_sched_info->flags & USE_DEPS_LIST))
1083 {
1084 switch (old_type)
1085 {
1086 case REG_DEP_OUTPUT:
1087 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1088 break;
1089
1090 case REG_DEP_ANTI:
1091 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1092 break;
1093
1094 case REG_DEP_CONTROL:
1095 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1096 break;
1097
1098 default:
1099 gcc_unreachable ();
1100 }
1101 }
1102
1103 set_dependency_caches (dep);
1104 }
1105
1106 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1107 static void
1108 change_spec_dep_to_hard (sd_iterator_def sd_it)
1109 {
1110 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1111 dep_link_t link = DEP_NODE_BACK (node);
1112 dep_t dep = DEP_NODE_DEP (node);
1113 rtx_insn *elem = DEP_PRO (dep);
1114 rtx_insn *insn = DEP_CON (dep);
1115
1116 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1117
1118 DEP_STATUS (dep) &= ~SPECULATIVE;
1119
1120 if (true_dependency_cache != NULL)
1121 /* Clear the cache entry. */
1122 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1123 INSN_LUID (elem));
1124 }
1125
1126 /* Update DEP to incorporate information from NEW_DEP.
1127 SD_IT points to DEP in case it should be moved to another list.
1128 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1129 data-speculative dependence should be updated. */
1130 static enum DEPS_ADJUST_RESULT
1131 update_dep (dep_t dep, dep_t new_dep,
1132 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1133 rtx mem1 ATTRIBUTE_UNUSED,
1134 rtx mem2 ATTRIBUTE_UNUSED)
1135 {
1136 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1137 enum reg_note old_type = DEP_TYPE (dep);
1138 bool was_spec = dep_spec_p (dep);
1139
1140 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1141 DEP_MULTIPLE (dep) = 1;
1142
1143 /* If this is a more restrictive type of dependence than the
1144 existing one, then change the existing dependence to this
1145 type. */
1146 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1147 {
1148 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1149 res = DEP_CHANGED;
1150 }
1151
1152 if (current_sched_info->flags & USE_DEPS_LIST)
1153 /* Update DEP_STATUS. */
1154 {
1155 ds_t dep_status = DEP_STATUS (dep);
1156 ds_t ds = DEP_STATUS (new_dep);
1157 ds_t new_status = ds | dep_status;
1158
1159 if (new_status & SPECULATIVE)
1160 {
1161 /* Either existing dep or a dep we're adding or both are
1162 speculative. */
1163 if (!(ds & SPECULATIVE)
1164 || !(dep_status & SPECULATIVE))
1165 /* The new dep can't be speculative. */
1166 new_status &= ~SPECULATIVE;
1167 else
1168 {
1169 /* Both are speculative. Merge probabilities. */
1170 if (mem1 != NULL)
1171 {
1172 dw_t dw;
1173
1174 dw = estimate_dep_weak (mem1, mem2);
1175 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1176 }
1177
1178 new_status = ds_merge (dep_status, ds);
1179 }
1180 }
1181
1182 ds = new_status;
1183
1184 if (dep_status != ds)
1185 {
1186 DEP_STATUS (dep) = ds;
1187 res = DEP_CHANGED;
1188 }
1189 }
1190
1191 if (was_spec && !dep_spec_p (dep))
1192 /* The old dep was speculative, but now it isn't. */
1193 change_spec_dep_to_hard (sd_it);
1194
1195 if (true_dependency_cache != NULL
1196 && res == DEP_CHANGED)
1197 update_dependency_caches (dep, old_type);
1198
1199 return res;
1200 }
1201
1202 /* Add or update a dependence described by DEP.
1203 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1204 data speculation.
1205
1206 The function returns a value indicating if an old entry has been changed
1207 or a new entry has been added to insn's backward deps or nothing has
1208 been updated at all. */
1209 static enum DEPS_ADJUST_RESULT
1210 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1211 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1212 {
1213 bool maybe_present_p = true;
1214 bool present_p = false;
1215
1216 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1217 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1218
1219 if (flag_checking)
1220 check_dep (new_dep, mem1 != NULL);
1221
1222 if (true_dependency_cache != NULL)
1223 {
1224 switch (ask_dependency_caches (new_dep))
1225 {
1226 case DEP_PRESENT:
1227 dep_t present_dep;
1228 sd_iterator_def sd_it;
1229
1230 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1231 DEP_CON (new_dep),
1232 resolved_p, &sd_it);
1233 DEP_MULTIPLE (present_dep) = 1;
1234 return DEP_PRESENT;
1235
1236 case DEP_CHANGED:
1237 maybe_present_p = true;
1238 present_p = true;
1239 break;
1240
1241 case DEP_CREATED:
1242 maybe_present_p = false;
1243 present_p = false;
1244 break;
1245
1246 default:
1247 gcc_unreachable ();
1248 break;
1249 }
1250 }
1251
1252 /* Check that we don't already have this dependence. */
1253 if (maybe_present_p)
1254 {
1255 dep_t present_dep;
1256 sd_iterator_def sd_it;
1257
1258 gcc_assert (true_dependency_cache == NULL || present_p);
1259
1260 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1261 DEP_CON (new_dep),
1262 resolved_p, &sd_it);
1263
1264 if (present_dep != NULL)
1265 /* We found an existing dependency between ELEM and INSN. */
1266 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1267 else
1268 /* We didn't find a dep, it shouldn't present in the cache. */
1269 gcc_assert (!present_p);
1270 }
1271
1272 /* Might want to check one level of transitivity to save conses.
1273 This check should be done in maybe_add_or_update_dep_1.
1274 Since we made it to add_or_update_dep_1, we must create
1275 (or update) a link. */
1276
1277 if (mem1 != NULL_RTX)
1278 {
1279 gcc_assert (sched_deps_info->generate_spec_deps);
1280 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1281 estimate_dep_weak (mem1, mem2));
1282 }
1283
1284 sd_add_dep (new_dep, resolved_p);
1285
1286 return DEP_CREATED;
1287 }
1288
1289 /* Initialize BACK_LIST_PTR with consumer's backward list and
1290 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1291 initialize with lists that hold resolved deps. */
1292 static void
1293 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1294 deps_list_t *back_list_ptr,
1295 deps_list_t *forw_list_ptr)
1296 {
1297 rtx_insn *con = DEP_CON (dep);
1298
1299 if (!resolved_p)
1300 {
1301 if (dep_spec_p (dep))
1302 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1303 else
1304 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1305
1306 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1307 }
1308 else
1309 {
1310 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1311 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1312 }
1313 }
1314
1315 /* Add dependence described by DEP.
1316 If RESOLVED_P is true treat the dependence as a resolved one. */
1317 void
1318 sd_add_dep (dep_t dep, bool resolved_p)
1319 {
1320 dep_node_t n = create_dep_node ();
1321 deps_list_t con_back_deps;
1322 deps_list_t pro_forw_deps;
1323 rtx_insn *elem = DEP_PRO (dep);
1324 rtx_insn *insn = DEP_CON (dep);
1325
1326 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1327
1328 if ((current_sched_info->flags & DO_SPECULATION) == 0
1329 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1330 DEP_STATUS (dep) &= ~SPECULATIVE;
1331
1332 copy_dep (DEP_NODE_DEP (n), dep);
1333
1334 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1335
1336 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1337
1338 if (flag_checking)
1339 check_dep (dep, false);
1340
1341 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1342
1343 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1344 in the bitmap caches of dependency information. */
1345 if (true_dependency_cache != NULL)
1346 set_dependency_caches (dep);
1347 }
1348
1349 /* Add or update backward dependence between INSN and ELEM
1350 with given type DEP_TYPE and dep_status DS.
1351 This function is a convenience wrapper. */
1352 enum DEPS_ADJUST_RESULT
1353 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1354 {
1355 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1356 }
1357
1358 /* Resolved dependence pointed to by SD_IT.
1359 SD_IT will advance to the next element. */
1360 void
1361 sd_resolve_dep (sd_iterator_def sd_it)
1362 {
1363 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1364 dep_t dep = DEP_NODE_DEP (node);
1365 rtx_insn *pro = DEP_PRO (dep);
1366 rtx_insn *con = DEP_CON (dep);
1367
1368 if (dep_spec_p (dep))
1369 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1370 INSN_RESOLVED_BACK_DEPS (con));
1371 else
1372 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1373 INSN_RESOLVED_BACK_DEPS (con));
1374
1375 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1376 INSN_RESOLVED_FORW_DEPS (pro));
1377 }
1378
1379 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1380 pointed to by SD_IT to unresolved state. */
1381 void
1382 sd_unresolve_dep (sd_iterator_def sd_it)
1383 {
1384 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1385 dep_t dep = DEP_NODE_DEP (node);
1386 rtx_insn *pro = DEP_PRO (dep);
1387 rtx_insn *con = DEP_CON (dep);
1388
1389 if (dep_spec_p (dep))
1390 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1391 INSN_SPEC_BACK_DEPS (con));
1392 else
1393 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1394 INSN_HARD_BACK_DEPS (con));
1395
1396 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1397 INSN_FORW_DEPS (pro));
1398 }
1399
1400 /* Make TO depend on all the FROM's producers.
1401 If RESOLVED_P is true add dependencies to the resolved lists. */
1402 void
1403 sd_copy_back_deps (rtx_insn *to, rtx_insn *from, bool resolved_p)
1404 {
1405 sd_list_types_def list_type;
1406 sd_iterator_def sd_it;
1407 dep_t dep;
1408
1409 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1410
1411 FOR_EACH_DEP (from, list_type, sd_it, dep)
1412 {
1413 dep_def _new_dep, *new_dep = &_new_dep;
1414
1415 copy_dep (new_dep, dep);
1416 DEP_CON (new_dep) = to;
1417 sd_add_dep (new_dep, resolved_p);
1418 }
1419 }
1420
1421 /* Remove a dependency referred to by SD_IT.
1422 SD_IT will point to the next dependence after removal. */
1423 void
1424 sd_delete_dep (sd_iterator_def sd_it)
1425 {
1426 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1427 dep_t dep = DEP_NODE_DEP (n);
1428 rtx_insn *pro = DEP_PRO (dep);
1429 rtx_insn *con = DEP_CON (dep);
1430 deps_list_t con_back_deps;
1431 deps_list_t pro_forw_deps;
1432
1433 if (true_dependency_cache != NULL)
1434 {
1435 int elem_luid = INSN_LUID (pro);
1436 int insn_luid = INSN_LUID (con);
1437
1438 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1439 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1440 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1441 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1442
1443 if (current_sched_info->flags & DO_SPECULATION)
1444 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1445 }
1446
1447 get_back_and_forw_lists (dep, sd_it.resolved_p,
1448 &con_back_deps, &pro_forw_deps);
1449
1450 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1451 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1452
1453 delete_dep_node (n);
1454 }
1455
1456 /* Dump size of the lists. */
1457 #define DUMP_LISTS_SIZE (2)
1458
1459 /* Dump dependencies of the lists. */
1460 #define DUMP_LISTS_DEPS (4)
1461
1462 /* Dump all information about the lists. */
1463 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1464
1465 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1466 FLAGS is a bit mask specifying what information about the lists needs
1467 to be printed.
