]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched-ir.c
c++: Handle multiple aggregate overloads [PR95319].
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "cfgrtl.h"
31 #include "cfganal.h"
32 #include "cfgbuild.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 #include "recog.h"
36 #include "target.h"
37 #include "sched-int.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
39
40 #ifdef INSN_SCHEDULING
41 #include "regset.h"
42 #include "cfgloop.h"
43 #include "sel-sched-ir.h"
44 /* We don't have to use it except for sel_print_insn. */
45 #include "sel-sched-dump.h"
46
47 /* A vector holding bb info for whole scheduling pass. */
48 vec<sel_global_bb_info_def> sel_global_bb_info;
49
50 /* A vector holding bb info. */
51 vec<sel_region_bb_info_def> sel_region_bb_info;
52
53 /* A pool for allocating all lists. */
54 object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
55
56 /* This contains information about successors for compute_av_set. */
57 struct succs_info current_succs;
58
59 /* Data structure to describe interaction with the generic scheduler utils. */
60 static struct common_sched_info_def sel_common_sched_info;
61
62 /* The loop nest being pipelined. */
63 class loop *current_loop_nest;
64
65 /* LOOP_NESTS is a vector containing the corresponding loop nest for
66 each region. */
67 static vec<loop_p> loop_nests;
68
69 /* Saves blocks already in loop regions, indexed by bb->index. */
70 static sbitmap bbs_in_loop_rgns = NULL;
71
72 /* CFG hooks that are saved before changing create_basic_block hook. */
73 static struct cfg_hooks orig_cfg_hooks;
74 \f
75
76 /* Array containing reverse topological index of function basic blocks,
77 indexed by BB->INDEX. */
78 static int *rev_top_order_index = NULL;
79
80 /* Length of the above array. */
81 static int rev_top_order_index_len = -1;
82
83 /* A regset pool structure. */
84 static struct
85 {
86 /* The stack to which regsets are returned. */
87 regset *v;
88
89 /* Its pointer. */
90 int n;
91
92 /* Its size. */
93 int s;
94
95 /* In VV we save all generated regsets so that, when destructing the
96 pool, we can compare it with V and check that every regset was returned
97 back to pool. */
98 regset *vv;
99
100 /* The pointer of VV stack. */
101 int nn;
102
103 /* Its size. */
104 int ss;
105
106 /* The difference between allocated and returned regsets. */
107 int diff;
108 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
109
110 /* This represents the nop pool. */
111 static struct
112 {
113 /* The vector which holds previously emitted nops. */
114 insn_t *v;
115
116 /* Its pointer. */
117 int n;
118
119 /* Its size. */
120 int s;
121 } nop_pool = { NULL, 0, 0 };
122
123 /* The pool for basic block notes. */
124 static vec<rtx_note *> bb_note_pool;
125
126 /* A NOP pattern used to emit placeholder insns. */
127 rtx nop_pattern = NULL_RTX;
128 /* A special instruction that resides in EXIT_BLOCK.
129 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
130 rtx_insn *exit_insn = NULL;
131
132 /* TRUE if while scheduling current region, which is loop, its preheader
133 was removed. */
134 bool preheader_removed = false;
135 \f
136
137 /* Forward static declarations. */
138 static void fence_clear (fence_t);
139
140 static void deps_init_id (idata_t, insn_t, bool);
141 static void init_id_from_df (idata_t, insn_t, bool);
142 static expr_t set_insn_init (expr_t, vinsn_t, int);
143
144 static void cfg_preds (basic_block, insn_t **, int *);
145 static void prepare_insn_expr (insn_t, int);
146 static void free_history_vect (vec<expr_history_def> &);
147
148 static void move_bb_info (basic_block, basic_block);
149 static void remove_empty_bb (basic_block, bool);
150 static void sel_merge_blocks (basic_block, basic_block);
151 static void sel_remove_loop_preheader (void);
152 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
153
154 static bool insn_is_the_only_one_in_bb_p (insn_t);
155 static void create_initial_data_sets (basic_block);
156
157 static void free_av_set (basic_block);
158 static void invalidate_av_set (basic_block);
159 static void extend_insn_data (void);
160 static void sel_init_new_insn (insn_t, int, int = -1);
161 static void finish_insns (void);
162 \f
163 /* Various list functions. */
164
165 /* Copy an instruction list L. */
166 ilist_t
167 ilist_copy (ilist_t l)
168 {
169 ilist_t head = NULL, *tailp = &head;
170
171 while (l)
172 {
173 ilist_add (tailp, ILIST_INSN (l));
174 tailp = &ILIST_NEXT (*tailp);
175 l = ILIST_NEXT (l);
176 }
177
178 return head;
179 }
180
181 /* Invert an instruction list L. */
182 ilist_t
183 ilist_invert (ilist_t l)
184 {
185 ilist_t res = NULL;
186
187 while (l)
188 {
189 ilist_add (&res, ILIST_INSN (l));
190 l = ILIST_NEXT (l);
191 }
192
193 return res;
194 }
195
196 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
197 void
198 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
199 {
200 bnd_t bnd;
201
202 _list_add (lp);
203 bnd = BLIST_BND (*lp);
204
205 BND_TO (bnd) = to;
206 BND_PTR (bnd) = ptr;
207 BND_AV (bnd) = NULL;
208 BND_AV1 (bnd) = NULL;
209 BND_DC (bnd) = dc;
210 }
211
212 /* Remove the list note pointed to by LP. */
213 void
214 blist_remove (blist_t *lp)
215 {
216 bnd_t b = BLIST_BND (*lp);
217
218 av_set_clear (&BND_AV (b));
219 av_set_clear (&BND_AV1 (b));
220 ilist_clear (&BND_PTR (b));
221
222 _list_remove (lp);
223 }
224
225 /* Init a fence tail L. */
226 void
227 flist_tail_init (flist_tail_t l)
228 {
229 FLIST_TAIL_HEAD (l) = NULL;
230 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
231 }
232
233 /* Try to find fence corresponding to INSN in L. */
234 fence_t
235 flist_lookup (flist_t l, insn_t insn)
236 {
237 while (l)
238 {
239 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
240 return FLIST_FENCE (l);
241
242 l = FLIST_NEXT (l);
243 }
244
245 return NULL;
246 }
247
248 /* Init the fields of F before running fill_insns. */
249 static void
250 init_fence_for_scheduling (fence_t f)
251 {
252 FENCE_BNDS (f) = NULL;
253 FENCE_PROCESSED_P (f) = false;
254 FENCE_SCHEDULED_P (f) = false;
255 }
256
257 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
258 static void
259 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
260 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
261 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
262 int cycle, int cycle_issued_insns, int issue_more,
263 bool starts_cycle_p, bool after_stall_p)
264 {
265 fence_t f;
266
267 _list_add (lp);
268 f = FLIST_FENCE (*lp);
269
270 FENCE_INSN (f) = insn;
271
272 gcc_assert (state != NULL);
273 FENCE_STATE (f) = state;
274
275 FENCE_CYCLE (f) = cycle;
276 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
277 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
278 FENCE_AFTER_STALL_P (f) = after_stall_p;
279
280 gcc_assert (dc != NULL);
281 FENCE_DC (f) = dc;
282
283 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
284 FENCE_TC (f) = tc;
285
286 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
287 FENCE_ISSUE_MORE (f) = issue_more;
288 FENCE_EXECUTING_INSNS (f) = executing_insns;
289 FENCE_READY_TICKS (f) = ready_ticks;
290 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
291 FENCE_SCHED_NEXT (f) = sched_next;
292
293 init_fence_for_scheduling (f);
294 }
295
296 /* Remove the head node of the list pointed to by LP. */
297 static void
298 flist_remove (flist_t *lp)
299 {
300 if (FENCE_INSN (FLIST_FENCE (*lp)))
301 fence_clear (FLIST_FENCE (*lp));
302 _list_remove (lp);
303 }
304
305 /* Clear the fence list pointed to by LP. */
306 void
307 flist_clear (flist_t *lp)
308 {
309 while (*lp)
310 flist_remove (lp);
311 }
312
313 /* Add ORIGINAL_INSN the def list DL honoring CROSSED_CALL_ABIS. */
314 void
315 def_list_add (def_list_t *dl, insn_t original_insn,
316 unsigned int crossed_call_abis)
317 {
318 def_t d;
319
320 _list_add (dl);
321 d = DEF_LIST_DEF (*dl);
322
323 d->orig_insn = original_insn;
324 d->crossed_call_abis = crossed_call_abis;
325 }
326 \f
327
328 /* Functions to work with target contexts. */
329
330 /* Bulk target context. It is convenient for debugging purposes to ensure
331 that there are no uninitialized (null) target contexts. */
332 static tc_t bulk_tc = (tc_t) 1;
333
334 /* Target hooks wrappers. In the future we can provide some default
335 implementations for them. */
336
337 /* Allocate a store for the target context. */
338 static tc_t
339 alloc_target_context (void)
340 {
341 return (targetm.sched.alloc_sched_context
342 ? targetm.sched.alloc_sched_context () : bulk_tc);
343 }
344
345 /* Init target context TC.
346 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
347 Overwise, copy current backend context to TC. */
348 static void
349 init_target_context (tc_t tc, bool clean_p)
350 {
351 if (targetm.sched.init_sched_context)
352 targetm.sched.init_sched_context (tc, clean_p);
353 }
354
355 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
356 int init_target_context (). */
357 tc_t
358 create_target_context (bool clean_p)
359 {
360 tc_t tc = alloc_target_context ();
361
362 init_target_context (tc, clean_p);
363 return tc;
364 }
365
366 /* Copy TC to the current backend context. */
367 void
368 set_target_context (tc_t tc)
369 {
370 if (targetm.sched.set_sched_context)
371 targetm.sched.set_sched_context (tc);
372 }
373
374 /* TC is about to be destroyed. Free any internal data. */
375 static void
376 clear_target_context (tc_t tc)
377 {
378 if (targetm.sched.clear_sched_context)
379 targetm.sched.clear_sched_context (tc);
380 }
381
382 /* Clear and free it. */
383 static void
384 delete_target_context (tc_t tc)
385 {
386 clear_target_context (tc);
387
388 if (targetm.sched.free_sched_context)
389 targetm.sched.free_sched_context (tc);
390 }
391
392 /* Make a copy of FROM in TO.
393 NB: May be this should be a hook. */
394 static void
395 copy_target_context (tc_t to, tc_t from)
396 {
397 tc_t tmp = create_target_context (false);
398
399 set_target_context (from);
400 init_target_context (to, false);
401
402 set_target_context (tmp);
403 delete_target_context (tmp);
404 }
405
406 /* Create a copy of TC. */
407 static tc_t
408 create_copy_of_target_context (tc_t tc)
409 {
410 tc_t copy = alloc_target_context ();
411
412 copy_target_context (copy, tc);
413
414 return copy;
415 }
416
417 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
418 is the same as in init_target_context (). */
419 void
420 reset_target_context (tc_t tc, bool clean_p)
421 {
422 clear_target_context (tc);
423 init_target_context (tc, clean_p);
424 }
425 \f
426 /* Functions to work with dependence contexts.
427 Dc (aka deps context, aka deps_t, aka class deps_desc *) is short for dependence
428 context. It accumulates information about processed insns to decide if
429 current insn is dependent on the processed ones. */
430
431 /* Make a copy of FROM in TO. */
432 static void
433 copy_deps_context (deps_t to, deps_t from)
434 {
435 init_deps (to, false);
436 deps_join (to, from);
437 }
438
439 /* Allocate store for dep context. */
440 static deps_t
441 alloc_deps_context (void)
442 {
443 return XNEW (class deps_desc);
444 }
445
446 /* Allocate and initialize dep context. */
447 static deps_t
448 create_deps_context (void)
449 {
450 deps_t dc = alloc_deps_context ();
451
452 init_deps (dc, false);
453 return dc;
454 }
455
456 /* Create a copy of FROM. */
457 static deps_t
458 create_copy_of_deps_context (deps_t from)
459 {
460 deps_t to = alloc_deps_context ();
461
462 copy_deps_context (to, from);
463 return to;
464 }
465
466 /* Clean up internal data of DC. */
467 static void
468 clear_deps_context (deps_t dc)
469 {
470 free_deps (dc);
471 }
472
473 /* Clear and free DC. */
474 static void
475 delete_deps_context (deps_t dc)
476 {
477 clear_deps_context (dc);
478 free (dc);
479 }
480
481 /* Clear and init DC. */
482 static void
483 reset_deps_context (deps_t dc)
484 {
485 clear_deps_context (dc);
486 init_deps (dc, false);
487 }
488
489 /* This structure describes the dependence analysis hooks for advancing
490 dependence context. */
491 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
492 {
493 NULL,
494
495 NULL, /* start_insn */
496 NULL, /* finish_insn */
497 NULL, /* start_lhs */
498 NULL, /* finish_lhs */
499 NULL, /* start_rhs */
500 NULL, /* finish_rhs */
501 haifa_note_reg_set,
502 haifa_note_reg_clobber,
503 haifa_note_reg_use,
504 NULL, /* note_mem_dep */
505 NULL, /* note_dep */
506
507 0, 0, 0
508 };
509
510 /* Process INSN and add its impact on DC. */
511 void
512 advance_deps_context (deps_t dc, insn_t insn)
513 {
514 sched_deps_info = &advance_deps_context_sched_deps_info;
515 deps_analyze_insn (dc, insn);
516 }
517 \f
518
519 /* Functions to work with DFA states. */
520
521 /* Allocate store for a DFA state. */
522 static state_t
523 state_alloc (void)
524 {
525 return xmalloc (dfa_state_size);
526 }
527
528 /* Allocate and initialize DFA state. */
529 static state_t
530 state_create (void)
531 {
532 state_t state = state_alloc ();
533
534 state_reset (state);
535 advance_state (state);
536 return state;
537 }
538
539 /* Free DFA state. */
540 static void
541 state_free (state_t state)
542 {
543 free (state);
544 }
545
546 /* Make a copy of FROM in TO. */
547 static void
548 state_copy (state_t to, state_t from)
549 {
550 memcpy (to, from, dfa_state_size);
551 }
552
553 /* Create a copy of FROM. */
554 static state_t
555 state_create_copy (state_t from)
556 {
557 state_t to = state_alloc ();
558
559 state_copy (to, from);
560 return to;
561 }
562 \f
563
564 /* Functions to work with fences. */
565
566 /* Clear the fence. */
567 static void
568 fence_clear (fence_t f)
569 {
570 state_t s = FENCE_STATE (f);
571 deps_t dc = FENCE_DC (f);
572 void *tc = FENCE_TC (f);
573
574 ilist_clear (&FENCE_BNDS (f));
575
576 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
577 || (s == NULL && dc == NULL && tc == NULL));
578
579 free (s);
580
581 if (dc != NULL)
582 delete_deps_context (dc);
583
584 if (tc != NULL)
585 delete_target_context (tc);
586 vec_free (FENCE_EXECUTING_INSNS (f));
587 free (FENCE_READY_TICKS (f));
588 FENCE_READY_TICKS (f) = NULL;
589 }
590
591 /* Init a list of fences with successors of OLD_FENCE. */
592 void
593 init_fences (insn_t old_fence)
594 {
595 insn_t succ;
596 succ_iterator si;
597 bool first = true;
598 int ready_ticks_size = get_max_uid () + 1;
599
600 FOR_EACH_SUCC_1 (succ, si, old_fence,
601 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
602 {
603
604 if (first)
605 first = false;
606 else
607 gcc_assert (flag_sel_sched_pipelining_outer_loops);
608
609 flist_add (&fences, succ,
610 state_create (),
611 create_deps_context () /* dc */,
612 create_target_context (true) /* tc */,
613 NULL /* last_scheduled_insn */,
614 NULL, /* executing_insns */
615 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
616 ready_ticks_size,
617 NULL /* sched_next */,
618 1 /* cycle */, 0 /* cycle_issued_insns */,
619 issue_rate, /* issue_more */
620 1 /* starts_cycle_p */, 0 /* after_stall_p */);
621 }
622 }
623
624 /* Merges two fences (filling fields of fence F with resulting values) by
625 following rules: 1) state, target context and last scheduled insn are
626 propagated from fallthrough edge if it is available;
627 2) deps context and cycle is propagated from more probable edge;
628 3) all other fields are set to corresponding constant values.
629
630 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
631 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
632 and AFTER_STALL_P are the corresponding fields of the second fence. */
633 static void
634 merge_fences (fence_t f, insn_t insn,
635 state_t state, deps_t dc, void *tc,
636 rtx_insn *last_scheduled_insn,
637 vec<rtx_insn *, va_gc> *executing_insns,
638 int *ready_ticks, int ready_ticks_size,
639 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
640 {
641 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
642
643 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
644 && !sched_next && !FENCE_SCHED_NEXT (f));
645
646 /* Check if we can decide which path fences came.
647 If we can't (or don't want to) - reset all. */
648 if (last_scheduled_insn == NULL
649 || last_scheduled_insn_old == NULL
650 /* This is a case when INSN is reachable on several paths from
651 one insn (this can happen when pipelining of outer loops is on and
652 there are two edges: one going around of inner loop and the other -
653 right through it; in such case just reset everything). */
654 || last_scheduled_insn == last_scheduled_insn_old)
655 {
656 state_reset (FENCE_STATE (f));
657 state_free (state);
658
659 reset_deps_context (FENCE_DC (f));
660 delete_deps_context (dc);
661
662 reset_target_context (FENCE_TC (f), true);
663 delete_target_context (tc);
664
665 if (cycle > FENCE_CYCLE (f))
666 FENCE_CYCLE (f) = cycle;
667
668 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
669 FENCE_ISSUE_MORE (f) = issue_rate;
670 vec_free (executing_insns);
671 free (ready_ticks);
672 if (FENCE_EXECUTING_INSNS (f))
673 FENCE_EXECUTING_INSNS (f)->block_remove (0,
674 FENCE_EXECUTING_INSNS (f)->length ());
675 if (FENCE_READY_TICKS (f))
676 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
677 }
678 else
679 {
680 edge edge_old = NULL, edge_new = NULL;
681 edge candidate;
682 succ_iterator si;
683 insn_t succ;
684
685 /* Find fallthrough edge. */
686 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
687 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
688
689 if (!candidate
690 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
691 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
692 {
693 /* No fallthrough edge leading to basic block of INSN. */
694 state_reset (FENCE_STATE (f));
695 state_free (state);
696
697 reset_target_context (FENCE_TC (f), true);
698 delete_target_context (tc);
699
700 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
701 FENCE_ISSUE_MORE (f) = issue_rate;
702 }
703 else
704 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
705 {
706 state_free (FENCE_STATE (f));
707 FENCE_STATE (f) = state;
708
709 delete_target_context (FENCE_TC (f));
710 FENCE_TC (f) = tc;
711
712 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
713 FENCE_ISSUE_MORE (f) = issue_more;
714 }
715 else
716 {
717 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
718 state_free (state);
719 delete_target_context (tc);
720
721 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
722 != BLOCK_FOR_INSN (last_scheduled_insn));
723 }
724
725 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
726 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
727 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
728 {
729 if (succ == insn)
730 {
731 /* No same successor allowed from several edges. */
732 gcc_assert (!edge_old);
733 edge_old = si.e1;
734 }
735 }
736 /* Find edge of second predecessor (last_scheduled_insn->insn). */
737 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
738 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
739 {
740 if (succ == insn)
741 {
742 /* No same successor allowed from several edges. */
743 gcc_assert (!edge_new);
744 edge_new = si.e1;
745 }
746 }
747
748 /* Check if we can choose most probable predecessor. */
749 if (edge_old == NULL || edge_new == NULL)
750 {
751 reset_deps_context (FENCE_DC (f));
752 delete_deps_context (dc);
753 vec_free (executing_insns);
754 free (ready_ticks);
755
756 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
757 if (FENCE_EXECUTING_INSNS (f))
758 FENCE_EXECUTING_INSNS (f)->block_remove (0,
759 FENCE_EXECUTING_INSNS (f)->length ());
760 if (FENCE_READY_TICKS (f))
761 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
762 }
763 else
764 if (edge_new->probability > edge_old->probability)
765 {
766 delete_deps_context (FENCE_DC (f));
767 FENCE_DC (f) = dc;
768 vec_free (FENCE_EXECUTING_INSNS (f));
769 FENCE_EXECUTING_INSNS (f) = executing_insns;
770 free (FENCE_READY_TICKS (f));
771 FENCE_READY_TICKS (f) = ready_ticks;
772 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
773 FENCE_CYCLE (f) = cycle;
774 }
775 else
776 {
777 /* Leave DC and CYCLE untouched. */
778 delete_deps_context (dc);
779 vec_free (executing_insns);
780 free (ready_ticks);
781 }
782 }
783
784 /* Fill remaining invariant fields. */
785 if (after_stall_p)
786 FENCE_AFTER_STALL_P (f) = 1;
787
788 FENCE_ISSUED_INSNS (f) = 0;
789 FENCE_STARTS_CYCLE_P (f) = 1;
790 FENCE_SCHED_NEXT (f) = NULL;
791 }
792
793 /* Add a new fence to NEW_FENCES list, initializing it from all
794 other parameters. */
795 static void
796 add_to_fences (flist_tail_t new_fences, insn_t insn,
797 state_t state, deps_t dc, void *tc,
798 rtx_insn *last_scheduled_insn,
799 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
800 int ready_ticks_size, rtx_insn *sched_next, int cycle,
801 int cycle_issued_insns, int issue_rate,
802 bool starts_cycle_p, bool after_stall_p)
803 {
804 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
805
806 if (! f)
807 {
808 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
809 last_scheduled_insn, executing_insns, ready_ticks,
810 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
811 issue_rate, starts_cycle_p, after_stall_p);
812
813 FLIST_TAIL_TAILP (new_fences)
814 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
815 }
816 else
817 {
818 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
819 executing_insns, ready_ticks, ready_ticks_size,
820 sched_next, cycle, issue_rate, after_stall_p);
821 }
822 }
823
824 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
825 void
826 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
827 {
828 fence_t f, old;
829 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
830
831 old = FLIST_FENCE (old_fences);
832 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
833 FENCE_INSN (FLIST_FENCE (old_fences)));
834 if (f)
835 {
836 merge_fences (f, old->insn, old->state, old->dc, old->tc,
837 old->last_scheduled_insn, old->executing_insns,
838 old->ready_ticks, old->ready_ticks_size,
839 old->sched_next, old->cycle, old->issue_more,
840 old->after_stall_p);
841 }
842 else
843 {
844 _list_add (tailp);
845 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
846 *FLIST_FENCE (*tailp) = *old;
847 init_fence_for_scheduling (FLIST_FENCE (*tailp));
848 }
849 FENCE_INSN (old) = NULL;
850 }
851
852 /* Add a new fence to NEW_FENCES list and initialize most of its data
853 as a clean one. */
854 void
855 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
856 {
857 int ready_ticks_size = get_max_uid () + 1;
858
859 add_to_fences (new_fences,
860 succ, state_create (), create_deps_context (),
861 create_target_context (true),
862 NULL, NULL,
863 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
864 NULL, FENCE_CYCLE (fence) + 1,
865 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
866 }
867
868 /* Add a new fence to NEW_FENCES list and initialize all of its data
869 from FENCE and SUCC. */
870 void
871 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
872 {
873 int * new_ready_ticks
874 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
875
876 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
877 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
878 add_to_fences (new_fences,
879 succ, state_create_copy (FENCE_STATE (fence)),
880 create_copy_of_deps_context (FENCE_DC (fence)),
881 create_copy_of_target_context (FENCE_TC (fence)),
882 FENCE_LAST_SCHEDULED_INSN (fence),
883 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
884 new_ready_ticks,
885 FENCE_READY_TICKS_SIZE (fence),
886 FENCE_SCHED_NEXT (fence),
887 FENCE_CYCLE (fence),
888 FENCE_ISSUED_INSNS (fence),
889 FENCE_ISSUE_MORE (fence),
890 FENCE_STARTS_CYCLE_P (fence),
891 FENCE_AFTER_STALL_P (fence));
892 }
893 \f
894
895 /* Functions to work with regset and nop pools. */
896
897 /* Returns the new regset from pool. It might have some of the bits set
898 from the previous usage. */
899 regset
900 get_regset_from_pool (void)
901 {
902 regset rs;
903
904 if (regset_pool.n != 0)
905 rs = regset_pool.v[--regset_pool.n];
906 else
907 /* We need to create the regset. */
908 {
909 rs = ALLOC_REG_SET (&reg_obstack);
910
911 if (regset_pool.nn == regset_pool.ss)
912 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
913 (regset_pool.ss = 2 * regset_pool.ss + 1));
914 regset_pool.vv[regset_pool.nn++] = rs;
915 }
916
917 regset_pool.diff++;
918
919 return rs;
920 }
921
922 /* Same as above, but returns the empty regset. */
923 regset
924 get_clear_regset_from_pool (void)
925 {
926 regset rs = get_regset_from_pool ();
927
928 CLEAR_REG_SET (rs);
929 return rs;
930 }
931
932 /* Return regset RS to the pool for future use. */
933 void
934 return_regset_to_pool (regset rs)
935 {
936 gcc_assert (rs);
937 regset_pool.diff--;
938
939 if (regset_pool.n == regset_pool.s)
940 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
941 (regset_pool.s = 2 * regset_pool.s + 1));
942 regset_pool.v[regset_pool.n++] = rs;
943 }
944
945 /* This is used as a qsort callback for sorting regset pool stacks.
