]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched-ir.c
asan.c (asan_emit_stack_protection): Update.
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "cfgrtl.h"
31 #include "cfganal.h"
32 #include "cfgbuild.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "sched-int.h"
39 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
40
41 #ifdef INSN_SCHEDULING
42 #include "regset.h"
43 #include "cfgloop.h"
44 #include "sel-sched-ir.h"
45 /* We don't have to use it except for sel_print_insn. */
46 #include "sel-sched-dump.h"
47
48 /* A vector holding bb info for whole scheduling pass. */
49 vec<sel_global_bb_info_def> sel_global_bb_info;
50
51 /* A vector holding bb info. */
52 vec<sel_region_bb_info_def> sel_region_bb_info;
53
54 /* A pool for allocating all lists. */
55 object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
56
57 /* This contains information about successors for compute_av_set. */
58 struct succs_info current_succs;
59
60 /* Data structure to describe interaction with the generic scheduler utils. */
61 static struct common_sched_info_def sel_common_sched_info;
62
63 /* The loop nest being pipelined. */
64 struct loop *current_loop_nest;
65
66 /* LOOP_NESTS is a vector containing the corresponding loop nest for
67 each region. */
68 static vec<loop_p> loop_nests;
69
70 /* Saves blocks already in loop regions, indexed by bb->index. */
71 static sbitmap bbs_in_loop_rgns = NULL;
72
73 /* CFG hooks that are saved before changing create_basic_block hook. */
74 static struct cfg_hooks orig_cfg_hooks;
75 \f
76
77 /* Array containing reverse topological index of function basic blocks,
78 indexed by BB->INDEX. */
79 static int *rev_top_order_index = NULL;
80
81 /* Length of the above array. */
82 static int rev_top_order_index_len = -1;
83
84 /* A regset pool structure. */
85 static struct
86 {
87 /* The stack to which regsets are returned. */
88 regset *v;
89
90 /* Its pointer. */
91 int n;
92
93 /* Its size. */
94 int s;
95
96 /* In VV we save all generated regsets so that, when destructing the
97 pool, we can compare it with V and check that every regset was returned
98 back to pool. */
99 regset *vv;
100
101 /* The pointer of VV stack. */
102 int nn;
103
104 /* Its size. */
105 int ss;
106
107 /* The difference between allocated and returned regsets. */
108 int diff;
109 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
110
111 /* This represents the nop pool. */
112 static struct
113 {
114 /* The vector which holds previously emitted nops. */
115 insn_t *v;
116
117 /* Its pointer. */
118 int n;
119
120 /* Its size. */
121 int s;
122 } nop_pool = { NULL, 0, 0 };
123
124 /* The pool for basic block notes. */
125 static vec<rtx_note *> bb_note_pool;
126
127 /* A NOP pattern used to emit placeholder insns. */
128 rtx nop_pattern = NULL_RTX;
129 /* A special instruction that resides in EXIT_BLOCK.
130 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
131 rtx_insn *exit_insn = NULL;
132
133 /* TRUE if while scheduling current region, which is loop, its preheader
134 was removed. */
135 bool preheader_removed = false;
136 \f
137
138 /* Forward static declarations. */
139 static void fence_clear (fence_t);
140
141 static void deps_init_id (idata_t, insn_t, bool);
142 static void init_id_from_df (idata_t, insn_t, bool);
143 static expr_t set_insn_init (expr_t, vinsn_t, int);
144
145 static void cfg_preds (basic_block, insn_t **, int *);
146 static void prepare_insn_expr (insn_t, int);
147 static void free_history_vect (vec<expr_history_def> &);
148
149 static void move_bb_info (basic_block, basic_block);
150 static void remove_empty_bb (basic_block, bool);
151 static void sel_merge_blocks (basic_block, basic_block);
152 static void sel_remove_loop_preheader (void);
153 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
154
155 static bool insn_is_the_only_one_in_bb_p (insn_t);
156 static void create_initial_data_sets (basic_block);
157
158 static void free_av_set (basic_block);
159 static void invalidate_av_set (basic_block);
160 static void extend_insn_data (void);
161 static void sel_init_new_insn (insn_t, int, int = -1);
162 static void finish_insns (void);
163 \f
164 /* Various list functions. */
165
166 /* Copy an instruction list L. */
167 ilist_t
168 ilist_copy (ilist_t l)
169 {
170 ilist_t head = NULL, *tailp = &head;
171
172 while (l)
173 {
174 ilist_add (tailp, ILIST_INSN (l));
175 tailp = &ILIST_NEXT (*tailp);
176 l = ILIST_NEXT (l);
177 }
178
179 return head;
180 }
181
182 /* Invert an instruction list L. */
183 ilist_t
184 ilist_invert (ilist_t l)
185 {
186 ilist_t res = NULL;
187
188 while (l)
189 {
190 ilist_add (&res, ILIST_INSN (l));
191 l = ILIST_NEXT (l);
192 }
193
194 return res;
195 }
196
197 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
198 void
199 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
200 {
201 bnd_t bnd;
202
203 _list_add (lp);
204 bnd = BLIST_BND (*lp);
205
206 BND_TO (bnd) = to;
207 BND_PTR (bnd) = ptr;
208 BND_AV (bnd) = NULL;
209 BND_AV1 (bnd) = NULL;
210 BND_DC (bnd) = dc;
211 }
212
213 /* Remove the list note pointed to by LP. */
214 void
215 blist_remove (blist_t *lp)
216 {
217 bnd_t b = BLIST_BND (*lp);
218
219 av_set_clear (&BND_AV (b));
220 av_set_clear (&BND_AV1 (b));
221 ilist_clear (&BND_PTR (b));
222
223 _list_remove (lp);
224 }
225
226 /* Init a fence tail L. */
227 void
228 flist_tail_init (flist_tail_t l)
229 {
230 FLIST_TAIL_HEAD (l) = NULL;
231 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
232 }
233
234 /* Try to find fence corresponding to INSN in L. */
235 fence_t
236 flist_lookup (flist_t l, insn_t insn)
237 {
238 while (l)
239 {
240 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
241 return FLIST_FENCE (l);
242
243 l = FLIST_NEXT (l);
244 }
245
246 return NULL;
247 }
248
249 /* Init the fields of F before running fill_insns. */
250 static void
251 init_fence_for_scheduling (fence_t f)
252 {
253 FENCE_BNDS (f) = NULL;
254 FENCE_PROCESSED_P (f) = false;
255 FENCE_SCHEDULED_P (f) = false;
256 }
257
258 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
259 static void
260 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
261 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
262 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
263 int cycle, int cycle_issued_insns, int issue_more,
264 bool starts_cycle_p, bool after_stall_p)
265 {
266 fence_t f;
267
268 _list_add (lp);
269 f = FLIST_FENCE (*lp);
270
271 FENCE_INSN (f) = insn;
272
273 gcc_assert (state != NULL);
274 FENCE_STATE (f) = state;
275
276 FENCE_CYCLE (f) = cycle;
277 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
278 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
279 FENCE_AFTER_STALL_P (f) = after_stall_p;
280
281 gcc_assert (dc != NULL);
282 FENCE_DC (f) = dc;
283
284 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
285 FENCE_TC (f) = tc;
286
287 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
288 FENCE_ISSUE_MORE (f) = issue_more;
289 FENCE_EXECUTING_INSNS (f) = executing_insns;
290 FENCE_READY_TICKS (f) = ready_ticks;
291 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
292 FENCE_SCHED_NEXT (f) = sched_next;
293
294 init_fence_for_scheduling (f);
295 }
296
297 /* Remove the head node of the list pointed to by LP. */
298 static void
299 flist_remove (flist_t *lp)
300 {
301 if (FENCE_INSN (FLIST_FENCE (*lp)))
302 fence_clear (FLIST_FENCE (*lp));
303 _list_remove (lp);
304 }
305
306 /* Clear the fence list pointed to by LP. */
307 void
308 flist_clear (flist_t *lp)
309 {
310 while (*lp)
311 flist_remove (lp);
312 }
313
314 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
315 void
316 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
317 {
318 def_t d;
319
320 _list_add (dl);
321 d = DEF_LIST_DEF (*dl);
322
323 d->orig_insn = original_insn;
324 d->crosses_call = crosses_call;
325 }
326 \f
327
328 /* Functions to work with target contexts. */
329
330 /* Bulk target context. It is convenient for debugging purposes to ensure
331 that there are no uninitialized (null) target contexts. */
332 static tc_t bulk_tc = (tc_t) 1;
333
334 /* Target hooks wrappers. In the future we can provide some default
335 implementations for them. */
336
337 /* Allocate a store for the target context. */
338 static tc_t
339 alloc_target_context (void)
340 {
341 return (targetm.sched.alloc_sched_context
342 ? targetm.sched.alloc_sched_context () : bulk_tc);
343 }
344
345 /* Init target context TC.
346 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
347 Overwise, copy current backend context to TC. */
348 static void
349 init_target_context (tc_t tc, bool clean_p)
350 {
351 if (targetm.sched.init_sched_context)
352 targetm.sched.init_sched_context (tc, clean_p);
353 }
354
355 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
356 int init_target_context (). */
357 tc_t
358 create_target_context (bool clean_p)
359 {
360 tc_t tc = alloc_target_context ();
361
362 init_target_context (tc, clean_p);
363 return tc;
364 }
365
366 /* Copy TC to the current backend context. */
367 void
368 set_target_context (tc_t tc)
369 {
370 if (targetm.sched.set_sched_context)
371 targetm.sched.set_sched_context (tc);
372 }
373
374 /* TC is about to be destroyed. Free any internal data. */
375 static void
376 clear_target_context (tc_t tc)
377 {
378 if (targetm.sched.clear_sched_context)
379 targetm.sched.clear_sched_context (tc);
380 }
381
382 /* Clear and free it. */
383 static void
384 delete_target_context (tc_t tc)
385 {
386 clear_target_context (tc);
387
388 if (targetm.sched.free_sched_context)
389 targetm.sched.free_sched_context (tc);
390 }
391
392 /* Make a copy of FROM in TO.
393 NB: May be this should be a hook. */
394 static void
395 copy_target_context (tc_t to, tc_t from)
396 {
397 tc_t tmp = create_target_context (false);
398
399 set_target_context (from);
400 init_target_context (to, false);
401
402 set_target_context (tmp);
403 delete_target_context (tmp);
404 }
405
406 /* Create a copy of TC. */
407 static tc_t
408 create_copy_of_target_context (tc_t tc)
409 {
410 tc_t copy = alloc_target_context ();
411
412 copy_target_context (copy, tc);
413
414 return copy;
415 }
416
417 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
418 is the same as in init_target_context (). */
419 void
420 reset_target_context (tc_t tc, bool clean_p)
421 {
422 clear_target_context (tc);
423 init_target_context (tc, clean_p);
424 }
425 \f
426 /* Functions to work with dependence contexts.
427 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
428 context. It accumulates information about processed insns to decide if
429 current insn is dependent on the processed ones. */
430
431 /* Make a copy of FROM in TO. */
432 static void
433 copy_deps_context (deps_t to, deps_t from)
434 {
435 init_deps (to, false);
436 deps_join (to, from);
437 }
438
439 /* Allocate store for dep context. */
440 static deps_t
441 alloc_deps_context (void)
442 {
443 return XNEW (struct deps_desc);
444 }
445
446 /* Allocate and initialize dep context. */
447 static deps_t
448 create_deps_context (void)
449 {
450 deps_t dc = alloc_deps_context ();
451
452 init_deps (dc, false);
453 return dc;
454 }
455
456 /* Create a copy of FROM. */
457 static deps_t
458 create_copy_of_deps_context (deps_t from)
459 {
460 deps_t to = alloc_deps_context ();
461
462 copy_deps_context (to, from);
463 return to;
464 }
465
466 /* Clean up internal data of DC. */
467 static void
468 clear_deps_context (deps_t dc)
469 {
470 free_deps (dc);
471 }
472
473 /* Clear and free DC. */
474 static void
475 delete_deps_context (deps_t dc)
476 {
477 clear_deps_context (dc);
478 free (dc);
479 }
480
481 /* Clear and init DC. */
482 static void
483 reset_deps_context (deps_t dc)
484 {
485 clear_deps_context (dc);
486 init_deps (dc, false);
487 }
488
489 /* This structure describes the dependence analysis hooks for advancing
490 dependence context. */
491 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
492 {
493 NULL,
494
495 NULL, /* start_insn */
496 NULL, /* finish_insn */
497 NULL, /* start_lhs */
498 NULL, /* finish_lhs */
499 NULL, /* start_rhs */
500 NULL, /* finish_rhs */
501 haifa_note_reg_set,
502 haifa_note_reg_clobber,
503 haifa_note_reg_use,
504 NULL, /* note_mem_dep */
505 NULL, /* note_dep */
506
507 0, 0, 0
508 };
509
510 /* Process INSN and add its impact on DC. */
511 void
512 advance_deps_context (deps_t dc, insn_t insn)
513 {
514 sched_deps_info = &advance_deps_context_sched_deps_info;
515 deps_analyze_insn (dc, insn);
516 }
517 \f
518
519 /* Functions to work with DFA states. */
520
521 /* Allocate store for a DFA state. */
522 static state_t
523 state_alloc (void)
524 {
525 return xmalloc (dfa_state_size);
526 }
527
528 /* Allocate and initialize DFA state. */
529 static state_t
530 state_create (void)
531 {
532 state_t state = state_alloc ();
533
534 state_reset (state);
535 advance_state (state);
536 return state;
537 }
538
539 /* Free DFA state. */
540 static void
541 state_free (state_t state)
542 {
543 free (state);
544 }
545
546 /* Make a copy of FROM in TO. */
547 static void
548 state_copy (state_t to, state_t from)
549 {
550 memcpy (to, from, dfa_state_size);
551 }
552
553 /* Create a copy of FROM. */
554 static state_t
555 state_create_copy (state_t from)
556 {
557 state_t to = state_alloc ();
558
559 state_copy (to, from);
560 return to;
561 }
562 \f
563
564 /* Functions to work with fences. */
565
566 /* Clear the fence. */
567 static void
568 fence_clear (fence_t f)
569 {
570 state_t s = FENCE_STATE (f);
571 deps_t dc = FENCE_DC (f);
572 void *tc = FENCE_TC (f);
573
574 ilist_clear (&FENCE_BNDS (f));
575
576 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
577 || (s == NULL && dc == NULL && tc == NULL));
578
579 free (s);
580
581 if (dc != NULL)
582 delete_deps_context (dc);
583
584 if (tc != NULL)
585 delete_target_context (tc);
586 vec_free (FENCE_EXECUTING_INSNS (f));
587 free (FENCE_READY_TICKS (f));
588 FENCE_READY_TICKS (f) = NULL;
589 }
590
591 /* Init a list of fences with successors of OLD_FENCE. */
592 void
593 init_fences (insn_t old_fence)
594 {
595 insn_t succ;
596 succ_iterator si;
597 bool first = true;
598 int ready_ticks_size = get_max_uid () + 1;
599
600 FOR_EACH_SUCC_1 (succ, si, old_fence,
601 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
602 {
603
604 if (first)
605 first = false;
606 else
607 gcc_assert (flag_sel_sched_pipelining_outer_loops);
608
609 flist_add (&fences, succ,
610 state_create (),
611 create_deps_context () /* dc */,
612 create_target_context (true) /* tc */,
613 NULL /* last_scheduled_insn */,
614 NULL, /* executing_insns */
615 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
616 ready_ticks_size,
617 NULL /* sched_next */,
618 1 /* cycle */, 0 /* cycle_issued_insns */,
619 issue_rate, /* issue_more */
620 1 /* starts_cycle_p */, 0 /* after_stall_p */);
621 }
622 }
623
624 /* Merges two fences (filling fields of fence F with resulting values) by
625 following rules: 1) state, target context and last scheduled insn are
626 propagated from fallthrough edge if it is available;
627 2) deps context and cycle is propagated from more probable edge;
628 3) all other fields are set to corresponding constant values.
629
630 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
631 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
632 and AFTER_STALL_P are the corresponding fields of the second fence. */
633 static void
634 merge_fences (fence_t f, insn_t insn,
635 state_t state, deps_t dc, void *tc,
636 rtx_insn *last_scheduled_insn,
637 vec<rtx_insn *, va_gc> *executing_insns,
638 int *ready_ticks, int ready_ticks_size,
639 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
640 {
641 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
642
643 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
644 && !sched_next && !FENCE_SCHED_NEXT (f));
645
646 /* Check if we can decide which path fences came.
647 If we can't (or don't want to) - reset all. */
648 if (last_scheduled_insn == NULL
649 || last_scheduled_insn_old == NULL
650 /* This is a case when INSN is reachable on several paths from
651 one insn (this can happen when pipelining of outer loops is on and
652 there are two edges: one going around of inner loop and the other -
653 right through it; in such case just reset everything). */
654 || last_scheduled_insn == last_scheduled_insn_old)
655 {
656 state_reset (FENCE_STATE (f));
657 state_free (state);
658
659 reset_deps_context (FENCE_DC (f));
660 delete_deps_context (dc);
661
662 reset_target_context (FENCE_TC (f), true);
663 delete_target_context (tc);
664
665 if (cycle > FENCE_CYCLE (f))
666 FENCE_CYCLE (f) = cycle;
667
668 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
669 FENCE_ISSUE_MORE (f) = issue_rate;
670 vec_free (executing_insns);
671 free (ready_ticks);
672 if (FENCE_EXECUTING_INSNS (f))
673 FENCE_EXECUTING_INSNS (f)->block_remove (0,
674 FENCE_EXECUTING_INSNS (f)->length ());
675 if (FENCE_READY_TICKS (f))
676 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
677 }
678 else
679 {
680 edge edge_old = NULL, edge_new = NULL;
681 edge candidate;
682 succ_iterator si;
683 insn_t succ;
684
685 /* Find fallthrough edge. */
686 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
687 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
688
689 if (!candidate
690 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
691 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
692 {
693 /* No fallthrough edge leading to basic block of INSN. */
694 state_reset (FENCE_STATE (f));
695 state_free (state);
696
697 reset_target_context (FENCE_TC (f), true);
698 delete_target_context (tc);
699
700 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
701 FENCE_ISSUE_MORE (f) = issue_rate;
702 }
703 else
704 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
705 {
706 /* Would be weird if same insn is successor of several fallthrough
707 edges. */
708 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
709 != BLOCK_FOR_INSN (last_scheduled_insn_old));
710
711 state_free (FENCE_STATE (f));
712 FENCE_STATE (f) = state;
713
714 delete_target_context (FENCE_TC (f));
715 FENCE_TC (f) = tc;
716
717 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
718 FENCE_ISSUE_MORE (f) = issue_more;
719 }
720 else
721 {
722 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
723 state_free (state);
724 delete_target_context (tc);
725
726 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
727 != BLOCK_FOR_INSN (last_scheduled_insn));
728 }
729
730 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
731 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
732 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
733 {
734 if (succ == insn)
735 {
736 /* No same successor allowed from several edges. */
737 gcc_assert (!edge_old);
738 edge_old = si.e1;
739 }
740 }
741 /* Find edge of second predecessor (last_scheduled_insn->insn). */
742 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
743 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
744 {
745 if (succ == insn)
746 {
747 /* No same successor allowed from several edges. */
748 gcc_assert (!edge_new);
749 edge_new = si.e1;
750 }
751 }
752
753 /* Check if we can choose most probable predecessor. */
754 if (edge_old == NULL || edge_new == NULL)
755 {
756 reset_deps_context (FENCE_DC (f));
757 delete_deps_context (dc);
758 vec_free (executing_insns);
759 free (ready_ticks);
760
761 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
762 if (FENCE_EXECUTING_INSNS (f))
763 FENCE_EXECUTING_INSNS (f)->block_remove (0,
764 FENCE_EXECUTING_INSNS (f)->length ());
765 if (FENCE_READY_TICKS (f))
766 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
767 }
768 else
769 if (edge_new->probability > edge_old->probability)
770 {
771 delete_deps_context (FENCE_DC (f));
772 FENCE_DC (f) = dc;
773 vec_free (FENCE_EXECUTING_INSNS (f));
774 FENCE_EXECUTING_INSNS (f) = executing_insns;
775 free (FENCE_READY_TICKS (f));
776 FENCE_READY_TICKS (f) = ready_ticks;
777 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
778 FENCE_CYCLE (f) = cycle;
779 }
780 else
781 {
782 /* Leave DC and CYCLE untouched. */
783 delete_deps_context (dc);
784 vec_free (executing_insns);
785 free (ready_ticks);
786 }
787 }
788
789 /* Fill remaining invariant fields. */
790 if (after_stall_p)
791 FENCE_AFTER_STALL_P (f) = 1;
792
793 FENCE_ISSUED_INSNS (f) = 0;
794 FENCE_STARTS_CYCLE_P (f) = 1;
795 FENCE_SCHED_NEXT (f) = NULL;
796 }
797
798 /* Add a new fence to NEW_FENCES list, initializing it from all
799 other parameters. */
800 static void
801 add_to_fences (flist_tail_t new_fences, insn_t insn,
802 state_t state, deps_t dc, void *tc,
803 rtx_insn *last_scheduled_insn,
804 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
805 int ready_ticks_size, rtx_insn *sched_next, int cycle,
806 int cycle_issued_insns, int issue_rate,
807 bool starts_cycle_p, bool after_stall_p)
808 {
809 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
810
811 if (! f)
812 {
813 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
814 last_scheduled_insn, executing_insns, ready_ticks,
815 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
816 issue_rate, starts_cycle_p, after_stall_p);
817
818 FLIST_TAIL_TAILP (new_fences)
819 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
820 }
821 else
822 {
823 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
824 executing_insns, ready_ticks, ready_ticks_size,
825 sched_next, cycle, issue_rate, after_stall_p);
826 }
827 }
828
829 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
830 void
831 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
832 {
833 fence_t f, old;
834 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
835
836 old = FLIST_FENCE (old_fences);
837 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
838 FENCE_INSN (FLIST_FENCE (old_fences)));
839 if (f)
840 {
841 merge_fences (f, old->insn, old->state, old->dc, old->tc,
842 old->last_scheduled_insn, old->executing_insns,
843 old->ready_ticks, old->ready_ticks_size,
844 old->sched_next, old->cycle, old->issue_more,
845 old->after_stall_p);
846 }
847 else
848 {
849 _list_add (tailp);
850 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
851 *FLIST_FENCE (*tailp) = *old;
852 init_fence_for_scheduling (FLIST_FENCE (*tailp));
853 }
854 FENCE_INSN (old) = NULL;
855 }
856
857 /* Add a new fence to NEW_FENCES list and initialize most of its data
858 as a clean one. */
859 void
860 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
861 {
862 int ready_ticks_size = get_max_uid () + 1;
863
864 add_to_fences (new_fences,
865 succ, state_create (), create_deps_context (),
866 create_target_context (true),
867 NULL, NULL,
868 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
869 NULL, FENCE_CYCLE (fence) + 1,
870 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
871 }
872
873 /* Add a new fence to NEW_FENCES list and initialize all of its data
874 from FENCE and SUCC. */
875 void
876 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
877 {
878 int * new_ready_ticks
879 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
880
881 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
882 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
883 add_to_fences (new_fences,
884 succ, state_create_copy (FENCE_STATE (fence)),
885 create_copy_of_deps_context (FENCE_DC (fence)),
886 create_copy_of_target_context (FENCE_TC (fence)),
887 FENCE_LAST_SCHEDULED_INSN (fence),
888 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
889 new_ready_ticks,
890 FENCE_READY_TICKS_SIZE (fence),
891 FENCE_SCHED_NEXT (fence),
892 FENCE_CYCLE (fence),
893 FENCE_ISSUED_INSNS (fence),
894 FENCE_ISSUE_MORE (fence),
895 FENCE_STARTS_CYCLE_P (fence),
896 FENCE_AFTER_STALL_P (fence));
897 }
898 \f
899
900 /* Functions to work with regset and nop pools. */
901
902 /* Returns the new regset from pool. It might have some of the bits set
903 from the previous usage. */
904 regset
905 get_regset_from_pool (void)
906 {
907 regset rs;
908
909 if (regset_pool.n != 0)
910 rs = regset_pool.v[--regset_pool.n];
911 else
912 /* We need to create the regset. */
913 {
914 rs = ALLOC_REG_SET (&reg_obstack);
915
916 if (regset_pool.nn == regset_pool.ss)
917 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
918 (regset_pool.ss = 2 * regset_pool.ss + 1));
919 regset_pool.vv[regset_pool.nn++] = rs;
920 }
921
922 regset_pool.diff++;
923
924 return rs;
925 }
926
927 /* Same as above, but returns the empty regset. */
928 regset
929 get_clear_regset_from_pool (void)
930 {
931 regset rs = get_regset_from_pool ();
932
933 CLEAR_REG_SET (rs);
934 return rs;
935 }
936
937 /* Return regset RS to the pool for future use. */
938 void
939 return_regset_to_pool (regset rs)
940 {
941 gcc_assert (rs);
942 regset_pool.diff--;
943
944 if (regset_pool.n == regset_pool.s)
945 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
946 (regset_pool.s = 2 * regset_pool.s + 1));
947 regset_pool.v[regset_pool.n++] = rs;
948 }
949
950 /* This is used as a qsort callback for sorting regset pool stacks.
