]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched-ir.c
Tighten up params of create_basic_block_structure
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
44
45 #ifdef INSN_SCHEDULING
46 #include "sel-sched-ir.h"
47 /* We don't have to use it except for sel_print_insn. */
48 #include "sel-sched-dump.h"
49
50 /* A vector holding bb info for whole scheduling pass. */
51 vec<sel_global_bb_info_def>
52 sel_global_bb_info = vNULL;
53
54 /* A vector holding bb info. */
55 vec<sel_region_bb_info_def>
56 sel_region_bb_info = vNULL;
57
58 /* A pool for allocating all lists. */
59 alloc_pool sched_lists_pool;
60
61 /* This contains information about successors for compute_av_set. */
62 struct succs_info current_succs;
63
64 /* Data structure to describe interaction with the generic scheduler utils. */
65 static struct common_sched_info_def sel_common_sched_info;
66
67 /* The loop nest being pipelined. */
68 struct loop *current_loop_nest;
69
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72 static vec<loop_p> loop_nests = vNULL;
73
74 /* Saves blocks already in loop regions, indexed by bb->index. */
75 static sbitmap bbs_in_loop_rgns = NULL;
76
77 /* CFG hooks that are saved before changing create_basic_block hook. */
78 static struct cfg_hooks orig_cfg_hooks;
79 \f
80
81 /* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83 static int *rev_top_order_index = NULL;
84
85 /* Length of the above array. */
86 static int rev_top_order_index_len = -1;
87
88 /* A regset pool structure. */
89 static struct
90 {
91 /* The stack to which regsets are returned. */
92 regset *v;
93
94 /* Its pointer. */
95 int n;
96
97 /* Its size. */
98 int s;
99
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
104
105 /* The pointer of VV stack. */
106 int nn;
107
108 /* Its size. */
109 int ss;
110
111 /* The difference between allocated and returned regsets. */
112 int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
114
115 /* This represents the nop pool. */
116 static struct
117 {
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
120
121 /* Its pointer. */
122 int n;
123
124 /* Its size. */
125 int s;
126 } nop_pool = { NULL, 0, 0 };
127
128 /* The pool for basic block notes. */
129 static vec<rtx_note *> bb_note_pool;
130
131 /* A NOP pattern used to emit placeholder insns. */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx_insn *exit_insn = NULL;
136
137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139 bool preheader_removed = false;
140 \f
141
142 /* Forward static declarations. */
143 static void fence_clear (fence_t);
144
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
148
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (vec<expr_history_def> &);
152
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_merge_blocks (basic_block, basic_block);
156 static void sel_remove_loop_preheader (void);
157 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
158
159 static bool insn_is_the_only_one_in_bb_p (insn_t);
160 static void create_initial_data_sets (basic_block);
161
162 static void free_av_set (basic_block);
163 static void invalidate_av_set (basic_block);
164 static void extend_insn_data (void);
165 static void sel_init_new_insn (insn_t, int, int = -1);
166 static void finish_insns (void);
167 \f
168 /* Various list functions. */
169
170 /* Copy an instruction list L. */
171 ilist_t
172 ilist_copy (ilist_t l)
173 {
174 ilist_t head = NULL, *tailp = &head;
175
176 while (l)
177 {
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
181 }
182
183 return head;
184 }
185
186 /* Invert an instruction list L. */
187 ilist_t
188 ilist_invert (ilist_t l)
189 {
190 ilist_t res = NULL;
191
192 while (l)
193 {
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
196 }
197
198 return res;
199 }
200
201 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202 void
203 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
204 {
205 bnd_t bnd;
206
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
209
210 BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
215 }
216
217 /* Remove the list note pointed to by LP. */
218 void
219 blist_remove (blist_t *lp)
220 {
221 bnd_t b = BLIST_BND (*lp);
222
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
226
227 _list_remove (lp);
228 }
229
230 /* Init a fence tail L. */
231 void
232 flist_tail_init (flist_tail_t l)
233 {
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
236 }
237
238 /* Try to find fence corresponding to INSN in L. */
239 fence_t
240 flist_lookup (flist_t l, insn_t insn)
241 {
242 while (l)
243 {
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
246
247 l = FLIST_NEXT (l);
248 }
249
250 return NULL;
251 }
252
253 /* Init the fields of F before running fill_insns. */
254 static void
255 init_fence_for_scheduling (fence_t f)
256 {
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
260 }
261
262 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263 static void
264 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
267 int cycle, int cycle_issued_insns, int issue_more,
268 bool starts_cycle_p, bool after_stall_p)
269 {
270 fence_t f;
271
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
274
275 FENCE_INSN (f) = insn;
276
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
279
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
284
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
287
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
290
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
292 FENCE_ISSUE_MORE (f) = issue_more;
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
297
298 init_fence_for_scheduling (f);
299 }
300
301 /* Remove the head node of the list pointed to by LP. */
302 static void
303 flist_remove (flist_t *lp)
304 {
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
308 }
309
310 /* Clear the fence list pointed to by LP. */
311 void
312 flist_clear (flist_t *lp)
313 {
314 while (*lp)
315 flist_remove (lp);
316 }
317
318 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319 void
320 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
321 {
322 def_t d;
323
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
326
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
329 }
330 \f
331
332 /* Functions to work with target contexts. */
333
334 /* Bulk target context. It is convenient for debugging purposes to ensure
335 that there are no uninitialized (null) target contexts. */
336 static tc_t bulk_tc = (tc_t) 1;
337
338 /* Target hooks wrappers. In the future we can provide some default
339 implementations for them. */
340
341 /* Allocate a store for the target context. */
342 static tc_t
343 alloc_target_context (void)
344 {
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
347 }
348
349 /* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352 static void
353 init_target_context (tc_t tc, bool clean_p)
354 {
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
357 }
358
359 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361 tc_t
362 create_target_context (bool clean_p)
363 {
364 tc_t tc = alloc_target_context ();
365
366 init_target_context (tc, clean_p);
367 return tc;
368 }
369
370 /* Copy TC to the current backend context. */
371 void
372 set_target_context (tc_t tc)
373 {
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
376 }
377
378 /* TC is about to be destroyed. Free any internal data. */
379 static void
380 clear_target_context (tc_t tc)
381 {
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
384 }
385
386 /* Clear and free it. */
387 static void
388 delete_target_context (tc_t tc)
389 {
390 clear_target_context (tc);
391
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
394 }
395
396 /* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398 static void
399 copy_target_context (tc_t to, tc_t from)
400 {
401 tc_t tmp = create_target_context (false);
402
403 set_target_context (from);
404 init_target_context (to, false);
405
406 set_target_context (tmp);
407 delete_target_context (tmp);
408 }
409
410 /* Create a copy of TC. */
411 static tc_t
412 create_copy_of_target_context (tc_t tc)
413 {
414 tc_t copy = alloc_target_context ();
415
416 copy_target_context (copy, tc);
417
418 return copy;
419 }
420
421 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423 void
424 reset_target_context (tc_t tc, bool clean_p)
425 {
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
428 }
429 \f
430 /* Functions to work with dependence contexts.
431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
434
435 /* Make a copy of FROM in TO. */
436 static void
437 copy_deps_context (deps_t to, deps_t from)
438 {
439 init_deps (to, false);
440 deps_join (to, from);
441 }
442
443 /* Allocate store for dep context. */
444 static deps_t
445 alloc_deps_context (void)
446 {
447 return XNEW (struct deps_desc);
448 }
449
450 /* Allocate and initialize dep context. */
451 static deps_t
452 create_deps_context (void)
453 {
454 deps_t dc = alloc_deps_context ();
455
456 init_deps (dc, false);
457 return dc;
458 }
459
460 /* Create a copy of FROM. */
461 static deps_t
462 create_copy_of_deps_context (deps_t from)
463 {
464 deps_t to = alloc_deps_context ();
465
466 copy_deps_context (to, from);
467 return to;
468 }
469
470 /* Clean up internal data of DC. */
471 static void
472 clear_deps_context (deps_t dc)
473 {
474 free_deps (dc);
475 }
476
477 /* Clear and free DC. */
478 static void
479 delete_deps_context (deps_t dc)
480 {
481 clear_deps_context (dc);
482 free (dc);
483 }
484
485 /* Clear and init DC. */
486 static void
487 reset_deps_context (deps_t dc)
488 {
489 clear_deps_context (dc);
490 init_deps (dc, false);
491 }
492
493 /* This structure describes the dependence analysis hooks for advancing
494 dependence context. */
495 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
496 {
497 NULL,
498
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
510
511 0, 0, 0
512 };
513
514 /* Process INSN and add its impact on DC. */
515 void
516 advance_deps_context (deps_t dc, insn_t insn)
517 {
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
520 }
521 \f
522
523 /* Functions to work with DFA states. */
524
525 /* Allocate store for a DFA state. */
526 static state_t
527 state_alloc (void)
528 {
529 return xmalloc (dfa_state_size);
530 }
531
532 /* Allocate and initialize DFA state. */
533 static state_t
534 state_create (void)
535 {
536 state_t state = state_alloc ();
537
538 state_reset (state);
539 advance_state (state);
540 return state;
541 }
542
543 /* Free DFA state. */
544 static void
545 state_free (state_t state)
546 {
547 free (state);
548 }
549
550 /* Make a copy of FROM in TO. */
551 static void
552 state_copy (state_t to, state_t from)
553 {
554 memcpy (to, from, dfa_state_size);
555 }
556
557 /* Create a copy of FROM. */
558 static state_t
559 state_create_copy (state_t from)
560 {
561 state_t to = state_alloc ();
562
563 state_copy (to, from);
564 return to;
565 }
566 \f
567
568 /* Functions to work with fences. */
569
570 /* Clear the fence. */
571 static void
572 fence_clear (fence_t f)
573 {
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
577
578 ilist_clear (&FENCE_BNDS (f));
579
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
582
583 free (s);
584
585 if (dc != NULL)
586 delete_deps_context (dc);
587
588 if (tc != NULL)
589 delete_target_context (tc);
590 vec_free (FENCE_EXECUTING_INSNS (f));
591 free (FENCE_READY_TICKS (f));
592 FENCE_READY_TICKS (f) = NULL;
593 }
594
595 /* Init a list of fences with successors of OLD_FENCE. */
596 void
597 init_fences (insn_t old_fence)
598 {
599 insn_t succ;
600 succ_iterator si;
601 bool first = true;
602 int ready_ticks_size = get_max_uid () + 1;
603
604 FOR_EACH_SUCC_1 (succ, si, old_fence,
605 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
606 {
607
608 if (first)
609 first = false;
610 else
611 gcc_assert (flag_sel_sched_pipelining_outer_loops);
612
613 flist_add (&fences, succ,
614 state_create (),
615 create_deps_context () /* dc */,
616 create_target_context (true) /* tc */,
617 NULL /* last_scheduled_insn */,
618 NULL, /* executing_insns */
619 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
620 ready_ticks_size,
621 NULL /* sched_next */,
622 1 /* cycle */, 0 /* cycle_issued_insns */,
623 issue_rate, /* issue_more */
624 1 /* starts_cycle_p */, 0 /* after_stall_p */);
625 }
626 }
627
628 /* Merges two fences (filling fields of fence F with resulting values) by
629 following rules: 1) state, target context and last scheduled insn are
630 propagated from fallthrough edge if it is available;
631 2) deps context and cycle is propagated from more probable edge;
632 3) all other fields are set to corresponding constant values.
633
634 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
635 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
636 and AFTER_STALL_P are the corresponding fields of the second fence. */
637 static void
638 merge_fences (fence_t f, insn_t insn,
639 state_t state, deps_t dc, void *tc,
640 rtx_insn *last_scheduled_insn,
641 vec<rtx_insn *, va_gc> *executing_insns,
642 int *ready_ticks, int ready_ticks_size,
643 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
644 {
645 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648 && !sched_next && !FENCE_SCHED_NEXT (f));
649
650 /* Check if we can decide which path fences came.
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn == NULL
653 || last_scheduled_insn_old == NULL
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn == last_scheduled_insn_old)
659 {
660 state_reset (FENCE_STATE (f));
661 state_free (state);
662
663 reset_deps_context (FENCE_DC (f));
664 delete_deps_context (dc);
665
666 reset_target_context (FENCE_TC (f), true);
667 delete_target_context (tc);
668
669 if (cycle > FENCE_CYCLE (f))
670 FENCE_CYCLE (f) = cycle;
671
672 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
673 FENCE_ISSUE_MORE (f) = issue_rate;
674 vec_free (executing_insns);
675 free (ready_ticks);
676 if (FENCE_EXECUTING_INSNS (f))
677 FENCE_EXECUTING_INSNS (f)->block_remove (0,
678 FENCE_EXECUTING_INSNS (f)->length ());
679 if (FENCE_READY_TICKS (f))
680 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681 }
682 else
683 {
684 edge edge_old = NULL, edge_new = NULL;
685 edge candidate;
686 succ_iterator si;
687 insn_t succ;
688
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
691 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
692
693 if (!candidate
694 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696 {
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f));
699 state_free (state);
700
701 reset_target_context (FENCE_TC (f), true);
702 delete_target_context (tc);
703
704 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
705 FENCE_ISSUE_MORE (f) = issue_rate;
706 }
707 else
708 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709 {
710 /* Would be weird if same insn is successor of several fallthrough
711 edges. */
712 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old));
714
715 state_free (FENCE_STATE (f));
716 FENCE_STATE (f) = state;
717
718 delete_target_context (FENCE_TC (f));
719 FENCE_TC (f) = tc;
720
721 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
722 FENCE_ISSUE_MORE (f) = issue_more;
723 }
724 else
725 {
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
727 state_free (state);
728 delete_target_context (tc);
729
730 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn));
732 }
733
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737 {
738 if (succ == insn)
739 {
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old);
742 edge_old = si.e1;
743 }
744 }
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748 {
749 if (succ == insn)
750 {
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new);
753 edge_new = si.e1;
754 }
755 }
756
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old == NULL || edge_new == NULL)
759 {
760 reset_deps_context (FENCE_DC (f));
761 delete_deps_context (dc);
762 vec_free (executing_insns);
763 free (ready_ticks);
764
765 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766 if (FENCE_EXECUTING_INSNS (f))
767 FENCE_EXECUTING_INSNS (f)->block_remove (0,
768 FENCE_EXECUTING_INSNS (f)->length ());
769 if (FENCE_READY_TICKS (f))
770 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771 }
772 else
773 if (edge_new->probability > edge_old->probability)
774 {
775 delete_deps_context (FENCE_DC (f));
776 FENCE_DC (f) = dc;
777 vec_free (FENCE_EXECUTING_INSNS (f));
778 FENCE_EXECUTING_INSNS (f) = executing_insns;
779 free (FENCE_READY_TICKS (f));
780 FENCE_READY_TICKS (f) = ready_ticks;
781 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782 FENCE_CYCLE (f) = cycle;
783 }
784 else
785 {
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc);
788 vec_free (executing_insns);
789 free (ready_ticks);
790 }
791 }
792
793 /* Fill remaining invariant fields. */
794 if (after_stall_p)
795 FENCE_AFTER_STALL_P (f) = 1;
796
797 FENCE_ISSUED_INSNS (f) = 0;
798 FENCE_STARTS_CYCLE_P (f) = 1;
799 FENCE_SCHED_NEXT (f) = NULL;
800 }
801
802 /* Add a new fence to NEW_FENCES list, initializing it from all
803 other parameters. */
804 static void
805 add_to_fences (flist_tail_t new_fences, insn_t insn,
806 state_t state, deps_t dc, void *tc,
807 rtx_insn *last_scheduled_insn,
808 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
809 int ready_ticks_size, rtx_insn *sched_next, int cycle,
810 int cycle_issued_insns, int issue_rate,
811 bool starts_cycle_p, bool after_stall_p)
812 {
813 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
814
815 if (! f)
816 {
817 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
818 last_scheduled_insn, executing_insns, ready_ticks,
819 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
820 issue_rate, starts_cycle_p, after_stall_p);
821
822 FLIST_TAIL_TAILP (new_fences)
823 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
824 }
825 else
826 {
827 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
828 executing_insns, ready_ticks, ready_ticks_size,
829 sched_next, cycle, issue_rate, after_stall_p);
830 }
831 }
832
833 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
834 void
835 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
836 {
837 fence_t f, old;
838 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
839
840 old = FLIST_FENCE (old_fences);
841 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
842 FENCE_INSN (FLIST_FENCE (old_fences)));
843 if (f)
844 {
845 merge_fences (f, old->insn, old->state, old->dc, old->tc,
846 old->last_scheduled_insn, old->executing_insns,
847 old->ready_ticks, old->ready_ticks_size,
848 old->sched_next, old->cycle, old->issue_more,
849 old->after_stall_p);
850 }
851 else
852 {
853 _list_add (tailp);
854 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
855 *FLIST_FENCE (*tailp) = *old;
856 init_fence_for_scheduling (FLIST_FENCE (*tailp));
857 }
858 FENCE_INSN (old) = NULL;
859 }
860
861 /* Add a new fence to NEW_FENCES list and initialize most of its data
862 as a clean one. */
863 void
864 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
865 {
866 int ready_ticks_size = get_max_uid () + 1;
867
868 add_to_fences (new_fences,
869 succ, state_create (), create_deps_context (),
870 create_target_context (true),
871 NULL, NULL,
872 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
873 NULL, FENCE_CYCLE (fence) + 1,
874 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
875 }
876
877 /* Add a new fence to NEW_FENCES list and initialize all of its data
878 from FENCE and SUCC. */
879 void
880 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
881 {
882 int * new_ready_ticks
883 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
884
885 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
886 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
887 add_to_fences (new_fences,
888 succ, state_create_copy (FENCE_STATE (fence)),
889 create_copy_of_deps_context (FENCE_DC (fence)),
890 create_copy_of_target_context (FENCE_TC (fence)),
891 FENCE_LAST_SCHEDULED_INSN (fence),
892 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
893 new_ready_ticks,
894 FENCE_READY_TICKS_SIZE (fence),
895 FENCE_SCHED_NEXT (fence),
896 FENCE_CYCLE (fence),
897 FENCE_ISSUED_INSNS (fence),
898 FENCE_ISSUE_MORE (fence),
899 FENCE_STARTS_CYCLE_P (fence),
900 FENCE_AFTER_STALL_P (fence));
901 }
902 \f
903
904 /* Functions to work with regset and nop pools. */
905
906 /* Returns the new regset from pool. It might have some of the bits set
907 from the previous usage. */
908 regset
909 get_regset_from_pool (void)
910 {
911 regset rs;
912
913 if (regset_pool.n != 0)
914 rs = regset_pool.v[--regset_pool.n];
915 else
916 /* We need to create the regset. */
917 {
918 rs = ALLOC_REG_SET (&reg_obstack);
919
920 if (regset_pool.nn == regset_pool.ss)
921 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
922 (regset_pool.ss = 2 * regset_pool.ss + 1));
923 regset_pool.vv[regset_pool.nn++] = rs;
924 }
925
926 regset_pool.diff++;
927
928 return rs;
929 }
930
931 /* Same as above, but returns the empty regset. */
932 regset
933 get_clear_regset_from_pool (void)
934 {
935 regset rs = get_regset_from_pool ();
936
937 CLEAR_REG_SET (rs);
938 return rs;
939 }
940
941 /* Return regset RS to the pool for future use. */
942 void
943 return_regset_to_pool (regset rs)
944 {
945 gcc_assert (rs);
946 regset_pool.diff--;
947
948 if (regset_pool.n == regset_pool.s)
949 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
950 (regset_pool.s = 2 * regset_pool.s + 1));
951 regset_pool.v[regset_pool.n++] = rs;
952 }
953
954 #ifdef ENABLE_CHECKING
955 /* This is used as a qsort callback for sorting regset pool stacks.