946 X and XX are addresses of two regsets. They are never equal. */
947 static int
948 cmp_v_in_regset_pool (const void *x, const void *xx)
949 {
950 uintptr_t r1 = (uintptr_t) *((const regset *) x);
951 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
952 if (r1 > r2)
953 return 1;
954 else if (r1 < r2)
955 return -1;
956 gcc_unreachable ();
957 }
958
959 /* Free the regset pool possibly checking for memory leaks. */
960 void
961 free_regset_pool (void)
962 {
963 if (flag_checking)
964 {
965 regset *v = regset_pool.v;
966 int i = 0;
967 int n = regset_pool.n;
968
969 regset *vv = regset_pool.vv;
970 int ii = 0;
971 int nn = regset_pool.nn;
972
973 int diff = 0;
974
975 gcc_assert (n <= nn);
976
977 /* Sort both vectors so it will be possible to compare them. */
978 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
979 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
980
981 while (ii < nn)
982 {
983 if (v[i] == vv[ii])
984 i++;
985 else
986 /* VV[II] was lost. */
987 diff++;
988
989 ii++;
990 }
991
992 gcc_assert (diff == regset_pool.diff);
993 }
994
995 /* If not true - we have a memory leak. */
996 gcc_assert (regset_pool.diff == 0);
997
998 while (regset_pool.n)
999 {
1000 --regset_pool.n;
1001 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1002 }
1003
1004 free (regset_pool.v);
1005 regset_pool.v = NULL;
1006 regset_pool.s = 0;
1007
1008 free (regset_pool.vv);
1009 regset_pool.vv = NULL;
1010 regset_pool.nn = 0;
1011 regset_pool.ss = 0;
1012
1013 regset_pool.diff = 0;
1014 }
1015 \f
1016
1017 /* Functions to work with nop pools. NOP insns are used as temporary
1018 placeholders of the insns being scheduled to allow correct update of
1019 the data sets. When update is finished, NOPs are deleted. */
1020
1021 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1022 nops sel-sched generates. */
1023 static vinsn_t nop_vinsn = NULL;
1024
1025 /* Emit a nop before INSN, taking it from pool. */
1026 insn_t
1027 get_nop_from_pool (insn_t insn)
1028 {
1029 rtx nop_pat;
1030 insn_t nop;
1031 bool old_p = nop_pool.n != 0;
1032 int flags;
1033
1034 if (old_p)
1035 nop_pat = nop_pool.v[--nop_pool.n];
1036 else
1037 nop_pat = nop_pattern;
1038
1039 nop = emit_insn_before (nop_pat, insn);
1040
1041 if (old_p)
1042 flags = INSN_INIT_TODO_SSID;
1043 else
1044 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1045
1046 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1047 sel_init_new_insn (nop, flags);
1048
1049 return nop;
1050 }
1051
1052 /* Remove NOP from the instruction stream and return it to the pool. */
1053 void
1054 return_nop_to_pool (insn_t nop, bool full_tidying)
1055 {
1056 gcc_assert (INSN_IN_STREAM_P (nop));
1057 sel_remove_insn (nop, false, full_tidying);
1058
1059 /* We'll recycle this nop. */
1060 nop->set_undeleted ();
1061
1062 if (nop_pool.n == nop_pool.s)
1063 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1064 (nop_pool.s = 2 * nop_pool.s + 1));
1065 nop_pool.v[nop_pool.n++] = nop;
1066 }
1067
1068 /* Free the nop pool. */
1069 void
1070 free_nop_pool (void)
1071 {
1072 nop_pool.n = 0;
1073 nop_pool.s = 0;
1074 free (nop_pool.v);
1075 nop_pool.v = NULL;
1076 }
1077 \f
1078
1079 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1080 The callback is given two rtxes XX and YY and writes the new rtxes
1081 to NX and NY in case some needs to be skipped. */
1082 static int
1083 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1084 {
1085 const_rtx x = *xx;
1086 const_rtx y = *yy;
1087
1088 if (GET_CODE (x) == UNSPEC
1089 && (targetm.sched.skip_rtx_p == NULL
1090 || targetm.sched.skip_rtx_p (x)))
1091 {
1092 *nx = XVECEXP (x, 0, 0);
1093 *ny = CONST_CAST_RTX (y);
1094 return 1;
1095 }
1096
1097 if (GET_CODE (y) == UNSPEC
1098 && (targetm.sched.skip_rtx_p == NULL
1099 || targetm.sched.skip_rtx_p (y)))
1100 {
1101 *nx = CONST_CAST_RTX (x);
1102 *ny = XVECEXP (y, 0, 0);
1103 return 1;
1104 }
1105
1106 return 0;
1107 }
1108
1109 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1110 to support ia64 speculation. When changes are needed, new rtx X and new mode
1111 NMODE are written, and the callback returns true. */
1112 static int
1113 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1114 rtx *nx, machine_mode* nmode)
1115 {
1116 if (GET_CODE (x) == UNSPEC
1117 && targetm.sched.skip_rtx_p
1118 && targetm.sched.skip_rtx_p (x))
1119 {
1120 *nx = XVECEXP (x, 0 ,0);
1121 *nmode = VOIDmode;
1122 return 1;
1123 }
1124
1125 return 0;
1126 }
1127
1128 /* Returns LHS and RHS are ok to be scheduled separately. */
1129 static bool
1130 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1131 {
1132 if (lhs == NULL || rhs == NULL)
1133 return false;
1134
1135 /* Do not schedule constants as rhs: no point to use reg, if const
1136 can be used. Moreover, scheduling const as rhs may lead to mode
1137 mismatch cause consts don't have modes but they could be merged
1138 from branches where the same const used in different modes. */
1139 if (CONSTANT_P (rhs))
1140 return false;
1141
1142 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1143 if (COMPARISON_P (rhs))
1144 return false;
1145
1146 /* Do not allow single REG to be an rhs. */
1147 if (REG_P (rhs))
1148 return false;
1149
1150 /* See comment at find_used_regs_1 (*1) for explanation of this
1151 restriction. */
1152 /* FIXME: remove this later. */
1153 if (MEM_P (lhs))
1154 return false;
1155
1156 /* This will filter all tricky things like ZERO_EXTRACT etc.
1157 For now we don't handle it. */
1158 if (!REG_P (lhs) && !MEM_P (lhs))
1159 return false;
1160
1161 return true;
1162 }
1163
1164 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1165 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1166 used e.g. for insns from recovery blocks. */
1167 static void
1168 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1169 {
1170 hash_rtx_callback_function hrcf;
1171 int insn_class;
1172
1173 VINSN_INSN_RTX (vi) = insn;
1174 VINSN_COUNT (vi) = 0;
1175 vi->cost = -1;
1176
1177 if (INSN_NOP_P (insn))
1178 return;
1179
1180 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1181 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1182 else
1183 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1184
1185 /* Hash vinsn depending on whether it is separable or not. */
1186 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1187 if (VINSN_SEPARABLE_P (vi))
1188 {
1189 rtx rhs = VINSN_RHS (vi);
1190
1191 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1192 NULL, NULL, false, hrcf);
1193 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1194 VOIDmode, NULL, NULL,
1195 false, hrcf);
1196 }
1197 else
1198 {
1199 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1200 NULL, NULL, false, hrcf);
1201 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1202 }
1203
1204 insn_class = haifa_classify_insn (insn);
1205 if (insn_class >= 2
1206 && (!targetm.sched.get_insn_spec_ds
1207 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1208 == 0)))
1209 VINSN_MAY_TRAP_P (vi) = true;
1210 else
1211 VINSN_MAY_TRAP_P (vi) = false;
1212 }
1213
1214 /* Indicate that VI has become the part of an rtx object. */
1215 void
1216 vinsn_attach (vinsn_t vi)
1217 {
1218 /* Assert that VI is not pending for deletion. */
1219 gcc_assert (VINSN_INSN_RTX (vi));
1220
1221 VINSN_COUNT (vi)++;
1222 }
1223
1224 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1225 VINSN_TYPE (VI). */
1226 static vinsn_t
1227 vinsn_create (insn_t insn, bool force_unique_p)
1228 {
1229 vinsn_t vi = XCNEW (struct vinsn_def);
1230
1231 vinsn_init (vi, insn, force_unique_p);
1232 return vi;
1233 }
1234
1235 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1236 the copy. */
1237 vinsn_t
1238 vinsn_copy (vinsn_t vi, bool reattach_p)
1239 {
1240 rtx_insn *copy;
1241 bool unique = VINSN_UNIQUE_P (vi);
1242 vinsn_t new_vi;
1243
1244 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1245 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1246 if (reattach_p)
1247 {
1248 vinsn_detach (vi);
1249 vinsn_attach (new_vi);
1250 }
1251
1252 return new_vi;
1253 }
1254
1255 /* Delete the VI vinsn and free its data. */
1256 static void
1257 vinsn_delete (vinsn_t vi)
1258 {
1259 gcc_assert (VINSN_COUNT (vi) == 0);
1260
1261 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1262 {
1263 return_regset_to_pool (VINSN_REG_SETS (vi));
1264 return_regset_to_pool (VINSN_REG_USES (vi));
1265 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1266 }
1267
1268 free (vi);
1269 }
1270
1271 /* Indicate that VI is no longer a part of some rtx object.
1272 Remove VI if it is no longer needed. */
1273 void
1274 vinsn_detach (vinsn_t vi)
1275 {
1276 gcc_assert (VINSN_COUNT (vi) > 0);
1277
1278 if (--VINSN_COUNT (vi) == 0)
1279 vinsn_delete (vi);
1280 }
1281
1282 /* Returns TRUE if VI is a branch. */
1283 bool
1284 vinsn_cond_branch_p (vinsn_t vi)
1285 {
1286 insn_t insn;
1287
1288 if (!VINSN_UNIQUE_P (vi))
1289 return false;
1290
1291 insn = VINSN_INSN_RTX (vi);
1292 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1293 return false;
1294
1295 return control_flow_insn_p (insn);
1296 }
1297
1298 /* Return latency of INSN. */
1299 static int
1300 sel_insn_rtx_cost (rtx_insn *insn)
1301 {
1302 int cost;
1303
1304 /* A USE insn, or something else we don't need to
1305 understand. We can't pass these directly to
1306 result_ready_cost or insn_default_latency because it will
1307 trigger a fatal error for unrecognizable insns. */
1308 if (recog_memoized (insn) < 0)
1309 cost = 0;
1310 else
1311 {
1312 cost = insn_default_latency (insn);
1313
1314 if (cost < 0)
1315 cost = 0;
1316 }
1317
1318 return cost;
1319 }
1320
1321 /* Return the cost of the VI.
1322 !!! FIXME: Unify with haifa-sched.c: insn_sched_cost (). */
1323 int
1324 sel_vinsn_cost (vinsn_t vi)
1325 {
1326 int cost = vi->cost;
1327
1328 if (cost < 0)
1329 {
1330 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1331 vi->cost = cost;
1332 }
1333
1334 return cost;
1335 }
1336 \f
1337
1338 /* Functions for insn emitting. */
1339
1340 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1341 EXPR and SEQNO. */
1342 insn_t
1343 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1344 {
1345 insn_t new_insn;
1346
1347 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1348
1349 new_insn = emit_insn_after (pattern, after);
1350 set_insn_init (expr, NULL, seqno);
1351 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1352
1353 return new_insn;
1354 }
1355
1356 /* Force newly generated vinsns to be unique. */
1357 static bool init_insn_force_unique_p = false;
1358
1359 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1360 initialize its data from EXPR and SEQNO. */
1361 insn_t
1362 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1363 insn_t after)
1364 {
1365 insn_t insn;
1366
1367 gcc_assert (!init_insn_force_unique_p);
1368
1369 init_insn_force_unique_p = true;
1370 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1371 CANT_MOVE (insn) = 1;
1372 init_insn_force_unique_p = false;
1373
1374 return insn;
1375 }
1376
1377 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1378 take it as a new vinsn instead of EXPR's vinsn.
1379 We simplify insns later, after scheduling region in
1380 simplify_changed_insns. */
1381 insn_t
1382 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1383 insn_t after)
1384 {
1385 expr_t emit_expr;
1386 insn_t insn;
1387 int flags;
1388
1389 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1390 seqno);
1391 insn = EXPR_INSN_RTX (emit_expr);
1392
1393 /* The insn may come from the transformation cache, which may hold already
1394 deleted insns, so mark it as not deleted. */
1395 insn->set_undeleted ();
1396
1397 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1398
1399 flags = INSN_INIT_TODO_SSID;
1400 if (INSN_LUID (insn) == 0)
1401 flags |= INSN_INIT_TODO_LUID;
1402 sel_init_new_insn (insn, flags);
1403
1404 return insn;
1405 }
1406
1407 /* Move insn from EXPR after AFTER. */
1408 insn_t
1409 sel_move_insn (expr_t expr, int seqno, insn_t after)
1410 {
1411 insn_t insn = EXPR_INSN_RTX (expr);
1412 basic_block bb = BLOCK_FOR_INSN (after);
1413 insn_t next = NEXT_INSN (after);
1414
1415 /* Assert that in move_op we disconnected this insn properly. */
1416 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1417 SET_PREV_INSN (insn) = after;
1418 SET_NEXT_INSN (insn) = next;
1419
1420 SET_NEXT_INSN (after) = insn;
1421 SET_PREV_INSN (next) = insn;
1422
1423 /* Update links from insn to bb and vice versa. */
1424 df_insn_change_bb (insn, bb);
1425 if (BB_END (bb) == after)
1426 BB_END (bb) = insn;
1427
1428 prepare_insn_expr (insn, seqno);
1429 return insn;
1430 }
1431
1432 \f
1433 /* Functions to work with right-hand sides. */
1434
1435 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1436 VECT and return true when found. Use NEW_VINSN for comparison only when
1437 COMPARE_VINSNS is true. Write to INDP the index on which
1438 the search has stopped, such that inserting the new element at INDP will
1439 retain VECT's sort order. */
1440 static bool
1441 find_in_history_vect_1 (vec<expr_history_def> vect,
1442 unsigned uid, vinsn_t new_vinsn,
1443 bool compare_vinsns, int *indp)
1444 {
1445 expr_history_def *arr;
1446 int i, j, len = vect.length ();
1447
1448 if (len == 0)
1449 {
1450 *indp = 0;
1451 return false;
1452 }
1453
1454 arr = vect.address ();
1455 i = 0, j = len - 1;
1456
1457 while (i <= j)
1458 {
1459 unsigned auid = arr[i].uid;
1460 vinsn_t avinsn = arr[i].new_expr_vinsn;
1461
1462 if (auid == uid
1463 /* When undoing transformation on a bookkeeping copy, the new vinsn
1464 may not be exactly equal to the one that is saved in the vector.
1465 This is because the insn whose copy we're checking was possibly
1466 substituted itself. */
1467 && (! compare_vinsns
1468 || vinsn_equal_p (avinsn, new_vinsn)))
1469 {
1470 *indp = i;
1471 return true;
1472 }
1473 else if (auid > uid)
1474 break;
1475 i++;
1476 }
1477
1478 *indp = i;
1479 return false;
1480 }
1481
1482 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1483 the position found or -1, if no such value is in vector.