951 X and XX are addresses of two regsets. They are never equal. */
952 static int
953 cmp_v_in_regset_pool (const void *x, const void *xx)
954 {
955 uintptr_t r1 = (uintptr_t) *((const regset *) x);
956 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
957 if (r1 > r2)
958 return 1;
959 else if (r1 < r2)
960 return -1;
961 gcc_unreachable ();
962 }
963
964 /* Free the regset pool possibly checking for memory leaks. */
965 void
966 free_regset_pool (void)
967 {
968 if (flag_checking)
969 {
970 regset *v = regset_pool.v;
971 int i = 0;
972 int n = regset_pool.n;
973
974 regset *vv = regset_pool.vv;
975 int ii = 0;
976 int nn = regset_pool.nn;
977
978 int diff = 0;
979
980 gcc_assert (n <= nn);
981
982 /* Sort both vectors so it will be possible to compare them. */
983 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
984 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
985
986 while (ii < nn)
987 {
988 if (v[i] == vv[ii])
989 i++;
990 else
991 /* VV[II] was lost. */
992 diff++;
993
994 ii++;
995 }
996
997 gcc_assert (diff == regset_pool.diff);
998 }
999
1000 /* If not true - we have a memory leak. */
1001 gcc_assert (regset_pool.diff == 0);
1002
1003 while (regset_pool.n)
1004 {
1005 --regset_pool.n;
1006 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1007 }
1008
1009 free (regset_pool.v);
1010 regset_pool.v = NULL;
1011 regset_pool.s = 0;
1012
1013 free (regset_pool.vv);
1014 regset_pool.vv = NULL;
1015 regset_pool.nn = 0;
1016 regset_pool.ss = 0;
1017
1018 regset_pool.diff = 0;
1019 }
1020 \f
1021
1022 /* Functions to work with nop pools. NOP insns are used as temporary
1023 placeholders of the insns being scheduled to allow correct update of
1024 the data sets. When update is finished, NOPs are deleted. */
1025
1026 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1027 nops sel-sched generates. */
1028 static vinsn_t nop_vinsn = NULL;
1029
1030 /* Emit a nop before INSN, taking it from pool. */
1031 insn_t
1032 get_nop_from_pool (insn_t insn)
1033 {
1034 rtx nop_pat;
1035 insn_t nop;
1036 bool old_p = nop_pool.n != 0;
1037 int flags;
1038
1039 if (old_p)
1040 nop_pat = nop_pool.v[--nop_pool.n];
1041 else
1042 nop_pat = nop_pattern;
1043
1044 nop = emit_insn_before (nop_pat, insn);
1045
1046 if (old_p)
1047 flags = INSN_INIT_TODO_SSID;
1048 else
1049 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1050
1051 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1052 sel_init_new_insn (nop, flags);
1053
1054 return nop;
1055 }
1056
1057 /* Remove NOP from the instruction stream and return it to the pool. */
1058 void
1059 return_nop_to_pool (insn_t nop, bool full_tidying)
1060 {
1061 gcc_assert (INSN_IN_STREAM_P (nop));
1062 sel_remove_insn (nop, false, full_tidying);
1063
1064 /* We'll recycle this nop. */
1065 nop->set_undeleted ();
1066
1067 if (nop_pool.n == nop_pool.s)
1068 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1069 (nop_pool.s = 2 * nop_pool.s + 1));
1070 nop_pool.v[nop_pool.n++] = nop;
1071 }
1072
1073 /* Free the nop pool. */
1074 void
1075 free_nop_pool (void)
1076 {
1077 nop_pool.n = 0;
1078 nop_pool.s = 0;
1079 free (nop_pool.v);
1080 nop_pool.v = NULL;
1081 }
1082 \f
1083
1084 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1085 The callback is given two rtxes XX and YY and writes the new rtxes
1086 to NX and NY in case some needs to be skipped. */
1087 static int
1088 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1089 {
1090 const_rtx x = *xx;
1091 const_rtx y = *yy;
1092
1093 if (GET_CODE (x) == UNSPEC
1094 && (targetm.sched.skip_rtx_p == NULL
1095 || targetm.sched.skip_rtx_p (x)))
1096 {
1097 *nx = XVECEXP (x, 0, 0);
1098 *ny = CONST_CAST_RTX (y);
1099 return 1;
1100 }
1101
1102 if (GET_CODE (y) == UNSPEC
1103 && (targetm.sched.skip_rtx_p == NULL
1104 || targetm.sched.skip_rtx_p (y)))
1105 {
1106 *nx = CONST_CAST_RTX (x);
1107 *ny = XVECEXP (y, 0, 0);
1108 return 1;
1109 }
1110
1111 return 0;
1112 }
1113
1114 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1115 to support ia64 speculation. When changes are needed, new rtx X and new mode
1116 NMODE are written, and the callback returns true. */
1117 static int
1118 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1119 rtx *nx, machine_mode* nmode)
1120 {
1121 if (GET_CODE (x) == UNSPEC
1122 && targetm.sched.skip_rtx_p
1123 && targetm.sched.skip_rtx_p (x))
1124 {
1125 *nx = XVECEXP (x, 0 ,0);
1126 *nmode = VOIDmode;
1127 return 1;
1128 }
1129
1130 return 0;
1131 }
1132
1133 /* Returns LHS and RHS are ok to be scheduled separately. */
1134 static bool
1135 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1136 {
1137 if (lhs == NULL || rhs == NULL)
1138 return false;
1139
1140 /* Do not schedule constants as rhs: no point to use reg, if const
1141 can be used. Moreover, scheduling const as rhs may lead to mode
1142 mismatch cause consts don't have modes but they could be merged
1143 from branches where the same const used in different modes. */
1144 if (CONSTANT_P (rhs))
1145 return false;
1146
1147 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1148 if (COMPARISON_P (rhs))
1149 return false;
1150
1151 /* Do not allow single REG to be an rhs. */
1152 if (REG_P (rhs))
1153 return false;
1154
1155 /* See comment at find_used_regs_1 (*1) for explanation of this
1156 restriction. */
1157 /* FIXME: remove this later. */
1158 if (MEM_P (lhs))
1159 return false;
1160
1161 /* This will filter all tricky things like ZERO_EXTRACT etc.
1162 For now we don't handle it. */
1163 if (!REG_P (lhs) && !MEM_P (lhs))
1164 return false;
1165
1166 return true;
1167 }
1168
1169 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1170 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1171 used e.g. for insns from recovery blocks. */
1172 static void
1173 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1174 {
1175 hash_rtx_callback_function hrcf;
1176 int insn_class;
1177
1178 VINSN_INSN_RTX (vi) = insn;
1179 VINSN_COUNT (vi) = 0;
1180 vi->cost = -1;
1181
1182 if (INSN_NOP_P (insn))
1183 return;
1184
1185 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1186 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1187 else
1188 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1189
1190 /* Hash vinsn depending on whether it is separable or not. */
1191 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1192 if (VINSN_SEPARABLE_P (vi))
1193 {
1194 rtx rhs = VINSN_RHS (vi);
1195
1196 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1197 NULL, NULL, false, hrcf);
1198 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1199 VOIDmode, NULL, NULL,
1200 false, hrcf);
1201 }
1202 else
1203 {
1204 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1205 NULL, NULL, false, hrcf);
1206 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1207 }
1208
1209 insn_class = haifa_classify_insn (insn);
1210 if (insn_class >= 2
1211 && (!targetm.sched.get_insn_spec_ds
1212 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1213 == 0)))
1214 VINSN_MAY_TRAP_P (vi) = true;
1215 else
1216 VINSN_MAY_TRAP_P (vi) = false;
1217 }
1218
1219 /* Indicate that VI has become the part of an rtx object. */
1220 void
1221 vinsn_attach (vinsn_t vi)
1222 {
1223 /* Assert that VI is not pending for deletion. */
1224 gcc_assert (VINSN_INSN_RTX (vi));
1225
1226 VINSN_COUNT (vi)++;
1227 }
1228
1229 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1230 VINSN_TYPE (VI). */
1231 static vinsn_t
1232 vinsn_create (insn_t insn, bool force_unique_p)
1233 {
1234 vinsn_t vi = XCNEW (struct vinsn_def);
1235
1236 vinsn_init (vi, insn, force_unique_p);
1237 return vi;
1238 }
1239
1240 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1241 the copy. */
1242 vinsn_t
1243 vinsn_copy (vinsn_t vi, bool reattach_p)
1244 {
1245 rtx_insn *copy;
1246 bool unique = VINSN_UNIQUE_P (vi);
1247 vinsn_t new_vi;
1248
1249 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1250 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1251 if (reattach_p)
1252 {
1253 vinsn_detach (vi);
1254 vinsn_attach (new_vi);
1255 }
1256
1257 return new_vi;
1258 }
1259
1260 /* Delete the VI vinsn and free its data. */
1261 static void
1262 vinsn_delete (vinsn_t vi)
1263 {
1264 gcc_assert (VINSN_COUNT (vi) == 0);
1265
1266 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1267 {
1268 return_regset_to_pool (VINSN_REG_SETS (vi));
1269 return_regset_to_pool (VINSN_REG_USES (vi));
1270 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1271 }
1272
1273 free (vi);
1274 }
1275
1276 /* Indicate that VI is no longer a part of some rtx object.
1277 Remove VI if it is no longer needed. */
1278 void
1279 vinsn_detach (vinsn_t vi)
1280 {
1281 gcc_assert (VINSN_COUNT (vi) > 0);
1282
1283 if (--VINSN_COUNT (vi) == 0)
1284 vinsn_delete (vi);
1285 }
1286
1287 /* Returns TRUE if VI is a branch. */
1288 bool
1289 vinsn_cond_branch_p (vinsn_t vi)
1290 {
1291 insn_t insn;
1292
1293 if (!VINSN_UNIQUE_P (vi))
1294 return false;
1295
1296 insn = VINSN_INSN_RTX (vi);
1297 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1298 return false;
1299
1300 return control_flow_insn_p (insn);
1301 }
1302
1303 /* Return latency of INSN. */
1304 static int
1305 sel_insn_rtx_cost (rtx_insn *insn)
1306 {
1307 int cost;
1308
1309 /* A USE insn, or something else we don't need to
1310 understand. We can't pass these directly to
1311 result_ready_cost or insn_default_latency because it will
1312 trigger a fatal error for unrecognizable insns. */
1313 if (recog_memoized (insn) < 0)
1314 cost = 0;
1315 else
1316 {
1317 cost = insn_default_latency (insn);
1318
1319 if (cost < 0)
1320 cost = 0;
1321 }
1322
1323 return cost;
1324 }
1325
1326 /* Return the cost of the VI.
1327 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1328 int
1329 sel_vinsn_cost (vinsn_t vi)
1330 {
1331 int cost = vi->cost;
1332
1333 if (cost < 0)
1334 {
1335 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1336 vi->cost = cost;
1337 }
1338
1339 return cost;
1340 }
1341 \f
1342
1343 /* Functions for insn emitting. */
1344
1345 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1346 EXPR and SEQNO. */
1347 insn_t
1348 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1349 {
1350 insn_t new_insn;
1351
1352 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1353
1354 new_insn = emit_insn_after (pattern, after);
1355 set_insn_init (expr, NULL, seqno);
1356 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1357
1358 return new_insn;
1359 }
1360
1361 /* Force newly generated vinsns to be unique. */
1362 static bool init_insn_force_unique_p = false;
1363
1364 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1365 initialize its data from EXPR and SEQNO. */
1366 insn_t
1367 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1368 insn_t after)
1369 {
1370 insn_t insn;
1371
1372 gcc_assert (!init_insn_force_unique_p);
1373
1374 init_insn_force_unique_p = true;
1375 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1376 CANT_MOVE (insn) = 1;
1377 init_insn_force_unique_p = false;
1378
1379 return insn;
1380 }
1381
1382 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1383 take it as a new vinsn instead of EXPR's vinsn.
1384 We simplify insns later, after scheduling region in
1385 simplify_changed_insns. */
1386 insn_t
1387 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1388 insn_t after)
1389 {
1390 expr_t emit_expr;
1391 insn_t insn;
1392 int flags;
1393
1394 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1395 seqno);
1396 insn = EXPR_INSN_RTX (emit_expr);
1397
1398 /* The insn may come from the transformation cache, which may hold already
1399 deleted insns, so mark it as not deleted. */
1400 insn->set_undeleted ();
1401
1402 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1403
1404 flags = INSN_INIT_TODO_SSID;
1405 if (INSN_LUID (insn) == 0)
1406 flags |= INSN_INIT_TODO_LUID;
1407 sel_init_new_insn (insn, flags);
1408
1409 return insn;
1410 }
1411
1412 /* Move insn from EXPR after AFTER. */
1413 insn_t
1414 sel_move_insn (expr_t expr, int seqno, insn_t after)
1415 {
1416 insn_t insn = EXPR_INSN_RTX (expr);
1417 basic_block bb = BLOCK_FOR_INSN (after);
1418 insn_t next = NEXT_INSN (after);
1419
1420 /* Assert that in move_op we disconnected this insn properly. */
1421 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1422 SET_PREV_INSN (insn) = after;
1423 SET_NEXT_INSN (insn) = next;
1424
1425 SET_NEXT_INSN (after) = insn;
1426 SET_PREV_INSN (next) = insn;
1427
1428 /* Update links from insn to bb and vice versa. */
1429 df_insn_change_bb (insn, bb);
1430 if (BB_END (bb) == after)
1431 BB_END (bb) = insn;
1432
1433 prepare_insn_expr (insn, seqno);
1434 return insn;
1435 }
1436
1437 \f
1438 /* Functions to work with right-hand sides. */
1439
1440 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1441 VECT and return true when found. Use NEW_VINSN for comparison only when
1442 COMPARE_VINSNS is true. Write to INDP the index on which
1443 the search has stopped, such that inserting the new element at INDP will
1444 retain VECT's sort order. */
1445 static bool
1446 find_in_history_vect_1 (vec<expr_history_def> vect,
1447 unsigned uid, vinsn_t new_vinsn,
1448 bool compare_vinsns, int *indp)
1449 {
1450 expr_history_def *arr;
1451 int i, j, len = vect.length ();
1452
1453 if (len == 0)
1454 {
1455 *indp = 0;
1456 return false;
1457 }
1458
1459 arr = vect.address ();
1460 i = 0, j = len - 1;
1461
1462 while (i <= j)
1463 {
1464 unsigned auid = arr[i].uid;
1465 vinsn_t avinsn = arr[i].new_expr_vinsn;
1466
1467 if (auid == uid
1468 /* When undoing transformation on a bookkeeping copy, the new vinsn
1469 may not be exactly equal to the one that is saved in the vector.
1470 This is because the insn whose copy we're checking was possibly
1471 substituted itself. */
1472 && (! compare_vinsns
1473 || vinsn_equal_p (avinsn, new_vinsn)))
1474 {
1475 *indp = i;
1476 return true;
1477 }
1478 else if (auid > uid)
1479 break;
1480 i++;
1481 }
1482
1483 *indp = i;
1484 return false;
1485 }
1486
1487 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1488 the position found or -1, if no such value is in vector.
