]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched-ir.c
Introduce vNULL to use as a nil initializer for vec<>.
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "function.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "except.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "sched-int.h"
39 #include "ggc.h"
40 #include "tree.h"
41 #include "vec.h"
42 #include "langhooks.h"
43 #include "rtlhooks-def.h"
44 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
45
46 #ifdef INSN_SCHEDULING
47 #include "sel-sched-ir.h"
48 /* We don't have to use it except for sel_print_insn. */
49 #include "sel-sched-dump.h"
50
51 /* A vector holding bb info for whole scheduling pass. */
52 vec<sel_global_bb_info_def>
53 sel_global_bb_info = vNULL;
54
55 /* A vector holding bb info. */
56 vec<sel_region_bb_info_def>
57 sel_region_bb_info = vNULL;
58
59 /* A pool for allocating all lists. */
60 alloc_pool sched_lists_pool;
61
62 /* This contains information about successors for compute_av_set. */
63 struct succs_info current_succs;
64
65 /* Data structure to describe interaction with the generic scheduler utils. */
66 static struct common_sched_info_def sel_common_sched_info;
67
68 /* The loop nest being pipelined. */
69 struct loop *current_loop_nest;
70
71 /* LOOP_NESTS is a vector containing the corresponding loop nest for
72 each region. */
73 static vec<loop_p> loop_nests = vNULL;
74
75 /* Saves blocks already in loop regions, indexed by bb->index. */
76 static sbitmap bbs_in_loop_rgns = NULL;
77
78 /* CFG hooks that are saved before changing create_basic_block hook. */
79 static struct cfg_hooks orig_cfg_hooks;
80 \f
81
82 /* Array containing reverse topological index of function basic blocks,
83 indexed by BB->INDEX. */
84 static int *rev_top_order_index = NULL;
85
86 /* Length of the above array. */
87 static int rev_top_order_index_len = -1;
88
89 /* A regset pool structure. */
90 static struct
91 {
92 /* The stack to which regsets are returned. */
93 regset *v;
94
95 /* Its pointer. */
96 int n;
97
98 /* Its size. */
99 int s;
100
101 /* In VV we save all generated regsets so that, when destructing the
102 pool, we can compare it with V and check that every regset was returned
103 back to pool. */
104 regset *vv;
105
106 /* The pointer of VV stack. */
107 int nn;
108
109 /* Its size. */
110 int ss;
111
112 /* The difference between allocated and returned regsets. */
113 int diff;
114 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
115
116 /* This represents the nop pool. */
117 static struct
118 {
119 /* The vector which holds previously emitted nops. */
120 insn_t *v;
121
122 /* Its pointer. */
123 int n;
124
125 /* Its size. */
126 int s;
127 } nop_pool = { NULL, 0, 0 };
128
129 /* The pool for basic block notes. */
130 static rtx_vec_t bb_note_pool;
131
132 /* A NOP pattern used to emit placeholder insns. */
133 rtx nop_pattern = NULL_RTX;
134 /* A special instruction that resides in EXIT_BLOCK.
135 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
136 rtx exit_insn = NULL_RTX;
137
138 /* TRUE if while scheduling current region, which is loop, its preheader
139 was removed. */
140 bool preheader_removed = false;
141 \f
142
143 /* Forward static declarations. */
144 static void fence_clear (fence_t);
145
146 static void deps_init_id (idata_t, insn_t, bool);
147 static void init_id_from_df (idata_t, insn_t, bool);
148 static expr_t set_insn_init (expr_t, vinsn_t, int);
149
150 static void cfg_preds (basic_block, insn_t **, int *);
151 static void prepare_insn_expr (insn_t, int);
152 static void free_history_vect (vec<expr_history_def> &);
153
154 static void move_bb_info (basic_block, basic_block);
155 static void remove_empty_bb (basic_block, bool);
156 static void sel_merge_blocks (basic_block, basic_block);
157 static void sel_remove_loop_preheader (void);
158 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
159
160 static bool insn_is_the_only_one_in_bb_p (insn_t);
161 static void create_initial_data_sets (basic_block);
162
163 static void free_av_set (basic_block);
164 static void invalidate_av_set (basic_block);
165 static void extend_insn_data (void);
166 static void sel_init_new_insn (insn_t, int);
167 static void finish_insns (void);
168 \f
169 /* Various list functions. */
170
171 /* Copy an instruction list L. */
172 ilist_t
173 ilist_copy (ilist_t l)
174 {
175 ilist_t head = NULL, *tailp = &head;
176
177 while (l)
178 {
179 ilist_add (tailp, ILIST_INSN (l));
180 tailp = &ILIST_NEXT (*tailp);
181 l = ILIST_NEXT (l);
182 }
183
184 return head;
185 }
186
187 /* Invert an instruction list L. */
188 ilist_t
189 ilist_invert (ilist_t l)
190 {
191 ilist_t res = NULL;
192
193 while (l)
194 {
195 ilist_add (&res, ILIST_INSN (l));
196 l = ILIST_NEXT (l);
197 }
198
199 return res;
200 }
201
202 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
203 void
204 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
205 {
206 bnd_t bnd;
207
208 _list_add (lp);
209 bnd = BLIST_BND (*lp);
210
211 BND_TO (bnd) = to;
212 BND_PTR (bnd) = ptr;
213 BND_AV (bnd) = NULL;
214 BND_AV1 (bnd) = NULL;
215 BND_DC (bnd) = dc;
216 }
217
218 /* Remove the list note pointed to by LP. */
219 void
220 blist_remove (blist_t *lp)
221 {
222 bnd_t b = BLIST_BND (*lp);
223
224 av_set_clear (&BND_AV (b));
225 av_set_clear (&BND_AV1 (b));
226 ilist_clear (&BND_PTR (b));
227
228 _list_remove (lp);
229 }
230
231 /* Init a fence tail L. */
232 void
233 flist_tail_init (flist_tail_t l)
234 {
235 FLIST_TAIL_HEAD (l) = NULL;
236 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
237 }
238
239 /* Try to find fence corresponding to INSN in L. */
240 fence_t
241 flist_lookup (flist_t l, insn_t insn)
242 {
243 while (l)
244 {
245 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
246 return FLIST_FENCE (l);
247
248 l = FLIST_NEXT (l);
249 }
250
251 return NULL;
252 }
253
254 /* Init the fields of F before running fill_insns. */
255 static void
256 init_fence_for_scheduling (fence_t f)
257 {
258 FENCE_BNDS (f) = NULL;
259 FENCE_PROCESSED_P (f) = false;
260 FENCE_SCHEDULED_P (f) = false;
261 }
262
263 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
264 static void
265 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
266 insn_t last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
267 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
268 int cycle, int cycle_issued_insns, int issue_more,
269 bool starts_cycle_p, bool after_stall_p)
270 {
271 fence_t f;
272
273 _list_add (lp);
274 f = FLIST_FENCE (*lp);
275
276 FENCE_INSN (f) = insn;
277
278 gcc_assert (state != NULL);
279 FENCE_STATE (f) = state;
280
281 FENCE_CYCLE (f) = cycle;
282 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
283 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
284 FENCE_AFTER_STALL_P (f) = after_stall_p;
285
286 gcc_assert (dc != NULL);
287 FENCE_DC (f) = dc;
288
289 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
290 FENCE_TC (f) = tc;
291
292 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
293 FENCE_ISSUE_MORE (f) = issue_more;
294 FENCE_EXECUTING_INSNS (f) = executing_insns;
295 FENCE_READY_TICKS (f) = ready_ticks;
296 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
297 FENCE_SCHED_NEXT (f) = sched_next;
298
299 init_fence_for_scheduling (f);
300 }
301
302 /* Remove the head node of the list pointed to by LP. */
303 static void
304 flist_remove (flist_t *lp)
305 {
306 if (FENCE_INSN (FLIST_FENCE (*lp)))
307 fence_clear (FLIST_FENCE (*lp));
308 _list_remove (lp);
309 }
310
311 /* Clear the fence list pointed to by LP. */
312 void
313 flist_clear (flist_t *lp)
314 {
315 while (*lp)
316 flist_remove (lp);
317 }
318
319 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
320 void
321 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
322 {
323 def_t d;
324
325 _list_add (dl);
326 d = DEF_LIST_DEF (*dl);
327
328 d->orig_insn = original_insn;
329 d->crosses_call = crosses_call;
330 }
331 \f
332
333 /* Functions to work with target contexts. */
334
335 /* Bulk target context. It is convenient for debugging purposes to ensure
336 that there are no uninitialized (null) target contexts. */
337 static tc_t bulk_tc = (tc_t) 1;
338
339 /* Target hooks wrappers. In the future we can provide some default
340 implementations for them. */
341
342 /* Allocate a store for the target context. */
343 static tc_t
344 alloc_target_context (void)
345 {
346 return (targetm.sched.alloc_sched_context
347 ? targetm.sched.alloc_sched_context () : bulk_tc);
348 }
349
350 /* Init target context TC.
351 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
352 Overwise, copy current backend context to TC. */
353 static void
354 init_target_context (tc_t tc, bool clean_p)
355 {
356 if (targetm.sched.init_sched_context)
357 targetm.sched.init_sched_context (tc, clean_p);
358 }
359
360 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
361 int init_target_context (). */
362 tc_t
363 create_target_context (bool clean_p)
364 {
365 tc_t tc = alloc_target_context ();
366
367 init_target_context (tc, clean_p);
368 return tc;
369 }
370
371 /* Copy TC to the current backend context. */
372 void
373 set_target_context (tc_t tc)
374 {
375 if (targetm.sched.set_sched_context)
376 targetm.sched.set_sched_context (tc);
377 }
378
379 /* TC is about to be destroyed. Free any internal data. */
380 static void
381 clear_target_context (tc_t tc)
382 {
383 if (targetm.sched.clear_sched_context)
384 targetm.sched.clear_sched_context (tc);
385 }
386
387 /* Clear and free it. */
388 static void
389 delete_target_context (tc_t tc)
390 {
391 clear_target_context (tc);
392
393 if (targetm.sched.free_sched_context)
394 targetm.sched.free_sched_context (tc);
395 }
396
397 /* Make a copy of FROM in TO.
398 NB: May be this should be a hook. */
399 static void
400 copy_target_context (tc_t to, tc_t from)
401 {
402 tc_t tmp = create_target_context (false);
403
404 set_target_context (from);
405 init_target_context (to, false);
406
407 set_target_context (tmp);
408 delete_target_context (tmp);
409 }
410
411 /* Create a copy of TC. */
412 static tc_t
413 create_copy_of_target_context (tc_t tc)
414 {
415 tc_t copy = alloc_target_context ();
416
417 copy_target_context (copy, tc);
418
419 return copy;
420 }
421
422 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
423 is the same as in init_target_context (). */
424 void
425 reset_target_context (tc_t tc, bool clean_p)
426 {
427 clear_target_context (tc);
428 init_target_context (tc, clean_p);
429 }
430 \f
431 /* Functions to work with dependence contexts.
432 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
433 context. It accumulates information about processed insns to decide if
434 current insn is dependent on the processed ones. */
435
436 /* Make a copy of FROM in TO. */
437 static void
438 copy_deps_context (deps_t to, deps_t from)
439 {
440 init_deps (to, false);
441 deps_join (to, from);
442 }
443
444 /* Allocate store for dep context. */
445 static deps_t
446 alloc_deps_context (void)
447 {
448 return XNEW (struct deps_desc);
449 }
450
451 /* Allocate and initialize dep context. */
452 static deps_t
453 create_deps_context (void)
454 {
455 deps_t dc = alloc_deps_context ();
456
457 init_deps (dc, false);
458 return dc;
459 }
460
461 /* Create a copy of FROM. */
462 static deps_t
463 create_copy_of_deps_context (deps_t from)
464 {
465 deps_t to = alloc_deps_context ();
466
467 copy_deps_context (to, from);
468 return to;
469 }
470
471 /* Clean up internal data of DC. */
472 static void
473 clear_deps_context (deps_t dc)
474 {
475 free_deps (dc);
476 }
477
478 /* Clear and free DC. */
479 static void
480 delete_deps_context (deps_t dc)
481 {
482 clear_deps_context (dc);
483 free (dc);
484 }
485
486 /* Clear and init DC. */
487 static void
488 reset_deps_context (deps_t dc)
489 {
490 clear_deps_context (dc);
491 init_deps (dc, false);
492 }
493
494 /* This structure describes the dependence analysis hooks for advancing
495 dependence context. */
496 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
497 {
498 NULL,
499
500 NULL, /* start_insn */
501 NULL, /* finish_insn */
502 NULL, /* start_lhs */
503 NULL, /* finish_lhs */
504 NULL, /* start_rhs */
505 NULL, /* finish_rhs */
506 haifa_note_reg_set,
507 haifa_note_reg_clobber,
508 haifa_note_reg_use,
509 NULL, /* note_mem_dep */
510 NULL, /* note_dep */
511
512 0, 0, 0
513 };
514
515 /* Process INSN and add its impact on DC. */
516 void
517 advance_deps_context (deps_t dc, insn_t insn)
518 {
519 sched_deps_info = &advance_deps_context_sched_deps_info;
520 deps_analyze_insn (dc, insn);
521 }
522 \f
523
524 /* Functions to work with DFA states. */
525
526 /* Allocate store for a DFA state. */
527 static state_t
528 state_alloc (void)
529 {
530 return xmalloc (dfa_state_size);
531 }
532
533 /* Allocate and initialize DFA state. */
534 static state_t
535 state_create (void)
536 {
537 state_t state = state_alloc ();
538
539 state_reset (state);
540 advance_state (state);
541 return state;
542 }
543
544 /* Free DFA state. */
545 static void
546 state_free (state_t state)
547 {
548 free (state);
549 }
550
551 /* Make a copy of FROM in TO. */
552 static void
553 state_copy (state_t to, state_t from)
554 {
555 memcpy (to, from, dfa_state_size);
556 }
557
558 /* Create a copy of FROM. */
559 static state_t
560 state_create_copy (state_t from)
561 {
562 state_t to = state_alloc ();
563
564 state_copy (to, from);
565 return to;
566 }
567 \f
568
569 /* Functions to work with fences. */
570
571 /* Clear the fence. */
572 static void
573 fence_clear (fence_t f)
574 {
575 state_t s = FENCE_STATE (f);
576 deps_t dc = FENCE_DC (f);
577 void *tc = FENCE_TC (f);
578
579 ilist_clear (&FENCE_BNDS (f));
580
581 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
582 || (s == NULL && dc == NULL && tc == NULL));
583
584 free (s);
585
586 if (dc != NULL)
587 delete_deps_context (dc);
588
589 if (tc != NULL)
590 delete_target_context (tc);
591 vec_free (FENCE_EXECUTING_INSNS (f));
592 free (FENCE_READY_TICKS (f));
593 FENCE_READY_TICKS (f) = NULL;
594 }
595
596 /* Init a list of fences with successors of OLD_FENCE. */
597 void
598 init_fences (insn_t old_fence)
599 {
600 insn_t succ;
601 succ_iterator si;
602 bool first = true;
603 int ready_ticks_size = get_max_uid () + 1;
604
605 FOR_EACH_SUCC_1 (succ, si, old_fence,
606 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
607 {
608
609 if (first)
610 first = false;
611 else
612 gcc_assert (flag_sel_sched_pipelining_outer_loops);
613
614 flist_add (&fences, succ,
615 state_create (),
616 create_deps_context () /* dc */,
617 create_target_context (true) /* tc */,
618 NULL_RTX /* last_scheduled_insn */,
619 NULL, /* executing_insns */
620 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621 ready_ticks_size,
622 NULL_RTX /* sched_next */,
623 1 /* cycle */, 0 /* cycle_issued_insns */,
624 issue_rate, /* issue_more */
625 1 /* starts_cycle_p */, 0 /* after_stall_p */);
626 }
627 }
628
629 /* Merges two fences (filling fields of fence F with resulting values) by
630 following rules: 1) state, target context and last scheduled insn are
631 propagated from fallthrough edge if it is available;
632 2) deps context and cycle is propagated from more probable edge;
633 3) all other fields are set to corresponding constant values.
634
635 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
636 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637 and AFTER_STALL_P are the corresponding fields of the second fence. */
638 static void
639 merge_fences (fence_t f, insn_t insn,
640 state_t state, deps_t dc, void *tc,
641 rtx last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
642 int *ready_ticks, int ready_ticks_size,
643 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
644 {
645 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648 && !sched_next && !FENCE_SCHED_NEXT (f));
649
650 /* Check if we can decide which path fences came.