1468 If FLAGS has the very first bit set, then dump all information about
1469 the lists and propagate this bit into the callee dump functions. */
1470 static void
1471 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1472 {
1473 sd_iterator_def sd_it;
1474 dep_t dep;
1475 int all;
1476
1477 all = (flags & 1);
1478
1479 if (all)
1480 flags |= DUMP_LISTS_ALL;
1481
1482 fprintf (dump, "[");
1483
1484 if (flags & DUMP_LISTS_SIZE)
1485 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1486
1487 if (flags & DUMP_LISTS_DEPS)
1488 {
1489 FOR_EACH_DEP (insn, types, sd_it, dep)
1490 {
1491 dump_dep (dump, dep, dump_dep_flags | all);
1492 fprintf (dump, " ");
1493 }
1494 }
1495 }
1496
1497 /* Dump all information about deps_lists of INSN specified by TYPES
1498 to STDERR. */
1499 void
1500 sd_debug_lists (rtx insn, sd_list_types_def types)
1501 {
1502 dump_lists (stderr, insn, types, 1);
1503 fprintf (stderr, "\n");
1504 }
1505
1506 /* A wrapper around add_dependence_1, to add a dependence of CON on
1507 PRO, with type DEP_TYPE. This function implements special handling
1508 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1509 the type to REG_DEP_ANTI if we can determine that predication is
1510 impossible; otherwise we add additional true dependencies on the
1511 INSN_COND_DEPS list of the jump (which PRO must be). */
1512 void
1513 add_dependence (rtx_insn *con, rtx_insn *pro, enum reg_note dep_type)
1514 {
1515 if (dep_type == REG_DEP_CONTROL
1516 && !(current_sched_info->flags & DO_PREDICATION))
1517 dep_type = REG_DEP_ANTI;
1518
1519 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1520 so we must also make the insn dependent on the setter of the
1521 condition. */
1522 if (dep_type == REG_DEP_CONTROL)
1523 {
1524 rtx_insn *real_pro = pro;
1525 rtx_insn *other = real_insn_for_shadow (real_pro);
1526 rtx cond;
1527
1528 if (other != NULL_RTX)
1529 real_pro = other;
1530 cond = sched_get_reverse_condition_uncached (real_pro);
1531 /* Verify that the insn does not use a different value in
1532 the condition register than the one that was present at
1533 the jump. */
1534 if (cond == NULL_RTX)
1535 dep_type = REG_DEP_ANTI;
1536 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1537 {
1538 HARD_REG_SET uses;
1539 CLEAR_HARD_REG_SET (uses);
1540 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1541 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1542 dep_type = REG_DEP_ANTI;
1543 }
1544 if (dep_type == REG_DEP_CONTROL)
1545 {
1546 if (sched_verbose >= 5)
1547 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1548 INSN_UID (real_pro));
1549 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1550 REG_DEP_TRUE, false);
1551 }
1552 }
1553
1554 add_dependence_1 (con, pro, dep_type);
1555 }
1556
1557 /* A convenience wrapper to operate on an entire list. HARD should be
1558 true if DEP_NONREG should be set on newly created dependencies. */
1559
1560 static void
1561 add_dependence_list (rtx_insn *insn, rtx_insn_list *list, int uncond,
1562 enum reg_note dep_type, bool hard)
1563 {
1564 mark_as_hard = hard;
1565 for (; list; list = list->next ())
1566 {
1567 if (uncond || ! sched_insns_conditions_mutex_p (insn, list->insn ()))
1568 add_dependence (insn, list->insn (), dep_type);
1569 }
1570 mark_as_hard = false;
1571 }
1572
1573 /* Similar, but free *LISTP at the same time, when the context
1574 is not readonly. HARD should be true if DEP_NONREG should be set on
1575 newly created dependencies. */
1576
1577 static void
1578 add_dependence_list_and_free (class deps_desc *deps, rtx_insn *insn,
1579 rtx_insn_list **listp,
1580 int uncond, enum reg_note dep_type, bool hard)
1581 {
1582 add_dependence_list (insn, *listp, uncond, dep_type, hard);
1583
1584 /* We don't want to short-circuit dependencies involving debug
1585 insns, because they may cause actual dependencies to be
1586 disregarded. */
1587 if (deps->readonly || DEBUG_INSN_P (insn))
1588 return;
1589
1590 free_INSN_LIST_list (listp);
1591 }
1592
1593 /* Remove all occurrences of INSN from LIST. Return the number of
1594 occurrences removed. */
1595
1596 static int
1597 remove_from_dependence_list (rtx_insn *insn, rtx_insn_list **listp)
1598 {
1599 int removed = 0;
1600
1601 while (*listp)
1602 {
1603 if ((*listp)->insn () == insn)
1604 {
1605 remove_free_INSN_LIST_node (listp);
1606 removed++;
1607 continue;
1608 }
1609
1610 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1611 }
1612
1613 return removed;
1614 }
1615
1616 /* Same as above, but process two lists at once. */
1617 static int
1618 remove_from_both_dependence_lists (rtx_insn *insn,
1619 rtx_insn_list **listp,
1620 rtx_expr_list **exprp)
1621 {
1622 int removed = 0;
1623
1624 while (*listp)
1625 {
1626 if (XEXP (*listp, 0) == insn)
1627 {
1628 remove_free_INSN_LIST_node (listp);
1629 remove_free_EXPR_LIST_node (exprp);
1630 removed++;
1631 continue;
1632 }
1633
1634 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1635 exprp = (rtx_expr_list **)&XEXP (*exprp, 1);
1636 }
1637
1638 return removed;
1639 }
1640
1641 /* Clear all dependencies for an insn. */
1642 static void
1643 delete_all_dependences (rtx_insn *insn)
1644 {
1645 sd_iterator_def sd_it;
1646 dep_t dep;
1647
1648 /* The below cycle can be optimized to clear the caches and back_deps
1649 in one call but that would provoke duplication of code from
1650 delete_dep (). */
1651
1652 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1653 sd_iterator_cond (&sd_it, &dep);)
1654 sd_delete_dep (sd_it);
1655 }
1656
1657 /* All insns in a scheduling group except the first should only have
1658 dependencies on the previous insn in the group. So we find the
1659 first instruction in the scheduling group by walking the dependence
1660 chains backwards. Then we add the dependencies for the group to
1661 the previous nonnote insn. */
1662
1663 static void
1664 chain_to_prev_insn (rtx_insn *insn)
1665 {
1666 sd_iterator_def sd_it;
1667 dep_t dep;
1668 rtx_insn *prev_nonnote;
1669
1670 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1671 {
1672 rtx_insn *i = insn;
1673 rtx_insn *pro = DEP_PRO (dep);
1674
1675 do
1676 {
1677 i = prev_nonnote_insn (i);
1678
1679 if (pro == i)
1680 goto next_link;
1681 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1682
1683 if (! sched_insns_conditions_mutex_p (i, pro))
1684 add_dependence (i, pro, DEP_TYPE (dep));
1685 next_link:;
1686 }
1687
1688 delete_all_dependences (insn);
1689
1690 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1691 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1692 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1693 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1694 }
1695 \f
1696 /* Process an insn's memory dependencies. There are four kinds of
1697 dependencies:
1698
1699 (0) read dependence: read follows read
1700 (1) true dependence: read follows write
1701 (2) output dependence: write follows write
1702 (3) anti dependence: write follows read
1703
1704 We are careful to build only dependencies which actually exist, and
1705 use transitivity to avoid building too many links. */
1706
1707 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1708 The MEM is a memory reference contained within INSN, which we are saving
1709 so that we can do memory aliasing on it. */
1710
1711 static void
1712 add_insn_mem_dependence (class deps_desc *deps, bool read_p,
1713 rtx_insn *insn, rtx mem)
1714 {
1715 rtx_insn_list **insn_list;
1716 rtx_insn_list *insn_node;
1717 rtx_expr_list **mem_list;
1718 rtx_expr_list *mem_node;
1719
1720 gcc_assert (!deps->readonly);
1721 if (read_p)
1722 {
1723 insn_list = &deps->pending_read_insns;
1724 mem_list = &deps->pending_read_mems;
1725 if (!DEBUG_INSN_P (insn))
1726 deps->pending_read_list_length++;
1727 }
1728 else
1729 {
1730 insn_list = &deps->pending_write_insns;
1731 mem_list = &deps->pending_write_mems;
1732 deps->pending_write_list_length++;
1733 }
1734
1735 insn_node = alloc_INSN_LIST (insn, *insn_list);
1736 *insn_list = insn_node;
1737
1738 if (sched_deps_info->use_cselib)
1739 {
1740 mem = shallow_copy_rtx (mem);
1741 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1742 GET_MODE (mem), insn);
1743 }
1744 mem_node = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1745 *mem_list = mem_node;
1746 }
1747
1748 /* Make a dependency between every memory reference on the pending lists
1749 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1750 dependencies for a read operation, similarly with FOR_WRITE. */
1751
1752 static void
1753 flush_pending_lists (class deps_desc *deps, rtx_insn *insn, int for_read,
1754 int for_write)
1755 {
1756 if (for_write)
1757 {
1758 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1759 1, REG_DEP_ANTI, true);
1760 if (!deps->readonly)
1761 {
1762 free_EXPR_LIST_list (&deps->pending_read_mems);
1763 deps->pending_read_list_length = 0;
1764 }
1765 }
1766
1767 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1768 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1769 true);
1770
1771 add_dependence_list_and_free (deps, insn,
1772 &deps->last_pending_memory_flush, 1,
1773 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1774 true);
1775
1776 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1777 REG_DEP_ANTI, true);
1778
1779 if (DEBUG_INSN_P (insn))
1780 {
1781 if (for_write)
1782 free_INSN_LIST_list (&deps->pending_read_insns);
1783 free_INSN_LIST_list (&deps->pending_write_insns);
1784 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1785 free_INSN_LIST_list (&deps->pending_jump_insns);
1786 }
1787
1788 if (!deps->readonly)
1789 {
1790 free_EXPR_LIST_list (&deps->pending_write_mems);
1791 deps->pending_write_list_length = 0;
1792
1793 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1794 deps->pending_flush_length = 1;
1795 }
1796 mark_as_hard = false;
1797 }
1798 \f
1799 /* Instruction which dependencies we are analyzing. */
1800 static rtx_insn *cur_insn = NULL;
1801
1802 /* Implement hooks for haifa scheduler. */
1803
1804 static void
1805 haifa_start_insn (rtx_insn *insn)
1806 {
1807 gcc_assert (insn && !cur_insn);
1808
1809 cur_insn = insn;
1810 }
1811
1812 static void
1813 haifa_finish_insn (void)
1814 {
1815 cur_insn = NULL;
1816 }
1817
1818 void
1819 haifa_note_reg_set (int regno)
1820 {
1821 SET_REGNO_REG_SET (reg_pending_sets, regno);
1822 }
1823
1824 void
1825 haifa_note_reg_clobber (int regno)
1826 {
1827 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1828 }
1829
1830 void
1831 haifa_note_reg_use (int regno)
1832 {
1833 SET_REGNO_REG_SET (reg_pending_uses, regno);
1834 }
1835
1836 static void
1837 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx_insn *pending_insn, ds_t ds)
1838 {
1839 if (!(ds & SPECULATIVE))
1840 {
1841 mem = NULL_RTX;
1842 pending_mem = NULL_RTX;
1843 }
1844 else
1845 gcc_assert (ds & BEGIN_DATA);
1846
1847 {
1848 dep_def _dep, *dep = &_dep;
1849
1850 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1851 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1852 DEP_NONREG (dep) = 1;
1853 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1854 }
1855
1856 }
1857
1858 static void
1859 haifa_note_dep (rtx_insn *elem, ds_t ds)
1860 {
1861 dep_def _dep;
1862 dep_t dep = &_dep;
1863
1864 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1865 if (mark_as_hard)
1866 DEP_NONREG (dep) = 1;
1867 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1868 }
1869
1870 static void
1871 note_reg_use (int r)
1872 {
1873 if (sched_deps_info->note_reg_use)
1874 sched_deps_info->note_reg_use (r);
1875 }
1876
1877 static void
1878 note_reg_set (int r)
1879 {
1880 if (sched_deps_info->note_reg_set)
1881 sched_deps_info->note_reg_set (r);
1882 }
1883
1884 static void
1885 note_reg_clobber (int r)
1886 {
1887 if (sched_deps_info->note_reg_clobber)
1888 sched_deps_info->note_reg_clobber (r);
1889 }
1890
1891 static void
1892 note_mem_dep (rtx m1, rtx m2, rtx_insn *e, ds_t ds)
1893 {
1894 if (sched_deps_info->note_mem_dep)
1895 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1896 }
1897
1898 static void
1899 note_dep (rtx_insn *e, ds_t ds)
1900 {
1901 if (sched_deps_info->note_dep)
1902 sched_deps_info->note_dep (e, ds);
1903 }
1904
1905 /* Return corresponding to DS reg_note. */
1906 enum reg_note
1907 ds_to_dt (ds_t ds)
1908 {
1909 if (ds & DEP_TRUE)
1910 return REG_DEP_TRUE;
1911 else if (ds & DEP_OUTPUT)
1912 return REG_DEP_OUTPUT;
1913 else if (ds & DEP_ANTI)
1914 return REG_DEP_ANTI;
1915 else
1916 {
1917 gcc_assert (ds & DEP_CONTROL);
1918 return REG_DEP_CONTROL;
1919 }
1920 }
1921
1922 \f
1923
1924 /* Functions for computation of info needed for register pressure
1925 sensitive insn scheduling. */
1926
1927
1928 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1929 static struct reg_use_data *
1930 create_insn_reg_use (int regno, rtx_insn *insn)
1931 {
1932 struct reg_use_data *use;
1933
1934 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1935 use->regno = regno;
1936 use->insn = insn;
1937 use->next_insn_use = INSN_REG_USE_LIST (insn);
1938 INSN_REG_USE_LIST (insn) = use;
1939 return use;
1940 }
1941
1942 /* Allocate reg_set_data structure for REGNO and INSN. */
1943 static void
1944 create_insn_reg_set (int regno, rtx insn)
1945 {
1946 struct reg_set_data *set;
1947
1948 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1949 set->regno = regno;
1950 set->insn = insn;
1951 set->next_insn_set = INSN_REG_SET_LIST (insn);
1952 INSN_REG_SET_LIST (insn) = set;
1953 }
1954
1955 /* Set up insn register uses for INSN and dependency context DEPS. */
1956 static void
1957 setup_insn_reg_uses (class deps_desc *deps, rtx_insn *insn)
1958 {
1959 unsigned i;
1960 reg_set_iterator rsi;
1961 struct reg_use_data *use, *use2, *next;
1962 struct deps_reg *reg_last;
1963
1964 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1965 {
1966 if (i < FIRST_PSEUDO_REGISTER
1967 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1968 continue;
1969
1970 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1971 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1972 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1973 /* Ignore use which is not dying. */
1974 continue;
1975
1976 use = create_insn_reg_use (i, insn);
1977 use->next_regno_use = use;
1978 reg_last = &deps->reg_last[i];
1979
1980 /* Create the cycle list of uses. */
1981 for (rtx_insn_list *list = reg_last->uses; list; list = list->next ())
1982 {
1983 use2 = create_insn_reg_use (i, list->insn ());
1984 next = use->next_regno_use;
1985 use->next_regno_use = use2;
1986 use2->next_regno_use = next;
1987 }
1988 }
1989 }
1990
1991 /* Register pressure info for the currently processed insn. */
1992 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1993
1994 /* Return TRUE if INSN has the use structure for REGNO. */
1995 static bool
1996 insn_use_p (rtx insn, int regno)
1997 {
1998 struct reg_use_data *use;
1999
2000 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2001 if (use->regno == regno)
2002 return true;
2003 return false;
2004 }
2005
2006 /* Update the register pressure info after birth of pseudo register REGNO
2007 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2008 the register is in clobber or unused after the insn. */
2009 static void
2010 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2011 {
2012 int incr, new_incr;
2013 enum reg_class cl;
2014
2015 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2016 cl = sched_regno_pressure_class[regno];
2017 if (cl != NO_REGS)
2018 {
2019 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2020 if (clobber_p)
2021 {
2022 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2023 reg_pressure_info[cl].clobber_increase = new_incr;
2024 }
2025 else if (unused_p)
2026 {
2027 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2028 reg_pressure_info[cl].unused_set_increase = new_incr;
2029 }
2030 else
2031 {
2032 new_incr = reg_pressure_info[cl].set_increase + incr;
2033 reg_pressure_info[cl].set_increase = new_incr;
2034 if (! insn_use_p (insn, regno))
2035 reg_pressure_info[cl].change += incr;
2036 create_insn_reg_set (regno, insn);
2037 }
2038 gcc_assert (new_incr < (1 << INCREASE_BITS));
2039 }
2040 }
2041
2042 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2043 hard registers involved in the birth. */
2044 static void
2045 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2046 bool clobber_p, bool unused_p)
2047 {
2048 enum reg_class cl;
2049 int new_incr, last = regno + nregs;
2050
2051 while (regno < last)
2052 {
2053 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2054 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2055 {
2056 cl = sched_regno_pressure_class[regno];
2057 if (cl != NO_REGS)
2058 {
2059 if (clobber_p)
2060 {
2061 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2062 reg_pressure_info[cl].clobber_increase = new_incr;
2063 }
2064 else if (unused_p)
2065 {
2066 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2067 reg_pressure_info[cl].unused_set_increase = new_incr;
2068 }
2069 else
2070 {
2071 new_incr = reg_pressure_info[cl].set_increase + 1;
2072 reg_pressure_info[cl].set_increase = new_incr;
2073 if (! insn_use_p (insn, regno))
2074 reg_pressure_info[cl].change += 1;
2075 create_insn_reg_set (regno, insn);
2076 }
2077 gcc_assert (new_incr < (1 << INCREASE_BITS));
2078 }
2079 }
2080 regno++;
2081 }
2082 }
2083
2084 /* Update the register pressure info after birth of pseudo or hard
2085 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2086 correspondingly that the register is in clobber or unused after the
2087 insn. */
2088 static void
2089 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2090 {
2091 int regno;
2092
2093 if (GET_CODE (reg) == SUBREG)
2094 reg = SUBREG_REG (reg);
2095
2096 if (! REG_P (reg))
2097 return;
2098
2099 regno = REGNO (reg);
2100 if (regno < FIRST_PSEUDO_REGISTER)
2101 mark_insn_hard_regno_birth (insn, regno, REG_NREGS (reg),
2102 clobber_p, unused_p);
2103 else
2104 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2105 }
2106
2107 /* Update the register pressure info after death of pseudo register
2108 REGNO. */
2109 static void
2110 mark_pseudo_death (int regno)
2111 {
2112 int incr;
2113 enum reg_class cl;
2114
2115 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2116 cl = sched_regno_pressure_class[regno];
2117 if (cl != NO_REGS)
2118 {
2119 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2120 reg_pressure_info[cl].change -= incr;
2121 }
2122 }
2123
2124 /* Like mark_pseudo_death except that NREGS saying how many hard
2125 registers involved in the death. */
2126 static void
2127 mark_hard_regno_death (int regno, int nregs)
2128 {
2129 enum reg_class cl;
2130 int last = regno + nregs;
2131
2132 while (regno < last)
2133 {
2134 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2135 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2136 {
2137 cl = sched_regno_pressure_class[regno];
2138 if (cl != NO_REGS)
2139 reg_pressure_info[cl].change -= 1;
2140 }
2141 regno++;
2142 }
2143 }
2144
2145 /* Update the register pressure info after death of pseudo or hard
2146 register REG. */
2147 static void
2148 mark_reg_death (rtx reg)
2149 {
2150 int regno;
2151
2152 if (GET_CODE (reg) == SUBREG)
2153 reg = SUBREG_REG (reg);
2154
2155 if (! REG_P (reg))
2156 return;
2157
2158 regno = REGNO (reg);
2159 if (regno < FIRST_PSEUDO_REGISTER)
2160 mark_hard_regno_death (regno, REG_NREGS (reg));
2161 else
2162 mark_pseudo_death (regno);
2163 }
2164
2165 /* Process SETTER of REG. DATA is an insn containing the setter. */
2166 static void
2167 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2168 {
2169 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2170 return;
2171 mark_insn_reg_birth
2172 ((rtx) data, reg, false,
2173 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2174 }
2175
2176 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2177 static void
2178 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2179 {
2180 if (GET_CODE (setter) == CLOBBER)
2181 mark_insn_reg_birth ((rtx) data, reg, true, false);
2182 }
2183
2184 /* Set up reg pressure info related to INSN. */
2185 void
2186 init_insn_reg_pressure_info (rtx_insn *insn)
2187 {
2188 int i, len;
2189 enum reg_class cl;
2190 static struct reg_pressure_data *pressure_info;
2191 rtx link;
2192
2193 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2194
2195 if (! INSN_P (insn))
2196 return;
2197
2198 for (i = 0; i < ira_pressure_classes_num; i++)
2199 {
2200 cl = ira_pressure_classes[i];
2201 reg_pressure_info[cl].clobber_increase = 0;
2202 reg_pressure_info[cl].set_increase = 0;
2203 reg_pressure_info[cl].unused_set_increase = 0;
2204 reg_pressure_info[cl].change = 0;
2205 }
2206
2207 note_stores (insn, mark_insn_reg_clobber, insn);
2208
2209 note_stores (insn, mark_insn_reg_store, insn);
2210
2211 if (AUTO_INC_DEC)
2212 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2213 if (REG_NOTE_KIND (link) == REG_INC)
2214 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2215
2216 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2217 if (REG_NOTE_KIND (link) == REG_DEAD)
2218 mark_reg_death (XEXP (link, 0));
2219
2220 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2221 pressure_info
2222 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2223 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2224 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2225 * sizeof (int), 1);
2226 for (i = 0; i < ira_pressure_classes_num; i++)
2227 {
2228 cl = ira_pressure_classes[i];
2229 pressure_info[i].clobber_increase
2230 = reg_pressure_info[cl].clobber_increase;
2231 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2232 pressure_info[i].unused_set_increase
2233 = reg_pressure_info[cl].unused_set_increase;
2234 pressure_info[i].change = reg_pressure_info[cl].change;
2235 }
2236 }
2237
2238
2239 \f
2240
2241 /* Internal variable for sched_analyze_[12] () functions.