1484 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1485 int
1486 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1487 vinsn_t new_vinsn, bool originators_p)
1488 {
1489 int ind;
1490
1491 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1492 false, &ind))
1493 return ind;
1494
1495 if (INSN_ORIGINATORS (insn) && originators_p)
1496 {
1497 unsigned uid;
1498 bitmap_iterator bi;
1499
1500 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1501 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1502 return ind;
1503 }
1504
1505 return -1;
1506 }
1507
1508 /* Insert new element in a sorted history vector pointed to by PVECT,
1509 if it is not there already. The element is searched using
1510 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1511 the history of a transformation. */
1512 void
1513 insert_in_history_vect (vec<expr_history_def> *pvect,
1514 unsigned uid, enum local_trans_type type,
1515 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1516 ds_t spec_ds)
1517 {
1518 vec<expr_history_def> vect = *pvect;
1519 expr_history_def temp;
1520 bool res;
1521 int ind;
1522
1523 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1524
1525 if (res)
1526 {
1527 expr_history_def *phist = &vect[ind];
1528
1529 /* It is possible that speculation types of expressions that were
1530 propagated through different paths will be different here. In this
1531 case, merge the status to get the correct check later. */
1532 if (phist->spec_ds != spec_ds)
1533 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1534 return;
1535 }
1536
1537 temp.uid = uid;
1538 temp.old_expr_vinsn = old_expr_vinsn;
1539 temp.new_expr_vinsn = new_expr_vinsn;
1540 temp.spec_ds = spec_ds;
1541 temp.type = type;
1542
1543 vinsn_attach (old_expr_vinsn);
1544 vinsn_attach (new_expr_vinsn);
1545 vect.safe_insert (ind, temp);
1546 *pvect = vect;
1547 }
1548
1549 /* Free history vector PVECT. */
1550 static void
1551 free_history_vect (vec<expr_history_def> &pvect)
1552 {
1553 unsigned i;
1554 expr_history_def *phist;
1555
1556 if (! pvect.exists ())
1557 return;
1558
1559 for (i = 0; pvect.iterate (i, &phist); i++)
1560 {
1561 vinsn_detach (phist->old_expr_vinsn);
1562 vinsn_detach (phist->new_expr_vinsn);
1563 }
1564
1565 pvect.release ();
1566 }
1567
1568 /* Merge vector FROM to PVECT. */
1569 static void
1570 merge_history_vect (vec<expr_history_def> *pvect,
1571 vec<expr_history_def> from)
1572 {
1573 expr_history_def *phist;
1574 int i;
1575
1576 /* We keep this vector sorted. */
1577 for (i = 0; from.iterate (i, &phist); i++)
1578 insert_in_history_vect (pvect, phist->uid, phist->type,
1579 phist->old_expr_vinsn, phist->new_expr_vinsn,
1580 phist->spec_ds);
1581 }
1582
1583 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1584 bool
1585 vinsn_equal_p (vinsn_t x, vinsn_t y)
1586 {
1587 rtx_equal_p_callback_function repcf;
1588
1589 if (x == y)
1590 return true;
1591
1592 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1593 return false;
1594
1595 if (VINSN_HASH (x) != VINSN_HASH (y))
1596 return false;
1597
1598 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1599 if (VINSN_SEPARABLE_P (x))
1600 {
1601 /* Compare RHSes of VINSNs. */
1602 gcc_assert (VINSN_RHS (x));
1603 gcc_assert (VINSN_RHS (y));
1604
1605 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1606 }
1607
1608 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1609 }
1610 \f
1611
1612 /* Functions for working with expressions. */
1613
1614 /* Initialize EXPR. */
1615 static void
1616 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1617 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1618 ds_t spec_to_check_ds, int orig_sched_cycle,
1619 vec<expr_history_def> history,
1620 signed char target_available,
1621 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1622 bool cant_move)
1623 {
1624 vinsn_attach (vi);
1625
1626 EXPR_VINSN (expr) = vi;
1627 EXPR_SPEC (expr) = spec;
1628 EXPR_USEFULNESS (expr) = use;
1629 EXPR_PRIORITY (expr) = priority;
1630 EXPR_PRIORITY_ADJ (expr) = 0;
1631 EXPR_SCHED_TIMES (expr) = sched_times;
1632 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1633 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1634 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1635 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1636
1637 if (history.exists ())
1638 EXPR_HISTORY_OF_CHANGES (expr) = history;
1639 else
1640 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1641
1642 EXPR_TARGET_AVAILABLE (expr) = target_available;
1643 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1644 EXPR_WAS_RENAMED (expr) = was_renamed;
1645 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1646 EXPR_CANT_MOVE (expr) = cant_move;
1647 }
1648
1649 /* Make a copy of the expr FROM into the expr TO. */
1650 void
1651 copy_expr (expr_t to, expr_t from)
1652 {
1653 vec<expr_history_def> temp = vNULL;
1654
1655 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1656 {
1657 unsigned i;
1658 expr_history_def *phist;
1659
1660 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1661 for (i = 0;
1662 temp.iterate (i, &phist);
1663 i++)
1664 {
1665 vinsn_attach (phist->old_expr_vinsn);
1666 vinsn_attach (phist->new_expr_vinsn);
1667 }
1668 }
1669
1670 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1671 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1672 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1673 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1674 EXPR_ORIG_SCHED_CYCLE (from), temp,
1675 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1676 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1677 EXPR_CANT_MOVE (from));
1678 }
1679
1680 /* Same, but the final expr will not ever be in av sets, so don't copy
1681 "uninteresting" data such as bitmap cache. */
1682 void
1683 copy_expr_onside (expr_t to, expr_t from)
1684 {
1685 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1686 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1687 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1688 vNULL,
1689 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1690 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1691 EXPR_CANT_MOVE (from));
1692 }
1693
1694 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1695 initializing new insns. */
1696 static void
1697 prepare_insn_expr (insn_t insn, int seqno)
1698 {
1699 expr_t expr = INSN_EXPR (insn);
1700 ds_t ds;
1701
1702 INSN_SEQNO (insn) = seqno;
1703 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1704 EXPR_SPEC (expr) = 0;
1705 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1706 EXPR_WAS_SUBSTITUTED (expr) = 0;
1707 EXPR_WAS_RENAMED (expr) = 0;
1708 EXPR_TARGET_AVAILABLE (expr) = 1;
1709 INSN_LIVE_VALID_P (insn) = false;
1710
1711 /* ??? If this expression is speculative, make its dependence
1712 as weak as possible. We can filter this expression later
1713 in process_spec_exprs, because we do not distinguish
1714 between the status we got during compute_av_set and the
1715 existing status. To be fixed. */
1716 ds = EXPR_SPEC_DONE_DS (expr);
1717 if (ds)
1718 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1719
1720 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1721 }
1722
1723 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1724 is non-null when expressions are merged from different successors at
1725 a split point. */
1726 static void
1727 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1728 {
1729 if (EXPR_TARGET_AVAILABLE (to) < 0
1730 || EXPR_TARGET_AVAILABLE (from) < 0)
1731 EXPR_TARGET_AVAILABLE (to) = -1;
1732 else
1733 {
1734 /* We try to detect the case when one of the expressions
1735 can only be reached through another one. In this case,
1736 we can do better. */
1737 if (split_point == NULL)
1738 {
1739 int toind, fromind;
1740
1741 toind = EXPR_ORIG_BB_INDEX (to);
1742 fromind = EXPR_ORIG_BB_INDEX (from);
1743
1744 if (toind && toind == fromind)
1745 /* Do nothing -- everything is done in
1746 merge_with_other_exprs. */
1747 ;
1748 else
1749 EXPR_TARGET_AVAILABLE (to) = -1;
1750 }
1751 else if (EXPR_TARGET_AVAILABLE (from) == 0
1752 && EXPR_LHS (from)
1753 && REG_P (EXPR_LHS (from))
1754 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1755 EXPR_TARGET_AVAILABLE (to) = -1;
1756 else
1757 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1758 }
1759 }
1760
1761 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1762 is non-null when expressions are merged from different successors at
1763 a split point. */
1764 static void
1765 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1766 {
1767 ds_t old_to_ds, old_from_ds;
1768
1769 old_to_ds = EXPR_SPEC_DONE_DS (to);
1770 old_from_ds = EXPR_SPEC_DONE_DS (from);
1771
1772 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1773 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1774 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1775
1776 /* When merging e.g. control & data speculative exprs, or a control
1777 speculative with a control&data speculative one, we really have
1778 to change vinsn too. Also, when speculative status is changed,
1779 we also need to record this as a transformation in expr's history. */
1780 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1781 {
1782 old_to_ds = ds_get_speculation_types (old_to_ds);
1783 old_from_ds = ds_get_speculation_types (old_from_ds);
1784
1785 if (old_to_ds != old_from_ds)
1786 {
1787 ds_t record_ds;
1788
1789 /* When both expressions are speculative, we need to change
1790 the vinsn first. */
1791 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1792 {
1793 int res;
1794
1795 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1796 gcc_assert (res >= 0);
1797 }
1798
1799 if (split_point != NULL)
1800 {
1801 /* Record the change with proper status. */
1802 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1803 record_ds &= ~(old_to_ds & SPECULATIVE);
1804 record_ds &= ~(old_from_ds & SPECULATIVE);
1805
1806 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1807 INSN_UID (split_point), TRANS_SPECULATION,
1808 EXPR_VINSN (from), EXPR_VINSN (to),
1809 record_ds);
1810 }
1811 }
1812 }
1813 }
1814
1815
1816 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1817 this is done along different paths. */
1818 void
1819 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1820 {
1821 /* Choose the maximum of the specs of merged exprs. This is required
1822 for correctness of bookkeeping. */
1823 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1824 EXPR_SPEC (to) = EXPR_SPEC (from);
1825
1826 if (split_point)
1827 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1828 else
1829 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1830 EXPR_USEFULNESS (from));
1831
1832 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1833 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1834
1835 /* We merge sched-times half-way to the larger value to avoid the endless
1836 pipelining of unneeded insns. The average seems to be good compromise
1837 between pipelining opportunities and avoiding extra work. */
1838 if (EXPR_SCHED_TIMES (to) != EXPR_SCHED_TIMES (from))
1839 EXPR_SCHED_TIMES (to) = ((EXPR_SCHED_TIMES (from) + EXPR_SCHED_TIMES (to)
1840 + 1) / 2);
1841
1842 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1843 EXPR_ORIG_BB_INDEX (to) = 0;
1844
1845 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1846 EXPR_ORIG_SCHED_CYCLE (from));
1847
1848 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1849 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1850 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1851
1852 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1853 EXPR_HISTORY_OF_CHANGES (from));
1854 update_target_availability (to, from, split_point);
1855 update_speculative_bits (to, from, split_point);
1856 }
1857
1858 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1859 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1860 are merged from different successors at a split point. */
1861 void
1862 merge_expr (expr_t to, expr_t from, insn_t split_point)
1863 {
1864 vinsn_t to_vi = EXPR_VINSN (to);
1865 vinsn_t from_vi = EXPR_VINSN (from);
1866
1867 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1868
1869 /* Make sure that speculative pattern is propagated into exprs that
1870 have non-speculative one. This will provide us with consistent
1871 speculative bits and speculative patterns inside expr. */
1872 if (EXPR_SPEC_DONE_DS (to) == 0
1873 && (EXPR_SPEC_DONE_DS (from) != 0
1874 /* Do likewise for volatile insns, so that we always retain
1875 the may_trap_p bit on the resulting expression. However,
1876 avoid propagating the trapping bit into the instructions
1877 already speculated. This would result in replacing the
1878 speculative pattern with the non-speculative one and breaking
1879 the speculation support. */
1880 || (!VINSN_MAY_TRAP_P (EXPR_VINSN (to))
1881 && VINSN_MAY_TRAP_P (EXPR_VINSN (from)))))
1882 change_vinsn_in_expr (to, EXPR_VINSN (from));
1883
1884 merge_expr_data (to, from, split_point);
1885 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1886 }
1887
1888 /* Clear the information of this EXPR. */
1889 void
1890 clear_expr (expr_t expr)
1891 {
1892
1893 vinsn_detach (EXPR_VINSN (expr));
1894 EXPR_VINSN (expr) = NULL;
1895
1896 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1897 }
1898
1899 /* For a given LV_SET, mark EXPR having unavailable target register. */
1900 static void
1901 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1902 {
1903 if (EXPR_SEPARABLE_P (expr))
1904 {
1905 if (REG_P (EXPR_LHS (expr))
1906 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1907 {
1908 /* If it's an insn like r1 = use (r1, ...), and it exists in
1909 different forms in each of the av_sets being merged, we can't say
1910 whether original destination register is available or not.
1911 However, this still works if destination register is not used
1912 in the original expression: if the branch at which LV_SET we're
1913 looking here is not actually 'other branch' in sense that same
1914 expression is available through it (but it can't be determined
1915 at computation stage because of transformations on one of the
1916 branches), it still won't affect the availability.
1917 Liveness of a register somewhere on a code motion path means
1918 it's either read somewhere on a codemotion path, live on
1919 'other' branch, live at the point immediately following
1920 the original operation, or is read by the original operation.
1921 The latter case is filtered out in the condition below.
1922 It still doesn't cover the case when register is defined and used
1923 somewhere within the code motion path, and in this case we could
1924 miss a unifying code motion along both branches using a renamed
1925 register, but it won't affect a code correctness since upon
1926 an actual code motion a bookkeeping code would be generated. */
1927 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1928 EXPR_LHS (expr)))
1929 EXPR_TARGET_AVAILABLE (expr) = -1;
1930 else
1931 EXPR_TARGET_AVAILABLE (expr) = false;
1932 }
1933 }
1934 else
1935 {
1936 unsigned regno;
1937 reg_set_iterator rsi;
1938
1939 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1940 0, regno, rsi)
1941 if (bitmap_bit_p (lv_set, regno))
1942 {
1943 EXPR_TARGET_AVAILABLE (expr) = false;
1944 break;
1945 }
1946
1947 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1948 0, regno, rsi)
1949 if (bitmap_bit_p (lv_set, regno))
1950 {
1951 EXPR_TARGET_AVAILABLE (expr) = false;
1952 break;
1953 }
1954 }
1955 }
1956
1957 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1958 or dependence status have changed, 2 when also the target register
1959 became unavailable, 0 if nothing had to be changed. */
1960 int
1961 speculate_expr (expr_t expr, ds_t ds)
1962 {
1963 int res;
1964 rtx_insn *orig_insn_rtx;
1965 rtx spec_pat;
1966 ds_t target_ds, current_ds;
1967
1968 /* Obtain the status we need to put on EXPR. */
1969 target_ds = (ds & SPECULATIVE);
1970 current_ds = EXPR_SPEC_DONE_DS (expr);
1971 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1972
1973 orig_insn_rtx = EXPR_INSN_RTX (expr);
1974
1975 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1976
1977 switch (res)
1978 {
1979 case 0:
1980 EXPR_SPEC_DONE_DS (expr) = ds;
1981 return current_ds != ds ? 1 : 0;
1982
1983 case 1:
1984 {
1985 rtx_insn *spec_insn_rtx =
1986 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1987 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1988
1989 change_vinsn_in_expr (expr, spec_vinsn);
1990 EXPR_SPEC_DONE_DS (expr) = ds;
1991 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1992
1993 /* Do not allow clobbering the address register of speculative
1994 insns. */
1995 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1996 expr_dest_reg (expr)))
1997 {
1998 EXPR_TARGET_AVAILABLE (expr) = false;
1999 return 2;
2000 }
2001
2002 return 1;
2003 }
2004
2005 case -1:
2006 return -1;
2007
2008 default:
2009 gcc_unreachable ();
2010 return -1;
2011 }
2012 }
2013
2014 /* Return a destination register, if any, of EXPR. */
2015 rtx
2016 expr_dest_reg (expr_t expr)
2017 {
2018 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2019
2020 if (dest != NULL_RTX && REG_P (dest))
2021 return dest;
2022
2023 return NULL_RTX;
2024 }
2025
2026 /* Returns the REGNO of the R's destination. */
2027 unsigned
2028 expr_dest_regno (expr_t expr)
2029 {
2030 rtx dest = expr_dest_reg (expr);
2031
2032 gcc_assert (dest != NULL_RTX);
2033 return REGNO (dest);
2034 }
2035
2036 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2037 AV_SET having unavailable target register. */
2038 void
2039 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2040 {
2041 expr_t expr;
2042 av_set_iterator avi;
2043
2044 FOR_EACH_EXPR (expr, avi, join_set)
2045 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2046 set_unavailable_target_for_expr (expr, lv_set);
2047 }
2048 \f
2049
2050 /* Returns true if REG (at least partially) is present in REGS. */
2051 bool
2052 register_unavailable_p (regset regs, rtx reg)
2053 {
2054 unsigned regno, end_regno;
2055
2056 regno = REGNO (reg);
2057 if (bitmap_bit_p (regs, regno))
2058 return true;
2059
2060 end_regno = END_REGNO (reg);
2061
2062 while (++regno < end_regno)
2063 if (bitmap_bit_p (regs, regno))
2064 return true;
2065
2066 return false;
2067 }
2068
2069 /* Av set functions. */
2070
2071 /* Add a new element to av set SETP.
2072 Return the element added. */
2073 static av_set_t
2074 av_set_add_element (av_set_t *setp)
2075 {
2076 /* Insert at the beginning of the list. */
2077 _list_add (setp);
2078 return *setp;
2079 }
2080
2081 /* Add EXPR to SETP. */
2082 void
2083 av_set_add (av_set_t *setp, expr_t expr)
2084 {
2085 av_set_t elem;
2086
2087 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2088 elem = av_set_add_element (setp);
2089 copy_expr (_AV_SET_EXPR (elem), expr);
2090 }
2091
2092 /* Same, but do not copy EXPR. */
2093 static void
2094 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2095 {
2096 av_set_t elem;
2097
2098 elem = av_set_add_element (setp);
2099 *_AV_SET_EXPR (elem) = *expr;
2100 }
2101
2102 /* Remove expr pointed to by IP from the av_set. */
2103 void
2104 av_set_iter_remove (av_set_iterator *ip)
2105 {
2106 clear_expr (_AV_SET_EXPR (*ip->lp));
2107 _list_iter_remove (ip);
2108 }
2109
2110 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2111 sense of vinsn_equal_p function. Return NULL if no such expr is
2112 in SET was found. */
2113 expr_t
2114 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2115 {
2116 expr_t expr;
2117 av_set_iterator i;
2118
2119 FOR_EACH_EXPR (expr, i, set)
2120 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2121 return expr;
2122 return NULL;
2123 }
2124
2125 /* Same, but also remove the EXPR found. */
2126 static expr_t
2127 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2128 {
2129 expr_t expr;
2130 av_set_iterator i;
2131
2132 FOR_EACH_EXPR_1 (expr, i, setp)
2133 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2134 {
2135 _list_iter_remove_nofree (&i);
2136 return expr;
2137 }
2138 return NULL;
2139 }
2140
2141 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2142 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2143 Returns NULL if no such expr is in SET was found. */
2144 static expr_t
2145 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2146 {
2147 expr_t cur_expr;
2148 av_set_iterator i;
2149
2150 FOR_EACH_EXPR (cur_expr, i, set)
2151 {
2152 if (cur_expr == expr)
2153 continue;
2154 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2155 return cur_expr;
2156 }
2157
2158 return NULL;
2159 }
2160
2161 /* If other expression is already in AVP, remove one of them. */
2162 expr_t
2163 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2164 {
2165 expr_t expr2;
2166
2167 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2168 if (expr2 != NULL)
2169 {
2170 /* Reset target availability on merge, since taking it only from one
2171 of the exprs would be controversial for different code. */
2172 EXPR_TARGET_AVAILABLE (expr2) = -1;
2173 EXPR_USEFULNESS (expr2) = 0;
2174
2175 merge_expr (expr2, expr, NULL);
2176
2177 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2178 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2179
2180 av_set_iter_remove (ip);
2181 return expr2;
2182 }
2183
2184 return expr;
2185 }
2186
2187 /* Return true if there is an expr that correlates to VI in SET. */
2188 bool
2189 av_set_is_in_p (av_set_t set, vinsn_t vi)
2190 {
2191 return av_set_lookup (set, vi) != NULL;
2192 }
2193
2194 /* Return a copy of SET. */
2195 av_set_t
2196 av_set_copy (av_set_t set)
2197 {
2198 expr_t expr;
2199 av_set_iterator i;
2200 av_set_t res = NULL;
2201
2202 FOR_EACH_EXPR (expr, i, set)
2203 av_set_add (&res, expr);
2204
2205 return res;
2206 }
2207
2208 /* Join two av sets that do not have common elements by attaching second set
2209 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2210 _AV_SET_NEXT of first set's last element). */
2211 static void
2212 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2213 {
2214 gcc_assert (*to_tailp == NULL);
2215 *to_tailp = *fromp;
2216 *fromp = NULL;
2217 }
2218
2219 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2220 pointed to by FROMP afterwards. */
2221 void
2222 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2223 {
2224 expr_t expr1;
2225 av_set_iterator i;
2226
2227 /* Delete from TOP all exprs, that present in FROMP. */
2228 FOR_EACH_EXPR_1 (expr1, i, top)
2229 {
2230 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2231
2232 if (expr2)
2233 {
2234 merge_expr (expr2, expr1, insn);
2235 av_set_iter_remove (&i);
2236 }
2237 }
2238
2239 join_distinct_sets (i.lp, fromp);
2240 }
2241
2242 /* Same as above, but also update availability of target register in
2243 TOP judging by TO_LV_SET and FROM_LV_SET. */
2244 void
2245 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2246 regset from_lv_set, insn_t insn)
2247 {
2248 expr_t expr1;
2249 av_set_iterator i;
2250 av_set_t *to_tailp, in_both_set = NULL;
2251
2252 /* Delete from TOP all expres, that present in FROMP. */
2253 FOR_EACH_EXPR_1 (expr1, i, top)
2254 {
2255 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2256
2257 if (expr2)
2258 {
2259 /* It may be that the expressions have different destination
2260 registers, in which case we need to check liveness here. */
2261 if (EXPR_SEPARABLE_P (expr1))
2262 {
2263 int regno1 = (REG_P (EXPR_LHS (expr1))
2264 ? (int) expr_dest_regno (expr1) : -1);
2265 int regno2 = (REG_P (EXPR_LHS (expr2))
2266 ? (int) expr_dest_regno (expr2) : -1);
2267
2268 /* ??? We don't have a way to check restrictions for
2269 *other* register on the current path, we did it only
2270 for the current target register. Give up. */
2271 if (regno1 != regno2)
2272 EXPR_TARGET_AVAILABLE (expr2) = -1;
2273 }
2274 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2275 EXPR_TARGET_AVAILABLE (expr2) = -1;
2276
2277 merge_expr (expr2, expr1, insn);
2278 av_set_add_nocopy (&in_both_set, expr2);
2279 av_set_iter_remove (&i);
2280 }
2281 else
2282 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2283 FROM_LV_SET. */
2284 set_unavailable_target_for_expr (expr1, from_lv_set);
2285 }
2286 to_tailp = i.lp;
2287
2288 /* These expressions are not present in TOP. Check liveness
2289 restrictions on TO_LV_SET. */
2290 FOR_EACH_EXPR (expr1, i, *fromp)
2291 set_unavailable_target_for_expr (expr1, to_lv_set);
2292
2293 join_distinct_sets (i.lp, &in_both_set);
2294 join_distinct_sets (to_tailp, fromp);
2295 }
2296
2297 /* Clear av_set pointed to by SETP. */
2298 void
2299 av_set_clear (av_set_t *setp)
2300 {
2301 expr_t expr;
2302 av_set_iterator i;
2303
2304 FOR_EACH_EXPR_1 (expr, i, setp)
2305 av_set_iter_remove (&i);
2306
2307 gcc_assert (*setp == NULL);
2308 }
2309
2310 /* Leave only one non-speculative element in the SETP. */
2311 void
2312 av_set_leave_one_nonspec (av_set_t *setp)
2313 {
2314 expr_t expr;
2315 av_set_iterator i;
2316 bool has_one_nonspec = false;
2317
2318 /* Keep all speculative exprs, and leave one non-speculative
2319 (the first one). */
2320 FOR_EACH_EXPR_1 (expr, i, setp)
2321 {
2322 if (!EXPR_SPEC_DONE_DS (expr))
2323 {
2324 if (has_one_nonspec)
2325 av_set_iter_remove (&i);
2326 else
2327 has_one_nonspec = true;
2328 }
2329 }
2330 }
2331
2332 /* Return the N'th element of the SET. */
2333 expr_t
2334 av_set_element (av_set_t set, int n)
2335 {
2336 expr_t expr;
2337 av_set_iterator i;
2338
2339 FOR_EACH_EXPR (expr, i, set)
2340 if (n-- == 0)
2341 return expr;
2342
2343 gcc_unreachable ();
2344 return NULL;
2345 }
2346
2347 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2348 void
2349 av_set_substract_cond_branches (av_set_t *avp)
2350 {
2351 av_set_iterator i;
2352 expr_t expr;
2353
2354 FOR_EACH_EXPR_1 (expr, i, avp)
2355 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2356 av_set_iter_remove (&i);
2357 }
2358
2359 /* Multiplies usefulness attribute of each member of av-set *AVP by
2360 value PROB / ALL_PROB. */
2361 void
2362 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2363 {
2364 av_set_iterator i;
2365 expr_t expr;
2366
2367 FOR_EACH_EXPR (expr, i, av)
2368 EXPR_USEFULNESS (expr) = (all_prob
2369 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2370 : 0);
2371 }
2372
2373 /* Leave in AVP only those expressions, which are present in AV,
2374 and return it, merging history expressions. */
2375 void
2376 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2377 {
2378 av_set_iterator i;
2379 expr_t expr, expr2;
2380
2381 FOR_EACH_EXPR_1 (expr, i, avp)
2382 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2383 av_set_iter_remove (&i);
2384 else
2385 /* When updating av sets in bookkeeping blocks, we can add more insns
2386 there which will be transformed but the upper av sets will not
2387 reflect those transformations. We then fail to undo those
2388 when searching for such insns. So merge the history saved
2389 in the av set of the block we are processing. */
2390 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2391 EXPR_HISTORY_OF_CHANGES (expr2));
2392 }
2393
2394 \f
2395
2396 /* Dependence hooks to initialize insn data. */
2397
2398 /* This is used in hooks callable from dependence analysis when initializing
2399 instruction's data. */
2400 static struct
2401 {
2402 /* Where the dependence was found (lhs/rhs). */
2403 deps_where_t where;
2404
2405 /* The actual data object to initialize. */
2406 idata_t id;
2407
2408 /* True when the insn should not be made clonable. */
2409 bool force_unique_p;
2410
2411 /* True when insn should be treated as of type USE, i.e. never renamed. */
2412 bool force_use_p;
2413 } deps_init_id_data;
2414
2415
2416 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2417 clonable. */
2418 static void
2419 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2420 {
2421 int type;
2422
2423 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2424 That clonable insns which can be separated into lhs and rhs have type SET.