956 X and XX are addresses of two regsets. They are never equal. */
957 static int
958 cmp_v_in_regset_pool (const void *x, const void *xx)
959 {
960 uintptr_t r1 = (uintptr_t) *((const regset *) x);
961 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
962 if (r1 > r2)
963 return 1;
964 else if (r1 < r2)
965 return -1;
966 gcc_unreachable ();
967 }
968 #endif
969
970 /* Free the regset pool possibly checking for memory leaks. */
971 void
972 free_regset_pool (void)
973 {
974 #ifdef ENABLE_CHECKING
975 {
976 regset *v = regset_pool.v;
977 int i = 0;
978 int n = regset_pool.n;
979
980 regset *vv = regset_pool.vv;
981 int ii = 0;
982 int nn = regset_pool.nn;
983
984 int diff = 0;
985
986 gcc_assert (n <= nn);
987
988 /* Sort both vectors so it will be possible to compare them. */
989 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
990 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
991
992 while (ii < nn)
993 {
994 if (v[i] == vv[ii])
995 i++;
996 else
997 /* VV[II] was lost. */
998 diff++;
999
1000 ii++;
1001 }
1002
1003 gcc_assert (diff == regset_pool.diff);
1004 }
1005 #endif
1006
1007 /* If not true - we have a memory leak. */
1008 gcc_assert (regset_pool.diff == 0);
1009
1010 while (regset_pool.n)
1011 {
1012 --regset_pool.n;
1013 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1014 }
1015
1016 free (regset_pool.v);
1017 regset_pool.v = NULL;
1018 regset_pool.s = 0;
1019
1020 free (regset_pool.vv);
1021 regset_pool.vv = NULL;
1022 regset_pool.nn = 0;
1023 regset_pool.ss = 0;
1024
1025 regset_pool.diff = 0;
1026 }
1027 \f
1028
1029 /* Functions to work with nop pools. NOP insns are used as temporary
1030 placeholders of the insns being scheduled to allow correct update of
1031 the data sets. When update is finished, NOPs are deleted. */
1032
1033 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1034 nops sel-sched generates. */
1035 static vinsn_t nop_vinsn = NULL;
1036
1037 /* Emit a nop before INSN, taking it from pool. */
1038 insn_t
1039 get_nop_from_pool (insn_t insn)
1040 {
1041 rtx nop_pat;
1042 insn_t nop;
1043 bool old_p = nop_pool.n != 0;
1044 int flags;
1045
1046 if (old_p)
1047 nop_pat = nop_pool.v[--nop_pool.n];
1048 else
1049 nop_pat = nop_pattern;
1050
1051 nop = emit_insn_before (nop_pat, insn);
1052
1053 if (old_p)
1054 flags = INSN_INIT_TODO_SSID;
1055 else
1056 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1057
1058 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1059 sel_init_new_insn (nop, flags);
1060
1061 return nop;
1062 }
1063
1064 /* Remove NOP from the instruction stream and return it to the pool. */
1065 void
1066 return_nop_to_pool (insn_t nop, bool full_tidying)
1067 {
1068 gcc_assert (INSN_IN_STREAM_P (nop));
1069 sel_remove_insn (nop, false, full_tidying);
1070
1071 /* We'll recycle this nop. */
1072 INSN_DELETED_P (nop) = 0;
1073
1074 if (nop_pool.n == nop_pool.s)
1075 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1076 (nop_pool.s = 2 * nop_pool.s + 1));
1077 nop_pool.v[nop_pool.n++] = nop;
1078 }
1079
1080 /* Free the nop pool. */
1081 void
1082 free_nop_pool (void)
1083 {
1084 nop_pool.n = 0;
1085 nop_pool.s = 0;
1086 free (nop_pool.v);
1087 nop_pool.v = NULL;
1088 }
1089 \f
1090
1091 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1092 The callback is given two rtxes XX and YY and writes the new rtxes
1093 to NX and NY in case some needs to be skipped. */
1094 static int
1095 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1096 {
1097 const_rtx x = *xx;
1098 const_rtx y = *yy;
1099
1100 if (GET_CODE (x) == UNSPEC
1101 && (targetm.sched.skip_rtx_p == NULL
1102 || targetm.sched.skip_rtx_p (x)))
1103 {
1104 *nx = XVECEXP (x, 0, 0);
1105 *ny = CONST_CAST_RTX (y);
1106 return 1;
1107 }
1108
1109 if (GET_CODE (y) == UNSPEC
1110 && (targetm.sched.skip_rtx_p == NULL
1111 || targetm.sched.skip_rtx_p (y)))
1112 {
1113 *nx = CONST_CAST_RTX (x);
1114 *ny = XVECEXP (y, 0, 0);
1115 return 1;
1116 }
1117
1118 return 0;
1119 }
1120
1121 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1122 to support ia64 speculation. When changes are needed, new rtx X and new mode
1123 NMODE are written, and the callback returns true. */
1124 static int
1125 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1126 rtx *nx, enum machine_mode* nmode)
1127 {
1128 if (GET_CODE (x) == UNSPEC
1129 && targetm.sched.skip_rtx_p
1130 && targetm.sched.skip_rtx_p (x))
1131 {
1132 *nx = XVECEXP (x, 0 ,0);
1133 *nmode = VOIDmode;
1134 return 1;
1135 }
1136
1137 return 0;
1138 }
1139
1140 /* Returns LHS and RHS are ok to be scheduled separately. */
1141 static bool
1142 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1143 {
1144 if (lhs == NULL || rhs == NULL)
1145 return false;
1146
1147 /* Do not schedule constants as rhs: no point to use reg, if const
1148 can be used. Moreover, scheduling const as rhs may lead to mode
1149 mismatch cause consts don't have modes but they could be merged
1150 from branches where the same const used in different modes. */
1151 if (CONSTANT_P (rhs))
1152 return false;
1153
1154 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1155 if (COMPARISON_P (rhs))
1156 return false;
1157
1158 /* Do not allow single REG to be an rhs. */
1159 if (REG_P (rhs))
1160 return false;
1161
1162 /* See comment at find_used_regs_1 (*1) for explanation of this
1163 restriction. */
1164 /* FIXME: remove this later. */
1165 if (MEM_P (lhs))
1166 return false;
1167
1168 /* This will filter all tricky things like ZERO_EXTRACT etc.
1169 For now we don't handle it. */
1170 if (!REG_P (lhs) && !MEM_P (lhs))
1171 return false;
1172
1173 return true;
1174 }
1175
1176 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1177 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1178 used e.g. for insns from recovery blocks. */
1179 static void
1180 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1181 {
1182 hash_rtx_callback_function hrcf;
1183 int insn_class;
1184
1185 VINSN_INSN_RTX (vi) = insn;
1186 VINSN_COUNT (vi) = 0;
1187 vi->cost = -1;
1188
1189 if (INSN_NOP_P (insn))
1190 return;
1191
1192 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1193 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1194 else
1195 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1196
1197 /* Hash vinsn depending on whether it is separable or not. */
1198 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1199 if (VINSN_SEPARABLE_P (vi))
1200 {
1201 rtx rhs = VINSN_RHS (vi);
1202
1203 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1204 NULL, NULL, false, hrcf);
1205 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1206 VOIDmode, NULL, NULL,
1207 false, hrcf);
1208 }
1209 else
1210 {
1211 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1212 NULL, NULL, false, hrcf);
1213 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1214 }
1215
1216 insn_class = haifa_classify_insn (insn);
1217 if (insn_class >= 2
1218 && (!targetm.sched.get_insn_spec_ds
1219 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1220 == 0)))
1221 VINSN_MAY_TRAP_P (vi) = true;
1222 else
1223 VINSN_MAY_TRAP_P (vi) = false;
1224 }
1225
1226 /* Indicate that VI has become the part of an rtx object. */
1227 void
1228 vinsn_attach (vinsn_t vi)
1229 {
1230 /* Assert that VI is not pending for deletion. */
1231 gcc_assert (VINSN_INSN_RTX (vi));
1232
1233 VINSN_COUNT (vi)++;
1234 }
1235
1236 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1237 VINSN_TYPE (VI). */
1238 static vinsn_t
1239 vinsn_create (insn_t insn, bool force_unique_p)
1240 {
1241 vinsn_t vi = XCNEW (struct vinsn_def);
1242
1243 vinsn_init (vi, insn, force_unique_p);
1244 return vi;
1245 }
1246
1247 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1248 the copy. */
1249 vinsn_t
1250 vinsn_copy (vinsn_t vi, bool reattach_p)
1251 {
1252 rtx_insn *copy;
1253 bool unique = VINSN_UNIQUE_P (vi);
1254 vinsn_t new_vi;
1255
1256 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1257 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1258 if (reattach_p)
1259 {
1260 vinsn_detach (vi);
1261 vinsn_attach (new_vi);
1262 }
1263
1264 return new_vi;
1265 }
1266
1267 /* Delete the VI vinsn and free its data. */
1268 static void
1269 vinsn_delete (vinsn_t vi)
1270 {
1271 gcc_assert (VINSN_COUNT (vi) == 0);
1272
1273 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1274 {
1275 return_regset_to_pool (VINSN_REG_SETS (vi));
1276 return_regset_to_pool (VINSN_REG_USES (vi));
1277 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1278 }
1279
1280 free (vi);
1281 }
1282
1283 /* Indicate that VI is no longer a part of some rtx object.
1284 Remove VI if it is no longer needed. */
1285 void
1286 vinsn_detach (vinsn_t vi)
1287 {
1288 gcc_assert (VINSN_COUNT (vi) > 0);
1289
1290 if (--VINSN_COUNT (vi) == 0)
1291 vinsn_delete (vi);
1292 }
1293
1294 /* Returns TRUE if VI is a branch. */
1295 bool
1296 vinsn_cond_branch_p (vinsn_t vi)
1297 {
1298 insn_t insn;
1299
1300 if (!VINSN_UNIQUE_P (vi))
1301 return false;
1302
1303 insn = VINSN_INSN_RTX (vi);
1304 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1305 return false;
1306
1307 return control_flow_insn_p (insn);
1308 }
1309
1310 /* Return latency of INSN. */
1311 static int
1312 sel_insn_rtx_cost (rtx insn)
1313 {
1314 int cost;
1315
1316 /* A USE insn, or something else we don't need to
1317 understand. We can't pass these directly to
1318 result_ready_cost or insn_default_latency because it will
1319 trigger a fatal error for unrecognizable insns. */
1320 if (recog_memoized (insn) < 0)
1321 cost = 0;
1322 else
1323 {
1324 cost = insn_default_latency (insn);
1325
1326 if (cost < 0)
1327 cost = 0;
1328 }
1329
1330 return cost;
1331 }
1332
1333 /* Return the cost of the VI.
1334 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1335 int
1336 sel_vinsn_cost (vinsn_t vi)
1337 {
1338 int cost = vi->cost;
1339
1340 if (cost < 0)
1341 {
1342 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1343 vi->cost = cost;
1344 }
1345
1346 return cost;
1347 }
1348 \f
1349
1350 /* Functions for insn emitting. */
1351
1352 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1353 EXPR and SEQNO. */
1354 insn_t
1355 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1356 {
1357 insn_t new_insn;
1358
1359 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1360
1361 new_insn = emit_insn_after (pattern, after);
1362 set_insn_init (expr, NULL, seqno);
1363 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1364
1365 return new_insn;
1366 }
1367
1368 /* Force newly generated vinsns to be unique. */
1369 static bool init_insn_force_unique_p = false;
1370
1371 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1372 initialize its data from EXPR and SEQNO. */
1373 insn_t
1374 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1375 insn_t after)
1376 {
1377 insn_t insn;
1378
1379 gcc_assert (!init_insn_force_unique_p);
1380
1381 init_insn_force_unique_p = true;
1382 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1383 CANT_MOVE (insn) = 1;
1384 init_insn_force_unique_p = false;
1385
1386 return insn;
1387 }
1388
1389 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1390 take it as a new vinsn instead of EXPR's vinsn.
1391 We simplify insns later, after scheduling region in
1392 simplify_changed_insns. */
1393 insn_t
1394 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1395 insn_t after)
1396 {
1397 expr_t emit_expr;
1398 insn_t insn;
1399 int flags;
1400
1401 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1402 seqno);
1403 insn = EXPR_INSN_RTX (emit_expr);
1404
1405 /* The insn may come from the transformation cache, which may hold already
1406 deleted insns, so mark it as not deleted. */
1407 INSN_DELETED_P (insn) = 0;
1408
1409 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1410
1411 flags = INSN_INIT_TODO_SSID;
1412 if (INSN_LUID (insn) == 0)
1413 flags |= INSN_INIT_TODO_LUID;
1414 sel_init_new_insn (insn, flags);
1415
1416 return insn;
1417 }
1418
1419 /* Move insn from EXPR after AFTER. */
1420 insn_t
1421 sel_move_insn (expr_t expr, int seqno, insn_t after)
1422 {
1423 insn_t insn = EXPR_INSN_RTX (expr);
1424 basic_block bb = BLOCK_FOR_INSN (after);
1425 insn_t next = NEXT_INSN (after);
1426
1427 /* Assert that in move_op we disconnected this insn properly. */
1428 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1429 SET_PREV_INSN (insn) = after;
1430 SET_NEXT_INSN (insn) = next;
1431
1432 SET_NEXT_INSN (after) = insn;
1433 SET_PREV_INSN (next) = insn;
1434
1435 /* Update links from insn to bb and vice versa. */
1436 df_insn_change_bb (insn, bb);
1437 if (BB_END (bb) == after)
1438 SET_BB_END (bb) = insn;
1439
1440 prepare_insn_expr (insn, seqno);
1441 return insn;
1442 }
1443
1444 \f
1445 /* Functions to work with right-hand sides. */
1446
1447 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1448 VECT and return true when found. Use NEW_VINSN for comparison only when
1449 COMPARE_VINSNS is true. Write to INDP the index on which
1450 the search has stopped, such that inserting the new element at INDP will
1451 retain VECT's sort order. */
1452 static bool
1453 find_in_history_vect_1 (vec<expr_history_def> vect,
1454 unsigned uid, vinsn_t new_vinsn,
1455 bool compare_vinsns, int *indp)
1456 {
1457 expr_history_def *arr;
1458 int i, j, len = vect.length ();
1459
1460 if (len == 0)
1461 {
1462 *indp = 0;
1463 return false;
1464 }
1465
1466 arr = vect.address ();
1467 i = 0, j = len - 1;
1468
1469 while (i <= j)
1470 {
1471 unsigned auid = arr[i].uid;
1472 vinsn_t avinsn = arr[i].new_expr_vinsn;
1473
1474 if (auid == uid
1475 /* When undoing transformation on a bookkeeping copy, the new vinsn
1476 may not be exactly equal to the one that is saved in the vector.
1477 This is because the insn whose copy we're checking was possibly
1478 substituted itself. */
1479 && (! compare_vinsns
1480 || vinsn_equal_p (avinsn, new_vinsn)))
1481 {
1482 *indp = i;
1483 return true;
1484 }
1485 else if (auid > uid)
1486 break;
1487 i++;
1488 }
1489
1490 *indp = i;
1491 return false;
1492 }
1493
1494 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1495 the position found or -1, if no such value is in vector.
1496 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1497 int
1498 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1499 vinsn_t new_vinsn, bool originators_p)
1500 {
1501 int ind;
1502
1503 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1504 false, &ind))
1505 return ind;
1506
1507 if (INSN_ORIGINATORS (insn) && originators_p)
1508 {
1509 unsigned uid;
1510 bitmap_iterator bi;
1511
1512 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1513 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1514 return ind;
1515 }
1516
1517 return -1;
1518 }
1519
1520 /* Insert new element in a sorted history vector pointed to by PVECT,
1521 if it is not there already. The element is searched using
1522 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1523 the history of a transformation. */
1524 void
1525 insert_in_history_vect (vec<expr_history_def> *pvect,
1526 unsigned uid, enum local_trans_type type,
1527 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1528 ds_t spec_ds)
1529 {
1530 vec<expr_history_def> vect = *pvect;
1531 expr_history_def temp;
1532 bool res;
1533 int ind;
1534
1535 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1536
1537 if (res)
1538 {
1539 expr_history_def *phist = &vect[ind];
1540
1541 /* It is possible that speculation types of expressions that were
1542 propagated through different paths will be different here. In this
1543 case, merge the status to get the correct check later. */
1544 if (phist->spec_ds != spec_ds)
1545 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1546 return;
1547 }
1548
1549 temp.uid = uid;
1550 temp.old_expr_vinsn = old_expr_vinsn;
1551 temp.new_expr_vinsn = new_expr_vinsn;
1552 temp.spec_ds = spec_ds;
1553 temp.type = type;
1554
1555 vinsn_attach (old_expr_vinsn);
1556 vinsn_attach (new_expr_vinsn);
1557 vect.safe_insert (ind, temp);
1558 *pvect = vect;
1559 }
1560
1561 /* Free history vector PVECT. */
1562 static void
1563 free_history_vect (vec<expr_history_def> &pvect)
1564 {
1565 unsigned i;
1566 expr_history_def *phist;
1567
1568 if (! pvect.exists ())
1569 return;
1570
1571 for (i = 0; pvect.iterate (i, &phist); i++)
1572 {
1573 vinsn_detach (phist->old_expr_vinsn);
1574 vinsn_detach (phist->new_expr_vinsn);
1575 }
1576
1577 pvect.release ();
1578 }
1579
1580 /* Merge vector FROM to PVECT. */
1581 static void
1582 merge_history_vect (vec<expr_history_def> *pvect,
1583 vec<expr_history_def> from)
1584 {
1585 expr_history_def *phist;
1586 int i;
1587
1588 /* We keep this vector sorted. */
1589 for (i = 0; from.iterate (i, &phist); i++)
1590 insert_in_history_vect (pvect, phist->uid, phist->type,
1591 phist->old_expr_vinsn, phist->new_expr_vinsn,
1592 phist->spec_ds);
1593 }
1594
1595 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1596 bool
1597 vinsn_equal_p (vinsn_t x, vinsn_t y)
1598 {
1599 rtx_equal_p_callback_function repcf;
1600
1601 if (x == y)
1602 return true;
1603
1604 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1605 return false;
1606
1607 if (VINSN_HASH (x) != VINSN_HASH (y))
1608 return false;
1609
1610 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1611 if (VINSN_SEPARABLE_P (x))
1612 {
1613 /* Compare RHSes of VINSNs. */
1614 gcc_assert (VINSN_RHS (x));
1615 gcc_assert (VINSN_RHS (y));
1616
1617 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1618 }
1619
1620 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1621 }
1622 \f
1623
1624 /* Functions for working with expressions. */
1625
1626 /* Initialize EXPR. */
1627 static void
1628 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1629 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1630 ds_t spec_to_check_ds, int orig_sched_cycle,
1631 vec<expr_history_def> history,
1632 signed char target_available,
1633 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1634 bool cant_move)
1635 {
1636 vinsn_attach (vi);
1637
1638 EXPR_VINSN (expr) = vi;
1639 EXPR_SPEC (expr) = spec;
1640 EXPR_USEFULNESS (expr) = use;
1641 EXPR_PRIORITY (expr) = priority;
1642 EXPR_PRIORITY_ADJ (expr) = 0;
1643 EXPR_SCHED_TIMES (expr) = sched_times;
1644 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1645 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1646 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1647 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1648
1649 if (history.exists ())
1650 EXPR_HISTORY_OF_CHANGES (expr) = history;
1651 else
1652 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1653
1654 EXPR_TARGET_AVAILABLE (expr) = target_available;
1655 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1656 EXPR_WAS_RENAMED (expr) = was_renamed;
1657 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1658 EXPR_CANT_MOVE (expr) = cant_move;
1659 }
1660
1661 /* Make a copy of the expr FROM into the expr TO. */
1662 void
1663 copy_expr (expr_t to, expr_t from)
1664 {
1665 vec<expr_history_def> temp = vNULL;
1666
1667 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1668 {
1669 unsigned i;
1670 expr_history_def *phist;
1671
1672 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1673 for (i = 0;
1674 temp.iterate (i, &phist);
1675 i++)
1676 {
1677 vinsn_attach (phist->old_expr_vinsn);
1678 vinsn_attach (phist->new_expr_vinsn);
1679 }
1680 }
1681
1682 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1683 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1684 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1685 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1686 EXPR_ORIG_SCHED_CYCLE (from), temp,
1687 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1688 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1689 EXPR_CANT_MOVE (from));
1690 }
1691
1692 /* Same, but the final expr will not ever be in av sets, so don't copy
1693 "uninteresting" data such as bitmap cache. */
1694 void
1695 copy_expr_onside (expr_t to, expr_t from)
1696 {
1697 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1698 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1699 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1700 vNULL,
1701 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1702 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1703 EXPR_CANT_MOVE (from));
1704 }
1705
1706 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1707 initializing new insns. */
1708 static void
1709 prepare_insn_expr (insn_t insn, int seqno)
1710 {
1711 expr_t expr = INSN_EXPR (insn);
1712 ds_t ds;
1713
1714 INSN_SEQNO (insn) = seqno;
1715 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1716 EXPR_SPEC (expr) = 0;
1717 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1718 EXPR_WAS_SUBSTITUTED (expr) = 0;
1719 EXPR_WAS_RENAMED (expr) = 0;
1720 EXPR_TARGET_AVAILABLE (expr) = 1;
1721 INSN_LIVE_VALID_P (insn) = false;
1722
1723 /* ??? If this expression is speculative, make its dependence
1724 as weak as possible. We can filter this expression later
1725 in process_spec_exprs, because we do not distinguish
1726 between the status we got during compute_av_set and the
1727 existing status. To be fixed. */
1728 ds = EXPR_SPEC_DONE_DS (expr);
1729 if (ds)
1730 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1731
1732 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1733 }
1734
1735 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1736 is non-null when expressions are merged from different successors at
1737 a split point. */
1738 static void
1739 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1740 {
1741 if (EXPR_TARGET_AVAILABLE (to) < 0
1742 || EXPR_TARGET_AVAILABLE (from) < 0)
1743 EXPR_TARGET_AVAILABLE (to) = -1;
1744 else
1745 {
1746 /* We try to detect the case when one of the expressions
1747 can only be reached through another one. In this case,
1748 we can do better. */
1749 if (split_point == NULL)
1750 {
1751 int toind, fromind;
1752
1753 toind = EXPR_ORIG_BB_INDEX (to);
1754 fromind = EXPR_ORIG_BB_INDEX (from);
1755
1756 if (toind && toind == fromind)
1757 /* Do nothing -- everything is done in
1758 merge_with_other_exprs. */
1759 ;
1760 else
1761 EXPR_TARGET_AVAILABLE (to) = -1;
1762 }
1763 else if (EXPR_TARGET_AVAILABLE (from) == 0
1764 && EXPR_LHS (from)
1765 && REG_P (EXPR_LHS (from))
1766 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1767 EXPR_TARGET_AVAILABLE (to) = -1;
1768 else
1769 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1770 }
1771 }
1772
1773 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1774 is non-null when expressions are merged from different successors at
1775 a split point. */
1776 static void
1777 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1778 {
1779 ds_t old_to_ds, old_from_ds;
1780
1781 old_to_ds = EXPR_SPEC_DONE_DS (to);
1782 old_from_ds = EXPR_SPEC_DONE_DS (from);
1783
1784 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1785 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1786 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1787
1788 /* When merging e.g. control & data speculative exprs, or a control
1789 speculative with a control&data speculative one, we really have
1790 to change vinsn too. Also, when speculative status is changed,
1791 we also need to record this as a transformation in expr's history. */
1792 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1793 {
1794 old_to_ds = ds_get_speculation_types (old_to_ds);
1795 old_from_ds = ds_get_speculation_types (old_from_ds);
1796
1797 if (old_to_ds != old_from_ds)
1798 {
1799 ds_t record_ds;
1800
1801 /* When both expressions are speculative, we need to change
1802 the vinsn first. */
1803 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1804 {
1805 int res;
1806
1807 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1808 gcc_assert (res >= 0);
1809 }
1810
1811 if (split_point != NULL)
1812 {
1813 /* Record the change with proper status. */
1814 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1815 record_ds &= ~(old_to_ds & SPECULATIVE);
1816 record_ds &= ~(old_from_ds & SPECULATIVE);
1817
1818 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1819 INSN_UID (split_point), TRANS_SPECULATION,
1820 EXPR_VINSN (from), EXPR_VINSN (to),
1821 record_ds);
1822 }
1823 }
1824 }
1825 }
1826
1827
1828 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1829 this is done along different paths. */
1830 void
1831 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1832 {
1833 /* Choose the maximum of the specs of merged exprs. This is required
1834 for correctness of bookkeeping. */
1835 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1836 EXPR_SPEC (to) = EXPR_SPEC (from);
1837
1838 if (split_point)
1839 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1840 else
1841 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1842 EXPR_USEFULNESS (from));
1843
1844 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1845 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1846
1847 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1848 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1849
1850 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1851 EXPR_ORIG_BB_INDEX (to) = 0;
1852
1853 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1854 EXPR_ORIG_SCHED_CYCLE (from));
1855
1856 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1857 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1858 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1859
1860 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1861 EXPR_HISTORY_OF_CHANGES (from));
1862 update_target_availability (to, from, split_point);
1863 update_speculative_bits (to, from, split_point);
1864 }
1865
1866 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1867 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1868 are merged from different successors at a split point. */
1869 void
1870 merge_expr (expr_t to, expr_t from, insn_t split_point)
1871 {
1872 vinsn_t to_vi = EXPR_VINSN (to);
1873 vinsn_t from_vi = EXPR_VINSN (from);
1874
1875 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1876
1877 /* Make sure that speculative pattern is propagated into exprs that
1878 have non-speculative one. This will provide us with consistent
1879 speculative bits and speculative patterns inside expr. */
1880 if ((EXPR_SPEC_DONE_DS (from) != 0
1881 && EXPR_SPEC_DONE_DS (to) == 0)
1882 /* Do likewise for volatile insns, so that we always retain
1883 the may_trap_p bit on the resulting expression. */
1884 || (VINSN_MAY_TRAP_P (EXPR_VINSN (from))
1885 && !VINSN_MAY_TRAP_P (EXPR_VINSN (to))))
1886 change_vinsn_in_expr (to, EXPR_VINSN (from));
1887
1888 merge_expr_data (to, from, split_point);
1889 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1890 }
1891
1892 /* Clear the information of this EXPR. */
1893 void
1894 clear_expr (expr_t expr)
1895 {
1896
1897 vinsn_detach (EXPR_VINSN (expr));
1898 EXPR_VINSN (expr) = NULL;
1899
1900 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1901 }
1902
1903 /* For a given LV_SET, mark EXPR having unavailable target register. */
1904 static void
1905 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1906 {
1907 if (EXPR_SEPARABLE_P (expr))
1908 {
1909 if (REG_P (EXPR_LHS (expr))
1910 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1911 {
1912 /* If it's an insn like r1 = use (r1, ...), and it exists in
1913 different forms in each of the av_sets being merged, we can't say
1914 whether original destination register is available or not.