1489 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1490 int
1491 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1492 vinsn_t new_vinsn, bool originators_p)
1493 {
1494 int ind;
1495
1496 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1497 false, &ind))
1498 return ind;
1499
1500 if (INSN_ORIGINATORS (insn) && originators_p)
1501 {
1502 unsigned uid;
1503 bitmap_iterator bi;
1504
1505 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1506 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1507 return ind;
1508 }
1509
1510 return -1;
1511 }
1512
1513 /* Insert new element in a sorted history vector pointed to by PVECT,
1514 if it is not there already. The element is searched using
1515 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1516 the history of a transformation. */
1517 void
1518 insert_in_history_vect (vec<expr_history_def> *pvect,
1519 unsigned uid, enum local_trans_type type,
1520 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1521 ds_t spec_ds)
1522 {
1523 vec<expr_history_def> vect = *pvect;
1524 expr_history_def temp;
1525 bool res;
1526 int ind;
1527
1528 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1529
1530 if (res)
1531 {
1532 expr_history_def *phist = &vect[ind];
1533
1534 /* It is possible that speculation types of expressions that were
1535 propagated through different paths will be different here. In this
1536 case, merge the status to get the correct check later. */
1537 if (phist->spec_ds != spec_ds)
1538 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1539 return;
1540 }
1541
1542 temp.uid = uid;
1543 temp.old_expr_vinsn = old_expr_vinsn;
1544 temp.new_expr_vinsn = new_expr_vinsn;
1545 temp.spec_ds = spec_ds;
1546 temp.type = type;
1547
1548 vinsn_attach (old_expr_vinsn);
1549 vinsn_attach (new_expr_vinsn);
1550 vect.safe_insert (ind, temp);
1551 *pvect = vect;
1552 }
1553
1554 /* Free history vector PVECT. */
1555 static void
1556 free_history_vect (vec<expr_history_def> &pvect)
1557 {
1558 unsigned i;
1559 expr_history_def *phist;
1560
1561 if (! pvect.exists ())
1562 return;
1563
1564 for (i = 0; pvect.iterate (i, &phist); i++)
1565 {
1566 vinsn_detach (phist->old_expr_vinsn);
1567 vinsn_detach (phist->new_expr_vinsn);
1568 }
1569
1570 pvect.release ();
1571 }
1572
1573 /* Merge vector FROM to PVECT. */
1574 static void
1575 merge_history_vect (vec<expr_history_def> *pvect,
1576 vec<expr_history_def> from)
1577 {
1578 expr_history_def *phist;
1579 int i;
1580
1581 /* We keep this vector sorted. */
1582 for (i = 0; from.iterate (i, &phist); i++)
1583 insert_in_history_vect (pvect, phist->uid, phist->type,
1584 phist->old_expr_vinsn, phist->new_expr_vinsn,
1585 phist->spec_ds);
1586 }
1587
1588 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1589 bool
1590 vinsn_equal_p (vinsn_t x, vinsn_t y)
1591 {
1592 rtx_equal_p_callback_function repcf;
1593
1594 if (x == y)
1595 return true;
1596
1597 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1598 return false;
1599
1600 if (VINSN_HASH (x) != VINSN_HASH (y))
1601 return false;
1602
1603 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1604 if (VINSN_SEPARABLE_P (x))
1605 {
1606 /* Compare RHSes of VINSNs. */
1607 gcc_assert (VINSN_RHS (x));
1608 gcc_assert (VINSN_RHS (y));
1609
1610 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1611 }
1612
1613 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1614 }
1615 \f
1616
1617 /* Functions for working with expressions. */
1618
1619 /* Initialize EXPR. */
1620 static void
1621 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1622 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1623 ds_t spec_to_check_ds, int orig_sched_cycle,
1624 vec<expr_history_def> history,
1625 signed char target_available,
1626 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1627 bool cant_move)
1628 {
1629 vinsn_attach (vi);
1630
1631 EXPR_VINSN (expr) = vi;
1632 EXPR_SPEC (expr) = spec;
1633 EXPR_USEFULNESS (expr) = use;
1634 EXPR_PRIORITY (expr) = priority;
1635 EXPR_PRIORITY_ADJ (expr) = 0;
1636 EXPR_SCHED_TIMES (expr) = sched_times;
1637 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1638 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1639 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1640 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1641
1642 if (history.exists ())
1643 EXPR_HISTORY_OF_CHANGES (expr) = history;
1644 else
1645 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1646
1647 EXPR_TARGET_AVAILABLE (expr) = target_available;
1648 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1649 EXPR_WAS_RENAMED (expr) = was_renamed;
1650 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1651 EXPR_CANT_MOVE (expr) = cant_move;
1652 }
1653
1654 /* Make a copy of the expr FROM into the expr TO. */
1655 void
1656 copy_expr (expr_t to, expr_t from)
1657 {
1658 vec<expr_history_def> temp = vNULL;
1659
1660 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1661 {
1662 unsigned i;
1663 expr_history_def *phist;
1664
1665 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1666 for (i = 0;
1667 temp.iterate (i, &phist);
1668 i++)
1669 {
1670 vinsn_attach (phist->old_expr_vinsn);
1671 vinsn_attach (phist->new_expr_vinsn);
1672 }
1673 }
1674
1675 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1676 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1677 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1678 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1679 EXPR_ORIG_SCHED_CYCLE (from), temp,
1680 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1681 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1682 EXPR_CANT_MOVE (from));
1683 }
1684
1685 /* Same, but the final expr will not ever be in av sets, so don't copy
1686 "uninteresting" data such as bitmap cache. */
1687 void
1688 copy_expr_onside (expr_t to, expr_t from)
1689 {
1690 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1691 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1692 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1693 vNULL,
1694 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1695 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1696 EXPR_CANT_MOVE (from));
1697 }
1698
1699 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1700 initializing new insns. */
1701 static void
1702 prepare_insn_expr (insn_t insn, int seqno)
1703 {
1704 expr_t expr = INSN_EXPR (insn);
1705 ds_t ds;
1706
1707 INSN_SEQNO (insn) = seqno;
1708 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1709 EXPR_SPEC (expr) = 0;
1710 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1711 EXPR_WAS_SUBSTITUTED (expr) = 0;
1712 EXPR_WAS_RENAMED (expr) = 0;
1713 EXPR_TARGET_AVAILABLE (expr) = 1;
1714 INSN_LIVE_VALID_P (insn) = false;
1715
1716 /* ??? If this expression is speculative, make its dependence
1717 as weak as possible. We can filter this expression later
1718 in process_spec_exprs, because we do not distinguish
1719 between the status we got during compute_av_set and the
1720 existing status. To be fixed. */
1721 ds = EXPR_SPEC_DONE_DS (expr);
1722 if (ds)
1723 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1724
1725 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1726 }
1727
1728 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1729 is non-null when expressions are merged from different successors at
1730 a split point. */
1731 static void
1732 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1733 {
1734 if (EXPR_TARGET_AVAILABLE (to) < 0
1735 || EXPR_TARGET_AVAILABLE (from) < 0)
1736 EXPR_TARGET_AVAILABLE (to) = -1;
1737 else
1738 {
1739 /* We try to detect the case when one of the expressions
1740 can only be reached through another one. In this case,
1741 we can do better. */
1742 if (split_point == NULL)
1743 {
1744 int toind, fromind;
1745
1746 toind = EXPR_ORIG_BB_INDEX (to);
1747 fromind = EXPR_ORIG_BB_INDEX (from);
1748
1749 if (toind && toind == fromind)
1750 /* Do nothing -- everything is done in
1751 merge_with_other_exprs. */
1752 ;
1753 else
1754 EXPR_TARGET_AVAILABLE (to) = -1;
1755 }
1756 else if (EXPR_TARGET_AVAILABLE (from) == 0
1757 && EXPR_LHS (from)
1758 && REG_P (EXPR_LHS (from))
1759 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1760 EXPR_TARGET_AVAILABLE (to) = -1;
1761 else
1762 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1763 }
1764 }
1765
1766 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1767 is non-null when expressions are merged from different successors at
1768 a split point. */
1769 static void
1770 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1771 {
1772 ds_t old_to_ds, old_from_ds;
1773
1774 old_to_ds = EXPR_SPEC_DONE_DS (to);
1775 old_from_ds = EXPR_SPEC_DONE_DS (from);
1776
1777 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1778 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1779 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1780
1781 /* When merging e.g. control & data speculative exprs, or a control
1782 speculative with a control&data speculative one, we really have
1783 to change vinsn too. Also, when speculative status is changed,
1784 we also need to record this as a transformation in expr's history. */
1785 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1786 {
1787 old_to_ds = ds_get_speculation_types (old_to_ds);
1788 old_from_ds = ds_get_speculation_types (old_from_ds);
1789
1790 if (old_to_ds != old_from_ds)
1791 {
1792 ds_t record_ds;
1793
1794 /* When both expressions are speculative, we need to change
1795 the vinsn first. */
1796 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1797 {
1798 int res;
1799
1800 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1801 gcc_assert (res >= 0);
1802 }
1803
1804 if (split_point != NULL)
1805 {
1806 /* Record the change with proper status. */
1807 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1808 record_ds &= ~(old_to_ds & SPECULATIVE);
1809 record_ds &= ~(old_from_ds & SPECULATIVE);
1810
1811 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1812 INSN_UID (split_point), TRANS_SPECULATION,
1813 EXPR_VINSN (from), EXPR_VINSN (to),
1814 record_ds);
1815 }
1816 }
1817 }
1818 }
1819
1820
1821 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1822 this is done along different paths. */
1823 void
1824 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1825 {
1826 /* Choose the maximum of the specs of merged exprs. This is required
1827 for correctness of bookkeeping. */
1828 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1829 EXPR_SPEC (to) = EXPR_SPEC (from);
1830
1831 if (split_point)
1832 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1833 else
1834 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1835 EXPR_USEFULNESS (from));
1836
1837 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1838 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1839
1840 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1841 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1842
1843 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1844 EXPR_ORIG_BB_INDEX (to) = 0;
1845
1846 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1847 EXPR_ORIG_SCHED_CYCLE (from));
1848
1849 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1850 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1851 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1852
1853 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1854 EXPR_HISTORY_OF_CHANGES (from));
1855 update_target_availability (to, from, split_point);
1856 update_speculative_bits (to, from, split_point);
1857 }
1858
1859 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1860 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1861 are merged from different successors at a split point. */
1862 void
1863 merge_expr (expr_t to, expr_t from, insn_t split_point)
1864 {
1865 vinsn_t to_vi = EXPR_VINSN (to);
1866 vinsn_t from_vi = EXPR_VINSN (from);
1867
1868 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1869
1870 /* Make sure that speculative pattern is propagated into exprs that
1871 have non-speculative one. This will provide us with consistent
1872 speculative bits and speculative patterns inside expr. */
1873 if (EXPR_SPEC_DONE_DS (to) == 0
1874 && (EXPR_SPEC_DONE_DS (from) != 0
1875 /* Do likewise for volatile insns, so that we always retain
1876 the may_trap_p bit on the resulting expression. However,
1877 avoid propagating the trapping bit into the instructions
1878 already speculated. This would result in replacing the
1879 speculative pattern with the non-speculative one and breaking
1880 the speculation support. */
1881 || (!VINSN_MAY_TRAP_P (EXPR_VINSN (to))
1882 && VINSN_MAY_TRAP_P (EXPR_VINSN (from)))))
1883 change_vinsn_in_expr (to, EXPR_VINSN (from));
1884
1885 merge_expr_data (to, from, split_point);
1886 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1887 }
1888
1889 /* Clear the information of this EXPR. */
1890 void
1891 clear_expr (expr_t expr)
1892 {
1893
1894 vinsn_detach (EXPR_VINSN (expr));
1895 EXPR_VINSN (expr) = NULL;
1896
1897 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1898 }
1899
1900 /* For a given LV_SET, mark EXPR having unavailable target register. */
1901 static void
1902 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1903 {
1904 if (EXPR_SEPARABLE_P (expr))
1905 {
1906 if (REG_P (EXPR_LHS (expr))
1907 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1908 {
1909 /* If it's an insn like r1 = use (r1, ...), and it exists in
1910 different forms in each of the av_sets being merged, we can't say
1911 whether original destination register is available or not.
1912 However, this still works if destination register is not used
1913 in the original expression: if the branch at which LV_SET we're
1914 looking here is not actually 'other branch' in sense that same
1915 expression is available through it (but it can't be determined
1916 at computation stage because of transformations on one of the
1917 branches), it still won't affect the availability.
1918 Liveness of a register somewhere on a code motion path means
1919 it's either read somewhere on a codemotion path, live on
1920 'other' branch, live at the point immediately following
1921 the original operation, or is read by the original operation.
1922 The latter case is filtered out in the condition below.
1923 It still doesn't cover the case when register is defined and used
1924 somewhere within the code motion path, and in this case we could
1925 miss a unifying code motion along both branches using a renamed
1926 register, but it won't affect a code correctness since upon
1927 an actual code motion a bookkeeping code would be generated. */
1928 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1929 EXPR_LHS (expr)))
1930 EXPR_TARGET_AVAILABLE (expr) = -1;
1931 else
1932 EXPR_TARGET_AVAILABLE (expr) = false;
1933 }
1934 }
1935 else
1936 {
1937 unsigned regno;
1938 reg_set_iterator rsi;
1939
1940 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1941 0, regno, rsi)
1942 if (bitmap_bit_p (lv_set, regno))
1943 {
1944 EXPR_TARGET_AVAILABLE (expr) = false;
1945 break;
1946 }
1947
1948 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1949 0, regno, rsi)
1950 if (bitmap_bit_p (lv_set, regno))
1951 {
1952 EXPR_TARGET_AVAILABLE (expr) = false;
1953 break;
1954 }
1955 }
1956 }
1957
1958 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1959 or dependence status have changed, 2 when also the target register
1960 became unavailable, 0 if nothing had to be changed. */
1961 int
1962 speculate_expr (expr_t expr, ds_t ds)
1963 {
1964 int res;
1965 rtx_insn *orig_insn_rtx;
1966 rtx spec_pat;
1967 ds_t target_ds, current_ds;
1968
1969 /* Obtain the status we need to put on EXPR. */
1970 target_ds = (ds & SPECULATIVE);
1971 current_ds = EXPR_SPEC_DONE_DS (expr);
1972 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1973
1974 orig_insn_rtx = EXPR_INSN_RTX (expr);
1975
1976 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1977
1978 switch (res)
1979 {
1980 case 0:
1981 EXPR_SPEC_DONE_DS (expr) = ds;
1982 return current_ds != ds ? 1 : 0;
1983
1984 case 1:
1985 {
1986 rtx_insn *spec_insn_rtx =
1987 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1988 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1989
1990 change_vinsn_in_expr (expr, spec_vinsn);
1991 EXPR_SPEC_DONE_DS (expr) = ds;
1992 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1993
1994 /* Do not allow clobbering the address register of speculative
1995 insns. */
1996 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1997 expr_dest_reg (expr)))
1998 {
1999 EXPR_TARGET_AVAILABLE (expr) = false;
2000 return 2;
2001 }
2002
2003 return 1;
2004 }
2005
2006 case -1:
2007 return -1;
2008
2009 default:
2010 gcc_unreachable ();
2011 return -1;
2012 }
2013 }
2014
2015 /* Return a destination register, if any, of EXPR. */
2016 rtx
2017 expr_dest_reg (expr_t expr)
2018 {
2019 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2020
2021 if (dest != NULL_RTX && REG_P (dest))
2022 return dest;
2023
2024 return NULL_RTX;
2025 }
2026
2027 /* Returns the REGNO of the R's destination. */
2028 unsigned
2029 expr_dest_regno (expr_t expr)
2030 {
2031 rtx dest = expr_dest_reg (expr);
2032
2033 gcc_assert (dest != NULL_RTX);
2034 return REGNO (dest);
2035 }
2036
2037 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2038 AV_SET having unavailable target register. */
2039 void
2040 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2041 {
2042 expr_t expr;
2043 av_set_iterator avi;
2044
2045 FOR_EACH_EXPR (expr, avi, join_set)
2046 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2047 set_unavailable_target_for_expr (expr, lv_set);
2048 }
2049 \f
2050
2051 /* Returns true if REG (at least partially) is present in REGS. */
2052 bool
2053 register_unavailable_p (regset regs, rtx reg)
2054 {
2055 unsigned regno, end_regno;
2056
2057 regno = REGNO (reg);
2058 if (bitmap_bit_p (regs, regno))
2059 return true;
2060
2061 end_regno = END_REGNO (reg);
2062
2063 while (++regno < end_regno)
2064 if (bitmap_bit_p (regs, regno))
2065 return true;
2066
2067 return false;
2068 }
2069
2070 /* Av set functions. */
2071
2072 /* Add a new element to av set SETP.
2073 Return the element added. */
2074 static av_set_t
2075 av_set_add_element (av_set_t *setp)
2076 {
2077 /* Insert at the beginning of the list. */
2078 _list_add (setp);
2079 return *setp;
2080 }
2081
2082 /* Add EXPR to SETP. */
2083 void
2084 av_set_add (av_set_t *setp, expr_t expr)
2085 {
2086 av_set_t elem;
2087
2088 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2089 elem = av_set_add_element (setp);
2090 copy_expr (_AV_SET_EXPR (elem), expr);
2091 }
2092
2093 /* Same, but do not copy EXPR. */
2094 static void
2095 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2096 {
2097 av_set_t elem;
2098
2099 elem = av_set_add_element (setp);
2100 *_AV_SET_EXPR (elem) = *expr;
2101 }
2102
2103 /* Remove expr pointed to by IP from the av_set. */
2104 void
2105 av_set_iter_remove (av_set_iterator *ip)
2106 {
2107 clear_expr (_AV_SET_EXPR (*ip->lp));
2108 _list_iter_remove (ip);
2109 }
2110
2111 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2112 sense of vinsn_equal_p function. Return NULL if no such expr is
2113 in SET was found. */
2114 expr_t
2115 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2116 {
2117 expr_t expr;
2118 av_set_iterator i;
2119
2120 FOR_EACH_EXPR (expr, i, set)
2121 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2122 return expr;
2123 return NULL;
2124 }
2125
2126 /* Same, but also remove the EXPR found. */
2127 static expr_t
2128 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2129 {
2130 expr_t expr;
2131 av_set_iterator i;
2132
2133 FOR_EACH_EXPR_1 (expr, i, setp)
2134 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2135 {
2136 _list_iter_remove_nofree (&i);
2137 return expr;
2138 }
2139 return NULL;
2140 }
2141
2142 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2143 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2144 Returns NULL if no such expr is in SET was found. */
2145 static expr_t
2146 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2147 {
2148 expr_t cur_expr;
2149 av_set_iterator i;
2150
2151 FOR_EACH_EXPR (cur_expr, i, set)
2152 {
2153 if (cur_expr == expr)
2154 continue;
2155 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2156 return cur_expr;
2157 }
2158
2159 return NULL;
2160 }
2161
2162 /* If other expression is already in AVP, remove one of them. */
2163 expr_t
2164 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2165 {
2166 expr_t expr2;
2167
2168 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2169 if (expr2 != NULL)
2170 {
2171 /* Reset target availability on merge, since taking it only from one
2172 of the exprs would be controversial for different code. */
2173 EXPR_TARGET_AVAILABLE (expr2) = -1;
2174 EXPR_USEFULNESS (expr2) = 0;
2175
2176 merge_expr (expr2, expr, NULL);
2177
2178 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2179 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2180
2181 av_set_iter_remove (ip);
2182 return expr2;
2183 }
2184
2185 return expr;
2186 }
2187
2188 /* Return true if there is an expr that correlates to VI in SET. */
2189 bool
2190 av_set_is_in_p (av_set_t set, vinsn_t vi)
2191 {
2192 return av_set_lookup (set, vi) != NULL;
2193 }
2194
2195 /* Return a copy of SET. */
2196 av_set_t
2197 av_set_copy (av_set_t set)
2198 {
2199 expr_t expr;
2200 av_set_iterator i;
2201 av_set_t res = NULL;
2202
2203 FOR_EACH_EXPR (expr, i, set)
2204 av_set_add (&res, expr);
2205
2206 return res;
2207 }
2208
2209 /* Join two av sets that do not have common elements by attaching second set
2210 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2211 _AV_SET_NEXT of first set's last element). */
2212 static void
2213 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2214 {
2215 gcc_assert (*to_tailp == NULL);
2216 *to_tailp = *fromp;
2217 *fromp = NULL;
2218 }
2219
2220 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2221 pointed to by FROMP afterwards. */
2222 void
2223 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2224 {
2225 expr_t expr1;
2226 av_set_iterator i;
2227
2228 /* Delete from TOP all exprs, that present in FROMP. */
2229 FOR_EACH_EXPR_1 (expr1, i, top)
2230 {
2231 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2232
2233 if (expr2)
2234 {
2235 merge_expr (expr2, expr1, insn);
2236 av_set_iter_remove (&i);
2237 }
2238 }
2239
2240 join_distinct_sets (i.lp, fromp);
2241 }
2242
2243 /* Same as above, but also update availability of target register in
2244 TOP judging by TO_LV_SET and FROM_LV_SET. */
2245 void
2246 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2247 regset from_lv_set, insn_t insn)
2248 {
2249 expr_t expr1;
2250 av_set_iterator i;
2251 av_set_t *to_tailp, in_both_set = NULL;
2252
2253 /* Delete from TOP all expres, that present in FROMP. */
2254 FOR_EACH_EXPR_1 (expr1, i, top)
2255 {
2256 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2257
2258 if (expr2)
2259 {
2260 /* It may be that the expressions have different destination
2261 registers, in which case we need to check liveness here. */
2262 if (EXPR_SEPARABLE_P (expr1))
2263 {
2264 int regno1 = (REG_P (EXPR_LHS (expr1))
2265 ? (int) expr_dest_regno (expr1) : -1);
2266 int regno2 = (REG_P (EXPR_LHS (expr2))
2267 ? (int) expr_dest_regno (expr2) : -1);
2268
2269 /* ??? We don't have a way to check restrictions for
2270 *other* register on the current path, we did it only
2271 for the current target register. Give up. */
2272 if (regno1 != regno2)
2273 EXPR_TARGET_AVAILABLE (expr2) = -1;
2274 }
2275 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2276 EXPR_TARGET_AVAILABLE (expr2) = -1;
2277
2278 merge_expr (expr2, expr1, insn);
2279 av_set_add_nocopy (&in_both_set, expr2);
2280 av_set_iter_remove (&i);
2281 }
2282 else
2283 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2284 FROM_LV_SET. */
2285 set_unavailable_target_for_expr (expr1, from_lv_set);
2286 }
2287 to_tailp = i.lp;
2288
2289 /* These expressions are not present in TOP. Check liveness
2290 restrictions on TO_LV_SET. */
2291 FOR_EACH_EXPR (expr1, i, *fromp)
2292 set_unavailable_target_for_expr (expr1, to_lv_set);
2293
2294 join_distinct_sets (i.lp, &in_both_set);
2295 join_distinct_sets (to_tailp, fromp);
2296 }
2297
2298 /* Clear av_set pointed to by SETP. */
2299 void
2300 av_set_clear (av_set_t *setp)
2301 {
2302 expr_t expr;
2303 av_set_iterator i;
2304
2305 FOR_EACH_EXPR_1 (expr, i, setp)
2306 av_set_iter_remove (&i);
2307
2308 gcc_assert (*setp == NULL);
2309 }
2310
2311 /* Leave only one non-speculative element in the SETP. */
2312 void
2313 av_set_leave_one_nonspec (av_set_t *setp)
2314 {
2315 expr_t expr;
2316 av_set_iterator i;
2317 bool has_one_nonspec = false;
2318
2319 /* Keep all speculative exprs, and leave one non-speculative
2320 (the first one). */
2321 FOR_EACH_EXPR_1 (expr, i, setp)
2322 {
2323 if (!EXPR_SPEC_DONE_DS (expr))
2324 {
2325 if (has_one_nonspec)
2326 av_set_iter_remove (&i);
2327 else
2328 has_one_nonspec = true;
2329 }
2330 }
2331 }
2332
2333 /* Return the N'th element of the SET. */
2334 expr_t
2335 av_set_element (av_set_t set, int n)
2336 {
2337 expr_t expr;
2338 av_set_iterator i;
2339
2340 FOR_EACH_EXPR (expr, i, set)
2341 if (n-- == 0)
2342 return expr;
2343
2344 gcc_unreachable ();
2345 return NULL;
2346 }
2347
2348 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2349 void
2350 av_set_substract_cond_branches (av_set_t *avp)
2351 {
2352 av_set_iterator i;
2353 expr_t expr;
2354
2355 FOR_EACH_EXPR_1 (expr, i, avp)
2356 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2357 av_set_iter_remove (&i);
2358 }
2359
2360 /* Multiplies usefulness attribute of each member of av-set *AVP by
2361 value PROB / ALL_PROB. */
2362 void
2363 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2364 {
2365 av_set_iterator i;
2366 expr_t expr;
2367
2368 FOR_EACH_EXPR (expr, i, av)
2369 EXPR_USEFULNESS (expr) = (all_prob
2370 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2371 : 0);
2372 }
2373
2374 /* Leave in AVP only those expressions, which are present in AV,
2375 and return it, merging history expressions. */
2376 void
2377 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2378 {
2379 av_set_iterator i;
2380 expr_t expr, expr2;
2381
2382 FOR_EACH_EXPR_1 (expr, i, avp)
2383 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2384 av_set_iter_remove (&i);
2385 else
2386 /* When updating av sets in bookkeeping blocks, we can add more insns
2387 there which will be transformed but the upper av sets will not
2388 reflect those transformations. We then fail to undo those
2389 when searching for such insns. So merge the history saved
2390 in the av set of the block we are processing. */
2391 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2392 EXPR_HISTORY_OF_CHANGES (expr2));
2393 }
2394
2395 \f
2396
2397 /* Dependence hooks to initialize insn data. */
2398
2399 /* This is used in hooks callable from dependence analysis when initializing
2400 instruction's data. */
2401 static struct
2402 {
2403 /* Where the dependence was found (lhs/rhs). */
2404 deps_where_t where;
2405
2406 /* The actual data object to initialize. */
2407 idata_t id;
2408
2409 /* True when the insn should not be made clonable. */
2410 bool force_unique_p;
2411
2412 /* True when insn should be treated as of type USE, i.e. never renamed. */
2413 bool force_use_p;
2414 } deps_init_id_data;
2415
2416
2417 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2418 clonable. */
2419 static void
2420 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2421 {
2422 int type;
2423
2424 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2425 That clonable insns which can be separated into lhs and rhs have type SET.