2242 If it is nonzero, this means that sched_analyze_[12] looks
2243 at the most toplevel SET. */
2244 static bool can_start_lhs_rhs_p;
2245
2246 /* Extend reg info for the deps context DEPS given that
2247 we have just generated a register numbered REGNO. */
2248 static void
2249 extend_deps_reg_info (class deps_desc *deps, int regno)
2250 {
2251 int max_regno = regno + 1;
2252
2253 gcc_assert (!reload_completed);
2254
2255 /* In a readonly context, it would not hurt to extend info,
2256 but it should not be needed. */
2257 if (reload_completed && deps->readonly)
2258 {
2259 deps->max_reg = max_regno;
2260 return;
2261 }
2262
2263 if (max_regno > deps->max_reg)
2264 {
2265 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2266 max_regno);
2267 memset (&deps->reg_last[deps->max_reg],
2268 0, (max_regno - deps->max_reg)
2269 * sizeof (struct deps_reg));
2270 deps->max_reg = max_regno;
2271 }
2272 }
2273
2274 /* Extends REG_INFO_P if needed. */
2275 void
2276 maybe_extend_reg_info_p (void)
2277 {
2278 /* Extend REG_INFO_P, if needed. */
2279 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2280 {
2281 size_t new_reg_info_p_size = max_regno + 128;
2282
2283 gcc_assert (!reload_completed && sel_sched_p ());
2284
2285 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2286 new_reg_info_p_size,
2287 reg_info_p_size,
2288 sizeof (*reg_info_p));
2289 reg_info_p_size = new_reg_info_p_size;
2290 }
2291 }
2292
2293 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2294 The type of the reference is specified by REF and can be SET,
2295 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2296
2297 static void
2298 sched_analyze_reg (class deps_desc *deps, int regno, machine_mode mode,
2299 enum rtx_code ref, rtx_insn *insn)
2300 {
2301 /* We could emit new pseudos in renaming. Extend the reg structures. */
2302 if (!reload_completed && sel_sched_p ()
2303 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2304 extend_deps_reg_info (deps, regno);
2305
2306 maybe_extend_reg_info_p ();
2307
2308 /* A hard reg in a wide mode may really be multiple registers.
2309 If so, mark all of them just like the first. */
2310 if (regno < FIRST_PSEUDO_REGISTER)
2311 {
2312 int i = hard_regno_nregs (regno, mode);
2313 if (ref == SET)
2314 {
2315 while (--i >= 0)
2316 note_reg_set (regno + i);
2317 }
2318 else if (ref == USE)
2319 {
2320 while (--i >= 0)
2321 note_reg_use (regno + i);
2322 }
2323 else if (ref == CLOBBER_HIGH)
2324 {
2325 gcc_assert (i == 1);
2326 /* We don't know the current state of the register, so have to treat
2327 the clobber high as a full clobber. */
2328 note_reg_clobber (regno);
2329 }
2330 else
2331 {
2332 while (--i >= 0)
2333 note_reg_clobber (regno + i);
2334 }
2335 }
2336
2337 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2338 it does not reload. Ignore these as they have served their
2339 purpose already. */
2340 else if (regno >= deps->max_reg)
2341 {
2342 enum rtx_code code = GET_CODE (PATTERN (insn));
2343 gcc_assert (code == USE || code == CLOBBER);
2344 }
2345
2346 else
2347 {
2348 if (ref == SET)
2349 note_reg_set (regno);
2350 else if (ref == USE)
2351 note_reg_use (regno);
2352 else
2353 /* For CLOBBER_HIGH, we don't know the current state of the register,
2354 so have to treat it as a full clobber. */
2355 note_reg_clobber (regno);
2356
2357 /* Pseudos that are REG_EQUIV to something may be replaced
2358 by that during reloading. We need only add dependencies for
2359 the address in the REG_EQUIV note. */
2360 if (!reload_completed && get_reg_known_equiv_p (regno))
2361 {
2362 rtx t = get_reg_known_value (regno);
2363 if (MEM_P (t))
2364 sched_analyze_2 (deps, XEXP (t, 0), insn);
2365 }
2366
2367 /* Don't let it cross a call after scheduling if it doesn't
2368 already cross one. */
2369 if (REG_N_CALLS_CROSSED (regno) == 0)
2370 {
2371 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2372 deps->sched_before_next_call
2373 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2374 else
2375 add_dependence_list (insn, deps->last_function_call, 1,
2376 REG_DEP_ANTI, false);
2377 }
2378 }
2379 }
2380
2381 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2382 rtx, X, creating all dependencies generated by the write to the
2383 destination of X, and reads of everything mentioned. */
2384
2385 static void
2386 sched_analyze_1 (class deps_desc *deps, rtx x, rtx_insn *insn)
2387 {
2388 rtx dest = XEXP (x, 0);
2389 enum rtx_code code = GET_CODE (x);
2390 bool cslr_p = can_start_lhs_rhs_p;
2391
2392 can_start_lhs_rhs_p = false;
2393
2394 gcc_assert (dest);
2395 if (dest == 0)
2396 return;
2397
2398 if (cslr_p && sched_deps_info->start_lhs)
2399 sched_deps_info->start_lhs (dest);
2400
2401 if (GET_CODE (dest) == PARALLEL)
2402 {
2403 int i;
2404
2405 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2406 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2407 sched_analyze_1 (deps,
2408 gen_rtx_CLOBBER (VOIDmode,
2409 XEXP (XVECEXP (dest, 0, i), 0)),
2410 insn);
2411
2412 if (cslr_p && sched_deps_info->finish_lhs)
2413 sched_deps_info->finish_lhs ();
2414
2415 if (code == SET)
2416 {
2417 can_start_lhs_rhs_p = cslr_p;
2418
2419 sched_analyze_2 (deps, SET_SRC (x), insn);
2420
2421 can_start_lhs_rhs_p = false;
2422 }
2423
2424 return;
2425 }
2426
2427 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2428 || GET_CODE (dest) == ZERO_EXTRACT)
2429 {
2430 if (GET_CODE (dest) == STRICT_LOW_PART
2431 || GET_CODE (dest) == ZERO_EXTRACT
2432 || read_modify_subreg_p (dest))
2433 {
2434 /* These both read and modify the result. We must handle
2435 them as writes to get proper dependencies for following
2436 instructions. We must handle them as reads to get proper
2437 dependencies from this to previous instructions.
2438 Thus we need to call sched_analyze_2. */
2439
2440 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2441 }
2442 if (GET_CODE (dest) == ZERO_EXTRACT)
2443 {
2444 /* The second and third arguments are values read by this insn. */
2445 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2446 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2447 }
2448 dest = XEXP (dest, 0);
2449 }
2450
2451 if (REG_P (dest))
2452 {
2453 int regno = REGNO (dest);
2454 machine_mode mode = GET_MODE (dest);
2455
2456 sched_analyze_reg (deps, regno, mode, code, insn);
2457
2458 #ifdef STACK_REGS
2459 /* Treat all writes to a stack register as modifying the TOS. */
2460 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2461 {
2462 /* Avoid analyzing the same register twice. */
2463 if (regno != FIRST_STACK_REG)
2464 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2465
2466 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2467 FIRST_STACK_REG);
2468 }
2469 #endif
2470 }
2471 else if (MEM_P (dest))
2472 {
2473 /* Writing memory. */
2474 rtx t = dest;
2475
2476 if (sched_deps_info->use_cselib)
2477 {
2478 machine_mode address_mode = get_address_mode (dest);
2479
2480 t = shallow_copy_rtx (dest);
2481 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2482 GET_MODE (t), insn);
2483 XEXP (t, 0)
2484 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2485 insn);
2486 }
2487 t = canon_rtx (t);
2488
2489 /* Pending lists can't get larger with a readonly context. */
2490 if (!deps->readonly
2491 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2492 >= MAX_PENDING_LIST_LENGTH))
2493 {
2494 /* Flush all pending reads and writes to prevent the pending lists
2495 from getting any larger. Insn scheduling runs too slowly when
2496 these lists get long. When compiling GCC with itself,
2497 this flush occurs 8 times for sparc, and 10 times for m88k using
2498 the default value of 32. */
2499 flush_pending_lists (deps, insn, false, true);
2500 }
2501 else
2502 {
2503 rtx_insn_list *pending;
2504 rtx_expr_list *pending_mem;
2505
2506 pending = deps->pending_read_insns;
2507 pending_mem = deps->pending_read_mems;
2508 while (pending)
2509 {
2510 if (anti_dependence (pending_mem->element (), t)
2511 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2512 note_mem_dep (t, pending_mem->element (), pending->insn (),
2513 DEP_ANTI);
2514
2515 pending = pending->next ();
2516 pending_mem = pending_mem->next ();
2517 }
2518
2519 pending = deps->pending_write_insns;
2520 pending_mem = deps->pending_write_mems;
2521 while (pending)
2522 {
2523 if (output_dependence (pending_mem->element (), t)
2524 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2525 note_mem_dep (t, pending_mem->element (),
2526 pending->insn (),
2527 DEP_OUTPUT);
2528
2529 pending = pending->next ();
2530 pending_mem = pending_mem-> next ();
2531 }
2532
2533 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2534 REG_DEP_ANTI, true);
2535 add_dependence_list (insn, deps->pending_jump_insns, 1,
2536 REG_DEP_CONTROL, true);
2537
2538 if (!deps->readonly)
2539 add_insn_mem_dependence (deps, false, insn, dest);
2540 }
2541 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2542 }
2543
2544 if (cslr_p && sched_deps_info->finish_lhs)
2545 sched_deps_info->finish_lhs ();
2546
2547 /* Analyze reads. */
2548 if (GET_CODE (x) == SET)
2549 {
2550 can_start_lhs_rhs_p = cslr_p;
2551
2552 sched_analyze_2 (deps, SET_SRC (x), insn);
2553
2554 can_start_lhs_rhs_p = false;
2555 }
2556 }
2557
2558 /* Analyze the uses of memory and registers in rtx X in INSN. */
2559 static void
2560 sched_analyze_2 (class deps_desc *deps, rtx x, rtx_insn *insn)
2561 {
2562 int i;
2563 int j;
2564 enum rtx_code code;
2565 const char *fmt;
2566 bool cslr_p = can_start_lhs_rhs_p;
2567
2568 can_start_lhs_rhs_p = false;
2569
2570 gcc_assert (x);
2571 if (x == 0)
2572 return;
2573
2574 if (cslr_p && sched_deps_info->start_rhs)
2575 sched_deps_info->start_rhs (x);
2576
2577 code = GET_CODE (x);
2578
2579 switch (code)
2580 {
2581 CASE_CONST_ANY:
2582 case SYMBOL_REF:
2583 case CONST:
2584 case LABEL_REF:
2585 /* Ignore constants. */
2586 if (cslr_p && sched_deps_info->finish_rhs)
2587 sched_deps_info->finish_rhs ();
2588
2589 return;
2590
2591 case CC0:
2592 if (!HAVE_cc0)
2593 gcc_unreachable ();
2594
2595 /* User of CC0 depends on immediately preceding insn. */
2596 SCHED_GROUP_P (insn) = 1;
2597 /* Don't move CC0 setter to another block (it can set up the
2598 same flag for previous CC0 users which is safe). */
2599 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2600
2601 if (cslr_p && sched_deps_info->finish_rhs)
2602 sched_deps_info->finish_rhs ();
2603
2604 return;
2605
2606 case REG:
2607 {
2608 int regno = REGNO (x);
2609 machine_mode mode = GET_MODE (x);
2610
2611 sched_analyze_reg (deps, regno, mode, USE, insn);
2612
2613 #ifdef STACK_REGS
2614 /* Treat all reads of a stack register as modifying the TOS. */
2615 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2616 {
2617 /* Avoid analyzing the same register twice. */
2618 if (regno != FIRST_STACK_REG)
2619 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2620 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2621 }
2622 #endif
2623
2624 if (cslr_p && sched_deps_info->finish_rhs)
2625 sched_deps_info->finish_rhs ();
2626
2627 return;
2628 }
2629
2630 case MEM:
2631 {
2632 /* Reading memory. */
2633 rtx_insn_list *u;
2634 rtx_insn_list *pending;
2635 rtx_expr_list *pending_mem;
2636 rtx t = x;
2637
2638 if (sched_deps_info->use_cselib)
2639 {
2640 machine_mode address_mode = get_address_mode (t);
2641
2642 t = shallow_copy_rtx (t);
2643 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2644 GET_MODE (t), insn);
2645 XEXP (t, 0)
2646 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2647 insn);
2648 }
2649
2650 if (!DEBUG_INSN_P (insn))
2651 {
2652 t = canon_rtx (t);
2653 pending = deps->pending_read_insns;
2654 pending_mem = deps->pending_read_mems;
2655 while (pending)
2656 {
2657 if (read_dependence (pending_mem->element (), t)
2658 && ! sched_insns_conditions_mutex_p (insn,
2659 pending->insn ()))
2660 note_mem_dep (t, pending_mem->element (),
2661 pending->insn (),
2662 DEP_ANTI);
2663
2664 pending = pending->next ();
2665 pending_mem = pending_mem->next ();
2666 }
2667
2668 pending = deps->pending_write_insns;
2669 pending_mem = deps->pending_write_mems;
2670 while (pending)
2671 {
2672 if (true_dependence (pending_mem->element (), VOIDmode, t)
2673 && ! sched_insns_conditions_mutex_p (insn,
2674 pending->insn ()))
2675 note_mem_dep (t, pending_mem->element (),
2676 pending->insn (),
2677 sched_deps_info->generate_spec_deps
2678 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2679
2680 pending = pending->next ();
2681 pending_mem = pending_mem->next ();
2682 }
2683
2684 for (u = deps->last_pending_memory_flush; u; u = u->next ())
2685 add_dependence (insn, u->insn (), REG_DEP_ANTI);
2686
2687 for (u = deps->pending_jump_insns; u; u = u->next ())
2688 if (deps_may_trap_p (x))
2689 {
2690 if ((sched_deps_info->generate_spec_deps)
2691 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2692 {
2693 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2694 MAX_DEP_WEAK);
2695
2696 note_dep (u->insn (), ds);
2697 }
2698 else
2699 add_dependence (insn, u->insn (), REG_DEP_CONTROL);
2700 }
2701 }
2702
2703 /* Always add these dependencies to pending_reads, since
2704 this insn may be followed by a write. */
2705 if (!deps->readonly)
2706 {
2707 if ((deps->pending_read_list_length
2708 + deps->pending_write_list_length)
2709 >= MAX_PENDING_LIST_LENGTH
2710 && !DEBUG_INSN_P (insn))
2711 flush_pending_lists (deps, insn, true, true);
2712 add_insn_mem_dependence (deps, true, insn, x);
2713 }
2714
2715 sched_analyze_2 (deps, XEXP (x, 0), insn);
2716
2717 if (cslr_p && sched_deps_info->finish_rhs)
2718 sched_deps_info->finish_rhs ();
2719
2720 return;
2721 }
2722
2723 /* Force pending stores to memory in case a trap handler needs them.