1915 However, this still works if destination register is not used
1916 in the original expression: if the branch at which LV_SET we're
1917 looking here is not actually 'other branch' in sense that same
1918 expression is available through it (but it can't be determined
1919 at computation stage because of transformations on one of the
1920 branches), it still won't affect the availability.
1921 Liveness of a register somewhere on a code motion path means
1922 it's either read somewhere on a codemotion path, live on
1923 'other' branch, live at the point immediately following
1924 the original operation, or is read by the original operation.
1925 The latter case is filtered out in the condition below.
1926 It still doesn't cover the case when register is defined and used
1927 somewhere within the code motion path, and in this case we could
1928 miss a unifying code motion along both branches using a renamed
1929 register, but it won't affect a code correctness since upon
1930 an actual code motion a bookkeeping code would be generated. */
1931 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1932 EXPR_LHS (expr)))
1933 EXPR_TARGET_AVAILABLE (expr) = -1;
1934 else
1935 EXPR_TARGET_AVAILABLE (expr) = false;
1936 }
1937 }
1938 else
1939 {
1940 unsigned regno;
1941 reg_set_iterator rsi;
1942
1943 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1944 0, regno, rsi)
1945 if (bitmap_bit_p (lv_set, regno))
1946 {
1947 EXPR_TARGET_AVAILABLE (expr) = false;
1948 break;
1949 }
1950
1951 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1952 0, regno, rsi)
1953 if (bitmap_bit_p (lv_set, regno))
1954 {
1955 EXPR_TARGET_AVAILABLE (expr) = false;
1956 break;
1957 }
1958 }
1959 }
1960
1961 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1962 or dependence status have changed, 2 when also the target register
1963 became unavailable, 0 if nothing had to be changed. */
1964 int
1965 speculate_expr (expr_t expr, ds_t ds)
1966 {
1967 int res;
1968 rtx_insn *orig_insn_rtx;
1969 rtx spec_pat;
1970 ds_t target_ds, current_ds;
1971
1972 /* Obtain the status we need to put on EXPR. */
1973 target_ds = (ds & SPECULATIVE);
1974 current_ds = EXPR_SPEC_DONE_DS (expr);
1975 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1976
1977 orig_insn_rtx = EXPR_INSN_RTX (expr);
1978
1979 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1980
1981 switch (res)
1982 {
1983 case 0:
1984 EXPR_SPEC_DONE_DS (expr) = ds;
1985 return current_ds != ds ? 1 : 0;
1986
1987 case 1:
1988 {
1989 rtx_insn *spec_insn_rtx =
1990 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1991 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1992
1993 change_vinsn_in_expr (expr, spec_vinsn);
1994 EXPR_SPEC_DONE_DS (expr) = ds;
1995 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1996
1997 /* Do not allow clobbering the address register of speculative
1998 insns. */
1999 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
2000 expr_dest_reg (expr)))
2001 {
2002 EXPR_TARGET_AVAILABLE (expr) = false;
2003 return 2;
2004 }
2005
2006 return 1;
2007 }
2008
2009 case -1:
2010 return -1;
2011
2012 default:
2013 gcc_unreachable ();
2014 return -1;
2015 }
2016 }
2017
2018 /* Return a destination register, if any, of EXPR. */
2019 rtx
2020 expr_dest_reg (expr_t expr)
2021 {
2022 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2023
2024 if (dest != NULL_RTX && REG_P (dest))
2025 return dest;
2026
2027 return NULL_RTX;
2028 }
2029
2030 /* Returns the REGNO of the R's destination. */
2031 unsigned
2032 expr_dest_regno (expr_t expr)
2033 {
2034 rtx dest = expr_dest_reg (expr);
2035
2036 gcc_assert (dest != NULL_RTX);
2037 return REGNO (dest);
2038 }
2039
2040 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2041 AV_SET having unavailable target register. */
2042 void
2043 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2044 {
2045 expr_t expr;
2046 av_set_iterator avi;
2047
2048 FOR_EACH_EXPR (expr, avi, join_set)
2049 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2050 set_unavailable_target_for_expr (expr, lv_set);
2051 }
2052 \f
2053
2054 /* Returns true if REG (at least partially) is present in REGS. */
2055 bool
2056 register_unavailable_p (regset regs, rtx reg)
2057 {
2058 unsigned regno, end_regno;
2059
2060 regno = REGNO (reg);
2061 if (bitmap_bit_p (regs, regno))
2062 return true;
2063
2064 end_regno = END_REGNO (reg);
2065
2066 while (++regno < end_regno)
2067 if (bitmap_bit_p (regs, regno))
2068 return true;
2069
2070 return false;
2071 }
2072
2073 /* Av set functions. */
2074
2075 /* Add a new element to av set SETP.
2076 Return the element added. */
2077 static av_set_t
2078 av_set_add_element (av_set_t *setp)
2079 {
2080 /* Insert at the beginning of the list. */
2081 _list_add (setp);
2082 return *setp;
2083 }
2084
2085 /* Add EXPR to SETP. */
2086 void
2087 av_set_add (av_set_t *setp, expr_t expr)
2088 {
2089 av_set_t elem;
2090
2091 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2092 elem = av_set_add_element (setp);
2093 copy_expr (_AV_SET_EXPR (elem), expr);
2094 }
2095
2096 /* Same, but do not copy EXPR. */
2097 static void
2098 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2099 {
2100 av_set_t elem;
2101
2102 elem = av_set_add_element (setp);
2103 *_AV_SET_EXPR (elem) = *expr;
2104 }
2105
2106 /* Remove expr pointed to by IP from the av_set. */
2107 void
2108 av_set_iter_remove (av_set_iterator *ip)
2109 {
2110 clear_expr (_AV_SET_EXPR (*ip->lp));
2111 _list_iter_remove (ip);
2112 }
2113
2114 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2115 sense of vinsn_equal_p function. Return NULL if no such expr is
2116 in SET was found. */
2117 expr_t
2118 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2119 {
2120 expr_t expr;
2121 av_set_iterator i;
2122
2123 FOR_EACH_EXPR (expr, i, set)
2124 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2125 return expr;
2126 return NULL;
2127 }
2128
2129 /* Same, but also remove the EXPR found. */
2130 static expr_t
2131 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2132 {
2133 expr_t expr;
2134 av_set_iterator i;
2135
2136 FOR_EACH_EXPR_1 (expr, i, setp)
2137 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2138 {
2139 _list_iter_remove_nofree (&i);
2140 return expr;
2141 }
2142 return NULL;
2143 }
2144
2145 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2146 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2147 Returns NULL if no such expr is in SET was found. */
2148 static expr_t
2149 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2150 {
2151 expr_t cur_expr;
2152 av_set_iterator i;
2153
2154 FOR_EACH_EXPR (cur_expr, i, set)
2155 {
2156 if (cur_expr == expr)
2157 continue;
2158 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2159 return cur_expr;
2160 }
2161
2162 return NULL;
2163 }
2164
2165 /* If other expression is already in AVP, remove one of them. */
2166 expr_t
2167 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2168 {
2169 expr_t expr2;
2170
2171 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2172 if (expr2 != NULL)
2173 {
2174 /* Reset target availability on merge, since taking it only from one
2175 of the exprs would be controversial for different code. */
2176 EXPR_TARGET_AVAILABLE (expr2) = -1;
2177 EXPR_USEFULNESS (expr2) = 0;
2178
2179 merge_expr (expr2, expr, NULL);
2180
2181 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2182 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2183
2184 av_set_iter_remove (ip);
2185 return expr2;
2186 }
2187
2188 return expr;
2189 }
2190
2191 /* Return true if there is an expr that correlates to VI in SET. */
2192 bool
2193 av_set_is_in_p (av_set_t set, vinsn_t vi)
2194 {
2195 return av_set_lookup (set, vi) != NULL;
2196 }
2197
2198 /* Return a copy of SET. */
2199 av_set_t
2200 av_set_copy (av_set_t set)
2201 {
2202 expr_t expr;
2203 av_set_iterator i;
2204 av_set_t res = NULL;
2205
2206 FOR_EACH_EXPR (expr, i, set)
2207 av_set_add (&res, expr);
2208
2209 return res;
2210 }
2211
2212 /* Join two av sets that do not have common elements by attaching second set
2213 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2214 _AV_SET_NEXT of first set's last element). */
2215 static void
2216 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2217 {
2218 gcc_assert (*to_tailp == NULL);
2219 *to_tailp = *fromp;
2220 *fromp = NULL;
2221 }
2222
2223 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2224 pointed to by FROMP afterwards. */
2225 void
2226 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2227 {
2228 expr_t expr1;
2229 av_set_iterator i;
2230
2231 /* Delete from TOP all exprs, that present in FROMP. */
2232 FOR_EACH_EXPR_1 (expr1, i, top)
2233 {
2234 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2235
2236 if (expr2)
2237 {
2238 merge_expr (expr2, expr1, insn);
2239 av_set_iter_remove (&i);
2240 }
2241 }
2242
2243 join_distinct_sets (i.lp, fromp);
2244 }
2245
2246 /* Same as above, but also update availability of target register in
2247 TOP judging by TO_LV_SET and FROM_LV_SET. */
2248 void
2249 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2250 regset from_lv_set, insn_t insn)
2251 {
2252 expr_t expr1;
2253 av_set_iterator i;
2254 av_set_t *to_tailp, in_both_set = NULL;
2255
2256 /* Delete from TOP all expres, that present in FROMP. */
2257 FOR_EACH_EXPR_1 (expr1, i, top)
2258 {
2259 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2260
2261 if (expr2)
2262 {
2263 /* It may be that the expressions have different destination
2264 registers, in which case we need to check liveness here. */
2265 if (EXPR_SEPARABLE_P (expr1))
2266 {
2267 int regno1 = (REG_P (EXPR_LHS (expr1))
2268 ? (int) expr_dest_regno (expr1) : -1);
2269 int regno2 = (REG_P (EXPR_LHS (expr2))
2270 ? (int) expr_dest_regno (expr2) : -1);
2271
2272 /* ??? We don't have a way to check restrictions for
2273 *other* register on the current path, we did it only
2274 for the current target register. Give up. */
2275 if (regno1 != regno2)
2276 EXPR_TARGET_AVAILABLE (expr2) = -1;
2277 }
2278 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2279 EXPR_TARGET_AVAILABLE (expr2) = -1;
2280
2281 merge_expr (expr2, expr1, insn);
2282 av_set_add_nocopy (&in_both_set, expr2);
2283 av_set_iter_remove (&i);
2284 }
2285 else
2286 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2287 FROM_LV_SET. */
2288 set_unavailable_target_for_expr (expr1, from_lv_set);
2289 }
2290 to_tailp = i.lp;
2291
2292 /* These expressions are not present in TOP. Check liveness
2293 restrictions on TO_LV_SET. */
2294 FOR_EACH_EXPR (expr1, i, *fromp)
2295 set_unavailable_target_for_expr (expr1, to_lv_set);
2296
2297 join_distinct_sets (i.lp, &in_both_set);
2298 join_distinct_sets (to_tailp, fromp);
2299 }
2300
2301 /* Clear av_set pointed to by SETP. */
2302 void
2303 av_set_clear (av_set_t *setp)
2304 {
2305 expr_t expr;
2306 av_set_iterator i;
2307
2308 FOR_EACH_EXPR_1 (expr, i, setp)
2309 av_set_iter_remove (&i);
2310
2311 gcc_assert (*setp == NULL);
2312 }
2313
2314 /* Leave only one non-speculative element in the SETP. */
2315 void
2316 av_set_leave_one_nonspec (av_set_t *setp)
2317 {
2318 expr_t expr;
2319 av_set_iterator i;
2320 bool has_one_nonspec = false;
2321
2322 /* Keep all speculative exprs, and leave one non-speculative
2323 (the first one). */
2324 FOR_EACH_EXPR_1 (expr, i, setp)
2325 {
2326 if (!EXPR_SPEC_DONE_DS (expr))
2327 {
2328 if (has_one_nonspec)
2329 av_set_iter_remove (&i);
2330 else
2331 has_one_nonspec = true;
2332 }
2333 }
2334 }
2335
2336 /* Return the N'th element of the SET. */
2337 expr_t
2338 av_set_element (av_set_t set, int n)
2339 {
2340 expr_t expr;
2341 av_set_iterator i;
2342
2343 FOR_EACH_EXPR (expr, i, set)
2344 if (n-- == 0)
2345 return expr;
2346
2347 gcc_unreachable ();
2348 return NULL;
2349 }
2350
2351 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2352 void
2353 av_set_substract_cond_branches (av_set_t *avp)
2354 {
2355 av_set_iterator i;
2356 expr_t expr;
2357
2358 FOR_EACH_EXPR_1 (expr, i, avp)
2359 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2360 av_set_iter_remove (&i);
2361 }
2362
2363 /* Multiplies usefulness attribute of each member of av-set *AVP by
2364 value PROB / ALL_PROB. */
2365 void
2366 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2367 {
2368 av_set_iterator i;
2369 expr_t expr;
2370
2371 FOR_EACH_EXPR (expr, i, av)
2372 EXPR_USEFULNESS (expr) = (all_prob
2373 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2374 : 0);
2375 }
2376
2377 /* Leave in AVP only those expressions, which are present in AV,
2378 and return it, merging history expressions. */
2379 void
2380 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2381 {
2382 av_set_iterator i;
2383 expr_t expr, expr2;
2384
2385 FOR_EACH_EXPR_1 (expr, i, avp)
2386 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2387 av_set_iter_remove (&i);
2388 else
2389 /* When updating av sets in bookkeeping blocks, we can add more insns
2390 there which will be transformed but the upper av sets will not
2391 reflect those transformations. We then fail to undo those
2392 when searching for such insns. So merge the history saved
2393 in the av set of the block we are processing. */
2394 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2395 EXPR_HISTORY_OF_CHANGES (expr2));
2396 }
2397
2398 \f
2399
2400 /* Dependence hooks to initialize insn data. */
2401
2402 /* This is used in hooks callable from dependence analysis when initializing
2403 instruction's data. */
2404 static struct
2405 {
2406 /* Where the dependence was found (lhs/rhs). */
2407 deps_where_t where;
2408
2409 /* The actual data object to initialize. */
2410 idata_t id;
2411
2412 /* True when the insn should not be made clonable. */
2413 bool force_unique_p;
2414
2415 /* True when insn should be treated as of type USE, i.e. never renamed. */
2416 bool force_use_p;
2417 } deps_init_id_data;
2418
2419
2420 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2421 clonable. */
2422 static void
2423 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2424 {
2425 int type;
2426
2427 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2428 That clonable insns which can be separated into lhs and rhs have type SET.