2425 Other clonable insns have type USE. */
2426 type = GET_CODE (insn);
2427
2428 /* Only regular insns could be cloned. */
2429 if (type == INSN && !force_unique_p)
2430 type = SET;
2431 else if (type == JUMP_INSN && simplejump_p (insn))
2432 type = PC;
2433 else if (type == DEBUG_INSN)
2434 type = !force_unique_p ? USE : INSN;
2435
2436 IDATA_TYPE (id) = type;
2437 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2438 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2439 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2440 }
2441
2442 /* Start initializing insn data. */
2443 static void
2444 deps_init_id_start_insn (insn_t insn)
2445 {
2446 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2447
2448 setup_id_for_insn (deps_init_id_data.id, insn,
2449 deps_init_id_data.force_unique_p);
2450 deps_init_id_data.where = DEPS_IN_INSN;
2451 }
2452
2453 /* Start initializing lhs data. */
2454 static void
2455 deps_init_id_start_lhs (rtx lhs)
2456 {
2457 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2458 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2459
2460 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2461 {
2462 IDATA_LHS (deps_init_id_data.id) = lhs;
2463 deps_init_id_data.where = DEPS_IN_LHS;
2464 }
2465 }
2466
2467 /* Finish initializing lhs data. */
2468 static void
2469 deps_init_id_finish_lhs (void)
2470 {
2471 deps_init_id_data.where = DEPS_IN_INSN;
2472 }
2473
2474 /* Note a set of REGNO. */
2475 static void
2476 deps_init_id_note_reg_set (int regno)
2477 {
2478 haifa_note_reg_set (regno);
2479
2480 if (deps_init_id_data.where == DEPS_IN_RHS)
2481 deps_init_id_data.force_use_p = true;
2482
2483 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2484 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2485
2486 #ifdef STACK_REGS
2487 /* Make instructions that set stack registers to be ineligible for
2488 renaming to avoid issues with find_used_regs. */
2489 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2490 deps_init_id_data.force_use_p = true;
2491 #endif
2492 }
2493
2494 /* Note a clobber of REGNO. */
2495 static void
2496 deps_init_id_note_reg_clobber (int regno)
2497 {
2498 haifa_note_reg_clobber (regno);
2499
2500 if (deps_init_id_data.where == DEPS_IN_RHS)
2501 deps_init_id_data.force_use_p = true;
2502
2503 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2504 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2505 }
2506
2507 /* Note a use of REGNO. */
2508 static void
2509 deps_init_id_note_reg_use (int regno)
2510 {
2511 haifa_note_reg_use (regno);
2512
2513 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2514 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2515 }
2516
2517 /* Start initializing rhs data. */
2518 static void
2519 deps_init_id_start_rhs (rtx rhs)
2520 {
2521 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2522
2523 /* And there was no sel_deps_reset_to_insn (). */
2524 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2525 {
2526 IDATA_RHS (deps_init_id_data.id) = rhs;
2527 deps_init_id_data.where = DEPS_IN_RHS;
2528 }
2529 }
2530
2531 /* Finish initializing rhs data. */
2532 static void
2533 deps_init_id_finish_rhs (void)
2534 {
2535 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2536 || deps_init_id_data.where == DEPS_IN_INSN);
2537 deps_init_id_data.where = DEPS_IN_INSN;
2538 }
2539
2540 /* Finish initializing insn data. */
2541 static void
2542 deps_init_id_finish_insn (void)
2543 {
2544 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2545
2546 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2547 {
2548 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2549 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2550
2551 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2552 || deps_init_id_data.force_use_p)
2553 {
2554 /* This should be a USE, as we don't want to schedule its RHS
2555 separately. However, we still want to have them recorded
2556 for the purposes of substitution. That's why we don't
2557 simply call downgrade_to_use () here. */
2558 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2559 gcc_assert (!lhs == !rhs);
2560
2561 IDATA_TYPE (deps_init_id_data.id) = USE;
2562 }
2563 }
2564
2565 deps_init_id_data.where = DEPS_IN_NOWHERE;
2566 }
2567
2568 /* This is dependence info used for initializing insn's data. */
2569 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2570
2571 /* This initializes most of the static part of the above structure. */
2572 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2573 {
2574 NULL,
2575
2576 deps_init_id_start_insn,
2577 deps_init_id_finish_insn,
2578 deps_init_id_start_lhs,
2579 deps_init_id_finish_lhs,
2580 deps_init_id_start_rhs,
2581 deps_init_id_finish_rhs,
2582 deps_init_id_note_reg_set,
2583 deps_init_id_note_reg_clobber,
2584 deps_init_id_note_reg_use,
2585 NULL, /* note_mem_dep */
2586 NULL, /* note_dep */
2587
2588 0, /* use_cselib */
2589 0, /* use_deps_list */
2590 0 /* generate_spec_deps */
2591 };
2592
2593 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2594 we don't actually need information about lhs and rhs. */
2595 static void
2596 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2597 {
2598 rtx pat = PATTERN (insn);
2599
2600 if (NONJUMP_INSN_P (insn)
2601 && GET_CODE (pat) == SET
2602 && !force_unique_p)
2603 {
2604 IDATA_RHS (id) = SET_SRC (pat);
2605 IDATA_LHS (id) = SET_DEST (pat);
2606 }
2607 else
2608 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2609 }
2610
2611 /* Possibly downgrade INSN to USE. */
2612 static void
2613 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2614 {
2615 bool must_be_use = false;
2616 df_ref def;
2617 rtx lhs = IDATA_LHS (id);
2618 rtx rhs = IDATA_RHS (id);
2619
2620 /* We downgrade only SETs. */
2621 if (IDATA_TYPE (id) != SET)
2622 return;
2623
2624 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2625 {
2626 IDATA_TYPE (id) = USE;
2627 return;
2628 }
2629
2630 FOR_EACH_INSN_DEF (def, insn)
2631 {
2632 if (DF_REF_INSN (def)
2633 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2634 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2635 {
2636 must_be_use = true;
2637 break;
2638 }
2639
2640 #ifdef STACK_REGS
2641 /* Make instructions that set stack registers to be ineligible for
2642 renaming to avoid issues with find_used_regs. */
2643 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2644 {
2645 must_be_use = true;
2646 break;
2647 }
2648 #endif
2649 }
2650
2651 if (must_be_use)
2652 IDATA_TYPE (id) = USE;
2653 }
2654
2655 /* Setup implicit register clobbers calculated by sched-deps for INSN
2656 before reload and save them in ID. */
2657 static void
2658 setup_id_implicit_regs (idata_t id, insn_t insn)
2659 {
2660 if (reload_completed)
2661 return;
2662
2663 HARD_REG_SET temp;
2664
2665 get_implicit_reg_pending_clobbers (&temp, insn);
2666 IOR_REG_SET_HRS (IDATA_REG_SETS (id), temp);
2667 }
2668
2669 /* Setup register sets describing INSN in ID. */
2670 static void
2671 setup_id_reg_sets (idata_t id, insn_t insn)
2672 {
2673 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2674 df_ref def, use;
2675 regset tmp = get_clear_regset_from_pool ();
2676
2677 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2678 {
2679 unsigned int regno = DF_REF_REGNO (def);
2680
2681 /* Post modifies are treated like clobbers by sched-deps.c. */
2682 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2683 | DF_REF_PRE_POST_MODIFY)))
2684 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2685 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2686 {
2687 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2688
2689 #ifdef STACK_REGS
2690 /* For stack registers, treat writes to them as writes
2691 to the first one to be consistent with sched-deps.c. */
2692 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2693 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2694 #endif
2695 }
2696 /* Mark special refs that generate read/write def pair. */
2697 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2698 || regno == STACK_POINTER_REGNUM)
2699 bitmap_set_bit (tmp, regno);
2700 }
2701
2702 FOR_EACH_INSN_INFO_USE (use, insn_info)
2703 {
2704 unsigned int regno = DF_REF_REGNO (use);
2705
2706 /* When these refs are met for the first time, skip them, as
2707 these uses are just counterparts of some defs. */
2708 if (bitmap_bit_p (tmp, regno))
2709 bitmap_clear_bit (tmp, regno);
2710 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2711 {
2712 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2713
2714 #ifdef STACK_REGS
2715 /* For stack registers, treat reads from them as reads from
2716 the first one to be consistent with sched-deps.c. */
2717 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2718 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2719 #endif
2720 }
2721 }
2722
2723 /* Also get implicit reg clobbers from sched-deps. */
2724 setup_id_implicit_regs (id, insn);
2725
2726 return_regset_to_pool (tmp);
2727 }
2728
2729 /* Initialize instruction data for INSN in ID using DF's data. */
2730 static void
2731 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2732 {
2733 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2734
2735 setup_id_for_insn (id, insn, force_unique_p);
2736 setup_id_lhs_rhs (id, insn, force_unique_p);
2737
2738 if (INSN_NOP_P (insn))
2739 return;
2740
2741 maybe_downgrade_id_to_use (id, insn);
2742 setup_id_reg_sets (id, insn);
2743 }
2744
2745 /* Initialize instruction data for INSN in ID. */
2746 static void
2747 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2748 {
2749 class deps_desc _dc, *dc = &_dc;
2750
2751 deps_init_id_data.where = DEPS_IN_NOWHERE;
2752 deps_init_id_data.id = id;
2753 deps_init_id_data.force_unique_p = force_unique_p;
2754 deps_init_id_data.force_use_p = false;
2755
2756 init_deps (dc, false);
2757 memcpy (&deps_init_id_sched_deps_info,
2758 &const_deps_init_id_sched_deps_info,
2759 sizeof (deps_init_id_sched_deps_info));
2760 if (spec_info != NULL)
2761 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2762 sched_deps_info = &deps_init_id_sched_deps_info;
2763
2764 deps_analyze_insn (dc, insn);
2765 /* Implicit reg clobbers received from sched-deps separately. */
2766 setup_id_implicit_regs (id, insn);
2767
2768 free_deps (dc);
2769 deps_init_id_data.id = NULL;
2770 }
2771
2772 \f
2773 struct sched_scan_info_def
2774 {
2775 /* This hook notifies scheduler frontend to extend its internal per basic
2776 block data structures. This hook should be called once before a series of
2777 calls to bb_init (). */
2778 void (*extend_bb) (void);
2779
2780 /* This hook makes scheduler frontend to initialize its internal data
2781 structures for the passed basic block. */
2782 void (*init_bb) (basic_block);
2783
2784 /* This hook notifies scheduler frontend to extend its internal per insn data
2785 structures. This hook should be called once before a series of calls to
2786 insn_init (). */
2787 void (*extend_insn) (void);
2788
2789 /* This hook makes scheduler frontend to initialize its internal data
2790 structures for the passed insn. */
2791 void (*init_insn) (insn_t);
2792 };
2793
2794 /* A driver function to add a set of basic blocks (BBS) to the
2795 scheduling region. */
2796 static void
2797 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2798 {
2799 unsigned i;
2800 basic_block bb;
2801
2802 if (ssi->extend_bb)
2803 ssi->extend_bb ();
2804
2805 if (ssi->init_bb)
2806 FOR_EACH_VEC_ELT (bbs, i, bb)
2807 ssi->init_bb (bb);
2808
2809 if (ssi->extend_insn)
2810 ssi->extend_insn ();
2811
2812 if (ssi->init_insn)
2813 FOR_EACH_VEC_ELT (bbs, i, bb)
2814 {
2815 rtx_insn *insn;
2816
2817 FOR_BB_INSNS (bb, insn)
2818 ssi->init_insn (insn);
2819 }
2820 }
2821
2822 /* Implement hooks for collecting fundamental insn properties like if insn is
2823 an ASM or is within a SCHED_GROUP. */
2824
2825 /* True when a "one-time init" data for INSN was already inited. */
2826 static bool
2827 first_time_insn_init (insn_t insn)
2828 {
2829 return INSN_LIVE (insn) == NULL;
2830 }
2831
2832 /* Hash an entry in a transformed_insns hashtable. */
2833 static hashval_t
2834 hash_transformed_insns (const void *p)
2835 {
2836 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2837 }
2838
2839 /* Compare the entries in a transformed_insns hashtable. */
2840 static int
2841 eq_transformed_insns (const void *p, const void *q)
2842 {
2843 rtx_insn *i1 =
2844 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2845 rtx_insn *i2 =
2846 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2847
2848 if (INSN_UID (i1) == INSN_UID (i2))
2849 return 1;
2850 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2851 }
2852
2853 /* Free an entry in a transformed_insns hashtable. */
2854 static void
2855 free_transformed_insns (void *p)
2856 {
2857 struct transformed_insns *pti = (struct transformed_insns *) p;
2858
2859 vinsn_detach (pti->vinsn_old);
2860 vinsn_detach (pti->vinsn_new);
2861 free (pti);
2862 }
2863
2864 /* Init the s_i_d data for INSN which should be inited just once, when
2865 we first see the insn. */
2866 static void
2867 init_first_time_insn_data (insn_t insn)
2868 {
2869 /* This should not be set if this is the first time we init data for
2870 insn. */
2871 gcc_assert (first_time_insn_init (insn));
2872
2873 /* These are needed for nops too. */
2874 INSN_LIVE (insn) = get_regset_from_pool ();
2875 INSN_LIVE_VALID_P (insn) = false;
2876
2877 if (!INSN_NOP_P (insn))
2878 {
2879 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2880 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2881 INSN_TRANSFORMED_INSNS (insn)
2882 = htab_create (16, hash_transformed_insns,
2883 eq_transformed_insns, free_transformed_insns);
2884 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2885 }
2886 }
2887
2888 /* Free almost all above data for INSN that is scheduled already.
2889 Used for extra-large basic blocks. */
2890 void
2891 free_data_for_scheduled_insn (insn_t insn)
2892 {
2893 gcc_assert (! first_time_insn_init (insn));
2894
2895 if (! INSN_ANALYZED_DEPS (insn))
2896 return;
2897
2898 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2899 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2900 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2901
2902 /* This is allocated only for bookkeeping insns. */
2903 if (INSN_ORIGINATORS (insn))
2904 BITMAP_FREE (INSN_ORIGINATORS (insn));
2905 free_deps (&INSN_DEPS_CONTEXT (insn));
2906
2907 INSN_ANALYZED_DEPS (insn) = NULL;
2908
2909 /* Clear the readonly flag so we would ICE when trying to recalculate
2910 the deps context (as we believe that it should not happen). */
2911 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2912 }
2913
2914 /* Free the same data as above for INSN. */
2915 static void
2916 free_first_time_insn_data (insn_t insn)
2917 {
2918 gcc_assert (! first_time_insn_init (insn));
2919
2920 free_data_for_scheduled_insn (insn);
2921 return_regset_to_pool (INSN_LIVE (insn));
2922 INSN_LIVE (insn) = NULL;
2923 INSN_LIVE_VALID_P (insn) = false;
2924 }
2925
2926 /* Initialize region-scope data structures for basic blocks. */
2927 static void
2928 init_global_and_expr_for_bb (basic_block bb)
2929 {
2930 if (sel_bb_empty_p (bb))
2931 return;
2932
2933 invalidate_av_set (bb);
2934 }
2935
2936 /* Data for global dependency analysis (to initialize CANT_MOVE and
2937 SCHED_GROUP_P). */
2938 static struct
2939 {
2940 /* Previous insn. */
2941 insn_t prev_insn;
2942 } init_global_data;
2943
2944 /* Determine if INSN is in the sched_group, is an asm or should not be
2945 cloned. After that initialize its expr. */
2946 static void
2947 init_global_and_expr_for_insn (insn_t insn)
2948 {
2949 if (LABEL_P (insn))
2950 return;
2951
2952 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2953 {
2954 init_global_data.prev_insn = NULL;
2955 return;
2956 }
2957
2958 gcc_assert (INSN_P (insn));
2959
2960 if (SCHED_GROUP_P (insn))
2961 /* Setup a sched_group. */
2962 {
2963 insn_t prev_insn = init_global_data.prev_insn;
2964
2965 if (prev_insn)
2966 INSN_SCHED_NEXT (prev_insn) = insn;
2967
2968 init_global_data.prev_insn = insn;
2969 }
2970 else
2971 init_global_data.prev_insn = NULL;
2972
2973 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2974 || asm_noperands (PATTERN (insn)) >= 0)
2975 /* Mark INSN as an asm. */
2976 INSN_ASM_P (insn) = true;
2977
2978 {
2979 bool force_unique_p;
2980 ds_t spec_done_ds;
2981
2982 /* Certain instructions cannot be cloned, and frame related insns and
2983 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2984 their block. */
2985 if (prologue_epilogue_contains (insn))
2986 {
2987 if (RTX_FRAME_RELATED_P (insn))
2988 CANT_MOVE (insn) = 1;
2989 else
2990 {
2991 rtx note;
2992 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2993 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2994 && ((enum insn_note) INTVAL (XEXP (note, 0))
2995 == NOTE_INSN_EPILOGUE_BEG))
2996 {
2997 CANT_MOVE (insn) = 1;
2998 break;
2999 }
3000 }
3001 force_unique_p = true;
3002 }
3003 else
3004 if (CANT_MOVE (insn)
3005 || INSN_ASM_P (insn)
3006 || SCHED_GROUP_P (insn)
3007 || CALL_P (insn)
3008 /* Exception handling insns are always unique. */
3009 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3010 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
3011 || control_flow_insn_p (insn)
3012 || volatile_insn_p (PATTERN (insn))
3013 || (targetm.cannot_copy_insn_p
3014 && targetm.cannot_copy_insn_p (insn)))
3015 force_unique_p = true;
3016 else
3017 force_unique_p = false;
3018
3019 if (targetm.sched.get_insn_spec_ds)
3020 {
3021 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3022 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3023 }
3024 else
3025 spec_done_ds = 0;
3026
3027 /* Initialize INSN's expr. */
3028 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3029 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3030 spec_done_ds, 0, 0, vNULL, true,
3031 false, false, false, CANT_MOVE (insn));
3032 }
3033
3034 init_first_time_insn_data (insn);
3035 }
3036
3037 /* Scan the region and initialize instruction data for basic blocks BBS. */
3038 void
3039 sel_init_global_and_expr (bb_vec_t bbs)
3040 {
3041 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3042 const struct sched_scan_info_def ssi =
3043 {
3044 NULL, /* extend_bb */
3045 init_global_and_expr_for_bb, /* init_bb */
3046 extend_insn_data, /* extend_insn */
3047 init_global_and_expr_for_insn /* init_insn */
3048 };
3049
3050 sched_scan (&ssi, bbs);
3051 }
3052
3053 /* Finalize region-scope data structures for basic blocks. */
3054 static void
3055 finish_global_and_expr_for_bb (basic_block bb)
3056 {
3057 av_set_clear (&BB_AV_SET (bb));
3058 BB_AV_LEVEL (bb) = 0;
3059 }
3060
3061 /* Finalize INSN's data. */
3062 static void
3063 finish_global_and_expr_insn (insn_t insn)
3064 {
3065 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3066 return;
3067
3068 gcc_assert (INSN_P (insn));
3069
3070 if (INSN_LUID (insn) > 0)
3071 {
3072 free_first_time_insn_data (insn);
3073 INSN_WS_LEVEL (insn) = 0;
3074 CANT_MOVE (insn) = 0;
3075
3076 /* We can no longer assert this, as vinsns of this insn could be
3077 easily live in other insn's caches. This should be changed to
3078 a counter-like approach among all vinsns. */
3079 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3080 clear_expr (INSN_EXPR (insn));
3081 }
3082 }
3083
3084 /* Finalize per instruction data for the whole region. */
3085 void
3086 sel_finish_global_and_expr (void)
3087 {
3088 {
3089 bb_vec_t bbs;
3090 int i;
3091
3092 bbs.create (current_nr_blocks);
3093
3094 for (i = 0; i < current_nr_blocks; i++)
3095 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3096
3097 /* Clear AV_SETs and INSN_EXPRs. */
3098 {
3099 const struct sched_scan_info_def ssi =
3100 {
3101 NULL, /* extend_bb */
3102 finish_global_and_expr_for_bb, /* init_bb */
3103 NULL, /* extend_insn */
3104 finish_global_and_expr_insn /* init_insn */
3105 };
3106
3107 sched_scan (&ssi, bbs);
3108 }
3109
3110 bbs.release ();
3111 }
3112
3113 finish_insns ();
3114 }
3115 \f
3116
3117 /* In the below hooks, we merely calculate whether or not a dependence
3118 exists, and in what part of insn. However, we will need more data
3119 when we'll start caching dependence requests. */
3120
3121 /* Container to hold information for dependency analysis. */
3122 static struct
3123 {
3124 deps_t dc;
3125
3126 /* A variable to track which part of rtx we are scanning in
3127 sched-deps.c: sched_analyze_insn (). */
3128 deps_where_t where;
3129
3130 /* Current producer. */
3131 insn_t pro;
3132
3133 /* Current consumer. */
3134 vinsn_t con;
3135
3136 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3137 X is from { INSN, LHS, RHS }. */
3138 ds_t has_dep_p[DEPS_IN_NOWHERE];
3139 } has_dependence_data;
3140
3141 /* Start analyzing dependencies of INSN. */
3142 static void
3143 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3144 {
3145 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3146
3147 has_dependence_data.where = DEPS_IN_INSN;
3148 }
3149
3150 /* Finish analyzing dependencies of an insn. */
3151 static void
3152 has_dependence_finish_insn (void)
3153 {
3154 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3155
3156 has_dependence_data.where = DEPS_IN_NOWHERE;
3157 }
3158
3159 /* Start analyzing dependencies of LHS. */
3160 static void
3161 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3162 {
3163 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3164
3165 if (VINSN_LHS (has_dependence_data.con) != NULL)
3166 has_dependence_data.where = DEPS_IN_LHS;
3167 }
3168
3169 /* Finish analyzing dependencies of an lhs. */
3170 static void
3171 has_dependence_finish_lhs (void)
3172 {
3173 has_dependence_data.where = DEPS_IN_INSN;
3174 }
3175
3176 /* Start analyzing dependencies of RHS. */
3177 static void
3178 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3179 {
3180 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3181
3182 if (VINSN_RHS (has_dependence_data.con) != NULL)
3183 has_dependence_data.where = DEPS_IN_RHS;
3184 }
3185
3186 /* Start analyzing dependencies of an rhs. */
3187 static void
3188 has_dependence_finish_rhs (void)
3189 {
3190 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3191 || has_dependence_data.where == DEPS_IN_INSN);
3192
3193 has_dependence_data.where = DEPS_IN_INSN;
3194 }
3195
3196 /* Note a set of REGNO. */
3197 static void
3198 has_dependence_note_reg_set (int regno)
3199 {
3200 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3201
3202 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3203 VINSN_INSN_RTX
3204 (has_dependence_data.con)))
3205 {
3206 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3207
3208 if (reg_last->sets != NULL
3209 || reg_last->clobbers != NULL)
3210 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3211
3212 if (reg_last->uses || reg_last->implicit_sets)
3213 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3214 }
3215 }
3216
3217 /* Note a clobber of REGNO. */
3218 static void
3219 has_dependence_note_reg_clobber (int regno)
3220 {
3221 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3222
3223 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3224 VINSN_INSN_RTX
3225 (has_dependence_data.con)))
3226 {
3227 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3228
3229 if (reg_last->sets)
3230 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3231
3232 if (reg_last->uses || reg_last->implicit_sets)
3233 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3234 }
3235 }
3236
3237 /* Note a use of REGNO. */
3238 static void
3239 has_dependence_note_reg_use (int regno)
3240 {
3241 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3242
3243 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3244 VINSN_INSN_RTX
3245 (has_dependence_data.con)))
3246 {
3247 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3248
3249 if (reg_last->sets)
3250 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3251
3252 if (reg_last->clobbers || reg_last->implicit_sets)
3253 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3254
3255 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3256 is actually a check insn. We need to do this for any register
3257 read-read dependency with the check unless we track properly
3258 all registers written by BE_IN_SPEC-speculated insns, as
3259 we don't have explicit dependence lists. See PR 53975. */
3260 if (reg_last->uses)
3261 {
3262 ds_t pro_spec_checked_ds;
3263
3264 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3265 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3266
3267 if (pro_spec_checked_ds != 0)
3268 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3269 NULL_RTX, NULL_RTX);
3270 }
3271 }
3272 }
3273
3274 /* Note a memory dependence. */
3275 static void
3276 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3277 rtx pending_mem ATTRIBUTE_UNUSED,
3278 insn_t pending_insn ATTRIBUTE_UNUSED,
3279 ds_t ds ATTRIBUTE_UNUSED)
3280 {
3281 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3282 VINSN_INSN_RTX (has_dependence_data.con)))
3283 {
3284 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3285
3286 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3287 }
3288 }
3289
3290 /* Note a dependence. */
3291 static void
3292 has_dependence_note_dep (insn_t pro, ds_t ds ATTRIBUTE_UNUSED)
3293 {
3294 insn_t real_pro = has_dependence_data.pro;
3295 insn_t real_con = VINSN_INSN_RTX (has_dependence_data.con);
3296
3297 /* We do not allow for debug insns to move through others unless they
3298 are at the start of bb. This movement may create bookkeeping copies
3299 that later would not be able to move up, violating the invariant
3300 that a bookkeeping copy should be movable as the original insn.