2426 Other clonable insns have type USE. */
2427 type = GET_CODE (insn);
2428
2429 /* Only regular insns could be cloned. */
2430 if (type == INSN && !force_unique_p)
2431 type = SET;
2432 else if (type == JUMP_INSN && simplejump_p (insn))
2433 type = PC;
2434 else if (type == DEBUG_INSN)
2435 type = !force_unique_p ? USE : INSN;
2436
2437 IDATA_TYPE (id) = type;
2438 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2439 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2440 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2441 }
2442
2443 /* Start initializing insn data. */
2444 static void
2445 deps_init_id_start_insn (insn_t insn)
2446 {
2447 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2448
2449 setup_id_for_insn (deps_init_id_data.id, insn,
2450 deps_init_id_data.force_unique_p);
2451 deps_init_id_data.where = DEPS_IN_INSN;
2452 }
2453
2454 /* Start initializing lhs data. */
2455 static void
2456 deps_init_id_start_lhs (rtx lhs)
2457 {
2458 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2459 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2460
2461 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2462 {
2463 IDATA_LHS (deps_init_id_data.id) = lhs;
2464 deps_init_id_data.where = DEPS_IN_LHS;
2465 }
2466 }
2467
2468 /* Finish initializing lhs data. */
2469 static void
2470 deps_init_id_finish_lhs (void)
2471 {
2472 deps_init_id_data.where = DEPS_IN_INSN;
2473 }
2474
2475 /* Note a set of REGNO. */
2476 static void
2477 deps_init_id_note_reg_set (int regno)
2478 {
2479 haifa_note_reg_set (regno);
2480
2481 if (deps_init_id_data.where == DEPS_IN_RHS)
2482 deps_init_id_data.force_use_p = true;
2483
2484 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2485 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2486
2487 #ifdef STACK_REGS
2488 /* Make instructions that set stack registers to be ineligible for
2489 renaming to avoid issues with find_used_regs. */
2490 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2491 deps_init_id_data.force_use_p = true;
2492 #endif
2493 }
2494
2495 /* Note a clobber of REGNO. */
2496 static void
2497 deps_init_id_note_reg_clobber (int regno)
2498 {
2499 haifa_note_reg_clobber (regno);
2500
2501 if (deps_init_id_data.where == DEPS_IN_RHS)
2502 deps_init_id_data.force_use_p = true;
2503
2504 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2505 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2506 }
2507
2508 /* Note a use of REGNO. */
2509 static void
2510 deps_init_id_note_reg_use (int regno)
2511 {
2512 haifa_note_reg_use (regno);
2513
2514 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2515 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2516 }
2517
2518 /* Start initializing rhs data. */
2519 static void
2520 deps_init_id_start_rhs (rtx rhs)
2521 {
2522 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2523
2524 /* And there was no sel_deps_reset_to_insn (). */
2525 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2526 {
2527 IDATA_RHS (deps_init_id_data.id) = rhs;
2528 deps_init_id_data.where = DEPS_IN_RHS;
2529 }
2530 }
2531
2532 /* Finish initializing rhs data. */
2533 static void
2534 deps_init_id_finish_rhs (void)
2535 {
2536 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2537 || deps_init_id_data.where == DEPS_IN_INSN);
2538 deps_init_id_data.where = DEPS_IN_INSN;
2539 }
2540
2541 /* Finish initializing insn data. */
2542 static void
2543 deps_init_id_finish_insn (void)
2544 {
2545 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2546
2547 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2548 {
2549 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2550 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2551
2552 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2553 || deps_init_id_data.force_use_p)
2554 {
2555 /* This should be a USE, as we don't want to schedule its RHS
2556 separately. However, we still want to have them recorded
2557 for the purposes of substitution. That's why we don't
2558 simply call downgrade_to_use () here. */
2559 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2560 gcc_assert (!lhs == !rhs);
2561
2562 IDATA_TYPE (deps_init_id_data.id) = USE;
2563 }
2564 }
2565
2566 deps_init_id_data.where = DEPS_IN_NOWHERE;
2567 }
2568
2569 /* This is dependence info used for initializing insn's data. */
2570 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2571
2572 /* This initializes most of the static part of the above structure. */
2573 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2574 {
2575 NULL,
2576
2577 deps_init_id_start_insn,
2578 deps_init_id_finish_insn,
2579 deps_init_id_start_lhs,
2580 deps_init_id_finish_lhs,
2581 deps_init_id_start_rhs,
2582 deps_init_id_finish_rhs,
2583 deps_init_id_note_reg_set,
2584 deps_init_id_note_reg_clobber,
2585 deps_init_id_note_reg_use,
2586 NULL, /* note_mem_dep */
2587 NULL, /* note_dep */
2588
2589 0, /* use_cselib */
2590 0, /* use_deps_list */
2591 0 /* generate_spec_deps */
2592 };
2593
2594 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2595 we don't actually need information about lhs and rhs. */
2596 static void
2597 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2598 {
2599 rtx pat = PATTERN (insn);
2600
2601 if (NONJUMP_INSN_P (insn)
2602 && GET_CODE (pat) == SET
2603 && !force_unique_p)
2604 {
2605 IDATA_RHS (id) = SET_SRC (pat);
2606 IDATA_LHS (id) = SET_DEST (pat);
2607 }
2608 else
2609 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2610 }
2611
2612 /* Possibly downgrade INSN to USE. */
2613 static void
2614 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2615 {
2616 bool must_be_use = false;
2617 df_ref def;
2618 rtx lhs = IDATA_LHS (id);
2619 rtx rhs = IDATA_RHS (id);
2620
2621 /* We downgrade only SETs. */
2622 if (IDATA_TYPE (id) != SET)
2623 return;
2624
2625 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2626 {
2627 IDATA_TYPE (id) = USE;
2628 return;
2629 }
2630
2631 FOR_EACH_INSN_DEF (def, insn)
2632 {
2633 if (DF_REF_INSN (def)
2634 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2635 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2636 {
2637 must_be_use = true;
2638 break;
2639 }
2640
2641 #ifdef STACK_REGS
2642 /* Make instructions that set stack registers to be ineligible for
2643 renaming to avoid issues with find_used_regs. */
2644 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2645 {
2646 must_be_use = true;
2647 break;
2648 }
2649 #endif
2650 }
2651
2652 if (must_be_use)
2653 IDATA_TYPE (id) = USE;
2654 }
2655
2656 /* Setup implicit register clobbers calculated by sched-deps for INSN
2657 before reload and save them in ID. */
2658 static void
2659 setup_id_implicit_regs (idata_t id, insn_t insn)
2660 {
2661 if (reload_completed)
2662 return;
2663
2664 HARD_REG_SET temp;
2665 unsigned regno;
2666 hard_reg_set_iterator hrsi;
2667
2668 get_implicit_reg_pending_clobbers (&temp, insn);
2669 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2670 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2671 }
2672
2673 /* Setup register sets describing INSN in ID. */
2674 static void
2675 setup_id_reg_sets (idata_t id, insn_t insn)
2676 {
2677 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2678 df_ref def, use;
2679 regset tmp = get_clear_regset_from_pool ();
2680
2681 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2682 {
2683 unsigned int regno = DF_REF_REGNO (def);
2684
2685 /* Post modifies are treated like clobbers by sched-deps.c. */
2686 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2687 | DF_REF_PRE_POST_MODIFY)))
2688 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2689 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2690 {
2691 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2692
2693 #ifdef STACK_REGS
2694 /* For stack registers, treat writes to them as writes
2695 to the first one to be consistent with sched-deps.c. */
2696 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2697 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2698 #endif
2699 }
2700 /* Mark special refs that generate read/write def pair. */
2701 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2702 || regno == STACK_POINTER_REGNUM)
2703 bitmap_set_bit (tmp, regno);
2704 }
2705
2706 FOR_EACH_INSN_INFO_USE (use, insn_info)
2707 {
2708 unsigned int regno = DF_REF_REGNO (use);
2709
2710 /* When these refs are met for the first time, skip them, as
2711 these uses are just counterparts of some defs. */
2712 if (bitmap_bit_p (tmp, regno))
2713 bitmap_clear_bit (tmp, regno);
2714 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2715 {
2716 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2717
2718 #ifdef STACK_REGS
2719 /* For stack registers, treat reads from them as reads from
2720 the first one to be consistent with sched-deps.c. */
2721 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2722 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2723 #endif
2724 }
2725 }
2726
2727 /* Also get implicit reg clobbers from sched-deps. */
2728 setup_id_implicit_regs (id, insn);
2729
2730 return_regset_to_pool (tmp);
2731 }
2732
2733 /* Initialize instruction data for INSN in ID using DF's data. */
2734 static void
2735 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2736 {
2737 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2738
2739 setup_id_for_insn (id, insn, force_unique_p);
2740 setup_id_lhs_rhs (id, insn, force_unique_p);
2741
2742 if (INSN_NOP_P (insn))
2743 return;
2744
2745 maybe_downgrade_id_to_use (id, insn);
2746 setup_id_reg_sets (id, insn);
2747 }
2748
2749 /* Initialize instruction data for INSN in ID. */
2750 static void
2751 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2752 {
2753 struct deps_desc _dc, *dc = &_dc;
2754
2755 deps_init_id_data.where = DEPS_IN_NOWHERE;
2756 deps_init_id_data.id = id;
2757 deps_init_id_data.force_unique_p = force_unique_p;
2758 deps_init_id_data.force_use_p = false;
2759
2760 init_deps (dc, false);
2761 memcpy (&deps_init_id_sched_deps_info,
2762 &const_deps_init_id_sched_deps_info,
2763 sizeof (deps_init_id_sched_deps_info));
2764 if (spec_info != NULL)
2765 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2766 sched_deps_info = &deps_init_id_sched_deps_info;
2767
2768 deps_analyze_insn (dc, insn);
2769 /* Implicit reg clobbers received from sched-deps separately. */
2770 setup_id_implicit_regs (id, insn);
2771
2772 free_deps (dc);
2773 deps_init_id_data.id = NULL;
2774 }
2775
2776 \f
2777 struct sched_scan_info_def
2778 {
2779 /* This hook notifies scheduler frontend to extend its internal per basic
2780 block data structures. This hook should be called once before a series of
2781 calls to bb_init (). */
2782 void (*extend_bb) (void);
2783
2784 /* This hook makes scheduler frontend to initialize its internal data
2785 structures for the passed basic block. */
2786 void (*init_bb) (basic_block);
2787
2788 /* This hook notifies scheduler frontend to extend its internal per insn data
2789 structures. This hook should be called once before a series of calls to
2790 insn_init (). */
2791 void (*extend_insn) (void);
2792
2793 /* This hook makes scheduler frontend to initialize its internal data
2794 structures for the passed insn. */
2795 void (*init_insn) (insn_t);
2796 };
2797
2798 /* A driver function to add a set of basic blocks (BBS) to the
2799 scheduling region. */
2800 static void
2801 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2802 {
2803 unsigned i;
2804 basic_block bb;
2805
2806 if (ssi->extend_bb)
2807 ssi->extend_bb ();
2808
2809 if (ssi->init_bb)
2810 FOR_EACH_VEC_ELT (bbs, i, bb)
2811 ssi->init_bb (bb);
2812
2813 if (ssi->extend_insn)
2814 ssi->extend_insn ();
2815
2816 if (ssi->init_insn)
2817 FOR_EACH_VEC_ELT (bbs, i, bb)
2818 {
2819 rtx_insn *insn;
2820
2821 FOR_BB_INSNS (bb, insn)
2822 ssi->init_insn (insn);
2823 }
2824 }
2825
2826 /* Implement hooks for collecting fundamental insn properties like if insn is
2827 an ASM or is within a SCHED_GROUP. */
2828
2829 /* True when a "one-time init" data for INSN was already inited. */
2830 static bool
2831 first_time_insn_init (insn_t insn)
2832 {
2833 return INSN_LIVE (insn) == NULL;
2834 }
2835
2836 /* Hash an entry in a transformed_insns hashtable. */
2837 static hashval_t
2838 hash_transformed_insns (const void *p)
2839 {
2840 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2841 }
2842
2843 /* Compare the entries in a transformed_insns hashtable. */
2844 static int
2845 eq_transformed_insns (const void *p, const void *q)
2846 {
2847 rtx_insn *i1 =
2848 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2849 rtx_insn *i2 =
2850 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2851
2852 if (INSN_UID (i1) == INSN_UID (i2))
2853 return 1;
2854 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2855 }
2856
2857 /* Free an entry in a transformed_insns hashtable. */
2858 static void
2859 free_transformed_insns (void *p)
2860 {
2861 struct transformed_insns *pti = (struct transformed_insns *) p;
2862
2863 vinsn_detach (pti->vinsn_old);
2864 vinsn_detach (pti->vinsn_new);
2865 free (pti);
2866 }
2867
2868 /* Init the s_i_d data for INSN which should be inited just once, when
2869 we first see the insn. */
2870 static void
2871 init_first_time_insn_data (insn_t insn)
2872 {
2873 /* This should not be set if this is the first time we init data for
2874 insn. */
2875 gcc_assert (first_time_insn_init (insn));
2876
2877 /* These are needed for nops too. */
2878 INSN_LIVE (insn) = get_regset_from_pool ();
2879 INSN_LIVE_VALID_P (insn) = false;
2880
2881 if (!INSN_NOP_P (insn))
2882 {
2883 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2884 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2885 INSN_TRANSFORMED_INSNS (insn)
2886 = htab_create (16, hash_transformed_insns,
2887 eq_transformed_insns, free_transformed_insns);
2888 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2889 }
2890 }
2891
2892 /* Free almost all above data for INSN that is scheduled already.
2893 Used for extra-large basic blocks. */
2894 void
2895 free_data_for_scheduled_insn (insn_t insn)
2896 {
2897 gcc_assert (! first_time_insn_init (insn));
2898
2899 if (! INSN_ANALYZED_DEPS (insn))
2900 return;
2901
2902 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2903 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2904 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2905
2906 /* This is allocated only for bookkeeping insns. */
2907 if (INSN_ORIGINATORS (insn))
2908 BITMAP_FREE (INSN_ORIGINATORS (insn));
2909 free_deps (&INSN_DEPS_CONTEXT (insn));
2910
2911 INSN_ANALYZED_DEPS (insn) = NULL;
2912
2913 /* Clear the readonly flag so we would ICE when trying to recalculate
2914 the deps context (as we believe that it should not happen). */
2915 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2916 }
2917
2918 /* Free the same data as above for INSN. */
2919 static void
2920 free_first_time_insn_data (insn_t insn)
2921 {
2922 gcc_assert (! first_time_insn_init (insn));
2923
2924 free_data_for_scheduled_insn (insn);
2925 return_regset_to_pool (INSN_LIVE (insn));
2926 INSN_LIVE (insn) = NULL;
2927 INSN_LIVE_VALID_P (insn) = false;
2928 }
2929
2930 /* Initialize region-scope data structures for basic blocks. */
2931 static void
2932 init_global_and_expr_for_bb (basic_block bb)
2933 {
2934 if (sel_bb_empty_p (bb))
2935 return;
2936
2937 invalidate_av_set (bb);
2938 }
2939
2940 /* Data for global dependency analysis (to initialize CANT_MOVE and
2941 SCHED_GROUP_P). */
2942 static struct
2943 {
2944 /* Previous insn. */
2945 insn_t prev_insn;
2946 } init_global_data;
2947
2948 /* Determine if INSN is in the sched_group, is an asm or should not be
2949 cloned. After that initialize its expr. */
2950 static void
2951 init_global_and_expr_for_insn (insn_t insn)
2952 {
2953 if (LABEL_P (insn))
2954 return;
2955
2956 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2957 {
2958 init_global_data.prev_insn = NULL;
2959 return;
2960 }
2961
2962 gcc_assert (INSN_P (insn));
2963
2964 if (SCHED_GROUP_P (insn))
2965 /* Setup a sched_group. */
2966 {
2967 insn_t prev_insn = init_global_data.prev_insn;
2968
2969 if (prev_insn)
2970 INSN_SCHED_NEXT (prev_insn) = insn;
2971
2972 init_global_data.prev_insn = insn;
2973 }
2974 else
2975 init_global_data.prev_insn = NULL;
2976
2977 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2978 || asm_noperands (PATTERN (insn)) >= 0)
2979 /* Mark INSN as an asm. */
2980 INSN_ASM_P (insn) = true;
2981
2982 {
2983 bool force_unique_p;
2984 ds_t spec_done_ds;
2985
2986 /* Certain instructions cannot be cloned, and frame related insns and
2987 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2988 their block. */
2989 if (prologue_epilogue_contains (insn))
2990 {
2991 if (RTX_FRAME_RELATED_P (insn))
2992 CANT_MOVE (insn) = 1;
2993 else
2994 {
2995 rtx note;
2996 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2997 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2998 && ((enum insn_note) INTVAL (XEXP (note, 0))
2999 == NOTE_INSN_EPILOGUE_BEG))
3000 {
3001 CANT_MOVE (insn) = 1;
3002 break;
3003 }
3004 }
3005 force_unique_p = true;
3006 }
3007 else
3008 if (CANT_MOVE (insn)
3009 || INSN_ASM_P (insn)
3010 || SCHED_GROUP_P (insn)
3011 || CALL_P (insn)
3012 /* Exception handling insns are always unique. */
3013 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3014 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
3015 || control_flow_insn_p (insn)
3016 || volatile_insn_p (PATTERN (insn))
3017 || (targetm.cannot_copy_insn_p
3018 && targetm.cannot_copy_insn_p (insn)))
3019 force_unique_p = true;
3020 else
3021 force_unique_p = false;
3022
3023 if (targetm.sched.get_insn_spec_ds)
3024 {
3025 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3026 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3027 }
3028 else
3029 spec_done_ds = 0;
3030
3031 /* Initialize INSN's expr. */
3032 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3033 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3034 spec_done_ds, 0, 0, vNULL, true,
3035 false, false, false, CANT_MOVE (insn));
3036 }
3037
3038 init_first_time_insn_data (insn);
3039 }
3040
3041 /* Scan the region and initialize instruction data for basic blocks BBS. */
3042 void
3043 sel_init_global_and_expr (bb_vec_t bbs)
3044 {
3045 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3046 const struct sched_scan_info_def ssi =
3047 {
3048 NULL, /* extend_bb */
3049 init_global_and_expr_for_bb, /* init_bb */
3050 extend_insn_data, /* extend_insn */
3051 init_global_and_expr_for_insn /* init_insn */
3052 };
3053
3054 sched_scan (&ssi, bbs);
3055 }
3056
3057 /* Finalize region-scope data structures for basic blocks. */
3058 static void
3059 finish_global_and_expr_for_bb (basic_block bb)
3060 {
3061 av_set_clear (&BB_AV_SET (bb));
3062 BB_AV_LEVEL (bb) = 0;
3063 }
3064
3065 /* Finalize INSN's data. */
3066 static void
3067 finish_global_and_expr_insn (insn_t insn)
3068 {
3069 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3070 return;
3071
3072 gcc_assert (INSN_P (insn));
3073
3074 if (INSN_LUID (insn) > 0)
3075 {
3076 free_first_time_insn_data (insn);
3077 INSN_WS_LEVEL (insn) = 0;
3078 CANT_MOVE (insn) = 0;
3079
3080 /* We can no longer assert this, as vinsns of this insn could be
3081 easily live in other insn's caches. This should be changed to
3082 a counter-like approach among all vinsns. */
3083 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3084 clear_expr (INSN_EXPR (insn));
3085 }
3086 }
3087
3088 /* Finalize per instruction data for the whole region. */
3089 void
3090 sel_finish_global_and_expr (void)
3091 {
3092 {
3093 bb_vec_t bbs;
3094 int i;
3095
3096 bbs.create (current_nr_blocks);
3097
3098 for (i = 0; i < current_nr_blocks; i++)
3099 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3100
3101 /* Clear AV_SETs and INSN_EXPRs. */
3102 {
3103 const struct sched_scan_info_def ssi =
3104 {
3105 NULL, /* extend_bb */
3106 finish_global_and_expr_for_bb, /* init_bb */
3107 NULL, /* extend_insn */
3108 finish_global_and_expr_insn /* init_insn */
3109 };
3110
3111 sched_scan (&ssi, bbs);
3112 }
3113
3114 bbs.release ();
3115 }
3116
3117 finish_insns ();
3118 }
3119 \f
3120
3121 /* In the below hooks, we merely calculate whether or not a dependence
3122 exists, and in what part of insn. However, we will need more data
3123 when we'll start caching dependence requests. */
3124
3125 /* Container to hold information for dependency analysis. */
3126 static struct
3127 {
3128 deps_t dc;
3129
3130 /* A variable to track which part of rtx we are scanning in
3131 sched-deps.c: sched_analyze_insn (). */
3132 deps_where_t where;
3133
3134 /* Current producer. */
3135 insn_t pro;
3136
3137 /* Current consumer. */
3138 vinsn_t con;
3139
3140 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3141 X is from { INSN, LHS, RHS }. */
3142 ds_t has_dep_p[DEPS_IN_NOWHERE];
3143 } has_dependence_data;
3144
3145 /* Start analyzing dependencies of INSN. */
3146 static void
3147 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3148 {
3149 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3150
3151 has_dependence_data.where = DEPS_IN_INSN;
3152 }
3153
3154 /* Finish analyzing dependencies of an insn. */
3155 static void
3156 has_dependence_finish_insn (void)
3157 {
3158 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3159
3160 has_dependence_data.where = DEPS_IN_NOWHERE;
3161 }
3162
3163 /* Start analyzing dependencies of LHS. */
3164 static void
3165 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3166 {
3167 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3168
3169 if (VINSN_LHS (has_dependence_data.con) != NULL)
3170 has_dependence_data.where = DEPS_IN_LHS;
3171 }
3172
3173 /* Finish analyzing dependencies of an lhs. */
3174 static void
3175 has_dependence_finish_lhs (void)
3176 {
3177 has_dependence_data.where = DEPS_IN_INSN;
3178 }
3179
3180 /* Start analyzing dependencies of RHS. */
3181 static void
3182 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3183 {
3184 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3185
3186 if (VINSN_RHS (has_dependence_data.con) != NULL)
3187 has_dependence_data.where = DEPS_IN_RHS;
3188 }
3189
3190 /* Start analyzing dependencies of an rhs. */
3191 static void
3192 has_dependence_finish_rhs (void)
3193 {
3194 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3195 || has_dependence_data.where == DEPS_IN_INSN);
3196
3197 has_dependence_data.where = DEPS_IN_INSN;
3198 }
3199
3200 /* Note a set of REGNO. */
3201 static void
3202 has_dependence_note_reg_set (int regno)
3203 {
3204 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3205
3206 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3207 VINSN_INSN_RTX
3208 (has_dependence_data.con)))
3209 {
3210 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3211
3212 if (reg_last->sets != NULL
3213 || reg_last->clobbers != NULL)
3214 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3215
3216 if (reg_last->uses || reg_last->implicit_sets)
3217 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3218 }
3219 }
3220
3221 /* Note a clobber of REGNO. */
3222 static void
3223 has_dependence_note_reg_clobber (int regno)
3224 {
3225 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3226
3227 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3228 VINSN_INSN_RTX
3229 (has_dependence_data.con)))
3230 {
3231 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3232
3233 if (reg_last->sets)
3234 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3235
3236 if (reg_last->uses || reg_last->implicit_sets)
3237 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3238 }
3239 }
3240
3241 /* Note a use of REGNO. */
3242 static void
3243 has_dependence_note_reg_use (int regno)
3244 {
3245 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3246
3247 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3248 VINSN_INSN_RTX
3249 (has_dependence_data.con)))
3250 {
3251 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3252
3253 if (reg_last->sets)
3254 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3255
3256 if (reg_last->clobbers || reg_last->implicit_sets)
3257 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3258
3259 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3260 is actually a check insn. We need to do this for any register
3261 read-read dependency with the check unless we track properly
3262 all registers written by BE_IN_SPEC-speculated insns, as
3263 we don't have explicit dependence lists. See PR 53975. */
3264 if (reg_last->uses)
3265 {
3266 ds_t pro_spec_checked_ds;
3267
3268 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3269 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3270
3271 if (pro_spec_checked_ds != 0)
3272 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3273 NULL_RTX, NULL_RTX);
3274 }
3275 }
3276 }
3277
3278 /* Note a memory dependence. */
3279 static void
3280 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3281 rtx pending_mem ATTRIBUTE_UNUSED,
3282 insn_t pending_insn ATTRIBUTE_UNUSED,
3283 ds_t ds ATTRIBUTE_UNUSED)
3284 {
3285 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3286 VINSN_INSN_RTX (has_dependence_data.con)))
3287 {
3288 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3289
3290 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3291 }
3292 }
3293
3294 /* Note a dependence. */
3295 static void
3296 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3297 ds_t ds ATTRIBUTE_UNUSED)
3298 {
3299 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3300 VINSN_INSN_RTX (has_dependence_data.con)))
3301 {
3302 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3303
3304 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3305 }
3306 }
3307
3308 /* Mark the insn as having a hard dependence that prevents speculation. */
3309 void
3310 sel_mark_hard_insn (rtx insn)
3311 {
3312 int i;
3313
3314 /* Only work when we're in has_dependence_p mode.