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn == NULL
653 || last_scheduled_insn_old == NULL
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn == last_scheduled_insn_old)
659 {
660 state_reset (FENCE_STATE (f));
661 state_free (state);
662
663 reset_deps_context (FENCE_DC (f));
664 delete_deps_context (dc);
665
666 reset_target_context (FENCE_TC (f), true);
667 delete_target_context (tc);
668
669 if (cycle > FENCE_CYCLE (f))
670 FENCE_CYCLE (f) = cycle;
671
672 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
673 FENCE_ISSUE_MORE (f) = issue_rate;
674 vec_free (executing_insns);
675 free (ready_ticks);
676 if (FENCE_EXECUTING_INSNS (f))
677 FENCE_EXECUTING_INSNS (f)->block_remove (0,
678 FENCE_EXECUTING_INSNS (f)->length ());
679 if (FENCE_READY_TICKS (f))
680 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681 }
682 else
683 {
684 edge edge_old = NULL, edge_new = NULL;
685 edge candidate;
686 succ_iterator si;
687 insn_t succ;
688
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
691 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
692
693 if (!candidate
694 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696 {
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f));
699 state_free (state);
700
701 reset_target_context (FENCE_TC (f), true);
702 delete_target_context (tc);
703
704 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
705 FENCE_ISSUE_MORE (f) = issue_rate;
706 }
707 else
708 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709 {
710 /* Would be weird if same insn is successor of several fallthrough
711 edges. */
712 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old));
714
715 state_free (FENCE_STATE (f));
716 FENCE_STATE (f) = state;
717
718 delete_target_context (FENCE_TC (f));
719 FENCE_TC (f) = tc;
720
721 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
722 FENCE_ISSUE_MORE (f) = issue_more;
723 }
724 else
725 {
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
727 state_free (state);
728 delete_target_context (tc);
729
730 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn));
732 }
733
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737 {
738 if (succ == insn)
739 {
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old);
742 edge_old = si.e1;
743 }
744 }
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748 {
749 if (succ == insn)
750 {
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new);
753 edge_new = si.e1;
754 }
755 }
756
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old == NULL || edge_new == NULL)
759 {
760 reset_deps_context (FENCE_DC (f));
761 delete_deps_context (dc);
762 vec_free (executing_insns);
763 free (ready_ticks);
764
765 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766 if (FENCE_EXECUTING_INSNS (f))
767 FENCE_EXECUTING_INSNS (f)->block_remove (0,
768 FENCE_EXECUTING_INSNS (f)->length ());
769 if (FENCE_READY_TICKS (f))
770 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771 }
772 else
773 if (edge_new->probability > edge_old->probability)
774 {
775 delete_deps_context (FENCE_DC (f));
776 FENCE_DC (f) = dc;
777 vec_free (FENCE_EXECUTING_INSNS (f));
778 FENCE_EXECUTING_INSNS (f) = executing_insns;
779 free (FENCE_READY_TICKS (f));
780 FENCE_READY_TICKS (f) = ready_ticks;
781 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782 FENCE_CYCLE (f) = cycle;
783 }
784 else
785 {
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc);
788 vec_free (executing_insns);
789 free (ready_ticks);
790 }
791 }
792
793 /* Fill remaining invariant fields. */
794 if (after_stall_p)
795 FENCE_AFTER_STALL_P (f) = 1;
796
797 FENCE_ISSUED_INSNS (f) = 0;
798 FENCE_STARTS_CYCLE_P (f) = 1;
799 FENCE_SCHED_NEXT (f) = NULL;
800 }
801
802 /* Add a new fence to NEW_FENCES list, initializing it from all
803 other parameters. */
804 static void
805 add_to_fences (flist_tail_t new_fences, insn_t insn,
806 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807 vec<rtx, va_gc> *executing_insns, int *ready_ticks,
808 int ready_ticks_size, rtx sched_next, int cycle,
809 int cycle_issued_insns, int issue_rate,
810 bool starts_cycle_p, bool after_stall_p)
811 {
812 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
813
814 if (! f)
815 {
816 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
817 last_scheduled_insn, executing_insns, ready_ticks,
818 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
819 issue_rate, starts_cycle_p, after_stall_p);
820
821 FLIST_TAIL_TAILP (new_fences)
822 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
823 }
824 else
825 {
826 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827 executing_insns, ready_ticks, ready_ticks_size,
828 sched_next, cycle, issue_rate, after_stall_p);
829 }
830 }
831
832 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
833 void
834 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
835 {
836 fence_t f, old;
837 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
838
839 old = FLIST_FENCE (old_fences);
840 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
841 FENCE_INSN (FLIST_FENCE (old_fences)));
842 if (f)
843 {
844 merge_fences (f, old->insn, old->state, old->dc, old->tc,
845 old->last_scheduled_insn, old->executing_insns,
846 old->ready_ticks, old->ready_ticks_size,
847 old->sched_next, old->cycle, old->issue_more,
848 old->after_stall_p);
849 }
850 else
851 {
852 _list_add (tailp);
853 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854 *FLIST_FENCE (*tailp) = *old;
855 init_fence_for_scheduling (FLIST_FENCE (*tailp));
856 }
857 FENCE_INSN (old) = NULL;
858 }
859
860 /* Add a new fence to NEW_FENCES list and initialize most of its data
861 as a clean one. */
862 void
863 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
864 {
865 int ready_ticks_size = get_max_uid () + 1;
866
867 add_to_fences (new_fences,
868 succ, state_create (), create_deps_context (),
869 create_target_context (true),
870 NULL_RTX, NULL,
871 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872 NULL_RTX, FENCE_CYCLE (fence) + 1,
873 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
874 }
875
876 /* Add a new fence to NEW_FENCES list and initialize all of its data
877 from FENCE and SUCC. */
878 void
879 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880 {
881 int * new_ready_ticks
882 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
883
884 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886 add_to_fences (new_fences,
887 succ, state_create_copy (FENCE_STATE (fence)),
888 create_copy_of_deps_context (FENCE_DC (fence)),
889 create_copy_of_target_context (FENCE_TC (fence)),
890 FENCE_LAST_SCHEDULED_INSN (fence),
891 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
892 new_ready_ticks,
893 FENCE_READY_TICKS_SIZE (fence),
894 FENCE_SCHED_NEXT (fence),
895 FENCE_CYCLE (fence),
896 FENCE_ISSUED_INSNS (fence),
897 FENCE_ISSUE_MORE (fence),
898 FENCE_STARTS_CYCLE_P (fence),
899 FENCE_AFTER_STALL_P (fence));
900 }
901 \f
902
903 /* Functions to work with regset and nop pools. */
904
905 /* Returns the new regset from pool. It might have some of the bits set
906 from the previous usage. */
907 regset
908 get_regset_from_pool (void)
909 {
910 regset rs;
911
912 if (regset_pool.n != 0)
913 rs = regset_pool.v[--regset_pool.n];
914 else
915 /* We need to create the regset. */
916 {
917 rs = ALLOC_REG_SET (&reg_obstack);
918
919 if (regset_pool.nn == regset_pool.ss)
920 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921 (regset_pool.ss = 2 * regset_pool.ss + 1));
922 regset_pool.vv[regset_pool.nn++] = rs;
923 }
924
925 regset_pool.diff++;
926
927 return rs;
928 }
929
930 /* Same as above, but returns the empty regset. */
931 regset
932 get_clear_regset_from_pool (void)
933 {
934 regset rs = get_regset_from_pool ();
935
936 CLEAR_REG_SET (rs);
937 return rs;
938 }
939
940 /* Return regset RS to the pool for future use. */
941 void
942 return_regset_to_pool (regset rs)
943 {
944 gcc_assert (rs);
945 regset_pool.diff--;
946
947 if (regset_pool.n == regset_pool.s)
948 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
949 (regset_pool.s = 2 * regset_pool.s + 1));
950 regset_pool.v[regset_pool.n++] = rs;
951 }
952
953 #ifdef ENABLE_CHECKING
954 /* This is used as a qsort callback for sorting regset pool stacks.
955 X and XX are addresses of two regsets. They are never equal. */
956 static int
957 cmp_v_in_regset_pool (const void *x, const void *xx)
958 {
959 uintptr_t r1 = (uintptr_t) *((const regset *) x);
960 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
961 if (r1 > r2)
962 return 1;
963 else if (r1 < r2)
964 return -1;
965 gcc_unreachable ();
966 }
967 #endif
968
969 /* Free the regset pool possibly checking for memory leaks. */
970 void
971 free_regset_pool (void)
972 {
973 #ifdef ENABLE_CHECKING
974 {
975 regset *v = regset_pool.v;
976 int i = 0;
977 int n = regset_pool.n;
978
979 regset *vv = regset_pool.vv;
980 int ii = 0;
981 int nn = regset_pool.nn;
982
983 int diff = 0;
984
985 gcc_assert (n <= nn);
986
987 /* Sort both vectors so it will be possible to compare them. */
988 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
989 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
990
991 while (ii < nn)
992 {
993 if (v[i] == vv[ii])
994 i++;
995 else
996 /* VV[II] was lost. */
997 diff++;
998
999 ii++;
1000 }
1001
1002 gcc_assert (diff == regset_pool.diff);
1003 }
1004 #endif
1005
1006 /* If not true - we have a memory leak. */
1007 gcc_assert (regset_pool.diff == 0);
1008
1009 while (regset_pool.n)
1010 {
1011 --regset_pool.n;
1012 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1013 }
1014
1015 free (regset_pool.v);
1016 regset_pool.v = NULL;
1017 regset_pool.s = 0;
1018
1019 free (regset_pool.vv);
1020 regset_pool.vv = NULL;
1021 regset_pool.nn = 0;
1022 regset_pool.ss = 0;
1023
1024 regset_pool.diff = 0;
1025 }
1026 \f
1027
1028 /* Functions to work with nop pools. NOP insns are used as temporary
1029 placeholders of the insns being scheduled to allow correct update of
1030 the data sets. When update is finished, NOPs are deleted. */
1031
1032 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1033 nops sel-sched generates. */
1034 static vinsn_t nop_vinsn = NULL;
1035
1036 /* Emit a nop before INSN, taking it from pool. */
1037 insn_t
1038 get_nop_from_pool (insn_t insn)
1039 {
1040 insn_t nop;
1041 bool old_p = nop_pool.n != 0;
1042 int flags;
1043
1044 if (old_p)
1045 nop = nop_pool.v[--nop_pool.n];
1046 else
1047 nop = nop_pattern;
1048
1049 nop = emit_insn_before (nop, insn);
1050
1051 if (old_p)
1052 flags = INSN_INIT_TODO_SSID;
1053 else
1054 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1055
1056 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1057 sel_init_new_insn (nop, flags);
1058
1059 return nop;
1060 }
1061
1062 /* Remove NOP from the instruction stream and return it to the pool. */
1063 void
1064 return_nop_to_pool (insn_t nop, bool full_tidying)
1065 {
1066 gcc_assert (INSN_IN_STREAM_P (nop));
1067 sel_remove_insn (nop, false, full_tidying);
1068
1069 if (nop_pool.n == nop_pool.s)
1070 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1071 (nop_pool.s = 2 * nop_pool.s + 1));
1072 nop_pool.v[nop_pool.n++] = nop;
1073 }
1074
1075 /* Free the nop pool. */
1076 void
1077 free_nop_pool (void)
1078 {
1079 nop_pool.n = 0;
1080 nop_pool.s = 0;
1081 free (nop_pool.v);
1082 nop_pool.v = NULL;
1083 }
1084 \f
1085
1086 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1087 The callback is given two rtxes XX and YY and writes the new rtxes
1088 to NX and NY in case some needs to be skipped. */
1089 static int
1090 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1091 {
1092 const_rtx x = *xx;
1093 const_rtx y = *yy;
1094
1095 if (GET_CODE (x) == UNSPEC
1096 && (targetm.sched.skip_rtx_p == NULL
1097 || targetm.sched.skip_rtx_p (x)))
1098 {
1099 *nx = XVECEXP (x, 0, 0);
1100 *ny = CONST_CAST_RTX (y);
1101 return 1;
1102 }
1103
1104 if (GET_CODE (y) == UNSPEC
1105 && (targetm.sched.skip_rtx_p == NULL
1106 || targetm.sched.skip_rtx_p (y)))
1107 {
1108 *nx = CONST_CAST_RTX (x);
1109 *ny = XVECEXP (y, 0, 0);
1110 return 1;
1111 }
1112
1113 return 0;
1114 }
1115
1116 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1117 to support ia64 speculation. When changes are needed, new rtx X and new mode
1118 NMODE are written, and the callback returns true. */
1119 static int
1120 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1121 rtx *nx, enum machine_mode* nmode)
1122 {
1123 if (GET_CODE (x) == UNSPEC
1124 && targetm.sched.skip_rtx_p
1125 && targetm.sched.skip_rtx_p (x))
1126 {
1127 *nx = XVECEXP (x, 0 ,0);
1128 *nmode = VOIDmode;
1129 return 1;
1130 }
1131
1132 return 0;
1133 }
1134
1135 /* Returns LHS and RHS are ok to be scheduled separately. */
1136 static bool
1137 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1138 {
1139 if (lhs == NULL || rhs == NULL)
1140 return false;
1141
1142 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1143 to use reg, if const can be used. Moreover, scheduling const as rhs may
1144 lead to mode mismatch cause consts don't have modes but they could be
1145 merged from branches where the same const used in different modes. */
1146 if (CONSTANT_P (rhs))
1147 return false;
1148
1149 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1150 if (COMPARISON_P (rhs))
1151 return false;
1152
1153 /* Do not allow single REG to be an rhs. */
1154 if (REG_P (rhs))
1155 return false;
1156
1157 /* See comment at find_used_regs_1 (*1) for explanation of this
1158 restriction. */
1159 /* FIXME: remove this later. */
1160 if (MEM_P (lhs))
1161 return false;
1162
1163 /* This will filter all tricky things like ZERO_EXTRACT etc.
1164 For now we don't handle it. */
1165 if (!REG_P (lhs) && !MEM_P (lhs))
1166 return false;
1167
1168 return true;
1169 }
1170
1171 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1172 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1173 used e.g. for insns from recovery blocks. */
1174 static void
1175 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1176 {
1177 hash_rtx_callback_function hrcf;
1178 int insn_class;
1179
1180 VINSN_INSN_RTX (vi) = insn;
1181 VINSN_COUNT (vi) = 0;
1182 vi->cost = -1;
1183
1184 if (INSN_NOP_P (insn))
1185 return;
1186
1187 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1188 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1189 else
1190 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1191
1192 /* Hash vinsn depending on whether it is separable or not. */
1193 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1194 if (VINSN_SEPARABLE_P (vi))
1195 {
1196 rtx rhs = VINSN_RHS (vi);
1197
1198 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1199 NULL, NULL, false, hrcf);
1200 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1201 VOIDmode, NULL, NULL,
1202 false, hrcf);
1203 }
1204 else
1205 {
1206 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1207 NULL, NULL, false, hrcf);
1208 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1209 }
1210
1211 insn_class = haifa_classify_insn (insn);
1212 if (insn_class >= 2
1213 && (!targetm.sched.get_insn_spec_ds
1214 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1215 == 0)))
1216 VINSN_MAY_TRAP_P (vi) = true;
1217 else
1218 VINSN_MAY_TRAP_P (vi) = false;
1219 }
1220
1221 /* Indicate that VI has become the part of an rtx object. */
1222 void
1223 vinsn_attach (vinsn_t vi)
1224 {
1225 /* Assert that VI is not pending for deletion. */
1226 gcc_assert (VINSN_INSN_RTX (vi));
1227
1228 VINSN_COUNT (vi)++;
1229 }
1230
1231 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1232 VINSN_TYPE (VI). */
1233 static vinsn_t
1234 vinsn_create (insn_t insn, bool force_unique_p)
1235 {
1236 vinsn_t vi = XCNEW (struct vinsn_def);
1237
1238 vinsn_init (vi, insn, force_unique_p);
1239 return vi;
1240 }
1241
1242 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1243 the copy. */
1244 vinsn_t
1245 vinsn_copy (vinsn_t vi, bool reattach_p)
1246 {
1247 rtx copy;
1248 bool unique = VINSN_UNIQUE_P (vi);
1249 vinsn_t new_vi;
1250
1251 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1252 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1253 if (reattach_p)
1254 {
1255 vinsn_detach (vi);
1256 vinsn_attach (new_vi);
1257 }
1258
1259 return new_vi;
1260 }
1261
1262 /* Delete the VI vinsn and free its data. */
1263 static void
1264 vinsn_delete (vinsn_t vi)
1265 {
1266 gcc_assert (VINSN_COUNT (vi) == 0);
1267
1268 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1269 {
1270 return_regset_to_pool (VINSN_REG_SETS (vi));
1271 return_regset_to_pool (VINSN_REG_USES (vi));
1272 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1273 }
1274
1275 free (vi);
1276 }
1277
1278 /* Indicate that VI is no longer a part of some rtx object.
1279 Remove VI if it is no longer needed. */
1280 void
1281 vinsn_detach (vinsn_t vi)
1282 {
1283 gcc_assert (VINSN_COUNT (vi) > 0);
1284
1285 if (--VINSN_COUNT (vi) == 0)
1286 vinsn_delete (vi);
1287 }
1288
1289 /* Returns TRUE if VI is a branch. */
1290 bool
1291 vinsn_cond_branch_p (vinsn_t vi)
1292 {
1293 insn_t insn;
1294
1295 if (!VINSN_UNIQUE_P (vi))
1296 return false;
1297
1298 insn = VINSN_INSN_RTX (vi);
1299 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1300 return false;
1301
1302 return control_flow_insn_p (insn);
1303 }
1304
1305 /* Return latency of INSN. */
1306 static int
1307 sel_insn_rtx_cost (rtx insn)
1308 {
1309 int cost;
1310
1311 /* A USE insn, or something else we don't need to
1312 understand. We can't pass these directly to
1313 result_ready_cost or insn_default_latency because it will
1314 trigger a fatal error for unrecognizable insns. */
1315 if (recog_memoized (insn) < 0)
1316 cost = 0;
1317 else
1318 {
1319 cost = insn_default_latency (insn);
1320
1321 if (cost < 0)
1322 cost = 0;
1323 }
1324
1325 return cost;
1326 }
1327
1328 /* Return the cost of the VI.
1329 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1330 int
1331 sel_vinsn_cost (vinsn_t vi)
1332 {
1333 int cost = vi->cost;
1334
1335 if (cost < 0)
1336 {
1337 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1338 vi->cost = cost;
1339 }
1340
1341 return cost;
1342 }
1343 \f
1344
1345 /* Functions for insn emitting. */
1346
1347 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1348 EXPR and SEQNO. */
1349 insn_t
1350 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1351 {
1352 insn_t new_insn;
1353
1354 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1355
1356 new_insn = emit_insn_after (pattern, after);
1357 set_insn_init (expr, NULL, seqno);
1358 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1359
1360 return new_insn;
1361 }
1362
1363 /* Force newly generated vinsns to be unique. */
1364 static bool init_insn_force_unique_p = false;
1365
1366 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1367 initialize its data from EXPR and SEQNO. */
1368 insn_t
1369 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1370 insn_t after)
1371 {
1372 insn_t insn;
1373
1374 gcc_assert (!init_insn_force_unique_p);
1375
1376 init_insn_force_unique_p = true;
1377 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1378 CANT_MOVE (insn) = 1;
1379 init_insn_force_unique_p = false;
1380
1381 return insn;
1382 }
1383
1384 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1385 take it as a new vinsn instead of EXPR's vinsn.
1386 We simplify insns later, after scheduling region in
1387 simplify_changed_insns. */
1388 insn_t
1389 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1390 insn_t after)
1391 {
1392 expr_t emit_expr;
1393 insn_t insn;
1394 int flags;
1395
1396 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1397 seqno);
1398 insn = EXPR_INSN_RTX (emit_expr);
1399 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1400
1401 flags = INSN_INIT_TODO_SSID;
1402 if (INSN_LUID (insn) == 0)
1403 flags |= INSN_INIT_TODO_LUID;
1404 sel_init_new_insn (insn, flags);
1405
1406 return insn;
1407 }
1408
1409 /* Move insn from EXPR after AFTER. */
1410 insn_t
1411 sel_move_insn (expr_t expr, int seqno, insn_t after)
1412 {
1413 insn_t insn = EXPR_INSN_RTX (expr);
1414 basic_block bb = BLOCK_FOR_INSN (after);
1415 insn_t next = NEXT_INSN (after);
1416
1417 /* Assert that in move_op we disconnected this insn properly. */
1418 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1419 PREV_INSN (insn) = after;
1420 NEXT_INSN (insn) = next;
1421
1422 NEXT_INSN (after) = insn;
1423 PREV_INSN (next) = insn;
1424
1425 /* Update links from insn to bb and vice versa. */
1426 df_insn_change_bb (insn, bb);
1427 if (BB_END (bb) == after)
1428 BB_END (bb) = insn;
1429
1430 prepare_insn_expr (insn, seqno);
1431 return insn;
1432 }
1433
1434 \f
1435 /* Functions to work with right-hand sides. */
1436
1437 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1438 VECT and return true when found. Use NEW_VINSN for comparison only when
1439 COMPARE_VINSNS is true. Write to INDP the index on which
1440 the search has stopped, such that inserting the new element at INDP will
1441 retain VECT's sort order. */
1442 static bool
1443 find_in_history_vect_1 (vec<expr_history_def> vect,
1444 unsigned uid, vinsn_t new_vinsn,
1445 bool compare_vinsns, int *indp)
1446 {
1447 expr_history_def *arr;
1448 int i, j, len = vect.length ();
1449
1450 if (len == 0)
1451 {
1452 *indp = 0;
1453 return false;
1454 }
1455
1456 arr = vect.address ();
1457 i = 0, j = len - 1;
1458
1459 while (i <= j)
1460 {
1461 unsigned auid = arr[i].uid;
1462 vinsn_t avinsn = arr[i].new_expr_vinsn;
1463
1464 if (auid == uid
1465 /* When undoing transformation on a bookkeeping copy, the new vinsn
1466 may not be exactly equal to the one that is saved in the vector.