3301 Detect that here and allow that movement if we allowed it before
3302 in the first place. */
3303 if (DEBUG_INSN_P (real_con) && !DEBUG_INSN_P (real_pro)
3304 && INSN_UID (NEXT_INSN (pro)) == INSN_UID (real_con))
3305 return;
3306
3307 if (!sched_insns_conditions_mutex_p (real_pro, real_con))
3308 {
3309 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3310
3311 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3312 }
3313 }
3314
3315 /* Mark the insn as having a hard dependence that prevents speculation. */
3316 void
3317 sel_mark_hard_insn (rtx insn)
3318 {
3319 int i;
3320
3321 /* Only work when we're in has_dependence_p mode.
3322 ??? This is a hack, this should actually be a hook. */
3323 if (!has_dependence_data.dc || !has_dependence_data.pro)
3324 return;
3325
3326 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3327 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3328
3329 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3330 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3331 }
3332
3333 /* This structure holds the hooks for the dependency analysis used when
3334 actually processing dependencies in the scheduler. */
3335 static struct sched_deps_info_def has_dependence_sched_deps_info;
3336
3337 /* This initializes most of the fields of the above structure. */
3338 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3339 {
3340 NULL,
3341
3342 has_dependence_start_insn,
3343 has_dependence_finish_insn,
3344 has_dependence_start_lhs,
3345 has_dependence_finish_lhs,
3346 has_dependence_start_rhs,
3347 has_dependence_finish_rhs,
3348 has_dependence_note_reg_set,
3349 has_dependence_note_reg_clobber,
3350 has_dependence_note_reg_use,
3351 has_dependence_note_mem_dep,
3352 has_dependence_note_dep,
3353
3354 0, /* use_cselib */
3355 0, /* use_deps_list */
3356 0 /* generate_spec_deps */
3357 };
3358
3359 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3360 static void
3361 setup_has_dependence_sched_deps_info (void)
3362 {
3363 memcpy (&has_dependence_sched_deps_info,
3364 &const_has_dependence_sched_deps_info,
3365 sizeof (has_dependence_sched_deps_info));
3366
3367 if (spec_info != NULL)
3368 has_dependence_sched_deps_info.generate_spec_deps = 1;
3369
3370 sched_deps_info = &has_dependence_sched_deps_info;
3371 }
3372
3373 /* Remove all dependences found and recorded in has_dependence_data array. */
3374 void
3375 sel_clear_has_dependence (void)
3376 {
3377 int i;
3378
3379 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3380 has_dependence_data.has_dep_p[i] = 0;
3381 }
3382
3383 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3384 to the dependence information array in HAS_DEP_PP. */
3385 ds_t
3386 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3387 {
3388 int i;
3389 ds_t ds;
3390 class deps_desc *dc;
3391
3392 if (INSN_SIMPLEJUMP_P (pred))
3393 /* Unconditional jump is just a transfer of control flow.
3394 Ignore it. */
3395 return false;
3396
3397 dc = &INSN_DEPS_CONTEXT (pred);
3398
3399 /* We init this field lazily. */
3400 if (dc->reg_last == NULL)
3401 init_deps_reg_last (dc);
3402
3403 if (!dc->readonly)
3404 {
3405 has_dependence_data.pro = NULL;
3406 /* Initialize empty dep context with information about PRED. */
3407 advance_deps_context (dc, pred);
3408 dc->readonly = 1;
3409 }
3410
3411 has_dependence_data.where = DEPS_IN_NOWHERE;
3412 has_dependence_data.pro = pred;
3413 has_dependence_data.con = EXPR_VINSN (expr);
3414 has_dependence_data.dc = dc;
3415
3416 sel_clear_has_dependence ();
3417
3418 /* Now catch all dependencies that would be generated between PRED and
3419 INSN. */
3420 setup_has_dependence_sched_deps_info ();
3421 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3422 has_dependence_data.dc = NULL;
3423
3424 /* When a barrier was found, set DEPS_IN_INSN bits. */
3425 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3426 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3427 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3428 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3429
3430 /* Do not allow stores to memory to move through checks. Currently
3431 we don't move this to sched-deps.c as the check doesn't have
3432 obvious places to which this dependence can be attached.
3433 FIMXE: this should go to a hook. */
3434 if (EXPR_LHS (expr)
3435 && MEM_P (EXPR_LHS (expr))
3436 && sel_insn_is_speculation_check (pred))
3437 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3438
3439 *has_dep_pp = has_dependence_data.has_dep_p;
3440 ds = 0;
3441 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3442 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3443 NULL_RTX, NULL_RTX);
3444
3445 return ds;
3446 }
3447 \f
3448
3449 /* Dependence hooks implementation that checks dependence latency constraints
3450 on the insns being scheduled. The entry point for these routines is
3451 tick_check_p predicate. */
3452
3453 static struct
3454 {
3455 /* An expr we are currently checking. */
3456 expr_t expr;
3457
3458 /* A minimal cycle for its scheduling. */
3459 int cycle;
3460
3461 /* Whether we have seen a true dependence while checking. */
3462 bool seen_true_dep_p;
3463 } tick_check_data;
3464
3465 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3466 on PRO with status DS and weight DW. */
3467 static void
3468 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3469 {
3470 expr_t con_expr = tick_check_data.expr;
3471 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3472
3473 if (con_insn != pro_insn)
3474 {
3475 enum reg_note dt;
3476 int tick;
3477
3478 if (/* PROducer was removed from above due to pipelining. */
3479 !INSN_IN_STREAM_P (pro_insn)
3480 /* Or PROducer was originally on the next iteration regarding the
3481 CONsumer. */
3482 || (INSN_SCHED_TIMES (pro_insn)
3483 - EXPR_SCHED_TIMES (con_expr)) > 1)
3484 /* Don't count this dependence. */
3485 return;
3486
3487 dt = ds_to_dt (ds);
3488 if (dt == REG_DEP_TRUE)
3489 tick_check_data.seen_true_dep_p = true;
3490
3491 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3492
3493 {
3494 dep_def _dep, *dep = &_dep;
3495
3496 init_dep (dep, pro_insn, con_insn, dt);
3497
3498 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3499 }
3500
3501 /* When there are several kinds of dependencies between pro and con,
3502 only REG_DEP_TRUE should be taken into account. */
3503 if (tick > tick_check_data.cycle
3504 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3505 tick_check_data.cycle = tick;
3506 }
3507 }
3508
3509 /* An implementation of note_dep hook. */
3510 static void
3511 tick_check_note_dep (insn_t pro, ds_t ds)
3512 {
3513 tick_check_dep_with_dw (pro, ds, 0);
3514 }
3515
3516 /* An implementation of note_mem_dep hook. */
3517 static void
3518 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3519 {
3520 dw_t dw;
3521
3522 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3523 ? estimate_dep_weak (mem1, mem2)
3524 : 0);
3525
3526 tick_check_dep_with_dw (pro, ds, dw);
3527 }
3528
3529 /* This structure contains hooks for dependence analysis used when determining
3530 whether an insn is ready for scheduling. */
3531 static struct sched_deps_info_def tick_check_sched_deps_info =
3532 {
3533 NULL,
3534
3535 NULL,
3536 NULL,
3537 NULL,
3538 NULL,
3539 NULL,
3540 NULL,
3541 haifa_note_reg_set,
3542 haifa_note_reg_clobber,
3543 haifa_note_reg_use,
3544 tick_check_note_mem_dep,
3545 tick_check_note_dep,
3546
3547 0, 0, 0
3548 };
3549
3550 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3551 scheduled. Return 0 if all data from producers in DC is ready. */
3552 int
3553 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3554 {
3555 int cycles_left;
3556 /* Initialize variables. */
3557 tick_check_data.expr = expr;
3558 tick_check_data.cycle = 0;
3559 tick_check_data.seen_true_dep_p = false;
3560 sched_deps_info = &tick_check_sched_deps_info;
3561
3562 gcc_assert (!dc->readonly);
3563 dc->readonly = 1;
3564 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3565 dc->readonly = 0;
3566
3567 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3568
3569 return cycles_left >= 0 ? cycles_left : 0;
3570 }
3571 \f
3572
3573 /* Functions to work with insns. */
3574
3575 /* Returns true if LHS of INSN is the same as DEST of an insn
3576 being moved. */
3577 bool
3578 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3579 {
3580 rtx lhs = INSN_LHS (insn);
3581
3582 if (lhs == NULL || dest == NULL)
3583 return false;
3584
3585 return rtx_equal_p (lhs, dest);
3586 }
3587
3588 /* Return s_i_d entry of INSN. Callable from debugger. */
3589 sel_insn_data_def
3590 insn_sid (insn_t insn)
3591 {
3592 return *SID (insn);
3593 }
3594
3595 /* True when INSN is a speculative check. We can tell this by looking
3596 at the data structures of the selective scheduler, not by examining
3597 the pattern. */
3598 bool
3599 sel_insn_is_speculation_check (rtx insn)
3600 {
3601 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3602 }
3603
3604 /* Extracts machine mode MODE and destination location DST_LOC
3605 for given INSN. */
3606 void
3607 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3608 {
3609 rtx pat = PATTERN (insn);
3610
3611 gcc_assert (dst_loc);
3612 gcc_assert (GET_CODE (pat) == SET);
3613
3614 *dst_loc = SET_DEST (pat);
3615
3616 gcc_assert (*dst_loc);
3617 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3618
3619 if (mode)
3620 *mode = GET_MODE (*dst_loc);
3621 }
3622
3623 /* Returns true when moving through JUMP will result in bookkeeping
3624 creation. */
3625 bool
3626 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3627 {
3628 insn_t succ;
3629 succ_iterator si;
3630
3631 FOR_EACH_SUCC (succ, si, jump)
3632 if (sel_num_cfg_preds_gt_1 (succ))
3633 return true;
3634
3635 return false;
3636 }
3637
3638 /* Return 'true' if INSN is the only one in its basic block. */
3639 static bool
3640 insn_is_the_only_one_in_bb_p (insn_t insn)
3641 {
3642 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3643 }
3644
3645 /* Check that the region we're scheduling still has at most one
3646 backedge. */
3647 static void
3648 verify_backedges (void)
3649 {
3650 if (pipelining_p)
3651 {
3652 int i, n = 0;
3653 edge e;
3654 edge_iterator ei;
3655
3656 for (i = 0; i < current_nr_blocks; i++)
3657 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3658 if (in_current_region_p (e->dest)
3659 && BLOCK_TO_BB (e->dest->index) < i)
3660 n++;
3661
3662 gcc_assert (n <= 1);
3663 }
3664 }
3665 \f
3666
3667 /* Functions to work with control flow. */
3668
3669 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3670 are sorted in topological order (it might have been invalidated by
3671 redirecting an edge). */
3672 static void
3673 sel_recompute_toporder (void)
3674 {
3675 int i, n, rgn;
3676 int *postorder, n_blocks;
3677
3678 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3679 n_blocks = post_order_compute (postorder, false, false);
3680
3681 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3682 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3683 if (CONTAINING_RGN (postorder[i]) == rgn)
3684 {
3685 BLOCK_TO_BB (postorder[i]) = n;
3686 BB_TO_BLOCK (n) = postorder[i];
3687 n++;
3688 }
3689
3690 /* Assert that we updated info for all blocks. We may miss some blocks if
3691 this function is called when redirecting an edge made a block
3692 unreachable, but that block is not deleted yet. */
3693 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3694 }
3695
3696 /* Tidy the possibly empty block BB. */
3697 static bool
3698 maybe_tidy_empty_bb (basic_block bb)
3699 {
3700 basic_block succ_bb, pred_bb, note_bb;
3701 vec<basic_block> dom_bbs;
3702 edge e;
3703 edge_iterator ei;
3704 bool rescan_p;
3705
3706 /* Keep empty bb only if this block immediately precedes EXIT and
3707 has incoming non-fallthrough edge, or it has no predecessors or
3708 successors. Otherwise remove it. */
3709 if (!sel_bb_empty_p (bb)
3710 || (single_succ_p (bb)
3711 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3712 && (!single_pred_p (bb)
3713 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3714 || EDGE_COUNT (bb->preds) == 0
3715 || EDGE_COUNT (bb->succs) == 0)
3716 return false;
3717
3718 /* Do not attempt to redirect complex edges. */
3719 FOR_EACH_EDGE (e, ei, bb->preds)
3720 if (e->flags & EDGE_COMPLEX)
3721 return false;
3722 else if (e->flags & EDGE_FALLTHRU)
3723 {
3724 rtx note;
3725 /* If prev bb ends with asm goto, see if any of the
3726 ASM_OPERANDS_LABELs don't point to the fallthru
3727 label. Do not attempt to redirect it in that case. */
3728 if (JUMP_P (BB_END (e->src))
3729 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3730 {
3731 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3732
3733 for (i = 0; i < n; ++i)
3734 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3735 return false;
3736 }
3737 }
3738
3739 free_data_sets (bb);
3740
3741 /* Do not delete BB if it has more than one successor.
3742 That can occur when we moving a jump. */
3743 if (!single_succ_p (bb))
3744 {
3745 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3746 sel_merge_blocks (bb->prev_bb, bb);
3747 return true;
3748 }
3749
3750 succ_bb = single_succ (bb);
3751 rescan_p = true;
3752 pred_bb = NULL;
3753 dom_bbs.create (0);
3754
3755 /* Save a pred/succ from the current region to attach the notes to. */
3756 note_bb = NULL;
3757 FOR_EACH_EDGE (e, ei, bb->preds)
3758 if (in_current_region_p (e->src))
3759 {
3760 note_bb = e->src;
3761 break;
3762 }
3763 if (note_bb == NULL)
3764 note_bb = succ_bb;
3765
3766 /* Redirect all non-fallthru edges to the next bb. */
3767 while (rescan_p)
3768 {
3769 rescan_p = false;
3770
3771 FOR_EACH_EDGE (e, ei, bb->preds)
3772 {
3773 pred_bb = e->src;
3774
3775 if (!(e->flags & EDGE_FALLTHRU))
3776 {
3777 /* We cannot invalidate computed topological order by moving
3778 the edge destination block (E->SUCC) along a fallthru edge.
3779
3780 We will update dominators here only when we'll get
3781 an unreachable block when redirecting, otherwise
3782 sel_redirect_edge_and_branch will take care of it. */
3783 if (e->dest != bb
3784 && single_pred_p (e->dest))
3785 dom_bbs.safe_push (e->dest);
3786 sel_redirect_edge_and_branch (e, succ_bb);
3787 rescan_p = true;
3788 break;
3789 }
3790 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3791 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3792 still have to adjust it. */
3793 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3794 {
3795 /* If possible, try to remove the unneeded conditional jump. */
3796 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3797 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3798 {
3799 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3800 tidy_fallthru_edge (e);
3801 }
3802 else
3803 sel_redirect_edge_and_branch (e, succ_bb);
3804 rescan_p = true;
3805 break;
3806 }
3807 }
3808 }
3809
3810 if (can_merge_blocks_p (bb->prev_bb, bb))
3811 sel_merge_blocks (bb->prev_bb, bb);
3812 else
3813 {
3814 /* This is a block without fallthru predecessor. Just delete it. */
3815 gcc_assert (note_bb);
3816 move_bb_info (note_bb, bb);
3817 remove_empty_bb (bb, true);
3818 }
3819
3820 if (!dom_bbs.is_empty ())
3821 {
3822 dom_bbs.safe_push (succ_bb);
3823 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3824 dom_bbs.release ();
3825 }
3826
3827 return true;
3828 }
3829
3830 /* Tidy the control flow after we have removed original insn from
3831 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3832 is true, also try to optimize control flow on non-empty blocks. */
3833 bool
3834 tidy_control_flow (basic_block xbb, bool full_tidying)
3835 {
3836 bool changed = true;
3837 insn_t first, last;
3838
3839 /* First check whether XBB is empty. */
3840 changed = maybe_tidy_empty_bb (xbb);
3841 if (changed || !full_tidying)
3842 return changed;
3843
3844 /* Check if there is a unnecessary jump after insn left. */
3845 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3846 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3847 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3848 {
3849 /* We used to call sel_remove_insn here that can trigger tidy_control_flow
3850 before we fix up the fallthru edge. Correct that ordering by
3851 explicitly doing the latter before the former. */
3852 clear_expr (INSN_EXPR (BB_END (xbb)));
3853 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3854 if (tidy_control_flow (xbb, false))
3855 return true;
3856 }
3857
3858 first = sel_bb_head (xbb);
3859 last = sel_bb_end (xbb);
3860 if (MAY_HAVE_DEBUG_INSNS)
3861 {
3862 if (first != last && DEBUG_INSN_P (first))
3863 do
3864 first = NEXT_INSN (first);
3865 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3866
3867 if (first != last && DEBUG_INSN_P (last))
3868 do
3869 last = PREV_INSN (last);
3870 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3871 }
3872 /* Check if there is an unnecessary jump in previous basic block leading
3873 to next basic block left after removing INSN from stream.
3874 If it is so, remove that jump and redirect edge to current
3875 basic block (where there was INSN before deletion). This way
3876 when NOP will be deleted several instructions later with its
3877 basic block we will not get a jump to next instruction, which
3878 can be harmful. */
3879 if (first == last
3880 && !sel_bb_empty_p (xbb)
3881 && INSN_NOP_P (last)
3882 /* Flow goes fallthru from current block to the next. */
3883 && EDGE_COUNT (xbb->succs) == 1
3884 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3885 /* When successor is an EXIT block, it may not be the next block. */
3886 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3887 /* And unconditional jump in previous basic block leads to
3888 next basic block of XBB and this jump can be safely removed. */
3889 && in_current_region_p (xbb->prev_bb)
3890 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3891 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3892 /* Also this jump is not at the scheduling boundary. */
3893 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3894 {
3895 bool recompute_toporder_p;
3896 /* Clear data structures of jump - jump itself will be removed
3897 by sel_redirect_edge_and_branch. */
3898 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3899 recompute_toporder_p
3900 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3901
3902 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3903
3904 /* We could have skipped some debug insns which did not get removed with the block,
3905 and the seqnos could become incorrect. Fix them up here. */
3906 if (MAY_HAVE_DEBUG_INSNS && (sel_bb_head (xbb) != first || sel_bb_end (xbb) != last))
3907 {
3908 if (!sel_bb_empty_p (xbb->prev_bb))
3909 {
3910 int prev_seqno = INSN_SEQNO (sel_bb_end (xbb->prev_bb));
3911 if (prev_seqno > INSN_SEQNO (sel_bb_head (xbb)))
3912 for (insn_t insn = sel_bb_head (xbb); insn != first; insn = NEXT_INSN (insn))
3913 INSN_SEQNO (insn) = prev_seqno + 1;
3914 }
3915 }
3916
3917 /* It can turn out that after removing unused jump, basic block
3918 that contained that jump, becomes empty too. In such case
3919 remove it too. */
3920 if (sel_bb_empty_p (xbb->prev_bb))
3921 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3922 if (recompute_toporder_p)
3923 sel_recompute_toporder ();
3924 }
3925
3926 /* TODO: use separate flag for CFG checking. */
3927 if (flag_checking)
3928 {
3929 verify_backedges ();
3930 verify_dominators (CDI_DOMINATORS);
3931 }
3932
3933 return changed;
3934 }
3935
3936 /* Purge meaningless empty blocks in the middle of a region. */
3937 void
3938 purge_empty_blocks (void)
3939 {
3940 int i;
3941
3942 /* Do not attempt to delete the first basic block in the region. */
3943 for (i = 1; i < current_nr_blocks; )
3944 {
3945 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3946
3947 if (maybe_tidy_empty_bb (b))
3948 continue;
3949
3950 i++;
3951 }
3952 }
3953
3954 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3955 do not delete insn's data, because it will be later re-emitted.
3956 Return true if we have removed some blocks afterwards. */
3957 bool
3958 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3959 {
3960 basic_block bb = BLOCK_FOR_INSN (insn);
3961
3962 gcc_assert (INSN_IN_STREAM_P (insn));
3963
3964 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3965 {
3966 expr_t expr;
3967 av_set_iterator i;
3968
3969 /* When we remove a debug insn that is head of a BB, it remains
3970 in the AV_SET of the block, but it shouldn't. */
3971 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3972 if (EXPR_INSN_RTX (expr) == insn)
3973 {
3974 av_set_iter_remove (&i);
3975 break;
3976 }
3977 }
3978
3979 if (only_disconnect)
3980 remove_insn (insn);
3981 else
3982 {
3983 delete_insn (insn);
3984 clear_expr (INSN_EXPR (insn));
3985 }
3986
3987 /* It is necessary to NULL these fields in case we are going to re-insert
3988 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3989 case, but also for NOPs that we will return to the nop pool. */
3990 SET_PREV_INSN (insn) = NULL_RTX;
3991 SET_NEXT_INSN (insn) = NULL_RTX;
3992 set_block_for_insn (insn, NULL);
3993
3994 return tidy_control_flow (bb, full_tidying);
3995 }
3996
3997 /* Estimate number of the insns in BB. */
3998 static int
3999 sel_estimate_number_of_insns (basic_block bb)
4000 {
4001 int res = 0;
4002 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
4003
4004 for (; insn != next_tail; insn = NEXT_INSN (insn))
4005 if (NONDEBUG_INSN_P (insn))
4006 res++;
4007
4008 return res;
4009 }
4010
4011 /* We don't need separate luids for notes or labels. */
4012 static int
4013 sel_luid_for_non_insn (rtx x)
4014 {
4015 gcc_assert (NOTE_P (x) || LABEL_P (x));
4016
4017 return -1;
4018 }
4019
4020 /* Find the proper seqno for inserting at INSN by successors.
4021 Return -1 if no successors with positive seqno exist. */
4022 static int
4023 get_seqno_by_succs (rtx_insn *insn)
4024 {
4025 basic_block bb = BLOCK_FOR_INSN (insn);
4026 rtx_insn *tmp = insn, *end = BB_END (bb);
4027 int seqno;
4028 insn_t succ = NULL;
4029 succ_iterator si;
4030
4031 while (tmp != end)
4032 {
4033 tmp = NEXT_INSN (tmp);
4034 if (INSN_P (tmp))
4035 return INSN_SEQNO (tmp);
4036 }
4037
4038 seqno = INT_MAX;
4039
4040 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4041 if (INSN_SEQNO (succ) > 0)
4042 seqno = MIN (seqno, INSN_SEQNO (succ));
4043
4044 if (seqno == INT_MAX)
4045 return -1;
4046
4047 return seqno;
4048 }
4049
4050 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4051 seqno in corner cases. */
4052 static int
4053 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4054 {
4055 int seqno;
4056
4057 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4058
4059 if (!sel_bb_head_p (insn))
4060 seqno = INSN_SEQNO (PREV_INSN (insn));
4061 else
4062 {
4063 basic_block bb = BLOCK_FOR_INSN (insn);
4064
4065 if (single_pred_p (bb)
4066 && !in_current_region_p (single_pred (bb)))
4067 {
4068 /* We can have preds outside a region when splitting edges
4069 for pipelining of an outer loop. Use succ instead.