3315 ??? This is a hack, this should actually be a hook. */
3316 if (!has_dependence_data.dc || !has_dependence_data.pro)
3317 return;
3318
3319 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3320 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3321
3322 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3323 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3324 }
3325
3326 /* This structure holds the hooks for the dependency analysis used when
3327 actually processing dependencies in the scheduler. */
3328 static struct sched_deps_info_def has_dependence_sched_deps_info;
3329
3330 /* This initializes most of the fields of the above structure. */
3331 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3332 {
3333 NULL,
3334
3335 has_dependence_start_insn,
3336 has_dependence_finish_insn,
3337 has_dependence_start_lhs,
3338 has_dependence_finish_lhs,
3339 has_dependence_start_rhs,
3340 has_dependence_finish_rhs,
3341 has_dependence_note_reg_set,
3342 has_dependence_note_reg_clobber,
3343 has_dependence_note_reg_use,
3344 has_dependence_note_mem_dep,
3345 has_dependence_note_dep,
3346
3347 0, /* use_cselib */
3348 0, /* use_deps_list */
3349 0 /* generate_spec_deps */
3350 };
3351
3352 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3353 static void
3354 setup_has_dependence_sched_deps_info (void)
3355 {
3356 memcpy (&has_dependence_sched_deps_info,
3357 &const_has_dependence_sched_deps_info,
3358 sizeof (has_dependence_sched_deps_info));
3359
3360 if (spec_info != NULL)
3361 has_dependence_sched_deps_info.generate_spec_deps = 1;
3362
3363 sched_deps_info = &has_dependence_sched_deps_info;
3364 }
3365
3366 /* Remove all dependences found and recorded in has_dependence_data array. */
3367 void
3368 sel_clear_has_dependence (void)
3369 {
3370 int i;
3371
3372 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3373 has_dependence_data.has_dep_p[i] = 0;
3374 }
3375
3376 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3377 to the dependence information array in HAS_DEP_PP. */
3378 ds_t
3379 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3380 {
3381 int i;
3382 ds_t ds;
3383 struct deps_desc *dc;
3384
3385 if (INSN_SIMPLEJUMP_P (pred))
3386 /* Unconditional jump is just a transfer of control flow.
3387 Ignore it. */
3388 return false;
3389
3390 dc = &INSN_DEPS_CONTEXT (pred);
3391
3392 /* We init this field lazily. */
3393 if (dc->reg_last == NULL)
3394 init_deps_reg_last (dc);
3395
3396 if (!dc->readonly)
3397 {
3398 has_dependence_data.pro = NULL;
3399 /* Initialize empty dep context with information about PRED. */
3400 advance_deps_context (dc, pred);
3401 dc->readonly = 1;
3402 }
3403
3404 has_dependence_data.where = DEPS_IN_NOWHERE;
3405 has_dependence_data.pro = pred;
3406 has_dependence_data.con = EXPR_VINSN (expr);
3407 has_dependence_data.dc = dc;
3408
3409 sel_clear_has_dependence ();
3410
3411 /* Now catch all dependencies that would be generated between PRED and
3412 INSN. */
3413 setup_has_dependence_sched_deps_info ();
3414 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3415 has_dependence_data.dc = NULL;
3416
3417 /* When a barrier was found, set DEPS_IN_INSN bits. */
3418 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3419 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3420 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3421 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3422
3423 /* Do not allow stores to memory to move through checks. Currently
3424 we don't move this to sched-deps.c as the check doesn't have
3425 obvious places to which this dependence can be attached.
3426 FIMXE: this should go to a hook. */
3427 if (EXPR_LHS (expr)
3428 && MEM_P (EXPR_LHS (expr))
3429 && sel_insn_is_speculation_check (pred))
3430 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3431
3432 *has_dep_pp = has_dependence_data.has_dep_p;
3433 ds = 0;
3434 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3435 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3436 NULL_RTX, NULL_RTX);
3437
3438 return ds;
3439 }
3440 \f
3441
3442 /* Dependence hooks implementation that checks dependence latency constraints
3443 on the insns being scheduled. The entry point for these routines is
3444 tick_check_p predicate. */
3445
3446 static struct
3447 {
3448 /* An expr we are currently checking. */
3449 expr_t expr;
3450
3451 /* A minimal cycle for its scheduling. */
3452 int cycle;
3453
3454 /* Whether we have seen a true dependence while checking. */
3455 bool seen_true_dep_p;
3456 } tick_check_data;
3457
3458 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3459 on PRO with status DS and weight DW. */
3460 static void
3461 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3462 {
3463 expr_t con_expr = tick_check_data.expr;
3464 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3465
3466 if (con_insn != pro_insn)
3467 {
3468 enum reg_note dt;
3469 int tick;
3470
3471 if (/* PROducer was removed from above due to pipelining. */
3472 !INSN_IN_STREAM_P (pro_insn)
3473 /* Or PROducer was originally on the next iteration regarding the
3474 CONsumer. */
3475 || (INSN_SCHED_TIMES (pro_insn)
3476 - EXPR_SCHED_TIMES (con_expr)) > 1)
3477 /* Don't count this dependence. */
3478 return;
3479
3480 dt = ds_to_dt (ds);
3481 if (dt == REG_DEP_TRUE)
3482 tick_check_data.seen_true_dep_p = true;
3483
3484 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3485
3486 {
3487 dep_def _dep, *dep = &_dep;
3488
3489 init_dep (dep, pro_insn, con_insn, dt);
3490
3491 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3492 }
3493
3494 /* When there are several kinds of dependencies between pro and con,
3495 only REG_DEP_TRUE should be taken into account. */
3496 if (tick > tick_check_data.cycle
3497 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3498 tick_check_data.cycle = tick;
3499 }
3500 }
3501
3502 /* An implementation of note_dep hook. */
3503 static void
3504 tick_check_note_dep (insn_t pro, ds_t ds)
3505 {
3506 tick_check_dep_with_dw (pro, ds, 0);
3507 }
3508
3509 /* An implementation of note_mem_dep hook. */
3510 static void
3511 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3512 {
3513 dw_t dw;
3514
3515 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3516 ? estimate_dep_weak (mem1, mem2)
3517 : 0);
3518
3519 tick_check_dep_with_dw (pro, ds, dw);
3520 }
3521
3522 /* This structure contains hooks for dependence analysis used when determining
3523 whether an insn is ready for scheduling. */
3524 static struct sched_deps_info_def tick_check_sched_deps_info =
3525 {
3526 NULL,
3527
3528 NULL,
3529 NULL,
3530 NULL,
3531 NULL,
3532 NULL,
3533 NULL,
3534 haifa_note_reg_set,
3535 haifa_note_reg_clobber,
3536 haifa_note_reg_use,
3537 tick_check_note_mem_dep,
3538 tick_check_note_dep,
3539
3540 0, 0, 0
3541 };
3542
3543 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3544 scheduled. Return 0 if all data from producers in DC is ready. */
3545 int
3546 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3547 {
3548 int cycles_left;
3549 /* Initialize variables. */
3550 tick_check_data.expr = expr;
3551 tick_check_data.cycle = 0;
3552 tick_check_data.seen_true_dep_p = false;
3553 sched_deps_info = &tick_check_sched_deps_info;
3554
3555 gcc_assert (!dc->readonly);
3556 dc->readonly = 1;
3557 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3558 dc->readonly = 0;
3559
3560 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3561
3562 return cycles_left >= 0 ? cycles_left : 0;
3563 }
3564 \f
3565
3566 /* Functions to work with insns. */
3567
3568 /* Returns true if LHS of INSN is the same as DEST of an insn
3569 being moved. */
3570 bool
3571 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3572 {
3573 rtx lhs = INSN_LHS (insn);
3574
3575 if (lhs == NULL || dest == NULL)
3576 return false;
3577
3578 return rtx_equal_p (lhs, dest);
3579 }
3580
3581 /* Return s_i_d entry of INSN. Callable from debugger. */
3582 sel_insn_data_def
3583 insn_sid (insn_t insn)
3584 {
3585 return *SID (insn);
3586 }
3587
3588 /* True when INSN is a speculative check. We can tell this by looking
3589 at the data structures of the selective scheduler, not by examining
3590 the pattern. */
3591 bool
3592 sel_insn_is_speculation_check (rtx insn)
3593 {
3594 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3595 }
3596
3597 /* Extracts machine mode MODE and destination location DST_LOC
3598 for given INSN. */
3599 void
3600 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3601 {
3602 rtx pat = PATTERN (insn);
3603
3604 gcc_assert (dst_loc);
3605 gcc_assert (GET_CODE (pat) == SET);
3606
3607 *dst_loc = SET_DEST (pat);
3608
3609 gcc_assert (*dst_loc);
3610 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3611
3612 if (mode)
3613 *mode = GET_MODE (*dst_loc);
3614 }
3615
3616 /* Returns true when moving through JUMP will result in bookkeeping
3617 creation. */
3618 bool
3619 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3620 {
3621 insn_t succ;
3622 succ_iterator si;
3623
3624 FOR_EACH_SUCC (succ, si, jump)
3625 if (sel_num_cfg_preds_gt_1 (succ))
3626 return true;
3627
3628 return false;
3629 }
3630
3631 /* Return 'true' if INSN is the only one in its basic block. */
3632 static bool
3633 insn_is_the_only_one_in_bb_p (insn_t insn)
3634 {
3635 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3636 }
3637
3638 /* Check that the region we're scheduling still has at most one
3639 backedge. */
3640 static void
3641 verify_backedges (void)
3642 {
3643 if (pipelining_p)
3644 {
3645 int i, n = 0;
3646 edge e;
3647 edge_iterator ei;
3648
3649 for (i = 0; i < current_nr_blocks; i++)
3650 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3651 if (in_current_region_p (e->dest)
3652 && BLOCK_TO_BB (e->dest->index) < i)
3653 n++;
3654
3655 gcc_assert (n <= 1);
3656 }
3657 }
3658 \f
3659
3660 /* Functions to work with control flow. */
3661
3662 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3663 are sorted in topological order (it might have been invalidated by
3664 redirecting an edge). */
3665 static void
3666 sel_recompute_toporder (void)
3667 {
3668 int i, n, rgn;
3669 int *postorder, n_blocks;
3670
3671 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3672 n_blocks = post_order_compute (postorder, false, false);
3673
3674 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3675 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3676 if (CONTAINING_RGN (postorder[i]) == rgn)
3677 {
3678 BLOCK_TO_BB (postorder[i]) = n;
3679 BB_TO_BLOCK (n) = postorder[i];
3680 n++;
3681 }
3682
3683 /* Assert that we updated info for all blocks. We may miss some blocks if
3684 this function is called when redirecting an edge made a block
3685 unreachable, but that block is not deleted yet. */
3686 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3687 }
3688
3689 /* Tidy the possibly empty block BB. */
3690 static bool
3691 maybe_tidy_empty_bb (basic_block bb)
3692 {
3693 basic_block succ_bb, pred_bb, note_bb;
3694 vec<basic_block> dom_bbs;
3695 edge e;
3696 edge_iterator ei;
3697 bool rescan_p;
3698
3699 /* Keep empty bb only if this block immediately precedes EXIT and
3700 has incoming non-fallthrough edge, or it has no predecessors or
3701 successors. Otherwise remove it. */
3702 if (!sel_bb_empty_p (bb)
3703 || (single_succ_p (bb)
3704 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3705 && (!single_pred_p (bb)
3706 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3707 || EDGE_COUNT (bb->preds) == 0
3708 || EDGE_COUNT (bb->succs) == 0)
3709 return false;
3710
3711 /* Do not attempt to redirect complex edges. */
3712 FOR_EACH_EDGE (e, ei, bb->preds)
3713 if (e->flags & EDGE_COMPLEX)
3714 return false;
3715 else if (e->flags & EDGE_FALLTHRU)
3716 {
3717 rtx note;
3718 /* If prev bb ends with asm goto, see if any of the
3719 ASM_OPERANDS_LABELs don't point to the fallthru
3720 label. Do not attempt to redirect it in that case. */
3721 if (JUMP_P (BB_END (e->src))
3722 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3723 {
3724 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3725
3726 for (i = 0; i < n; ++i)
3727 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3728 return false;
3729 }
3730 }
3731
3732 free_data_sets (bb);
3733
3734 /* Do not delete BB if it has more than one successor.
3735 That can occur when we moving a jump. */
3736 if (!single_succ_p (bb))
3737 {
3738 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3739 sel_merge_blocks (bb->prev_bb, bb);
3740 return true;
3741 }
3742
3743 succ_bb = single_succ (bb);
3744 rescan_p = true;
3745 pred_bb = NULL;
3746 dom_bbs.create (0);
3747
3748 /* Save a pred/succ from the current region to attach the notes to. */
3749 note_bb = NULL;
3750 FOR_EACH_EDGE (e, ei, bb->preds)
3751 if (in_current_region_p (e->src))
3752 {
3753 note_bb = e->src;
3754 break;
3755 }
3756 if (note_bb == NULL)
3757 note_bb = succ_bb;
3758
3759 /* Redirect all non-fallthru edges to the next bb. */
3760 while (rescan_p)
3761 {
3762 rescan_p = false;
3763
3764 FOR_EACH_EDGE (e, ei, bb->preds)
3765 {
3766 pred_bb = e->src;
3767
3768 if (!(e->flags & EDGE_FALLTHRU))
3769 {
3770 /* We can not invalidate computed topological order by moving
3771 the edge destination block (E->SUCC) along a fallthru edge.
3772
3773 We will update dominators here only when we'll get
3774 an unreachable block when redirecting, otherwise
3775 sel_redirect_edge_and_branch will take care of it. */
3776 if (e->dest != bb
3777 && single_pred_p (e->dest))
3778 dom_bbs.safe_push (e->dest);
3779 sel_redirect_edge_and_branch (e, succ_bb);
3780 rescan_p = true;
3781 break;
3782 }
3783 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3784 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3785 still have to adjust it. */
3786 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3787 {
3788 /* If possible, try to remove the unneeded conditional jump. */
3789 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3790 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3791 {
3792 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3793 tidy_fallthru_edge (e);
3794 }
3795 else
3796 sel_redirect_edge_and_branch (e, succ_bb);
3797 rescan_p = true;
3798 break;
3799 }
3800 }
3801 }
3802
3803 if (can_merge_blocks_p (bb->prev_bb, bb))
3804 sel_merge_blocks (bb->prev_bb, bb);
3805 else
3806 {
3807 /* This is a block without fallthru predecessor. Just delete it. */
3808 gcc_assert (note_bb);
3809 move_bb_info (note_bb, bb);
3810 remove_empty_bb (bb, true);
3811 }
3812
3813 if (!dom_bbs.is_empty ())
3814 {
3815 dom_bbs.safe_push (succ_bb);
3816 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3817 dom_bbs.release ();
3818 }
3819
3820 return true;
3821 }
3822
3823 /* Tidy the control flow after we have removed original insn from
3824 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3825 is true, also try to optimize control flow on non-empty blocks. */
3826 bool
3827 tidy_control_flow (basic_block xbb, bool full_tidying)
3828 {
3829 bool changed = true;
3830 insn_t first, last;
3831
3832 /* First check whether XBB is empty. */
3833 changed = maybe_tidy_empty_bb (xbb);
3834 if (changed || !full_tidying)
3835 return changed;
3836
3837 /* Check if there is a unnecessary jump after insn left. */
3838 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3839 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3840 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3841 {
3842 if (sel_remove_insn (BB_END (xbb), false, false))
3843 return true;
3844 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3845 }
3846
3847 first = sel_bb_head (xbb);
3848 last = sel_bb_end (xbb);
3849 if (MAY_HAVE_DEBUG_INSNS)
3850 {
3851 if (first != last && DEBUG_INSN_P (first))
3852 do
3853 first = NEXT_INSN (first);
3854 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3855
3856 if (first != last && DEBUG_INSN_P (last))
3857 do
3858 last = PREV_INSN (last);
3859 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3860 }
3861 /* Check if there is an unnecessary jump in previous basic block leading
3862 to next basic block left after removing INSN from stream.
3863 If it is so, remove that jump and redirect edge to current
3864 basic block (where there was INSN before deletion). This way
3865 when NOP will be deleted several instructions later with its
3866 basic block we will not get a jump to next instruction, which
3867 can be harmful. */
3868 if (first == last
3869 && !sel_bb_empty_p (xbb)
3870 && INSN_NOP_P (last)
3871 /* Flow goes fallthru from current block to the next. */
3872 && EDGE_COUNT (xbb->succs) == 1
3873 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3874 /* When successor is an EXIT block, it may not be the next block. */
3875 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3876 /* And unconditional jump in previous basic block leads to
3877 next basic block of XBB and this jump can be safely removed. */
3878 && in_current_region_p (xbb->prev_bb)
3879 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3880 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3881 /* Also this jump is not at the scheduling boundary. */
3882 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3883 {
3884 bool recompute_toporder_p;
3885 /* Clear data structures of jump - jump itself will be removed
3886 by sel_redirect_edge_and_branch. */
3887 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3888 recompute_toporder_p
3889 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3890
3891 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3892
3893 /* It can turn out that after removing unused jump, basic block
3894 that contained that jump, becomes empty too. In such case
3895 remove it too. */
3896 if (sel_bb_empty_p (xbb->prev_bb))
3897 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3898 if (recompute_toporder_p)
3899 sel_recompute_toporder ();
3900 }
3901
3902 /* TODO: use separate flag for CFG checking. */
3903 if (flag_checking)
3904 {
3905 verify_backedges ();
3906 verify_dominators (CDI_DOMINATORS);
3907 }
3908
3909 return changed;
3910 }
3911
3912 /* Purge meaningless empty blocks in the middle of a region. */
3913 void
3914 purge_empty_blocks (void)
3915 {
3916 int i;
3917
3918 /* Do not attempt to delete the first basic block in the region. */
3919 for (i = 1; i < current_nr_blocks; )
3920 {
3921 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3922
3923 if (maybe_tidy_empty_bb (b))
3924 continue;
3925
3926 i++;
3927 }
3928 }
3929
3930 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3931 do not delete insn's data, because it will be later re-emitted.
3932 Return true if we have removed some blocks afterwards. */
3933 bool
3934 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3935 {
3936 basic_block bb = BLOCK_FOR_INSN (insn);
3937
3938 gcc_assert (INSN_IN_STREAM_P (insn));
3939
3940 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3941 {
3942 expr_t expr;
3943 av_set_iterator i;
3944
3945 /* When we remove a debug insn that is head of a BB, it remains
3946 in the AV_SET of the block, but it shouldn't. */
3947 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3948 if (EXPR_INSN_RTX (expr) == insn)
3949 {
3950 av_set_iter_remove (&i);
3951 break;
3952 }
3953 }
3954
3955 if (only_disconnect)
3956 remove_insn (insn);
3957 else
3958 {
3959 delete_insn (insn);
3960 clear_expr (INSN_EXPR (insn));
3961 }
3962
3963 /* It is necessary to NULL these fields in case we are going to re-insert
3964 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3965 case, but also for NOPs that we will return to the nop pool. */
3966 SET_PREV_INSN (insn) = NULL_RTX;
3967 SET_NEXT_INSN (insn) = NULL_RTX;
3968 set_block_for_insn (insn, NULL);
3969
3970 return tidy_control_flow (bb, full_tidying);
3971 }
3972
3973 /* Estimate number of the insns in BB. */
3974 static int
3975 sel_estimate_number_of_insns (basic_block bb)
3976 {
3977 int res = 0;
3978 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3979
3980 for (; insn != next_tail; insn = NEXT_INSN (insn))
3981 if (NONDEBUG_INSN_P (insn))
3982 res++;
3983
3984 return res;
3985 }
3986
3987 /* We don't need separate luids for notes or labels. */
3988 static int
3989 sel_luid_for_non_insn (rtx x)
3990 {
3991 gcc_assert (NOTE_P (x) || LABEL_P (x));
3992
3993 return -1;
3994 }
3995
3996 /* Find the proper seqno for inserting at INSN by successors.
3997 Return -1 if no successors with positive seqno exist. */
3998 static int
3999 get_seqno_by_succs (rtx_insn *insn)
4000 {
4001 basic_block bb = BLOCK_FOR_INSN (insn);
4002 rtx_insn *tmp = insn, *end = BB_END (bb);
4003 int seqno;
4004 insn_t succ = NULL;
4005 succ_iterator si;
4006
4007 while (tmp != end)
4008 {
4009 tmp = NEXT_INSN (tmp);
4010 if (INSN_P (tmp))
4011 return INSN_SEQNO (tmp);
4012 }
4013
4014 seqno = INT_MAX;
4015
4016 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4017 if (INSN_SEQNO (succ) > 0)
4018 seqno = MIN (seqno, INSN_SEQNO (succ));
4019
4020 if (seqno == INT_MAX)
4021 return -1;
4022
4023 return seqno;
4024 }
4025
4026 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4027 seqno in corner cases. */
4028 static int
4029 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4030 {
4031 int seqno;
4032
4033 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4034
4035 if (!sel_bb_head_p (insn))
4036 seqno = INSN_SEQNO (PREV_INSN (insn));
4037 else
4038 {
4039 basic_block bb = BLOCK_FOR_INSN (insn);
4040
4041 if (single_pred_p (bb)
4042 && !in_current_region_p (single_pred (bb)))
4043 {
4044 /* We can have preds outside a region when splitting edges
4045 for pipelining of an outer loop. Use succ instead.