2429 Other clonable insns have type USE. */
2430 type = GET_CODE (insn);
2431
2432 /* Only regular insns could be cloned. */
2433 if (type == INSN && !force_unique_p)
2434 type = SET;
2435 else if (type == JUMP_INSN && simplejump_p (insn))
2436 type = PC;
2437 else if (type == DEBUG_INSN)
2438 type = !force_unique_p ? USE : INSN;
2439
2440 IDATA_TYPE (id) = type;
2441 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2442 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2443 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2444 }
2445
2446 /* Start initializing insn data. */
2447 static void
2448 deps_init_id_start_insn (insn_t insn)
2449 {
2450 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2451
2452 setup_id_for_insn (deps_init_id_data.id, insn,
2453 deps_init_id_data.force_unique_p);
2454 deps_init_id_data.where = DEPS_IN_INSN;
2455 }
2456
2457 /* Start initializing lhs data. */
2458 static void
2459 deps_init_id_start_lhs (rtx lhs)
2460 {
2461 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2462 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2463
2464 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2465 {
2466 IDATA_LHS (deps_init_id_data.id) = lhs;
2467 deps_init_id_data.where = DEPS_IN_LHS;
2468 }
2469 }
2470
2471 /* Finish initializing lhs data. */
2472 static void
2473 deps_init_id_finish_lhs (void)
2474 {
2475 deps_init_id_data.where = DEPS_IN_INSN;
2476 }
2477
2478 /* Note a set of REGNO. */
2479 static void
2480 deps_init_id_note_reg_set (int regno)
2481 {
2482 haifa_note_reg_set (regno);
2483
2484 if (deps_init_id_data.where == DEPS_IN_RHS)
2485 deps_init_id_data.force_use_p = true;
2486
2487 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2488 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2489
2490 #ifdef STACK_REGS
2491 /* Make instructions that set stack registers to be ineligible for
2492 renaming to avoid issues with find_used_regs. */
2493 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2494 deps_init_id_data.force_use_p = true;
2495 #endif
2496 }
2497
2498 /* Note a clobber of REGNO. */
2499 static void
2500 deps_init_id_note_reg_clobber (int regno)
2501 {
2502 haifa_note_reg_clobber (regno);
2503
2504 if (deps_init_id_data.where == DEPS_IN_RHS)
2505 deps_init_id_data.force_use_p = true;
2506
2507 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2508 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2509 }
2510
2511 /* Note a use of REGNO. */
2512 static void
2513 deps_init_id_note_reg_use (int regno)
2514 {
2515 haifa_note_reg_use (regno);
2516
2517 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2518 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2519 }
2520
2521 /* Start initializing rhs data. */
2522 static void
2523 deps_init_id_start_rhs (rtx rhs)
2524 {
2525 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2526
2527 /* And there was no sel_deps_reset_to_insn (). */
2528 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2529 {
2530 IDATA_RHS (deps_init_id_data.id) = rhs;
2531 deps_init_id_data.where = DEPS_IN_RHS;
2532 }
2533 }
2534
2535 /* Finish initializing rhs data. */
2536 static void
2537 deps_init_id_finish_rhs (void)
2538 {
2539 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2540 || deps_init_id_data.where == DEPS_IN_INSN);
2541 deps_init_id_data.where = DEPS_IN_INSN;
2542 }
2543
2544 /* Finish initializing insn data. */
2545 static void
2546 deps_init_id_finish_insn (void)
2547 {
2548 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2549
2550 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2551 {
2552 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2553 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2554
2555 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2556 || deps_init_id_data.force_use_p)
2557 {
2558 /* This should be a USE, as we don't want to schedule its RHS
2559 separately. However, we still want to have them recorded
2560 for the purposes of substitution. That's why we don't
2561 simply call downgrade_to_use () here. */
2562 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2563 gcc_assert (!lhs == !rhs);
2564
2565 IDATA_TYPE (deps_init_id_data.id) = USE;
2566 }
2567 }
2568
2569 deps_init_id_data.where = DEPS_IN_NOWHERE;
2570 }
2571
2572 /* This is dependence info used for initializing insn's data. */
2573 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2574
2575 /* This initializes most of the static part of the above structure. */
2576 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2577 {
2578 NULL,
2579
2580 deps_init_id_start_insn,
2581 deps_init_id_finish_insn,
2582 deps_init_id_start_lhs,
2583 deps_init_id_finish_lhs,
2584 deps_init_id_start_rhs,
2585 deps_init_id_finish_rhs,
2586 deps_init_id_note_reg_set,
2587 deps_init_id_note_reg_clobber,
2588 deps_init_id_note_reg_use,
2589 NULL, /* note_mem_dep */
2590 NULL, /* note_dep */
2591
2592 0, /* use_cselib */
2593 0, /* use_deps_list */
2594 0 /* generate_spec_deps */
2595 };
2596
2597 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2598 we don't actually need information about lhs and rhs. */
2599 static void
2600 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2601 {
2602 rtx pat = PATTERN (insn);
2603
2604 if (NONJUMP_INSN_P (insn)
2605 && GET_CODE (pat) == SET
2606 && !force_unique_p)
2607 {
2608 IDATA_RHS (id) = SET_SRC (pat);
2609 IDATA_LHS (id) = SET_DEST (pat);
2610 }
2611 else
2612 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2613 }
2614
2615 /* Possibly downgrade INSN to USE. */
2616 static void
2617 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2618 {
2619 bool must_be_use = false;
2620 df_ref def;
2621 rtx lhs = IDATA_LHS (id);
2622 rtx rhs = IDATA_RHS (id);
2623
2624 /* We downgrade only SETs. */
2625 if (IDATA_TYPE (id) != SET)
2626 return;
2627
2628 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2629 {
2630 IDATA_TYPE (id) = USE;
2631 return;
2632 }
2633
2634 FOR_EACH_INSN_DEF (def, insn)
2635 {
2636 if (DF_REF_INSN (def)
2637 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2638 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2639 {
2640 must_be_use = true;
2641 break;
2642 }
2643
2644 #ifdef STACK_REGS
2645 /* Make instructions that set stack registers to be ineligible for
2646 renaming to avoid issues with find_used_regs. */
2647 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2648 {
2649 must_be_use = true;
2650 break;
2651 }
2652 #endif
2653 }
2654
2655 if (must_be_use)
2656 IDATA_TYPE (id) = USE;
2657 }
2658
2659 /* Setup register sets describing INSN in ID. */
2660 static void
2661 setup_id_reg_sets (idata_t id, insn_t insn)
2662 {
2663 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2664 df_ref def, use;
2665 regset tmp = get_clear_regset_from_pool ();
2666
2667 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2668 {
2669 unsigned int regno = DF_REF_REGNO (def);
2670
2671 /* Post modifies are treated like clobbers by sched-deps.c. */
2672 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2673 | DF_REF_PRE_POST_MODIFY)))
2674 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2675 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2676 {
2677 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2678
2679 #ifdef STACK_REGS
2680 /* For stack registers, treat writes to them as writes
2681 to the first one to be consistent with sched-deps.c. */
2682 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2683 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2684 #endif
2685 }
2686 /* Mark special refs that generate read/write def pair. */
2687 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2688 || regno == STACK_POINTER_REGNUM)
2689 bitmap_set_bit (tmp, regno);
2690 }
2691
2692 FOR_EACH_INSN_INFO_USE (use, insn_info)
2693 {
2694 unsigned int regno = DF_REF_REGNO (use);
2695
2696 /* When these refs are met for the first time, skip them, as
2697 these uses are just counterparts of some defs. */
2698 if (bitmap_bit_p (tmp, regno))
2699 bitmap_clear_bit (tmp, regno);
2700 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2701 {
2702 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2703
2704 #ifdef STACK_REGS
2705 /* For stack registers, treat reads from them as reads from
2706 the first one to be consistent with sched-deps.c. */
2707 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2708 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2709 #endif
2710 }
2711 }
2712
2713 return_regset_to_pool (tmp);
2714 }
2715
2716 /* Initialize instruction data for INSN in ID using DF's data. */
2717 static void
2718 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2719 {
2720 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2721
2722 setup_id_for_insn (id, insn, force_unique_p);
2723 setup_id_lhs_rhs (id, insn, force_unique_p);
2724
2725 if (INSN_NOP_P (insn))
2726 return;
2727
2728 maybe_downgrade_id_to_use (id, insn);
2729 setup_id_reg_sets (id, insn);
2730 }
2731
2732 /* Initialize instruction data for INSN in ID. */
2733 static void
2734 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2735 {
2736 struct deps_desc _dc, *dc = &_dc;
2737
2738 deps_init_id_data.where = DEPS_IN_NOWHERE;
2739 deps_init_id_data.id = id;
2740 deps_init_id_data.force_unique_p = force_unique_p;
2741 deps_init_id_data.force_use_p = false;
2742
2743 init_deps (dc, false);
2744
2745 memcpy (&deps_init_id_sched_deps_info,
2746 &const_deps_init_id_sched_deps_info,
2747 sizeof (deps_init_id_sched_deps_info));
2748
2749 if (spec_info != NULL)
2750 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2751
2752 sched_deps_info = &deps_init_id_sched_deps_info;
2753
2754 deps_analyze_insn (dc, insn);
2755
2756 free_deps (dc);
2757
2758 deps_init_id_data.id = NULL;
2759 }
2760
2761 \f
2762 struct sched_scan_info_def
2763 {
2764 /* This hook notifies scheduler frontend to extend its internal per basic
2765 block data structures. This hook should be called once before a series of
2766 calls to bb_init (). */
2767 void (*extend_bb) (void);
2768
2769 /* This hook makes scheduler frontend to initialize its internal data
2770 structures for the passed basic block. */
2771 void (*init_bb) (basic_block);
2772
2773 /* This hook notifies scheduler frontend to extend its internal per insn data
2774 structures. This hook should be called once before a series of calls to
2775 insn_init (). */
2776 void (*extend_insn) (void);
2777
2778 /* This hook makes scheduler frontend to initialize its internal data
2779 structures for the passed insn. */
2780 void (*init_insn) (insn_t);
2781 };
2782
2783 /* A driver function to add a set of basic blocks (BBS) to the
2784 scheduling region. */
2785 static void
2786 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2787 {
2788 unsigned i;
2789 basic_block bb;
2790
2791 if (ssi->extend_bb)
2792 ssi->extend_bb ();
2793
2794 if (ssi->init_bb)
2795 FOR_EACH_VEC_ELT (bbs, i, bb)
2796 ssi->init_bb (bb);
2797
2798 if (ssi->extend_insn)
2799 ssi->extend_insn ();
2800
2801 if (ssi->init_insn)
2802 FOR_EACH_VEC_ELT (bbs, i, bb)
2803 {
2804 rtx_insn *insn;
2805
2806 FOR_BB_INSNS (bb, insn)
2807 ssi->init_insn (insn);
2808 }
2809 }
2810
2811 /* Implement hooks for collecting fundamental insn properties like if insn is
2812 an ASM or is within a SCHED_GROUP. */
2813
2814 /* True when a "one-time init" data for INSN was already inited. */
2815 static bool
2816 first_time_insn_init (insn_t insn)
2817 {
2818 return INSN_LIVE (insn) == NULL;
2819 }
2820
2821 /* Hash an entry in a transformed_insns hashtable. */
2822 static hashval_t
2823 hash_transformed_insns (const void *p)
2824 {
2825 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2826 }
2827
2828 /* Compare the entries in a transformed_insns hashtable. */
2829 static int
2830 eq_transformed_insns (const void *p, const void *q)
2831 {
2832 rtx_insn *i1 =
2833 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2834 rtx_insn *i2 =
2835 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2836
2837 if (INSN_UID (i1) == INSN_UID (i2))
2838 return 1;
2839 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2840 }
2841
2842 /* Free an entry in a transformed_insns hashtable. */
2843 static void
2844 free_transformed_insns (void *p)
2845 {
2846 struct transformed_insns *pti = (struct transformed_insns *) p;
2847
2848 vinsn_detach (pti->vinsn_old);
2849 vinsn_detach (pti->vinsn_new);
2850 free (pti);
2851 }
2852
2853 /* Init the s_i_d data for INSN which should be inited just once, when
2854 we first see the insn. */
2855 static void
2856 init_first_time_insn_data (insn_t insn)
2857 {
2858 /* This should not be set if this is the first time we init data for
2859 insn. */
2860 gcc_assert (first_time_insn_init (insn));
2861
2862 /* These are needed for nops too. */
2863 INSN_LIVE (insn) = get_regset_from_pool ();
2864 INSN_LIVE_VALID_P (insn) = false;
2865
2866 if (!INSN_NOP_P (insn))
2867 {
2868 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2869 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2870 INSN_TRANSFORMED_INSNS (insn)
2871 = htab_create (16, hash_transformed_insns,
2872 eq_transformed_insns, free_transformed_insns);
2873 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2874 }
2875 }
2876
2877 /* Free almost all above data for INSN that is scheduled already.
2878 Used for extra-large basic blocks. */
2879 void
2880 free_data_for_scheduled_insn (insn_t insn)
2881 {
2882 gcc_assert (! first_time_insn_init (insn));
2883
2884 if (! INSN_ANALYZED_DEPS (insn))
2885 return;
2886
2887 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2888 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2889 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2890
2891 /* This is allocated only for bookkeeping insns. */
2892 if (INSN_ORIGINATORS (insn))
2893 BITMAP_FREE (INSN_ORIGINATORS (insn));
2894 free_deps (&INSN_DEPS_CONTEXT (insn));
2895
2896 INSN_ANALYZED_DEPS (insn) = NULL;
2897
2898 /* Clear the readonly flag so we would ICE when trying to recalculate
2899 the deps context (as we believe that it should not happen). */
2900 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2901 }
2902
2903 /* Free the same data as above for INSN. */
2904 static void
2905 free_first_time_insn_data (insn_t insn)
2906 {
2907 gcc_assert (! first_time_insn_init (insn));
2908
2909 free_data_for_scheduled_insn (insn);
2910 return_regset_to_pool (INSN_LIVE (insn));
2911 INSN_LIVE (insn) = NULL;
2912 INSN_LIVE_VALID_P (insn) = false;
2913 }
2914
2915 /* Initialize region-scope data structures for basic blocks. */
2916 static void
2917 init_global_and_expr_for_bb (basic_block bb)
2918 {
2919 if (sel_bb_empty_p (bb))
2920 return;
2921
2922 invalidate_av_set (bb);
2923 }
2924
2925 /* Data for global dependency analysis (to initialize CANT_MOVE and
2926 SCHED_GROUP_P). */
2927 static struct
2928 {
2929 /* Previous insn. */
2930 insn_t prev_insn;
2931 } init_global_data;
2932
2933 /* Determine if INSN is in the sched_group, is an asm or should not be
2934 cloned. After that initialize its expr. */
2935 static void
2936 init_global_and_expr_for_insn (insn_t insn)
2937 {
2938 if (LABEL_P (insn))
2939 return;
2940
2941 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2942 {
2943 init_global_data.prev_insn = NULL;
2944 return;
2945 }
2946
2947 gcc_assert (INSN_P (insn));
2948
2949 if (SCHED_GROUP_P (insn))
2950 /* Setup a sched_group. */
2951 {
2952 insn_t prev_insn = init_global_data.prev_insn;
2953
2954 if (prev_insn)
2955 INSN_SCHED_NEXT (prev_insn) = insn;
2956
2957 init_global_data.prev_insn = insn;
2958 }
2959 else
2960 init_global_data.prev_insn = NULL;
2961
2962 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2963 || asm_noperands (PATTERN (insn)) >= 0)
2964 /* Mark INSN as an asm. */
2965 INSN_ASM_P (insn) = true;
2966
2967 {
2968 bool force_unique_p;
2969 ds_t spec_done_ds;
2970
2971 /* Certain instructions cannot be cloned, and frame related insns and
2972 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2973 their block. */
2974 if (prologue_epilogue_contains (insn))
2975 {
2976 if (RTX_FRAME_RELATED_P (insn))
2977 CANT_MOVE (insn) = 1;
2978 else
2979 {
2980 rtx note;
2981 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2982 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2983 && ((enum insn_note) INTVAL (XEXP (note, 0))
2984 == NOTE_INSN_EPILOGUE_BEG))
2985 {
2986 CANT_MOVE (insn) = 1;
2987 break;
2988 }
2989 }
2990 force_unique_p = true;
2991 }
2992 else
2993 if (CANT_MOVE (insn)
2994 || INSN_ASM_P (insn)
2995 || SCHED_GROUP_P (insn)
2996 || CALL_P (insn)
2997 /* Exception handling insns are always unique. */
2998 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2999 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
3000 || control_flow_insn_p (insn)
3001 || volatile_insn_p (PATTERN (insn))
3002 || (targetm.cannot_copy_insn_p
3003 && targetm.cannot_copy_insn_p (insn)))
3004 force_unique_p = true;
3005 else
3006 force_unique_p = false;
3007
3008 if (targetm.sched.get_insn_spec_ds)
3009 {
3010 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3011 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3012 }
3013 else
3014 spec_done_ds = 0;
3015
3016 /* Initialize INSN's expr. */
3017 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3018 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3019 spec_done_ds, 0, 0, vNULL, true,
3020 false, false, false, CANT_MOVE (insn));
3021 }
3022
3023 init_first_time_insn_data (insn);
3024 }
3025
3026 /* Scan the region and initialize instruction data for basic blocks BBS. */
3027 void
3028 sel_init_global_and_expr (bb_vec_t bbs)
3029 {
3030 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3031 const struct sched_scan_info_def ssi =
3032 {
3033 NULL, /* extend_bb */
3034 init_global_and_expr_for_bb, /* init_bb */
3035 extend_insn_data, /* extend_insn */
3036 init_global_and_expr_for_insn /* init_insn */
3037 };
3038
3039 sched_scan (&ssi, bbs);
3040 }
3041
3042 /* Finalize region-scope data structures for basic blocks. */
3043 static void
3044 finish_global_and_expr_for_bb (basic_block bb)
3045 {
3046 av_set_clear (&BB_AV_SET (bb));
3047 BB_AV_LEVEL (bb) = 0;
3048 }
3049
3050 /* Finalize INSN's data. */
3051 static void
3052 finish_global_and_expr_insn (insn_t insn)
3053 {
3054 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3055 return;
3056
3057 gcc_assert (INSN_P (insn));
3058
3059 if (INSN_LUID (insn) > 0)
3060 {
3061 free_first_time_insn_data (insn);
3062 INSN_WS_LEVEL (insn) = 0;
3063 CANT_MOVE (insn) = 0;
3064
3065 /* We can no longer assert this, as vinsns of this insn could be
3066 easily live in other insn's caches. This should be changed to
3067 a counter-like approach among all vinsns. */
3068 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3069 clear_expr (INSN_EXPR (insn));
3070 }
3071 }
3072
3073 /* Finalize per instruction data for the whole region. */
3074 void
3075 sel_finish_global_and_expr (void)
3076 {
3077 {
3078 bb_vec_t bbs;
3079 int i;
3080
3081 bbs.create (current_nr_blocks);
3082
3083 for (i = 0; i < current_nr_blocks; i++)
3084 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3085
3086 /* Clear AV_SETs and INSN_EXPRs. */
3087 {
3088 const struct sched_scan_info_def ssi =
3089 {
3090 NULL, /* extend_bb */
3091 finish_global_and_expr_for_bb, /* init_bb */
3092 NULL, /* extend_insn */
3093 finish_global_and_expr_insn /* init_insn */
3094 };
3095
3096 sched_scan (&ssi, bbs);
3097 }
3098
3099 bbs.release ();
3100 }
3101
3102 finish_insns ();
3103 }
3104 \f
3105
3106 /* In the below hooks, we merely calculate whether or not a dependence
3107 exists, and in what part of insn. However, we will need more data
3108 when we'll start caching dependence requests. */
3109
3110 /* Container to hold information for dependency analysis. */
3111 static struct
3112 {
3113 deps_t dc;
3114
3115 /* A variable to track which part of rtx we are scanning in
3116 sched-deps.c: sched_analyze_insn (). */
3117 deps_where_t where;
3118
3119 /* Current producer. */
3120 insn_t pro;
3121
3122 /* Current consumer. */
3123 vinsn_t con;
3124
3125 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3126 X is from { INSN, LHS, RHS }. */
3127 ds_t has_dep_p[DEPS_IN_NOWHERE];
3128 } has_dependence_data;
3129
3130 /* Start analyzing dependencies of INSN. */
3131 static void
3132 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3133 {
3134 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3135
3136 has_dependence_data.where = DEPS_IN_INSN;
3137 }
3138
3139 /* Finish analyzing dependencies of an insn. */
3140 static void
3141 has_dependence_finish_insn (void)
3142 {
3143 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3144
3145 has_dependence_data.where = DEPS_IN_NOWHERE;
3146 }
3147
3148 /* Start analyzing dependencies of LHS. */
3149 static void
3150 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3151 {
3152 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3153
3154 if (VINSN_LHS (has_dependence_data.con) != NULL)
3155 has_dependence_data.where = DEPS_IN_LHS;
3156 }
3157
3158 /* Finish analyzing dependencies of an lhs. */
3159 static void
3160 has_dependence_finish_lhs (void)
3161 {
3162 has_dependence_data.where = DEPS_IN_INSN;
3163 }
3164
3165 /* Start analyzing dependencies of RHS. */
3166 static void
3167 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3168 {
3169 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3170
3171 if (VINSN_RHS (has_dependence_data.con) != NULL)
3172 has_dependence_data.where = DEPS_IN_RHS;
3173 }
3174
3175 /* Start analyzing dependencies of an rhs. */
3176 static void
3177 has_dependence_finish_rhs (void)
3178 {
3179 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3180 || has_dependence_data.where == DEPS_IN_INSN);
3181
3182 has_dependence_data.where = DEPS_IN_INSN;
3183 }
3184
3185 /* Note a set of REGNO. */
3186 static void
3187 has_dependence_note_reg_set (int regno)
3188 {
3189 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3190
3191 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3192 VINSN_INSN_RTX
3193 (has_dependence_data.con)))
3194 {
3195 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3196
3197 if (reg_last->sets != NULL
3198 || reg_last->clobbers != NULL)
3199 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3200
3201 if (reg_last->uses || reg_last->implicit_sets)
3202 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3203 }
3204 }
3205
3206 /* Note a clobber of REGNO. */
3207 static void
3208 has_dependence_note_reg_clobber (int regno)
3209 {
3210 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3211
3212 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3213 VINSN_INSN_RTX
3214 (has_dependence_data.con)))
3215 {
3216 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3217
3218 if (reg_last->sets)
3219 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3220
3221 if (reg_last->uses || reg_last->implicit_sets)
3222 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3223 }
3224 }
3225
3226 /* Note a use of REGNO. */
3227 static void
3228 has_dependence_note_reg_use (int regno)
3229 {
3230 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3231
3232 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3233 VINSN_INSN_RTX
3234 (has_dependence_data.con)))
3235 {
3236 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3237
3238 if (reg_last->sets)
3239 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3240
3241 if (reg_last->clobbers || reg_last->implicit_sets)
3242 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3243
3244 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3245 is actually a check insn. We need to do this for any register
3246 read-read dependency with the check unless we track properly
3247 all registers written by BE_IN_SPEC-speculated insns, as
3248 we don't have explicit dependence lists. See PR 53975. */
3249 if (reg_last->uses)
3250 {
3251 ds_t pro_spec_checked_ds;
3252
3253 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3254 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3255
3256 if (pro_spec_checked_ds != 0)
3257 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3258 NULL_RTX, NULL_RTX);
3259 }
3260 }
3261 }
3262
3263 /* Note a memory dependence. */
3264 static void
3265 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3266 rtx pending_mem ATTRIBUTE_UNUSED,
3267 insn_t pending_insn ATTRIBUTE_UNUSED,
3268 ds_t ds ATTRIBUTE_UNUSED)
3269 {
3270 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3271 VINSN_INSN_RTX (has_dependence_data.con)))
3272 {
3273 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3274
3275 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3276 }
3277 }
3278
3279 /* Note a dependence. */
3280 static void
3281 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3282 ds_t ds ATTRIBUTE_UNUSED)
3283 {
3284 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3285 VINSN_INSN_RTX (has_dependence_data.con)))
3286 {
3287 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3288
3289 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3290 }
3291 }
3292
3293 /* Mark the insn as having a hard dependence that prevents speculation. */
3294 void
3295 sel_mark_hard_insn (rtx insn)
3296 {
3297 int i;
3298
3299 /* Only work when we're in has_dependence_p mode.
3300 ??? This is a hack, this should actually be a hook. */
3301 if (!has_dependence_data.dc || !has_dependence_data.pro)
3302 return;
3303
3304 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3305 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3306
3307 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3308 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3309 }
3310
3311 /* This structure holds the hooks for the dependency analysis used when
3312 actually processing dependencies in the scheduler. */
3313 static struct sched_deps_info_def has_dependence_sched_deps_info;
3314
3315 /* This initializes most of the fields of the above structure. */
3316 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3317 {
3318 NULL,
3319
3320 has_dependence_start_insn,
3321 has_dependence_finish_insn,
3322 has_dependence_start_lhs,
3323 has_dependence_finish_lhs,
3324 has_dependence_start_rhs,
3325 has_dependence_finish_rhs,
3326 has_dependence_note_reg_set,
3327 has_dependence_note_reg_clobber,
3328 has_dependence_note_reg_use,
3329 has_dependence_note_mem_dep,
3330 has_dependence_note_dep,
3331
3332 0, /* use_cselib */
3333 0, /* use_deps_list */
3334 0 /* generate_spec_deps */
3335 };
3336
3337 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3338 static void
3339 setup_has_dependence_sched_deps_info (void)
3340 {
3341 memcpy (&has_dependence_sched_deps_info,
3342 &const_has_dependence_sched_deps_info,
3343 sizeof (has_dependence_sched_deps_info));
3344
3345 if (spec_info != NULL)
3346 has_dependence_sched_deps_info.generate_spec_deps = 1;
3347
3348 sched_deps_info = &has_dependence_sched_deps_info;
3349 }
3350
3351 /* Remove all dependences found and recorded in has_dependence_data array. */
3352 void
3353 sel_clear_has_dependence (void)
3354 {
3355 int i;
3356
3357 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3358 has_dependence_data.has_dep_p[i] = 0;
3359 }
3360
3361 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3362 to the dependence information array in HAS_DEP_PP. */
3363 ds_t
3364 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3365 {
3366 int i;
3367 ds_t ds;
3368 struct deps_desc *dc;
3369
3370 if (INSN_SIMPLEJUMP_P (pred))
3371 /* Unconditional jump is just a transfer of control flow.
3372 Ignore it. */
3373 return false;
3374
3375 dc = &INSN_DEPS_CONTEXT (pred);
3376
3377 /* We init this field lazily. */
3378 if (dc->reg_last == NULL)
3379 init_deps_reg_last (dc);
3380
3381 if (!dc->readonly)
3382 {
3383 has_dependence_data.pro = NULL;
3384 /* Initialize empty dep context with information about PRED. */
3385 advance_deps_context (dc, pred);
3386 dc->readonly = 1;
3387 }
3388
3389 has_dependence_data.where = DEPS_IN_NOWHERE;
3390 has_dependence_data.pro = pred;
3391 has_dependence_data.con = EXPR_VINSN (expr);
3392 has_dependence_data.dc = dc;
3393
3394 sel_clear_has_dependence ();
3395
3396 /* Now catch all dependencies that would be generated between PRED and
3397 INSN. */
3398 setup_has_dependence_sched_deps_info ();
3399 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3400 has_dependence_data.dc = NULL;
3401
3402 /* When a barrier was found, set DEPS_IN_INSN bits. */
3403 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3404 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3405 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3406 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3407
3408 /* Do not allow stores to memory to move through checks. Currently
3409 we don't move this to sched-deps.c as the check doesn't have
3410 obvious places to which this dependence can be attached.