4070 There should be only one of them. */
4071 insn_t succ = NULL;
4072 succ_iterator si;
4073 bool first = true;
4074
4075 gcc_assert (flag_sel_sched_pipelining_outer_loops
4076 && current_loop_nest);
4077 FOR_EACH_SUCC_1 (succ, si, insn,
4078 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4079 {
4080 gcc_assert (first);
4081 first = false;
4082 }
4083
4084 gcc_assert (succ != NULL);
4085 seqno = INSN_SEQNO (succ);
4086 }
4087 else
4088 {
4089 insn_t *preds;
4090 int n;
4091
4092 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4093
4094 gcc_assert (n > 0);
4095 /* For one predecessor, use simple method. */
4096 if (n == 1)
4097 seqno = INSN_SEQNO (preds[0]);
4098 else
4099 seqno = get_seqno_by_preds (insn);
4100
4101 free (preds);
4102 }
4103 }
4104
4105 /* We were unable to find a good seqno among preds. */
4106 if (seqno < 0)
4107 seqno = get_seqno_by_succs (insn);
4108
4109 if (seqno < 0)
4110 {
4111 /* The only case where this could be here legally is that the only
4112 unscheduled insn was a conditional jump that got removed and turned
4113 into this unconditional one. Initialize from the old seqno
4114 of that jump passed down to here. */
4115 seqno = old_seqno;
4116 }
4117
4118 gcc_assert (seqno >= 0);
4119 return seqno;
4120 }
4121
4122 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4123 with positive seqno exist. */
4124 int
4125 get_seqno_by_preds (rtx_insn *insn)
4126 {
4127 basic_block bb = BLOCK_FOR_INSN (insn);
4128 rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4129 insn_t *preds;
4130 int n, i, seqno;
4131
4132 /* Loop backwards from INSN to HEAD including both. */
4133 while (1)
4134 {
4135 if (INSN_P (tmp))
4136 return INSN_SEQNO (tmp);
4137 if (tmp == head)
4138 break;
4139 tmp = PREV_INSN (tmp);
4140 }
4141
4142 cfg_preds (bb, &preds, &n);
4143 for (i = 0, seqno = -1; i < n; i++)
4144 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4145
4146 return seqno;
4147 }
4148
4149 \f
4150
4151 /* Extend pass-scope data structures for basic blocks. */
4152 void
4153 sel_extend_global_bb_info (void)
4154 {
4155 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4156 }
4157
4158 /* Extend region-scope data structures for basic blocks. */
4159 static void
4160 extend_region_bb_info (void)
4161 {
4162 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4163 }
4164
4165 /* Extend all data structures to fit for all basic blocks. */
4166 static void
4167 extend_bb_info (void)
4168 {
4169 sel_extend_global_bb_info ();
4170 extend_region_bb_info ();
4171 }
4172
4173 /* Finalize pass-scope data structures for basic blocks. */
4174 void
4175 sel_finish_global_bb_info (void)
4176 {
4177 sel_global_bb_info.release ();
4178 }
4179
4180 /* Finalize region-scope data structures for basic blocks. */
4181 static void
4182 finish_region_bb_info (void)
4183 {
4184 sel_region_bb_info.release ();
4185 }
4186 \f
4187
4188 /* Data for each insn in current region. */
4189 vec<sel_insn_data_def> s_i_d;
4190
4191 /* Extend data structures for insns from current region. */
4192 static void
4193 extend_insn_data (void)
4194 {
4195 int reserve;
4196
4197 sched_extend_target ();
4198 sched_deps_init (false);
4199
4200 /* Extend data structures for insns from current region. */
4201 reserve = (sched_max_luid + 1 - s_i_d.length ());
4202 if (reserve > 0 && ! s_i_d.space (reserve))
4203 {
4204 int size;
4205
4206 if (sched_max_luid / 2 > 1024)
4207 size = sched_max_luid + 1024;
4208 else
4209 size = 3 * sched_max_luid / 2;
4210
4211
4212 s_i_d.safe_grow_cleared (size);
4213 }
4214 }
4215
4216 /* Finalize data structures for insns from current region. */
4217 static void
4218 finish_insns (void)
4219 {
4220 unsigned i;
4221
4222 /* Clear here all dependence contexts that may have left from insns that were
4223 removed during the scheduling. */
4224 for (i = 0; i < s_i_d.length (); i++)
4225 {
4226 sel_insn_data_def *sid_entry = &s_i_d[i];
4227
4228 if (sid_entry->live)
4229 return_regset_to_pool (sid_entry->live);
4230 if (sid_entry->analyzed_deps)
4231 {
4232 BITMAP_FREE (sid_entry->analyzed_deps);
4233 BITMAP_FREE (sid_entry->found_deps);
4234 htab_delete (sid_entry->transformed_insns);
4235 free_deps (&sid_entry->deps_context);
4236 }
4237 if (EXPR_VINSN (&sid_entry->expr))
4238 {
4239 clear_expr (&sid_entry->expr);
4240
4241 /* Also, clear CANT_MOVE bit here, because we really don't want it
4242 to be passed to the next region. */
4243 CANT_MOVE_BY_LUID (i) = 0;
4244 }
4245 }
4246
4247 s_i_d.release ();
4248 }
4249
4250 /* A proxy to pass initialization data to init_insn (). */
4251 static sel_insn_data_def _insn_init_ssid;
4252 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4253
4254 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4255 static bool insn_init_create_new_vinsn_p;
4256
4257 /* Set all necessary data for initialization of the new insn[s]. */
4258 static expr_t
4259 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4260 {
4261 expr_t x = &insn_init_ssid->expr;
4262
4263 copy_expr_onside (x, expr);
4264 if (vi != NULL)
4265 {
4266 insn_init_create_new_vinsn_p = false;
4267 change_vinsn_in_expr (x, vi);
4268 }
4269 else
4270 insn_init_create_new_vinsn_p = true;
4271
4272 insn_init_ssid->seqno = seqno;
4273 return x;
4274 }
4275
4276 /* Init data for INSN. */
4277 static void
4278 init_insn_data (insn_t insn)
4279 {
4280 expr_t expr;
4281 sel_insn_data_t ssid = insn_init_ssid;
4282
4283 /* The fields mentioned below are special and hence are not being
4284 propagated to the new insns. */
4285 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4286 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4287 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4288
4289 expr = INSN_EXPR (insn);
4290 copy_expr (expr, &ssid->expr);
4291 prepare_insn_expr (insn, ssid->seqno);
4292
4293 if (insn_init_create_new_vinsn_p)
4294 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4295
4296 if (first_time_insn_init (insn))
4297 init_first_time_insn_data (insn);
4298 }
4299
4300 /* This is used to initialize spurious jumps generated by
4301 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4302 in corner cases within get_seqno_for_a_jump. */
4303 static void
4304 init_simplejump_data (insn_t insn, int old_seqno)
4305 {
4306 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4307 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4308 vNULL, true, false, false,
4309 false, true);
4310 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4311 init_first_time_insn_data (insn);
4312 }
4313
4314 /* Perform deferred initialization of insns. This is used to process
4315 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4316 for initializing simplejumps in init_simplejump_data. */
4317 static void
4318 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4319 {
4320 /* We create data structures for bb when the first insn is emitted in it. */
4321 if (INSN_P (insn)
4322 && INSN_IN_STREAM_P (insn)
4323 && insn_is_the_only_one_in_bb_p (insn))
4324 {
4325 extend_bb_info ();
4326 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4327 }
4328
4329 if (flags & INSN_INIT_TODO_LUID)
4330 {
4331 sched_extend_luids ();
4332 sched_init_insn_luid (insn);
4333 }
4334
4335 if (flags & INSN_INIT_TODO_SSID)
4336 {
4337 extend_insn_data ();
4338 init_insn_data (insn);
4339 clear_expr (&insn_init_ssid->expr);
4340 }
4341
4342 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4343 {
4344 extend_insn_data ();
4345 init_simplejump_data (insn, old_seqno);
4346 }
4347
4348 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4349 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4350 }
4351 \f
4352
4353 /* Functions to init/finish work with lv sets. */
4354
4355 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4356 static void
4357 init_lv_set (basic_block bb)
4358 {
4359 gcc_assert (!BB_LV_SET_VALID_P (bb));
4360
4361 BB_LV_SET (bb) = get_regset_from_pool ();
4362 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4363 BB_LV_SET_VALID_P (bb) = true;
4364 }
4365
4366 /* Copy liveness information to BB from FROM_BB. */
4367 static void
4368 copy_lv_set_from (basic_block bb, basic_block from_bb)
4369 {
4370 gcc_assert (!BB_LV_SET_VALID_P (bb));
4371
4372 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4373 BB_LV_SET_VALID_P (bb) = true;
4374 }
4375
4376 /* Initialize lv set of all bb headers. */
4377 void
4378 init_lv_sets (void)
4379 {
4380 basic_block bb;
4381
4382 /* Initialize of LV sets. */
4383 FOR_EACH_BB_FN (bb, cfun)
4384 init_lv_set (bb);
4385
4386 /* Don't forget EXIT_BLOCK. */
4387 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4388 }
4389
4390 /* Release lv set of HEAD. */
4391 static void
4392 free_lv_set (basic_block bb)
4393 {
4394 gcc_assert (BB_LV_SET (bb) != NULL);
4395
4396 return_regset_to_pool (BB_LV_SET (bb));
4397 BB_LV_SET (bb) = NULL;
4398 BB_LV_SET_VALID_P (bb) = false;
4399 }
4400
4401 /* Finalize lv sets of all bb headers. */
4402 void
4403 free_lv_sets (void)
4404 {
4405 basic_block bb;
4406
4407 /* Don't forget EXIT_BLOCK. */
4408 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4409
4410 /* Free LV sets. */
4411 FOR_EACH_BB_FN (bb, cfun)
4412 if (BB_LV_SET (bb))
4413 free_lv_set (bb);
4414 }
4415
4416 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4417 compute_av() processes BB. This function is called when creating new basic
4418 blocks, as well as for blocks (either new or existing) where new jumps are
4419 created when the control flow is being updated. */
4420 static void
4421 invalidate_av_set (basic_block bb)
4422 {
4423 BB_AV_LEVEL (bb) = -1;
4424 }
4425
4426 /* Create initial data sets for BB (they will be invalid). */
4427 static void
4428 create_initial_data_sets (basic_block bb)
4429 {
4430 if (BB_LV_SET (bb))
4431 BB_LV_SET_VALID_P (bb) = false;
4432 else
4433 BB_LV_SET (bb) = get_regset_from_pool ();
4434 invalidate_av_set (bb);
4435 }
4436
4437 /* Free av set of BB. */
4438 static void
4439 free_av_set (basic_block bb)
4440 {
4441 av_set_clear (&BB_AV_SET (bb));
4442 BB_AV_LEVEL (bb) = 0;
4443 }
4444
4445 /* Free data sets of BB. */
4446 void
4447 free_data_sets (basic_block bb)
4448 {
4449 free_lv_set (bb);
4450 free_av_set (bb);
4451 }
4452
4453 /* Exchange data sets of TO and FROM. */
4454 void
4455 exchange_data_sets (basic_block to, basic_block from)
4456 {
4457 /* Exchange lv sets of TO and FROM. */
4458 std::swap (BB_LV_SET (from), BB_LV_SET (to));
4459 std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
4460
4461 /* Exchange av sets of TO and FROM. */
4462 std::swap (BB_AV_SET (from), BB_AV_SET (to));
4463 std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
4464 }
4465
4466 /* Copy data sets of FROM to TO. */
4467 void
4468 copy_data_sets (basic_block to, basic_block from)
4469 {
4470 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4471 gcc_assert (BB_AV_SET (to) == NULL);
4472
4473 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4474 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4475
4476 if (BB_AV_SET_VALID_P (from))
4477 {
4478 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4479 }
4480 if (BB_LV_SET_VALID_P (from))
4481 {
4482 gcc_assert (BB_LV_SET (to) != NULL);
4483 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4484 }
4485 }
4486
4487 /* Return an av set for INSN, if any. */
4488 av_set_t
4489 get_av_set (insn_t insn)
4490 {
4491 av_set_t av_set;
4492
4493 gcc_assert (AV_SET_VALID_P (insn));
4494
4495 if (sel_bb_head_p (insn))
4496 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4497 else
4498 av_set = NULL;
4499
4500 return av_set;
4501 }
4502
4503 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4504 int
4505 get_av_level (insn_t insn)
4506 {
4507 int av_level;
4508
4509 gcc_assert (INSN_P (insn));
4510
4511 if (sel_bb_head_p (insn))
4512 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4513 else
4514 av_level = INSN_WS_LEVEL (insn);
4515
4516 return av_level;
4517 }
4518
4519 \f
4520
4521 /* Variables to work with control-flow graph. */
4522
4523 /* The basic block that already has been processed by the sched_data_update (),
4524 but hasn't been in sel_add_bb () yet. */
4525 static vec<basic_block> last_added_blocks;
4526
4527 /* A pool for allocating successor infos. */
4528 static struct
4529 {
4530 /* A stack for saving succs_info structures. */
4531 struct succs_info *stack;
4532
4533 /* Its size. */
4534 int size;
4535
4536 /* Top of the stack. */
4537 int top;
4538
4539 /* Maximal value of the top. */
4540 int max_top;
4541 } succs_info_pool;
4542
4543 /* Functions to work with control-flow graph. */
4544
4545 /* Return basic block note of BB. */
4546 rtx_insn *
4547 sel_bb_head (basic_block bb)
4548 {
4549 rtx_insn *head;
4550
4551 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4552 {
4553 gcc_assert (exit_insn != NULL_RTX);
4554 head = exit_insn;
4555 }
4556 else
4557 {
4558 rtx_note *note = bb_note (bb);
4559 head = next_nonnote_insn (note);
4560
4561 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4562 head = NULL;
4563 }
4564
4565 return head;
4566 }
4567
4568 /* Return true if INSN is a basic block header. */
4569 bool
4570 sel_bb_head_p (insn_t insn)
4571 {
4572 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4573 }
4574
4575 /* Return last insn of BB. */
4576 rtx_insn *
4577 sel_bb_end (basic_block bb)
4578 {
4579 if (sel_bb_empty_p (bb))
4580 return NULL;
4581
4582 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4583
4584 return BB_END (bb);
4585 }
4586
4587 /* Return true if INSN is the last insn in its basic block. */
4588 bool
4589 sel_bb_end_p (insn_t insn)
4590 {
4591 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4592 }
4593
4594 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4595 bool
4596 sel_bb_empty_p (basic_block bb)
4597 {
4598 return sel_bb_head (bb) == NULL;
4599 }
4600
4601 /* True when BB belongs to the current scheduling region. */
4602 bool
4603 in_current_region_p (basic_block bb)
4604 {
4605 if (bb->index < NUM_FIXED_BLOCKS)
4606 return false;
4607
4608 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4609 }
4610
4611 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4612 basic_block
4613 fallthru_bb_of_jump (const rtx_insn *jump)
4614 {
4615 if (!JUMP_P (jump))
4616 return NULL;
4617
4618 if (!any_condjump_p (jump))
4619 return NULL;
4620
4621 /* A basic block that ends with a conditional jump may still have one successor
4622 (and be followed by a barrier), we are not interested. */
4623 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4624 return NULL;
4625
4626 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4627 }
4628
4629 /* Remove all notes from BB. */
4630 static void
4631 init_bb (basic_block bb)
4632 {
4633 remove_notes (bb_note (bb), BB_END (bb));
4634 BB_NOTE_LIST (bb) = note_list;
4635 }
4636
4637 void
4638 sel_init_bbs (bb_vec_t bbs)
4639 {
4640 const struct sched_scan_info_def ssi =
4641 {
4642 extend_bb_info, /* extend_bb */
4643 init_bb, /* init_bb */
4644 NULL, /* extend_insn */
4645 NULL /* init_insn */
4646 };
4647
4648 sched_scan (&ssi, bbs);
4649 }
4650
4651 /* Restore notes for the whole region. */
4652 static void
4653 sel_restore_notes (void)
4654 {
4655 int bb;
4656 insn_t insn;
4657
4658 for (bb = 0; bb < current_nr_blocks; bb++)
4659 {
4660 basic_block first, last;
4661
4662 first = EBB_FIRST_BB (bb);
4663 last = EBB_LAST_BB (bb)->next_bb;
4664
4665 do
4666 {
4667 note_list = BB_NOTE_LIST (first);
4668 restore_other_notes (NULL, first);
4669 BB_NOTE_LIST (first) = NULL;
4670
4671 FOR_BB_INSNS (first, insn)
4672 if (NONDEBUG_INSN_P (insn))
4673 reemit_notes (insn);
4674
4675 first = first->next_bb;
4676 }
4677 while (first != last);
4678 }
4679 }
4680
4681 /* Free per-bb data structures. */
4682 void
4683 sel_finish_bbs (void)
4684 {
4685 sel_restore_notes ();
4686
4687 /* Remove current loop preheader from this loop. */
4688 if (current_loop_nest)
4689 sel_remove_loop_preheader ();
4690
4691 finish_region_bb_info ();
4692 }
4693
4694 /* Return true if INSN has a single successor of type FLAGS. */
4695 bool
4696 sel_insn_has_single_succ_p (insn_t insn, int flags)
4697 {
4698 insn_t succ;
4699 succ_iterator si;
4700 bool first_p = true;
4701
4702 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4703 {
4704 if (first_p)
4705 first_p = false;
4706 else
4707 return false;
4708 }
4709
4710 return true;
4711 }
4712
4713 /* Allocate successor's info. */
4714 static struct succs_info *
4715 alloc_succs_info (void)
4716 {
4717 if (succs_info_pool.top == succs_info_pool.max_top)
4718 {
4719 int i;
4720
4721 if (++succs_info_pool.max_top >= succs_info_pool.size)
4722 gcc_unreachable ();
4723
4724 i = ++succs_info_pool.top;
4725 succs_info_pool.stack[i].succs_ok.create (10);
4726 succs_info_pool.stack[i].succs_other.create (10);
4727 succs_info_pool.stack[i].probs_ok.create (10);
4728 }
4729 else
4730 succs_info_pool.top++;
4731
4732 return &succs_info_pool.stack[succs_info_pool.top];
4733 }
4734
4735 /* Free successor's info. */
4736 void
4737 free_succs_info (struct succs_info * sinfo)
4738 {
4739 gcc_assert (succs_info_pool.top >= 0
4740 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4741 succs_info_pool.top--;
4742
4743 /* Clear stale info. */
4744 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4745 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4746 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4747 sinfo->all_prob = 0;
4748 sinfo->succs_ok_n = 0;
4749 sinfo->all_succs_n = 0;
4750 }
4751
4752 /* Compute successor info for INSN. FLAGS are the flags passed
4753 to the FOR_EACH_SUCC_1 iterator. */
4754 struct succs_info *
4755 compute_succs_info (insn_t insn, short flags)
4756 {
4757 succ_iterator si;
4758 insn_t succ;
4759 struct succs_info *sinfo = alloc_succs_info ();
4760
4761 /* Traverse *all* successors and decide what to do with each. */
4762 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4763 {
4764 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4765 perform code motion through inner loops. */
4766 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4767
4768 if (current_flags & flags)
4769 {
4770 sinfo->succs_ok.safe_push (succ);
4771 sinfo->probs_ok.safe_push (
4772 /* FIXME: Improve calculation when skipping
4773 inner loop to exits. */
4774 si.bb_end
4775 ? (si.e1->probability.initialized_p ()
4776 ? si.e1->probability.to_reg_br_prob_base ()
4777 : 0)
4778 : REG_BR_PROB_BASE);
4779 sinfo->succs_ok_n++;
4780 }
4781 else
4782 sinfo->succs_other.safe_push (succ);
4783
4784 /* Compute all_prob. */
4785 if (!si.bb_end)
4786 sinfo->all_prob = REG_BR_PROB_BASE;
4787 else if (si.e1->probability.initialized_p ())
4788 sinfo->all_prob += si.e1->probability.to_reg_br_prob_base ();
4789
4790 sinfo->all_succs_n++;
4791 }
4792
4793 return sinfo;
4794 }
4795
4796 /* Return the predecessors of BB in PREDS and their number in N.