4046 There should be only one of them. */
4047 insn_t succ = NULL;
4048 succ_iterator si;
4049 bool first = true;
4050
4051 gcc_assert (flag_sel_sched_pipelining_outer_loops
4052 && current_loop_nest);
4053 FOR_EACH_SUCC_1 (succ, si, insn,
4054 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4055 {
4056 gcc_assert (first);
4057 first = false;
4058 }
4059
4060 gcc_assert (succ != NULL);
4061 seqno = INSN_SEQNO (succ);
4062 }
4063 else
4064 {
4065 insn_t *preds;
4066 int n;
4067
4068 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4069
4070 gcc_assert (n > 0);
4071 /* For one predecessor, use simple method. */
4072 if (n == 1)
4073 seqno = INSN_SEQNO (preds[0]);
4074 else
4075 seqno = get_seqno_by_preds (insn);
4076
4077 free (preds);
4078 }
4079 }
4080
4081 /* We were unable to find a good seqno among preds. */
4082 if (seqno < 0)
4083 seqno = get_seqno_by_succs (insn);
4084
4085 if (seqno < 0)
4086 {
4087 /* The only case where this could be here legally is that the only
4088 unscheduled insn was a conditional jump that got removed and turned
4089 into this unconditional one. Initialize from the old seqno
4090 of that jump passed down to here. */
4091 seqno = old_seqno;
4092 }
4093
4094 gcc_assert (seqno >= 0);
4095 return seqno;
4096 }
4097
4098 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4099 with positive seqno exist. */
4100 int
4101 get_seqno_by_preds (rtx_insn *insn)
4102 {
4103 basic_block bb = BLOCK_FOR_INSN (insn);
4104 rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4105 insn_t *preds;
4106 int n, i, seqno;
4107
4108 /* Loop backwards from INSN to HEAD including both. */
4109 while (1)
4110 {
4111 if (INSN_P (tmp))
4112 return INSN_SEQNO (tmp);
4113 if (tmp == head)
4114 break;
4115 tmp = PREV_INSN (tmp);
4116 }
4117
4118 cfg_preds (bb, &preds, &n);
4119 for (i = 0, seqno = -1; i < n; i++)
4120 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4121
4122 return seqno;
4123 }
4124
4125 \f
4126
4127 /* Extend pass-scope data structures for basic blocks. */
4128 void
4129 sel_extend_global_bb_info (void)
4130 {
4131 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4132 }
4133
4134 /* Extend region-scope data structures for basic blocks. */
4135 static void
4136 extend_region_bb_info (void)
4137 {
4138 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4139 }
4140
4141 /* Extend all data structures to fit for all basic blocks. */
4142 static void
4143 extend_bb_info (void)
4144 {
4145 sel_extend_global_bb_info ();
4146 extend_region_bb_info ();
4147 }
4148
4149 /* Finalize pass-scope data structures for basic blocks. */
4150 void
4151 sel_finish_global_bb_info (void)
4152 {
4153 sel_global_bb_info.release ();
4154 }
4155
4156 /* Finalize region-scope data structures for basic blocks. */
4157 static void
4158 finish_region_bb_info (void)
4159 {
4160 sel_region_bb_info.release ();
4161 }
4162 \f
4163
4164 /* Data for each insn in current region. */
4165 vec<sel_insn_data_def> s_i_d;
4166
4167 /* Extend data structures for insns from current region. */
4168 static void
4169 extend_insn_data (void)
4170 {
4171 int reserve;
4172
4173 sched_extend_target ();
4174 sched_deps_init (false);
4175
4176 /* Extend data structures for insns from current region. */
4177 reserve = (sched_max_luid + 1 - s_i_d.length ());
4178 if (reserve > 0 && ! s_i_d.space (reserve))
4179 {
4180 int size;
4181
4182 if (sched_max_luid / 2 > 1024)
4183 size = sched_max_luid + 1024;
4184 else
4185 size = 3 * sched_max_luid / 2;
4186
4187
4188 s_i_d.safe_grow_cleared (size);
4189 }
4190 }
4191
4192 /* Finalize data structures for insns from current region. */
4193 static void
4194 finish_insns (void)
4195 {
4196 unsigned i;
4197
4198 /* Clear here all dependence contexts that may have left from insns that were
4199 removed during the scheduling. */
4200 for (i = 0; i < s_i_d.length (); i++)
4201 {
4202 sel_insn_data_def *sid_entry = &s_i_d[i];
4203
4204 if (sid_entry->live)
4205 return_regset_to_pool (sid_entry->live);
4206 if (sid_entry->analyzed_deps)
4207 {
4208 BITMAP_FREE (sid_entry->analyzed_deps);
4209 BITMAP_FREE (sid_entry->found_deps);
4210 htab_delete (sid_entry->transformed_insns);
4211 free_deps (&sid_entry->deps_context);
4212 }
4213 if (EXPR_VINSN (&sid_entry->expr))
4214 {
4215 clear_expr (&sid_entry->expr);
4216
4217 /* Also, clear CANT_MOVE bit here, because we really don't want it
4218 to be passed to the next region. */
4219 CANT_MOVE_BY_LUID (i) = 0;
4220 }
4221 }
4222
4223 s_i_d.release ();
4224 }
4225
4226 /* A proxy to pass initialization data to init_insn (). */
4227 static sel_insn_data_def _insn_init_ssid;
4228 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4229
4230 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4231 static bool insn_init_create_new_vinsn_p;
4232
4233 /* Set all necessary data for initialization of the new insn[s]. */
4234 static expr_t
4235 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4236 {
4237 expr_t x = &insn_init_ssid->expr;
4238
4239 copy_expr_onside (x, expr);
4240 if (vi != NULL)
4241 {
4242 insn_init_create_new_vinsn_p = false;
4243 change_vinsn_in_expr (x, vi);
4244 }
4245 else
4246 insn_init_create_new_vinsn_p = true;
4247
4248 insn_init_ssid->seqno = seqno;
4249 return x;
4250 }
4251
4252 /* Init data for INSN. */
4253 static void
4254 init_insn_data (insn_t insn)
4255 {
4256 expr_t expr;
4257 sel_insn_data_t ssid = insn_init_ssid;
4258
4259 /* The fields mentioned below are special and hence are not being
4260 propagated to the new insns. */
4261 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4262 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4263 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4264
4265 expr = INSN_EXPR (insn);
4266 copy_expr (expr, &ssid->expr);
4267 prepare_insn_expr (insn, ssid->seqno);
4268
4269 if (insn_init_create_new_vinsn_p)
4270 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4271
4272 if (first_time_insn_init (insn))
4273 init_first_time_insn_data (insn);
4274 }
4275
4276 /* This is used to initialize spurious jumps generated by
4277 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4278 in corner cases within get_seqno_for_a_jump. */
4279 static void
4280 init_simplejump_data (insn_t insn, int old_seqno)
4281 {
4282 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4283 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4284 vNULL, true, false, false,
4285 false, true);
4286 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4287 init_first_time_insn_data (insn);
4288 }
4289
4290 /* Perform deferred initialization of insns. This is used to process
4291 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4292 for initializing simplejumps in init_simplejump_data. */
4293 static void
4294 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4295 {
4296 /* We create data structures for bb when the first insn is emitted in it. */
4297 if (INSN_P (insn)
4298 && INSN_IN_STREAM_P (insn)
4299 && insn_is_the_only_one_in_bb_p (insn))
4300 {
4301 extend_bb_info ();
4302 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4303 }
4304
4305 if (flags & INSN_INIT_TODO_LUID)
4306 {
4307 sched_extend_luids ();
4308 sched_init_insn_luid (insn);
4309 }
4310
4311 if (flags & INSN_INIT_TODO_SSID)
4312 {
4313 extend_insn_data ();
4314 init_insn_data (insn);
4315 clear_expr (&insn_init_ssid->expr);
4316 }
4317
4318 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4319 {
4320 extend_insn_data ();
4321 init_simplejump_data (insn, old_seqno);
4322 }
4323
4324 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4325 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4326 }
4327 \f
4328
4329 /* Functions to init/finish work with lv sets. */
4330
4331 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4332 static void
4333 init_lv_set (basic_block bb)
4334 {
4335 gcc_assert (!BB_LV_SET_VALID_P (bb));
4336
4337 BB_LV_SET (bb) = get_regset_from_pool ();
4338 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4339 BB_LV_SET_VALID_P (bb) = true;
4340 }
4341
4342 /* Copy liveness information to BB from FROM_BB. */
4343 static void
4344 copy_lv_set_from (basic_block bb, basic_block from_bb)
4345 {
4346 gcc_assert (!BB_LV_SET_VALID_P (bb));
4347
4348 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4349 BB_LV_SET_VALID_P (bb) = true;
4350 }
4351
4352 /* Initialize lv set of all bb headers. */
4353 void
4354 init_lv_sets (void)
4355 {
4356 basic_block bb;
4357
4358 /* Initialize of LV sets. */
4359 FOR_EACH_BB_FN (bb, cfun)
4360 init_lv_set (bb);
4361
4362 /* Don't forget EXIT_BLOCK. */
4363 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4364 }
4365
4366 /* Release lv set of HEAD. */
4367 static void
4368 free_lv_set (basic_block bb)
4369 {
4370 gcc_assert (BB_LV_SET (bb) != NULL);
4371
4372 return_regset_to_pool (BB_LV_SET (bb));
4373 BB_LV_SET (bb) = NULL;
4374 BB_LV_SET_VALID_P (bb) = false;
4375 }
4376
4377 /* Finalize lv sets of all bb headers. */
4378 void
4379 free_lv_sets (void)
4380 {
4381 basic_block bb;
4382
4383 /* Don't forget EXIT_BLOCK. */
4384 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4385
4386 /* Free LV sets. */
4387 FOR_EACH_BB_FN (bb, cfun)
4388 if (BB_LV_SET (bb))
4389 free_lv_set (bb);
4390 }
4391
4392 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4393 compute_av() processes BB. This function is called when creating new basic
4394 blocks, as well as for blocks (either new or existing) where new jumps are
4395 created when the control flow is being updated. */
4396 static void
4397 invalidate_av_set (basic_block bb)
4398 {
4399 BB_AV_LEVEL (bb) = -1;
4400 }
4401
4402 /* Create initial data sets for BB (they will be invalid). */
4403 static void
4404 create_initial_data_sets (basic_block bb)
4405 {
4406 if (BB_LV_SET (bb))
4407 BB_LV_SET_VALID_P (bb) = false;
4408 else
4409 BB_LV_SET (bb) = get_regset_from_pool ();
4410 invalidate_av_set (bb);
4411 }
4412
4413 /* Free av set of BB. */
4414 static void
4415 free_av_set (basic_block bb)
4416 {
4417 av_set_clear (&BB_AV_SET (bb));
4418 BB_AV_LEVEL (bb) = 0;
4419 }
4420
4421 /* Free data sets of BB. */
4422 void
4423 free_data_sets (basic_block bb)
4424 {
4425 free_lv_set (bb);
4426 free_av_set (bb);
4427 }
4428
4429 /* Exchange data sets of TO and FROM. */
4430 void
4431 exchange_data_sets (basic_block to, basic_block from)
4432 {
4433 /* Exchange lv sets of TO and FROM. */
4434 std::swap (BB_LV_SET (from), BB_LV_SET (to));
4435 std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
4436
4437 /* Exchange av sets of TO and FROM. */
4438 std::swap (BB_AV_SET (from), BB_AV_SET (to));
4439 std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
4440 }
4441
4442 /* Copy data sets of FROM to TO. */
4443 void
4444 copy_data_sets (basic_block to, basic_block from)
4445 {
4446 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4447 gcc_assert (BB_AV_SET (to) == NULL);
4448
4449 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4450 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4451
4452 if (BB_AV_SET_VALID_P (from))
4453 {
4454 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4455 }
4456 if (BB_LV_SET_VALID_P (from))
4457 {
4458 gcc_assert (BB_LV_SET (to) != NULL);
4459 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4460 }
4461 }
4462
4463 /* Return an av set for INSN, if any. */
4464 av_set_t
4465 get_av_set (insn_t insn)
4466 {
4467 av_set_t av_set;
4468
4469 gcc_assert (AV_SET_VALID_P (insn));
4470
4471 if (sel_bb_head_p (insn))
4472 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4473 else
4474 av_set = NULL;
4475
4476 return av_set;
4477 }
4478
4479 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4480 int
4481 get_av_level (insn_t insn)
4482 {
4483 int av_level;
4484
4485 gcc_assert (INSN_P (insn));
4486
4487 if (sel_bb_head_p (insn))
4488 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4489 else
4490 av_level = INSN_WS_LEVEL (insn);
4491
4492 return av_level;
4493 }
4494
4495 \f
4496
4497 /* Variables to work with control-flow graph. */
4498
4499 /* The basic block that already has been processed by the sched_data_update (),
4500 but hasn't been in sel_add_bb () yet. */
4501 static vec<basic_block> last_added_blocks;
4502
4503 /* A pool for allocating successor infos. */
4504 static struct
4505 {
4506 /* A stack for saving succs_info structures. */
4507 struct succs_info *stack;
4508
4509 /* Its size. */
4510 int size;
4511
4512 /* Top of the stack. */
4513 int top;
4514
4515 /* Maximal value of the top. */
4516 int max_top;
4517 } succs_info_pool;
4518
4519 /* Functions to work with control-flow graph. */
4520
4521 /* Return basic block note of BB. */
4522 rtx_insn *
4523 sel_bb_head (basic_block bb)
4524 {
4525 rtx_insn *head;
4526
4527 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4528 {
4529 gcc_assert (exit_insn != NULL_RTX);
4530 head = exit_insn;
4531 }
4532 else
4533 {
4534 rtx_note *note = bb_note (bb);
4535 head = next_nonnote_insn (note);
4536
4537 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4538 head = NULL;
4539 }
4540
4541 return head;
4542 }
4543
4544 /* Return true if INSN is a basic block header. */
4545 bool
4546 sel_bb_head_p (insn_t insn)
4547 {
4548 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4549 }
4550
4551 /* Return last insn of BB. */
4552 rtx_insn *
4553 sel_bb_end (basic_block bb)
4554 {
4555 if (sel_bb_empty_p (bb))
4556 return NULL;
4557
4558 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4559
4560 return BB_END (bb);
4561 }
4562
4563 /* Return true if INSN is the last insn in its basic block. */
4564 bool
4565 sel_bb_end_p (insn_t insn)
4566 {
4567 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4568 }
4569
4570 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4571 bool
4572 sel_bb_empty_p (basic_block bb)
4573 {
4574 return sel_bb_head (bb) == NULL;
4575 }
4576
4577 /* True when BB belongs to the current scheduling region. */
4578 bool
4579 in_current_region_p (basic_block bb)
4580 {
4581 if (bb->index < NUM_FIXED_BLOCKS)
4582 return false;
4583
4584 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4585 }
4586
4587 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4588 basic_block
4589 fallthru_bb_of_jump (const rtx_insn *jump)
4590 {
4591 if (!JUMP_P (jump))
4592 return NULL;
4593
4594 if (!any_condjump_p (jump))
4595 return NULL;
4596
4597 /* A basic block that ends with a conditional jump may still have one successor
4598 (and be followed by a barrier), we are not interested. */
4599 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4600 return NULL;
4601
4602 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4603 }
4604
4605 /* Remove all notes from BB. */
4606 static void
4607 init_bb (basic_block bb)
4608 {
4609 remove_notes (bb_note (bb), BB_END (bb));
4610 BB_NOTE_LIST (bb) = note_list;
4611 }
4612
4613 void
4614 sel_init_bbs (bb_vec_t bbs)
4615 {
4616 const struct sched_scan_info_def ssi =
4617 {
4618 extend_bb_info, /* extend_bb */
4619 init_bb, /* init_bb */
4620 NULL, /* extend_insn */
4621 NULL /* init_insn */
4622 };
4623
4624 sched_scan (&ssi, bbs);
4625 }
4626
4627 /* Restore notes for the whole region. */
4628 static void
4629 sel_restore_notes (void)
4630 {
4631 int bb;
4632 insn_t insn;
4633
4634 for (bb = 0; bb < current_nr_blocks; bb++)
4635 {
4636 basic_block first, last;
4637
4638 first = EBB_FIRST_BB (bb);
4639 last = EBB_LAST_BB (bb)->next_bb;
4640
4641 do
4642 {
4643 note_list = BB_NOTE_LIST (first);
4644 restore_other_notes (NULL, first);
4645 BB_NOTE_LIST (first) = NULL;
4646
4647 FOR_BB_INSNS (first, insn)
4648 if (NONDEBUG_INSN_P (insn))
4649 reemit_notes (insn);
4650
4651 first = first->next_bb;
4652 }
4653 while (first != last);
4654 }
4655 }
4656
4657 /* Free per-bb data structures. */
4658 void
4659 sel_finish_bbs (void)
4660 {
4661 sel_restore_notes ();
4662
4663 /* Remove current loop preheader from this loop. */
4664 if (current_loop_nest)
4665 sel_remove_loop_preheader ();
4666
4667 finish_region_bb_info ();
4668 }
4669
4670 /* Return true if INSN has a single successor of type FLAGS. */
4671 bool
4672 sel_insn_has_single_succ_p (insn_t insn, int flags)
4673 {
4674 insn_t succ;
4675 succ_iterator si;
4676 bool first_p = true;
4677
4678 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4679 {
4680 if (first_p)
4681 first_p = false;
4682 else
4683 return false;
4684 }
4685
4686 return true;
4687 }
4688
4689 /* Allocate successor's info. */
4690 static struct succs_info *
4691 alloc_succs_info (void)
4692 {
4693 if (succs_info_pool.top == succs_info_pool.max_top)
4694 {
4695 int i;
4696
4697 if (++succs_info_pool.max_top >= succs_info_pool.size)
4698 gcc_unreachable ();
4699
4700 i = ++succs_info_pool.top;
4701 succs_info_pool.stack[i].succs_ok.create (10);
4702 succs_info_pool.stack[i].succs_other.create (10);
4703 succs_info_pool.stack[i].probs_ok.create (10);
4704 }
4705 else
4706 succs_info_pool.top++;
4707
4708 return &succs_info_pool.stack[succs_info_pool.top];
4709 }
4710
4711 /* Free successor's info. */
4712 void
4713 free_succs_info (struct succs_info * sinfo)
4714 {
4715 gcc_assert (succs_info_pool.top >= 0
4716 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4717 succs_info_pool.top--;
4718
4719 /* Clear stale info. */
4720 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4721 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4722 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4723 sinfo->all_prob = 0;
4724 sinfo->succs_ok_n = 0;
4725 sinfo->all_succs_n = 0;
4726 }
4727
4728 /* Compute successor info for INSN. FLAGS are the flags passed
4729 to the FOR_EACH_SUCC_1 iterator. */
4730 struct succs_info *
4731 compute_succs_info (insn_t insn, short flags)
4732 {
4733 succ_iterator si;
4734 insn_t succ;
4735 struct succs_info *sinfo = alloc_succs_info ();
4736
4737 /* Traverse *all* successors and decide what to do with each. */
4738 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4739 {
4740 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4741 perform code motion through inner loops. */
4742 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4743
4744 if (current_flags & flags)
4745 {
4746 sinfo->succs_ok.safe_push (succ);
4747 sinfo->probs_ok.safe_push (
4748 /* FIXME: Improve calculation when skipping
4749 inner loop to exits. */
4750 si.bb_end && si.e1->probability.initialized_p ()
4751 ? si.e1->probability.to_reg_br_prob_base ()
4752 : REG_BR_PROB_BASE);
4753 sinfo->succs_ok_n++;
4754 }
4755 else
4756 sinfo->succs_other.safe_push (succ);
4757
4758 /* Compute all_prob. */
4759 if (!si.bb_end)
4760 sinfo->all_prob = REG_BR_PROB_BASE;
4761 else if (si.e1->probability.initialized_p ())
4762 sinfo->all_prob += si.e1->probability.to_reg_br_prob_base ();
4763
4764 sinfo->all_succs_n++;
4765 }
4766
4767 return sinfo;
4768 }
4769
4770 /* Return the predecessors of BB in PREDS and their number in N.