1467 This is because the insn whose copy we're checking was possibly
1468 substituted itself. */
1469 && (! compare_vinsns
1470 || vinsn_equal_p (avinsn, new_vinsn)))
1471 {
1472 *indp = i;
1473 return true;
1474 }
1475 else if (auid > uid)
1476 break;
1477 i++;
1478 }
1479
1480 *indp = i;
1481 return false;
1482 }
1483
1484 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1485 the position found or -1, if no such value is in vector.
1486 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1487 int
1488 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1489 vinsn_t new_vinsn, bool originators_p)
1490 {
1491 int ind;
1492
1493 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1494 false, &ind))
1495 return ind;
1496
1497 if (INSN_ORIGINATORS (insn) && originators_p)
1498 {
1499 unsigned uid;
1500 bitmap_iterator bi;
1501
1502 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1503 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1504 return ind;
1505 }
1506
1507 return -1;
1508 }
1509
1510 /* Insert new element in a sorted history vector pointed to by PVECT,
1511 if it is not there already. The element is searched using
1512 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1513 the history of a transformation. */
1514 void
1515 insert_in_history_vect (vec<expr_history_def> *pvect,
1516 unsigned uid, enum local_trans_type type,
1517 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1518 ds_t spec_ds)
1519 {
1520 vec<expr_history_def> vect = *pvect;
1521 expr_history_def temp;
1522 bool res;
1523 int ind;
1524
1525 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1526
1527 if (res)
1528 {
1529 expr_history_def *phist = &vect[ind];
1530
1531 /* It is possible that speculation types of expressions that were
1532 propagated through different paths will be different here. In this
1533 case, merge the status to get the correct check later. */
1534 if (phist->spec_ds != spec_ds)
1535 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1536 return;
1537 }
1538
1539 temp.uid = uid;
1540 temp.old_expr_vinsn = old_expr_vinsn;
1541 temp.new_expr_vinsn = new_expr_vinsn;
1542 temp.spec_ds = spec_ds;
1543 temp.type = type;
1544
1545 vinsn_attach (old_expr_vinsn);
1546 vinsn_attach (new_expr_vinsn);
1547 vect.safe_insert (ind, temp);
1548 *pvect = vect;
1549 }
1550
1551 /* Free history vector PVECT. */
1552 static void
1553 free_history_vect (vec<expr_history_def> &pvect)
1554 {
1555 unsigned i;
1556 expr_history_def *phist;
1557
1558 if (! pvect.exists ())
1559 return;
1560
1561 for (i = 0; pvect.iterate (i, &phist); i++)
1562 {
1563 vinsn_detach (phist->old_expr_vinsn);
1564 vinsn_detach (phist->new_expr_vinsn);
1565 }
1566
1567 pvect.release ();
1568 }
1569
1570 /* Merge vector FROM to PVECT. */
1571 static void
1572 merge_history_vect (vec<expr_history_def> *pvect,
1573 vec<expr_history_def> from)
1574 {
1575 expr_history_def *phist;
1576 int i;
1577
1578 /* We keep this vector sorted. */
1579 for (i = 0; from.iterate (i, &phist); i++)
1580 insert_in_history_vect (pvect, phist->uid, phist->type,
1581 phist->old_expr_vinsn, phist->new_expr_vinsn,
1582 phist->spec_ds);
1583 }
1584
1585 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1586 bool
1587 vinsn_equal_p (vinsn_t x, vinsn_t y)
1588 {
1589 rtx_equal_p_callback_function repcf;
1590
1591 if (x == y)
1592 return true;
1593
1594 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1595 return false;
1596
1597 if (VINSN_HASH (x) != VINSN_HASH (y))
1598 return false;
1599
1600 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1601 if (VINSN_SEPARABLE_P (x))
1602 {
1603 /* Compare RHSes of VINSNs. */
1604 gcc_assert (VINSN_RHS (x));
1605 gcc_assert (VINSN_RHS (y));
1606
1607 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1608 }
1609
1610 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1611 }
1612 \f
1613
1614 /* Functions for working with expressions. */
1615
1616 /* Initialize EXPR. */
1617 static void
1618 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1619 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1620 ds_t spec_to_check_ds, int orig_sched_cycle,
1621 vec<expr_history_def> history,
1622 signed char target_available,
1623 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1624 bool cant_move)
1625 {
1626 vinsn_attach (vi);
1627
1628 EXPR_VINSN (expr) = vi;
1629 EXPR_SPEC (expr) = spec;
1630 EXPR_USEFULNESS (expr) = use;
1631 EXPR_PRIORITY (expr) = priority;
1632 EXPR_PRIORITY_ADJ (expr) = 0;
1633 EXPR_SCHED_TIMES (expr) = sched_times;
1634 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1635 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1636 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1637 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1638
1639 if (history.exists ())
1640 EXPR_HISTORY_OF_CHANGES (expr) = history;
1641 else
1642 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1643
1644 EXPR_TARGET_AVAILABLE (expr) = target_available;
1645 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1646 EXPR_WAS_RENAMED (expr) = was_renamed;
1647 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1648 EXPR_CANT_MOVE (expr) = cant_move;
1649 }
1650
1651 /* Make a copy of the expr FROM into the expr TO. */
1652 void
1653 copy_expr (expr_t to, expr_t from)
1654 {
1655 vec<expr_history_def> temp = vNULL;
1656
1657 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1658 {
1659 unsigned i;
1660 expr_history_def *phist;
1661
1662 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1663 for (i = 0;
1664 temp.iterate (i, &phist);
1665 i++)
1666 {
1667 vinsn_attach (phist->old_expr_vinsn);
1668 vinsn_attach (phist->new_expr_vinsn);
1669 }
1670 }
1671
1672 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1673 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1674 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1675 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1676 EXPR_ORIG_SCHED_CYCLE (from), temp,
1677 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1678 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1679 EXPR_CANT_MOVE (from));
1680 }
1681
1682 /* Same, but the final expr will not ever be in av sets, so don't copy
1683 "uninteresting" data such as bitmap cache. */
1684 void
1685 copy_expr_onside (expr_t to, expr_t from)
1686 {
1687 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1688 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1689 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1690 vNULL,
1691 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1692 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1693 EXPR_CANT_MOVE (from));
1694 }
1695
1696 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1697 initializing new insns. */
1698 static void
1699 prepare_insn_expr (insn_t insn, int seqno)
1700 {
1701 expr_t expr = INSN_EXPR (insn);
1702 ds_t ds;
1703
1704 INSN_SEQNO (insn) = seqno;
1705 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1706 EXPR_SPEC (expr) = 0;
1707 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1708 EXPR_WAS_SUBSTITUTED (expr) = 0;
1709 EXPR_WAS_RENAMED (expr) = 0;
1710 EXPR_TARGET_AVAILABLE (expr) = 1;
1711 INSN_LIVE_VALID_P (insn) = false;
1712
1713 /* ??? If this expression is speculative, make its dependence
1714 as weak as possible. We can filter this expression later
1715 in process_spec_exprs, because we do not distinguish
1716 between the status we got during compute_av_set and the
1717 existing status. To be fixed. */
1718 ds = EXPR_SPEC_DONE_DS (expr);
1719 if (ds)
1720 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1721
1722 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1723 }
1724
1725 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1726 is non-null when expressions are merged from different successors at
1727 a split point. */
1728 static void
1729 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1730 {
1731 if (EXPR_TARGET_AVAILABLE (to) < 0
1732 || EXPR_TARGET_AVAILABLE (from) < 0)
1733 EXPR_TARGET_AVAILABLE (to) = -1;
1734 else
1735 {
1736 /* We try to detect the case when one of the expressions
1737 can only be reached through another one. In this case,
1738 we can do better. */
1739 if (split_point == NULL)
1740 {
1741 int toind, fromind;
1742
1743 toind = EXPR_ORIG_BB_INDEX (to);
1744 fromind = EXPR_ORIG_BB_INDEX (from);
1745
1746 if (toind && toind == fromind)
1747 /* Do nothing -- everything is done in
1748 merge_with_other_exprs. */
1749 ;
1750 else
1751 EXPR_TARGET_AVAILABLE (to) = -1;
1752 }
1753 else if (EXPR_TARGET_AVAILABLE (from) == 0
1754 && EXPR_LHS (from)
1755 && REG_P (EXPR_LHS (from))
1756 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1757 EXPR_TARGET_AVAILABLE (to) = -1;
1758 else
1759 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1760 }
1761 }
1762
1763 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1764 is non-null when expressions are merged from different successors at
1765 a split point. */
1766 static void
1767 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1768 {
1769 ds_t old_to_ds, old_from_ds;
1770
1771 old_to_ds = EXPR_SPEC_DONE_DS (to);
1772 old_from_ds = EXPR_SPEC_DONE_DS (from);
1773
1774 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1775 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1776 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1777
1778 /* When merging e.g. control & data speculative exprs, or a control
1779 speculative with a control&data speculative one, we really have
1780 to change vinsn too. Also, when speculative status is changed,
1781 we also need to record this as a transformation in expr's history. */
1782 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1783 {
1784 old_to_ds = ds_get_speculation_types (old_to_ds);
1785 old_from_ds = ds_get_speculation_types (old_from_ds);
1786
1787 if (old_to_ds != old_from_ds)
1788 {
1789 ds_t record_ds;
1790
1791 /* When both expressions are speculative, we need to change
1792 the vinsn first. */
1793 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1794 {
1795 int res;
1796
1797 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1798 gcc_assert (res >= 0);
1799 }
1800
1801 if (split_point != NULL)
1802 {
1803 /* Record the change with proper status. */
1804 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1805 record_ds &= ~(old_to_ds & SPECULATIVE);
1806 record_ds &= ~(old_from_ds & SPECULATIVE);
1807
1808 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1809 INSN_UID (split_point), TRANS_SPECULATION,
1810 EXPR_VINSN (from), EXPR_VINSN (to),
1811 record_ds);
1812 }
1813 }
1814 }
1815 }
1816
1817
1818 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1819 this is done along different paths. */
1820 void
1821 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1822 {
1823 /* Choose the maximum of the specs of merged exprs. This is required
1824 for correctness of bookkeeping. */
1825 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1826 EXPR_SPEC (to) = EXPR_SPEC (from);
1827
1828 if (split_point)
1829 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1830 else
1831 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1832 EXPR_USEFULNESS (from));
1833
1834 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1835 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1836
1837 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1838 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1839
1840 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1841 EXPR_ORIG_BB_INDEX (to) = 0;
1842
1843 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1844 EXPR_ORIG_SCHED_CYCLE (from));
1845
1846 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1847 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1848 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1849
1850 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1851 EXPR_HISTORY_OF_CHANGES (from));
1852 update_target_availability (to, from, split_point);
1853 update_speculative_bits (to, from, split_point);
1854 }
1855
1856 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1857 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1858 are merged from different successors at a split point. */
1859 void
1860 merge_expr (expr_t to, expr_t from, insn_t split_point)
1861 {
1862 vinsn_t to_vi = EXPR_VINSN (to);
1863 vinsn_t from_vi = EXPR_VINSN (from);
1864
1865 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1866
1867 /* Make sure that speculative pattern is propagated into exprs that
1868 have non-speculative one. This will provide us with consistent
1869 speculative bits and speculative patterns inside expr. */
1870 if (EXPR_SPEC_DONE_DS (to) == 0
1871 && EXPR_SPEC_DONE_DS (from) != 0)
1872 change_vinsn_in_expr (to, EXPR_VINSN (from));
1873
1874 merge_expr_data (to, from, split_point);
1875 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1876 }
1877
1878 /* Clear the information of this EXPR. */
1879 void
1880 clear_expr (expr_t expr)
1881 {
1882
1883 vinsn_detach (EXPR_VINSN (expr));
1884 EXPR_VINSN (expr) = NULL;
1885
1886 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1887 }
1888
1889 /* For a given LV_SET, mark EXPR having unavailable target register. */
1890 static void
1891 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1892 {
1893 if (EXPR_SEPARABLE_P (expr))
1894 {
1895 if (REG_P (EXPR_LHS (expr))
1896 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1897 {
1898 /* If it's an insn like r1 = use (r1, ...), and it exists in
1899 different forms in each of the av_sets being merged, we can't say
1900 whether original destination register is available or not.
1901 However, this still works if destination register is not used
1902 in the original expression: if the branch at which LV_SET we're
1903 looking here is not actually 'other branch' in sense that same
1904 expression is available through it (but it can't be determined
1905 at computation stage because of transformations on one of the
1906 branches), it still won't affect the availability.
1907 Liveness of a register somewhere on a code motion path means
1908 it's either read somewhere on a codemotion path, live on
1909 'other' branch, live at the point immediately following
1910 the original operation, or is read by the original operation.
1911 The latter case is filtered out in the condition below.
1912 It still doesn't cover the case when register is defined and used
1913 somewhere within the code motion path, and in this case we could
1914 miss a unifying code motion along both branches using a renamed
1915 register, but it won't affect a code correctness since upon
1916 an actual code motion a bookkeeping code would be generated. */
1917 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1918 EXPR_LHS (expr)))
1919 EXPR_TARGET_AVAILABLE (expr) = -1;
1920 else
1921 EXPR_TARGET_AVAILABLE (expr) = false;
1922 }
1923 }
1924 else
1925 {
1926 unsigned regno;
1927 reg_set_iterator rsi;
1928
1929 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1930 0, regno, rsi)
1931 if (bitmap_bit_p (lv_set, regno))
1932 {
1933 EXPR_TARGET_AVAILABLE (expr) = false;
1934 break;
1935 }
1936
1937 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1938 0, regno, rsi)
1939 if (bitmap_bit_p (lv_set, regno))
1940 {
1941 EXPR_TARGET_AVAILABLE (expr) = false;
1942 break;
1943 }
1944 }
1945 }
1946
1947 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1948 or dependence status have changed, 2 when also the target register
1949 became unavailable, 0 if nothing had to be changed. */
1950 int
1951 speculate_expr (expr_t expr, ds_t ds)
1952 {
1953 int res;
1954 rtx orig_insn_rtx;
1955 rtx spec_pat;
1956 ds_t target_ds, current_ds;
1957
1958 /* Obtain the status we need to put on EXPR. */
1959 target_ds = (ds & SPECULATIVE);
1960 current_ds = EXPR_SPEC_DONE_DS (expr);
1961 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1962
1963 orig_insn_rtx = EXPR_INSN_RTX (expr);
1964
1965 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1966
1967 switch (res)
1968 {
1969 case 0:
1970 EXPR_SPEC_DONE_DS (expr) = ds;
1971 return current_ds != ds ? 1 : 0;
1972
1973 case 1:
1974 {
1975 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1976 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1977
1978 change_vinsn_in_expr (expr, spec_vinsn);
1979 EXPR_SPEC_DONE_DS (expr) = ds;
1980 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1981
1982 /* Do not allow clobbering the address register of speculative
1983 insns. */
1984 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1985 expr_dest_reg (expr)))
1986 {
1987 EXPR_TARGET_AVAILABLE (expr) = false;
1988 return 2;
1989 }
1990
1991 return 1;
1992 }
1993
1994 case -1:
1995 return -1;
1996
1997 default:
1998 gcc_unreachable ();
1999 return -1;
2000 }
2001 }
2002
2003 /* Return a destination register, if any, of EXPR. */
2004 rtx
2005 expr_dest_reg (expr_t expr)
2006 {
2007 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2008
2009 if (dest != NULL_RTX && REG_P (dest))
2010 return dest;
2011
2012 return NULL_RTX;
2013 }
2014
2015 /* Returns the REGNO of the R's destination. */
2016 unsigned
2017 expr_dest_regno (expr_t expr)
2018 {
2019 rtx dest = expr_dest_reg (expr);
2020
2021 gcc_assert (dest != NULL_RTX);
2022 return REGNO (dest);
2023 }
2024
2025 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2026 AV_SET having unavailable target register. */
2027 void
2028 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2029 {
2030 expr_t expr;
2031 av_set_iterator avi;
2032
2033 FOR_EACH_EXPR (expr, avi, join_set)
2034 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2035 set_unavailable_target_for_expr (expr, lv_set);
2036 }
2037 \f
2038
2039 /* Returns true if REG (at least partially) is present in REGS. */
2040 bool
2041 register_unavailable_p (regset regs, rtx reg)
2042 {
2043 unsigned regno, end_regno;
2044
2045 regno = REGNO (reg);
2046 if (bitmap_bit_p (regs, regno))
2047 return true;
2048
2049 end_regno = END_REGNO (reg);
2050
2051 while (++regno < end_regno)
2052 if (bitmap_bit_p (regs, regno))
2053 return true;
2054
2055 return false;
2056 }
2057
2058 /* Av set functions. */
2059
2060 /* Add a new element to av set SETP.