2724 Also force pending loads from memory; loads and stores can segfault
2725 and the signal handler won't be triggered if the trap insn was moved
2726 above load or store insn. */
2727 case TRAP_IF:
2728 flush_pending_lists (deps, insn, true, true);
2729 break;
2730
2731 case PREFETCH:
2732 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2733 reg_pending_barrier = TRUE_BARRIER;
2734 /* Prefetch insn contains addresses only. So if the prefetch
2735 address has no registers, there will be no dependencies on
2736 the prefetch insn. This is wrong with result code
2737 correctness point of view as such prefetch can be moved below
2738 a jump insn which usually generates MOVE_BARRIER preventing
2739 to move insns containing registers or memories through the
2740 barrier. It is also wrong with generated code performance
2741 point of view as prefetch withouth dependecies will have a
2742 tendency to be issued later instead of earlier. It is hard
2743 to generate accurate dependencies for prefetch insns as
2744 prefetch has only the start address but it is better to have
2745 something than nothing. */
2746 if (!deps->readonly)
2747 {
2748 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2749 if (sched_deps_info->use_cselib)
2750 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2751 add_insn_mem_dependence (deps, true, insn, x);
2752 }
2753 break;
2754
2755 case UNSPEC_VOLATILE:
2756 flush_pending_lists (deps, insn, true, true);
2757 /* FALLTHRU */
2758
2759 case ASM_OPERANDS:
2760 case ASM_INPUT:
2761 {
2762 /* Traditional and volatile asm instructions must be considered to use
2763 and clobber all hard registers, all pseudo-registers and all of
2764 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2765
2766 Consider for instance a volatile asm that changes the fpu rounding
2767 mode. An insn should not be moved across this even if it only uses
2768 pseudo-regs because it might give an incorrectly rounded result. */
2769 if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2770 && !DEBUG_INSN_P (insn))
2771 reg_pending_barrier = TRUE_BARRIER;
2772
2773 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2774 We cannot just fall through here since then we would be confused
2775 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2776 traditional asms unlike their normal usage. */
2777
2778 if (code == ASM_OPERANDS)
2779 {
2780 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2781 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2782
2783 if (cslr_p && sched_deps_info->finish_rhs)
2784 sched_deps_info->finish_rhs ();
2785
2786 return;
2787 }
2788 break;
2789 }
2790
2791 case PRE_DEC:
2792 case POST_DEC:
2793 case PRE_INC:
2794 case POST_INC:
2795 /* These both read and modify the result. We must handle them as writes
2796 to get proper dependencies for following instructions. We must handle
2797 them as reads to get proper dependencies from this to previous
2798 instructions. Thus we need to pass them to both sched_analyze_1
2799 and sched_analyze_2. We must call sched_analyze_2 first in order
2800 to get the proper antecedent for the read. */
2801 sched_analyze_2 (deps, XEXP (x, 0), insn);
2802 sched_analyze_1 (deps, x, insn);
2803
2804 if (cslr_p && sched_deps_info->finish_rhs)
2805 sched_deps_info->finish_rhs ();
2806
2807 return;
2808
2809 case POST_MODIFY:
2810 case PRE_MODIFY:
2811 /* op0 = op0 + op1 */
2812 sched_analyze_2 (deps, XEXP (x, 0), insn);
2813 sched_analyze_2 (deps, XEXP (x, 1), insn);
2814 sched_analyze_1 (deps, x, insn);
2815
2816 if (cslr_p && sched_deps_info->finish_rhs)
2817 sched_deps_info->finish_rhs ();
2818
2819 return;
2820
2821 default:
2822 break;
2823 }
2824
2825 /* Other cases: walk the insn. */
2826 fmt = GET_RTX_FORMAT (code);
2827 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2828 {
2829 if (fmt[i] == 'e')
2830 sched_analyze_2 (deps, XEXP (x, i), insn);
2831 else if (fmt[i] == 'E')
2832 for (j = 0; j < XVECLEN (x, i); j++)
2833 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2834 }
2835
2836 if (cslr_p && sched_deps_info->finish_rhs)
2837 sched_deps_info->finish_rhs ();
2838 }
2839
2840 /* Try to group two fusible insns together to prevent scheduler
2841 from scheduling them apart. */
2842
2843 static void
2844 sched_macro_fuse_insns (rtx_insn *insn)
2845 {
2846 rtx_insn *prev;
2847 /* No target hook would return true for debug insn as any of the
2848 hook operand, and with very large sequences of only debug insns
2849 where on each we call sched_macro_fuse_insns it has quadratic
2850 compile time complexity. */
2851 if (DEBUG_INSN_P (insn))
2852 return;
2853 prev = prev_nonnote_nondebug_insn (insn);
2854 if (!prev)
2855 return;
2856
2857 if (any_condjump_p (insn))
2858 {
2859 unsigned int condreg1, condreg2;
2860 rtx cc_reg_1;
2861 if (targetm.fixed_condition_code_regs (&condreg1, &condreg2))
2862 {
2863 cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2864 if (reg_referenced_p (cc_reg_1, PATTERN (insn))
2865 && modified_in_p (cc_reg_1, prev))
2866 {
2867 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2868 SCHED_GROUP_P (insn) = 1;
2869 return;
2870 }
2871 }
2872 }
2873
2874 if (single_set (insn) && single_set (prev))
2875 {
2876 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2877 SCHED_GROUP_P (insn) = 1;
2878 }
2879 }
2880
2881 /* Get the implicit reg pending clobbers for INSN and save them in TEMP. */
2882 void
2883 get_implicit_reg_pending_clobbers (HARD_REG_SET *temp, rtx_insn *insn)
2884 {
2885 extract_insn (insn);
2886 preprocess_constraints (insn);
2887 alternative_mask preferred = get_preferred_alternatives (insn);
2888 ira_implicitly_set_insn_hard_regs (temp, preferred);
2889 *temp &= ~ira_no_alloc_regs;
2890 }
2891
2892 /* Analyze an INSN with pattern X to find all dependencies. */
2893 static void
2894 sched_analyze_insn (class deps_desc *deps, rtx x, rtx_insn *insn)
2895 {
2896 RTX_CODE code = GET_CODE (x);
2897 rtx link;
2898 unsigned i;
2899 reg_set_iterator rsi;
2900
2901 if (! reload_completed)
2902 {
2903 HARD_REG_SET temp;
2904 get_implicit_reg_pending_clobbers (&temp, insn);
2905 implicit_reg_pending_clobbers |= temp;
2906 }
2907
2908 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2909 && code == SET);
2910
2911 /* Group compare and branch insns for macro-fusion. */
2912 if (!deps->readonly
2913 && targetm.sched.macro_fusion_p
2914 && targetm.sched.macro_fusion_p ())
2915 sched_macro_fuse_insns (insn);
2916
2917 if (may_trap_p (x))
2918 /* Avoid moving trapping instructions across function calls that might
2919 not always return. */
2920 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2921 1, REG_DEP_ANTI, true);
2922
2923 /* We must avoid creating a situation in which two successors of the
2924 current block have different unwind info after scheduling. If at any
2925 point the two paths re-join this leads to incorrect unwind info. */
2926 /* ??? There are certain situations involving a forced frame pointer in
2927 which, with extra effort, we could fix up the unwind info at a later
2928 CFG join. However, it seems better to notice these cases earlier
2929 during prologue generation and avoid marking the frame pointer setup
2930 as frame-related at all. */
2931 if (RTX_FRAME_RELATED_P (insn))
2932 {
2933 /* Make sure prologue insn is scheduled before next jump. */
2934 deps->sched_before_next_jump
2935 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2936
2937 /* Make sure epilogue insn is scheduled after preceding jumps. */
2938 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2939 REG_DEP_ANTI, true);
2940 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2941 true);
2942 }
2943
2944 if (code == COND_EXEC)
2945 {
2946 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2947
2948 /* ??? Should be recording conditions so we reduce the number of
2949 false dependencies. */
2950 x = COND_EXEC_CODE (x);
2951 code = GET_CODE (x);
2952 }
2953 if (code == SET || code == CLOBBER)
2954 {
2955 sched_analyze_1 (deps, x, insn);
2956
2957 /* Bare clobber insns are used for letting life analysis, reg-stack
2958 and others know that a value is dead. Depend on the last call
2959 instruction so that reg-stack won't get confused. */
2960 if (code == CLOBBER)
2961 add_dependence_list (insn, deps->last_function_call, 1,
2962 REG_DEP_OUTPUT, true);
2963 }
2964 else if (code == PARALLEL)
2965 {
2966 for (i = XVECLEN (x, 0); i--;)
2967 {
2968 rtx sub = XVECEXP (x, 0, i);
2969 code = GET_CODE (sub);
2970
2971 if (code == COND_EXEC)
2972 {
2973 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2974 sub = COND_EXEC_CODE (sub);
2975 code = GET_CODE (sub);
2976 }
2977 else if (code == SET || code == CLOBBER || code == CLOBBER_HIGH)
2978 sched_analyze_1 (deps, sub, insn);
2979 else
2980 sched_analyze_2 (deps, sub, insn);
2981 }
2982 }
2983 else
2984 sched_analyze_2 (deps, x, insn);
2985
2986 /* Mark registers CLOBBERED or used by called function. */
2987 if (CALL_P (insn))
2988 {
2989 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2990 {
2991 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2992 sched_analyze_1 (deps, XEXP (link, 0), insn);
2993 else if (GET_CODE (XEXP (link, 0)) == CLOBBER_HIGH)
2994 /* We could support CLOBBER_HIGH and treat it in the same way as
2995 HARD_REGNO_CALL_PART_CLOBBERED, but no port needs that yet. */
2996 gcc_unreachable ();
2997 else if (GET_CODE (XEXP (link, 0)) != SET)
2998 sched_analyze_2 (deps, XEXP (link, 0), insn);
2999 }
3000 /* Don't schedule anything after a tail call, tail call needs
3001 to use at least all call-saved registers. */
3002 if (SIBLING_CALL_P (insn))
3003 reg_pending_barrier = TRUE_BARRIER;
3004 else if (find_reg_note (insn, REG_SETJMP, NULL))
3005 reg_pending_barrier = MOVE_BARRIER;
3006 }
3007
3008 if (JUMP_P (insn))
3009 {
3010 rtx_insn *next = next_nonnote_nondebug_insn (insn);
3011 /* ??? For tablejumps, the barrier may appear not immediately after
3012 the jump, but after a label and a jump_table_data insn. */
3013 if (next && LABEL_P (next) && NEXT_INSN (next)
3014 && JUMP_TABLE_DATA_P (NEXT_INSN (next)))
3015 next = NEXT_INSN (NEXT_INSN (next));
3016 if (next && BARRIER_P (next))
3017 reg_pending_barrier = MOVE_BARRIER;
3018 else
3019 {
3020 rtx_insn_list *pending;
3021 rtx_expr_list *pending_mem;
3022
3023 if (sched_deps_info->compute_jump_reg_dependencies)
3024 {
3025 (*sched_deps_info->compute_jump_reg_dependencies)
3026 (insn, reg_pending_control_uses);
3027
3028 /* Make latency of jump equal to 0 by using anti-dependence. */
3029 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3030 {
3031 struct deps_reg *reg_last = &deps->reg_last[i];
3032 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
3033 false);
3034 add_dependence_list (insn, reg_last->implicit_sets,
3035 0, REG_DEP_ANTI, false);
3036 add_dependence_list (insn, reg_last->clobbers, 0,
3037 REG_DEP_ANTI, false);
3038 }
3039 }
3040
3041 /* All memory writes and volatile reads must happen before the
3042 jump. Non-volatile reads must happen before the jump iff
3043 the result is needed by the above register used mask. */
3044
3045 pending = deps->pending_write_insns;
3046 pending_mem = deps->pending_write_mems;
3047 while (pending)
3048 {
3049 if (! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3050 add_dependence (insn, pending->insn (),
3051 REG_DEP_OUTPUT);
3052 pending = pending->next ();
3053 pending_mem = pending_mem->next ();
3054 }
3055
3056 pending = deps->pending_read_insns;
3057 pending_mem = deps->pending_read_mems;
3058 while (pending)
3059 {
3060 if (MEM_VOLATILE_P (pending_mem->element ())
3061 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3062 add_dependence (insn, pending->insn (),
3063 REG_DEP_OUTPUT);
3064 pending = pending->next ();
3065 pending_mem = pending_mem->next ();
3066 }
3067
3068 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
3069 REG_DEP_ANTI, true);
3070 add_dependence_list (insn, deps->pending_jump_insns, 1,
3071 REG_DEP_ANTI, true);
3072 }
3073 }
3074
3075 /* If this instruction can throw an exception, then moving it changes
3076 where block boundaries fall. This is mighty confusing elsewhere.
3077 Therefore, prevent such an instruction from being moved. Same for
3078 non-jump instructions that define block boundaries.