3411 FIMXE: this should go to a hook. */
3412 if (EXPR_LHS (expr)
3413 && MEM_P (EXPR_LHS (expr))
3414 && sel_insn_is_speculation_check (pred))
3415 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3416
3417 *has_dep_pp = has_dependence_data.has_dep_p;
3418 ds = 0;
3419 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3420 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3421 NULL_RTX, NULL_RTX);
3422
3423 return ds;
3424 }
3425 \f
3426
3427 /* Dependence hooks implementation that checks dependence latency constraints
3428 on the insns being scheduled. The entry point for these routines is
3429 tick_check_p predicate. */
3430
3431 static struct
3432 {
3433 /* An expr we are currently checking. */
3434 expr_t expr;
3435
3436 /* A minimal cycle for its scheduling. */
3437 int cycle;
3438
3439 /* Whether we have seen a true dependence while checking. */
3440 bool seen_true_dep_p;
3441 } tick_check_data;
3442
3443 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3444 on PRO with status DS and weight DW. */
3445 static void
3446 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3447 {
3448 expr_t con_expr = tick_check_data.expr;
3449 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3450
3451 if (con_insn != pro_insn)
3452 {
3453 enum reg_note dt;
3454 int tick;
3455
3456 if (/* PROducer was removed from above due to pipelining. */
3457 !INSN_IN_STREAM_P (pro_insn)
3458 /* Or PROducer was originally on the next iteration regarding the
3459 CONsumer. */
3460 || (INSN_SCHED_TIMES (pro_insn)
3461 - EXPR_SCHED_TIMES (con_expr)) > 1)
3462 /* Don't count this dependence. */
3463 return;
3464
3465 dt = ds_to_dt (ds);
3466 if (dt == REG_DEP_TRUE)
3467 tick_check_data.seen_true_dep_p = true;
3468
3469 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3470
3471 {
3472 dep_def _dep, *dep = &_dep;
3473
3474 init_dep (dep, pro_insn, con_insn, dt);
3475
3476 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3477 }
3478
3479 /* When there are several kinds of dependencies between pro and con,
3480 only REG_DEP_TRUE should be taken into account. */
3481 if (tick > tick_check_data.cycle
3482 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3483 tick_check_data.cycle = tick;
3484 }
3485 }
3486
3487 /* An implementation of note_dep hook. */
3488 static void
3489 tick_check_note_dep (insn_t pro, ds_t ds)
3490 {
3491 tick_check_dep_with_dw (pro, ds, 0);
3492 }
3493
3494 /* An implementation of note_mem_dep hook. */
3495 static void
3496 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3497 {
3498 dw_t dw;
3499
3500 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3501 ? estimate_dep_weak (mem1, mem2)
3502 : 0);
3503
3504 tick_check_dep_with_dw (pro, ds, dw);
3505 }
3506
3507 /* This structure contains hooks for dependence analysis used when determining
3508 whether an insn is ready for scheduling. */
3509 static struct sched_deps_info_def tick_check_sched_deps_info =
3510 {
3511 NULL,
3512
3513 NULL,
3514 NULL,
3515 NULL,
3516 NULL,
3517 NULL,
3518 NULL,
3519 haifa_note_reg_set,
3520 haifa_note_reg_clobber,
3521 haifa_note_reg_use,
3522 tick_check_note_mem_dep,
3523 tick_check_note_dep,
3524
3525 0, 0, 0
3526 };
3527
3528 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3529 scheduled. Return 0 if all data from producers in DC is ready. */
3530 int
3531 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3532 {
3533 int cycles_left;
3534 /* Initialize variables. */
3535 tick_check_data.expr = expr;
3536 tick_check_data.cycle = 0;
3537 tick_check_data.seen_true_dep_p = false;
3538 sched_deps_info = &tick_check_sched_deps_info;
3539
3540 gcc_assert (!dc->readonly);
3541 dc->readonly = 1;
3542 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3543 dc->readonly = 0;
3544
3545 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3546
3547 return cycles_left >= 0 ? cycles_left : 0;
3548 }
3549 \f
3550
3551 /* Functions to work with insns. */
3552
3553 /* Returns true if LHS of INSN is the same as DEST of an insn
3554 being moved. */
3555 bool
3556 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3557 {
3558 rtx lhs = INSN_LHS (insn);
3559
3560 if (lhs == NULL || dest == NULL)
3561 return false;
3562
3563 return rtx_equal_p (lhs, dest);
3564 }
3565
3566 /* Return s_i_d entry of INSN. Callable from debugger. */
3567 sel_insn_data_def
3568 insn_sid (insn_t insn)
3569 {
3570 return *SID (insn);
3571 }
3572
3573 /* True when INSN is a speculative check. We can tell this by looking
3574 at the data structures of the selective scheduler, not by examining
3575 the pattern. */
3576 bool
3577 sel_insn_is_speculation_check (rtx insn)
3578 {
3579 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3580 }
3581
3582 /* Extracts machine mode MODE and destination location DST_LOC
3583 for given INSN. */
3584 void
3585 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3586 {
3587 rtx pat = PATTERN (insn);
3588
3589 gcc_assert (dst_loc);
3590 gcc_assert (GET_CODE (pat) == SET);
3591
3592 *dst_loc = SET_DEST (pat);
3593
3594 gcc_assert (*dst_loc);
3595 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3596
3597 if (mode)
3598 *mode = GET_MODE (*dst_loc);
3599 }
3600
3601 /* Returns true when moving through JUMP will result in bookkeeping
3602 creation. */
3603 bool
3604 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3605 {
3606 insn_t succ;
3607 succ_iterator si;
3608
3609 FOR_EACH_SUCC (succ, si, jump)
3610 if (sel_num_cfg_preds_gt_1 (succ))
3611 return true;
3612
3613 return false;
3614 }
3615
3616 /* Return 'true' if INSN is the only one in its basic block. */
3617 static bool
3618 insn_is_the_only_one_in_bb_p (insn_t insn)
3619 {
3620 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3621 }
3622
3623 #ifdef ENABLE_CHECKING
3624 /* Check that the region we're scheduling still has at most one
3625 backedge. */
3626 static void
3627 verify_backedges (void)
3628 {
3629 if (pipelining_p)
3630 {
3631 int i, n = 0;
3632 edge e;
3633 edge_iterator ei;
3634
3635 for (i = 0; i < current_nr_blocks; i++)
3636 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3637 if (in_current_region_p (e->dest)
3638 && BLOCK_TO_BB (e->dest->index) < i)
3639 n++;
3640
3641 gcc_assert (n <= 1);
3642 }
3643 }
3644 #endif
3645 \f
3646
3647 /* Functions to work with control flow. */
3648
3649 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3650 are sorted in topological order (it might have been invalidated by
3651 redirecting an edge). */
3652 static void
3653 sel_recompute_toporder (void)
3654 {
3655 int i, n, rgn;
3656 int *postorder, n_blocks;
3657
3658 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3659 n_blocks = post_order_compute (postorder, false, false);
3660
3661 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3662 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3663 if (CONTAINING_RGN (postorder[i]) == rgn)
3664 {
3665 BLOCK_TO_BB (postorder[i]) = n;
3666 BB_TO_BLOCK (n) = postorder[i];
3667 n++;
3668 }
3669
3670 /* Assert that we updated info for all blocks. We may miss some blocks if
3671 this function is called when redirecting an edge made a block
3672 unreachable, but that block is not deleted yet. */
3673 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3674 }
3675
3676 /* Tidy the possibly empty block BB. */
3677 static bool
3678 maybe_tidy_empty_bb (basic_block bb)
3679 {
3680 basic_block succ_bb, pred_bb, note_bb;
3681 vec<basic_block> dom_bbs;
3682 edge e;
3683 edge_iterator ei;
3684 bool rescan_p;
3685
3686 /* Keep empty bb only if this block immediately precedes EXIT and
3687 has incoming non-fallthrough edge, or it has no predecessors or
3688 successors. Otherwise remove it. */
3689 if (!sel_bb_empty_p (bb)
3690 || (single_succ_p (bb)
3691 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3692 && (!single_pred_p (bb)
3693 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3694 || EDGE_COUNT (bb->preds) == 0
3695 || EDGE_COUNT (bb->succs) == 0)
3696 return false;
3697
3698 /* Do not attempt to redirect complex edges. */
3699 FOR_EACH_EDGE (e, ei, bb->preds)
3700 if (e->flags & EDGE_COMPLEX)
3701 return false;
3702 else if (e->flags & EDGE_FALLTHRU)
3703 {
3704 rtx note;
3705 /* If prev bb ends with asm goto, see if any of the
3706 ASM_OPERANDS_LABELs don't point to the fallthru
3707 label. Do not attempt to redirect it in that case. */
3708 if (JUMP_P (BB_END (e->src))
3709 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3710 {
3711 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3712
3713 for (i = 0; i < n; ++i)
3714 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3715 return false;
3716 }
3717 }
3718
3719 free_data_sets (bb);
3720
3721 /* Do not delete BB if it has more than one successor.
3722 That can occur when we moving a jump. */
3723 if (!single_succ_p (bb))
3724 {
3725 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3726 sel_merge_blocks (bb->prev_bb, bb);
3727 return true;
3728 }
3729
3730 succ_bb = single_succ (bb);
3731 rescan_p = true;
3732 pred_bb = NULL;
3733 dom_bbs.create (0);
3734
3735 /* Save a pred/succ from the current region to attach the notes to. */
3736 note_bb = NULL;
3737 FOR_EACH_EDGE (e, ei, bb->preds)
3738 if (in_current_region_p (e->src))
3739 {
3740 note_bb = e->src;
3741 break;
3742 }
3743 if (note_bb == NULL)
3744 note_bb = succ_bb;
3745
3746 /* Redirect all non-fallthru edges to the next bb. */
3747 while (rescan_p)
3748 {
3749 rescan_p = false;
3750
3751 FOR_EACH_EDGE (e, ei, bb->preds)
3752 {
3753 pred_bb = e->src;
3754
3755 if (!(e->flags & EDGE_FALLTHRU))
3756 {
3757 /* We can not invalidate computed topological order by moving
3758 the edge destination block (E->SUCC) along a fallthru edge.
3759
3760 We will update dominators here only when we'll get
3761 an unreachable block when redirecting, otherwise
3762 sel_redirect_edge_and_branch will take care of it. */
3763 if (e->dest != bb
3764 && single_pred_p (e->dest))
3765 dom_bbs.safe_push (e->dest);
3766 sel_redirect_edge_and_branch (e, succ_bb);
3767 rescan_p = true;
3768 break;
3769 }
3770 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3771 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3772 still have to adjust it. */
3773 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3774 {
3775 /* If possible, try to remove the unneeded conditional jump. */
3776 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3777 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3778 {
3779 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3780 tidy_fallthru_edge (e);
3781 }
3782 else
3783 sel_redirect_edge_and_branch (e, succ_bb);
3784 rescan_p = true;
3785 break;
3786 }
3787 }
3788 }
3789
3790 if (can_merge_blocks_p (bb->prev_bb, bb))
3791 sel_merge_blocks (bb->prev_bb, bb);
3792 else
3793 {
3794 /* This is a block without fallthru predecessor. Just delete it. */
3795 gcc_assert (note_bb);
3796 move_bb_info (note_bb, bb);
3797 remove_empty_bb (bb, true);
3798 }
3799
3800 if (!dom_bbs.is_empty ())
3801 {
3802 dom_bbs.safe_push (succ_bb);
3803 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3804 dom_bbs.release ();
3805 }
3806
3807 return true;
3808 }
3809
3810 /* Tidy the control flow after we have removed original insn from
3811 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3812 is true, also try to optimize control flow on non-empty blocks. */
3813 bool
3814 tidy_control_flow (basic_block xbb, bool full_tidying)
3815 {
3816 bool changed = true;
3817 insn_t first, last;
3818
3819 /* First check whether XBB is empty. */
3820 changed = maybe_tidy_empty_bb (xbb);
3821 if (changed || !full_tidying)
3822 return changed;
3823
3824 /* Check if there is a unnecessary jump after insn left. */
3825 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3826 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3827 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3828 {
3829 if (sel_remove_insn (BB_END (xbb), false, false))
3830 return true;
3831 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3832 }
3833
3834 first = sel_bb_head (xbb);
3835 last = sel_bb_end (xbb);
3836 if (MAY_HAVE_DEBUG_INSNS)
3837 {
3838 if (first != last && DEBUG_INSN_P (first))
3839 do
3840 first = NEXT_INSN (first);
3841 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3842
3843 if (first != last && DEBUG_INSN_P (last))
3844 do
3845 last = PREV_INSN (last);
3846 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3847 }
3848 /* Check if there is an unnecessary jump in previous basic block leading
3849 to next basic block left after removing INSN from stream.
3850 If it is so, remove that jump and redirect edge to current
3851 basic block (where there was INSN before deletion). This way
3852 when NOP will be deleted several instructions later with its
3853 basic block we will not get a jump to next instruction, which
3854 can be harmful. */
3855 if (first == last
3856 && !sel_bb_empty_p (xbb)
3857 && INSN_NOP_P (last)
3858 /* Flow goes fallthru from current block to the next. */
3859 && EDGE_COUNT (xbb->succs) == 1
3860 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3861 /* When successor is an EXIT block, it may not be the next block. */
3862 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3863 /* And unconditional jump in previous basic block leads to
3864 next basic block of XBB and this jump can be safely removed. */
3865 && in_current_region_p (xbb->prev_bb)
3866 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3867 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3868 /* Also this jump is not at the scheduling boundary. */
3869 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3870 {
3871 bool recompute_toporder_p;
3872 /* Clear data structures of jump - jump itself will be removed
3873 by sel_redirect_edge_and_branch. */
3874 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3875 recompute_toporder_p
3876 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3877
3878 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3879
3880 /* It can turn out that after removing unused jump, basic block
3881 that contained that jump, becomes empty too. In such case
3882 remove it too. */
3883 if (sel_bb_empty_p (xbb->prev_bb))
3884 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3885 if (recompute_toporder_p)
3886 sel_recompute_toporder ();
3887 }
3888
3889 #ifdef ENABLE_CHECKING
3890 verify_backedges ();
3891 verify_dominators (CDI_DOMINATORS);
3892 #endif
3893
3894 return changed;
3895 }
3896
3897 /* Purge meaningless empty blocks in the middle of a region. */
3898 void
3899 purge_empty_blocks (void)
3900 {
3901 int i;
3902
3903 /* Do not attempt to delete the first basic block in the region. */
3904 for (i = 1; i < current_nr_blocks; )
3905 {
3906 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3907
3908 if (maybe_tidy_empty_bb (b))
3909 continue;
3910
3911 i++;
3912 }
3913 }
3914
3915 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3916 do not delete insn's data, because it will be later re-emitted.
3917 Return true if we have removed some blocks afterwards. */
3918 bool
3919 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3920 {
3921 basic_block bb = BLOCK_FOR_INSN (insn);
3922
3923 gcc_assert (INSN_IN_STREAM_P (insn));
3924
3925 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3926 {
3927 expr_t expr;
3928 av_set_iterator i;
3929
3930 /* When we remove a debug insn that is head of a BB, it remains
3931 in the AV_SET of the block, but it shouldn't. */
3932 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3933 if (EXPR_INSN_RTX (expr) == insn)
3934 {
3935 av_set_iter_remove (&i);
3936 break;
3937 }
3938 }
3939
3940 if (only_disconnect)
3941 remove_insn (insn);
3942 else
3943 {
3944 delete_insn (insn);
3945 clear_expr (INSN_EXPR (insn));
3946 }
3947
3948 /* It is necessary to NULL these fields in case we are going to re-insert
3949 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3950 case, but also for NOPs that we will return to the nop pool. */
3951 SET_PREV_INSN (insn) = NULL_RTX;
3952 SET_NEXT_INSN (insn) = NULL_RTX;
3953 set_block_for_insn (insn, NULL);
3954
3955 return tidy_control_flow (bb, full_tidying);
3956 }
3957
3958 /* Estimate number of the insns in BB. */
3959 static int
3960 sel_estimate_number_of_insns (basic_block bb)
3961 {
3962 int res = 0;
3963 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3964
3965 for (; insn != next_tail; insn = NEXT_INSN (insn))
3966 if (NONDEBUG_INSN_P (insn))
3967 res++;
3968
3969 return res;
3970 }
3971
3972 /* We don't need separate luids for notes or labels. */
3973 static int
3974 sel_luid_for_non_insn (rtx x)
3975 {
3976 gcc_assert (NOTE_P (x) || LABEL_P (x));
3977
3978 return -1;
3979 }
3980
3981 /* Find the proper seqno for inserting at INSN by successors.
3982 Return -1 if no successors with positive seqno exist. */
3983 static int
3984 get_seqno_by_succs (rtx_insn *insn)
3985 {
3986 basic_block bb = BLOCK_FOR_INSN (insn);
3987 rtx_insn *tmp = insn, *end = BB_END (bb);
3988 int seqno;
3989 insn_t succ = NULL;
3990 succ_iterator si;
3991
3992 while (tmp != end)
3993 {
3994 tmp = NEXT_INSN (tmp);
3995 if (INSN_P (tmp))
3996 return INSN_SEQNO (tmp);
3997 }
3998
3999 seqno = INT_MAX;
4000
4001 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4002 if (INSN_SEQNO (succ) > 0)
4003 seqno = MIN (seqno, INSN_SEQNO (succ));
4004
4005 if (seqno == INT_MAX)
4006 return -1;
4007
4008 return seqno;
4009 }
4010
4011 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4012 seqno in corner cases. */
4013 static int
4014 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4015 {
4016 int seqno;
4017
4018 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4019
4020 if (!sel_bb_head_p (insn))
4021 seqno = INSN_SEQNO (PREV_INSN (insn));
4022 else
4023 {
4024 basic_block bb = BLOCK_FOR_INSN (insn);
4025
4026 if (single_pred_p (bb)
4027 && !in_current_region_p (single_pred (bb)))
4028 {
4029 /* We can have preds outside a region when splitting edges
4030 for pipelining of an outer loop. Use succ instead.