2061 Return the element added. */
2062 static av_set_t
2063 av_set_add_element (av_set_t *setp)
2064 {
2065 /* Insert at the beginning of the list. */
2066 _list_add (setp);
2067 return *setp;
2068 }
2069
2070 /* Add EXPR to SETP. */
2071 void
2072 av_set_add (av_set_t *setp, expr_t expr)
2073 {
2074 av_set_t elem;
2075
2076 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2077 elem = av_set_add_element (setp);
2078 copy_expr (_AV_SET_EXPR (elem), expr);
2079 }
2080
2081 /* Same, but do not copy EXPR. */
2082 static void
2083 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2084 {
2085 av_set_t elem;
2086
2087 elem = av_set_add_element (setp);
2088 *_AV_SET_EXPR (elem) = *expr;
2089 }
2090
2091 /* Remove expr pointed to by IP from the av_set. */
2092 void
2093 av_set_iter_remove (av_set_iterator *ip)
2094 {
2095 clear_expr (_AV_SET_EXPR (*ip->lp));
2096 _list_iter_remove (ip);
2097 }
2098
2099 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2100 sense of vinsn_equal_p function. Return NULL if no such expr is
2101 in SET was found. */
2102 expr_t
2103 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2104 {
2105 expr_t expr;
2106 av_set_iterator i;
2107
2108 FOR_EACH_EXPR (expr, i, set)
2109 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2110 return expr;
2111 return NULL;
2112 }
2113
2114 /* Same, but also remove the EXPR found. */
2115 static expr_t
2116 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2117 {
2118 expr_t expr;
2119 av_set_iterator i;
2120
2121 FOR_EACH_EXPR_1 (expr, i, setp)
2122 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2123 {
2124 _list_iter_remove_nofree (&i);
2125 return expr;
2126 }
2127 return NULL;
2128 }
2129
2130 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2131 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2132 Returns NULL if no such expr is in SET was found. */
2133 static expr_t
2134 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2135 {
2136 expr_t cur_expr;
2137 av_set_iterator i;
2138
2139 FOR_EACH_EXPR (cur_expr, i, set)
2140 {
2141 if (cur_expr == expr)
2142 continue;
2143 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2144 return cur_expr;
2145 }
2146
2147 return NULL;
2148 }
2149
2150 /* If other expression is already in AVP, remove one of them. */
2151 expr_t
2152 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2153 {
2154 expr_t expr2;
2155
2156 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2157 if (expr2 != NULL)
2158 {
2159 /* Reset target availability on merge, since taking it only from one
2160 of the exprs would be controversial for different code. */
2161 EXPR_TARGET_AVAILABLE (expr2) = -1;
2162 EXPR_USEFULNESS (expr2) = 0;
2163
2164 merge_expr (expr2, expr, NULL);
2165
2166 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2167 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2168
2169 av_set_iter_remove (ip);
2170 return expr2;
2171 }
2172
2173 return expr;
2174 }
2175
2176 /* Return true if there is an expr that correlates to VI in SET. */
2177 bool
2178 av_set_is_in_p (av_set_t set, vinsn_t vi)
2179 {
2180 return av_set_lookup (set, vi) != NULL;
2181 }
2182
2183 /* Return a copy of SET. */
2184 av_set_t
2185 av_set_copy (av_set_t set)
2186 {
2187 expr_t expr;
2188 av_set_iterator i;
2189 av_set_t res = NULL;
2190
2191 FOR_EACH_EXPR (expr, i, set)
2192 av_set_add (&res, expr);
2193
2194 return res;
2195 }
2196
2197 /* Join two av sets that do not have common elements by attaching second set
2198 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2199 _AV_SET_NEXT of first set's last element). */
2200 static void
2201 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2202 {
2203 gcc_assert (*to_tailp == NULL);
2204 *to_tailp = *fromp;
2205 *fromp = NULL;
2206 }
2207
2208 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2209 pointed to by FROMP afterwards. */
2210 void
2211 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2212 {
2213 expr_t expr1;
2214 av_set_iterator i;
2215
2216 /* Delete from TOP all exprs, that present in FROMP. */
2217 FOR_EACH_EXPR_1 (expr1, i, top)
2218 {
2219 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2220
2221 if (expr2)
2222 {
2223 merge_expr (expr2, expr1, insn);
2224 av_set_iter_remove (&i);
2225 }
2226 }
2227
2228 join_distinct_sets (i.lp, fromp);
2229 }
2230
2231 /* Same as above, but also update availability of target register in
2232 TOP judging by TO_LV_SET and FROM_LV_SET. */
2233 void
2234 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2235 regset from_lv_set, insn_t insn)
2236 {
2237 expr_t expr1;
2238 av_set_iterator i;
2239 av_set_t *to_tailp, in_both_set = NULL;
2240
2241 /* Delete from TOP all expres, that present in FROMP. */
2242 FOR_EACH_EXPR_1 (expr1, i, top)
2243 {
2244 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2245
2246 if (expr2)
2247 {
2248 /* It may be that the expressions have different destination
2249 registers, in which case we need to check liveness here. */
2250 if (EXPR_SEPARABLE_P (expr1))
2251 {
2252 int regno1 = (REG_P (EXPR_LHS (expr1))
2253 ? (int) expr_dest_regno (expr1) : -1);
2254 int regno2 = (REG_P (EXPR_LHS (expr2))
2255 ? (int) expr_dest_regno (expr2) : -1);
2256
2257 /* ??? We don't have a way to check restrictions for
2258 *other* register on the current path, we did it only
2259 for the current target register. Give up. */
2260 if (regno1 != regno2)
2261 EXPR_TARGET_AVAILABLE (expr2) = -1;
2262 }
2263 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2264 EXPR_TARGET_AVAILABLE (expr2) = -1;
2265
2266 merge_expr (expr2, expr1, insn);
2267 av_set_add_nocopy (&in_both_set, expr2);
2268 av_set_iter_remove (&i);
2269 }
2270 else
2271 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2272 FROM_LV_SET. */
2273 set_unavailable_target_for_expr (expr1, from_lv_set);
2274 }
2275 to_tailp = i.lp;
2276
2277 /* These expressions are not present in TOP. Check liveness
2278 restrictions on TO_LV_SET. */
2279 FOR_EACH_EXPR (expr1, i, *fromp)
2280 set_unavailable_target_for_expr (expr1, to_lv_set);
2281
2282 join_distinct_sets (i.lp, &in_both_set);
2283 join_distinct_sets (to_tailp, fromp);
2284 }
2285
2286 /* Clear av_set pointed to by SETP. */
2287 void
2288 av_set_clear (av_set_t *setp)
2289 {
2290 expr_t expr;
2291 av_set_iterator i;
2292
2293 FOR_EACH_EXPR_1 (expr, i, setp)
2294 av_set_iter_remove (&i);
2295
2296 gcc_assert (*setp == NULL);
2297 }
2298
2299 /* Leave only one non-speculative element in the SETP. */
2300 void
2301 av_set_leave_one_nonspec (av_set_t *setp)
2302 {
2303 expr_t expr;
2304 av_set_iterator i;
2305 bool has_one_nonspec = false;
2306
2307 /* Keep all speculative exprs, and leave one non-speculative
2308 (the first one). */
2309 FOR_EACH_EXPR_1 (expr, i, setp)
2310 {
2311 if (!EXPR_SPEC_DONE_DS (expr))
2312 {
2313 if (has_one_nonspec)
2314 av_set_iter_remove (&i);
2315 else
2316 has_one_nonspec = true;
2317 }
2318 }
2319 }
2320
2321 /* Return the N'th element of the SET. */
2322 expr_t
2323 av_set_element (av_set_t set, int n)
2324 {
2325 expr_t expr;
2326 av_set_iterator i;
2327
2328 FOR_EACH_EXPR (expr, i, set)
2329 if (n-- == 0)
2330 return expr;
2331
2332 gcc_unreachable ();
2333 return NULL;
2334 }
2335
2336 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2337 void
2338 av_set_substract_cond_branches (av_set_t *avp)
2339 {
2340 av_set_iterator i;
2341 expr_t expr;
2342
2343 FOR_EACH_EXPR_1 (expr, i, avp)
2344 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2345 av_set_iter_remove (&i);
2346 }
2347
2348 /* Multiplies usefulness attribute of each member of av-set *AVP by
2349 value PROB / ALL_PROB. */
2350 void
2351 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2352 {
2353 av_set_iterator i;
2354 expr_t expr;
2355
2356 FOR_EACH_EXPR (expr, i, av)
2357 EXPR_USEFULNESS (expr) = (all_prob
2358 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2359 : 0);
2360 }
2361
2362 /* Leave in AVP only those expressions, which are present in AV,
2363 and return it, merging history expressions. */
2364 void
2365 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2366 {
2367 av_set_iterator i;
2368 expr_t expr, expr2;
2369
2370 FOR_EACH_EXPR_1 (expr, i, avp)
2371 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2372 av_set_iter_remove (&i);
2373 else
2374 /* When updating av sets in bookkeeping blocks, we can add more insns
2375 there which will be transformed but the upper av sets will not
2376 reflect those transformations. We then fail to undo those
2377 when searching for such insns. So merge the history saved
2378 in the av set of the block we are processing. */
2379 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2380 EXPR_HISTORY_OF_CHANGES (expr2));
2381 }
2382
2383 \f
2384
2385 /* Dependence hooks to initialize insn data. */
2386
2387 /* This is used in hooks callable from dependence analysis when initializing
2388 instruction's data. */
2389 static struct
2390 {
2391 /* Where the dependence was found (lhs/rhs). */
2392 deps_where_t where;
2393
2394 /* The actual data object to initialize. */
2395 idata_t id;
2396
2397 /* True when the insn should not be made clonable. */
2398 bool force_unique_p;
2399
2400 /* True when insn should be treated as of type USE, i.e. never renamed. */
2401 bool force_use_p;
2402 } deps_init_id_data;
2403
2404
2405 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2406 clonable. */
2407 static void
2408 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2409 {
2410 int type;
2411
2412 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2413 That clonable insns which can be separated into lhs and rhs have type SET.
2414 Other clonable insns have type USE. */
2415 type = GET_CODE (insn);
2416
2417 /* Only regular insns could be cloned. */
2418 if (type == INSN && !force_unique_p)
2419 type = SET;
2420 else if (type == JUMP_INSN && simplejump_p (insn))
2421 type = PC;
2422 else if (type == DEBUG_INSN)
2423 type = !force_unique_p ? USE : INSN;
2424
2425 IDATA_TYPE (id) = type;
2426 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2427 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2428 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2429 }
2430
2431 /* Start initializing insn data. */
2432 static void
2433 deps_init_id_start_insn (insn_t insn)
2434 {
2435 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2436
2437 setup_id_for_insn (deps_init_id_data.id, insn,
2438 deps_init_id_data.force_unique_p);
2439 deps_init_id_data.where = DEPS_IN_INSN;
2440 }
2441
2442 /* Start initializing lhs data. */
2443 static void
2444 deps_init_id_start_lhs (rtx lhs)
2445 {
2446 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2447 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2448
2449 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2450 {
2451 IDATA_LHS (deps_init_id_data.id) = lhs;
2452 deps_init_id_data.where = DEPS_IN_LHS;
2453 }
2454 }
2455
2456 /* Finish initializing lhs data. */
2457 static void
2458 deps_init_id_finish_lhs (void)
2459 {
2460 deps_init_id_data.where = DEPS_IN_INSN;
2461 }
2462
2463 /* Note a set of REGNO. */
2464 static void
2465 deps_init_id_note_reg_set (int regno)
2466 {
2467 haifa_note_reg_set (regno);
2468
2469 if (deps_init_id_data.where == DEPS_IN_RHS)
2470 deps_init_id_data.force_use_p = true;
2471
2472 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2473 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2474
2475 #ifdef STACK_REGS
2476 /* Make instructions that set stack registers to be ineligible for
2477 renaming to avoid issues with find_used_regs. */
2478 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2479 deps_init_id_data.force_use_p = true;
2480 #endif
2481 }
2482
2483 /* Note a clobber of REGNO. */
2484 static void
2485 deps_init_id_note_reg_clobber (int regno)
2486 {
2487 haifa_note_reg_clobber (regno);
2488
2489 if (deps_init_id_data.where == DEPS_IN_RHS)
2490 deps_init_id_data.force_use_p = true;
2491
2492 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2493 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2494 }
2495
2496 /* Note a use of REGNO. */
2497 static void
2498 deps_init_id_note_reg_use (int regno)
2499 {
2500 haifa_note_reg_use (regno);
2501
2502 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2503 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2504 }
2505
2506 /* Start initializing rhs data. */
2507 static void
2508 deps_init_id_start_rhs (rtx rhs)
2509 {
2510 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2511
2512 /* And there was no sel_deps_reset_to_insn (). */
2513 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2514 {
2515 IDATA_RHS (deps_init_id_data.id) = rhs;
2516 deps_init_id_data.where = DEPS_IN_RHS;
2517 }
2518 }
2519
2520 /* Finish initializing rhs data. */
2521 static void
2522 deps_init_id_finish_rhs (void)
2523 {
2524 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2525 || deps_init_id_data.where == DEPS_IN_INSN);
2526 deps_init_id_data.where = DEPS_IN_INSN;
2527 }
2528
2529 /* Finish initializing insn data. */
2530 static void
2531 deps_init_id_finish_insn (void)
2532 {
2533 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2534
2535 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2536 {
2537 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2538 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2539
2540 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2541 || deps_init_id_data.force_use_p)
2542 {
2543 /* This should be a USE, as we don't want to schedule its RHS
2544 separately. However, we still want to have them recorded
2545 for the purposes of substitution. That's why we don't
2546 simply call downgrade_to_use () here. */
2547 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2548 gcc_assert (!lhs == !rhs);
2549
2550 IDATA_TYPE (deps_init_id_data.id) = USE;
2551 }
2552 }
2553
2554 deps_init_id_data.where = DEPS_IN_NOWHERE;
2555 }
2556
2557 /* This is dependence info used for initializing insn's data. */
2558 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2559
2560 /* This initializes most of the static part of the above structure. */
2561 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2562 {
2563 NULL,
2564
2565 deps_init_id_start_insn,
2566 deps_init_id_finish_insn,
2567 deps_init_id_start_lhs,
2568 deps_init_id_finish_lhs,
2569 deps_init_id_start_rhs,
2570 deps_init_id_finish_rhs,
2571 deps_init_id_note_reg_set,
2572 deps_init_id_note_reg_clobber,
2573 deps_init_id_note_reg_use,
2574 NULL, /* note_mem_dep */
2575 NULL, /* note_dep */
2576
2577 0, /* use_cselib */
2578 0, /* use_deps_list */
2579 0 /* generate_spec_deps */
2580 };
2581
2582 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2583 we don't actually need information about lhs and rhs. */
2584 static void
2585 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2586 {
2587 rtx pat = PATTERN (insn);
2588
2589 if (NONJUMP_INSN_P (insn)
2590 && GET_CODE (pat) == SET
2591 && !force_unique_p)
2592 {
2593 IDATA_RHS (id) = SET_SRC (pat);
2594 IDATA_LHS (id) = SET_DEST (pat);
2595 }
2596 else
2597 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2598 }
2599
2600 /* Possibly downgrade INSN to USE. */
2601 static void
2602 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2603 {
2604 bool must_be_use = false;
2605 unsigned uid = INSN_UID (insn);
2606 df_ref *rec;
2607 rtx lhs = IDATA_LHS (id);
2608 rtx rhs = IDATA_RHS (id);
2609
2610 /* We downgrade only SETs. */
2611 if (IDATA_TYPE (id) != SET)
2612 return;
2613
2614 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2615 {
2616 IDATA_TYPE (id) = USE;
2617 return;
2618 }
2619
2620 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2621 {
2622 df_ref def = *rec;
2623
2624 if (DF_REF_INSN (def)
2625 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2626 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2627 {
2628 must_be_use = true;
2629 break;
2630 }
2631
2632 #ifdef STACK_REGS
2633 /* Make instructions that set stack registers to be ineligible for
2634 renaming to avoid issues with find_used_regs. */
2635 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2636 {
2637 must_be_use = true;
2638 break;
2639 }
2640 #endif
2641 }
2642
2643 if (must_be_use)
2644 IDATA_TYPE (id) = USE;
2645 }
2646
2647 /* Setup register sets describing INSN in ID. */
2648 static void
2649 setup_id_reg_sets (idata_t id, insn_t insn)
2650 {
2651 unsigned uid = INSN_UID (insn);
2652 df_ref *rec;
2653 regset tmp = get_clear_regset_from_pool ();
2654
2655 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2656 {
2657 df_ref def = *rec;
2658 unsigned int regno = DF_REF_REGNO (def);
2659
2660 /* Post modifies are treated like clobbers by sched-deps.c. */
2661 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2662 | DF_REF_PRE_POST_MODIFY)))
2663 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2664 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2665 {
2666 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2667
2668 #ifdef STACK_REGS
2669 /* For stack registers, treat writes to them as writes
2670 to the first one to be consistent with sched-deps.c. */
2671 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2672 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2673 #endif
2674 }
2675 /* Mark special refs that generate read/write def pair. */
2676 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2677 || regno == STACK_POINTER_REGNUM)
2678 bitmap_set_bit (tmp, regno);
2679 }
2680
2681 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2682 {
2683 df_ref use = *rec;
2684 unsigned int regno = DF_REF_REGNO (use);
2685
2686 /* When these refs are met for the first time, skip them, as
2687 these uses are just counterparts of some defs. */
2688 if (bitmap_bit_p (tmp, regno))
2689 bitmap_clear_bit (tmp, regno);
2690 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2691 {
2692 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2693
2694 #ifdef STACK_REGS
2695 /* For stack registers, treat reads from them as reads from
2696 the first one to be consistent with sched-deps.c. */
2697 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2698 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2699 #endif
2700 }
2701 }
2702
2703 return_regset_to_pool (tmp);
2704 }
2705
2706 /* Initialize instruction data for INSN in ID using DF's data. */
2707 static void
2708 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2709 {
2710 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2711
2712 setup_id_for_insn (id, insn, force_unique_p);
2713 setup_id_lhs_rhs (id, insn, force_unique_p);
2714
2715 if (INSN_NOP_P (insn))
2716 return;
2717
2718 maybe_downgrade_id_to_use (id, insn);
2719 setup_id_reg_sets (id, insn);
2720 }
2721
2722 /* Initialize instruction data for INSN in ID. */
2723 static void
2724 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2725 {
2726 struct deps_desc _dc, *dc = &_dc;
2727
2728 deps_init_id_data.where = DEPS_IN_NOWHERE;
2729 deps_init_id_data.id = id;
2730 deps_init_id_data.force_unique_p = force_unique_p;
2731 deps_init_id_data.force_use_p = false;
2732
2733 init_deps (dc, false);
2734
2735 memcpy (&deps_init_id_sched_deps_info,
2736 &const_deps_init_id_sched_deps_info,
2737 sizeof (deps_init_id_sched_deps_info));
2738
2739 if (spec_info != NULL)
2740 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2741
2742 sched_deps_info = &deps_init_id_sched_deps_info;
2743
2744 deps_analyze_insn (dc, insn);
2745
2746 free_deps (dc);
2747
2748 deps_init_id_data.id = NULL;
2749 }
2750
2751 \f
2752 struct sched_scan_info_def
2753 {
2754 /* This hook notifies scheduler frontend to extend its internal per basic
2755 block data structures. This hook should be called once before a series of
2756 calls to bb_init (). */
2757 void (*extend_bb) (void);
2758
2759 /* This hook makes scheduler frontend to initialize its internal data
2760 structures for the passed basic block. */
2761 void (*init_bb) (basic_block);
2762
2763 /* This hook notifies scheduler frontend to extend its internal per insn data
2764 structures. This hook should be called once before a series of calls to
2765 insn_init (). */
2766 void (*extend_insn) (void);
2767
2768 /* This hook makes scheduler frontend to initialize its internal data
2769 structures for the passed insn. */
2770 void (*init_insn) (rtx);
2771 };
2772
2773 /* A driver function to add a set of basic blocks (BBS) to the
2774 scheduling region. */
2775 static void
2776 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2777 {
2778 unsigned i;
2779 basic_block bb;
2780
2781 if (ssi->extend_bb)
2782 ssi->extend_bb ();
2783
2784 if (ssi->init_bb)
2785 FOR_EACH_VEC_ELT (bbs, i, bb)
2786 ssi->init_bb (bb);
2787
2788 if (ssi->extend_insn)
2789 ssi->extend_insn ();
2790
2791 if (ssi->init_insn)
2792 FOR_EACH_VEC_ELT (bbs, i, bb)
2793 {
2794 rtx insn;
2795
2796 FOR_BB_INSNS (bb, insn)
2797 ssi->init_insn (insn);
2798 }
2799 }
2800
2801 /* Implement hooks for collecting fundamental insn properties like if insn is
2802 an ASM or is within a SCHED_GROUP. */
2803
2804 /* True when a "one-time init" data for INSN was already inited. */
2805 static bool
2806 first_time_insn_init (insn_t insn)
2807 {
2808 return INSN_LIVE (insn) == NULL;
2809 }
2810
2811 /* Hash an entry in a transformed_insns hashtable. */
2812 static hashval_t
2813 hash_transformed_insns (const void *p)
2814 {
2815 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2816 }
2817
2818 /* Compare the entries in a transformed_insns hashtable. */
2819 static int
2820 eq_transformed_insns (const void *p, const void *q)
2821 {
2822 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2823 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2824
2825 if (INSN_UID (i1) == INSN_UID (i2))
2826 return 1;
2827 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2828 }
2829
2830 /* Free an entry in a transformed_insns hashtable. */
2831 static void
2832 free_transformed_insns (void *p)
2833 {
2834 struct transformed_insns *pti = (struct transformed_insns *) p;
2835
2836 vinsn_detach (pti->vinsn_old);
2837 vinsn_detach (pti->vinsn_new);
2838 free (pti);
2839 }
2840
2841 /* Init the s_i_d data for INSN which should be inited just once, when
2842 we first see the insn. */
2843 static void
2844 init_first_time_insn_data (insn_t insn)
2845 {
2846 /* This should not be set if this is the first time we init data for
2847 insn. */
2848 gcc_assert (first_time_insn_init (insn));
2849
2850 /* These are needed for nops too. */
2851 INSN_LIVE (insn) = get_regset_from_pool ();
2852 INSN_LIVE_VALID_P (insn) = false;
2853
2854 if (!INSN_NOP_P (insn))
2855 {
2856 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2857 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2858 INSN_TRANSFORMED_INSNS (insn)
2859 = htab_create (16, hash_transformed_insns,
2860 eq_transformed_insns, free_transformed_insns);
2861 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2862 }
2863 }
2864
2865 /* Free almost all above data for INSN that is scheduled already.