3079 ??? Unclear whether this is still necessary in EBB mode. If not,
3080 add_branch_dependences should be adjusted for RGN mode instead. */
3081 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3082 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3083 reg_pending_barrier = MOVE_BARRIER;
3084
3085 if (sched_pressure != SCHED_PRESSURE_NONE)
3086 {
3087 setup_insn_reg_uses (deps, insn);
3088 init_insn_reg_pressure_info (insn);
3089 }
3090
3091 /* Add register dependencies for insn. */
3092 if (DEBUG_INSN_P (insn))
3093 {
3094 rtx_insn *prev = deps->last_debug_insn;
3095 rtx_insn_list *u;
3096
3097 if (!deps->readonly)
3098 deps->last_debug_insn = insn;
3099
3100 if (prev)
3101 add_dependence (insn, prev, REG_DEP_ANTI);
3102
3103 add_dependence_list (insn, deps->last_function_call, 1,
3104 REG_DEP_ANTI, false);
3105
3106 if (!sel_sched_p ())
3107 for (u = deps->last_pending_memory_flush; u; u = u->next ())
3108 add_dependence (insn, u->insn (), REG_DEP_ANTI);
3109
3110 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3111 {
3112 struct deps_reg *reg_last = &deps->reg_last[i];
3113 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3114 /* There's no point in making REG_DEP_CONTROL dependencies for
3115 debug insns. */
3116 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3117 false);
3118
3119 if (!deps->readonly)
3120 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3121 }
3122 CLEAR_REG_SET (reg_pending_uses);
3123
3124 /* Quite often, a debug insn will refer to stuff in the
3125 previous instruction, but the reason we want this
3126 dependency here is to make sure the scheduler doesn't
3127 gratuitously move a debug insn ahead. This could dirty
3128 DF flags and cause additional analysis that wouldn't have
3129 occurred in compilation without debug insns, and such
3130 additional analysis can modify the generated code. */
3131 prev = PREV_INSN (insn);
3132
3133 if (prev && NONDEBUG_INSN_P (prev))
3134 add_dependence (insn, prev, REG_DEP_ANTI);
3135 }
3136 else
3137 {
3138 regset_head set_or_clobbered;
3139
3140 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3141 {
3142 struct deps_reg *reg_last = &deps->reg_last[i];
3143 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3144 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3145 false);
3146 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3147 false);
3148
3149 if (!deps->readonly)
3150 {
3151 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3152 reg_last->uses_length++;
3153 }
3154 }
3155
3156 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3157 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3158 {
3159 struct deps_reg *reg_last = &deps->reg_last[i];
3160 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3161 add_dependence_list (insn, reg_last->implicit_sets, 0,
3162 REG_DEP_ANTI, false);
3163 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3164 false);
3165
3166 if (!deps->readonly)
3167 {
3168 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3169 reg_last->uses_length++;
3170 }
3171 }
3172
3173 if (targetm.sched.exposed_pipeline)
3174 {
3175 INIT_REG_SET (&set_or_clobbered);
3176 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3177 reg_pending_sets);
3178 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3179 {
3180 struct deps_reg *reg_last = &deps->reg_last[i];
3181 rtx list;
3182 for (list = reg_last->uses; list; list = XEXP (list, 1))
3183 {
3184 rtx other = XEXP (list, 0);
3185 if (INSN_CACHED_COND (other) != const_true_rtx
3186 && refers_to_regno_p (i, INSN_CACHED_COND (other)))
3187 INSN_CACHED_COND (other) = const_true_rtx;
3188 }
3189 }
3190 }
3191
3192 /* If the current insn is conditional, we can't free any
3193 of the lists. */
3194 if (sched_has_condition_p (insn))
3195 {
3196 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3197 {
3198 struct deps_reg *reg_last = &deps->reg_last[i];
3199 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3200 false);
3201 add_dependence_list (insn, reg_last->implicit_sets, 0,
3202 REG_DEP_ANTI, false);
3203 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3204 false);
3205 add_dependence_list (insn, reg_last->control_uses, 0,
3206 REG_DEP_CONTROL, false);
3207
3208 if (!deps->readonly)
3209 {
3210 reg_last->clobbers
3211 = alloc_INSN_LIST (insn, reg_last->clobbers);
3212 reg_last->clobbers_length++;
3213 }
3214 }
3215 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3216 {
3217 struct deps_reg *reg_last = &deps->reg_last[i];
3218 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3219 false);
3220 add_dependence_list (insn, reg_last->implicit_sets, 0,
3221 REG_DEP_ANTI, false);
3222 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3223 false);
3224 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3225 false);
3226 add_dependence_list (insn, reg_last->control_uses, 0,
3227 REG_DEP_CONTROL, false);
3228
3229 if (!deps->readonly)
3230 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3231 }
3232 }
3233 else
3234 {
3235 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3236 {
3237 struct deps_reg *reg_last = &deps->reg_last[i];
3238 if (reg_last->uses_length >= MAX_PENDING_LIST_LENGTH
3239 || reg_last->clobbers_length >= MAX_PENDING_LIST_LENGTH)
3240 {
3241 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3242 REG_DEP_OUTPUT, false);
3243 add_dependence_list_and_free (deps, insn,
3244 &reg_last->implicit_sets, 0,
3245 REG_DEP_ANTI, false);
3246 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3247 REG_DEP_ANTI, false);
3248 add_dependence_list_and_free (deps, insn,
3249 &reg_last->control_uses, 0,
3250 REG_DEP_ANTI, false);
3251 add_dependence_list_and_free (deps, insn,
3252 &reg_last->clobbers, 0,
3253 REG_DEP_OUTPUT, false);
3254
3255 if (!deps->readonly)
3256 {
3257 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3258 reg_last->clobbers_length = 0;
3259 reg_last->uses_length = 0;
3260 }
3261 }
3262 else
3263 {
3264 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3265 false);
3266 add_dependence_list (insn, reg_last->implicit_sets, 0,
3267 REG_DEP_ANTI, false);
3268 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3269 false);
3270 add_dependence_list (insn, reg_last->control_uses, 0,
3271 REG_DEP_CONTROL, false);
3272 }
3273
3274 if (!deps->readonly)
3275 {
3276 reg_last->clobbers_length++;
3277 reg_last->clobbers
3278 = alloc_INSN_LIST (insn, reg_last->clobbers);
3279 }
3280 }
3281 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3282 {
3283 struct deps_reg *reg_last = &deps->reg_last[i];
3284
3285 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3286 REG_DEP_OUTPUT, false);
3287 add_dependence_list_and_free (deps, insn,
3288 &reg_last->implicit_sets,
3289 0, REG_DEP_ANTI, false);
3290 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3291 REG_DEP_OUTPUT, false);
3292 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3293 REG_DEP_ANTI, false);
3294 add_dependence_list (insn, reg_last->control_uses, 0,
3295 REG_DEP_CONTROL, false);
3296
3297 if (!deps->readonly)
3298 {
3299 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3300 reg_last->uses_length = 0;
3301 reg_last->clobbers_length = 0;
3302 }
3303 }
3304 }
3305 if (!deps->readonly)
3306 {
3307 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3308 {
3309 struct deps_reg *reg_last = &deps->reg_last[i];
3310 reg_last->control_uses
3311 = alloc_INSN_LIST (insn, reg_last->control_uses);
3312 }
3313 }
3314 }
3315
3316 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3317 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3318 {
3319 struct deps_reg *reg_last = &deps->reg_last[i];
3320 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3321 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3322 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3323 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3324 false);
3325
3326 if (!deps->readonly)
3327 reg_last->implicit_sets
3328 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3329 }
3330
3331 if (!deps->readonly)
3332 {
3333 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3334 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3335 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3336 IOR_REG_SET_HRS (&deps->reg_last_in_use,
3337 implicit_reg_pending_uses
3338 | implicit_reg_pending_clobbers);
3339
3340 /* Set up the pending barrier found. */
3341 deps->last_reg_pending_barrier = reg_pending_barrier;
3342 }
3343
3344 CLEAR_REG_SET (reg_pending_uses);
3345 CLEAR_REG_SET (reg_pending_clobbers);
3346 CLEAR_REG_SET (reg_pending_sets);
3347 CLEAR_REG_SET (reg_pending_control_uses);
3348 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3349 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3350
3351 /* Add dependencies if a scheduling barrier was found. */
3352 if (reg_pending_barrier)
3353 {
3354 /* In the case of barrier the most added dependencies are not
3355 real, so we use anti-dependence here. */
3356 if (sched_has_condition_p (insn))
3357 {
3358 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3359 {
3360 struct deps_reg *reg_last = &deps->reg_last[i];
3361 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3362 true);
3363 add_dependence_list (insn, reg_last->sets, 0,
3364 reg_pending_barrier == TRUE_BARRIER
3365 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3366 add_dependence_list (insn, reg_last->implicit_sets, 0,
3367 REG_DEP_ANTI, true);
3368 add_dependence_list (insn, reg_last->clobbers, 0,
3369 reg_pending_barrier == TRUE_BARRIER
3370 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3371 }
3372 }
3373 else
3374 {
3375 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3376 {
3377 struct deps_reg *reg_last = &deps->reg_last[i];
3378 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3379 REG_DEP_ANTI, true);
3380 add_dependence_list_and_free (deps, insn,
3381 &reg_last->control_uses, 0,
3382 REG_DEP_CONTROL, true);
3383 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3384 reg_pending_barrier == TRUE_BARRIER
3385 ? REG_DEP_TRUE : REG_DEP_ANTI,
3386 true);
3387 add_dependence_list_and_free (deps, insn,
3388 &reg_last->implicit_sets, 0,
3389 REG_DEP_ANTI, true);
3390 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3391 reg_pending_barrier == TRUE_BARRIER
3392 ? REG_DEP_TRUE : REG_DEP_ANTI,
3393 true);
3394
3395 if (!deps->readonly)
3396 {
3397 reg_last->uses_length = 0;
3398 reg_last->clobbers_length = 0;
3399 }
3400 }
3401 }
3402
3403 if (!deps->readonly)
3404 for (i = 0; i < (unsigned)deps->max_reg; i++)
3405 {
3406 struct deps_reg *reg_last = &deps->reg_last[i];
3407 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3408 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3409 }
3410
3411 /* Don't flush pending lists on speculative checks for
3412 selective scheduling. */
3413 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3414 flush_pending_lists (deps, insn, true, true);
3415
3416 reg_pending_barrier = NOT_A_BARRIER;
3417 }
3418
3419 /* If a post-call group is still open, see if it should remain so.
3420 This insn must be a simple move of a hard reg to a pseudo or
3421 vice-versa.
3422
3423 We must avoid moving these insns for correctness on targets
3424 with small register classes, and for special registers like
3425 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3426 hard regs for all targets. */
3427
3428 if (deps->in_post_call_group_p)
3429 {
3430 rtx tmp, set = single_set (insn);
3431 int src_regno, dest_regno;
3432
3433 if (set == NULL)
3434 {
3435 if (DEBUG_INSN_P (insn))
3436 /* We don't want to mark debug insns as part of the same
3437 sched group. We know they really aren't, but if we use
3438 debug insns to tell that a call group is over, we'll
3439 get different code if debug insns are not there and
3440 instructions that follow seem like they should be part
3441 of the call group.
3442
3443 Also, if we did, chain_to_prev_insn would move the
3444 deps of the debug insn to the call insn, modifying
3445 non-debug post-dependency counts of the debug insn
3446 dependencies and otherwise messing with the scheduling
3447 order.