4031 There should be only one of them. */
4032 insn_t succ = NULL;
4033 succ_iterator si;
4034 bool first = true;
4035
4036 gcc_assert (flag_sel_sched_pipelining_outer_loops
4037 && current_loop_nest);
4038 FOR_EACH_SUCC_1 (succ, si, insn,
4039 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4040 {
4041 gcc_assert (first);
4042 first = false;
4043 }
4044
4045 gcc_assert (succ != NULL);
4046 seqno = INSN_SEQNO (succ);
4047 }
4048 else
4049 {
4050 insn_t *preds;
4051 int n;
4052
4053 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4054
4055 gcc_assert (n > 0);
4056 /* For one predecessor, use simple method. */
4057 if (n == 1)
4058 seqno = INSN_SEQNO (preds[0]);
4059 else
4060 seqno = get_seqno_by_preds (insn);
4061
4062 free (preds);
4063 }
4064 }
4065
4066 /* We were unable to find a good seqno among preds. */
4067 if (seqno < 0)
4068 seqno = get_seqno_by_succs (insn);
4069
4070 if (seqno < 0)
4071 {
4072 /* The only case where this could be here legally is that the only
4073 unscheduled insn was a conditional jump that got removed and turned
4074 into this unconditional one. Initialize from the old seqno
4075 of that jump passed down to here. */
4076 seqno = old_seqno;
4077 }
4078
4079 gcc_assert (seqno >= 0);
4080 return seqno;
4081 }
4082
4083 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4084 with positive seqno exist. */
4085 int
4086 get_seqno_by_preds (rtx insn)
4087 {
4088 basic_block bb = BLOCK_FOR_INSN (insn);
4089 rtx tmp = insn, head = BB_HEAD (bb);
4090 insn_t *preds;
4091 int n, i, seqno;
4092
4093 while (tmp != head)
4094 {
4095 tmp = PREV_INSN (tmp);
4096 if (INSN_P (tmp))
4097 return INSN_SEQNO (tmp);
4098 }
4099
4100 cfg_preds (bb, &preds, &n);
4101 for (i = 0, seqno = -1; i < n; i++)
4102 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4103
4104 return seqno;
4105 }
4106
4107 \f
4108
4109 /* Extend pass-scope data structures for basic blocks. */
4110 void
4111 sel_extend_global_bb_info (void)
4112 {
4113 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4114 }
4115
4116 /* Extend region-scope data structures for basic blocks. */
4117 static void
4118 extend_region_bb_info (void)
4119 {
4120 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4121 }
4122
4123 /* Extend all data structures to fit for all basic blocks. */
4124 static void
4125 extend_bb_info (void)
4126 {
4127 sel_extend_global_bb_info ();
4128 extend_region_bb_info ();
4129 }
4130
4131 /* Finalize pass-scope data structures for basic blocks. */
4132 void
4133 sel_finish_global_bb_info (void)
4134 {
4135 sel_global_bb_info.release ();
4136 }
4137
4138 /* Finalize region-scope data structures for basic blocks. */
4139 static void
4140 finish_region_bb_info (void)
4141 {
4142 sel_region_bb_info.release ();
4143 }
4144 \f
4145
4146 /* Data for each insn in current region. */
4147 vec<sel_insn_data_def> s_i_d = vNULL;
4148
4149 /* Extend data structures for insns from current region. */
4150 static void
4151 extend_insn_data (void)
4152 {
4153 int reserve;
4154
4155 sched_extend_target ();
4156 sched_deps_init (false);
4157
4158 /* Extend data structures for insns from current region. */
4159 reserve = (sched_max_luid + 1 - s_i_d.length ());
4160 if (reserve > 0 && ! s_i_d.space (reserve))
4161 {
4162 int size;
4163
4164 if (sched_max_luid / 2 > 1024)
4165 size = sched_max_luid + 1024;
4166 else
4167 size = 3 * sched_max_luid / 2;
4168
4169
4170 s_i_d.safe_grow_cleared (size);
4171 }
4172 }
4173
4174 /* Finalize data structures for insns from current region. */
4175 static void
4176 finish_insns (void)
4177 {
4178 unsigned i;
4179
4180 /* Clear here all dependence contexts that may have left from insns that were
4181 removed during the scheduling. */
4182 for (i = 0; i < s_i_d.length (); i++)
4183 {
4184 sel_insn_data_def *sid_entry = &s_i_d[i];
4185
4186 if (sid_entry->live)
4187 return_regset_to_pool (sid_entry->live);
4188 if (sid_entry->analyzed_deps)
4189 {
4190 BITMAP_FREE (sid_entry->analyzed_deps);
4191 BITMAP_FREE (sid_entry->found_deps);
4192 htab_delete (sid_entry->transformed_insns);
4193 free_deps (&sid_entry->deps_context);
4194 }
4195 if (EXPR_VINSN (&sid_entry->expr))
4196 {
4197 clear_expr (&sid_entry->expr);
4198
4199 /* Also, clear CANT_MOVE bit here, because we really don't want it
4200 to be passed to the next region. */
4201 CANT_MOVE_BY_LUID (i) = 0;
4202 }
4203 }
4204
4205 s_i_d.release ();
4206 }
4207
4208 /* A proxy to pass initialization data to init_insn (). */
4209 static sel_insn_data_def _insn_init_ssid;
4210 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4211
4212 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4213 static bool insn_init_create_new_vinsn_p;
4214
4215 /* Set all necessary data for initialization of the new insn[s]. */
4216 static expr_t
4217 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4218 {
4219 expr_t x = &insn_init_ssid->expr;
4220
4221 copy_expr_onside (x, expr);
4222 if (vi != NULL)
4223 {
4224 insn_init_create_new_vinsn_p = false;
4225 change_vinsn_in_expr (x, vi);
4226 }
4227 else
4228 insn_init_create_new_vinsn_p = true;
4229
4230 insn_init_ssid->seqno = seqno;
4231 return x;
4232 }
4233
4234 /* Init data for INSN. */
4235 static void
4236 init_insn_data (insn_t insn)
4237 {
4238 expr_t expr;
4239 sel_insn_data_t ssid = insn_init_ssid;
4240
4241 /* The fields mentioned below are special and hence are not being
4242 propagated to the new insns. */
4243 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4244 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4245 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4246
4247 expr = INSN_EXPR (insn);
4248 copy_expr (expr, &ssid->expr);
4249 prepare_insn_expr (insn, ssid->seqno);
4250
4251 if (insn_init_create_new_vinsn_p)
4252 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4253
4254 if (first_time_insn_init (insn))
4255 init_first_time_insn_data (insn);
4256 }
4257
4258 /* This is used to initialize spurious jumps generated by
4259 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4260 in corner cases within get_seqno_for_a_jump. */
4261 static void
4262 init_simplejump_data (insn_t insn, int old_seqno)
4263 {
4264 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4265 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4266 vNULL, true, false, false,
4267 false, true);
4268 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4269 init_first_time_insn_data (insn);
4270 }
4271
4272 /* Perform deferred initialization of insns. This is used to process
4273 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4274 for initializing simplejumps in init_simplejump_data. */
4275 static void
4276 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4277 {
4278 /* We create data structures for bb when the first insn is emitted in it. */
4279 if (INSN_P (insn)
4280 && INSN_IN_STREAM_P (insn)
4281 && insn_is_the_only_one_in_bb_p (insn))
4282 {
4283 extend_bb_info ();
4284 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4285 }
4286
4287 if (flags & INSN_INIT_TODO_LUID)
4288 {
4289 sched_extend_luids ();
4290 sched_init_insn_luid (insn);
4291 }
4292
4293 if (flags & INSN_INIT_TODO_SSID)
4294 {
4295 extend_insn_data ();
4296 init_insn_data (insn);
4297 clear_expr (&insn_init_ssid->expr);
4298 }
4299
4300 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4301 {
4302 extend_insn_data ();
4303 init_simplejump_data (insn, old_seqno);
4304 }
4305
4306 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4307 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4308 }
4309 \f
4310
4311 /* Functions to init/finish work with lv sets. */
4312
4313 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4314 static void
4315 init_lv_set (basic_block bb)
4316 {
4317 gcc_assert (!BB_LV_SET_VALID_P (bb));
4318
4319 BB_LV_SET (bb) = get_regset_from_pool ();
4320 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4321 BB_LV_SET_VALID_P (bb) = true;
4322 }
4323
4324 /* Copy liveness information to BB from FROM_BB. */
4325 static void
4326 copy_lv_set_from (basic_block bb, basic_block from_bb)
4327 {
4328 gcc_assert (!BB_LV_SET_VALID_P (bb));
4329
4330 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4331 BB_LV_SET_VALID_P (bb) = true;
4332 }
4333
4334 /* Initialize lv set of all bb headers. */
4335 void
4336 init_lv_sets (void)
4337 {
4338 basic_block bb;
4339
4340 /* Initialize of LV sets. */
4341 FOR_EACH_BB_FN (bb, cfun)
4342 init_lv_set (bb);
4343
4344 /* Don't forget EXIT_BLOCK. */
4345 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4346 }
4347
4348 /* Release lv set of HEAD. */
4349 static void
4350 free_lv_set (basic_block bb)
4351 {
4352 gcc_assert (BB_LV_SET (bb) != NULL);
4353
4354 return_regset_to_pool (BB_LV_SET (bb));
4355 BB_LV_SET (bb) = NULL;
4356 BB_LV_SET_VALID_P (bb) = false;
4357 }
4358
4359 /* Finalize lv sets of all bb headers. */
4360 void
4361 free_lv_sets (void)
4362 {
4363 basic_block bb;
4364
4365 /* Don't forget EXIT_BLOCK. */
4366 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4367
4368 /* Free LV sets. */
4369 FOR_EACH_BB_FN (bb, cfun)
4370 if (BB_LV_SET (bb))
4371 free_lv_set (bb);
4372 }
4373
4374 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4375 compute_av() processes BB. This function is called when creating new basic
4376 blocks, as well as for blocks (either new or existing) where new jumps are
4377 created when the control flow is being updated. */
4378 static void
4379 invalidate_av_set (basic_block bb)
4380 {
4381 BB_AV_LEVEL (bb) = -1;
4382 }
4383
4384 /* Create initial data sets for BB (they will be invalid). */
4385 static void
4386 create_initial_data_sets (basic_block bb)
4387 {
4388 if (BB_LV_SET (bb))
4389 BB_LV_SET_VALID_P (bb) = false;
4390 else
4391 BB_LV_SET (bb) = get_regset_from_pool ();
4392 invalidate_av_set (bb);
4393 }
4394
4395 /* Free av set of BB. */
4396 static void
4397 free_av_set (basic_block bb)
4398 {
4399 av_set_clear (&BB_AV_SET (bb));
4400 BB_AV_LEVEL (bb) = 0;
4401 }
4402
4403 /* Free data sets of BB. */
4404 void
4405 free_data_sets (basic_block bb)
4406 {
4407 free_lv_set (bb);
4408 free_av_set (bb);
4409 }
4410
4411 /* Exchange lv sets of TO and FROM. */
4412 static void
4413 exchange_lv_sets (basic_block to, basic_block from)
4414 {
4415 {
4416 regset to_lv_set = BB_LV_SET (to);
4417
4418 BB_LV_SET (to) = BB_LV_SET (from);
4419 BB_LV_SET (from) = to_lv_set;
4420 }
4421
4422 {
4423 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4424
4425 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4426 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4427 }
4428 }
4429
4430
4431 /* Exchange av sets of TO and FROM. */
4432 static void
4433 exchange_av_sets (basic_block to, basic_block from)
4434 {
4435 {
4436 av_set_t to_av_set = BB_AV_SET (to);
4437
4438 BB_AV_SET (to) = BB_AV_SET (from);
4439 BB_AV_SET (from) = to_av_set;
4440 }
4441
4442 {
4443 int to_av_level = BB_AV_LEVEL (to);
4444
4445 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4446 BB_AV_LEVEL (from) = to_av_level;
4447 }
4448 }
4449
4450 /* Exchange data sets of TO and FROM. */
4451 void
4452 exchange_data_sets (basic_block to, basic_block from)
4453 {
4454 exchange_lv_sets (to, from);
4455 exchange_av_sets (to, from);
4456 }
4457
4458 /* Copy data sets of FROM to TO. */
4459 void
4460 copy_data_sets (basic_block to, basic_block from)
4461 {
4462 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4463 gcc_assert (BB_AV_SET (to) == NULL);
4464
4465 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4466 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4467
4468 if (BB_AV_SET_VALID_P (from))
4469 {
4470 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4471 }
4472 if (BB_LV_SET_VALID_P (from))
4473 {
4474 gcc_assert (BB_LV_SET (to) != NULL);
4475 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4476 }
4477 }
4478
4479 /* Return an av set for INSN, if any. */
4480 av_set_t
4481 get_av_set (insn_t insn)
4482 {
4483 av_set_t av_set;
4484
4485 gcc_assert (AV_SET_VALID_P (insn));
4486
4487 if (sel_bb_head_p (insn))
4488 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4489 else
4490 av_set = NULL;
4491
4492 return av_set;
4493 }
4494
4495 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4496 int
4497 get_av_level (insn_t insn)
4498 {
4499 int av_level;
4500
4501 gcc_assert (INSN_P (insn));
4502
4503 if (sel_bb_head_p (insn))
4504 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4505 else
4506 av_level = INSN_WS_LEVEL (insn);
4507
4508 return av_level;
4509 }
4510
4511 \f
4512
4513 /* Variables to work with control-flow graph. */
4514
4515 /* The basic block that already has been processed by the sched_data_update (),
4516 but hasn't been in sel_add_bb () yet. */
4517 static vec<basic_block>
4518 last_added_blocks = vNULL;
4519
4520 /* A pool for allocating successor infos. */
4521 static struct
4522 {
4523 /* A stack for saving succs_info structures. */
4524 struct succs_info *stack;
4525
4526 /* Its size. */
4527 int size;
4528
4529 /* Top of the stack. */
4530 int top;
4531
4532 /* Maximal value of the top. */
4533 int max_top;
4534 } succs_info_pool;
4535
4536 /* Functions to work with control-flow graph. */
4537
4538 /* Return basic block note of BB. */
4539 rtx_insn *
4540 sel_bb_head (basic_block bb)
4541 {
4542 rtx_insn *head;
4543
4544 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4545 {
4546 gcc_assert (exit_insn != NULL_RTX);
4547 head = exit_insn;
4548 }
4549 else
4550 {
4551 insn_t note;
4552
4553 note = bb_note (bb);
4554 head = next_nonnote_insn (note);
4555
4556 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4557 head = NULL;
4558 }
4559
4560 return head;
4561 }
4562
4563 /* Return true if INSN is a basic block header. */
4564 bool
4565 sel_bb_head_p (insn_t insn)
4566 {
4567 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4568 }
4569
4570 /* Return last insn of BB. */
4571 rtx_insn *
4572 sel_bb_end (basic_block bb)
4573 {
4574 if (sel_bb_empty_p (bb))
4575 return NULL;
4576
4577 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4578
4579 return BB_END (bb);
4580 }
4581
4582 /* Return true if INSN is the last insn in its basic block. */
4583 bool
4584 sel_bb_end_p (insn_t insn)
4585 {
4586 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4587 }
4588
4589 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4590 bool
4591 sel_bb_empty_p (basic_block bb)
4592 {
4593 return sel_bb_head (bb) == NULL;
4594 }
4595
4596 /* True when BB belongs to the current scheduling region. */
4597 bool
4598 in_current_region_p (basic_block bb)
4599 {
4600 if (bb->index < NUM_FIXED_BLOCKS)
4601 return false;
4602
4603 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4604 }
4605
4606 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4607 basic_block
4608 fallthru_bb_of_jump (rtx jump)
4609 {
4610 if (!JUMP_P (jump))
4611 return NULL;
4612
4613 if (!any_condjump_p (jump))
4614 return NULL;
4615
4616 /* A basic block that ends with a conditional jump may still have one successor
4617 (and be followed by a barrier), we are not interested. */
4618 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4619 return NULL;
4620
4621 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4622 }
4623
4624 /* Remove all notes from BB. */
4625 static void
4626 init_bb (basic_block bb)
4627 {
4628 remove_notes (bb_note (bb), BB_END (bb));
4629 BB_NOTE_LIST (bb) = note_list;
4630 }
4631
4632 void
4633 sel_init_bbs (bb_vec_t bbs)
4634 {
4635 const struct sched_scan_info_def ssi =
4636 {
4637 extend_bb_info, /* extend_bb */
4638 init_bb, /* init_bb */
4639 NULL, /* extend_insn */
4640 NULL /* init_insn */
4641 };
4642
4643 sched_scan (&ssi, bbs);
4644 }
4645
4646 /* Restore notes for the whole region. */
4647 static void
4648 sel_restore_notes (void)
4649 {
4650 int bb;
4651 insn_t insn;
4652
4653 for (bb = 0; bb < current_nr_blocks; bb++)
4654 {
4655 basic_block first, last;
4656
4657 first = EBB_FIRST_BB (bb);
4658 last = EBB_LAST_BB (bb)->next_bb;
4659
4660 do
4661 {
4662 note_list = BB_NOTE_LIST (first);
4663 restore_other_notes (NULL, first);
4664 BB_NOTE_LIST (first) = NULL;
4665
4666 FOR_BB_INSNS (first, insn)
4667 if (NONDEBUG_INSN_P (insn))
4668 reemit_notes (insn);
4669
4670 first = first->next_bb;
4671 }
4672 while (first != last);
4673 }
4674 }
4675
4676 /* Free per-bb data structures. */
4677 void
4678 sel_finish_bbs (void)
4679 {
4680 sel_restore_notes ();
4681
4682 /* Remove current loop preheader from this loop. */
4683 if (current_loop_nest)
4684 sel_remove_loop_preheader ();
4685
4686 finish_region_bb_info ();
4687 }
4688
4689 /* Return true if INSN has a single successor of type FLAGS. */
4690 bool
4691 sel_insn_has_single_succ_p (insn_t insn, int flags)
4692 {
4693 insn_t succ;
4694 succ_iterator si;
4695 bool first_p = true;
4696
4697 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4698 {
4699 if (first_p)
4700 first_p = false;
4701 else
4702 return false;
4703 }
4704
4705 return true;
4706 }
4707
4708 /* Allocate successor's info. */
4709 static struct succs_info *
4710 alloc_succs_info (void)
4711 {
4712 if (succs_info_pool.top == succs_info_pool.max_top)
4713 {
4714 int i;
4715
4716 if (++succs_info_pool.max_top >= succs_info_pool.size)
4717 gcc_unreachable ();
4718
4719 i = ++succs_info_pool.top;
4720 succs_info_pool.stack[i].succs_ok.create (10);
4721 succs_info_pool.stack[i].succs_other.create (10);
4722 succs_info_pool.stack[i].probs_ok.create (10);
4723 }
4724 else
4725 succs_info_pool.top++;
4726
4727 return &succs_info_pool.stack[succs_info_pool.top];
4728 }
4729
4730 /* Free successor's info. */
4731 void
4732 free_succs_info (struct succs_info * sinfo)
4733 {
4734 gcc_assert (succs_info_pool.top >= 0
4735 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4736 succs_info_pool.top--;
4737
4738 /* Clear stale info. */
4739 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4740 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4741 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4742 sinfo->all_prob = 0;
4743 sinfo->succs_ok_n = 0;
4744 sinfo->all_succs_n = 0;
4745 }
4746
4747 /* Compute successor info for INSN. FLAGS are the flags passed
4748 to the FOR_EACH_SUCC_1 iterator. */
4749 struct succs_info *
4750 compute_succs_info (insn_t insn, short flags)
4751 {
4752 succ_iterator si;
4753 insn_t succ;
4754 struct succs_info *sinfo = alloc_succs_info ();
4755
4756 /* Traverse *all* successors and decide what to do with each. */
4757 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4758 {
4759 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4760 perform code motion through inner loops. */
4761 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4762
4763 if (current_flags & flags)
4764 {
4765 sinfo->succs_ok.safe_push (succ);
4766 sinfo->probs_ok.safe_push (
4767 /* FIXME: Improve calculation when skipping
4768 inner loop to exits. */
4769 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4770 sinfo->succs_ok_n++;
4771 }
4772 else
4773 sinfo->succs_other.safe_push (succ);
4774
4775 /* Compute all_prob. */
4776 if (!si.bb_end)
4777 sinfo->all_prob = REG_BR_PROB_BASE;
4778 else
4779 sinfo->all_prob += si.e1->probability;
4780
4781 sinfo->all_succs_n++;
4782 }
4783
4784 return sinfo;
4785 }
4786
4787 /* Return the predecessors of BB in PREDS and their number in N.
4788 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4789 static void
4790 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4791 {
4792 edge e;
4793 edge_iterator ei;
4794
4795 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4796
4797 FOR_EACH_EDGE (e, ei, bb->preds)
4798 {
4799 basic_block pred_bb = e->src;
4800 insn_t bb_end = BB_END (pred_bb);
4801
4802 if (!in_current_region_p (pred_bb))
4803 {
4804 gcc_assert (flag_sel_sched_pipelining_outer_loops
4805 && current_loop_nest);
4806 continue;
4807 }
4808
4809 if (sel_bb_empty_p (pred_bb))
4810 cfg_preds_1 (pred_bb, preds, n, size);
4811 else
4812 {
4813 if (*n == *size)
4814 *preds = XRESIZEVEC (insn_t, *preds,
4815 (*size = 2 * *size + 1));
4816 (*preds)[(*n)++] = bb_end;
4817 }
4818 }
4819
4820 gcc_assert (*n != 0
4821 || (flag_sel_sched_pipelining_outer_loops
4822 && current_loop_nest));
4823 }
4824
4825 /* Find all predecessors of BB and record them in PREDS and their number
4826 in N. Empty blocks are skipped, and only normal (forward in-region)
4827 edges are processed. */
4828 static void
4829 cfg_preds (basic_block bb, insn_t **preds, int *n)
4830 {
4831 int size = 0;
4832
4833 *preds = NULL;
4834 *n = 0;
4835 cfg_preds_1 (bb, preds, n, &size);
4836 }
4837
4838 /* Returns true if we are moving INSN through join point. */
4839 bool
4840 sel_num_cfg_preds_gt_1 (insn_t insn)
4841 {
4842 basic_block bb;
4843
4844 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4845 return false;
4846
4847 bb = BLOCK_FOR_INSN (insn);
4848
4849 while (1)
4850 {
4851 if (EDGE_COUNT (bb->preds) > 1)
4852 return true;
4853
4854 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4855 bb = EDGE_PRED (bb, 0)->src;
4856
4857 if (!sel_bb_empty_p (bb))
4858 break;
4859 }
4860
4861 return false;
4862 }
4863
4864 /* Returns true when BB should be the end of an ebb. Adapted from the
4865 code in sched-ebb.c. */
4866 bool
4867 bb_ends_ebb_p (basic_block bb)
4868 {
4869 basic_block next_bb = bb_next_bb (bb);
4870 edge e;
4871
4872 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4873 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4874 || (LABEL_P (BB_HEAD (next_bb))
4875 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4876 Work around that. */
4877 && !single_pred_p (next_bb)))
4878 return true;
4879
4880 if (!in_current_region_p (next_bb))
4881 return true;
4882
4883 e = find_fallthru_edge (bb->succs);
4884 if (e)
4885 {
4886 gcc_assert (e->dest == next_bb);
4887
4888 return false;
4889 }
4890
4891 return true;
4892 }
4893
4894 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4895 successor of INSN. */
4896 bool
4897 in_same_ebb_p (insn_t insn, insn_t succ)
4898 {
4899 basic_block ptr = BLOCK_FOR_INSN (insn);
4900
4901 for (;;)
4902 {
4903 if (ptr == BLOCK_FOR_INSN (succ))
4904 return true;
4905
4906 if (bb_ends_ebb_p (ptr))
4907 return false;
4908
4909 ptr = bb_next_bb (ptr);
4910 }
4911
4912 gcc_unreachable ();
4913 return false;
4914 }
4915
4916 /* Recomputes the reverse topological order for the function and
4917 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4918 modified appropriately. */
4919 static void
4920 recompute_rev_top_order (void)
4921 {
4922 int *postorder;
4923 int n_blocks, i;
4924
4925 if (!rev_top_order_index
4926 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4927 {
4928 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4929 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4930 rev_top_order_index_len);
4931 }
4932
4933 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4934
4935 n_blocks = post_order_compute (postorder, true, false);
4936 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4937
4938 /* Build reverse function: for each basic block with BB->INDEX == K
4939 rev_top_order_index[K] is it's reverse topological sort number. */
4940 for (i = 0; i < n_blocks; i++)
4941 {
4942 gcc_assert (postorder[i] < rev_top_order_index_len);
4943 rev_top_order_index[postorder[i]] = i;
4944 }
4945
4946 free (postorder);
4947 }
4948
4949 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4950 void
4951 clear_outdated_rtx_info (basic_block bb)
4952 {
4953 rtx insn;
4954
4955 FOR_BB_INSNS (bb, insn)
4956 if (INSN_P (insn))
4957 {
4958 SCHED_GROUP_P (insn) = 0;
4959 INSN_AFTER_STALL_P (insn) = 0;
4960 INSN_SCHED_TIMES (insn) = 0;
4961 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4962
4963 /* We cannot use the changed caches, as previously we could ignore
4964 the LHS dependence due to enabled renaming and transform
4965 the expression, and currently we'll be unable to do this. */
4966 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4967 }
4968 }
4969
4970 /* Add BB_NOTE to the pool of available basic block notes. */
4971 static void
4972 return_bb_to_pool (basic_block bb)
4973 {
4974 rtx note = bb_note (bb);
4975
4976 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4977 && bb->aux == NULL);
4978
4979 /* It turns out that current cfg infrastructure does not support
4980 reuse of basic blocks. Don't bother for now. */
4981 /*bb_note_pool.safe_push (note);*/
4982 }
4983
4984 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4985 static rtx_note *
4986 get_bb_note_from_pool (void)
4987 {
4988 if (bb_note_pool.is_empty ())
4989 return NULL;
4990 else
4991 {
4992 rtx_note *note = bb_note_pool.pop ();
4993
4994 SET_PREV_INSN (note) = NULL_RTX;
4995 SET_NEXT_INSN (note) = NULL_RTX;
4996
4997 return note;
4998 }
4999 }
5000
5001 /* Free bb_note_pool. */
5002 void
5003 free_bb_note_pool (void)
5004 {
5005 bb_note_pool.release ();
5006 }
5007
5008 /* Setup scheduler pool and successor structure. */
5009 void
5010 alloc_sched_pools (void)
5011 {
5012 int succs_size;
5013
5014 succs_size = MAX_WS + 1;
5015 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5016 succs_info_pool.size = succs_size;
5017 succs_info_pool.top = -1;
5018 succs_info_pool.max_top = -1;
5019
5020 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
5021 sizeof (struct _list_node), 500);
5022 }
5023
5024 /* Free the pools. */
5025 void
5026 free_sched_pools (void)
5027 {
5028 int i;
5029
5030 free_alloc_pool (sched_lists_pool);
5031 gcc_assert (succs_info_pool.top == -1);
5032 for (i = 0; i <= succs_info_pool.max_top; i++)
5033 {
5034 succs_info_pool.stack[i].succs_ok.release ();
5035 succs_info_pool.stack[i].succs_other.release ();
5036 succs_info_pool.stack[i].probs_ok.release ();
5037 }
5038 free (succs_info_pool.stack);
5039 }
5040 \f
5041
5042 /* Returns a position in RGN where BB can be inserted retaining
5043 topological order. */
5044 static int
5045 find_place_to_insert_bb (basic_block bb, int rgn)
5046 {
5047 bool has_preds_outside_rgn = false;
5048 edge e;
5049 edge_iterator ei;
5050
5051 /* Find whether we have preds outside the region. */
5052 FOR_EACH_EDGE (e, ei, bb->preds)
5053 if (!in_current_region_p (e->src))
5054 {
5055 has_preds_outside_rgn = true;
5056 break;
5057 }
5058
5059 /* Recompute the top order -- needed when we have > 1 pred
5060 and in case we don't have preds outside. */
5061 if (flag_sel_sched_pipelining_outer_loops
5062 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5063 {
5064 int i, bbi = bb->index, cur_bbi;
5065
5066 recompute_rev_top_order ();
5067 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5068 {
5069 cur_bbi = BB_TO_BLOCK (i);
5070 if (rev_top_order_index[bbi]
5071 < rev_top_order_index[cur_bbi])
5072 break;
5073 }
5074
5075 /* We skipped the right block, so we increase i. We accommodate
5076 it for increasing by step later, so we decrease i. */
5077 return (i + 1) - 1;
5078 }
5079 else if (has_preds_outside_rgn)
5080 {
5081 /* This is the case when we generate an extra empty block
5082 to serve as region head during pipelining. */
5083 e = EDGE_SUCC (bb, 0);
5084 gcc_assert (EDGE_COUNT (bb->succs) == 1
5085 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5086 && (BLOCK_TO_BB (e->dest->index) == 0));
5087 return -1;
5088 }
5089
5090 /* We don't have preds outside the region. We should have
5091 the only pred, because the multiple preds case comes from
5092 the pipelining of outer loops, and that is handled above.