2866 Used for extra-large basic blocks. */
2867 void
2868 free_data_for_scheduled_insn (insn_t insn)
2869 {
2870 gcc_assert (! first_time_insn_init (insn));
2871
2872 if (! INSN_ANALYZED_DEPS (insn))
2873 return;
2874
2875 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2876 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2877 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2878
2879 /* This is allocated only for bookkeeping insns. */
2880 if (INSN_ORIGINATORS (insn))
2881 BITMAP_FREE (INSN_ORIGINATORS (insn));
2882 free_deps (&INSN_DEPS_CONTEXT (insn));
2883
2884 INSN_ANALYZED_DEPS (insn) = NULL;
2885
2886 /* Clear the readonly flag so we would ICE when trying to recalculate
2887 the deps context (as we believe that it should not happen). */
2888 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2889 }
2890
2891 /* Free the same data as above for INSN. */
2892 static void
2893 free_first_time_insn_data (insn_t insn)
2894 {
2895 gcc_assert (! first_time_insn_init (insn));
2896
2897 free_data_for_scheduled_insn (insn);
2898 return_regset_to_pool (INSN_LIVE (insn));
2899 INSN_LIVE (insn) = NULL;
2900 INSN_LIVE_VALID_P (insn) = false;
2901 }
2902
2903 /* Initialize region-scope data structures for basic blocks. */
2904 static void
2905 init_global_and_expr_for_bb (basic_block bb)
2906 {
2907 if (sel_bb_empty_p (bb))
2908 return;
2909
2910 invalidate_av_set (bb);
2911 }
2912
2913 /* Data for global dependency analysis (to initialize CANT_MOVE and
2914 SCHED_GROUP_P). */
2915 static struct
2916 {
2917 /* Previous insn. */
2918 insn_t prev_insn;
2919 } init_global_data;
2920
2921 /* Determine if INSN is in the sched_group, is an asm or should not be
2922 cloned. After that initialize its expr. */
2923 static void
2924 init_global_and_expr_for_insn (insn_t insn)
2925 {
2926 if (LABEL_P (insn))
2927 return;
2928
2929 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2930 {
2931 init_global_data.prev_insn = NULL_RTX;
2932 return;
2933 }
2934
2935 gcc_assert (INSN_P (insn));
2936
2937 if (SCHED_GROUP_P (insn))
2938 /* Setup a sched_group. */
2939 {
2940 insn_t prev_insn = init_global_data.prev_insn;
2941
2942 if (prev_insn)
2943 INSN_SCHED_NEXT (prev_insn) = insn;
2944
2945 init_global_data.prev_insn = insn;
2946 }
2947 else
2948 init_global_data.prev_insn = NULL_RTX;
2949
2950 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2951 || asm_noperands (PATTERN (insn)) >= 0)
2952 /* Mark INSN as an asm. */
2953 INSN_ASM_P (insn) = true;
2954
2955 {
2956 bool force_unique_p;
2957 ds_t spec_done_ds;
2958
2959 /* Certain instructions cannot be cloned, and frame related insns and
2960 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2961 their block. */
2962 if (prologue_epilogue_contains (insn))
2963 {
2964 if (RTX_FRAME_RELATED_P (insn))
2965 CANT_MOVE (insn) = 1;
2966 else
2967 {
2968 rtx note;
2969 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2970 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2971 && ((enum insn_note) INTVAL (XEXP (note, 0))
2972 == NOTE_INSN_EPILOGUE_BEG))
2973 {
2974 CANT_MOVE (insn) = 1;
2975 break;
2976 }
2977 }
2978 force_unique_p = true;
2979 }
2980 else
2981 if (CANT_MOVE (insn)
2982 || INSN_ASM_P (insn)
2983 || SCHED_GROUP_P (insn)
2984 || CALL_P (insn)
2985 /* Exception handling insns are always unique. */
2986 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2987 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2988 || control_flow_insn_p (insn)
2989 || volatile_insn_p (PATTERN (insn))
2990 || (targetm.cannot_copy_insn_p
2991 && targetm.cannot_copy_insn_p (insn)))
2992 force_unique_p = true;
2993 else
2994 force_unique_p = false;
2995
2996 if (targetm.sched.get_insn_spec_ds)
2997 {
2998 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2999 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3000 }
3001 else
3002 spec_done_ds = 0;
3003
3004 /* Initialize INSN's expr. */
3005 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3006 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3007 spec_done_ds, 0, 0, vNULL, true,
3008 false, false, false, CANT_MOVE (insn));
3009 }
3010
3011 init_first_time_insn_data (insn);
3012 }
3013
3014 /* Scan the region and initialize instruction data for basic blocks BBS. */
3015 void
3016 sel_init_global_and_expr (bb_vec_t bbs)
3017 {
3018 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3019 const struct sched_scan_info_def ssi =
3020 {
3021 NULL, /* extend_bb */
3022 init_global_and_expr_for_bb, /* init_bb */
3023 extend_insn_data, /* extend_insn */
3024 init_global_and_expr_for_insn /* init_insn */
3025 };
3026
3027 sched_scan (&ssi, bbs);
3028 }
3029
3030 /* Finalize region-scope data structures for basic blocks. */
3031 static void
3032 finish_global_and_expr_for_bb (basic_block bb)
3033 {
3034 av_set_clear (&BB_AV_SET (bb));
3035 BB_AV_LEVEL (bb) = 0;
3036 }
3037
3038 /* Finalize INSN's data. */
3039 static void
3040 finish_global_and_expr_insn (insn_t insn)
3041 {
3042 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3043 return;
3044
3045 gcc_assert (INSN_P (insn));
3046
3047 if (INSN_LUID (insn) > 0)
3048 {
3049 free_first_time_insn_data (insn);
3050 INSN_WS_LEVEL (insn) = 0;
3051 CANT_MOVE (insn) = 0;
3052
3053 /* We can no longer assert this, as vinsns of this insn could be
3054 easily live in other insn's caches. This should be changed to
3055 a counter-like approach among all vinsns. */
3056 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3057 clear_expr (INSN_EXPR (insn));
3058 }
3059 }
3060
3061 /* Finalize per instruction data for the whole region. */
3062 void
3063 sel_finish_global_and_expr (void)
3064 {
3065 {
3066 bb_vec_t bbs;
3067 int i;
3068
3069 bbs.create (current_nr_blocks);
3070
3071 for (i = 0; i < current_nr_blocks; i++)
3072 bbs.quick_push (BASIC_BLOCK (BB_TO_BLOCK (i)));
3073
3074 /* Clear AV_SETs and INSN_EXPRs. */
3075 {
3076 const struct sched_scan_info_def ssi =
3077 {
3078 NULL, /* extend_bb */
3079 finish_global_and_expr_for_bb, /* init_bb */
3080 NULL, /* extend_insn */
3081 finish_global_and_expr_insn /* init_insn */
3082 };
3083
3084 sched_scan (&ssi, bbs);
3085 }
3086
3087 bbs.release ();
3088 }
3089
3090 finish_insns ();
3091 }
3092 \f
3093
3094 /* In the below hooks, we merely calculate whether or not a dependence
3095 exists, and in what part of insn. However, we will need more data
3096 when we'll start caching dependence requests. */
3097
3098 /* Container to hold information for dependency analysis. */
3099 static struct
3100 {
3101 deps_t dc;
3102
3103 /* A variable to track which part of rtx we are scanning in
3104 sched-deps.c: sched_analyze_insn (). */
3105 deps_where_t where;
3106
3107 /* Current producer. */
3108 insn_t pro;
3109
3110 /* Current consumer. */
3111 vinsn_t con;
3112
3113 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3114 X is from { INSN, LHS, RHS }. */
3115 ds_t has_dep_p[DEPS_IN_NOWHERE];
3116 } has_dependence_data;
3117
3118 /* Start analyzing dependencies of INSN. */
3119 static void
3120 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3121 {
3122 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3123
3124 has_dependence_data.where = DEPS_IN_INSN;
3125 }
3126
3127 /* Finish analyzing dependencies of an insn. */
3128 static void
3129 has_dependence_finish_insn (void)
3130 {
3131 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3132
3133 has_dependence_data.where = DEPS_IN_NOWHERE;
3134 }
3135
3136 /* Start analyzing dependencies of LHS. */
3137 static void
3138 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3139 {
3140 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3141
3142 if (VINSN_LHS (has_dependence_data.con) != NULL)
3143 has_dependence_data.where = DEPS_IN_LHS;
3144 }
3145
3146 /* Finish analyzing dependencies of an lhs. */
3147 static void
3148 has_dependence_finish_lhs (void)
3149 {
3150 has_dependence_data.where = DEPS_IN_INSN;
3151 }
3152
3153 /* Start analyzing dependencies of RHS. */
3154 static void
3155 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3156 {
3157 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3158
3159 if (VINSN_RHS (has_dependence_data.con) != NULL)
3160 has_dependence_data.where = DEPS_IN_RHS;
3161 }
3162
3163 /* Start analyzing dependencies of an rhs. */
3164 static void
3165 has_dependence_finish_rhs (void)
3166 {
3167 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3168 || has_dependence_data.where == DEPS_IN_INSN);
3169
3170 has_dependence_data.where = DEPS_IN_INSN;
3171 }
3172
3173 /* Note a set of REGNO. */
3174 static void
3175 has_dependence_note_reg_set (int regno)
3176 {
3177 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3178
3179 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3180 VINSN_INSN_RTX
3181 (has_dependence_data.con)))
3182 {
3183 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3184
3185 if (reg_last->sets != NULL
3186 || reg_last->clobbers != NULL)
3187 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3188
3189 if (reg_last->uses || reg_last->implicit_sets)
3190 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3191 }
3192 }
3193
3194 /* Note a clobber of REGNO. */
3195 static void
3196 has_dependence_note_reg_clobber (int regno)
3197 {
3198 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3199
3200 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3201 VINSN_INSN_RTX
3202 (has_dependence_data.con)))
3203 {
3204 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3205
3206 if (reg_last->sets)
3207 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3208
3209 if (reg_last->uses || reg_last->implicit_sets)
3210 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3211 }
3212 }
3213
3214 /* Note a use of REGNO. */
3215 static void
3216 has_dependence_note_reg_use (int regno)
3217 {
3218 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3219
3220 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3221 VINSN_INSN_RTX
3222 (has_dependence_data.con)))
3223 {
3224 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3225
3226 if (reg_last->sets)
3227 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3228
3229 if (reg_last->clobbers || reg_last->implicit_sets)
3230 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3231
3232 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3233 is actually a check insn. We need to do this for any register
3234 read-read dependency with the check unless we track properly
3235 all registers written by BE_IN_SPEC-speculated insns, as
3236 we don't have explicit dependence lists. See PR 53975. */
3237 if (reg_last->uses)
3238 {
3239 ds_t pro_spec_checked_ds;
3240
3241 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3242 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3243
3244 if (pro_spec_checked_ds != 0)
3245 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3246 NULL_RTX, NULL_RTX);
3247 }
3248 }
3249 }
3250
3251 /* Note a memory dependence. */
3252 static void
3253 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3254 rtx pending_mem ATTRIBUTE_UNUSED,
3255 insn_t pending_insn ATTRIBUTE_UNUSED,
3256 ds_t ds ATTRIBUTE_UNUSED)
3257 {
3258 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3259 VINSN_INSN_RTX (has_dependence_data.con)))
3260 {
3261 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3262
3263 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3264 }
3265 }
3266
3267 /* Note a dependence. */
3268 static void
3269 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3270 ds_t ds ATTRIBUTE_UNUSED)
3271 {
3272 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3273 VINSN_INSN_RTX (has_dependence_data.con)))
3274 {
3275 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3276
3277 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3278 }
3279 }
3280
3281 /* Mark the insn as having a hard dependence that prevents speculation. */
3282 void
3283 sel_mark_hard_insn (rtx insn)
3284 {
3285 int i;
3286
3287 /* Only work when we're in has_dependence_p mode.
3288 ??? This is a hack, this should actually be a hook. */
3289 if (!has_dependence_data.dc || !has_dependence_data.pro)
3290 return;
3291
3292 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3293 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3294
3295 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3296 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3297 }
3298
3299 /* This structure holds the hooks for the dependency analysis used when
3300 actually processing dependencies in the scheduler. */
3301 static struct sched_deps_info_def has_dependence_sched_deps_info;
3302
3303 /* This initializes most of the fields of the above structure. */
3304 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3305 {
3306 NULL,
3307
3308 has_dependence_start_insn,
3309 has_dependence_finish_insn,
3310 has_dependence_start_lhs,
3311 has_dependence_finish_lhs,
3312 has_dependence_start_rhs,
3313 has_dependence_finish_rhs,
3314 has_dependence_note_reg_set,
3315 has_dependence_note_reg_clobber,
3316 has_dependence_note_reg_use,
3317 has_dependence_note_mem_dep,
3318 has_dependence_note_dep,
3319
3320 0, /* use_cselib */
3321 0, /* use_deps_list */
3322 0 /* generate_spec_deps */
3323 };
3324
3325 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3326 static void
3327 setup_has_dependence_sched_deps_info (void)
3328 {
3329 memcpy (&has_dependence_sched_deps_info,
3330 &const_has_dependence_sched_deps_info,
3331 sizeof (has_dependence_sched_deps_info));
3332
3333 if (spec_info != NULL)
3334 has_dependence_sched_deps_info.generate_spec_deps = 1;
3335
3336 sched_deps_info = &has_dependence_sched_deps_info;
3337 }
3338
3339 /* Remove all dependences found and recorded in has_dependence_data array. */
3340 void
3341 sel_clear_has_dependence (void)
3342 {
3343 int i;
3344
3345 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3346 has_dependence_data.has_dep_p[i] = 0;
3347 }
3348
3349 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3350 to the dependence information array in HAS_DEP_PP. */
3351 ds_t
3352 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3353 {
3354 int i;
3355 ds_t ds;
3356 struct deps_desc *dc;
3357
3358 if (INSN_SIMPLEJUMP_P (pred))
3359 /* Unconditional jump is just a transfer of control flow.
3360 Ignore it. */
3361 return false;
3362
3363 dc = &INSN_DEPS_CONTEXT (pred);
3364
3365 /* We init this field lazily. */
3366 if (dc->reg_last == NULL)
3367 init_deps_reg_last (dc);
3368
3369 if (!dc->readonly)
3370 {
3371 has_dependence_data.pro = NULL;
3372 /* Initialize empty dep context with information about PRED. */
3373 advance_deps_context (dc, pred);
3374 dc->readonly = 1;
3375 }
3376
3377 has_dependence_data.where = DEPS_IN_NOWHERE;
3378 has_dependence_data.pro = pred;
3379 has_dependence_data.con = EXPR_VINSN (expr);
3380 has_dependence_data.dc = dc;
3381
3382 sel_clear_has_dependence ();
3383
3384 /* Now catch all dependencies that would be generated between PRED and
3385 INSN. */
3386 setup_has_dependence_sched_deps_info ();
3387 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3388 has_dependence_data.dc = NULL;
3389
3390 /* When a barrier was found, set DEPS_IN_INSN bits. */
3391 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3392 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3393 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3394 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3395
3396 /* Do not allow stores to memory to move through checks. Currently
3397 we don't move this to sched-deps.c as the check doesn't have
3398 obvious places to which this dependence can be attached.