3448
3449 Instead, let such debug insns be scheduled freely, but
3450 keep the call group open in case there are insns that
3451 should be part of it afterwards. Since we grant debug
3452 insns higher priority than even sched group insns, it
3453 will all turn out all right. */
3454 goto debug_dont_end_call_group;
3455 else
3456 goto end_call_group;
3457 }
3458
3459 tmp = SET_DEST (set);
3460 if (GET_CODE (tmp) == SUBREG)
3461 tmp = SUBREG_REG (tmp);
3462 if (REG_P (tmp))
3463 dest_regno = REGNO (tmp);
3464 else
3465 goto end_call_group;
3466
3467 tmp = SET_SRC (set);
3468 if (GET_CODE (tmp) == SUBREG)
3469 tmp = SUBREG_REG (tmp);
3470 if ((GET_CODE (tmp) == PLUS
3471 || GET_CODE (tmp) == MINUS)
3472 && REG_P (XEXP (tmp, 0))
3473 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3474 && dest_regno == STACK_POINTER_REGNUM)
3475 src_regno = STACK_POINTER_REGNUM;
3476 else if (REG_P (tmp))
3477 src_regno = REGNO (tmp);
3478 else
3479 goto end_call_group;
3480
3481 if (src_regno < FIRST_PSEUDO_REGISTER
3482 || dest_regno < FIRST_PSEUDO_REGISTER)
3483 {
3484 if (!deps->readonly
3485 && deps->in_post_call_group_p == post_call_initial)
3486 deps->in_post_call_group_p = post_call;
3487
3488 if (!sel_sched_p () || sched_emulate_haifa_p)
3489 {
3490 SCHED_GROUP_P (insn) = 1;
3491 CANT_MOVE (insn) = 1;
3492 }
3493 }
3494 else
3495 {
3496 end_call_group:
3497 if (!deps->readonly)
3498 deps->in_post_call_group_p = not_post_call;
3499 }
3500 }
3501
3502 debug_dont_end_call_group:
3503 if ((current_sched_info->flags & DO_SPECULATION)
3504 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3505 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3506 be speculated. */
3507 {
3508 if (sel_sched_p ())
3509 sel_mark_hard_insn (insn);
3510 else
3511 {
3512 sd_iterator_def sd_it;
3513 dep_t dep;
3514
3515 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3516 sd_iterator_cond (&sd_it, &dep);)
3517 change_spec_dep_to_hard (sd_it);
3518 }
3519 }
3520
3521 /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3522 honor their original ordering. */
3523 if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
3524 {
3525 if (deps->last_args_size)
3526 add_dependence (insn, deps->last_args_size, REG_DEP_OUTPUT);
3527 if (!deps->readonly)
3528 deps->last_args_size = insn;
3529 }
3530
3531 /* We must not mix prologue and epilogue insns. See PR78029. */
3532 if (prologue_contains (insn))
3533 {
3534 add_dependence_list (insn, deps->last_epilogue, true, REG_DEP_ANTI, true);
3535 if (!deps->readonly)
3536 {
3537 if (deps->last_logue_was_epilogue)
3538 free_INSN_LIST_list (&deps->last_prologue);
3539 deps->last_prologue = alloc_INSN_LIST (insn, deps->last_prologue);
3540 deps->last_logue_was_epilogue = false;
3541 }
3542 }
3543
3544 if (epilogue_contains (insn))
3545 {
3546 add_dependence_list (insn, deps->last_prologue, true, REG_DEP_ANTI, true);
3547 if (!deps->readonly)
3548 {
3549 if (!deps->last_logue_was_epilogue)
3550 free_INSN_LIST_list (&deps->last_epilogue);
3551 deps->last_epilogue = alloc_INSN_LIST (insn, deps->last_epilogue);
3552 deps->last_logue_was_epilogue = true;
3553 }
3554 }
3555 }
3556
3557 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3558 longjmp, loop forever, ...). */
3559 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3560 test for ECF_NORETURN? */
3561 static bool
3562 call_may_noreturn_p (rtx_insn *insn)
3563 {
3564 rtx call;
3565
3566 /* const or pure calls that aren't looping will always return. */
3567 if (RTL_CONST_OR_PURE_CALL_P (insn)
3568 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3569 return false;
3570
3571 call = get_call_rtx_from (insn);
3572 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3573 {
3574 rtx symbol = XEXP (XEXP (call, 0), 0);
3575 if (SYMBOL_REF_DECL (symbol)
3576 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3577 {
3578 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3579 == BUILT_IN_NORMAL)
3580 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3581 {
3582 case BUILT_IN_BCMP:
3583 case BUILT_IN_BCOPY:
3584 case BUILT_IN_BZERO:
3585 case BUILT_IN_INDEX:
3586 case BUILT_IN_MEMCHR:
3587 case BUILT_IN_MEMCMP:
3588 case BUILT_IN_MEMCPY:
3589 case BUILT_IN_MEMMOVE:
3590 case BUILT_IN_MEMPCPY:
3591 case BUILT_IN_MEMSET:
3592 case BUILT_IN_RINDEX:
3593 case BUILT_IN_STPCPY:
3594 case BUILT_IN_STPNCPY:
3595 case BUILT_IN_STRCAT:
3596 case BUILT_IN_STRCHR:
3597 case BUILT_IN_STRCMP:
3598 case BUILT_IN_STRCPY:
3599 case BUILT_IN_STRCSPN:
3600 case BUILT_IN_STRLEN:
3601 case BUILT_IN_STRNCAT:
3602 case BUILT_IN_STRNCMP:
3603 case BUILT_IN_STRNCPY:
3604 case BUILT_IN_STRPBRK:
3605 case BUILT_IN_STRRCHR:
3606 case BUILT_IN_STRSPN:
3607 case BUILT_IN_STRSTR:
3608 /* Assume certain string/memory builtins always return. */
3609 return false;
3610 default:
3611 break;
3612 }
3613 }
3614 }
3615
3616 /* For all other calls assume that they might not always return. */
3617 return true;
3618 }
3619
3620 /* Return true if INSN should be made dependent on the previous instruction
3621 group, and if all INSN's dependencies should be moved to the first
3622 instruction of that group. */
3623
3624 static bool
3625 chain_to_prev_insn_p (rtx_insn *insn)
3626 {
3627 /* INSN forms a group with the previous instruction. */
3628 if (SCHED_GROUP_P (insn))
3629 return true;
3630
3631 /* If the previous instruction clobbers a register R and this one sets
3632 part of R, the clobber was added specifically to help us track the
3633 liveness of R. There's no point scheduling the clobber and leaving
3634 INSN behind, especially if we move the clobber to another block. */
3635 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
3636 if (prev
3637 && INSN_P (prev)
3638 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3639 && GET_CODE (PATTERN (prev)) == CLOBBER)
3640 {
3641 rtx x = XEXP (PATTERN (prev), 0);
3642 if (set_of (x, insn))
3643 return true;
3644 }
3645
3646 return false;
3647 }
3648
3649 /* Analyze INSN with DEPS as a context. */
3650 void
3651 deps_analyze_insn (class deps_desc *deps, rtx_insn *insn)
3652 {
3653 if (sched_deps_info->start_insn)
3654 sched_deps_info->start_insn (insn);
3655
3656 /* Record the condition for this insn. */
3657 if (NONDEBUG_INSN_P (insn))
3658 {
3659 rtx t;
3660 sched_get_condition_with_rev (insn, NULL);
3661 t = INSN_CACHED_COND (insn);
3662 INSN_COND_DEPS (insn) = NULL;
3663 if (reload_completed
3664 && (current_sched_info->flags & DO_PREDICATION)
3665 && COMPARISON_P (t)
3666 && REG_P (XEXP (t, 0))
3667 && CONSTANT_P (XEXP (t, 1)))
3668 {
3669 unsigned int regno;
3670 int nregs;
3671 rtx_insn_list *cond_deps = NULL;
3672 t = XEXP (t, 0);
3673 regno = REGNO (t);
3674 nregs = REG_NREGS (t);
3675 while (nregs-- > 0)
3676 {
3677 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3678 cond_deps = concat_INSN_LIST (reg_last->sets, cond_deps);
3679 cond_deps = concat_INSN_LIST (reg_last->clobbers, cond_deps);
3680 cond_deps = concat_INSN_LIST (reg_last->implicit_sets, cond_deps);
3681 }
3682 INSN_COND_DEPS (insn) = cond_deps;
3683 }
3684 }
3685
3686 if (JUMP_P (insn))
3687 {
3688 /* Make each JUMP_INSN (but not a speculative check)
3689 a scheduling barrier for memory references. */
3690 if (!deps->readonly
3691 && !(sel_sched_p ()
3692 && sel_insn_is_speculation_check (insn)))
3693 {
3694 /* Keep the list a reasonable size. */
3695 if (deps->pending_flush_length++ >= MAX_PENDING_LIST_LENGTH)
3696 flush_pending_lists (deps, insn, true, true);
3697 else
3698 deps->pending_jump_insns
3699 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3700 }
3701
3702 /* For each insn which shouldn't cross a jump, add a dependence. */
3703 add_dependence_list_and_free (deps, insn,
3704 &deps->sched_before_next_jump, 1,
3705 REG_DEP_ANTI, true);
3706
3707 sched_analyze_insn (deps, PATTERN (insn), insn);
3708 }
3709 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3710 {
3711 sched_analyze_insn (deps, PATTERN (insn), insn);
3712 }
3713 else if (CALL_P (insn))
3714 {
3715 int i;
3716
3717 CANT_MOVE (insn) = 1;
3718
3719 if (find_reg_note (insn, REG_SETJMP, NULL))
3720 {
3721 /* This is setjmp. Assume that all registers, not just
3722 hard registers, may be clobbered by this call. */
3723 reg_pending_barrier = MOVE_BARRIER;
3724 }
3725 else
3726 {
3727 function_abi callee_abi = insn_callee_abi (insn);
3728 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3729 /* A call may read and modify global register variables. */
3730 if (global_regs[i])
3731 {
3732 SET_REGNO_REG_SET (reg_pending_sets, i);
3733 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3734 }
3735 /* Other call-clobbered hard regs may be clobbered.
3736 Since we only have a choice between 'might be clobbered'
3737 and 'definitely not clobbered', we must include all
3738 partly call-clobbered registers here. */
3739 else if (callee_abi.clobbers_at_least_part_of_reg_p (i))
3740 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3741 /* We don't know what set of fixed registers might be used
3742 by the function, but it is certain that the stack pointer
3743 is among them, but be conservative. */
3744 else if (fixed_regs[i])
3745 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3746 /* The frame pointer is normally not used by the function
3747 itself, but by the debugger. */
3748 /* ??? MIPS o32 is an exception. It uses the frame pointer
3749 in the macro expansion of jal but does not represent this
3750 fact in the call_insn rtl. */
3751 else if (i == FRAME_POINTER_REGNUM
3752 || (i == HARD_FRAME_POINTER_REGNUM
3753 && (! reload_completed || frame_pointer_needed)))
3754 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3755 }
3756
3757 /* For each insn which shouldn't cross a call, add a dependence
3758 between that insn and this call insn. */
3759 add_dependence_list_and_free (deps, insn,
3760 &deps->sched_before_next_call, 1,
3761 REG_DEP_ANTI, true);
3762
3763 sched_analyze_insn (deps, PATTERN (insn), insn);
3764
3765 /* If CALL would be in a sched group, then this will violate
3766 convention that sched group insns have dependencies only on the
3767 previous instruction.
3768
3769 Of course one can say: "Hey! What about head of the sched group?"
3770 And I will answer: "Basic principles (one dep per insn) are always
3771 the same." */
3772 gcc_assert (!SCHED_GROUP_P (insn));
3773
3774 /* In the absence of interprocedural alias analysis, we must flush
3775 all pending reads and writes, and start new dependencies starting
3776 from here. But only flush writes for constant calls (which may
3777 be passed a pointer to something we haven't written yet). */
3778 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3779
3780 if (!deps->readonly)
3781 {
3782 /* Remember the last function call for limiting lifetimes. */
3783 free_INSN_LIST_list (&deps->last_function_call);
3784 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3785
3786 if (call_may_noreturn_p (insn))
3787 {
3788 /* Remember the last function call that might not always return
3789 normally for limiting moves of trapping insns. */
3790 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3791 deps->last_function_call_may_noreturn
3792 = alloc_INSN_LIST (insn, NULL_RTX);
3793 }
3794
3795 /* Before reload, begin a post-call group, so as to keep the
3796 lifetimes of hard registers correct. */
3797 if (! reload_completed)
3798 deps->in_post_call_group_p = post_call;
3799 }
3800 }
3801
3802 if (sched_deps_info->use_cselib)
3803 cselib_process_insn (insn);
3804
3805 if (sched_deps_info->finish_insn)
3806 sched_deps_info->finish_insn ();
3807
3808 /* Fixup the dependencies in the sched group. */
3809 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3810 && chain_to_prev_insn_p (insn)
3811 && !sel_sched_p ())
3812 chain_to_prev_insn (insn);
3813 }
3814
3815 /* Initialize DEPS for the new block beginning with HEAD. */
3816 void
3817 deps_start_bb (class deps_desc *deps, rtx_insn *head)
3818 {
3819 gcc_assert (!deps->readonly);
3820
3821 /* Before reload, if the previous block ended in a call, show that
3822 we are inside a post-call group, so as to keep the lifetimes of
3823 hard registers correct. */
3824 if (! reload_completed && !LABEL_P (head))
3825 {
3826 rtx_insn *insn = prev_nonnote_nondebug_insn (head);
3827
3828 if (insn && CALL_P (insn))
3829 deps->in_post_call_group_p = post_call_initial;
3830 }
3831 }
3832
3833 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3834 dependencies for each insn. */
3835 void
3836 sched_analyze (class deps_desc *deps, rtx_insn *head, rtx_insn *tail)
3837 {
3838 rtx_insn *insn;
3839
3840 if (sched_deps_info->use_cselib)
3841 cselib_init (CSELIB_RECORD_MEMORY);
3842
3843 deps_start_bb (deps, head);
3844
3845 for (insn = head;; insn = NEXT_INSN (insn))
3846 {
3847
3848 if (INSN_P (insn))
3849 {
3850 /* And initialize deps_lists. */
3851 sd_init_insn (insn);
3852 /* Clean up SCHED_GROUP_P which may be set by last
3853 scheduler pass. */
3854 if (SCHED_GROUP_P (insn))
3855 SCHED_GROUP_P (insn) = 0;
3856 }
3857
3858 deps_analyze_insn (deps, insn);
3859
3860 if (insn == tail)
3861 {
3862 if (sched_deps_info->use_cselib)
3863 cselib_finish ();
3864 return;
3865 }
3866 }
3867 gcc_unreachable ();
3868 }
3869
3870 /* Helper for sched_free_deps ().
3871 Delete INSN's (RESOLVED_P) backward dependencies. */
3872 static void
3873 delete_dep_nodes_in_back_deps (rtx_insn *insn, bool resolved_p)
3874 {
3875 sd_iterator_def sd_it;
3876 dep_t dep;
3877 sd_list_types_def types;
3878
3879 if (resolved_p)
3880 types = SD_LIST_RES_BACK;
3881 else
3882 types = SD_LIST_BACK;
3883
3884 for (sd_it = sd_iterator_start (insn, types);
3885 sd_iterator_cond (&sd_it, &dep);)
3886 {
3887 dep_link_t link = *sd_it.linkp;
3888 dep_node_t node = DEP_LINK_NODE (link);
3889 deps_list_t back_list;
3890 deps_list_t forw_list;
3891
3892 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3893 remove_from_deps_list (link, back_list);
3894 delete_dep_node (node);
3895 }
3896 }
3897
3898 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3899 deps_lists. */
3900 void
3901 sched_free_deps (rtx_insn *head, rtx_insn *tail, bool resolved_p)
3902 {
3903 rtx_insn *insn;
3904 rtx_insn *next_tail = NEXT_INSN (tail);
3905
3906 /* We make two passes since some insns may be scheduled before their
3907 dependencies are resolved. */
3908 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3909 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3910 {
3911 /* Clear forward deps and leave the dep_nodes to the
3912 corresponding back_deps list. */
3913 if (resolved_p)
3914 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3915 else
3916 clear_deps_list (INSN_FORW_DEPS (insn));
3917 }
3918 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3919 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3920 {
3921 /* Clear resolved back deps together with its dep_nodes. */
3922 delete_dep_nodes_in_back_deps (insn, resolved_p);
3923
3924 sd_finish_insn (insn);
3925 }
3926 }
3927 \f
3928 /* Initialize variables for region data dependence analysis.