4797 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4798 static void
4799 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4800 {
4801 edge e;
4802 edge_iterator ei;
4803
4804 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4805
4806 FOR_EACH_EDGE (e, ei, bb->preds)
4807 {
4808 basic_block pred_bb = e->src;
4809 insn_t bb_end = BB_END (pred_bb);
4810
4811 if (!in_current_region_p (pred_bb))
4812 {
4813 gcc_assert (flag_sel_sched_pipelining_outer_loops
4814 && current_loop_nest);
4815 continue;
4816 }
4817
4818 if (sel_bb_empty_p (pred_bb))
4819 cfg_preds_1 (pred_bb, preds, n, size);
4820 else
4821 {
4822 if (*n == *size)
4823 *preds = XRESIZEVEC (insn_t, *preds,
4824 (*size = 2 * *size + 1));
4825 (*preds)[(*n)++] = bb_end;
4826 }
4827 }
4828
4829 gcc_assert (*n != 0
4830 || (flag_sel_sched_pipelining_outer_loops
4831 && current_loop_nest));
4832 }
4833
4834 /* Find all predecessors of BB and record them in PREDS and their number
4835 in N. Empty blocks are skipped, and only normal (forward in-region)
4836 edges are processed. */
4837 static void
4838 cfg_preds (basic_block bb, insn_t **preds, int *n)
4839 {
4840 int size = 0;
4841
4842 *preds = NULL;
4843 *n = 0;
4844 cfg_preds_1 (bb, preds, n, &size);
4845 }
4846
4847 /* Returns true if we are moving INSN through join point. */
4848 bool
4849 sel_num_cfg_preds_gt_1 (insn_t insn)
4850 {
4851 basic_block bb;
4852
4853 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4854 return false;
4855
4856 bb = BLOCK_FOR_INSN (insn);
4857
4858 while (1)
4859 {
4860 if (EDGE_COUNT (bb->preds) > 1)
4861 return true;
4862
4863 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4864 bb = EDGE_PRED (bb, 0)->src;
4865
4866 if (!sel_bb_empty_p (bb))
4867 break;
4868 }
4869
4870 return false;
4871 }
4872
4873 /* Returns true when BB should be the end of an ebb. Adapted from the
4874 code in sched-ebb.c. */
4875 bool
4876 bb_ends_ebb_p (basic_block bb)
4877 {
4878 basic_block next_bb = bb_next_bb (bb);
4879 edge e;
4880
4881 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4882 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4883 || (LABEL_P (BB_HEAD (next_bb))
4884 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4885 Work around that. */
4886 && !single_pred_p (next_bb)))
4887 return true;
4888
4889 if (!in_current_region_p (next_bb))
4890 return true;
4891
4892 e = find_fallthru_edge (bb->succs);
4893 if (e)
4894 {
4895 gcc_assert (e->dest == next_bb);
4896
4897 return false;
4898 }
4899
4900 return true;
4901 }
4902
4903 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4904 successor of INSN. */
4905 bool
4906 in_same_ebb_p (insn_t insn, insn_t succ)
4907 {
4908 basic_block ptr = BLOCK_FOR_INSN (insn);
4909
4910 for (;;)
4911 {
4912 if (ptr == BLOCK_FOR_INSN (succ))
4913 return true;
4914
4915 if (bb_ends_ebb_p (ptr))
4916 return false;
4917
4918 ptr = bb_next_bb (ptr);
4919 }
4920
4921 gcc_unreachable ();
4922 return false;
4923 }
4924
4925 /* Recomputes the reverse topological order for the function and
4926 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4927 modified appropriately. */
4928 static void
4929 recompute_rev_top_order (void)
4930 {
4931 int *postorder;
4932 int n_blocks, i;
4933
4934 if (!rev_top_order_index
4935 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4936 {
4937 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4938 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4939 rev_top_order_index_len);
4940 }
4941
4942 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4943
4944 n_blocks = post_order_compute (postorder, true, false);
4945 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4946
4947 /* Build reverse function: for each basic block with BB->INDEX == K
4948 rev_top_order_index[K] is it's reverse topological sort number. */
4949 for (i = 0; i < n_blocks; i++)
4950 {
4951 gcc_assert (postorder[i] < rev_top_order_index_len);
4952 rev_top_order_index[postorder[i]] = i;
4953 }
4954
4955 free (postorder);
4956 }
4957
4958 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4959 void
4960 clear_outdated_rtx_info (basic_block bb)
4961 {
4962 rtx_insn *insn;
4963
4964 FOR_BB_INSNS (bb, insn)
4965 if (INSN_P (insn))
4966 {
4967 SCHED_GROUP_P (insn) = 0;
4968 INSN_AFTER_STALL_P (insn) = 0;
4969 INSN_SCHED_TIMES (insn) = 0;
4970 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4971
4972 /* We cannot use the changed caches, as previously we could ignore
4973 the LHS dependence due to enabled renaming and transform
4974 the expression, and currently we'll be unable to do this. */
4975 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4976 }
4977 }
4978
4979 /* Add BB_NOTE to the pool of available basic block notes. */
4980 static void
4981 return_bb_to_pool (basic_block bb)
4982 {
4983 rtx_note *note = bb_note (bb);
4984
4985 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4986 && bb->aux == NULL);
4987
4988 /* It turns out that current cfg infrastructure does not support
4989 reuse of basic blocks. Don't bother for now. */
4990 /*bb_note_pool.safe_push (note);*/
4991 }
4992
4993 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4994 static rtx_note *
4995 get_bb_note_from_pool (void)
4996 {
4997 if (bb_note_pool.is_empty ())
4998 return NULL;
4999 else
5000 {
5001 rtx_note *note = bb_note_pool.pop ();
5002
5003 SET_PREV_INSN (note) = NULL_RTX;
5004 SET_NEXT_INSN (note) = NULL_RTX;
5005
5006 return note;
5007 }
5008 }
5009
5010 /* Free bb_note_pool. */
5011 void
5012 free_bb_note_pool (void)
5013 {
5014 bb_note_pool.release ();
5015 }
5016
5017 /* Setup scheduler pool and successor structure. */
5018 void
5019 alloc_sched_pools (void)
5020 {
5021 int succs_size;
5022
5023 succs_size = MAX_WS + 1;
5024 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5025 succs_info_pool.size = succs_size;
5026 succs_info_pool.top = -1;
5027 succs_info_pool.max_top = -1;
5028 }
5029
5030 /* Free the pools. */
5031 void
5032 free_sched_pools (void)
5033 {
5034 int i;
5035
5036 sched_lists_pool.release ();
5037 gcc_assert (succs_info_pool.top == -1);
5038 for (i = 0; i <= succs_info_pool.max_top; i++)
5039 {
5040 succs_info_pool.stack[i].succs_ok.release ();
5041 succs_info_pool.stack[i].succs_other.release ();
5042 succs_info_pool.stack[i].probs_ok.release ();
5043 }
5044 free (succs_info_pool.stack);
5045 }
5046 \f
5047
5048 /* Returns a position in RGN where BB can be inserted retaining
5049 topological order. */
5050 static int
5051 find_place_to_insert_bb (basic_block bb, int rgn)
5052 {
5053 bool has_preds_outside_rgn = false;
5054 edge e;
5055 edge_iterator ei;
5056
5057 /* Find whether we have preds outside the region. */
5058 FOR_EACH_EDGE (e, ei, bb->preds)
5059 if (!in_current_region_p (e->src))
5060 {
5061 has_preds_outside_rgn = true;
5062 break;
5063 }
5064
5065 /* Recompute the top order -- needed when we have > 1 pred
5066 and in case we don't have preds outside. */
5067 if (flag_sel_sched_pipelining_outer_loops
5068 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5069 {
5070 int i, bbi = bb->index, cur_bbi;
5071
5072 recompute_rev_top_order ();
5073 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5074 {
5075 cur_bbi = BB_TO_BLOCK (i);
5076 if (rev_top_order_index[bbi]
5077 < rev_top_order_index[cur_bbi])
5078 break;
5079 }
5080
5081 /* We skipped the right block, so we increase i. We accommodate
5082 it for increasing by step later, so we decrease i. */
5083 return (i + 1) - 1;
5084 }
5085 else if (has_preds_outside_rgn)
5086 {
5087 /* This is the case when we generate an extra empty block
5088 to serve as region head during pipelining. */
5089 e = EDGE_SUCC (bb, 0);
5090 gcc_assert (EDGE_COUNT (bb->succs) == 1
5091 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5092 && (BLOCK_TO_BB (e->dest->index) == 0));
5093 return -1;
5094 }
5095
5096 /* We don't have preds outside the region. We should have
5097 the only pred, because the multiple preds case comes from
5098 the pipelining of outer loops, and that is handled above.
5099 Just take the bbi of this single pred. */
5100 if (EDGE_COUNT (bb->succs) > 0)
5101 {
5102 int pred_bbi;
5103
5104 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5105
5106 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5107 return BLOCK_TO_BB (pred_bbi);
5108 }
5109 else
5110 /* BB has no successors. It is safe to put it in the end. */
5111 return current_nr_blocks - 1;
5112 }
5113
5114 /* Deletes an empty basic block freeing its data. */
5115 static void
5116 delete_and_free_basic_block (basic_block bb)
5117 {
5118 gcc_assert (sel_bb_empty_p (bb));
5119
5120 if (BB_LV_SET (bb))
5121 free_lv_set (bb);
5122
5123 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5124
5125 /* Can't assert av_set properties because we use sel_aremove_bb
5126 when removing loop preheader from the region. At the point of
5127 removing the preheader we already have deallocated sel_region_bb_info. */
5128 gcc_assert (BB_LV_SET (bb) == NULL
5129 && !BB_LV_SET_VALID_P (bb)
5130 && BB_AV_LEVEL (bb) == 0
5131 && BB_AV_SET (bb) == NULL);
5132
5133 delete_basic_block (bb);
5134 }
5135
5136 /* Add BB to the current region and update the region data. */
5137 static void
5138 add_block_to_current_region (basic_block bb)
5139 {
5140 int i, pos, bbi = -2, rgn;
5141
5142 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5143 bbi = find_place_to_insert_bb (bb, rgn);
5144 bbi += 1;
5145 pos = RGN_BLOCKS (rgn) + bbi;
5146
5147 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5148 && ebb_head[bbi] == pos);
5149
5150 /* Make a place for the new block. */
5151 extend_regions ();
5152
5153 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5154 BLOCK_TO_BB (rgn_bb_table[i])++;
5155
5156 memmove (rgn_bb_table + pos + 1,
5157 rgn_bb_table + pos,
5158 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5159
5160 /* Initialize data for BB. */
5161 rgn_bb_table[pos] = bb->index;
5162 BLOCK_TO_BB (bb->index) = bbi;
5163 CONTAINING_RGN (bb->index) = rgn;
5164
5165 RGN_NR_BLOCKS (rgn)++;
5166
5167 for (i = rgn + 1; i <= nr_regions; i++)
5168 RGN_BLOCKS (i)++;
5169 }
5170
5171 /* Remove BB from the current region and update the region data. */
5172 static void
5173 remove_bb_from_region (basic_block bb)
5174 {
5175 int i, pos, bbi = -2, rgn;
5176
5177 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5178 bbi = BLOCK_TO_BB (bb->index);
5179 pos = RGN_BLOCKS (rgn) + bbi;
5180
5181 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5182 && ebb_head[bbi] == pos);
5183
5184 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5185 BLOCK_TO_BB (rgn_bb_table[i])--;
5186
5187 memmove (rgn_bb_table + pos,
5188 rgn_bb_table + pos + 1,
5189 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5190
5191 RGN_NR_BLOCKS (rgn)--;
5192 for (i = rgn + 1; i <= nr_regions; i++)
5193 RGN_BLOCKS (i)--;
5194 }
5195
5196 /* Add BB to the current region and update all data. If BB is NULL, add all
5197 blocks from last_added_blocks vector. */
5198 static void
5199 sel_add_bb (basic_block bb)
5200 {
5201 /* Extend luids so that new notes will receive zero luids. */
5202 sched_extend_luids ();
5203 sched_init_bbs ();
5204 sel_init_bbs (last_added_blocks);
5205
5206 /* When bb is passed explicitly, the vector should contain
5207 the only element that equals to bb; otherwise, the vector
5208 should not be NULL. */
5209 gcc_assert (last_added_blocks.exists ());
5210
5211 if (bb != NULL)
5212 {
5213 gcc_assert (last_added_blocks.length () == 1
5214 && last_added_blocks[0] == bb);
5215 add_block_to_current_region (bb);
5216
5217 /* We associate creating/deleting data sets with the first insn
5218 appearing / disappearing in the bb. */
5219 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5220 create_initial_data_sets (bb);
5221
5222 last_added_blocks.release ();
5223 }
5224 else
5225 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5226 {
5227 int i;
5228 basic_block temp_bb = NULL;
5229
5230 for (i = 0;
5231 last_added_blocks.iterate (i, &bb); i++)
5232 {
5233 add_block_to_current_region (bb);
5234 temp_bb = bb;
5235 }
5236
5237 /* We need to fetch at least one bb so we know the region
5238 to update. */
5239 gcc_assert (temp_bb != NULL);
5240 bb = temp_bb;
5241
5242 last_added_blocks.release ();
5243 }
5244
5245 rgn_setup_region (CONTAINING_RGN (bb->index));
5246 }
5247
5248 /* Remove BB from the current region and update all data.
5249 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5250 static void
5251 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5252 {
5253 unsigned idx = bb->index;
5254
5255 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5256
5257 remove_bb_from_region (bb);
5258 return_bb_to_pool (bb);
5259 bitmap_clear_bit (blocks_to_reschedule, idx);
5260
5261 if (remove_from_cfg_p)
5262 {
5263 basic_block succ = single_succ (bb);
5264 delete_and_free_basic_block (bb);
5265 set_immediate_dominator (CDI_DOMINATORS, succ,
5266 recompute_dominator (CDI_DOMINATORS, succ));
5267 }
5268
5269 rgn_setup_region (CONTAINING_RGN (idx));
5270 }
5271
5272 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5273 static void
5274 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5275 {
5276 if (in_current_region_p (merge_bb))
5277 concat_note_lists (BB_NOTE_LIST (empty_bb),
5278 &BB_NOTE_LIST (merge_bb));
5279 BB_NOTE_LIST (empty_bb) = NULL;
5280
5281 }
5282
5283 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5284 region, but keep it in CFG. */
5285 static void
5286 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5287 {
5288 /* The block should contain just a note or a label.
5289 We try to check whether it is unused below. */
5290 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5291 || LABEL_P (BB_HEAD (empty_bb)));
5292
5293 /* If basic block has predecessors or successors, redirect them. */
5294 if (remove_from_cfg_p
5295 && (EDGE_COUNT (empty_bb->preds) > 0
5296 || EDGE_COUNT (empty_bb->succs) > 0))
5297 {
5298 basic_block pred;
5299 basic_block succ;
5300
5301 /* We need to init PRED and SUCC before redirecting edges. */
5302 if (EDGE_COUNT (empty_bb->preds) > 0)
5303 {
5304 edge e;
5305
5306 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5307
5308 e = EDGE_PRED (empty_bb, 0);
5309 gcc_assert (e->src == empty_bb->prev_bb
5310 && (e->flags & EDGE_FALLTHRU));
5311
5312 pred = empty_bb->prev_bb;
5313 }
5314 else
5315 pred = NULL;
5316
5317 if (EDGE_COUNT (empty_bb->succs) > 0)
5318 {
5319 /* We do not check fallthruness here as above, because
5320 after removing a jump the edge may actually be not fallthru. */
5321 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5322 succ = EDGE_SUCC (empty_bb, 0)->dest;
5323 }
5324 else
5325 succ = NULL;
5326
5327 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5328 {
5329 edge e = EDGE_PRED (empty_bb, 0);
5330
5331 if (e->flags & EDGE_FALLTHRU)
5332 redirect_edge_succ_nodup (e, succ);
5333 else
5334 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5335 }
5336
5337 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5338 {
5339 edge e = EDGE_SUCC (empty_bb, 0);
5340
5341 if (find_edge (pred, e->dest) == NULL)
5342 redirect_edge_pred (e, pred);
5343 }
5344 }
5345
5346 /* Finish removing. */
5347 sel_remove_bb (empty_bb, remove_from_cfg_p);
5348 }
5349
5350 /* An implementation of create_basic_block hook, which additionally updates
5351 per-bb data structures. */
5352 static basic_block
5353 sel_create_basic_block (void *headp, void *endp, basic_block after)
5354 {
5355 basic_block new_bb;
5356 rtx_note *new_bb_note;
5357
5358 gcc_assert (flag_sel_sched_pipelining_outer_loops
5359 || !last_added_blocks.exists ());
5360
5361 new_bb_note = get_bb_note_from_pool ();
5362
5363 if (new_bb_note == NULL_RTX)
5364 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5365 else
5366 {
5367 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5368 (rtx_insn *) endp,
5369 new_bb_note, after);
5370 new_bb->aux = NULL;
5371 }
5372
5373 last_added_blocks.safe_push (new_bb);
5374
5375 return new_bb;
5376 }
5377
5378 /* Implement sched_init_only_bb (). */
5379 static void
5380 sel_init_only_bb (basic_block bb, basic_block after)
5381 {
5382 gcc_assert (after == NULL);
5383
5384 extend_regions ();
5385 rgn_make_new_region_out_of_new_block (bb);
5386 }
5387
5388 /* Update the latch when we've splitted or merged it from FROM block to TO.
5389 This should be checked for all outer loops, too. */
5390 static void
5391 change_loops_latches (basic_block from, basic_block to)
5392 {
5393 gcc_assert (from != to);
5394
5395 if (current_loop_nest)
5396 {
5397 class loop *loop;
5398
5399 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5400 if (considered_for_pipelining_p (loop) && loop->latch == from)
5401 {
5402 gcc_assert (loop == current_loop_nest);
5403 loop->latch = to;
5404 gcc_assert (loop_latch_edge (loop));
5405 }
5406 }
5407 }
5408
5409 /* Splits BB on two basic blocks, adding it to the region and extending
5410 per-bb data structures. Returns the newly created bb. */
5411 static basic_block
5412 sel_split_block (basic_block bb, rtx after)
5413 {
5414 basic_block new_bb;
5415 insn_t insn;
5416
5417 new_bb = sched_split_block_1 (bb, after);
5418 sel_add_bb (new_bb);
5419
5420 /* This should be called after sel_add_bb, because this uses
5421 CONTAINING_RGN for the new block, which is not yet initialized.
5422 FIXME: this function may be a no-op now. */
5423 change_loops_latches (bb, new_bb);
5424
5425 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5426 FOR_BB_INSNS (new_bb, insn)
5427 if (INSN_P (insn))
5428 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5429
5430 if (sel_bb_empty_p (bb))
5431 {
5432 gcc_assert (!sel_bb_empty_p (new_bb));
5433
5434 /* NEW_BB has data sets that need to be updated and BB holds
5435 data sets that should be removed. Exchange these data sets
5436 so that we won't lose BB's valid data sets. */
5437 exchange_data_sets (new_bb, bb);
5438 free_data_sets (bb);
5439 }
5440
5441 if (!sel_bb_empty_p (new_bb)
5442 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5443 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5444
5445 return new_bb;
5446 }
5447
5448 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5449 Otherwise returns NULL. */
5450 static rtx_insn *
5451 check_for_new_jump (basic_block bb, int prev_max_uid)
5452 {
5453 rtx_insn *end;
5454
5455 end = sel_bb_end (bb);
5456 if (end && INSN_UID (end) >= prev_max_uid)
5457 return end;
5458 return NULL;
5459 }
5460
5461 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5462 New means having UID at least equal to PREV_MAX_UID. */
5463 static rtx_insn *
5464 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5465 {
5466 rtx_insn *jump;
5467
5468 /* Return immediately if no new insns were emitted. */
5469 if (get_max_uid () == prev_max_uid)
5470 return NULL;
5471
5472 /* Now check both blocks for new jumps. It will ever be only one. */
5473 if ((jump = check_for_new_jump (from, prev_max_uid)))
5474 return jump;
5475
5476 if (jump_bb != NULL
5477 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5478 return jump;
5479 return NULL;
5480 }
5481
5482 /* Splits E and adds the newly created basic block to the current region.
5483 Returns this basic block. */
5484 basic_block
5485 sel_split_edge (edge e)
5486 {
5487 basic_block new_bb, src, other_bb = NULL;
5488 int prev_max_uid;
5489 rtx_insn *jump;
5490
5491 src = e->src;
5492 prev_max_uid = get_max_uid ();
5493 new_bb = split_edge (e);
5494
5495 if (flag_sel_sched_pipelining_outer_loops
5496 && current_loop_nest)
5497 {
5498 int i;
5499 basic_block bb;
5500
5501 /* Some of the basic blocks might not have been added to the loop.
5502 Add them here, until this is fixed in force_fallthru. */
5503 for (i = 0;
5504 last_added_blocks.iterate (i, &bb); i++)
5505 if (!bb->loop_father)
5506 {
5507 add_bb_to_loop (bb, e->dest->loop_father);
5508
5509 gcc_assert (!other_bb && (new_bb->index != bb->index));
5510 other_bb = bb;
5511 }
5512 }
5513
5514 /* Add all last_added_blocks to the region. */
5515 sel_add_bb (NULL);
5516
5517 jump = find_new_jump (src, new_bb, prev_max_uid);
5518 if (jump)
5519 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5520
5521 /* Put the correct lv set on this block. */
5522 if (other_bb && !sel_bb_empty_p (other_bb))
5523 compute_live (sel_bb_head (other_bb));
5524
5525 return new_bb;
5526 }
5527
5528 /* Implement sched_create_empty_bb (). */
5529 static basic_block
5530 sel_create_empty_bb (basic_block after)
5531 {
5532 basic_block new_bb;
5533
5534 new_bb = sched_create_empty_bb_1 (after);
5535
5536 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5537 later. */
5538 gcc_assert (last_added_blocks.length () == 1
5539 && last_added_blocks[0] == new_bb);
5540
5541 last_added_blocks.release ();
5542 return new_bb;
5543 }
5544
5545 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5546 will be splitted to insert a check. */
5547 basic_block
5548 sel_create_recovery_block (insn_t orig_insn)
5549 {
5550 basic_block first_bb, second_bb, recovery_block;
5551 basic_block before_recovery = NULL;
5552 rtx_insn *jump;
5553
5554 first_bb = BLOCK_FOR_INSN (orig_insn);
5555 if (sel_bb_end_p (orig_insn))
5556 {
5557 /* Avoid introducing an empty block while splitting. */
5558 gcc_assert (single_succ_p (first_bb));
5559 second_bb = single_succ (first_bb);
5560 }
5561 else
5562 second_bb = sched_split_block (first_bb, orig_insn);
5563
5564 recovery_block = sched_create_recovery_block (&before_recovery);
5565 if (before_recovery)
5566 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5567
5568 gcc_assert (sel_bb_empty_p (recovery_block));
5569 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5570 if (current_loops != NULL)
5571 add_bb_to_loop (recovery_block, first_bb->loop_father);
5572
5573 sel_add_bb (recovery_block);
5574
5575 jump = BB_END (recovery_block);
5576 gcc_assert (sel_bb_head (recovery_block) == jump);
5577 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5578
5579 return recovery_block;
5580 }
5581
5582 /* Merge basic block B into basic block A. */
5583 static void
5584 sel_merge_blocks (basic_block a, basic_block b)
5585 {
5586 gcc_assert (sel_bb_empty_p (b)
5587 && EDGE_COUNT (b->preds) == 1
5588 && EDGE_PRED (b, 0)->src == b->prev_bb);
5589
5590 move_bb_info (b->prev_bb, b);
5591 remove_empty_bb (b, false);
5592 merge_blocks (a, b);
5593 change_loops_latches (b, a);
5594 }
5595
5596 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5597 data structures for possibly created bb and insns. */
5598 void
5599 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5600 {
5601 basic_block jump_bb, src, orig_dest = e->dest;
5602 int prev_max_uid;
5603 rtx_insn *jump;
5604 int old_seqno = -1;
5605
5606 /* This function is now used only for bookkeeping code creation, where
5607 we'll never get the single pred of orig_dest block and thus will not
5608 hit unreachable blocks when updating dominator info. */
5609 gcc_assert (!sel_bb_empty_p (e->src)
5610 && !single_pred_p (orig_dest));
5611 src = e->src;
5612 prev_max_uid = get_max_uid ();
5613 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5614 when the conditional jump being redirected may become unconditional. */
5615 if (any_condjump_p (BB_END (src))
5616 && INSN_SEQNO (BB_END (src)) >= 0)
5617 old_seqno = INSN_SEQNO (BB_END (src));
5618
5619 jump_bb = redirect_edge_and_branch_force (e, to);
5620 if (jump_bb != NULL)
5621 sel_add_bb (jump_bb);
5622
5623 /* This function could not be used to spoil the loop structure by now,
5624 thus we don't care to update anything. But check it to be sure. */
5625 if (current_loop_nest
5626 && pipelining_p)
5627 gcc_assert (loop_latch_edge (current_loop_nest));
5628
5629 jump = find_new_jump (src, jump_bb, prev_max_uid);
5630 if (jump)
5631 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5632 old_seqno);
5633 set_immediate_dominator (CDI_DOMINATORS, to,
5634 recompute_dominator (CDI_DOMINATORS, to));
5635 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5636 recompute_dominator (CDI_DOMINATORS, orig_dest));
5637 if (jump && sel_bb_head_p (jump))
5638 compute_live (jump);
5639 }
5640
5641 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5642 redirected edge are in reverse topological order. */
5643 bool
5644 sel_redirect_edge_and_branch (edge e, basic_block to)
5645 {
5646 bool latch_edge_p;
5647 basic_block src, orig_dest = e->dest;
5648 int prev_max_uid;
5649 rtx_insn *jump;
5650 edge redirected;
5651 bool recompute_toporder_p = false;
5652 bool maybe_unreachable = single_pred_p (orig_dest);
5653 int old_seqno = -1;
5654
5655 latch_edge_p = (pipelining_p
5656 && current_loop_nest
5657 && e == loop_latch_edge (current_loop_nest));
5658
5659 src = e->src;
5660 prev_max_uid = get_max_uid ();
5661
5662 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5663 when the conditional jump being redirected may become unconditional. */
5664 if (any_condjump_p (BB_END (src))
5665 && INSN_SEQNO (BB_END (src)) >= 0)
5666 old_seqno = INSN_SEQNO (BB_END (src));
5667
5668 redirected = redirect_edge_and_branch (e, to);
5669
5670 gcc_assert (redirected && !last_added_blocks.exists ());
5671
5672 /* When we've redirected a latch edge, update the header. */
5673 if (latch_edge_p)
5674 {
5675 current_loop_nest->header = to;
5676 gcc_assert (loop_latch_edge (current_loop_nest));
5677 }
5678
5679 /* In rare situations, the topological relation between the blocks connected
5680 by the redirected edge can change (see PR42245 for an example). Update
5681 block_to_bb/bb_to_block. */
5682 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5683 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5684 recompute_toporder_p = true;
5685
5686 jump = find_new_jump (src, NULL, prev_max_uid);
5687 if (jump)
5688 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5689
5690 /* Only update dominator info when we don't have unreachable blocks.