3399 FIMXE: this should go to a hook. */
3400 if (EXPR_LHS (expr)
3401 && MEM_P (EXPR_LHS (expr))
3402 && sel_insn_is_speculation_check (pred))
3403 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3404
3405 *has_dep_pp = has_dependence_data.has_dep_p;
3406 ds = 0;
3407 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3408 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3409 NULL_RTX, NULL_RTX);
3410
3411 return ds;
3412 }
3413 \f
3414
3415 /* Dependence hooks implementation that checks dependence latency constraints
3416 on the insns being scheduled. The entry point for these routines is
3417 tick_check_p predicate. */
3418
3419 static struct
3420 {
3421 /* An expr we are currently checking. */
3422 expr_t expr;
3423
3424 /* A minimal cycle for its scheduling. */
3425 int cycle;
3426
3427 /* Whether we have seen a true dependence while checking. */
3428 bool seen_true_dep_p;
3429 } tick_check_data;
3430
3431 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3432 on PRO with status DS and weight DW. */
3433 static void
3434 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3435 {
3436 expr_t con_expr = tick_check_data.expr;
3437 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3438
3439 if (con_insn != pro_insn)
3440 {
3441 enum reg_note dt;
3442 int tick;
3443
3444 if (/* PROducer was removed from above due to pipelining. */
3445 !INSN_IN_STREAM_P (pro_insn)
3446 /* Or PROducer was originally on the next iteration regarding the
3447 CONsumer. */
3448 || (INSN_SCHED_TIMES (pro_insn)
3449 - EXPR_SCHED_TIMES (con_expr)) > 1)
3450 /* Don't count this dependence. */
3451 return;
3452
3453 dt = ds_to_dt (ds);
3454 if (dt == REG_DEP_TRUE)
3455 tick_check_data.seen_true_dep_p = true;
3456
3457 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3458
3459 {
3460 dep_def _dep, *dep = &_dep;
3461
3462 init_dep (dep, pro_insn, con_insn, dt);
3463
3464 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3465 }
3466
3467 /* When there are several kinds of dependencies between pro and con,
3468 only REG_DEP_TRUE should be taken into account. */
3469 if (tick > tick_check_data.cycle
3470 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3471 tick_check_data.cycle = tick;
3472 }
3473 }
3474
3475 /* An implementation of note_dep hook. */
3476 static void
3477 tick_check_note_dep (insn_t pro, ds_t ds)
3478 {
3479 tick_check_dep_with_dw (pro, ds, 0);
3480 }
3481
3482 /* An implementation of note_mem_dep hook. */
3483 static void
3484 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3485 {
3486 dw_t dw;
3487
3488 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3489 ? estimate_dep_weak (mem1, mem2)
3490 : 0);
3491
3492 tick_check_dep_with_dw (pro, ds, dw);
3493 }
3494
3495 /* This structure contains hooks for dependence analysis used when determining
3496 whether an insn is ready for scheduling. */
3497 static struct sched_deps_info_def tick_check_sched_deps_info =
3498 {
3499 NULL,
3500
3501 NULL,
3502 NULL,
3503 NULL,
3504 NULL,
3505 NULL,
3506 NULL,
3507 haifa_note_reg_set,
3508 haifa_note_reg_clobber,
3509 haifa_note_reg_use,
3510 tick_check_note_mem_dep,
3511 tick_check_note_dep,
3512
3513 0, 0, 0
3514 };
3515
3516 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3517 scheduled. Return 0 if all data from producers in DC is ready. */
3518 int
3519 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3520 {
3521 int cycles_left;
3522 /* Initialize variables. */
3523 tick_check_data.expr = expr;
3524 tick_check_data.cycle = 0;
3525 tick_check_data.seen_true_dep_p = false;
3526 sched_deps_info = &tick_check_sched_deps_info;
3527
3528 gcc_assert (!dc->readonly);
3529 dc->readonly = 1;
3530 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3531 dc->readonly = 0;
3532
3533 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3534
3535 return cycles_left >= 0 ? cycles_left : 0;
3536 }
3537 \f
3538
3539 /* Functions to work with insns. */
3540
3541 /* Returns true if LHS of INSN is the same as DEST of an insn
3542 being moved. */
3543 bool
3544 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3545 {
3546 rtx lhs = INSN_LHS (insn);
3547
3548 if (lhs == NULL || dest == NULL)
3549 return false;
3550
3551 return rtx_equal_p (lhs, dest);
3552 }
3553
3554 /* Return s_i_d entry of INSN. Callable from debugger. */
3555 sel_insn_data_def
3556 insn_sid (insn_t insn)
3557 {
3558 return *SID (insn);
3559 }
3560
3561 /* True when INSN is a speculative check. We can tell this by looking
3562 at the data structures of the selective scheduler, not by examining
3563 the pattern. */
3564 bool
3565 sel_insn_is_speculation_check (rtx insn)
3566 {
3567 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3568 }
3569
3570 /* Extracts machine mode MODE and destination location DST_LOC
3571 for given INSN. */
3572 void
3573 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3574 {
3575 rtx pat = PATTERN (insn);
3576
3577 gcc_assert (dst_loc);
3578 gcc_assert (GET_CODE (pat) == SET);
3579
3580 *dst_loc = SET_DEST (pat);
3581
3582 gcc_assert (*dst_loc);
3583 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3584
3585 if (mode)
3586 *mode = GET_MODE (*dst_loc);
3587 }
3588
3589 /* Returns true when moving through JUMP will result in bookkeeping
3590 creation. */
3591 bool
3592 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3593 {
3594 insn_t succ;
3595 succ_iterator si;
3596
3597 FOR_EACH_SUCC (succ, si, jump)
3598 if (sel_num_cfg_preds_gt_1 (succ))
3599 return true;
3600
3601 return false;
3602 }
3603
3604 /* Return 'true' if INSN is the only one in its basic block. */
3605 static bool
3606 insn_is_the_only_one_in_bb_p (insn_t insn)
3607 {
3608 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3609 }
3610
3611 #ifdef ENABLE_CHECKING
3612 /* Check that the region we're scheduling still has at most one
3613 backedge. */
3614 static void
3615 verify_backedges (void)
3616 {
3617 if (pipelining_p)
3618 {
3619 int i, n = 0;
3620 edge e;
3621 edge_iterator ei;
3622
3623 for (i = 0; i < current_nr_blocks; i++)
3624 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3625 if (in_current_region_p (e->dest)
3626 && BLOCK_TO_BB (e->dest->index) < i)
3627 n++;
3628
3629 gcc_assert (n <= 1);
3630 }
3631 }
3632 #endif
3633 \f
3634
3635 /* Functions to work with control flow. */
3636
3637 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3638 are sorted in topological order (it might have been invalidated by
3639 redirecting an edge). */
3640 static void
3641 sel_recompute_toporder (void)
3642 {
3643 int i, n, rgn;
3644 int *postorder, n_blocks;
3645
3646 postorder = XALLOCAVEC (int, n_basic_blocks);
3647 n_blocks = post_order_compute (postorder, false, false);
3648
3649 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3650 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3651 if (CONTAINING_RGN (postorder[i]) == rgn)
3652 {
3653 BLOCK_TO_BB (postorder[i]) = n;
3654 BB_TO_BLOCK (n) = postorder[i];
3655 n++;
3656 }
3657
3658 /* Assert that we updated info for all blocks. We may miss some blocks if
3659 this function is called when redirecting an edge made a block
3660 unreachable, but that block is not deleted yet. */
3661 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3662 }
3663
3664 /* Tidy the possibly empty block BB. */
3665 static bool
3666 maybe_tidy_empty_bb (basic_block bb)
3667 {
3668 basic_block succ_bb, pred_bb, note_bb;
3669 vec<basic_block> dom_bbs;
3670 edge e;
3671 edge_iterator ei;
3672 bool rescan_p;
3673
3674 /* Keep empty bb only if this block immediately precedes EXIT and
3675 has incoming non-fallthrough edge, or it has no predecessors or
3676 successors. Otherwise remove it. */
3677 if (!sel_bb_empty_p (bb)
3678 || (single_succ_p (bb)
3679 && single_succ (bb) == EXIT_BLOCK_PTR
3680 && (!single_pred_p (bb)
3681 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3682 || EDGE_COUNT (bb->preds) == 0
3683 || EDGE_COUNT (bb->succs) == 0)
3684 return false;
3685
3686 /* Do not attempt to redirect complex edges. */
3687 FOR_EACH_EDGE (e, ei, bb->preds)
3688 if (e->flags & EDGE_COMPLEX)
3689 return false;
3690 else if (e->flags & EDGE_FALLTHRU)
3691 {
3692 rtx note;
3693 /* If prev bb ends with asm goto, see if any of the
3694 ASM_OPERANDS_LABELs don't point to the fallthru
3695 label. Do not attempt to redirect it in that case. */
3696 if (JUMP_P (BB_END (e->src))
3697 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3698 {
3699 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3700
3701 for (i = 0; i < n; ++i)
3702 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3703 return false;
3704 }
3705 }
3706
3707 free_data_sets (bb);
3708
3709 /* Do not delete BB if it has more than one successor.
3710 That can occur when we moving a jump. */
3711 if (!single_succ_p (bb))
3712 {
3713 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3714 sel_merge_blocks (bb->prev_bb, bb);
3715 return true;
3716 }
3717
3718 succ_bb = single_succ (bb);
3719 rescan_p = true;
3720 pred_bb = NULL;
3721 dom_bbs.create (0);
3722
3723 /* Save a pred/succ from the current region to attach the notes to. */
3724 note_bb = NULL;
3725 FOR_EACH_EDGE (e, ei, bb->preds)
3726 if (in_current_region_p (e->src))
3727 {
3728 note_bb = e->src;
3729 break;
3730 }
3731 if (note_bb == NULL)
3732 note_bb = succ_bb;
3733
3734 /* Redirect all non-fallthru edges to the next bb. */
3735 while (rescan_p)
3736 {
3737 rescan_p = false;
3738
3739 FOR_EACH_EDGE (e, ei, bb->preds)
3740 {
3741 pred_bb = e->src;
3742
3743 if (!(e->flags & EDGE_FALLTHRU))
3744 {
3745 /* We can not invalidate computed topological order by moving
3746 the edge destination block (E->SUCC) along a fallthru edge.
3747
3748 We will update dominators here only when we'll get
3749 an unreachable block when redirecting, otherwise
3750 sel_redirect_edge_and_branch will take care of it. */
3751 if (e->dest != bb
3752 && single_pred_p (e->dest))
3753 dom_bbs.safe_push (e->dest);
3754 sel_redirect_edge_and_branch (e, succ_bb);
3755 rescan_p = true;
3756 break;
3757 }
3758 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3759 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3760 still have to adjust it. */
3761 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3762 {
3763 /* If possible, try to remove the unneeded conditional jump. */
3764 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3765 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3766 {
3767 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3768 tidy_fallthru_edge (e);
3769 }
3770 else
3771 sel_redirect_edge_and_branch (e, succ_bb);
3772 rescan_p = true;
3773 break;
3774 }
3775 }
3776 }
3777
3778 if (can_merge_blocks_p (bb->prev_bb, bb))
3779 sel_merge_blocks (bb->prev_bb, bb);
3780 else
3781 {
3782 /* This is a block without fallthru predecessor. Just delete it. */
3783 gcc_assert (note_bb);
3784 move_bb_info (note_bb, bb);
3785 remove_empty_bb (bb, true);
3786 }
3787
3788 if (!dom_bbs.is_empty ())
3789 {
3790 dom_bbs.safe_push (succ_bb);
3791 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3792 dom_bbs.release ();
3793 }
3794
3795 return true;
3796 }
3797
3798 /* Tidy the control flow after we have removed original insn from
3799 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3800 is true, also try to optimize control flow on non-empty blocks. */
3801 bool
3802 tidy_control_flow (basic_block xbb, bool full_tidying)
3803 {
3804 bool changed = true;
3805 insn_t first, last;
3806
3807 /* First check whether XBB is empty. */
3808 changed = maybe_tidy_empty_bb (xbb);
3809 if (changed || !full_tidying)
3810 return changed;
3811
3812 /* Check if there is a unnecessary jump after insn left. */
3813 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3814 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3815 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3816 {
3817 if (sel_remove_insn (BB_END (xbb), false, false))
3818 return true;
3819 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3820 }
3821
3822 first = sel_bb_head (xbb);
3823 last = sel_bb_end (xbb);
3824 if (MAY_HAVE_DEBUG_INSNS)
3825 {
3826 if (first != last && DEBUG_INSN_P (first))
3827 do
3828 first = NEXT_INSN (first);
3829 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3830
3831 if (first != last && DEBUG_INSN_P (last))
3832 do
3833 last = PREV_INSN (last);
3834 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3835 }
3836 /* Check if there is an unnecessary jump in previous basic block leading
3837 to next basic block left after removing INSN from stream.
3838 If it is so, remove that jump and redirect edge to current
3839 basic block (where there was INSN before deletion). This way
3840 when NOP will be deleted several instructions later with its
3841 basic block we will not get a jump to next instruction, which
3842 can be harmful. */
3843 if (first == last
3844 && !sel_bb_empty_p (xbb)
3845 && INSN_NOP_P (last)
3846 /* Flow goes fallthru from current block to the next. */
3847 && EDGE_COUNT (xbb->succs) == 1
3848 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3849 /* When successor is an EXIT block, it may not be the next block. */
3850 && single_succ (xbb) != EXIT_BLOCK_PTR
3851 /* And unconditional jump in previous basic block leads to
3852 next basic block of XBB and this jump can be safely removed. */
3853 && in_current_region_p (xbb->prev_bb)
3854 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3855 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3856 /* Also this jump is not at the scheduling boundary. */
3857 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3858 {
3859 bool recompute_toporder_p;
3860 /* Clear data structures of jump - jump itself will be removed
3861 by sel_redirect_edge_and_branch. */
3862 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3863 recompute_toporder_p
3864 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3865
3866 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3867
3868 /* It can turn out that after removing unused jump, basic block
3869 that contained that jump, becomes empty too. In such case
3870 remove it too. */
3871 if (sel_bb_empty_p (xbb->prev_bb))
3872 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3873 if (recompute_toporder_p)
3874 sel_recompute_toporder ();
3875 }
3876
3877 #ifdef ENABLE_CHECKING
3878 verify_backedges ();
3879 verify_dominators (CDI_DOMINATORS);
3880 #endif
3881
3882 return changed;
3883 }
3884
3885 /* Purge meaningless empty blocks in the middle of a region. */
3886 void
3887 purge_empty_blocks (void)
3888 {
3889 int i;
3890
3891 /* Do not attempt to delete the first basic block in the region. */
3892 for (i = 1; i < current_nr_blocks; )
3893 {
3894 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3895
3896 if (maybe_tidy_empty_bb (b))
3897 continue;
3898
3899 i++;
3900 }
3901 }
3902
3903 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3904 do not delete insn's data, because it will be later re-emitted.
3905 Return true if we have removed some blocks afterwards. */
3906 bool
3907 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3908 {
3909 basic_block bb = BLOCK_FOR_INSN (insn);
3910
3911 gcc_assert (INSN_IN_STREAM_P (insn));
3912
3913 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3914 {
3915 expr_t expr;
3916 av_set_iterator i;
3917
3918 /* When we remove a debug insn that is head of a BB, it remains
3919 in the AV_SET of the block, but it shouldn't. */
3920 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3921 if (EXPR_INSN_RTX (expr) == insn)
3922 {
3923 av_set_iter_remove (&i);
3924 break;
3925 }
3926 }
3927
3928 if (only_disconnect)
3929 {
3930 insn_t prev = PREV_INSN (insn);
3931 insn_t next = NEXT_INSN (insn);
3932 basic_block bb = BLOCK_FOR_INSN (insn);
3933
3934 NEXT_INSN (prev) = next;
3935 PREV_INSN (next) = prev;
3936
3937 if (BB_HEAD (bb) == insn)
3938 {
3939 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3940 BB_HEAD (bb) = prev;
3941 }
3942 if (BB_END (bb) == insn)
3943 BB_END (bb) = prev;
3944 }
3945 else
3946 {
3947 remove_insn (insn);
3948 clear_expr (INSN_EXPR (insn));
3949 }
3950
3951 /* It is necessary to null this fields before calling add_insn (). */
3952 PREV_INSN (insn) = NULL_RTX;
3953 NEXT_INSN (insn) = NULL_RTX;
3954
3955 return tidy_control_flow (bb, full_tidying);
3956 }
3957
3958 /* Estimate number of the insns in BB. */
3959 static int
3960 sel_estimate_number_of_insns (basic_block bb)
3961 {
3962 int res = 0;
3963 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3964
3965 for (; insn != next_tail; insn = NEXT_INSN (insn))
3966 if (NONDEBUG_INSN_P (insn))
3967 res++;
3968
3969 return res;
3970 }
3971
3972 /* We don't need separate luids for notes or labels. */
3973 static int
3974 sel_luid_for_non_insn (rtx x)
3975 {
3976 gcc_assert (NOTE_P (x) || LABEL_P (x));
3977
3978 return -1;
3979 }
3980
3981 /* Find the proper seqno for inserting at INSN by successors.
3982 Return -1 if no successors with positive seqno exist. */
3983 static int
3984 get_seqno_by_succs (rtx insn)
3985 {
3986 basic_block bb = BLOCK_FOR_INSN (insn);
3987 rtx tmp = insn, end = BB_END (bb);
3988 int seqno;
3989 insn_t succ = NULL;
3990 succ_iterator si;
3991
3992 while (tmp != end)
3993 {
3994 tmp = NEXT_INSN (tmp);
3995 if (INSN_P (tmp))
3996 return INSN_SEQNO (tmp);
3997 }
3998
3999 seqno = INT_MAX;
4000
4001 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4002 if (INSN_SEQNO (succ) > 0)
4003 seqno = MIN (seqno, INSN_SEQNO (succ));
4004
4005 if (seqno == INT_MAX)
4006 return -1;
4007
4008 return seqno;
4009 }
4010
4011 /* Compute seqno for INSN by its preds or succs. */
4012 static int
4013 get_seqno_for_a_jump (insn_t insn)
4014 {
4015 int seqno;
4016
4017 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4018
4019 if (!sel_bb_head_p (insn))
4020 seqno = INSN_SEQNO (PREV_INSN (insn));
4021 else
4022 {
4023 basic_block bb = BLOCK_FOR_INSN (insn);
4024
4025 if (single_pred_p (bb)
4026 && !in_current_region_p (single_pred (bb)))
4027 {
4028 /* We can have preds outside a region when splitting edges
4029 for pipelining of an outer loop. Use succ instead.