3929 When LAZY_REG_LAST is true, do not allocate reg_last array
3930 of class deps_desc immediately. */
3931
3932 void
3933 init_deps (class deps_desc *deps, bool lazy_reg_last)
3934 {
3935 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3936
3937 deps->max_reg = max_reg;
3938 if (lazy_reg_last)
3939 deps->reg_last = NULL;
3940 else
3941 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3942 INIT_REG_SET (&deps->reg_last_in_use);
3943
3944 deps->pending_read_insns = 0;
3945 deps->pending_read_mems = 0;
3946 deps->pending_write_insns = 0;
3947 deps->pending_write_mems = 0;
3948 deps->pending_jump_insns = 0;
3949 deps->pending_read_list_length = 0;
3950 deps->pending_write_list_length = 0;
3951 deps->pending_flush_length = 0;
3952 deps->last_pending_memory_flush = 0;
3953 deps->last_function_call = 0;
3954 deps->last_function_call_may_noreturn = 0;
3955 deps->sched_before_next_call = 0;
3956 deps->sched_before_next_jump = 0;
3957 deps->in_post_call_group_p = not_post_call;
3958 deps->last_debug_insn = 0;
3959 deps->last_args_size = 0;
3960 deps->last_prologue = 0;
3961 deps->last_epilogue = 0;
3962 deps->last_logue_was_epilogue = false;
3963 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3964 deps->readonly = 0;
3965 }
3966
3967 /* Init only reg_last field of DEPS, which was not allocated before as
3968 we inited DEPS lazily. */
3969 void
3970 init_deps_reg_last (class deps_desc *deps)
3971 {
3972 gcc_assert (deps && deps->max_reg > 0);
3973 gcc_assert (deps->reg_last == NULL);
3974
3975 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3976 }
3977
3978
3979 /* Free insn lists found in DEPS. */
3980
3981 void
3982 free_deps (class deps_desc *deps)
3983 {
3984 unsigned i;
3985 reg_set_iterator rsi;
3986
3987 /* We set max_reg to 0 when this context was already freed. */
3988 if (deps->max_reg == 0)
3989 {
3990 gcc_assert (deps->reg_last == NULL);
3991 return;
3992 }
3993 deps->max_reg = 0;
3994
3995 free_INSN_LIST_list (&deps->pending_read_insns);
3996 free_EXPR_LIST_list (&deps->pending_read_mems);
3997 free_INSN_LIST_list (&deps->pending_write_insns);
3998 free_EXPR_LIST_list (&deps->pending_write_mems);
3999 free_INSN_LIST_list (&deps->last_pending_memory_flush);
4000
4001 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
4002 times. For a testcase with 42000 regs and 8000 small basic blocks,
4003 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
4004 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4005 {
4006 struct deps_reg *reg_last = &deps->reg_last[i];
4007 if (reg_last->uses)
4008 free_INSN_LIST_list (&reg_last->uses);
4009 if (reg_last->sets)
4010 free_INSN_LIST_list (&reg_last->sets);
4011 if (reg_last->implicit_sets)
4012 free_INSN_LIST_list (&reg_last->implicit_sets);
4013 if (reg_last->control_uses)
4014 free_INSN_LIST_list (&reg_last->control_uses);
4015 if (reg_last->clobbers)
4016 free_INSN_LIST_list (&reg_last->clobbers);
4017 }
4018 CLEAR_REG_SET (&deps->reg_last_in_use);
4019
4020 /* As we initialize reg_last lazily, it is possible that we didn't allocate
4021 it at all. */
4022 free (deps->reg_last);
4023 deps->reg_last = NULL;
4024
4025 deps = NULL;
4026 }
4027
4028 /* Remove INSN from dependence contexts DEPS. */
4029 void
4030 remove_from_deps (class deps_desc *deps, rtx_insn *insn)
4031 {
4032 int removed;
4033 unsigned i;
4034 reg_set_iterator rsi;
4035
4036 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
4037 &deps->pending_read_mems);
4038 if (!DEBUG_INSN_P (insn))
4039 deps->pending_read_list_length -= removed;
4040 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
4041 &deps->pending_write_mems);
4042 deps->pending_write_list_length -= removed;
4043
4044 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
4045 deps->pending_flush_length -= removed;
4046 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
4047 deps->pending_flush_length -= removed;
4048
4049 unsigned to_clear = -1U;
4050 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4051 {
4052 if (to_clear != -1U)
4053 {
4054 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4055 to_clear = -1U;
4056 }
4057 struct deps_reg *reg_last = &deps->reg_last[i];
4058 if (reg_last->uses)
4059 remove_from_dependence_list (insn, &reg_last->uses);
4060 if (reg_last->sets)
4061 remove_from_dependence_list (insn, &reg_last->sets);
4062 if (reg_last->implicit_sets)
4063 remove_from_dependence_list (insn, &reg_last->implicit_sets);
4064 if (reg_last->clobbers)
4065 remove_from_dependence_list (insn, &reg_last->clobbers);
4066 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
4067 && !reg_last->clobbers)
4068 to_clear = i;
4069 }
4070 if (to_clear != -1U)
4071 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4072
4073 if (CALL_P (insn))
4074 {
4075 remove_from_dependence_list (insn, &deps->last_function_call);
4076 remove_from_dependence_list (insn,
4077 &deps->last_function_call_may_noreturn);
4078 }
4079 remove_from_dependence_list (insn, &deps->sched_before_next_call);
4080 }
4081
4082 /* Init deps data vector. */
4083 static void
4084 init_deps_data_vector (void)
4085 {
4086 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
4087 if (reserve > 0 && ! h_d_i_d.space (reserve))
4088 h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
4089 }
4090
4091 /* If it is profitable to use them, initialize or extend (depending on
4092 GLOBAL_P) dependency data. */
4093 void
4094 sched_deps_init (bool global_p)
4095 {
4096 /* Average number of insns in the basic block.
4097 '+ 1' is used to make it nonzero. */
4098 int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4099
4100 init_deps_data_vector ();
4101
4102 /* We use another caching mechanism for selective scheduling, so
4103 we don't use this one. */
4104 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4105 {
4106 /* ?!? We could save some memory by computing a per-region luid mapping
4107 which could reduce both the number of vectors in the cache and the
4108 size of each vector. Instead we just avoid the cache entirely unless
4109 the average number of instructions in a basic block is very high. See
4110 the comment before the declaration of true_dependency_cache for
4111 what we consider "very high". */
4112 cache_size = 0;
4113 extend_dependency_caches (sched_max_luid, true);
4114 }
4115
4116 if (global_p)
4117 {
4118 dl_pool = new object_allocator<_deps_list> ("deps_list");
4119 /* Allocate lists for one block at a time. */
4120 dn_pool = new object_allocator<_dep_node> ("dep_node");
4121 /* Allocate nodes for one block at a time. */
4122 }
4123 }
4124
4125
4126 /* Create or extend (depending on CREATE_P) dependency caches to
4127 size N. */
4128 void
4129 extend_dependency_caches (int n, bool create_p)
4130 {
4131 if (create_p || true_dependency_cache)
4132 {
4133 int i, luid = cache_size + n;
4134
4135 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4136 luid);
4137 output_dependency_cache = XRESIZEVEC (bitmap_head,
4138 output_dependency_cache, luid);
4139 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4140 luid);
4141 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4142 luid);
4143
4144 if (current_sched_info->flags & DO_SPECULATION)
4145 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4146 luid);
4147
4148 for (i = cache_size; i < luid; i++)
4149 {
4150 bitmap_initialize (&true_dependency_cache[i], 0);
4151 bitmap_initialize (&output_dependency_cache[i], 0);
4152 bitmap_initialize (&anti_dependency_cache[i], 0);
4153 bitmap_initialize (&control_dependency_cache[i], 0);
4154
4155 if (current_sched_info->flags & DO_SPECULATION)
4156 bitmap_initialize (&spec_dependency_cache[i], 0);
4157 }
4158 cache_size = luid;
4159 }
4160 }
4161
4162 /* Finalize dependency information for the whole function. */
4163 void
4164 sched_deps_finish (void)
4165 {
4166 gcc_assert (deps_pools_are_empty_p ());
4167 delete dn_pool;
4168 delete dl_pool;
4169 dn_pool = NULL;
4170 dl_pool = NULL;
4171
4172 h_d_i_d.release ();
4173 cache_size = 0;
4174
4175 if (true_dependency_cache)
4176 {
4177 int i;
4178
4179 for (i = 0; i < cache_size; i++)
4180 {
4181 bitmap_clear (&true_dependency_cache[i]);
4182 bitmap_clear (&output_dependency_cache[i]);
4183 bitmap_clear (&anti_dependency_cache[i]);
4184 bitmap_clear (&control_dependency_cache[i]);
4185
4186 if (sched_deps_info->generate_spec_deps)
4187 bitmap_clear (&spec_dependency_cache[i]);
4188 }
4189 free (true_dependency_cache);
4190 true_dependency_cache = NULL;
4191 free (output_dependency_cache);
4192 output_dependency_cache = NULL;
4193 free (anti_dependency_cache);
4194 anti_dependency_cache = NULL;
4195 free (control_dependency_cache);
4196 control_dependency_cache = NULL;
4197
4198 if (sched_deps_info->generate_spec_deps)
4199 {
4200 free (spec_dependency_cache);
4201 spec_dependency_cache = NULL;
4202 }
4203
4204 }
4205 }
4206
4207 /* Initialize some global variables needed by the dependency analysis
4208 code. */
4209
4210 void
4211 init_deps_global (void)
4212 {
4213 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4214 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4215 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4216 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4217 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4218 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4219 reg_pending_barrier = NOT_A_BARRIER;
4220
4221 if (!sel_sched_p () || sched_emulate_haifa_p)
4222 {
4223 sched_deps_info->start_insn = haifa_start_insn;
4224 sched_deps_info->finish_insn = haifa_finish_insn;
4225
4226 sched_deps_info->note_reg_set = haifa_note_reg_set;
4227 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4228 sched_deps_info->note_reg_use = haifa_note_reg_use;
4229
4230 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4231 sched_deps_info->note_dep = haifa_note_dep;
4232 }
4233 }
4234
4235 /* Free everything used by the dependency analysis code. */
4236
4237 void
4238 finish_deps_global (void)
4239 {
4240 FREE_REG_SET (reg_pending_sets);
4241 FREE_REG_SET (reg_pending_clobbers);
4242 FREE_REG_SET (reg_pending_uses);
4243 FREE_REG_SET (reg_pending_control_uses);
4244 }
4245
4246 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4247 dw_t
4248 estimate_dep_weak (rtx mem1, rtx mem2)
4249 {
4250 if (mem1 == mem2)
4251 /* MEMs are the same - don't speculate. */
4252 return MIN_DEP_WEAK;
4253
4254 rtx r1 = XEXP (mem1, 0);
4255 rtx r2 = XEXP (mem2, 0);
4256
4257 if (sched_deps_info->use_cselib)
4258 {
4259 /* We cannot call rtx_equal_for_cselib_p because the VALUEs might be
4260 dangling at this point, since we never preserve them. Instead we
4261 canonicalize manually to get stable VALUEs out of hashing. */
4262 if (GET_CODE (r1) == VALUE && CSELIB_VAL_PTR (r1))
4263 r1 = canonical_cselib_val (CSELIB_VAL_PTR (r1))->val_rtx;
4264 if (GET_CODE (r2) == VALUE && CSELIB_VAL_PTR (r2))
4265 r2 = canonical_cselib_val (CSELIB_VAL_PTR (r2))->val_rtx;
4266 }
4267
4268 if (r1 == r2
4269 || (REG_P (r1) && REG_P (r2) && REGNO (r1) == REGNO (r2)))
4270 /* Again, MEMs are the same. */
4271 return MIN_DEP_WEAK;
4272 else if ((REG_P (r1) && !REG_P (r2)) || (!REG_P (r1) && REG_P (r2)))
4273 /* Different addressing modes - reason to be more speculative,
4274 than usual. */
4275 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4276 else
4277 /* We can't say anything about the dependence. */
4278 return UNCERTAIN_DEP_WEAK;
4279 }
4280
4281 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4282 This function can handle same INSN and ELEM (INSN == ELEM).
4283 It is a convenience wrapper. */
4284 static void
4285 add_dependence_1 (rtx_insn *insn, rtx_insn *elem, enum reg_note dep_type)
4286 {
4287 ds_t ds;
4288 bool internal;
4289
4290 if (dep_type == REG_DEP_TRUE)
4291 ds = DEP_TRUE;
4292 else if (dep_type == REG_DEP_OUTPUT)
4293 ds = DEP_OUTPUT;
4294 else if (dep_type == REG_DEP_CONTROL)
4295 ds = DEP_CONTROL;
4296 else
4297 {
4298 gcc_assert (dep_type == REG_DEP_ANTI);
4299 ds = DEP_ANTI;
4300 }
4301
4302 /* When add_dependence is called from inside sched-deps.c, we expect
4303 cur_insn to be non-null. */
4304 internal = cur_insn != NULL;
4305 if (internal)
4306 gcc_assert (insn == cur_insn);
4307 else
4308 cur_insn = insn;
4309
4310 note_dep (elem, ds);
4311 if (!internal)
4312 cur_insn = NULL;
4313 }
4314
4315 /* Return weakness of speculative type TYPE in the dep_status DS,
4316 without checking to prevent ICEs on malformed input. */
4317 static dw_t
4318 get_dep_weak_1 (ds_t ds, ds_t type)
4319 {
4320 ds = ds & type;
4321
4322 switch (type)
4323 {
4324 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4325 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4326 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4327 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4328 default: gcc_unreachable ();
4329 }
4330
4331 return (dw_t) ds;
4332 }
4333
4334 /* Return weakness of speculative type TYPE in the dep_status DS. */
4335 dw_t
4336 get_dep_weak (ds_t ds, ds_t type)
4337 {
4338 dw_t dw = get_dep_weak_1 (ds, type);
4339
4340 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4341 return dw;
4342 }
4343
4344 /* Return the dep_status, which has the same parameters as DS, except for
4345 speculative type TYPE, that will have weakness DW. */
4346 ds_t
4347 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4348 {
4349 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4350
4351 ds &= ~type;
4352 switch (type)
4353 {
4354 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4355 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4356 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4357 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4358 default: gcc_unreachable ();
4359 }
4360 return ds;
4361 }
4362
4363 /* Return the join of two dep_statuses DS1 and DS2.
4364 If MAX_P is true then choose the greater probability,
4365 otherwise multiply probabilities.
4366 This function assumes that both DS1 and DS2 contain speculative bits. */
4367 static ds_t
4368 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4369 {
4370 ds_t ds, t;
4371
4372 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4373
4374 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4375
4376 t = FIRST_SPEC_TYPE;
4377 do
4378 {
4379 if ((ds1 & t) && !(ds2 & t))
4380 ds |= ds1 & t;
4381 else if (!(ds1 & t) && (ds2 & t))
4382 ds |= ds2 & t;
4383 else if ((ds1 & t) && (ds2 & t))
4384 {
4385 dw_t dw1 = get_dep_weak (ds1, t);
4386 dw_t dw2 = get_dep_weak (ds2, t);
4387 ds_t dw;
4388
4389 if (!max_p)
4390 {
4391 dw = ((ds_t) dw1) * ((ds_t) dw2);
4392 dw /= MAX_DEP_WEAK;
4393 if (dw < MIN_DEP_WEAK)
4394 dw = MIN_DEP_WEAK;
4395 }
4396 else
4397 {
4398 if (dw1 >= dw2)
4399 dw = dw1;
4400 else
4401 dw = dw2;
4402 }
4403
4404 ds = set_dep_weak (ds, t, (dw_t) dw);
4405 }
4406
4407 if (t == LAST_SPEC_TYPE)
4408 break;
4409 t <<= SPEC_TYPE_SHIFT;
4410 }
4411 while (1);
4412
4413 return ds;
4414 }
4415
4416 /* Return the join of two dep_statuses DS1 and DS2.