5691 Otherwise we'll update in maybe_tidy_empty_bb. */
5692 if (!maybe_unreachable)
5693 {
5694 set_immediate_dominator (CDI_DOMINATORS, to,
5695 recompute_dominator (CDI_DOMINATORS, to));
5696 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5697 recompute_dominator (CDI_DOMINATORS, orig_dest));
5698 }
5699 if (jump && sel_bb_head_p (jump))
5700 compute_live (jump);
5701 return recompute_toporder_p;
5702 }
5703
5704 /* This variable holds the cfg hooks used by the selective scheduler. */
5705 static struct cfg_hooks sel_cfg_hooks;
5706
5707 /* Register sel-sched cfg hooks. */
5708 void
5709 sel_register_cfg_hooks (void)
5710 {
5711 sched_split_block = sel_split_block;
5712
5713 orig_cfg_hooks = get_cfg_hooks ();
5714 sel_cfg_hooks = orig_cfg_hooks;
5715
5716 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5717
5718 set_cfg_hooks (sel_cfg_hooks);
5719
5720 sched_init_only_bb = sel_init_only_bb;
5721 sched_split_block = sel_split_block;
5722 sched_create_empty_bb = sel_create_empty_bb;
5723 }
5724
5725 /* Unregister sel-sched cfg hooks. */
5726 void
5727 sel_unregister_cfg_hooks (void)
5728 {
5729 sched_create_empty_bb = NULL;
5730 sched_split_block = NULL;
5731 sched_init_only_bb = NULL;
5732
5733 set_cfg_hooks (orig_cfg_hooks);
5734 }
5735 \f
5736
5737 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5738 LABEL is where this jump should be directed. */
5739 rtx_insn *
5740 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5741 {
5742 rtx_insn *insn_rtx;
5743
5744 gcc_assert (!INSN_P (pattern));
5745
5746 start_sequence ();
5747
5748 if (label == NULL_RTX)
5749 insn_rtx = emit_insn (pattern);
5750 else if (DEBUG_INSN_P (label))
5751 insn_rtx = emit_debug_insn (pattern);
5752 else
5753 {
5754 insn_rtx = emit_jump_insn (pattern);
5755 JUMP_LABEL (insn_rtx) = label;
5756 ++LABEL_NUSES (label);
5757 }
5758
5759 end_sequence ();
5760
5761 sched_extend_luids ();
5762 sched_extend_target ();
5763 sched_deps_init (false);
5764
5765 /* Initialize INSN_CODE now. */
5766 recog_memoized (insn_rtx);
5767 return insn_rtx;
5768 }
5769
5770 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5771 must not be clonable. */
5772 vinsn_t
5773 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5774 {
5775 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5776
5777 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5778 return vinsn_create (insn_rtx, force_unique_p);
5779 }
5780
5781 /* Create a copy of INSN_RTX. */
5782 rtx_insn *
5783 create_copy_of_insn_rtx (rtx insn_rtx)
5784 {
5785 rtx_insn *res;
5786 rtx link;
5787
5788 if (DEBUG_INSN_P (insn_rtx))
5789 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5790 insn_rtx);
5791
5792 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5793
5794 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5795 NULL_RTX);
5796
5797 /* Locate the end of existing REG_NOTES in NEW_RTX. */
5798 rtx *ptail = &REG_NOTES (res);
5799 while (*ptail != NULL_RTX)
5800 ptail = &XEXP (*ptail, 1);
5801
5802 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5803 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5804 there too, but are supposed to be sticky, so we copy them. */
5805 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5806 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5807 && REG_NOTE_KIND (link) != REG_EQUAL
5808 && REG_NOTE_KIND (link) != REG_EQUIV)
5809 {
5810 *ptail = duplicate_reg_note (link);
5811 ptail = &XEXP (*ptail, 1);
5812 }
5813
5814 return res;
5815 }
5816
5817 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5818 void
5819 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5820 {
5821 vinsn_detach (EXPR_VINSN (expr));
5822
5823 EXPR_VINSN (expr) = new_vinsn;
5824 vinsn_attach (new_vinsn);
5825 }
5826
5827 /* Helpers for global init. */
5828 /* This structure is used to be able to call existing bundling mechanism
5829 and calculate insn priorities. */
5830 static struct haifa_sched_info sched_sel_haifa_sched_info =
5831 {
5832 NULL, /* init_ready_list */
5833 NULL, /* can_schedule_ready_p */
5834 NULL, /* schedule_more_p */
5835 NULL, /* new_ready */
5836 NULL, /* rgn_rank */
5837 sel_print_insn, /* rgn_print_insn */
5838 contributes_to_priority,
5839 NULL, /* insn_finishes_block_p */
5840
5841 NULL, NULL,
5842 NULL, NULL,
5843 0, 0,
5844
5845 NULL, /* add_remove_insn */
5846 NULL, /* begin_schedule_ready */
5847 NULL, /* begin_move_insn */
5848 NULL, /* advance_target_bb */
5849
5850 NULL,
5851 NULL,
5852
5853 SEL_SCHED | NEW_BBS
5854 };
5855
5856 /* Setup special insns used in the scheduler. */
5857 void
5858 setup_nop_and_exit_insns (void)
5859 {
5860 gcc_assert (nop_pattern == NULL_RTX
5861 && exit_insn == NULL_RTX);
5862
5863 nop_pattern = constm1_rtx;
5864
5865 start_sequence ();
5866 emit_insn (nop_pattern);
5867 exit_insn = get_insns ();
5868 end_sequence ();
5869 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5870 }
5871
5872 /* Free special insns used in the scheduler. */
5873 void
5874 free_nop_and_exit_insns (void)
5875 {
5876 exit_insn = NULL;
5877 nop_pattern = NULL_RTX;
5878 }
5879
5880 /* Setup a special vinsn used in new insns initialization. */
5881 void
5882 setup_nop_vinsn (void)
5883 {
5884 nop_vinsn = vinsn_create (exit_insn, false);
5885 vinsn_attach (nop_vinsn);
5886 }
5887
5888 /* Free a special vinsn used in new insns initialization. */
5889 void
5890 free_nop_vinsn (void)
5891 {
5892 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5893 vinsn_detach (nop_vinsn);
5894 nop_vinsn = NULL;
5895 }
5896
5897 /* Call a set_sched_flags hook. */
5898 void
5899 sel_set_sched_flags (void)
5900 {
5901 /* ??? This means that set_sched_flags were called, and we decided to
5902 support speculation. However, set_sched_flags also modifies flags
5903 on current_sched_info, doing this only at global init. And we
5904 sometimes change c_s_i later. So put the correct flags again. */
5905 if (spec_info && targetm.sched.set_sched_flags)
5906 targetm.sched.set_sched_flags (spec_info);
5907 }
5908
5909 /* Setup pointers to global sched info structures. */
5910 void
5911 sel_setup_sched_infos (void)
5912 {
5913 rgn_setup_common_sched_info ();
5914
5915 memcpy (&sel_common_sched_info, common_sched_info,
5916 sizeof (sel_common_sched_info));
5917
5918 sel_common_sched_info.fix_recovery_cfg = NULL;
5919 sel_common_sched_info.add_block = NULL;
5920 sel_common_sched_info.estimate_number_of_insns
5921 = sel_estimate_number_of_insns;
5922 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5923 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5924
5925 common_sched_info = &sel_common_sched_info;
5926
5927 current_sched_info = &sched_sel_haifa_sched_info;
5928 current_sched_info->sched_max_insns_priority =
5929 get_rgn_sched_max_insns_priority ();
5930
5931 sel_set_sched_flags ();
5932 }
5933 \f
5934
5935 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5936 *BB_ORD_INDEX after that is increased. */
5937 static void
5938 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5939 {
5940 RGN_NR_BLOCKS (rgn) += 1;
5941 RGN_DONT_CALC_DEPS (rgn) = 0;
5942 RGN_HAS_REAL_EBB (rgn) = 0;
5943 CONTAINING_RGN (bb->index) = rgn;
5944 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5945 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5946 (*bb_ord_index)++;
5947
5948 /* FIXME: it is true only when not scheduling ebbs. */
5949 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5950 }
5951
5952 /* Functions to support pipelining of outer loops. */
5953
5954 /* Creates a new empty region and returns it's number. */
5955 static int
5956 sel_create_new_region (void)
5957 {
5958 int new_rgn_number = nr_regions;
5959
5960 RGN_NR_BLOCKS (new_rgn_number) = 0;
5961
5962 /* FIXME: This will work only when EBBs are not created. */
5963 if (new_rgn_number != 0)
5964 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5965 RGN_NR_BLOCKS (new_rgn_number - 1);
5966 else
5967 RGN_BLOCKS (new_rgn_number) = 0;
5968
5969 /* Set the blocks of the next region so the other functions may
5970 calculate the number of blocks in the region. */
5971 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5972 RGN_NR_BLOCKS (new_rgn_number);
5973
5974 nr_regions++;
5975
5976 return new_rgn_number;
5977 }
5978
5979 /* If X has a smaller topological sort number than Y, returns -1;
5980 if greater, returns 1. */
5981 static int
5982 bb_top_order_comparator (const void *x, const void *y)
5983 {
5984 basic_block bb1 = *(const basic_block *) x;
5985 basic_block bb2 = *(const basic_block *) y;
5986
5987 gcc_assert (bb1 == bb2
5988 || rev_top_order_index[bb1->index]
5989 != rev_top_order_index[bb2->index]);
5990
5991 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5992 bbs with greater number should go earlier. */
5993 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5994 return -1;
5995 else
5996 return 1;
5997 }
5998
5999 /* Create a region for LOOP and return its number. If we don't want
6000 to pipeline LOOP, return -1. */
6001 static int
6002 make_region_from_loop (class loop *loop)
6003 {
6004 unsigned int i;
6005 int new_rgn_number = -1;
6006 class loop *inner;
6007
6008 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6009 int bb_ord_index = 0;
6010 basic_block *loop_blocks;
6011 basic_block preheader_block;
6012
6013 if (loop->num_nodes
6014 > (unsigned) param_max_pipeline_region_blocks)
6015 return -1;
6016
6017 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
6018 for (inner = loop->inner; inner; inner = inner->inner)
6019 if (flow_bb_inside_loop_p (inner, loop->latch))
6020 return -1;
6021
6022 loop->ninsns = num_loop_insns (loop);
6023 if ((int) loop->ninsns > param_max_pipeline_region_insns)
6024 return -1;
6025
6026 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6027
6028 for (i = 0; i < loop->num_nodes; i++)
6029 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6030 {
6031 free (loop_blocks);
6032 return -1;
6033 }
6034
6035 preheader_block = loop_preheader_edge (loop)->src;
6036 gcc_assert (preheader_block);
6037 gcc_assert (loop_blocks[0] == loop->header);
6038
6039 new_rgn_number = sel_create_new_region ();
6040
6041 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6042 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6043
6044 for (i = 0; i < loop->num_nodes; i++)
6045 {
6046 /* Add only those blocks that haven't been scheduled in the inner loop.
6047 The exception is the basic blocks with bookkeeping code - they should
6048 be added to the region (and they actually don't belong to the loop
6049 body, but to the region containing that loop body). */
6050
6051 gcc_assert (new_rgn_number >= 0);
6052
6053 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6054 {
6055 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6056 new_rgn_number);
6057 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6058 }
6059 }
6060
6061 free (loop_blocks);
6062 MARK_LOOP_FOR_PIPELINING (loop);
6063
6064 return new_rgn_number;
6065 }
6066
6067 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6068 void
6069 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6070 {
6071 unsigned int i;
6072 int new_rgn_number = -1;
6073 basic_block bb;
6074
6075 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6076 int bb_ord_index = 0;
6077
6078 new_rgn_number = sel_create_new_region ();
6079
6080 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6081 {
6082 gcc_assert (new_rgn_number >= 0);
6083
6084 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6085 }
6086
6087 vec_free (loop_blocks);
6088 }
6089
6090
6091 /* Create region(s) from loop nest LOOP, such that inner loops will be
6092 pipelined before outer loops. Returns true when a region for LOOP
6093 is created. */
6094 static bool
6095 make_regions_from_loop_nest (class loop *loop)
6096 {
6097 class loop *cur_loop;
6098 int rgn_number;
6099
6100 /* Traverse all inner nodes of the loop. */
6101 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6102 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6103 return false;
6104
6105 /* At this moment all regular inner loops should have been pipelined.
6106 Try to create a region from this loop. */
6107 rgn_number = make_region_from_loop (loop);
6108
6109 if (rgn_number < 0)
6110 return false;
6111
6112 loop_nests.safe_push (loop);
6113 return true;
6114 }
6115
6116 /* Initalize data structures needed. */
6117 void
6118 sel_init_pipelining (void)
6119 {
6120 /* Collect loop information to be used in outer loops pipelining. */
6121 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6122 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6123 | LOOPS_HAVE_RECORDED_EXITS
6124 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6125 current_loop_nest = NULL;
6126
6127 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6128 bitmap_clear (bbs_in_loop_rgns);
6129
6130 recompute_rev_top_order ();
6131 }
6132
6133 /* Returns a class loop for region RGN. */
6134 loop_p
6135 get_loop_nest_for_rgn (unsigned int rgn)
6136 {
6137 /* Regions created with extend_rgns don't have corresponding loop nests,
6138 because they don't represent loops. */
6139 if (rgn < loop_nests.length ())
6140 return loop_nests[rgn];
6141 else
6142 return NULL;
6143 }
6144
6145 /* True when LOOP was included into pipelining regions. */
6146 bool
6147 considered_for_pipelining_p (class loop *loop)
6148 {
6149 if (loop_depth (loop) == 0)
6150 return false;
6151
6152 /* Now, the loop could be too large or irreducible. Check whether its
6153 region is in LOOP_NESTS.
6154 We determine the region number of LOOP as the region number of its
6155 latch. We can't use header here, because this header could be
6156 just removed preheader and it will give us the wrong region number.
6157 Latch can't be used because it could be in the inner loop too. */
6158 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6159 {
6160 int rgn = CONTAINING_RGN (loop->latch->index);
6161
6162 gcc_assert ((unsigned) rgn < loop_nests.length ());
6163 return true;
6164 }
6165
6166 return false;
6167 }
6168
6169 /* Makes regions from the rest of the blocks, after loops are chosen
6170 for pipelining. */
6171 static void
6172 make_regions_from_the_rest (void)
6173 {
6174 int cur_rgn_blocks;
6175 int *loop_hdr;
6176 int i;
6177
6178 basic_block bb;
6179 edge e;
6180 edge_iterator ei;
6181 int *degree;
6182
6183 /* Index in rgn_bb_table where to start allocating new regions. */
6184 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6185
6186 /* Make regions from all the rest basic blocks - those that don't belong to
6187 any loop or belong to irreducible loops. Prepare the data structures
6188 for extend_rgns. */
6189
6190 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6191 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6192 loop. */
6193 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6194 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6195
6196
6197 /* For each basic block that belongs to some loop assign the number
6198 of innermost loop it belongs to. */
6199 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6200 loop_hdr[i] = -1;
6201
6202 FOR_EACH_BB_FN (bb, cfun)
6203 {
6204 if (bb->loop_father && bb->loop_father->num != 0
6205 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6206 loop_hdr[bb->index] = bb->loop_father->num;
6207 }
6208
6209 /* For each basic block degree is calculated as the number of incoming
6210 edges, that are going out of bbs that are not yet scheduled.
6211 The basic blocks that are scheduled have degree value of zero. */
6212 FOR_EACH_BB_FN (bb, cfun)
6213 {
6214 degree[bb->index] = 0;
6215
6216 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6217 {
6218 FOR_EACH_EDGE (e, ei, bb->preds)
6219 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6220 degree[bb->index]++;
6221 }
6222 else
6223 degree[bb->index] = -1;
6224 }
6225
6226 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6227
6228 /* Any block that did not end up in a region is placed into a region
6229 by itself. */
6230 FOR_EACH_BB_FN (bb, cfun)
6231 if (degree[bb->index] >= 0)
6232 {
6233 rgn_bb_table[cur_rgn_blocks] = bb->index;
6234 RGN_NR_BLOCKS (nr_regions) = 1;
6235 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6236 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6237 RGN_HAS_REAL_EBB (nr_regions) = 0;
6238 CONTAINING_RGN (bb->index) = nr_regions++;
6239 BLOCK_TO_BB (bb->index) = 0;
6240 }
6241
6242 free (degree);
6243 free (loop_hdr);
6244 }
6245
6246 /* Free data structures used in pipelining of loops. */
6247 void sel_finish_pipelining (void)
6248 {
6249 class loop *loop;
6250
6251 /* Release aux fields so we don't free them later by mistake. */
6252 FOR_EACH_LOOP (loop, 0)
6253 loop->aux = NULL;
6254
6255 loop_optimizer_finalize ();
6256
6257 loop_nests.release ();
6258
6259 free (rev_top_order_index);
6260 rev_top_order_index = NULL;
6261 }
6262
6263 /* This function replaces the find_rgns when
6264 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6265 void
6266 sel_find_rgns (void)
6267 {
6268 sel_init_pipelining ();
6269 extend_regions ();
6270
6271 if (current_loops)
6272 {
6273 loop_p loop;
6274
6275 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6276 ? LI_FROM_INNERMOST
6277 : LI_ONLY_INNERMOST))
6278 make_regions_from_loop_nest (loop);
6279 }
6280
6281 /* Make regions from all the rest basic blocks and schedule them.
6282 These blocks include blocks that don't belong to any loop or belong
6283 to irreducible loops. */
6284 make_regions_from_the_rest ();
6285
6286 /* We don't need bbs_in_loop_rgns anymore. */
6287 sbitmap_free (bbs_in_loop_rgns);
6288 bbs_in_loop_rgns = NULL;
6289 }
6290
6291 /* Add the preheader blocks from previous loop to current region taking
6292 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6293 This function is only used with -fsel-sched-pipelining-outer-loops. */
6294 void
6295 sel_add_loop_preheaders (bb_vec_t *bbs)
6296 {
6297 int i;
6298 basic_block bb;
6299 vec<basic_block> *preheader_blocks
6300 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6301
6302 if (!preheader_blocks)
6303 return;
6304
6305 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6306 {
6307 bbs->safe_push (bb);
6308 last_added_blocks.safe_push (bb);
6309 sel_add_bb (bb);
6310 }
6311
6312 vec_free (preheader_blocks);
6313 }
6314
6315 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6316 Please note that the function should also work when pipelining_p is
6317 false, because it is used when deciding whether we should or should
6318 not reschedule pipelined code. */
6319 bool
6320 sel_is_loop_preheader_p (basic_block bb)
6321 {
6322 if (current_loop_nest)
6323 {
6324 class loop *outer;
6325
6326 if (preheader_removed)
6327 return false;
6328
6329 /* Preheader is the first block in the region. */
6330 if (BLOCK_TO_BB (bb->index) == 0)
6331 return true;
6332
6333 /* We used to find a preheader with the topological information.
6334 Check that the above code is equivalent to what we did before. */
6335
6336 if (in_current_region_p (current_loop_nest->header))
6337 gcc_assert (!(BLOCK_TO_BB (bb->index)
6338 < BLOCK_TO_BB (current_loop_nest->header->index)));
6339
6340 /* Support the situation when the latch block of outer loop
6341 could be from here. */
6342 for (outer = loop_outer (current_loop_nest);
6343 outer;
6344 outer = loop_outer (outer))
6345 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6346 gcc_unreachable ();
6347 }
6348
6349 return false;
6350 }
6351
6352 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6353 can be removed, making the corresponding edge fallthrough (assuming that
6354 all basic blocks between JUMP_BB and DEST_BB are empty). */
6355 static bool
6356 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6357 {
6358 if (!onlyjump_p (BB_END (jump_bb))
6359 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6360 return false;
6361
6362 /* Several outgoing edges, abnormal edge or destination of jump is
6363 not DEST_BB. */
6364 if (EDGE_COUNT (jump_bb->succs) != 1
6365 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6366 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6367 return false;
6368
6369 /* If not anything of the upper. */
6370 return true;
6371 }
6372
6373 /* Removes the loop preheader from the current region and saves it in
6374 PREHEADER_BLOCKS of the father loop, so they will be added later to
6375 region that represents an outer loop. */
6376 static void
6377 sel_remove_loop_preheader (void)
6378 {
6379 int i, old_len;
6380 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6381 basic_block bb;
6382 bool all_empty_p = true;
6383 vec<basic_block> *preheader_blocks
6384 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6385
6386 vec_check_alloc (preheader_blocks, 0);
6387
6388 gcc_assert (current_loop_nest);
6389 old_len = preheader_blocks->length ();
6390
6391 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6392 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6393 {
6394 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6395
6396 /* If the basic block belongs to region, but doesn't belong to
6397 corresponding loop, then it should be a preheader. */
6398 if (sel_is_loop_preheader_p (bb))
6399 {
6400 preheader_blocks->safe_push (bb);
6401 if (BB_END (bb) != bb_note (bb))
6402 all_empty_p = false;
6403 }
6404 }
6405
6406 /* Remove these blocks only after iterating over the whole region. */
6407 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6408 {
6409 bb = (*preheader_blocks)[i];
6410 sel_remove_bb (bb, false);
6411 }
6412
6413 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6414 {
6415 if (!all_empty_p)
6416 /* Immediately create new region from preheader. */
6417 make_region_from_loop_preheader (preheader_blocks);
6418 else
6419 {
6420 /* If all preheader blocks are empty - dont create new empty region.
6421 Instead, remove them completely. */
6422 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6423 {
6424 edge e;
6425 edge_iterator ei;
6426 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6427
6428 /* Redirect all incoming edges to next basic block. */
6429 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6430 {
6431 if (! (e->flags & EDGE_FALLTHRU))
6432 redirect_edge_and_branch (e, bb->next_bb);
6433 else
6434 redirect_edge_succ (e, bb->next_bb);
6435 }
6436 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6437 delete_and_free_basic_block (bb);
6438
6439 /* Check if after deleting preheader there is a nonconditional
6440 jump in PREV_BB that leads to the next basic block NEXT_BB.
6441 If it is so - delete this jump and clear data sets of its
6442 basic block if it becomes empty. */
6443 if (next_bb->prev_bb == prev_bb
6444 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6445 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6446 {
6447 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6448 if (BB_END (prev_bb) == bb_note (prev_bb))
6449 free_data_sets (prev_bb);
6450 }
6451
6452 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6453 recompute_dominator (CDI_DOMINATORS,
6454 next_bb));
6455 }
6456 }
6457 vec_free (preheader_blocks);
6458 }
6459 else
6460 /* Store preheader within the father's loop structure. */
6461 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6462 preheader_blocks);
6463 }
6464
6465 #endif