4771 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4772 static void
4773 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4774 {
4775 edge e;
4776 edge_iterator ei;
4777
4778 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4779
4780 FOR_EACH_EDGE (e, ei, bb->preds)
4781 {
4782 basic_block pred_bb = e->src;
4783 insn_t bb_end = BB_END (pred_bb);
4784
4785 if (!in_current_region_p (pred_bb))
4786 {
4787 gcc_assert (flag_sel_sched_pipelining_outer_loops
4788 && current_loop_nest);
4789 continue;
4790 }
4791
4792 if (sel_bb_empty_p (pred_bb))
4793 cfg_preds_1 (pred_bb, preds, n, size);
4794 else
4795 {
4796 if (*n == *size)
4797 *preds = XRESIZEVEC (insn_t, *preds,
4798 (*size = 2 * *size + 1));
4799 (*preds)[(*n)++] = bb_end;
4800 }
4801 }
4802
4803 gcc_assert (*n != 0
4804 || (flag_sel_sched_pipelining_outer_loops
4805 && current_loop_nest));
4806 }
4807
4808 /* Find all predecessors of BB and record them in PREDS and their number
4809 in N. Empty blocks are skipped, and only normal (forward in-region)
4810 edges are processed. */
4811 static void
4812 cfg_preds (basic_block bb, insn_t **preds, int *n)
4813 {
4814 int size = 0;
4815
4816 *preds = NULL;
4817 *n = 0;
4818 cfg_preds_1 (bb, preds, n, &size);
4819 }
4820
4821 /* Returns true if we are moving INSN through join point. */
4822 bool
4823 sel_num_cfg_preds_gt_1 (insn_t insn)
4824 {
4825 basic_block bb;
4826
4827 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4828 return false;
4829
4830 bb = BLOCK_FOR_INSN (insn);
4831
4832 while (1)
4833 {
4834 if (EDGE_COUNT (bb->preds) > 1)
4835 return true;
4836
4837 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4838 bb = EDGE_PRED (bb, 0)->src;
4839
4840 if (!sel_bb_empty_p (bb))
4841 break;
4842 }
4843
4844 return false;
4845 }
4846
4847 /* Returns true when BB should be the end of an ebb. Adapted from the
4848 code in sched-ebb.c. */
4849 bool
4850 bb_ends_ebb_p (basic_block bb)
4851 {
4852 basic_block next_bb = bb_next_bb (bb);
4853 edge e;
4854
4855 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4856 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4857 || (LABEL_P (BB_HEAD (next_bb))
4858 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4859 Work around that. */
4860 && !single_pred_p (next_bb)))
4861 return true;
4862
4863 if (!in_current_region_p (next_bb))
4864 return true;
4865
4866 e = find_fallthru_edge (bb->succs);
4867 if (e)
4868 {
4869 gcc_assert (e->dest == next_bb);
4870
4871 return false;
4872 }
4873
4874 return true;
4875 }
4876
4877 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4878 successor of INSN. */
4879 bool
4880 in_same_ebb_p (insn_t insn, insn_t succ)
4881 {
4882 basic_block ptr = BLOCK_FOR_INSN (insn);
4883
4884 for (;;)
4885 {
4886 if (ptr == BLOCK_FOR_INSN (succ))
4887 return true;
4888
4889 if (bb_ends_ebb_p (ptr))
4890 return false;
4891
4892 ptr = bb_next_bb (ptr);
4893 }
4894
4895 gcc_unreachable ();
4896 return false;
4897 }
4898
4899 /* Recomputes the reverse topological order for the function and
4900 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4901 modified appropriately. */
4902 static void
4903 recompute_rev_top_order (void)
4904 {
4905 int *postorder;
4906 int n_blocks, i;
4907
4908 if (!rev_top_order_index
4909 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4910 {
4911 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4912 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4913 rev_top_order_index_len);
4914 }
4915
4916 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4917
4918 n_blocks = post_order_compute (postorder, true, false);
4919 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4920
4921 /* Build reverse function: for each basic block with BB->INDEX == K
4922 rev_top_order_index[K] is it's reverse topological sort number. */
4923 for (i = 0; i < n_blocks; i++)
4924 {
4925 gcc_assert (postorder[i] < rev_top_order_index_len);
4926 rev_top_order_index[postorder[i]] = i;
4927 }
4928
4929 free (postorder);
4930 }
4931
4932 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4933 void
4934 clear_outdated_rtx_info (basic_block bb)
4935 {
4936 rtx_insn *insn;
4937
4938 FOR_BB_INSNS (bb, insn)
4939 if (INSN_P (insn))
4940 {
4941 SCHED_GROUP_P (insn) = 0;
4942 INSN_AFTER_STALL_P (insn) = 0;
4943 INSN_SCHED_TIMES (insn) = 0;
4944 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4945
4946 /* We cannot use the changed caches, as previously we could ignore
4947 the LHS dependence due to enabled renaming and transform
4948 the expression, and currently we'll be unable to do this. */
4949 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4950 }
4951 }
4952
4953 /* Add BB_NOTE to the pool of available basic block notes. */
4954 static void
4955 return_bb_to_pool (basic_block bb)
4956 {
4957 rtx_note *note = bb_note (bb);
4958
4959 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4960 && bb->aux == NULL);
4961
4962 /* It turns out that current cfg infrastructure does not support
4963 reuse of basic blocks. Don't bother for now. */
4964 /*bb_note_pool.safe_push (note);*/
4965 }
4966
4967 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4968 static rtx_note *
4969 get_bb_note_from_pool (void)
4970 {
4971 if (bb_note_pool.is_empty ())
4972 return NULL;
4973 else
4974 {
4975 rtx_note *note = bb_note_pool.pop ();
4976
4977 SET_PREV_INSN (note) = NULL_RTX;
4978 SET_NEXT_INSN (note) = NULL_RTX;
4979
4980 return note;
4981 }
4982 }
4983
4984 /* Free bb_note_pool. */
4985 void
4986 free_bb_note_pool (void)
4987 {
4988 bb_note_pool.release ();
4989 }
4990
4991 /* Setup scheduler pool and successor structure. */
4992 void
4993 alloc_sched_pools (void)
4994 {
4995 int succs_size;
4996
4997 succs_size = MAX_WS + 1;
4998 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4999 succs_info_pool.size = succs_size;
5000 succs_info_pool.top = -1;
5001 succs_info_pool.max_top = -1;
5002 }
5003
5004 /* Free the pools. */
5005 void
5006 free_sched_pools (void)
5007 {
5008 int i;
5009
5010 sched_lists_pool.release ();
5011 gcc_assert (succs_info_pool.top == -1);
5012 for (i = 0; i <= succs_info_pool.max_top; i++)
5013 {
5014 succs_info_pool.stack[i].succs_ok.release ();
5015 succs_info_pool.stack[i].succs_other.release ();
5016 succs_info_pool.stack[i].probs_ok.release ();
5017 }
5018 free (succs_info_pool.stack);
5019 }
5020 \f
5021
5022 /* Returns a position in RGN where BB can be inserted retaining
5023 topological order. */
5024 static int
5025 find_place_to_insert_bb (basic_block bb, int rgn)
5026 {
5027 bool has_preds_outside_rgn = false;
5028 edge e;
5029 edge_iterator ei;
5030
5031 /* Find whether we have preds outside the region. */
5032 FOR_EACH_EDGE (e, ei, bb->preds)
5033 if (!in_current_region_p (e->src))
5034 {
5035 has_preds_outside_rgn = true;
5036 break;
5037 }
5038
5039 /* Recompute the top order -- needed when we have > 1 pred
5040 and in case we don't have preds outside. */
5041 if (flag_sel_sched_pipelining_outer_loops
5042 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5043 {
5044 int i, bbi = bb->index, cur_bbi;
5045
5046 recompute_rev_top_order ();
5047 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5048 {
5049 cur_bbi = BB_TO_BLOCK (i);
5050 if (rev_top_order_index[bbi]
5051 < rev_top_order_index[cur_bbi])
5052 break;
5053 }
5054
5055 /* We skipped the right block, so we increase i. We accommodate
5056 it for increasing by step later, so we decrease i. */
5057 return (i + 1) - 1;
5058 }
5059 else if (has_preds_outside_rgn)
5060 {
5061 /* This is the case when we generate an extra empty block
5062 to serve as region head during pipelining. */
5063 e = EDGE_SUCC (bb, 0);
5064 gcc_assert (EDGE_COUNT (bb->succs) == 1
5065 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5066 && (BLOCK_TO_BB (e->dest->index) == 0));
5067 return -1;
5068 }
5069
5070 /* We don't have preds outside the region. We should have
5071 the only pred, because the multiple preds case comes from
5072 the pipelining of outer loops, and that is handled above.
5073 Just take the bbi of this single pred. */
5074 if (EDGE_COUNT (bb->succs) > 0)
5075 {
5076 int pred_bbi;
5077
5078 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5079
5080 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5081 return BLOCK_TO_BB (pred_bbi);
5082 }
5083 else
5084 /* BB has no successors. It is safe to put it in the end. */
5085 return current_nr_blocks - 1;
5086 }
5087
5088 /* Deletes an empty basic block freeing its data. */
5089 static void
5090 delete_and_free_basic_block (basic_block bb)
5091 {
5092 gcc_assert (sel_bb_empty_p (bb));
5093
5094 if (BB_LV_SET (bb))
5095 free_lv_set (bb);
5096
5097 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5098
5099 /* Can't assert av_set properties because we use sel_aremove_bb
5100 when removing loop preheader from the region. At the point of
5101 removing the preheader we already have deallocated sel_region_bb_info. */
5102 gcc_assert (BB_LV_SET (bb) == NULL
5103 && !BB_LV_SET_VALID_P (bb)
5104 && BB_AV_LEVEL (bb) == 0
5105 && BB_AV_SET (bb) == NULL);
5106
5107 delete_basic_block (bb);
5108 }
5109
5110 /* Add BB to the current region and update the region data. */
5111 static void
5112 add_block_to_current_region (basic_block bb)
5113 {
5114 int i, pos, bbi = -2, rgn;
5115
5116 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5117 bbi = find_place_to_insert_bb (bb, rgn);
5118 bbi += 1;
5119 pos = RGN_BLOCKS (rgn) + bbi;
5120
5121 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5122 && ebb_head[bbi] == pos);
5123
5124 /* Make a place for the new block. */
5125 extend_regions ();
5126
5127 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5128 BLOCK_TO_BB (rgn_bb_table[i])++;
5129
5130 memmove (rgn_bb_table + pos + 1,
5131 rgn_bb_table + pos,
5132 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5133
5134 /* Initialize data for BB. */
5135 rgn_bb_table[pos] = bb->index;
5136 BLOCK_TO_BB (bb->index) = bbi;
5137 CONTAINING_RGN (bb->index) = rgn;
5138
5139 RGN_NR_BLOCKS (rgn)++;
5140
5141 for (i = rgn + 1; i <= nr_regions; i++)
5142 RGN_BLOCKS (i)++;
5143 }
5144
5145 /* Remove BB from the current region and update the region data. */
5146 static void
5147 remove_bb_from_region (basic_block bb)
5148 {
5149 int i, pos, bbi = -2, rgn;
5150
5151 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5152 bbi = BLOCK_TO_BB (bb->index);
5153 pos = RGN_BLOCKS (rgn) + bbi;
5154
5155 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5156 && ebb_head[bbi] == pos);
5157
5158 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5159 BLOCK_TO_BB (rgn_bb_table[i])--;
5160
5161 memmove (rgn_bb_table + pos,
5162 rgn_bb_table + pos + 1,
5163 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5164
5165 RGN_NR_BLOCKS (rgn)--;
5166 for (i = rgn + 1; i <= nr_regions; i++)
5167 RGN_BLOCKS (i)--;
5168 }
5169
5170 /* Add BB to the current region and update all data. If BB is NULL, add all
5171 blocks from last_added_blocks vector. */
5172 static void
5173 sel_add_bb (basic_block bb)
5174 {
5175 /* Extend luids so that new notes will receive zero luids. */
5176 sched_extend_luids ();
5177 sched_init_bbs ();
5178 sel_init_bbs (last_added_blocks);
5179
5180 /* When bb is passed explicitly, the vector should contain
5181 the only element that equals to bb; otherwise, the vector
5182 should not be NULL. */
5183 gcc_assert (last_added_blocks.exists ());
5184
5185 if (bb != NULL)
5186 {
5187 gcc_assert (last_added_blocks.length () == 1
5188 && last_added_blocks[0] == bb);
5189 add_block_to_current_region (bb);
5190
5191 /* We associate creating/deleting data sets with the first insn
5192 appearing / disappearing in the bb. */
5193 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5194 create_initial_data_sets (bb);
5195
5196 last_added_blocks.release ();
5197 }
5198 else
5199 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5200 {
5201 int i;
5202 basic_block temp_bb = NULL;
5203
5204 for (i = 0;
5205 last_added_blocks.iterate (i, &bb); i++)
5206 {
5207 add_block_to_current_region (bb);
5208 temp_bb = bb;
5209 }
5210
5211 /* We need to fetch at least one bb so we know the region
5212 to update. */
5213 gcc_assert (temp_bb != NULL);
5214 bb = temp_bb;
5215
5216 last_added_blocks.release ();
5217 }
5218
5219 rgn_setup_region (CONTAINING_RGN (bb->index));
5220 }
5221
5222 /* Remove BB from the current region and update all data.
5223 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5224 static void
5225 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5226 {
5227 unsigned idx = bb->index;
5228
5229 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5230
5231 remove_bb_from_region (bb);
5232 return_bb_to_pool (bb);
5233 bitmap_clear_bit (blocks_to_reschedule, idx);
5234
5235 if (remove_from_cfg_p)
5236 {
5237 basic_block succ = single_succ (bb);
5238 delete_and_free_basic_block (bb);
5239 set_immediate_dominator (CDI_DOMINATORS, succ,
5240 recompute_dominator (CDI_DOMINATORS, succ));
5241 }
5242
5243 rgn_setup_region (CONTAINING_RGN (idx));
5244 }
5245
5246 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5247 static void
5248 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5249 {
5250 if (in_current_region_p (merge_bb))
5251 concat_note_lists (BB_NOTE_LIST (empty_bb),
5252 &BB_NOTE_LIST (merge_bb));
5253 BB_NOTE_LIST (empty_bb) = NULL;
5254
5255 }
5256
5257 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5258 region, but keep it in CFG. */
5259 static void
5260 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5261 {
5262 /* The block should contain just a note or a label.
5263 We try to check whether it is unused below. */
5264 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5265 || LABEL_P (BB_HEAD (empty_bb)));
5266
5267 /* If basic block has predecessors or successors, redirect them. */
5268 if (remove_from_cfg_p
5269 && (EDGE_COUNT (empty_bb->preds) > 0
5270 || EDGE_COUNT (empty_bb->succs) > 0))
5271 {
5272 basic_block pred;
5273 basic_block succ;
5274
5275 /* We need to init PRED and SUCC before redirecting edges. */
5276 if (EDGE_COUNT (empty_bb->preds) > 0)
5277 {
5278 edge e;
5279
5280 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5281
5282 e = EDGE_PRED (empty_bb, 0);
5283 gcc_assert (e->src == empty_bb->prev_bb
5284 && (e->flags & EDGE_FALLTHRU));
5285
5286 pred = empty_bb->prev_bb;
5287 }
5288 else
5289 pred = NULL;
5290
5291 if (EDGE_COUNT (empty_bb->succs) > 0)
5292 {
5293 /* We do not check fallthruness here as above, because
5294 after removing a jump the edge may actually be not fallthru. */
5295 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5296 succ = EDGE_SUCC (empty_bb, 0)->dest;
5297 }
5298 else
5299 succ = NULL;
5300
5301 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5302 {
5303 edge e = EDGE_PRED (empty_bb, 0);
5304
5305 if (e->flags & EDGE_FALLTHRU)
5306 redirect_edge_succ_nodup (e, succ);
5307 else
5308 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5309 }
5310
5311 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5312 {
5313 edge e = EDGE_SUCC (empty_bb, 0);
5314
5315 if (find_edge (pred, e->dest) == NULL)
5316 redirect_edge_pred (e, pred);
5317 }
5318 }
5319
5320 /* Finish removing. */
5321 sel_remove_bb (empty_bb, remove_from_cfg_p);
5322 }
5323
5324 /* An implementation of create_basic_block hook, which additionally updates
5325 per-bb data structures. */
5326 static basic_block
5327 sel_create_basic_block (void *headp, void *endp, basic_block after)
5328 {
5329 basic_block new_bb;
5330 rtx_note *new_bb_note;
5331
5332 gcc_assert (flag_sel_sched_pipelining_outer_loops
5333 || !last_added_blocks.exists ());
5334
5335 new_bb_note = get_bb_note_from_pool ();
5336
5337 if (new_bb_note == NULL_RTX)
5338 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5339 else
5340 {
5341 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5342 (rtx_insn *) endp,
5343 new_bb_note, after);
5344 new_bb->aux = NULL;
5345 }
5346
5347 last_added_blocks.safe_push (new_bb);
5348
5349 return new_bb;
5350 }
5351
5352 /* Implement sched_init_only_bb (). */
5353 static void
5354 sel_init_only_bb (basic_block bb, basic_block after)
5355 {
5356 gcc_assert (after == NULL);
5357
5358 extend_regions ();
5359 rgn_make_new_region_out_of_new_block (bb);
5360 }
5361
5362 /* Update the latch when we've splitted or merged it from FROM block to TO.
5363 This should be checked for all outer loops, too. */
5364 static void
5365 change_loops_latches (basic_block from, basic_block to)
5366 {
5367 gcc_assert (from != to);
5368
5369 if (current_loop_nest)
5370 {
5371 struct loop *loop;
5372
5373 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5374 if (considered_for_pipelining_p (loop) && loop->latch == from)
5375 {
5376 gcc_assert (loop == current_loop_nest);
5377 loop->latch = to;
5378 gcc_assert (loop_latch_edge (loop));
5379 }
5380 }
5381 }
5382
5383 /* Splits BB on two basic blocks, adding it to the region and extending
5384 per-bb data structures. Returns the newly created bb. */
5385 static basic_block
5386 sel_split_block (basic_block bb, rtx after)
5387 {
5388 basic_block new_bb;
5389 insn_t insn;
5390
5391 new_bb = sched_split_block_1 (bb, after);
5392 sel_add_bb (new_bb);
5393
5394 /* This should be called after sel_add_bb, because this uses
5395 CONTAINING_RGN for the new block, which is not yet initialized.
5396 FIXME: this function may be a no-op now. */
5397 change_loops_latches (bb, new_bb);
5398
5399 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5400 FOR_BB_INSNS (new_bb, insn)
5401 if (INSN_P (insn))
5402 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5403
5404 if (sel_bb_empty_p (bb))
5405 {
5406 gcc_assert (!sel_bb_empty_p (new_bb));
5407
5408 /* NEW_BB has data sets that need to be updated and BB holds
5409 data sets that should be removed. Exchange these data sets
5410 so that we won't lose BB's valid data sets. */
5411 exchange_data_sets (new_bb, bb);
5412 free_data_sets (bb);
5413 }
5414
5415 if (!sel_bb_empty_p (new_bb)
5416 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5417 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5418
5419 return new_bb;
5420 }
5421
5422 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5423 Otherwise returns NULL. */
5424 static rtx_insn *
5425 check_for_new_jump (basic_block bb, int prev_max_uid)
5426 {
5427 rtx_insn *end;
5428
5429 end = sel_bb_end (bb);
5430 if (end && INSN_UID (end) >= prev_max_uid)
5431 return end;
5432 return NULL;
5433 }
5434
5435 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5436 New means having UID at least equal to PREV_MAX_UID. */
5437 static rtx_insn *
5438 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5439 {
5440 rtx_insn *jump;
5441
5442 /* Return immediately if no new insns were emitted. */
5443 if (get_max_uid () == prev_max_uid)
5444 return NULL;
5445
5446 /* Now check both blocks for new jumps. It will ever be only one. */
5447 if ((jump = check_for_new_jump (from, prev_max_uid)))
5448 return jump;
5449
5450 if (jump_bb != NULL
5451 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5452 return jump;
5453 return NULL;
5454 }
5455
5456 /* Splits E and adds the newly created basic block to the current region.
5457 Returns this basic block. */
5458 basic_block
5459 sel_split_edge (edge e)
5460 {
5461 basic_block new_bb, src, other_bb = NULL;
5462 int prev_max_uid;
5463 rtx_insn *jump;
5464
5465 src = e->src;
5466 prev_max_uid = get_max_uid ();
5467 new_bb = split_edge (e);
5468
5469 if (flag_sel_sched_pipelining_outer_loops
5470 && current_loop_nest)
5471 {
5472 int i;
5473 basic_block bb;
5474
5475 /* Some of the basic blocks might not have been added to the loop.
5476 Add them here, until this is fixed in force_fallthru. */
5477 for (i = 0;
5478 last_added_blocks.iterate (i, &bb); i++)
5479 if (!bb->loop_father)
5480 {
5481 add_bb_to_loop (bb, e->dest->loop_father);
5482
5483 gcc_assert (!other_bb && (new_bb->index != bb->index));
5484 other_bb = bb;
5485 }
5486 }
5487
5488 /* Add all last_added_blocks to the region. */
5489 sel_add_bb (NULL);
5490
5491 jump = find_new_jump (src, new_bb, prev_max_uid);
5492 if (jump)
5493 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5494
5495 /* Put the correct lv set on this block. */
5496 if (other_bb && !sel_bb_empty_p (other_bb))
5497 compute_live (sel_bb_head (other_bb));
5498
5499 return new_bb;
5500 }
5501
5502 /* Implement sched_create_empty_bb (). */
5503 static basic_block
5504 sel_create_empty_bb (basic_block after)
5505 {
5506 basic_block new_bb;
5507
5508 new_bb = sched_create_empty_bb_1 (after);
5509
5510 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5511 later. */
5512 gcc_assert (last_added_blocks.length () == 1
5513 && last_added_blocks[0] == new_bb);
5514
5515 last_added_blocks.release ();
5516 return new_bb;
5517 }
5518
5519 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5520 will be splitted to insert a check. */
5521 basic_block
5522 sel_create_recovery_block (insn_t orig_insn)
5523 {
5524 basic_block first_bb, second_bb, recovery_block;
5525 basic_block before_recovery = NULL;
5526 rtx_insn *jump;
5527
5528 first_bb = BLOCK_FOR_INSN (orig_insn);
5529 if (sel_bb_end_p (orig_insn))
5530 {
5531 /* Avoid introducing an empty block while splitting. */
5532 gcc_assert (single_succ_p (first_bb));
5533 second_bb = single_succ (first_bb);
5534 }
5535 else
5536 second_bb = sched_split_block (first_bb, orig_insn);
5537
5538 recovery_block = sched_create_recovery_block (&before_recovery);
5539 if (before_recovery)
5540 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5541
5542 gcc_assert (sel_bb_empty_p (recovery_block));
5543 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5544 if (current_loops != NULL)
5545 add_bb_to_loop (recovery_block, first_bb->loop_father);
5546
5547 sel_add_bb (recovery_block);
5548
5549 jump = BB_END (recovery_block);
5550 gcc_assert (sel_bb_head (recovery_block) == jump);
5551 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5552
5553 return recovery_block;
5554 }
5555
5556 /* Merge basic block B into basic block A. */
5557 static void
5558 sel_merge_blocks (basic_block a, basic_block b)
5559 {
5560 gcc_assert (sel_bb_empty_p (b)
5561 && EDGE_COUNT (b->preds) == 1
5562 && EDGE_PRED (b, 0)->src == b->prev_bb);
5563
5564 move_bb_info (b->prev_bb, b);
5565 remove_empty_bb (b, false);
5566 merge_blocks (a, b);
5567 change_loops_latches (b, a);
5568 }
5569
5570 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5571 data structures for possibly created bb and insns. */
5572 void
5573 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5574 {
5575 basic_block jump_bb, src, orig_dest = e->dest;
5576 int prev_max_uid;
5577 rtx_insn *jump;
5578 int old_seqno = -1;
5579
5580 /* This function is now used only for bookkeeping code creation, where
5581 we'll never get the single pred of orig_dest block and thus will not
5582 hit unreachable blocks when updating dominator info. */
5583 gcc_assert (!sel_bb_empty_p (e->src)
5584 && !single_pred_p (orig_dest));
5585 src = e->src;
5586 prev_max_uid = get_max_uid ();
5587 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5588 when the conditional jump being redirected may become unconditional. */
5589 if (any_condjump_p (BB_END (src))
5590 && INSN_SEQNO (BB_END (src)) >= 0)
5591 old_seqno = INSN_SEQNO (BB_END (src));
5592
5593 jump_bb = redirect_edge_and_branch_force (e, to);
5594 if (jump_bb != NULL)
5595 sel_add_bb (jump_bb);
5596
5597 /* This function could not be used to spoil the loop structure by now,
5598 thus we don't care to update anything. But check it to be sure. */
5599 if (current_loop_nest
5600 && pipelining_p)
5601 gcc_assert (loop_latch_edge (current_loop_nest));
5602
5603 jump = find_new_jump (src, jump_bb, prev_max_uid);
5604 if (jump)
5605 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5606 old_seqno);
5607 set_immediate_dominator (CDI_DOMINATORS, to,
5608 recompute_dominator (CDI_DOMINATORS, to));
5609 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5610 recompute_dominator (CDI_DOMINATORS, orig_dest));
5611 }
5612
5613 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5614 redirected edge are in reverse topological order. */
5615 bool
5616 sel_redirect_edge_and_branch (edge e, basic_block to)
5617 {
5618 bool latch_edge_p;
5619 basic_block src, orig_dest = e->dest;
5620 int prev_max_uid;
5621 rtx_insn *jump;
5622 edge redirected;
5623 bool recompute_toporder_p = false;
5624 bool maybe_unreachable = single_pred_p (orig_dest);
5625 int old_seqno = -1;
5626
5627 latch_edge_p = (pipelining_p
5628 && current_loop_nest
5629 && e == loop_latch_edge (current_loop_nest));
5630
5631 src = e->src;
5632 prev_max_uid = get_max_uid ();
5633
5634 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5635 when the conditional jump being redirected may become unconditional. */
5636 if (any_condjump_p (BB_END (src))
5637 && INSN_SEQNO (BB_END (src)) >= 0)
5638 old_seqno = INSN_SEQNO (BB_END (src));
5639
5640 redirected = redirect_edge_and_branch (e, to);
5641
5642 gcc_assert (redirected && !last_added_blocks.exists ());
5643
5644 /* When we've redirected a latch edge, update the header. */
5645 if (latch_edge_p)
5646 {
5647 current_loop_nest->header = to;
5648 gcc_assert (loop_latch_edge (current_loop_nest));
5649 }
5650
5651 /* In rare situations, the topological relation between the blocks connected
5652 by the redirected edge can change (see PR42245 for an example). Update
5653 block_to_bb/bb_to_block. */
5654 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5655 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5656 recompute_toporder_p = true;
5657
5658 jump = find_new_jump (src, NULL, prev_max_uid);
5659 if (jump)
5660 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5661
5662 /* Only update dominator info when we don't have unreachable blocks.