4417 This function assumes that both DS1 and DS2 contain speculative bits. */
4418 ds_t
4419 ds_merge (ds_t ds1, ds_t ds2)
4420 {
4421 return ds_merge_1 (ds1, ds2, false);
4422 }
4423
4424 /* Return the join of two dep_statuses DS1 and DS2. */
4425 ds_t
4426 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4427 {
4428 ds_t new_status = ds | ds2;
4429
4430 if (new_status & SPECULATIVE)
4431 {
4432 if ((ds && !(ds & SPECULATIVE))
4433 || (ds2 && !(ds2 & SPECULATIVE)))
4434 /* Then this dep can't be speculative. */
4435 new_status &= ~SPECULATIVE;
4436 else
4437 {
4438 /* Both are speculative. Merging probabilities. */
4439 if (mem1)
4440 {
4441 dw_t dw;
4442
4443 dw = estimate_dep_weak (mem1, mem2);
4444 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4445 }
4446
4447 if (!ds)
4448 new_status = ds2;
4449 else if (!ds2)
4450 new_status = ds;
4451 else
4452 new_status = ds_merge (ds2, ds);
4453 }
4454 }
4455
4456 return new_status;
4457 }
4458
4459 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4460 probabilities. */
4461 ds_t
4462 ds_max_merge (ds_t ds1, ds_t ds2)
4463 {
4464 if (ds1 == 0 && ds2 == 0)
4465 return 0;
4466
4467 if (ds1 == 0 && ds2 != 0)
4468 return ds2;
4469
4470 if (ds1 != 0 && ds2 == 0)
4471 return ds1;
4472
4473 return ds_merge_1 (ds1, ds2, true);
4474 }
4475
4476 /* Return the probability of speculation success for the speculation
4477 status DS. */
4478 dw_t
4479 ds_weak (ds_t ds)
4480 {
4481 ds_t res = 1, dt;
4482 int n = 0;
4483
4484 dt = FIRST_SPEC_TYPE;
4485 do
4486 {
4487 if (ds & dt)
4488 {
4489 res *= (ds_t) get_dep_weak (ds, dt);
4490 n++;
4491 }
4492
4493 if (dt == LAST_SPEC_TYPE)
4494 break;
4495 dt <<= SPEC_TYPE_SHIFT;
4496 }
4497 while (1);
4498
4499 gcc_assert (n);
4500 while (--n)
4501 res /= MAX_DEP_WEAK;
4502
4503 if (res < MIN_DEP_WEAK)
4504 res = MIN_DEP_WEAK;
4505
4506 gcc_assert (res <= MAX_DEP_WEAK);
4507
4508 return (dw_t) res;
4509 }
4510
4511 /* Return a dep status that contains all speculation types of DS. */
4512 ds_t
4513 ds_get_speculation_types (ds_t ds)
4514 {
4515 if (ds & BEGIN_DATA)
4516 ds |= BEGIN_DATA;
4517 if (ds & BE_IN_DATA)
4518 ds |= BE_IN_DATA;
4519 if (ds & BEGIN_CONTROL)
4520 ds |= BEGIN_CONTROL;
4521 if (ds & BE_IN_CONTROL)
4522 ds |= BE_IN_CONTROL;
4523
4524 return ds & SPECULATIVE;
4525 }
4526
4527 /* Return a dep status that contains maximal weakness for each speculation
4528 type present in DS. */
4529 ds_t
4530 ds_get_max_dep_weak (ds_t ds)
4531 {
4532 if (ds & BEGIN_DATA)
4533 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4534 if (ds & BE_IN_DATA)
4535 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4536 if (ds & BEGIN_CONTROL)
4537 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4538 if (ds & BE_IN_CONTROL)
4539 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4540
4541 return ds;
4542 }
4543
4544 /* Dump information about the dependence status S. */
4545 static void
4546 dump_ds (FILE *f, ds_t s)
4547 {
4548 fprintf (f, "{");
4549
4550 if (s & BEGIN_DATA)
4551 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4552 if (s & BE_IN_DATA)
4553 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4554 if (s & BEGIN_CONTROL)
4555 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4556 if (s & BE_IN_CONTROL)
4557 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4558
4559 if (s & HARD_DEP)
4560 fprintf (f, "HARD_DEP; ");
4561
4562 if (s & DEP_TRUE)
4563 fprintf (f, "DEP_TRUE; ");
4564 if (s & DEP_OUTPUT)
4565 fprintf (f, "DEP_OUTPUT; ");
4566 if (s & DEP_ANTI)
4567 fprintf (f, "DEP_ANTI; ");
4568 if (s & DEP_CONTROL)
4569 fprintf (f, "DEP_CONTROL; ");
4570
4571 fprintf (f, "}");
4572 }
4573
4574 DEBUG_FUNCTION void
4575 debug_ds (ds_t s)
4576 {
4577 dump_ds (stderr, s);
4578 fprintf (stderr, "\n");
4579 }
4580
4581 /* Verify that dependence type and status are consistent.
4582 If RELAXED_P is true, then skip dep_weakness checks. */
4583 static void
4584 check_dep (dep_t dep, bool relaxed_p)
4585 {
4586 enum reg_note dt = DEP_TYPE (dep);
4587 ds_t ds = DEP_STATUS (dep);
4588
4589 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4590
4591 if (!(current_sched_info->flags & USE_DEPS_LIST))
4592 {
4593 gcc_assert (ds == 0);
4594 return;
4595 }
4596
4597 /* Check that dependence type contains the same bits as the status. */
4598 if (dt == REG_DEP_TRUE)
4599 gcc_assert (ds & DEP_TRUE);
4600 else if (dt == REG_DEP_OUTPUT)
4601 gcc_assert ((ds & DEP_OUTPUT)
4602 && !(ds & DEP_TRUE));
4603 else if (dt == REG_DEP_ANTI)
4604 gcc_assert ((ds & DEP_ANTI)
4605 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4606 else
4607 gcc_assert (dt == REG_DEP_CONTROL
4608 && (ds & DEP_CONTROL)
4609 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4610
4611 /* HARD_DEP cannot appear in dep_status of a link. */
4612 gcc_assert (!(ds & HARD_DEP));
4613
4614 /* Check that dependence status is set correctly when speculation is not
4615 supported. */
4616 if (!sched_deps_info->generate_spec_deps)
4617 gcc_assert (!(ds & SPECULATIVE));
4618 else if (ds & SPECULATIVE)
4619 {
4620 if (!relaxed_p)
4621 {
4622 ds_t type = FIRST_SPEC_TYPE;
4623
4624 /* Check that dependence weakness is in proper range. */
4625 do
4626 {
4627 if (ds & type)
4628 get_dep_weak (ds, type);
4629
4630 if (type == LAST_SPEC_TYPE)
4631 break;
4632 type <<= SPEC_TYPE_SHIFT;
4633 }
4634 while (1);
4635 }
4636
4637 if (ds & BEGIN_SPEC)
4638 {
4639 /* Only true dependence can be data speculative. */
4640 if (ds & BEGIN_DATA)
4641 gcc_assert (ds & DEP_TRUE);
4642
4643 /* Control dependencies in the insn scheduler are represented by
4644 anti-dependencies, therefore only anti dependence can be
4645 control speculative. */
4646 if (ds & BEGIN_CONTROL)
4647 gcc_assert (ds & DEP_ANTI);
4648 }
4649 else
4650 {
4651 /* Subsequent speculations should resolve true dependencies. */
4652 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4653 }
4654
4655 /* Check that true and anti dependencies can't have other speculative
4656 statuses. */
4657 if (ds & DEP_TRUE)
4658 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4659 /* An output dependence can't be speculative at all. */
4660 gcc_assert (!(ds & DEP_OUTPUT));
4661 if (ds & DEP_ANTI)
4662 gcc_assert (ds & BEGIN_CONTROL);
4663 }
4664 }
4665
4666 /* The following code discovers opportunities to switch a memory reference
4667 and an increment by modifying the address. We ensure that this is done
4668 only for dependencies that are only used to show a single register
4669 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4670 instruction involved is subject to only one dep that can cause a pattern
4671 change.
4672
4673 When we discover a suitable dependency, we fill in the dep_replacement
4674 structure to show how to modify the memory reference. */
4675
4676 /* Holds information about a pair of memory reference and register increment
4677 insns which depend on each other, but could possibly be interchanged. */
4678 struct mem_inc_info
4679 {
4680 rtx_insn *inc_insn;
4681 rtx_insn *mem_insn;
4682
4683 rtx *mem_loc;
4684 /* A register occurring in the memory address for which we wish to break
4685 the dependence. This must be identical to the destination register of
4686 the increment. */
4687 rtx mem_reg0;
4688 /* Any kind of index that is added to that register. */
4689 rtx mem_index;
4690 /* The constant offset used in the memory address. */
4691 HOST_WIDE_INT mem_constant;
4692 /* The constant added in the increment insn. Negated if the increment is
4693 after the memory address. */
4694 HOST_WIDE_INT inc_constant;
4695 /* The source register used in the increment. May be different from mem_reg0
4696 if the increment occurs before the memory address. */
4697 rtx inc_input;
4698 };
4699
4700 /* Verify that the memory location described in MII can be replaced with
4701 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4702 insn remains unchanged by this function. */
4703
4704 static rtx
4705 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4706 {
4707 rtx mem = *mii->mem_loc;
4708 rtx new_mem;
4709
4710 /* Jump through a lot of hoops to keep the attributes up to date. We
4711 do not want to call one of the change address variants that take
4712 an offset even though we know the offset in many cases. These
4713 assume you are changing where the address is pointing by the
4714 offset. */
4715 new_mem = replace_equiv_address_nv (mem, new_addr);
4716 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4717 {
4718 if (sched_verbose >= 5)
4719 fprintf (sched_dump, "validation failure\n");
4720 return NULL_RTX;
4721 }
4722
4723 /* Put back the old one. */
4724 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4725
4726 return new_mem;
4727 }
4728
4729 /* Return true if INSN is of a form "a = b op c" where a and b are
4730 regs. op is + if c is a reg and +|- if c is a const. Fill in
4731 informantion in MII about what is found.
4732 BEFORE_MEM indicates whether the increment is found before or after
4733 a corresponding memory reference. */
4734
4735 static bool
4736 parse_add_or_inc (struct mem_inc_info *mii, rtx_insn *insn, bool before_mem)
4737 {
4738 rtx pat = single_set (insn);
4739 rtx src, cst;
4740 bool regs_equal;
4741
4742 if (RTX_FRAME_RELATED_P (insn) || !pat)
4743 return false;
4744
4745 /* Do not allow breaking data dependencies for insns that are marked
4746 with REG_STACK_CHECK. */
4747 if (find_reg_note (insn, REG_STACK_CHECK, NULL))
4748 return false;
4749
4750 /* Result must be single reg. */
4751 if (!REG_P (SET_DEST (pat)))
4752 return false;
4753
4754 if (GET_CODE (SET_SRC (pat)) != PLUS)
4755 return false;
4756
4757 mii->inc_insn = insn;
4758 src = SET_SRC (pat);
4759 mii->inc_input = XEXP (src, 0);
4760
4761 if (!REG_P (XEXP (src, 0)))
4762 return false;
4763
4764 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4765 return false;
4766
4767 cst = XEXP (src, 1);
4768 if (!CONST_INT_P (cst))
4769 return false;
4770 mii->inc_constant = INTVAL (cst);
4771
4772 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4773
4774 if (!before_mem)
4775 {
4776 mii->inc_constant = -mii->inc_constant;
4777 if (!regs_equal)
4778 return false;
4779 }
4780
4781 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4782 {
4783 /* Note that the sign has already been reversed for !before_mem. */
4784 if (STACK_GROWS_DOWNWARD)
4785 return mii->inc_constant > 0;
4786 else
4787 return mii->inc_constant < 0;
4788 }
4789 return true;
4790 }
4791
4792 /* Once a suitable mem reference has been found and the corresponding data
4793 in MII has been filled in, this function is called to find a suitable
4794 add or inc insn involving the register we found in the memory
4795 reference. */
4796
4797 static bool
4798 find_inc (struct mem_inc_info *mii, bool backwards)
4799 {
4800 sd_iterator_def sd_it;
4801 dep_t dep;
4802
4803 sd_it = sd_iterator_start (mii->mem_insn,
4804 backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4805 while (sd_iterator_cond (&sd_it, &dep))
4806 {
4807 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4808 rtx_insn *pro = DEP_PRO (dep);
4809 rtx_insn *con = DEP_CON (dep);
4810 rtx_insn *inc_cand = backwards ? pro : con;
4811 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4812 goto next;
4813 if (parse_add_or_inc (mii, inc_cand, backwards))
4814 {
4815 struct dep_replacement *desc;
4816 df_ref def;
4817 rtx newaddr, newmem;
4818
4819 if (sched_verbose >= 5)
4820 fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4821 INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4822
4823 /* Need to assure that none of the operands of the inc
4824 instruction are assigned to by the mem insn. */
4825 FOR_EACH_INSN_DEF (def, mii->mem_insn)
4826 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4827 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4828 {
4829 if (sched_verbose >= 5)
4830 fprintf (sched_dump,
4831 "inc conflicts with store failure.\n");
4832 goto next;
4833 }
4834
4835 newaddr = mii->inc_input;
4836 if (mii->mem_index != NULL_RTX)
4837 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4838 mii->mem_index);
4839 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4840 mii->mem_constant + mii->inc_constant);
4841 newmem = attempt_change (mii, newaddr);
4842 if (newmem == NULL_RTX)
4843 goto next;
4844 if (sched_verbose >= 5)
4845 fprintf (sched_dump, "successful address replacement\n");
4846 desc = XCNEW (struct dep_replacement);
4847 DEP_REPLACE (dep) = desc;
4848 desc->loc = mii->mem_loc;
4849 desc->newval = newmem;
4850 desc->orig = *desc->loc;
4851 desc->insn = mii->mem_insn;
4852 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4853 INSN_SPEC_BACK_DEPS (con));
4854 if (backwards)
4855 {
4856 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4857 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4858 REG_DEP_TRUE);
4859 }
4860 else
4861 {
4862 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4863 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4864 REG_DEP_ANTI);
4865 }
4866 return true;
4867 }
4868 next:
4869 sd_iterator_next (&sd_it);
4870 }
4871 return false;
4872 }
4873
4874 /* A recursive function that walks ADDRESS_OF_X to find memory references
4875 which could be modified during scheduling. We call find_inc for each
4876 one we find that has a recognizable form. MII holds information about
4877 the pair of memory/increment instructions.
4878 We ensure that every instruction with a memory reference (which will be
4879 the location of the replacement) is assigned at most one breakable
4880 dependency. */
4881
4882 static bool
4883 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4884 {
4885 rtx x = *address_of_x;
4886 enum rtx_code code = GET_CODE (x);
4887 const char *const fmt = GET_RTX_FORMAT (code);
4888 int i;
4889
4890 if (code == MEM)
4891 {
4892 rtx reg0 = XEXP (x, 0);
4893
4894 mii->mem_loc = address_of_x;
4895 mii->mem_index = NULL_RTX;
4896 mii->mem_constant = 0;
4897 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4898 {
4899 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4900 reg0 = XEXP (reg0, 0);
4901 }
4902 if (GET_CODE (reg0) == PLUS)
4903 {
4904 mii->mem_index = XEXP (reg0, 1);
4905 reg0 = XEXP (reg0, 0);
4906 }
4907 if (REG_P (reg0))
4908 {
4909 df_ref use;
4910 int occurrences = 0;
4911
4912 /* Make sure this reg appears only once in this insn. Can't use
4913 count_occurrences since that only works for pseudos. */
4914 FOR_EACH_INSN_USE (use, mii->mem_insn)
4915 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
4916 if (++occurrences > 1)
4917 {
4918 if (sched_verbose >= 5)
4919 fprintf (sched_dump, "mem count failure\n");
4920 return false;
4921 }
4922
4923 mii->mem_reg0 = reg0;
4924 return find_inc (mii, true) || find_inc (mii, false);
4925 }
4926 return false;
4927 }
4928
4929 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4930 {
4931 /* If REG occurs inside a MEM used in a bit-field reference,
4932 that is unacceptable. */
4933 return false;
4934 }
4935
4936 /* Time for some deep diving. */
4937 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4938 {
4939 if (fmt[i] == 'e')
4940 {
4941 if (find_mem (mii, &XEXP (x, i)))
4942 return true;
4943 }
4944 else if (fmt[i] == 'E')
4945 {
4946 int j;
4947 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4948 if (find_mem (mii, &XVECEXP (x, i, j)))
4949 return true;
4950 }
4951 }
4952 return false;
4953 }
4954
4955
4956 /* Examine the instructions between HEAD and TAIL and try to find
4957 dependencies that can be broken by modifying one of the patterns. */
4958
4959 void
4960 find_modifiable_mems (rtx_insn *head, rtx_insn *tail)
4961 {
4962 rtx_insn *insn, *next_tail = NEXT_INSN (tail);
4963 int success_in_block = 0;
4964
4965 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4966 {
4967 struct mem_inc_info mii;
4968
4969 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4970 continue;
4971
4972 mii.mem_insn = insn;
4973 if (find_mem (&mii, &PATTERN (insn)))
4974 success_in_block++;
4975 }
4976 if (success_in_block && sched_verbose >= 5)
4977 fprintf (sched_dump, "%d candidates for address modification found.\n",
4978 success_in_block);
4979 }
4980
4981 #endif /* INSN_SCHEDULING */