4030 There should be only one of them. */
4031 insn_t succ = NULL;
4032 succ_iterator si;
4033 bool first = true;
4034
4035 gcc_assert (flag_sel_sched_pipelining_outer_loops
4036 && current_loop_nest);
4037 FOR_EACH_SUCC_1 (succ, si, insn,
4038 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4039 {
4040 gcc_assert (first);
4041 first = false;
4042 }
4043
4044 gcc_assert (succ != NULL);
4045 seqno = INSN_SEQNO (succ);
4046 }
4047 else
4048 {
4049 insn_t *preds;
4050 int n;
4051
4052 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4053
4054 gcc_assert (n > 0);
4055 /* For one predecessor, use simple method. */
4056 if (n == 1)
4057 seqno = INSN_SEQNO (preds[0]);
4058 else
4059 seqno = get_seqno_by_preds (insn);
4060
4061 free (preds);
4062 }
4063 }
4064
4065 /* We were unable to find a good seqno among preds. */
4066 if (seqno < 0)
4067 seqno = get_seqno_by_succs (insn);
4068
4069 gcc_assert (seqno >= 0);
4070
4071 return seqno;
4072 }
4073
4074 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4075 with positive seqno exist. */
4076 int
4077 get_seqno_by_preds (rtx insn)
4078 {
4079 basic_block bb = BLOCK_FOR_INSN (insn);
4080 rtx tmp = insn, head = BB_HEAD (bb);
4081 insn_t *preds;
4082 int n, i, seqno;
4083
4084 while (tmp != head)
4085 {
4086 tmp = PREV_INSN (tmp);
4087 if (INSN_P (tmp))
4088 return INSN_SEQNO (tmp);
4089 }
4090
4091 cfg_preds (bb, &preds, &n);
4092 for (i = 0, seqno = -1; i < n; i++)
4093 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4094
4095 return seqno;
4096 }
4097
4098 \f
4099
4100 /* Extend pass-scope data structures for basic blocks. */
4101 void
4102 sel_extend_global_bb_info (void)
4103 {
4104 sel_global_bb_info.safe_grow_cleared (last_basic_block);
4105 }
4106
4107 /* Extend region-scope data structures for basic blocks. */
4108 static void
4109 extend_region_bb_info (void)
4110 {
4111 sel_region_bb_info.safe_grow_cleared (last_basic_block);
4112 }
4113
4114 /* Extend all data structures to fit for all basic blocks. */
4115 static void
4116 extend_bb_info (void)
4117 {
4118 sel_extend_global_bb_info ();
4119 extend_region_bb_info ();
4120 }
4121
4122 /* Finalize pass-scope data structures for basic blocks. */
4123 void
4124 sel_finish_global_bb_info (void)
4125 {
4126 sel_global_bb_info.release ();
4127 }
4128
4129 /* Finalize region-scope data structures for basic blocks. */
4130 static void
4131 finish_region_bb_info (void)
4132 {
4133 sel_region_bb_info.release ();
4134 }
4135 \f
4136
4137 /* Data for each insn in current region. */
4138 vec<sel_insn_data_def> s_i_d = vNULL;
4139
4140 /* Extend data structures for insns from current region. */
4141 static void
4142 extend_insn_data (void)
4143 {
4144 int reserve;
4145
4146 sched_extend_target ();
4147 sched_deps_init (false);
4148
4149 /* Extend data structures for insns from current region. */
4150 reserve = (sched_max_luid + 1 - s_i_d.length ());
4151 if (reserve > 0 && ! s_i_d.space (reserve))
4152 {
4153 int size;
4154
4155 if (sched_max_luid / 2 > 1024)
4156 size = sched_max_luid + 1024;
4157 else
4158 size = 3 * sched_max_luid / 2;
4159
4160
4161 s_i_d.safe_grow_cleared (size);
4162 }
4163 }
4164
4165 /* Finalize data structures for insns from current region. */
4166 static void
4167 finish_insns (void)
4168 {
4169 unsigned i;
4170
4171 /* Clear here all dependence contexts that may have left from insns that were
4172 removed during the scheduling. */
4173 for (i = 0; i < s_i_d.length (); i++)
4174 {
4175 sel_insn_data_def *sid_entry = &s_i_d[i];
4176
4177 if (sid_entry->live)
4178 return_regset_to_pool (sid_entry->live);
4179 if (sid_entry->analyzed_deps)
4180 {
4181 BITMAP_FREE (sid_entry->analyzed_deps);
4182 BITMAP_FREE (sid_entry->found_deps);
4183 htab_delete (sid_entry->transformed_insns);
4184 free_deps (&sid_entry->deps_context);
4185 }
4186 if (EXPR_VINSN (&sid_entry->expr))
4187 {
4188 clear_expr (&sid_entry->expr);
4189
4190 /* Also, clear CANT_MOVE bit here, because we really don't want it
4191 to be passed to the next region. */
4192 CANT_MOVE_BY_LUID (i) = 0;
4193 }
4194 }
4195
4196 s_i_d.release ();
4197 }
4198
4199 /* A proxy to pass initialization data to init_insn (). */
4200 static sel_insn_data_def _insn_init_ssid;
4201 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4202
4203 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4204 static bool insn_init_create_new_vinsn_p;
4205
4206 /* Set all necessary data for initialization of the new insn[s]. */
4207 static expr_t
4208 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4209 {
4210 expr_t x = &insn_init_ssid->expr;
4211
4212 copy_expr_onside (x, expr);
4213 if (vi != NULL)
4214 {
4215 insn_init_create_new_vinsn_p = false;
4216 change_vinsn_in_expr (x, vi);
4217 }
4218 else
4219 insn_init_create_new_vinsn_p = true;
4220
4221 insn_init_ssid->seqno = seqno;
4222 return x;
4223 }
4224
4225 /* Init data for INSN. */
4226 static void
4227 init_insn_data (insn_t insn)
4228 {
4229 expr_t expr;
4230 sel_insn_data_t ssid = insn_init_ssid;
4231
4232 /* The fields mentioned below are special and hence are not being
4233 propagated to the new insns. */
4234 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4235 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4236 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4237
4238 expr = INSN_EXPR (insn);
4239 copy_expr (expr, &ssid->expr);
4240 prepare_insn_expr (insn, ssid->seqno);
4241
4242 if (insn_init_create_new_vinsn_p)
4243 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4244
4245 if (first_time_insn_init (insn))
4246 init_first_time_insn_data (insn);
4247 }
4248
4249 /* This is used to initialize spurious jumps generated by
4250 sel_redirect_edge (). */
4251 static void
4252 init_simplejump_data (insn_t insn)
4253 {
4254 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4255 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4256 vNULL, true, false, false,
4257 false, true);
4258 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn);
4259 init_first_time_insn_data (insn);
4260 }
4261
4262 /* Perform deferred initialization of insns. This is used to process
4263 a new jump that may be created by redirect_edge. */
4264 void
4265 sel_init_new_insn (insn_t insn, int flags)
4266 {
4267 /* We create data structures for bb when the first insn is emitted in it. */
4268 if (INSN_P (insn)
4269 && INSN_IN_STREAM_P (insn)
4270 && insn_is_the_only_one_in_bb_p (insn))
4271 {
4272 extend_bb_info ();
4273 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4274 }
4275
4276 if (flags & INSN_INIT_TODO_LUID)
4277 {
4278 sched_extend_luids ();
4279 sched_init_insn_luid (insn);
4280 }
4281
4282 if (flags & INSN_INIT_TODO_SSID)
4283 {
4284 extend_insn_data ();
4285 init_insn_data (insn);
4286 clear_expr (&insn_init_ssid->expr);
4287 }
4288
4289 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4290 {
4291 extend_insn_data ();
4292 init_simplejump_data (insn);
4293 }
4294
4295 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4296 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4297 }
4298 \f
4299
4300 /* Functions to init/finish work with lv sets. */
4301
4302 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4303 static void
4304 init_lv_set (basic_block bb)
4305 {
4306 gcc_assert (!BB_LV_SET_VALID_P (bb));
4307
4308 BB_LV_SET (bb) = get_regset_from_pool ();
4309 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4310 BB_LV_SET_VALID_P (bb) = true;
4311 }
4312
4313 /* Copy liveness information to BB from FROM_BB. */
4314 static void
4315 copy_lv_set_from (basic_block bb, basic_block from_bb)
4316 {
4317 gcc_assert (!BB_LV_SET_VALID_P (bb));
4318
4319 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4320 BB_LV_SET_VALID_P (bb) = true;
4321 }
4322
4323 /* Initialize lv set of all bb headers. */
4324 void
4325 init_lv_sets (void)
4326 {
4327 basic_block bb;
4328
4329 /* Initialize of LV sets. */
4330 FOR_EACH_BB (bb)
4331 init_lv_set (bb);
4332
4333 /* Don't forget EXIT_BLOCK. */
4334 init_lv_set (EXIT_BLOCK_PTR);
4335 }
4336
4337 /* Release lv set of HEAD. */
4338 static void
4339 free_lv_set (basic_block bb)
4340 {
4341 gcc_assert (BB_LV_SET (bb) != NULL);
4342
4343 return_regset_to_pool (BB_LV_SET (bb));
4344 BB_LV_SET (bb) = NULL;
4345 BB_LV_SET_VALID_P (bb) = false;
4346 }
4347
4348 /* Finalize lv sets of all bb headers. */
4349 void
4350 free_lv_sets (void)
4351 {
4352 basic_block bb;
4353
4354 /* Don't forget EXIT_BLOCK. */
4355 free_lv_set (EXIT_BLOCK_PTR);
4356
4357 /* Free LV sets. */
4358 FOR_EACH_BB (bb)
4359 if (BB_LV_SET (bb))
4360 free_lv_set (bb);
4361 }
4362
4363 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4364 compute_av() processes BB. This function is called when creating new basic
4365 blocks, as well as for blocks (either new or existing) where new jumps are
4366 created when the control flow is being updated. */
4367 static void
4368 invalidate_av_set (basic_block bb)
4369 {
4370 BB_AV_LEVEL (bb) = -1;
4371 }
4372
4373 /* Create initial data sets for BB (they will be invalid). */
4374 static void
4375 create_initial_data_sets (basic_block bb)
4376 {
4377 if (BB_LV_SET (bb))
4378 BB_LV_SET_VALID_P (bb) = false;
4379 else
4380 BB_LV_SET (bb) = get_regset_from_pool ();
4381 invalidate_av_set (bb);
4382 }
4383
4384 /* Free av set of BB. */
4385 static void
4386 free_av_set (basic_block bb)
4387 {
4388 av_set_clear (&BB_AV_SET (bb));
4389 BB_AV_LEVEL (bb) = 0;
4390 }
4391
4392 /* Free data sets of BB. */
4393 void
4394 free_data_sets (basic_block bb)
4395 {
4396 free_lv_set (bb);
4397 free_av_set (bb);
4398 }
4399
4400 /* Exchange lv sets of TO and FROM. */
4401 static void
4402 exchange_lv_sets (basic_block to, basic_block from)
4403 {
4404 {
4405 regset to_lv_set = BB_LV_SET (to);
4406
4407 BB_LV_SET (to) = BB_LV_SET (from);
4408 BB_LV_SET (from) = to_lv_set;
4409 }
4410
4411 {
4412 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4413
4414 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4415 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4416 }
4417 }
4418
4419
4420 /* Exchange av sets of TO and FROM. */
4421 static void
4422 exchange_av_sets (basic_block to, basic_block from)
4423 {
4424 {
4425 av_set_t to_av_set = BB_AV_SET (to);
4426
4427 BB_AV_SET (to) = BB_AV_SET (from);
4428 BB_AV_SET (from) = to_av_set;
4429 }
4430
4431 {
4432 int to_av_level = BB_AV_LEVEL (to);
4433
4434 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4435 BB_AV_LEVEL (from) = to_av_level;
4436 }
4437 }
4438
4439 /* Exchange data sets of TO and FROM. */
4440 void
4441 exchange_data_sets (basic_block to, basic_block from)
4442 {
4443 exchange_lv_sets (to, from);
4444 exchange_av_sets (to, from);
4445 }
4446
4447 /* Copy data sets of FROM to TO. */
4448 void
4449 copy_data_sets (basic_block to, basic_block from)
4450 {
4451 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4452 gcc_assert (BB_AV_SET (to) == NULL);
4453
4454 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4455 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4456
4457 if (BB_AV_SET_VALID_P (from))
4458 {
4459 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4460 }
4461 if (BB_LV_SET_VALID_P (from))
4462 {
4463 gcc_assert (BB_LV_SET (to) != NULL);
4464 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4465 }
4466 }
4467
4468 /* Return an av set for INSN, if any. */
4469 av_set_t
4470 get_av_set (insn_t insn)
4471 {
4472 av_set_t av_set;
4473
4474 gcc_assert (AV_SET_VALID_P (insn));
4475
4476 if (sel_bb_head_p (insn))
4477 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4478 else
4479 av_set = NULL;
4480
4481 return av_set;
4482 }
4483
4484 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4485 int
4486 get_av_level (insn_t insn)
4487 {
4488 int av_level;
4489
4490 gcc_assert (INSN_P (insn));
4491
4492 if (sel_bb_head_p (insn))
4493 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4494 else
4495 av_level = INSN_WS_LEVEL (insn);
4496
4497 return av_level;
4498 }
4499
4500 \f
4501
4502 /* Variables to work with control-flow graph. */
4503
4504 /* The basic block that already has been processed by the sched_data_update (),
4505 but hasn't been in sel_add_bb () yet. */
4506 static vec<basic_block>
4507 last_added_blocks = vNULL;
4508
4509 /* A pool for allocating successor infos. */
4510 static struct
4511 {
4512 /* A stack for saving succs_info structures. */
4513 struct succs_info *stack;
4514
4515 /* Its size. */
4516 int size;
4517
4518 /* Top of the stack. */
4519 int top;
4520
4521 /* Maximal value of the top. */
4522 int max_top;
4523 } succs_info_pool;
4524
4525 /* Functions to work with control-flow graph. */
4526
4527 /* Return basic block note of BB. */
4528 insn_t
4529 sel_bb_head (basic_block bb)
4530 {
4531 insn_t head;
4532
4533 if (bb == EXIT_BLOCK_PTR)
4534 {
4535 gcc_assert (exit_insn != NULL_RTX);
4536 head = exit_insn;
4537 }
4538 else
4539 {
4540 insn_t note;
4541
4542 note = bb_note (bb);
4543 head = next_nonnote_insn (note);
4544
4545 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4546 head = NULL_RTX;
4547 }
4548
4549 return head;
4550 }
4551
4552 /* Return true if INSN is a basic block header. */
4553 bool
4554 sel_bb_head_p (insn_t insn)
4555 {
4556 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4557 }
4558
4559 /* Return last insn of BB. */
4560 insn_t
4561 sel_bb_end (basic_block bb)
4562 {
4563 if (sel_bb_empty_p (bb))
4564 return NULL_RTX;
4565
4566 gcc_assert (bb != EXIT_BLOCK_PTR);
4567
4568 return BB_END (bb);
4569 }
4570
4571 /* Return true if INSN is the last insn in its basic block. */
4572 bool
4573 sel_bb_end_p (insn_t insn)
4574 {
4575 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4576 }
4577
4578 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4579 bool
4580 sel_bb_empty_p (basic_block bb)
4581 {
4582 return sel_bb_head (bb) == NULL;
4583 }
4584
4585 /* True when BB belongs to the current scheduling region. */
4586 bool
4587 in_current_region_p (basic_block bb)
4588 {
4589 if (bb->index < NUM_FIXED_BLOCKS)
4590 return false;
4591
4592 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4593 }
4594
4595 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4596 basic_block
4597 fallthru_bb_of_jump (rtx jump)
4598 {
4599 if (!JUMP_P (jump))
4600 return NULL;
4601
4602 if (!any_condjump_p (jump))
4603 return NULL;
4604
4605 /* A basic block that ends with a conditional jump may still have one successor
4606 (and be followed by a barrier), we are not interested. */
4607 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4608 return NULL;
4609
4610 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4611 }
4612
4613 /* Remove all notes from BB. */
4614 static void
4615 init_bb (basic_block bb)
4616 {
4617 remove_notes (bb_note (bb), BB_END (bb));
4618 BB_NOTE_LIST (bb) = note_list;
4619 }
4620
4621 void
4622 sel_init_bbs (bb_vec_t bbs)
4623 {
4624 const struct sched_scan_info_def ssi =
4625 {
4626 extend_bb_info, /* extend_bb */
4627 init_bb, /* init_bb */
4628 NULL, /* extend_insn */
4629 NULL /* init_insn */
4630 };
4631
4632 sched_scan (&ssi, bbs);
4633 }
4634
4635 /* Restore notes for the whole region. */
4636 static void
4637 sel_restore_notes (void)
4638 {
4639 int bb;
4640 insn_t insn;
4641
4642 for (bb = 0; bb < current_nr_blocks; bb++)
4643 {
4644 basic_block first, last;
4645
4646 first = EBB_FIRST_BB (bb);
4647 last = EBB_LAST_BB (bb)->next_bb;
4648
4649 do
4650 {
4651 note_list = BB_NOTE_LIST (first);
4652 restore_other_notes (NULL, first);
4653 BB_NOTE_LIST (first) = NULL_RTX;
4654
4655 FOR_BB_INSNS (first, insn)
4656 if (NONDEBUG_INSN_P (insn))
4657 reemit_notes (insn);
4658
4659 first = first->next_bb;
4660 }
4661 while (first != last);
4662 }
4663 }
4664
4665 /* Free per-bb data structures. */
4666 void
4667 sel_finish_bbs (void)
4668 {
4669 sel_restore_notes ();
4670
4671 /* Remove current loop preheader from this loop. */
4672 if (current_loop_nest)
4673 sel_remove_loop_preheader ();
4674
4675 finish_region_bb_info ();
4676 }
4677
4678 /* Return true if INSN has a single successor of type FLAGS. */
4679 bool
4680 sel_insn_has_single_succ_p (insn_t insn, int flags)
4681 {
4682 insn_t succ;
4683 succ_iterator si;
4684 bool first_p = true;
4685
4686 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4687 {
4688 if (first_p)
4689 first_p = false;
4690 else
4691 return false;
4692 }
4693
4694 return true;
4695 }
4696
4697 /* Allocate successor's info. */
4698 static struct succs_info *
4699 alloc_succs_info (void)
4700 {
4701 if (succs_info_pool.top == succs_info_pool.max_top)
4702 {
4703 int i;
4704
4705 if (++succs_info_pool.max_top >= succs_info_pool.size)
4706 gcc_unreachable ();
4707
4708 i = ++succs_info_pool.top;
4709 succs_info_pool.stack[i].succs_ok.create (10);
4710 succs_info_pool.stack[i].succs_other.create (10);
4711 succs_info_pool.stack[i].probs_ok.create (10);
4712 }
4713 else
4714 succs_info_pool.top++;
4715
4716 return &succs_info_pool.stack[succs_info_pool.top];
4717 }
4718
4719 /* Free successor's info. */
4720 void
4721 free_succs_info (struct succs_info * sinfo)
4722 {
4723 gcc_assert (succs_info_pool.top >= 0
4724 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4725 succs_info_pool.top--;
4726
4727 /* Clear stale info. */
4728 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4729 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4730 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4731 sinfo->all_prob = 0;
4732 sinfo->succs_ok_n = 0;
4733 sinfo->all_succs_n = 0;
4734 }
4735
4736 /* Compute successor info for INSN. FLAGS are the flags passed
4737 to the FOR_EACH_SUCC_1 iterator. */
4738 struct succs_info *
4739 compute_succs_info (insn_t insn, short flags)
4740 {
4741 succ_iterator si;
4742 insn_t succ;
4743 struct succs_info *sinfo = alloc_succs_info ();
4744
4745 /* Traverse *all* successors and decide what to do with each. */
4746 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4747 {
4748 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4749 perform code motion through inner loops. */
4750 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4751
4752 if (current_flags & flags)
4753 {
4754 sinfo->succs_ok.safe_push (succ);
4755 sinfo->probs_ok.safe_push (
4756 /* FIXME: Improve calculation when skipping
4757 inner loop to exits. */
4758 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4759 sinfo->succs_ok_n++;
4760 }
4761 else
4762 sinfo->succs_other.safe_push (succ);
4763
4764 /* Compute all_prob. */
4765 if (!si.bb_end)
4766 sinfo->all_prob = REG_BR_PROB_BASE;
4767 else
4768 sinfo->all_prob += si.e1->probability;
4769
4770 sinfo->all_succs_n++;
4771 }
4772
4773 return sinfo;
4774 }
4775
4776 /* Return the predecessors of BB in PREDS and their number in N.