5663 Otherwise we'll update in maybe_tidy_empty_bb. */
5664 if (!maybe_unreachable)
5665 {
5666 set_immediate_dominator (CDI_DOMINATORS, to,
5667 recompute_dominator (CDI_DOMINATORS, to));
5668 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5669 recompute_dominator (CDI_DOMINATORS, orig_dest));
5670 }
5671 return recompute_toporder_p;
5672 }
5673
5674 /* This variable holds the cfg hooks used by the selective scheduler. */
5675 static struct cfg_hooks sel_cfg_hooks;
5676
5677 /* Register sel-sched cfg hooks. */
5678 void
5679 sel_register_cfg_hooks (void)
5680 {
5681 sched_split_block = sel_split_block;
5682
5683 orig_cfg_hooks = get_cfg_hooks ();
5684 sel_cfg_hooks = orig_cfg_hooks;
5685
5686 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5687
5688 set_cfg_hooks (sel_cfg_hooks);
5689
5690 sched_init_only_bb = sel_init_only_bb;
5691 sched_split_block = sel_split_block;
5692 sched_create_empty_bb = sel_create_empty_bb;
5693 }
5694
5695 /* Unregister sel-sched cfg hooks. */
5696 void
5697 sel_unregister_cfg_hooks (void)
5698 {
5699 sched_create_empty_bb = NULL;
5700 sched_split_block = NULL;
5701 sched_init_only_bb = NULL;
5702
5703 set_cfg_hooks (orig_cfg_hooks);
5704 }
5705 \f
5706
5707 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5708 LABEL is where this jump should be directed. */
5709 rtx_insn *
5710 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5711 {
5712 rtx_insn *insn_rtx;
5713
5714 gcc_assert (!INSN_P (pattern));
5715
5716 start_sequence ();
5717
5718 if (label == NULL_RTX)
5719 insn_rtx = emit_insn (pattern);
5720 else if (DEBUG_INSN_P (label))
5721 insn_rtx = emit_debug_insn (pattern);
5722 else
5723 {
5724 insn_rtx = emit_jump_insn (pattern);
5725 JUMP_LABEL (insn_rtx) = label;
5726 ++LABEL_NUSES (label);
5727 }
5728
5729 end_sequence ();
5730
5731 sched_extend_luids ();
5732 sched_extend_target ();
5733 sched_deps_init (false);
5734
5735 /* Initialize INSN_CODE now. */
5736 recog_memoized (insn_rtx);
5737 return insn_rtx;
5738 }
5739
5740 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5741 must not be clonable. */
5742 vinsn_t
5743 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5744 {
5745 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5746
5747 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5748 return vinsn_create (insn_rtx, force_unique_p);
5749 }
5750
5751 /* Create a copy of INSN_RTX. */
5752 rtx_insn *
5753 create_copy_of_insn_rtx (rtx insn_rtx)
5754 {
5755 rtx_insn *res;
5756 rtx link;
5757
5758 if (DEBUG_INSN_P (insn_rtx))
5759 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5760 insn_rtx);
5761
5762 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5763
5764 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5765 NULL_RTX);
5766
5767 /* Locate the end of existing REG_NOTES in NEW_RTX. */
5768 rtx *ptail = &REG_NOTES (res);
5769 while (*ptail != NULL_RTX)
5770 ptail = &XEXP (*ptail, 1);
5771
5772 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5773 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5774 there too, but are supposed to be sticky, so we copy them. */
5775 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5776 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5777 && REG_NOTE_KIND (link) != REG_EQUAL
5778 && REG_NOTE_KIND (link) != REG_EQUIV)
5779 {
5780 *ptail = duplicate_reg_note (link);
5781 ptail = &XEXP (*ptail, 1);
5782 }
5783
5784 return res;
5785 }
5786
5787 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5788 void
5789 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5790 {
5791 vinsn_detach (EXPR_VINSN (expr));
5792
5793 EXPR_VINSN (expr) = new_vinsn;
5794 vinsn_attach (new_vinsn);
5795 }
5796
5797 /* Helpers for global init. */
5798 /* This structure is used to be able to call existing bundling mechanism
5799 and calculate insn priorities. */
5800 static struct haifa_sched_info sched_sel_haifa_sched_info =
5801 {
5802 NULL, /* init_ready_list */
5803 NULL, /* can_schedule_ready_p */
5804 NULL, /* schedule_more_p */
5805 NULL, /* new_ready */
5806 NULL, /* rgn_rank */
5807 sel_print_insn, /* rgn_print_insn */
5808 contributes_to_priority,
5809 NULL, /* insn_finishes_block_p */
5810
5811 NULL, NULL,
5812 NULL, NULL,
5813 0, 0,
5814
5815 NULL, /* add_remove_insn */
5816 NULL, /* begin_schedule_ready */
5817 NULL, /* begin_move_insn */
5818 NULL, /* advance_target_bb */
5819
5820 NULL,
5821 NULL,
5822
5823 SEL_SCHED | NEW_BBS
5824 };
5825
5826 /* Setup special insns used in the scheduler. */
5827 void
5828 setup_nop_and_exit_insns (void)
5829 {
5830 gcc_assert (nop_pattern == NULL_RTX
5831 && exit_insn == NULL_RTX);
5832
5833 nop_pattern = constm1_rtx;
5834
5835 start_sequence ();
5836 emit_insn (nop_pattern);
5837 exit_insn = get_insns ();
5838 end_sequence ();
5839 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5840 }
5841
5842 /* Free special insns used in the scheduler. */
5843 void
5844 free_nop_and_exit_insns (void)
5845 {
5846 exit_insn = NULL;
5847 nop_pattern = NULL_RTX;
5848 }
5849
5850 /* Setup a special vinsn used in new insns initialization. */
5851 void
5852 setup_nop_vinsn (void)
5853 {
5854 nop_vinsn = vinsn_create (exit_insn, false);
5855 vinsn_attach (nop_vinsn);
5856 }
5857
5858 /* Free a special vinsn used in new insns initialization. */
5859 void
5860 free_nop_vinsn (void)
5861 {
5862 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5863 vinsn_detach (nop_vinsn);
5864 nop_vinsn = NULL;
5865 }
5866
5867 /* Call a set_sched_flags hook. */
5868 void
5869 sel_set_sched_flags (void)
5870 {
5871 /* ??? This means that set_sched_flags were called, and we decided to
5872 support speculation. However, set_sched_flags also modifies flags
5873 on current_sched_info, doing this only at global init. And we
5874 sometimes change c_s_i later. So put the correct flags again. */
5875 if (spec_info && targetm.sched.set_sched_flags)
5876 targetm.sched.set_sched_flags (spec_info);
5877 }
5878
5879 /* Setup pointers to global sched info structures. */
5880 void
5881 sel_setup_sched_infos (void)
5882 {
5883 rgn_setup_common_sched_info ();
5884
5885 memcpy (&sel_common_sched_info, common_sched_info,
5886 sizeof (sel_common_sched_info));
5887
5888 sel_common_sched_info.fix_recovery_cfg = NULL;
5889 sel_common_sched_info.add_block = NULL;
5890 sel_common_sched_info.estimate_number_of_insns
5891 = sel_estimate_number_of_insns;
5892 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5893 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5894
5895 common_sched_info = &sel_common_sched_info;
5896
5897 current_sched_info = &sched_sel_haifa_sched_info;
5898 current_sched_info->sched_max_insns_priority =
5899 get_rgn_sched_max_insns_priority ();
5900
5901 sel_set_sched_flags ();
5902 }
5903 \f
5904
5905 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5906 *BB_ORD_INDEX after that is increased. */
5907 static void
5908 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5909 {
5910 RGN_NR_BLOCKS (rgn) += 1;
5911 RGN_DONT_CALC_DEPS (rgn) = 0;
5912 RGN_HAS_REAL_EBB (rgn) = 0;
5913 CONTAINING_RGN (bb->index) = rgn;
5914 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5915 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5916 (*bb_ord_index)++;
5917
5918 /* FIXME: it is true only when not scheduling ebbs. */
5919 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5920 }
5921
5922 /* Functions to support pipelining of outer loops. */
5923
5924 /* Creates a new empty region and returns it's number. */
5925 static int
5926 sel_create_new_region (void)
5927 {
5928 int new_rgn_number = nr_regions;
5929
5930 RGN_NR_BLOCKS (new_rgn_number) = 0;
5931
5932 /* FIXME: This will work only when EBBs are not created. */
5933 if (new_rgn_number != 0)
5934 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5935 RGN_NR_BLOCKS (new_rgn_number - 1);
5936 else
5937 RGN_BLOCKS (new_rgn_number) = 0;
5938
5939 /* Set the blocks of the next region so the other functions may
5940 calculate the number of blocks in the region. */
5941 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5942 RGN_NR_BLOCKS (new_rgn_number);
5943
5944 nr_regions++;
5945
5946 return new_rgn_number;
5947 }
5948
5949 /* If X has a smaller topological sort number than Y, returns -1;
5950 if greater, returns 1. */
5951 static int
5952 bb_top_order_comparator (const void *x, const void *y)
5953 {
5954 basic_block bb1 = *(const basic_block *) x;
5955 basic_block bb2 = *(const basic_block *) y;
5956
5957 gcc_assert (bb1 == bb2
5958 || rev_top_order_index[bb1->index]
5959 != rev_top_order_index[bb2->index]);
5960
5961 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5962 bbs with greater number should go earlier. */
5963 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5964 return -1;
5965 else
5966 return 1;
5967 }
5968
5969 /* Create a region for LOOP and return its number. If we don't want
5970 to pipeline LOOP, return -1. */
5971 static int
5972 make_region_from_loop (struct loop *loop)
5973 {
5974 unsigned int i;
5975 int new_rgn_number = -1;
5976 struct loop *inner;
5977
5978 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5979 int bb_ord_index = 0;
5980 basic_block *loop_blocks;
5981 basic_block preheader_block;
5982
5983 if (loop->num_nodes
5984 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5985 return -1;
5986
5987 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5988 for (inner = loop->inner; inner; inner = inner->inner)
5989 if (flow_bb_inside_loop_p (inner, loop->latch))
5990 return -1;
5991
5992 loop->ninsns = num_loop_insns (loop);
5993 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5994 return -1;
5995
5996 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5997
5998 for (i = 0; i < loop->num_nodes; i++)
5999 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6000 {
6001 free (loop_blocks);
6002 return -1;
6003 }
6004
6005 preheader_block = loop_preheader_edge (loop)->src;
6006 gcc_assert (preheader_block);
6007 gcc_assert (loop_blocks[0] == loop->header);
6008
6009 new_rgn_number = sel_create_new_region ();
6010
6011 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6012 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6013
6014 for (i = 0; i < loop->num_nodes; i++)
6015 {
6016 /* Add only those blocks that haven't been scheduled in the inner loop.
6017 The exception is the basic blocks with bookkeeping code - they should
6018 be added to the region (and they actually don't belong to the loop
6019 body, but to the region containing that loop body). */
6020
6021 gcc_assert (new_rgn_number >= 0);
6022
6023 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6024 {
6025 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6026 new_rgn_number);
6027 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6028 }
6029 }
6030
6031 free (loop_blocks);
6032 MARK_LOOP_FOR_PIPELINING (loop);
6033
6034 return new_rgn_number;
6035 }
6036
6037 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6038 void
6039 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6040 {
6041 unsigned int i;
6042 int new_rgn_number = -1;
6043 basic_block bb;
6044
6045 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6046 int bb_ord_index = 0;
6047
6048 new_rgn_number = sel_create_new_region ();
6049
6050 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6051 {
6052 gcc_assert (new_rgn_number >= 0);
6053
6054 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6055 }
6056
6057 vec_free (loop_blocks);
6058 }
6059
6060
6061 /* Create region(s) from loop nest LOOP, such that inner loops will be
6062 pipelined before outer loops. Returns true when a region for LOOP
6063 is created. */
6064 static bool
6065 make_regions_from_loop_nest (struct loop *loop)
6066 {
6067 struct loop *cur_loop;
6068 int rgn_number;
6069
6070 /* Traverse all inner nodes of the loop. */
6071 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6072 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6073 return false;
6074
6075 /* At this moment all regular inner loops should have been pipelined.
6076 Try to create a region from this loop. */
6077 rgn_number = make_region_from_loop (loop);
6078
6079 if (rgn_number < 0)
6080 return false;
6081
6082 loop_nests.safe_push (loop);
6083 return true;
6084 }
6085
6086 /* Initalize data structures needed. */
6087 void
6088 sel_init_pipelining (void)
6089 {
6090 /* Collect loop information to be used in outer loops pipelining. */
6091 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6092 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6093 | LOOPS_HAVE_RECORDED_EXITS
6094 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6095 current_loop_nest = NULL;
6096
6097 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6098 bitmap_clear (bbs_in_loop_rgns);
6099
6100 recompute_rev_top_order ();
6101 }
6102
6103 /* Returns a struct loop for region RGN. */
6104 loop_p
6105 get_loop_nest_for_rgn (unsigned int rgn)
6106 {
6107 /* Regions created with extend_rgns don't have corresponding loop nests,
6108 because they don't represent loops. */
6109 if (rgn < loop_nests.length ())
6110 return loop_nests[rgn];
6111 else
6112 return NULL;
6113 }
6114
6115 /* True when LOOP was included into pipelining regions. */
6116 bool
6117 considered_for_pipelining_p (struct loop *loop)
6118 {
6119 if (loop_depth (loop) == 0)
6120 return false;
6121
6122 /* Now, the loop could be too large or irreducible. Check whether its
6123 region is in LOOP_NESTS.
6124 We determine the region number of LOOP as the region number of its
6125 latch. We can't use header here, because this header could be
6126 just removed preheader and it will give us the wrong region number.
6127 Latch can't be used because it could be in the inner loop too. */
6128 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6129 {
6130 int rgn = CONTAINING_RGN (loop->latch->index);
6131
6132 gcc_assert ((unsigned) rgn < loop_nests.length ());
6133 return true;
6134 }
6135
6136 return false;
6137 }
6138
6139 /* Makes regions from the rest of the blocks, after loops are chosen
6140 for pipelining. */
6141 static void
6142 make_regions_from_the_rest (void)
6143 {
6144 int cur_rgn_blocks;
6145 int *loop_hdr;
6146 int i;
6147
6148 basic_block bb;
6149 edge e;
6150 edge_iterator ei;
6151 int *degree;
6152
6153 /* Index in rgn_bb_table where to start allocating new regions. */
6154 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6155
6156 /* Make regions from all the rest basic blocks - those that don't belong to
6157 any loop or belong to irreducible loops. Prepare the data structures
6158 for extend_rgns. */
6159
6160 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6161 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6162 loop. */
6163 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6164 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6165
6166
6167 /* For each basic block that belongs to some loop assign the number
6168 of innermost loop it belongs to. */
6169 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6170 loop_hdr[i] = -1;
6171
6172 FOR_EACH_BB_FN (bb, cfun)
6173 {
6174 if (bb->loop_father && bb->loop_father->num != 0
6175 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6176 loop_hdr[bb->index] = bb->loop_father->num;
6177 }
6178
6179 /* For each basic block degree is calculated as the number of incoming
6180 edges, that are going out of bbs that are not yet scheduled.
6181 The basic blocks that are scheduled have degree value of zero. */
6182 FOR_EACH_BB_FN (bb, cfun)
6183 {
6184 degree[bb->index] = 0;
6185
6186 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6187 {
6188 FOR_EACH_EDGE (e, ei, bb->preds)
6189 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6190 degree[bb->index]++;
6191 }
6192 else
6193 degree[bb->index] = -1;
6194 }
6195
6196 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6197
6198 /* Any block that did not end up in a region is placed into a region
6199 by itself. */
6200 FOR_EACH_BB_FN (bb, cfun)
6201 if (degree[bb->index] >= 0)
6202 {
6203 rgn_bb_table[cur_rgn_blocks] = bb->index;
6204 RGN_NR_BLOCKS (nr_regions) = 1;
6205 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6206 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6207 RGN_HAS_REAL_EBB (nr_regions) = 0;
6208 CONTAINING_RGN (bb->index) = nr_regions++;
6209 BLOCK_TO_BB (bb->index) = 0;
6210 }
6211
6212 free (degree);
6213 free (loop_hdr);
6214 }
6215
6216 /* Free data structures used in pipelining of loops. */
6217 void sel_finish_pipelining (void)
6218 {
6219 struct loop *loop;
6220
6221 /* Release aux fields so we don't free them later by mistake. */
6222 FOR_EACH_LOOP (loop, 0)
6223 loop->aux = NULL;
6224
6225 loop_optimizer_finalize ();
6226
6227 loop_nests.release ();
6228
6229 free (rev_top_order_index);
6230 rev_top_order_index = NULL;
6231 }
6232
6233 /* This function replaces the find_rgns when
6234 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6235 void
6236 sel_find_rgns (void)
6237 {
6238 sel_init_pipelining ();
6239 extend_regions ();
6240
6241 if (current_loops)
6242 {
6243 loop_p loop;
6244
6245 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6246 ? LI_FROM_INNERMOST
6247 : LI_ONLY_INNERMOST))
6248 make_regions_from_loop_nest (loop);
6249 }
6250
6251 /* Make regions from all the rest basic blocks and schedule them.
6252 These blocks include blocks that don't belong to any loop or belong
6253 to irreducible loops. */
6254 make_regions_from_the_rest ();
6255
6256 /* We don't need bbs_in_loop_rgns anymore. */
6257 sbitmap_free (bbs_in_loop_rgns);
6258 bbs_in_loop_rgns = NULL;
6259 }
6260
6261 /* Add the preheader blocks from previous loop to current region taking
6262 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6263 This function is only used with -fsel-sched-pipelining-outer-loops. */
6264 void
6265 sel_add_loop_preheaders (bb_vec_t *bbs)
6266 {
6267 int i;
6268 basic_block bb;
6269 vec<basic_block> *preheader_blocks
6270 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6271
6272 if (!preheader_blocks)
6273 return;
6274
6275 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6276 {
6277 bbs->safe_push (bb);
6278 last_added_blocks.safe_push (bb);
6279 sel_add_bb (bb);
6280 }
6281
6282 vec_free (preheader_blocks);
6283 }
6284
6285 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6286 Please note that the function should also work when pipelining_p is
6287 false, because it is used when deciding whether we should or should
6288 not reschedule pipelined code. */
6289 bool
6290 sel_is_loop_preheader_p (basic_block bb)
6291 {
6292 if (current_loop_nest)
6293 {
6294 struct loop *outer;
6295
6296 if (preheader_removed)
6297 return false;
6298
6299 /* Preheader is the first block in the region. */
6300 if (BLOCK_TO_BB (bb->index) == 0)
6301 return true;
6302
6303 /* We used to find a preheader with the topological information.
6304 Check that the above code is equivalent to what we did before. */
6305
6306 if (in_current_region_p (current_loop_nest->header))
6307 gcc_assert (!(BLOCK_TO_BB (bb->index)
6308 < BLOCK_TO_BB (current_loop_nest->header->index)));
6309
6310 /* Support the situation when the latch block of outer loop
6311 could be from here. */
6312 for (outer = loop_outer (current_loop_nest);
6313 outer;
6314 outer = loop_outer (outer))
6315 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6316 gcc_unreachable ();
6317 }
6318
6319 return false;
6320 }
6321
6322 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6323 can be removed, making the corresponding edge fallthrough (assuming that
6324 all basic blocks between JUMP_BB and DEST_BB are empty). */
6325 static bool
6326 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6327 {
6328 if (!onlyjump_p (BB_END (jump_bb))
6329 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6330 return false;
6331
6332 /* Several outgoing edges, abnormal edge or destination of jump is
6333 not DEST_BB. */
6334 if (EDGE_COUNT (jump_bb->succs) != 1
6335 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6336 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6337 return false;
6338
6339 /* If not anything of the upper. */
6340 return true;
6341 }
6342
6343 /* Removes the loop preheader from the current region and saves it in
6344 PREHEADER_BLOCKS of the father loop, so they will be added later to
6345 region that represents an outer loop. */
6346 static void
6347 sel_remove_loop_preheader (void)
6348 {
6349 int i, old_len;
6350 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6351 basic_block bb;
6352 bool all_empty_p = true;
6353 vec<basic_block> *preheader_blocks
6354 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6355
6356 vec_check_alloc (preheader_blocks, 0);
6357
6358 gcc_assert (current_loop_nest);
6359 old_len = preheader_blocks->length ();
6360
6361 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6362 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6363 {
6364 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6365
6366 /* If the basic block belongs to region, but doesn't belong to
6367 corresponding loop, then it should be a preheader. */
6368 if (sel_is_loop_preheader_p (bb))
6369 {
6370 preheader_blocks->safe_push (bb);
6371 if (BB_END (bb) != bb_note (bb))
6372 all_empty_p = false;
6373 }
6374 }
6375
6376 /* Remove these blocks only after iterating over the whole region. */
6377 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6378 {
6379 bb = (*preheader_blocks)[i];
6380 sel_remove_bb (bb, false);
6381 }
6382
6383 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6384 {
6385 if (!all_empty_p)
6386 /* Immediately create new region from preheader. */
6387 make_region_from_loop_preheader (preheader_blocks);
6388 else
6389 {
6390 /* If all preheader blocks are empty - dont create new empty region.
6391 Instead, remove them completely. */
6392 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6393 {
6394 edge e;
6395 edge_iterator ei;
6396 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6397
6398 /* Redirect all incoming edges to next basic block. */
6399 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6400 {
6401 if (! (e->flags & EDGE_FALLTHRU))
6402 redirect_edge_and_branch (e, bb->next_bb);
6403 else
6404 redirect_edge_succ (e, bb->next_bb);
6405 }
6406 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6407 delete_and_free_basic_block (bb);
6408
6409 /* Check if after deleting preheader there is a nonconditional
6410 jump in PREV_BB that leads to the next basic block NEXT_BB.
6411 If it is so - delete this jump and clear data sets of its
6412 basic block if it becomes empty. */
6413 if (next_bb->prev_bb == prev_bb
6414 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6415 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6416 {
6417 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6418 if (BB_END (prev_bb) == bb_note (prev_bb))
6419 free_data_sets (prev_bb);
6420 }
6421
6422 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6423 recompute_dominator (CDI_DOMINATORS,
6424 next_bb));
6425 }
6426 }
6427 vec_free (preheader_blocks);
6428 }
6429 else
6430 /* Store preheader within the father's loop structure. */
6431 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6432 preheader_blocks);
6433 }
6434
6435 #endif