5093 Just take the bbi of this single pred. */
5094 if (EDGE_COUNT (bb->succs) > 0)
5095 {
5096 int pred_bbi;
5097
5098 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5099
5100 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5101 return BLOCK_TO_BB (pred_bbi);
5102 }
5103 else
5104 /* BB has no successors. It is safe to put it in the end. */
5105 return current_nr_blocks - 1;
5106 }
5107
5108 /* Deletes an empty basic block freeing its data. */
5109 static void
5110 delete_and_free_basic_block (basic_block bb)
5111 {
5112 gcc_assert (sel_bb_empty_p (bb));
5113
5114 if (BB_LV_SET (bb))
5115 free_lv_set (bb);
5116
5117 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5118
5119 /* Can't assert av_set properties because we use sel_aremove_bb
5120 when removing loop preheader from the region. At the point of
5121 removing the preheader we already have deallocated sel_region_bb_info. */
5122 gcc_assert (BB_LV_SET (bb) == NULL
5123 && !BB_LV_SET_VALID_P (bb)
5124 && BB_AV_LEVEL (bb) == 0
5125 && BB_AV_SET (bb) == NULL);
5126
5127 delete_basic_block (bb);
5128 }
5129
5130 /* Add BB to the current region and update the region data. */
5131 static void
5132 add_block_to_current_region (basic_block bb)
5133 {
5134 int i, pos, bbi = -2, rgn;
5135
5136 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5137 bbi = find_place_to_insert_bb (bb, rgn);
5138 bbi += 1;
5139 pos = RGN_BLOCKS (rgn) + bbi;
5140
5141 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5142 && ebb_head[bbi] == pos);
5143
5144 /* Make a place for the new block. */
5145 extend_regions ();
5146
5147 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5148 BLOCK_TO_BB (rgn_bb_table[i])++;
5149
5150 memmove (rgn_bb_table + pos + 1,
5151 rgn_bb_table + pos,
5152 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5153
5154 /* Initialize data for BB. */
5155 rgn_bb_table[pos] = bb->index;
5156 BLOCK_TO_BB (bb->index) = bbi;
5157 CONTAINING_RGN (bb->index) = rgn;
5158
5159 RGN_NR_BLOCKS (rgn)++;
5160
5161 for (i = rgn + 1; i <= nr_regions; i++)
5162 RGN_BLOCKS (i)++;
5163 }
5164
5165 /* Remove BB from the current region and update the region data. */
5166 static void
5167 remove_bb_from_region (basic_block bb)
5168 {
5169 int i, pos, bbi = -2, rgn;
5170
5171 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5172 bbi = BLOCK_TO_BB (bb->index);
5173 pos = RGN_BLOCKS (rgn) + bbi;
5174
5175 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5176 && ebb_head[bbi] == pos);
5177
5178 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5179 BLOCK_TO_BB (rgn_bb_table[i])--;
5180
5181 memmove (rgn_bb_table + pos,
5182 rgn_bb_table + pos + 1,
5183 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5184
5185 RGN_NR_BLOCKS (rgn)--;
5186 for (i = rgn + 1; i <= nr_regions; i++)
5187 RGN_BLOCKS (i)--;
5188 }
5189
5190 /* Add BB to the current region and update all data. If BB is NULL, add all
5191 blocks from last_added_blocks vector. */
5192 static void
5193 sel_add_bb (basic_block bb)
5194 {
5195 /* Extend luids so that new notes will receive zero luids. */
5196 sched_extend_luids ();
5197 sched_init_bbs ();
5198 sel_init_bbs (last_added_blocks);
5199
5200 /* When bb is passed explicitly, the vector should contain
5201 the only element that equals to bb; otherwise, the vector
5202 should not be NULL. */
5203 gcc_assert (last_added_blocks.exists ());
5204
5205 if (bb != NULL)
5206 {
5207 gcc_assert (last_added_blocks.length () == 1
5208 && last_added_blocks[0] == bb);
5209 add_block_to_current_region (bb);
5210
5211 /* We associate creating/deleting data sets with the first insn
5212 appearing / disappearing in the bb. */
5213 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5214 create_initial_data_sets (bb);
5215
5216 last_added_blocks.release ();
5217 }
5218 else
5219 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5220 {
5221 int i;
5222 basic_block temp_bb = NULL;
5223
5224 for (i = 0;
5225 last_added_blocks.iterate (i, &bb); i++)
5226 {
5227 add_block_to_current_region (bb);
5228 temp_bb = bb;
5229 }
5230
5231 /* We need to fetch at least one bb so we know the region
5232 to update. */
5233 gcc_assert (temp_bb != NULL);
5234 bb = temp_bb;
5235
5236 last_added_blocks.release ();
5237 }
5238
5239 rgn_setup_region (CONTAINING_RGN (bb->index));
5240 }
5241
5242 /* Remove BB from the current region and update all data.
5243 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5244 static void
5245 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5246 {
5247 unsigned idx = bb->index;
5248
5249 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5250
5251 remove_bb_from_region (bb);
5252 return_bb_to_pool (bb);
5253 bitmap_clear_bit (blocks_to_reschedule, idx);
5254
5255 if (remove_from_cfg_p)
5256 {
5257 basic_block succ = single_succ (bb);
5258 delete_and_free_basic_block (bb);
5259 set_immediate_dominator (CDI_DOMINATORS, succ,
5260 recompute_dominator (CDI_DOMINATORS, succ));
5261 }
5262
5263 rgn_setup_region (CONTAINING_RGN (idx));
5264 }
5265
5266 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5267 static void
5268 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5269 {
5270 if (in_current_region_p (merge_bb))
5271 concat_note_lists (BB_NOTE_LIST (empty_bb),
5272 &BB_NOTE_LIST (merge_bb));
5273 BB_NOTE_LIST (empty_bb) = NULL;
5274
5275 }
5276
5277 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5278 region, but keep it in CFG. */
5279 static void
5280 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5281 {
5282 /* The block should contain just a note or a label.
5283 We try to check whether it is unused below. */
5284 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5285 || LABEL_P (BB_HEAD (empty_bb)));
5286
5287 /* If basic block has predecessors or successors, redirect them. */
5288 if (remove_from_cfg_p
5289 && (EDGE_COUNT (empty_bb->preds) > 0
5290 || EDGE_COUNT (empty_bb->succs) > 0))
5291 {
5292 basic_block pred;
5293 basic_block succ;
5294
5295 /* We need to init PRED and SUCC before redirecting edges. */
5296 if (EDGE_COUNT (empty_bb->preds) > 0)
5297 {
5298 edge e;
5299
5300 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5301
5302 e = EDGE_PRED (empty_bb, 0);
5303 gcc_assert (e->src == empty_bb->prev_bb
5304 && (e->flags & EDGE_FALLTHRU));
5305
5306 pred = empty_bb->prev_bb;
5307 }
5308 else
5309 pred = NULL;
5310
5311 if (EDGE_COUNT (empty_bb->succs) > 0)
5312 {
5313 /* We do not check fallthruness here as above, because
5314 after removing a jump the edge may actually be not fallthru. */
5315 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5316 succ = EDGE_SUCC (empty_bb, 0)->dest;
5317 }
5318 else
5319 succ = NULL;
5320
5321 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5322 {
5323 edge e = EDGE_PRED (empty_bb, 0);
5324
5325 if (e->flags & EDGE_FALLTHRU)
5326 redirect_edge_succ_nodup (e, succ);
5327 else
5328 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5329 }
5330
5331 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5332 {
5333 edge e = EDGE_SUCC (empty_bb, 0);
5334
5335 if (find_edge (pred, e->dest) == NULL)
5336 redirect_edge_pred (e, pred);
5337 }
5338 }
5339
5340 /* Finish removing. */
5341 sel_remove_bb (empty_bb, remove_from_cfg_p);
5342 }
5343
5344 /* An implementation of create_basic_block hook, which additionally updates
5345 per-bb data structures. */
5346 static basic_block
5347 sel_create_basic_block (void *headp, void *endp, basic_block after)
5348 {
5349 basic_block new_bb;
5350 rtx_note *new_bb_note;
5351
5352 gcc_assert (flag_sel_sched_pipelining_outer_loops
5353 || !last_added_blocks.exists ());
5354
5355 new_bb_note = get_bb_note_from_pool ();
5356
5357 if (new_bb_note == NULL_RTX)
5358 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5359 else
5360 {
5361 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5362 (rtx_insn *) endp,
5363 new_bb_note, after);
5364 new_bb->aux = NULL;
5365 }
5366
5367 last_added_blocks.safe_push (new_bb);
5368
5369 return new_bb;
5370 }
5371
5372 /* Implement sched_init_only_bb (). */
5373 static void
5374 sel_init_only_bb (basic_block bb, basic_block after)
5375 {
5376 gcc_assert (after == NULL);
5377
5378 extend_regions ();
5379 rgn_make_new_region_out_of_new_block (bb);
5380 }
5381
5382 /* Update the latch when we've splitted or merged it from FROM block to TO.
5383 This should be checked for all outer loops, too. */
5384 static void
5385 change_loops_latches (basic_block from, basic_block to)
5386 {
5387 gcc_assert (from != to);
5388
5389 if (current_loop_nest)
5390 {
5391 struct loop *loop;
5392
5393 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5394 if (considered_for_pipelining_p (loop) && loop->latch == from)
5395 {
5396 gcc_assert (loop == current_loop_nest);
5397 loop->latch = to;
5398 gcc_assert (loop_latch_edge (loop));
5399 }
5400 }
5401 }
5402
5403 /* Splits BB on two basic blocks, adding it to the region and extending
5404 per-bb data structures. Returns the newly created bb. */
5405 static basic_block
5406 sel_split_block (basic_block bb, rtx after)
5407 {
5408 basic_block new_bb;
5409 insn_t insn;
5410
5411 new_bb = sched_split_block_1 (bb, after);
5412 sel_add_bb (new_bb);
5413
5414 /* This should be called after sel_add_bb, because this uses
5415 CONTAINING_RGN for the new block, which is not yet initialized.
5416 FIXME: this function may be a no-op now. */
5417 change_loops_latches (bb, new_bb);
5418
5419 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5420 FOR_BB_INSNS (new_bb, insn)
5421 if (INSN_P (insn))
5422 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5423
5424 if (sel_bb_empty_p (bb))
5425 {
5426 gcc_assert (!sel_bb_empty_p (new_bb));
5427
5428 /* NEW_BB has data sets that need to be updated and BB holds
5429 data sets that should be removed. Exchange these data sets
5430 so that we won't lose BB's valid data sets. */
5431 exchange_data_sets (new_bb, bb);
5432 free_data_sets (bb);
5433 }
5434
5435 if (!sel_bb_empty_p (new_bb)
5436 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5437 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5438
5439 return new_bb;
5440 }
5441
5442 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5443 Otherwise returns NULL. */
5444 static rtx_insn *
5445 check_for_new_jump (basic_block bb, int prev_max_uid)
5446 {
5447 rtx_insn *end;
5448
5449 end = sel_bb_end (bb);
5450 if (end && INSN_UID (end) >= prev_max_uid)
5451 return end;
5452 return NULL;
5453 }
5454
5455 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5456 New means having UID at least equal to PREV_MAX_UID. */
5457 static rtx_insn *
5458 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5459 {
5460 rtx_insn *jump;
5461
5462 /* Return immediately if no new insns were emitted. */
5463 if (get_max_uid () == prev_max_uid)
5464 return NULL;
5465
5466 /* Now check both blocks for new jumps. It will ever be only one. */
5467 if ((jump = check_for_new_jump (from, prev_max_uid)))
5468 return jump;
5469
5470 if (jump_bb != NULL
5471 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5472 return jump;
5473 return NULL;
5474 }
5475
5476 /* Splits E and adds the newly created basic block to the current region.
5477 Returns this basic block. */
5478 basic_block
5479 sel_split_edge (edge e)
5480 {
5481 basic_block new_bb, src, other_bb = NULL;
5482 int prev_max_uid;
5483 rtx_insn *jump;
5484
5485 src = e->src;
5486 prev_max_uid = get_max_uid ();
5487 new_bb = split_edge (e);
5488
5489 if (flag_sel_sched_pipelining_outer_loops
5490 && current_loop_nest)
5491 {
5492 int i;
5493 basic_block bb;
5494
5495 /* Some of the basic blocks might not have been added to the loop.
5496 Add them here, until this is fixed in force_fallthru. */
5497 for (i = 0;
5498 last_added_blocks.iterate (i, &bb); i++)
5499 if (!bb->loop_father)
5500 {
5501 add_bb_to_loop (bb, e->dest->loop_father);
5502
5503 gcc_assert (!other_bb && (new_bb->index != bb->index));
5504 other_bb = bb;
5505 }
5506 }
5507
5508 /* Add all last_added_blocks to the region. */
5509 sel_add_bb (NULL);
5510
5511 jump = find_new_jump (src, new_bb, prev_max_uid);
5512 if (jump)
5513 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5514
5515 /* Put the correct lv set on this block. */
5516 if (other_bb && !sel_bb_empty_p (other_bb))
5517 compute_live (sel_bb_head (other_bb));
5518
5519 return new_bb;
5520 }
5521
5522 /* Implement sched_create_empty_bb (). */
5523 static basic_block
5524 sel_create_empty_bb (basic_block after)
5525 {
5526 basic_block new_bb;
5527
5528 new_bb = sched_create_empty_bb_1 (after);
5529
5530 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5531 later. */
5532 gcc_assert (last_added_blocks.length () == 1
5533 && last_added_blocks[0] == new_bb);
5534
5535 last_added_blocks.release ();
5536 return new_bb;
5537 }
5538
5539 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5540 will be splitted to insert a check. */
5541 basic_block
5542 sel_create_recovery_block (insn_t orig_insn)
5543 {
5544 basic_block first_bb, second_bb, recovery_block;
5545 basic_block before_recovery = NULL;
5546 rtx_insn *jump;
5547
5548 first_bb = BLOCK_FOR_INSN (orig_insn);
5549 if (sel_bb_end_p (orig_insn))
5550 {
5551 /* Avoid introducing an empty block while splitting. */
5552 gcc_assert (single_succ_p (first_bb));
5553 second_bb = single_succ (first_bb);
5554 }
5555 else
5556 second_bb = sched_split_block (first_bb, orig_insn);
5557
5558 recovery_block = sched_create_recovery_block (&before_recovery);
5559 if (before_recovery)
5560 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5561
5562 gcc_assert (sel_bb_empty_p (recovery_block));
5563 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5564 if (current_loops != NULL)
5565 add_bb_to_loop (recovery_block, first_bb->loop_father);
5566
5567 sel_add_bb (recovery_block);
5568
5569 jump = BB_END (recovery_block);
5570 gcc_assert (sel_bb_head (recovery_block) == jump);
5571 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5572
5573 return recovery_block;
5574 }
5575
5576 /* Merge basic block B into basic block A. */
5577 static void
5578 sel_merge_blocks (basic_block a, basic_block b)
5579 {
5580 gcc_assert (sel_bb_empty_p (b)
5581 && EDGE_COUNT (b->preds) == 1
5582 && EDGE_PRED (b, 0)->src == b->prev_bb);
5583
5584 move_bb_info (b->prev_bb, b);
5585 remove_empty_bb (b, false);
5586 merge_blocks (a, b);
5587 change_loops_latches (b, a);
5588 }
5589
5590 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5591 data structures for possibly created bb and insns. */
5592 void
5593 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5594 {
5595 basic_block jump_bb, src, orig_dest = e->dest;
5596 int prev_max_uid;
5597 rtx_insn *jump;
5598 int old_seqno = -1;
5599
5600 /* This function is now used only for bookkeeping code creation, where
5601 we'll never get the single pred of orig_dest block and thus will not
5602 hit unreachable blocks when updating dominator info. */
5603 gcc_assert (!sel_bb_empty_p (e->src)
5604 && !single_pred_p (orig_dest));
5605 src = e->src;
5606 prev_max_uid = get_max_uid ();
5607 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5608 when the conditional jump being redirected may become unconditional. */
5609 if (any_condjump_p (BB_END (src))
5610 && INSN_SEQNO (BB_END (src)) >= 0)
5611 old_seqno = INSN_SEQNO (BB_END (src));
5612
5613 jump_bb = redirect_edge_and_branch_force (e, to);
5614 if (jump_bb != NULL)
5615 sel_add_bb (jump_bb);
5616
5617 /* This function could not be used to spoil the loop structure by now,
5618 thus we don't care to update anything. But check it to be sure. */
5619 if (current_loop_nest
5620 && pipelining_p)
5621 gcc_assert (loop_latch_edge (current_loop_nest));
5622
5623 jump = find_new_jump (src, jump_bb, prev_max_uid);
5624 if (jump)
5625 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5626 old_seqno);
5627 set_immediate_dominator (CDI_DOMINATORS, to,
5628 recompute_dominator (CDI_DOMINATORS, to));
5629 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5630 recompute_dominator (CDI_DOMINATORS, orig_dest));
5631 }
5632
5633 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5634 redirected edge are in reverse topological order. */
5635 bool
5636 sel_redirect_edge_and_branch (edge e, basic_block to)
5637 {
5638 bool latch_edge_p;
5639 basic_block src, orig_dest = e->dest;
5640 int prev_max_uid;
5641 rtx_insn *jump;
5642 edge redirected;
5643 bool recompute_toporder_p = false;
5644 bool maybe_unreachable = single_pred_p (orig_dest);
5645 int old_seqno = -1;
5646
5647 latch_edge_p = (pipelining_p
5648 && current_loop_nest
5649 && e == loop_latch_edge (current_loop_nest));
5650
5651 src = e->src;
5652 prev_max_uid = get_max_uid ();
5653
5654 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5655 when the conditional jump being redirected may become unconditional. */
5656 if (any_condjump_p (BB_END (src))
5657 && INSN_SEQNO (BB_END (src)) >= 0)
5658 old_seqno = INSN_SEQNO (BB_END (src));
5659
5660 redirected = redirect_edge_and_branch (e, to);
5661
5662 gcc_assert (redirected && !last_added_blocks.exists ());
5663
5664 /* When we've redirected a latch edge, update the header. */
5665 if (latch_edge_p)
5666 {
5667 current_loop_nest->header = to;
5668 gcc_assert (loop_latch_edge (current_loop_nest));
5669 }
5670
5671 /* In rare situations, the topological relation between the blocks connected
5672 by the redirected edge can change (see PR42245 for an example). Update
5673 block_to_bb/bb_to_block. */
5674 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5675 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5676 recompute_toporder_p = true;
5677
5678 jump = find_new_jump (src, NULL, prev_max_uid);
5679 if (jump)
5680 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5681
5682 /* Only update dominator info when we don't have unreachable blocks.
5683 Otherwise we'll update in maybe_tidy_empty_bb. */
5684 if (!maybe_unreachable)
5685 {
5686 set_immediate_dominator (CDI_DOMINATORS, to,
5687 recompute_dominator (CDI_DOMINATORS, to));
5688 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5689 recompute_dominator (CDI_DOMINATORS, orig_dest));
5690 }
5691 return recompute_toporder_p;
5692 }
5693
5694 /* This variable holds the cfg hooks used by the selective scheduler. */
5695 static struct cfg_hooks sel_cfg_hooks;
5696
5697 /* Register sel-sched cfg hooks. */
5698 void
5699 sel_register_cfg_hooks (void)
5700 {
5701 sched_split_block = sel_split_block;
5702
5703 orig_cfg_hooks = get_cfg_hooks ();
5704 sel_cfg_hooks = orig_cfg_hooks;
5705
5706 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5707
5708 set_cfg_hooks (sel_cfg_hooks);
5709
5710 sched_init_only_bb = sel_init_only_bb;
5711 sched_split_block = sel_split_block;
5712 sched_create_empty_bb = sel_create_empty_bb;
5713 }
5714
5715 /* Unregister sel-sched cfg hooks. */
5716 void
5717 sel_unregister_cfg_hooks (void)
5718 {
5719 sched_create_empty_bb = NULL;
5720 sched_split_block = NULL;
5721 sched_init_only_bb = NULL;
5722
5723 set_cfg_hooks (orig_cfg_hooks);
5724 }
5725 \f
5726
5727 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5728 LABEL is where this jump should be directed. */
5729 rtx_insn *
5730 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5731 {
5732 rtx_insn *insn_rtx;
5733
5734 gcc_assert (!INSN_P (pattern));
5735
5736 start_sequence ();
5737
5738 if (label == NULL_RTX)
5739 insn_rtx = emit_insn (pattern);
5740 else if (DEBUG_INSN_P (label))
5741 insn_rtx = emit_debug_insn (pattern);
5742 else
5743 {
5744 insn_rtx = emit_jump_insn (pattern);
5745 JUMP_LABEL (insn_rtx) = label;
5746 ++LABEL_NUSES (label);
5747 }
5748
5749 end_sequence ();
5750
5751 sched_extend_luids ();
5752 sched_extend_target ();
5753 sched_deps_init (false);
5754
5755 /* Initialize INSN_CODE now. */
5756 recog_memoized (insn_rtx);
5757 return insn_rtx;
5758 }
5759
5760 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5761 must not be clonable. */
5762 vinsn_t
5763 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5764 {
5765 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5766
5767 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5768 return vinsn_create (insn_rtx, force_unique_p);
5769 }
5770
5771 /* Create a copy of INSN_RTX. */
5772 rtx_insn *
5773 create_copy_of_insn_rtx (rtx insn_rtx)
5774 {
5775 rtx_insn *res;
5776 rtx link;
5777
5778 if (DEBUG_INSN_P (insn_rtx))
5779 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5780 insn_rtx);
5781
5782 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5783
5784 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5785 NULL_RTX);
5786
5787 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5788 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5789 there too, but are supposed to be sticky, so we copy them. */
5790 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5791 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5792 && REG_NOTE_KIND (link) != REG_EQUAL
5793 && REG_NOTE_KIND (link) != REG_EQUIV)
5794 {
5795 if (GET_CODE (link) == EXPR_LIST)
5796 add_reg_note (res, REG_NOTE_KIND (link),
5797 copy_insn_1 (XEXP (link, 0)));
5798 else
5799 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5800 }
5801
5802 return res;
5803 }
5804
5805 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5806 void
5807 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5808 {
5809 vinsn_detach (EXPR_VINSN (expr));
5810
5811 EXPR_VINSN (expr) = new_vinsn;
5812 vinsn_attach (new_vinsn);
5813 }
5814
5815 /* Helpers for global init. */
5816 /* This structure is used to be able to call existing bundling mechanism
5817 and calculate insn priorities. */
5818 static struct haifa_sched_info sched_sel_haifa_sched_info =
5819 {
5820 NULL, /* init_ready_list */
5821 NULL, /* can_schedule_ready_p */
5822 NULL, /* schedule_more_p */
5823 NULL, /* new_ready */
5824 NULL, /* rgn_rank */
5825 sel_print_insn, /* rgn_print_insn */
5826 contributes_to_priority,
5827 NULL, /* insn_finishes_block_p */
5828
5829 NULL, NULL,
5830 NULL, NULL,
5831 0, 0,
5832
5833 NULL, /* add_remove_insn */
5834 NULL, /* begin_schedule_ready */
5835 NULL, /* begin_move_insn */
5836 NULL, /* advance_target_bb */
5837
5838 NULL,
5839 NULL,
5840
5841 SEL_SCHED | NEW_BBS
5842 };
5843
5844 /* Setup special insns used in the scheduler. */
5845 void
5846 setup_nop_and_exit_insns (void)
5847 {
5848 gcc_assert (nop_pattern == NULL_RTX
5849 && exit_insn == NULL_RTX);
5850
5851 nop_pattern = constm1_rtx;
5852
5853 start_sequence ();
5854 emit_insn (nop_pattern);
5855 exit_insn = get_insns ();
5856 end_sequence ();
5857 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5858 }
5859
5860 /* Free special insns used in the scheduler. */
5861 void
5862 free_nop_and_exit_insns (void)
5863 {
5864 exit_insn = NULL;
5865 nop_pattern = NULL_RTX;
5866 }
5867
5868 /* Setup a special vinsn used in new insns initialization. */
5869 void
5870 setup_nop_vinsn (void)
5871 {
5872 nop_vinsn = vinsn_create (exit_insn, false);
5873 vinsn_attach (nop_vinsn);
5874 }
5875
5876 /* Free a special vinsn used in new insns initialization. */
5877 void
5878 free_nop_vinsn (void)
5879 {
5880 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5881 vinsn_detach (nop_vinsn);
5882 nop_vinsn = NULL;
5883 }
5884
5885 /* Call a set_sched_flags hook. */
5886 void
5887 sel_set_sched_flags (void)
5888 {
5889 /* ??? This means that set_sched_flags were called, and we decided to
5890 support speculation. However, set_sched_flags also modifies flags
5891 on current_sched_info, doing this only at global init. And we
5892 sometimes change c_s_i later. So put the correct flags again. */
5893 if (spec_info && targetm.sched.set_sched_flags)
5894 targetm.sched.set_sched_flags (spec_info);
5895 }
5896
5897 /* Setup pointers to global sched info structures. */
5898 void
5899 sel_setup_sched_infos (void)
5900 {
5901 rgn_setup_common_sched_info ();
5902
5903 memcpy (&sel_common_sched_info, common_sched_info,
5904 sizeof (sel_common_sched_info));
5905
5906 sel_common_sched_info.fix_recovery_cfg = NULL;
5907 sel_common_sched_info.add_block = NULL;
5908 sel_common_sched_info.estimate_number_of_insns
5909 = sel_estimate_number_of_insns;
5910 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5911 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5912
5913 common_sched_info = &sel_common_sched_info;
5914
5915 current_sched_info = &sched_sel_haifa_sched_info;
5916 current_sched_info->sched_max_insns_priority =
5917 get_rgn_sched_max_insns_priority ();
5918
5919 sel_set_sched_flags ();
5920 }
5921 \f
5922
5923 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5924 *BB_ORD_INDEX after that is increased. */
5925 static void
5926 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5927 {
5928 RGN_NR_BLOCKS (rgn) += 1;
5929 RGN_DONT_CALC_DEPS (rgn) = 0;
5930 RGN_HAS_REAL_EBB (rgn) = 0;
5931 CONTAINING_RGN (bb->index) = rgn;
5932 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5933 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5934 (*bb_ord_index)++;
5935
5936 /* FIXME: it is true only when not scheduling ebbs. */
5937 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5938 }
5939
5940 /* Functions to support pipelining of outer loops. */
5941
5942 /* Creates a new empty region and returns it's number. */
5943 static int
5944 sel_create_new_region (void)
5945 {
5946 int new_rgn_number = nr_regions;
5947
5948 RGN_NR_BLOCKS (new_rgn_number) = 0;
5949
5950 /* FIXME: This will work only when EBBs are not created. */
5951 if (new_rgn_number != 0)
5952 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5953 RGN_NR_BLOCKS (new_rgn_number - 1);
5954 else
5955 RGN_BLOCKS (new_rgn_number) = 0;
5956
5957 /* Set the blocks of the next region so the other functions may
5958 calculate the number of blocks in the region. */
5959 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5960 RGN_NR_BLOCKS (new_rgn_number);
5961
5962 nr_regions++;
5963
5964 return new_rgn_number;
5965 }
5966
5967 /* If X has a smaller topological sort number than Y, returns -1;
5968 if greater, returns 1. */
5969 static int
5970 bb_top_order_comparator (const void *x, const void *y)
5971 {
5972 basic_block bb1 = *(const basic_block *) x;
5973 basic_block bb2 = *(const basic_block *) y;
5974
5975 gcc_assert (bb1 == bb2
5976 || rev_top_order_index[bb1->index]
5977 != rev_top_order_index[bb2->index]);
5978
5979 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5980 bbs with greater number should go earlier. */
5981 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5982 return -1;
5983 else
5984 return 1;
5985 }
5986
5987 /* Create a region for LOOP and return its number. If we don't want
5988 to pipeline LOOP, return -1. */
5989 static int
5990 make_region_from_loop (struct loop *loop)
5991 {
5992 unsigned int i;
5993 int new_rgn_number = -1;
5994 struct loop *inner;
5995
5996 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5997 int bb_ord_index = 0;
5998 basic_block *loop_blocks;
5999 basic_block preheader_block;
6000
6001 if (loop->num_nodes
6002 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
6003 return -1;
6004
6005 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
6006 for (inner = loop->inner; inner; inner = inner->inner)
6007 if (flow_bb_inside_loop_p (inner, loop->latch))
6008 return -1;
6009
6010 loop->ninsns = num_loop_insns (loop);
6011 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
6012 return -1;
6013
6014 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6015
6016 for (i = 0; i < loop->num_nodes; i++)
6017 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6018 {
6019 free (loop_blocks);
6020 return -1;
6021 }
6022
6023 preheader_block = loop_preheader_edge (loop)->src;
6024 gcc_assert (preheader_block);
6025 gcc_assert (loop_blocks[0] == loop->header);
6026
6027 new_rgn_number = sel_create_new_region ();
6028
6029 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6030 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6031
6032 for (i = 0; i < loop->num_nodes; i++)
6033 {
6034 /* Add only those blocks that haven't been scheduled in the inner loop.
6035 The exception is the basic blocks with bookkeeping code - they should
6036 be added to the region (and they actually don't belong to the loop
6037 body, but to the region containing that loop body). */
6038
6039 gcc_assert (new_rgn_number >= 0);
6040
6041 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6042 {
6043 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6044 new_rgn_number);
6045 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6046 }
6047 }
6048
6049 free (loop_blocks);
6050 MARK_LOOP_FOR_PIPELINING (loop);
6051
6052 return new_rgn_number;
6053 }
6054
6055 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6056 void
6057 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6058 {
6059 unsigned int i;
6060 int new_rgn_number = -1;
6061 basic_block bb;
6062
6063 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6064 int bb_ord_index = 0;
6065
6066 new_rgn_number = sel_create_new_region ();
6067
6068 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6069 {
6070 gcc_assert (new_rgn_number >= 0);
6071
6072 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6073 }
6074
6075 vec_free (loop_blocks);
6076 }
6077
6078
6079 /* Create region(s) from loop nest LOOP, such that inner loops will be
6080 pipelined before outer loops. Returns true when a region for LOOP
6081 is created. */
6082 static bool
6083 make_regions_from_loop_nest (struct loop *loop)
6084 {
6085 struct loop *cur_loop;
6086 int rgn_number;
6087
6088 /* Traverse all inner nodes of the loop. */
6089 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6090 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6091 return false;
6092
6093 /* At this moment all regular inner loops should have been pipelined.
6094 Try to create a region from this loop. */
6095 rgn_number = make_region_from_loop (loop);
6096
6097 if (rgn_number < 0)
6098 return false;
6099
6100 loop_nests.safe_push (loop);
6101 return true;
6102 }
6103
6104 /* Initalize data structures needed. */
6105 void
6106 sel_init_pipelining (void)
6107 {
6108 /* Collect loop information to be used in outer loops pipelining. */
6109 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6110 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6111 | LOOPS_HAVE_RECORDED_EXITS
6112 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6113 current_loop_nest = NULL;
6114
6115 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6116 bitmap_clear (bbs_in_loop_rgns);
6117
6118 recompute_rev_top_order ();
6119 }
6120
6121 /* Returns a struct loop for region RGN. */
6122 loop_p
6123 get_loop_nest_for_rgn (unsigned int rgn)
6124 {
6125 /* Regions created with extend_rgns don't have corresponding loop nests,
6126 because they don't represent loops. */
6127 if (rgn < loop_nests.length ())
6128 return loop_nests[rgn];
6129 else
6130 return NULL;
6131 }
6132
6133 /* True when LOOP was included into pipelining regions. */
6134 bool
6135 considered_for_pipelining_p (struct loop *loop)
6136 {
6137 if (loop_depth (loop) == 0)
6138 return false;
6139
6140 /* Now, the loop could be too large or irreducible. Check whether its
6141 region is in LOOP_NESTS.
6142 We determine the region number of LOOP as the region number of its
6143 latch. We can't use header here, because this header could be
6144 just removed preheader and it will give us the wrong region number.
6145 Latch can't be used because it could be in the inner loop too. */
6146 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6147 {
6148 int rgn = CONTAINING_RGN (loop->latch->index);
6149
6150 gcc_assert ((unsigned) rgn < loop_nests.length ());
6151 return true;
6152 }
6153
6154 return false;
6155 }
6156
6157 /* Makes regions from the rest of the blocks, after loops are chosen
6158 for pipelining. */
6159 static void
6160 make_regions_from_the_rest (void)
6161 {
6162 int cur_rgn_blocks;
6163 int *loop_hdr;
6164 int i;
6165
6166 basic_block bb;
6167 edge e;
6168 edge_iterator ei;
6169 int *degree;
6170
6171 /* Index in rgn_bb_table where to start allocating new regions. */
6172 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6173
6174 /* Make regions from all the rest basic blocks - those that don't belong to
6175 any loop or belong to irreducible loops. Prepare the data structures
6176 for extend_rgns. */
6177
6178 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6179 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6180 loop. */
6181 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6182 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6183
6184
6185 /* For each basic block that belongs to some loop assign the number
6186 of innermost loop it belongs to. */
6187 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6188 loop_hdr[i] = -1;
6189
6190 FOR_EACH_BB_FN (bb, cfun)
6191 {
6192 if (bb->loop_father && bb->loop_father->num != 0
6193 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6194 loop_hdr[bb->index] = bb->loop_father->num;
6195 }
6196
6197 /* For each basic block degree is calculated as the number of incoming
6198 edges, that are going out of bbs that are not yet scheduled.
6199 The basic blocks that are scheduled have degree value of zero. */
6200 FOR_EACH_BB_FN (bb, cfun)
6201 {
6202 degree[bb->index] = 0;
6203
6204 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6205 {
6206 FOR_EACH_EDGE (e, ei, bb->preds)
6207 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6208 degree[bb->index]++;
6209 }
6210 else
6211 degree[bb->index] = -1;
6212 }
6213
6214 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6215
6216 /* Any block that did not end up in a region is placed into a region
6217 by itself. */
6218 FOR_EACH_BB_FN (bb, cfun)
6219 if (degree[bb->index] >= 0)
6220 {
6221 rgn_bb_table[cur_rgn_blocks] = bb->index;
6222 RGN_NR_BLOCKS (nr_regions) = 1;
6223 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6224 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6225 RGN_HAS_REAL_EBB (nr_regions) = 0;
6226 CONTAINING_RGN (bb->index) = nr_regions++;
6227 BLOCK_TO_BB (bb->index) = 0;
6228 }
6229
6230 free (degree);
6231 free (loop_hdr);
6232 }
6233
6234 /* Free data structures used in pipelining of loops. */
6235 void sel_finish_pipelining (void)
6236 {
6237 struct loop *loop;
6238
6239 /* Release aux fields so we don't free them later by mistake. */
6240 FOR_EACH_LOOP (loop, 0)
6241 loop->aux = NULL;
6242
6243 loop_optimizer_finalize ();
6244
6245 loop_nests.release ();
6246
6247 free (rev_top_order_index);
6248 rev_top_order_index = NULL;
6249 }
6250
6251 /* This function replaces the find_rgns when
6252 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6253 void
6254 sel_find_rgns (void)
6255 {
6256 sel_init_pipelining ();
6257 extend_regions ();
6258
6259 if (current_loops)
6260 {
6261 loop_p loop;
6262
6263 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6264 ? LI_FROM_INNERMOST
6265 : LI_ONLY_INNERMOST))
6266 make_regions_from_loop_nest (loop);
6267 }
6268
6269 /* Make regions from all the rest basic blocks and schedule them.
6270 These blocks include blocks that don't belong to any loop or belong
6271 to irreducible loops. */
6272 make_regions_from_the_rest ();
6273
6274 /* We don't need bbs_in_loop_rgns anymore. */
6275 sbitmap_free (bbs_in_loop_rgns);
6276 bbs_in_loop_rgns = NULL;
6277 }
6278
6279 /* Add the preheader blocks from previous loop to current region taking
6280 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6281 This function is only used with -fsel-sched-pipelining-outer-loops. */
6282 void
6283 sel_add_loop_preheaders (bb_vec_t *bbs)
6284 {
6285 int i;
6286 basic_block bb;
6287 vec<basic_block> *preheader_blocks
6288 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6289
6290 if (!preheader_blocks)
6291 return;
6292
6293 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6294 {
6295 bbs->safe_push (bb);
6296 last_added_blocks.safe_push (bb);
6297 sel_add_bb (bb);
6298 }
6299
6300 vec_free (preheader_blocks);
6301 }
6302
6303 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6304 Please note that the function should also work when pipelining_p is
6305 false, because it is used when deciding whether we should or should
6306 not reschedule pipelined code. */
6307 bool
6308 sel_is_loop_preheader_p (basic_block bb)
6309 {
6310 if (current_loop_nest)
6311 {
6312 struct loop *outer;
6313
6314 if (preheader_removed)
6315 return false;
6316
6317 /* Preheader is the first block in the region. */
6318 if (BLOCK_TO_BB (bb->index) == 0)
6319 return true;
6320
6321 /* We used to find a preheader with the topological information.
6322 Check that the above code is equivalent to what we did before. */
6323
6324 if (in_current_region_p (current_loop_nest->header))
6325 gcc_assert (!(BLOCK_TO_BB (bb->index)
6326 < BLOCK_TO_BB (current_loop_nest->header->index)));
6327
6328 /* Support the situation when the latch block of outer loop
6329 could be from here. */
6330 for (outer = loop_outer (current_loop_nest);
6331 outer;
6332 outer = loop_outer (outer))
6333 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6334 gcc_unreachable ();
6335 }
6336
6337 return false;
6338 }
6339
6340 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6341 can be removed, making the corresponding edge fallthrough (assuming that
6342 all basic blocks between JUMP_BB and DEST_BB are empty). */
6343 static bool
6344 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6345 {
6346 if (!onlyjump_p (BB_END (jump_bb))
6347 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6348 return false;
6349
6350 /* Several outgoing edges, abnormal edge or destination of jump is
6351 not DEST_BB. */
6352 if (EDGE_COUNT (jump_bb->succs) != 1
6353 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6354 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6355 return false;
6356
6357 /* If not anything of the upper. */
6358 return true;
6359 }
6360
6361 /* Removes the loop preheader from the current region and saves it in
6362 PREHEADER_BLOCKS of the father loop, so they will be added later to
6363 region that represents an outer loop. */
6364 static void
6365 sel_remove_loop_preheader (void)
6366 {
6367 int i, old_len;
6368 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6369 basic_block bb;
6370 bool all_empty_p = true;
6371 vec<basic_block> *preheader_blocks
6372 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6373
6374 vec_check_alloc (preheader_blocks, 0);
6375
6376 gcc_assert (current_loop_nest);
6377 old_len = preheader_blocks->length ();
6378
6379 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6380 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6381 {
6382 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6383
6384 /* If the basic block belongs to region, but doesn't belong to
6385 corresponding loop, then it should be a preheader. */
6386 if (sel_is_loop_preheader_p (bb))
6387 {
6388 preheader_blocks->safe_push (bb);
6389 if (BB_END (bb) != bb_note (bb))
6390 all_empty_p = false;
6391 }
6392 }
6393
6394 /* Remove these blocks only after iterating over the whole region. */
6395 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6396 {
6397 bb = (*preheader_blocks)[i];
6398 sel_remove_bb (bb, false);
6399 }
6400
6401 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6402 {
6403 if (!all_empty_p)
6404 /* Immediately create new region from preheader. */
6405 make_region_from_loop_preheader (preheader_blocks);
6406 else
6407 {
6408 /* If all preheader blocks are empty - dont create new empty region.
6409 Instead, remove them completely. */
6410 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6411 {
6412 edge e;
6413 edge_iterator ei;
6414 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6415
6416 /* Redirect all incoming edges to next basic block. */
6417 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6418 {
6419 if (! (e->flags & EDGE_FALLTHRU))
6420 redirect_edge_and_branch (e, bb->next_bb);
6421 else
6422 redirect_edge_succ (e, bb->next_bb);
6423 }
6424 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6425 delete_and_free_basic_block (bb);
6426
6427 /* Check if after deleting preheader there is a nonconditional
6428 jump in PREV_BB that leads to the next basic block NEXT_BB.
6429 If it is so - delete this jump and clear data sets of its
6430 basic block if it becomes empty. */
6431 if (next_bb->prev_bb == prev_bb
6432 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6433 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6434 {
6435 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6436 if (BB_END (prev_bb) == bb_note (prev_bb))
6437 free_data_sets (prev_bb);
6438 }
6439
6440 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6441 recompute_dominator (CDI_DOMINATORS,
6442 next_bb));
6443 }
6444 }
6445 vec_free (preheader_blocks);
6446 }
6447 else
6448 /* Store preheader within the father's loop structure. */
6449 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6450 preheader_blocks);
6451 }
6452
6453 #endif