4777 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4778 static void
4779 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4780 {
4781 edge e;
4782 edge_iterator ei;
4783
4784 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4785
4786 FOR_EACH_EDGE (e, ei, bb->preds)
4787 {
4788 basic_block pred_bb = e->src;
4789 insn_t bb_end = BB_END (pred_bb);
4790
4791 if (!in_current_region_p (pred_bb))
4792 {
4793 gcc_assert (flag_sel_sched_pipelining_outer_loops
4794 && current_loop_nest);
4795 continue;
4796 }
4797
4798 if (sel_bb_empty_p (pred_bb))
4799 cfg_preds_1 (pred_bb, preds, n, size);
4800 else
4801 {
4802 if (*n == *size)
4803 *preds = XRESIZEVEC (insn_t, *preds,
4804 (*size = 2 * *size + 1));
4805 (*preds)[(*n)++] = bb_end;
4806 }
4807 }
4808
4809 gcc_assert (*n != 0
4810 || (flag_sel_sched_pipelining_outer_loops
4811 && current_loop_nest));
4812 }
4813
4814 /* Find all predecessors of BB and record them in PREDS and their number
4815 in N. Empty blocks are skipped, and only normal (forward in-region)
4816 edges are processed. */
4817 static void
4818 cfg_preds (basic_block bb, insn_t **preds, int *n)
4819 {
4820 int size = 0;
4821
4822 *preds = NULL;
4823 *n = 0;
4824 cfg_preds_1 (bb, preds, n, &size);
4825 }
4826
4827 /* Returns true if we are moving INSN through join point. */
4828 bool
4829 sel_num_cfg_preds_gt_1 (insn_t insn)
4830 {
4831 basic_block bb;
4832
4833 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4834 return false;
4835
4836 bb = BLOCK_FOR_INSN (insn);
4837
4838 while (1)
4839 {
4840 if (EDGE_COUNT (bb->preds) > 1)
4841 return true;
4842
4843 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4844 bb = EDGE_PRED (bb, 0)->src;
4845
4846 if (!sel_bb_empty_p (bb))
4847 break;
4848 }
4849
4850 return false;
4851 }
4852
4853 /* Returns true when BB should be the end of an ebb. Adapted from the
4854 code in sched-ebb.c. */
4855 bool
4856 bb_ends_ebb_p (basic_block bb)
4857 {
4858 basic_block next_bb = bb_next_bb (bb);
4859 edge e;
4860
4861 if (next_bb == EXIT_BLOCK_PTR
4862 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4863 || (LABEL_P (BB_HEAD (next_bb))
4864 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4865 Work around that. */
4866 && !single_pred_p (next_bb)))
4867 return true;
4868
4869 if (!in_current_region_p (next_bb))
4870 return true;
4871
4872 e = find_fallthru_edge (bb->succs);
4873 if (e)
4874 {
4875 gcc_assert (e->dest == next_bb);
4876
4877 return false;
4878 }
4879
4880 return true;
4881 }
4882
4883 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4884 successor of INSN. */
4885 bool
4886 in_same_ebb_p (insn_t insn, insn_t succ)
4887 {
4888 basic_block ptr = BLOCK_FOR_INSN (insn);
4889
4890 for(;;)
4891 {
4892 if (ptr == BLOCK_FOR_INSN (succ))
4893 return true;
4894
4895 if (bb_ends_ebb_p (ptr))
4896 return false;
4897
4898 ptr = bb_next_bb (ptr);
4899 }
4900
4901 gcc_unreachable ();
4902 return false;
4903 }
4904
4905 /* Recomputes the reverse topological order for the function and
4906 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4907 modified appropriately. */
4908 static void
4909 recompute_rev_top_order (void)
4910 {
4911 int *postorder;
4912 int n_blocks, i;
4913
4914 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4915 {
4916 rev_top_order_index_len = last_basic_block;
4917 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4918 rev_top_order_index_len);
4919 }
4920
4921 postorder = XNEWVEC (int, n_basic_blocks);
4922
4923 n_blocks = post_order_compute (postorder, true, false);
4924 gcc_assert (n_basic_blocks == n_blocks);
4925
4926 /* Build reverse function: for each basic block with BB->INDEX == K
4927 rev_top_order_index[K] is it's reverse topological sort number. */
4928 for (i = 0; i < n_blocks; i++)
4929 {
4930 gcc_assert (postorder[i] < rev_top_order_index_len);
4931 rev_top_order_index[postorder[i]] = i;
4932 }
4933
4934 free (postorder);
4935 }
4936
4937 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4938 void
4939 clear_outdated_rtx_info (basic_block bb)
4940 {
4941 rtx insn;
4942
4943 FOR_BB_INSNS (bb, insn)
4944 if (INSN_P (insn))
4945 {
4946 SCHED_GROUP_P (insn) = 0;
4947 INSN_AFTER_STALL_P (insn) = 0;
4948 INSN_SCHED_TIMES (insn) = 0;
4949 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4950
4951 /* We cannot use the changed caches, as previously we could ignore
4952 the LHS dependence due to enabled renaming and transform
4953 the expression, and currently we'll be unable to do this. */
4954 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4955 }
4956 }
4957
4958 /* Add BB_NOTE to the pool of available basic block notes. */
4959 static void
4960 return_bb_to_pool (basic_block bb)
4961 {
4962 rtx note = bb_note (bb);
4963
4964 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4965 && bb->aux == NULL);
4966
4967 /* It turns out that current cfg infrastructure does not support
4968 reuse of basic blocks. Don't bother for now. */
4969 /*bb_note_pool.safe_push (note);*/
4970 }
4971
4972 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4973 static rtx
4974 get_bb_note_from_pool (void)
4975 {
4976 if (bb_note_pool.is_empty ())
4977 return NULL_RTX;
4978 else
4979 {
4980 rtx note = bb_note_pool.pop ();
4981
4982 PREV_INSN (note) = NULL_RTX;
4983 NEXT_INSN (note) = NULL_RTX;
4984
4985 return note;
4986 }
4987 }
4988
4989 /* Free bb_note_pool. */
4990 void
4991 free_bb_note_pool (void)
4992 {
4993 bb_note_pool.release ();
4994 }
4995
4996 /* Setup scheduler pool and successor structure. */
4997 void
4998 alloc_sched_pools (void)
4999 {
5000 int succs_size;
5001
5002 succs_size = MAX_WS + 1;
5003 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5004 succs_info_pool.size = succs_size;
5005 succs_info_pool.top = -1;
5006 succs_info_pool.max_top = -1;
5007
5008 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
5009 sizeof (struct _list_node), 500);
5010 }
5011
5012 /* Free the pools. */
5013 void
5014 free_sched_pools (void)
5015 {
5016 int i;
5017
5018 free_alloc_pool (sched_lists_pool);
5019 gcc_assert (succs_info_pool.top == -1);
5020 for (i = 0; i < succs_info_pool.max_top; i++)
5021 {
5022 succs_info_pool.stack[i].succs_ok.release ();
5023 succs_info_pool.stack[i].succs_other.release ();
5024 succs_info_pool.stack[i].probs_ok.release ();
5025 }
5026 free (succs_info_pool.stack);
5027 }
5028 \f
5029
5030 /* Returns a position in RGN where BB can be inserted retaining
5031 topological order. */
5032 static int
5033 find_place_to_insert_bb (basic_block bb, int rgn)
5034 {
5035 bool has_preds_outside_rgn = false;
5036 edge e;
5037 edge_iterator ei;
5038
5039 /* Find whether we have preds outside the region. */
5040 FOR_EACH_EDGE (e, ei, bb->preds)
5041 if (!in_current_region_p (e->src))
5042 {
5043 has_preds_outside_rgn = true;
5044 break;
5045 }
5046
5047 /* Recompute the top order -- needed when we have > 1 pred
5048 and in case we don't have preds outside. */
5049 if (flag_sel_sched_pipelining_outer_loops
5050 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5051 {
5052 int i, bbi = bb->index, cur_bbi;
5053
5054 recompute_rev_top_order ();
5055 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5056 {
5057 cur_bbi = BB_TO_BLOCK (i);
5058 if (rev_top_order_index[bbi]
5059 < rev_top_order_index[cur_bbi])
5060 break;
5061 }
5062
5063 /* We skipped the right block, so we increase i. We accommodate
5064 it for increasing by step later, so we decrease i. */
5065 return (i + 1) - 1;
5066 }
5067 else if (has_preds_outside_rgn)
5068 {
5069 /* This is the case when we generate an extra empty block
5070 to serve as region head during pipelining. */
5071 e = EDGE_SUCC (bb, 0);
5072 gcc_assert (EDGE_COUNT (bb->succs) == 1
5073 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5074 && (BLOCK_TO_BB (e->dest->index) == 0));
5075 return -1;
5076 }
5077
5078 /* We don't have preds outside the region. We should have
5079 the only pred, because the multiple preds case comes from
5080 the pipelining of outer loops, and that is handled above.
5081 Just take the bbi of this single pred. */
5082 if (EDGE_COUNT (bb->succs) > 0)
5083 {
5084 int pred_bbi;
5085
5086 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5087
5088 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5089 return BLOCK_TO_BB (pred_bbi);
5090 }
5091 else
5092 /* BB has no successors. It is safe to put it in the end. */
5093 return current_nr_blocks - 1;
5094 }
5095
5096 /* Deletes an empty basic block freeing its data. */
5097 static void
5098 delete_and_free_basic_block (basic_block bb)
5099 {
5100 gcc_assert (sel_bb_empty_p (bb));
5101
5102 if (BB_LV_SET (bb))
5103 free_lv_set (bb);
5104
5105 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5106
5107 /* Can't assert av_set properties because we use sel_aremove_bb
5108 when removing loop preheader from the region. At the point of
5109 removing the preheader we already have deallocated sel_region_bb_info. */
5110 gcc_assert (BB_LV_SET (bb) == NULL
5111 && !BB_LV_SET_VALID_P (bb)
5112 && BB_AV_LEVEL (bb) == 0
5113 && BB_AV_SET (bb) == NULL);
5114
5115 delete_basic_block (bb);
5116 }
5117
5118 /* Add BB to the current region and update the region data. */
5119 static void
5120 add_block_to_current_region (basic_block bb)
5121 {
5122 int i, pos, bbi = -2, rgn;
5123
5124 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5125 bbi = find_place_to_insert_bb (bb, rgn);
5126 bbi += 1;
5127 pos = RGN_BLOCKS (rgn) + bbi;
5128
5129 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5130 && ebb_head[bbi] == pos);
5131
5132 /* Make a place for the new block. */
5133 extend_regions ();
5134
5135 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5136 BLOCK_TO_BB (rgn_bb_table[i])++;
5137
5138 memmove (rgn_bb_table + pos + 1,
5139 rgn_bb_table + pos,
5140 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5141
5142 /* Initialize data for BB. */
5143 rgn_bb_table[pos] = bb->index;
5144 BLOCK_TO_BB (bb->index) = bbi;
5145 CONTAINING_RGN (bb->index) = rgn;
5146
5147 RGN_NR_BLOCKS (rgn)++;
5148
5149 for (i = rgn + 1; i <= nr_regions; i++)
5150 RGN_BLOCKS (i)++;
5151 }
5152
5153 /* Remove BB from the current region and update the region data. */
5154 static void
5155 remove_bb_from_region (basic_block bb)
5156 {
5157 int i, pos, bbi = -2, rgn;
5158
5159 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5160 bbi = BLOCK_TO_BB (bb->index);
5161 pos = RGN_BLOCKS (rgn) + bbi;
5162
5163 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5164 && ebb_head[bbi] == pos);
5165
5166 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5167 BLOCK_TO_BB (rgn_bb_table[i])--;
5168
5169 memmove (rgn_bb_table + pos,
5170 rgn_bb_table + pos + 1,
5171 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5172
5173 RGN_NR_BLOCKS (rgn)--;
5174 for (i = rgn + 1; i <= nr_regions; i++)
5175 RGN_BLOCKS (i)--;
5176 }
5177
5178 /* Add BB to the current region and update all data. If BB is NULL, add all
5179 blocks from last_added_blocks vector. */
5180 static void
5181 sel_add_bb (basic_block bb)
5182 {
5183 /* Extend luids so that new notes will receive zero luids. */
5184 sched_extend_luids ();
5185 sched_init_bbs ();
5186 sel_init_bbs (last_added_blocks);
5187
5188 /* When bb is passed explicitly, the vector should contain
5189 the only element that equals to bb; otherwise, the vector
5190 should not be NULL. */
5191 gcc_assert (last_added_blocks.exists ());
5192
5193 if (bb != NULL)
5194 {
5195 gcc_assert (last_added_blocks.length () == 1
5196 && last_added_blocks[0] == bb);
5197 add_block_to_current_region (bb);
5198
5199 /* We associate creating/deleting data sets with the first insn
5200 appearing / disappearing in the bb. */
5201 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5202 create_initial_data_sets (bb);
5203
5204 last_added_blocks.release ();
5205 }
5206 else
5207 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5208 {
5209 int i;
5210 basic_block temp_bb = NULL;
5211
5212 for (i = 0;
5213 last_added_blocks.iterate (i, &bb); i++)
5214 {
5215 add_block_to_current_region (bb);
5216 temp_bb = bb;
5217 }
5218
5219 /* We need to fetch at least one bb so we know the region
5220 to update. */
5221 gcc_assert (temp_bb != NULL);
5222 bb = temp_bb;
5223
5224 last_added_blocks.release ();
5225 }
5226
5227 rgn_setup_region (CONTAINING_RGN (bb->index));
5228 }
5229
5230 /* Remove BB from the current region and update all data.
5231 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5232 static void
5233 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5234 {
5235 unsigned idx = bb->index;
5236
5237 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5238
5239 remove_bb_from_region (bb);
5240 return_bb_to_pool (bb);
5241 bitmap_clear_bit (blocks_to_reschedule, idx);
5242
5243 if (remove_from_cfg_p)
5244 {
5245 basic_block succ = single_succ (bb);
5246 delete_and_free_basic_block (bb);
5247 set_immediate_dominator (CDI_DOMINATORS, succ,
5248 recompute_dominator (CDI_DOMINATORS, succ));
5249 }
5250
5251 rgn_setup_region (CONTAINING_RGN (idx));
5252 }
5253
5254 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5255 static void
5256 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5257 {
5258 if (in_current_region_p (merge_bb))
5259 concat_note_lists (BB_NOTE_LIST (empty_bb),
5260 &BB_NOTE_LIST (merge_bb));
5261 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5262
5263 }
5264
5265 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5266 region, but keep it in CFG. */
5267 static void
5268 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5269 {
5270 /* The block should contain just a note or a label.
5271 We try to check whether it is unused below. */
5272 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5273 || LABEL_P (BB_HEAD (empty_bb)));
5274
5275 /* If basic block has predecessors or successors, redirect them. */
5276 if (remove_from_cfg_p
5277 && (EDGE_COUNT (empty_bb->preds) > 0
5278 || EDGE_COUNT (empty_bb->succs) > 0))
5279 {
5280 basic_block pred;
5281 basic_block succ;
5282
5283 /* We need to init PRED and SUCC before redirecting edges. */
5284 if (EDGE_COUNT (empty_bb->preds) > 0)
5285 {
5286 edge e;
5287
5288 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5289
5290 e = EDGE_PRED (empty_bb, 0);
5291 gcc_assert (e->src == empty_bb->prev_bb
5292 && (e->flags & EDGE_FALLTHRU));
5293
5294 pred = empty_bb->prev_bb;
5295 }
5296 else
5297 pred = NULL;
5298
5299 if (EDGE_COUNT (empty_bb->succs) > 0)
5300 {
5301 /* We do not check fallthruness here as above, because
5302 after removing a jump the edge may actually be not fallthru. */
5303 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5304 succ = EDGE_SUCC (empty_bb, 0)->dest;
5305 }
5306 else
5307 succ = NULL;
5308
5309 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5310 {
5311 edge e = EDGE_PRED (empty_bb, 0);
5312
5313 if (e->flags & EDGE_FALLTHRU)
5314 redirect_edge_succ_nodup (e, succ);
5315 else
5316 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5317 }
5318
5319 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5320 {
5321 edge e = EDGE_SUCC (empty_bb, 0);
5322
5323 if (find_edge (pred, e->dest) == NULL)
5324 redirect_edge_pred (e, pred);
5325 }
5326 }
5327
5328 /* Finish removing. */
5329 sel_remove_bb (empty_bb, remove_from_cfg_p);
5330 }
5331
5332 /* An implementation of create_basic_block hook, which additionally updates
5333 per-bb data structures. */
5334 static basic_block
5335 sel_create_basic_block (void *headp, void *endp, basic_block after)
5336 {
5337 basic_block new_bb;
5338 insn_t new_bb_note;
5339
5340 gcc_assert (flag_sel_sched_pipelining_outer_loops
5341 || !last_added_blocks.exists ());
5342
5343 new_bb_note = get_bb_note_from_pool ();
5344
5345 if (new_bb_note == NULL_RTX)
5346 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5347 else
5348 {
5349 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5350 new_bb_note, after);
5351 new_bb->aux = NULL;
5352 }
5353
5354 last_added_blocks.safe_push (new_bb);
5355
5356 return new_bb;
5357 }
5358
5359 /* Implement sched_init_only_bb (). */
5360 static void
5361 sel_init_only_bb (basic_block bb, basic_block after)
5362 {
5363 gcc_assert (after == NULL);
5364
5365 extend_regions ();
5366 rgn_make_new_region_out_of_new_block (bb);
5367 }
5368
5369 /* Update the latch when we've splitted or merged it from FROM block to TO.
5370 This should be checked for all outer loops, too. */
5371 static void
5372 change_loops_latches (basic_block from, basic_block to)
5373 {
5374 gcc_assert (from != to);
5375
5376 if (current_loop_nest)
5377 {
5378 struct loop *loop;
5379
5380 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5381 if (considered_for_pipelining_p (loop) && loop->latch == from)
5382 {
5383 gcc_assert (loop == current_loop_nest);
5384 loop->latch = to;
5385 gcc_assert (loop_latch_edge (loop));
5386 }
5387 }
5388 }
5389
5390 /* Splits BB on two basic blocks, adding it to the region and extending
5391 per-bb data structures. Returns the newly created bb. */
5392 static basic_block
5393 sel_split_block (basic_block bb, rtx after)
5394 {
5395 basic_block new_bb;
5396 insn_t insn;
5397
5398 new_bb = sched_split_block_1 (bb, after);
5399 sel_add_bb (new_bb);
5400
5401 /* This should be called after sel_add_bb, because this uses
5402 CONTAINING_RGN for the new block, which is not yet initialized.
5403 FIXME: this function may be a no-op now. */
5404 change_loops_latches (bb, new_bb);
5405
5406 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5407 FOR_BB_INSNS (new_bb, insn)
5408 if (INSN_P (insn))
5409 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5410
5411 if (sel_bb_empty_p (bb))
5412 {
5413 gcc_assert (!sel_bb_empty_p (new_bb));
5414
5415 /* NEW_BB has data sets that need to be updated and BB holds
5416 data sets that should be removed. Exchange these data sets
5417 so that we won't lose BB's valid data sets. */
5418 exchange_data_sets (new_bb, bb);
5419 free_data_sets (bb);
5420 }
5421
5422 if (!sel_bb_empty_p (new_bb)
5423 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5424 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5425
5426 return new_bb;
5427 }
5428
5429 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5430 Otherwise returns NULL. */
5431 static rtx
5432 check_for_new_jump (basic_block bb, int prev_max_uid)
5433 {
5434 rtx end;
5435
5436 end = sel_bb_end (bb);
5437 if (end && INSN_UID (end) >= prev_max_uid)
5438 return end;
5439 return NULL;
5440 }
5441
5442 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5443 New means having UID at least equal to PREV_MAX_UID. */
5444 static rtx
5445 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5446 {
5447 rtx jump;
5448
5449 /* Return immediately if no new insns were emitted. */
5450 if (get_max_uid () == prev_max_uid)
5451 return NULL;
5452
5453 /* Now check both blocks for new jumps. It will ever be only one. */
5454 if ((jump = check_for_new_jump (from, prev_max_uid)))
5455 return jump;
5456
5457 if (jump_bb != NULL
5458 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5459 return jump;
5460 return NULL;
5461 }
5462
5463 /* Splits E and adds the newly created basic block to the current region.
5464 Returns this basic block. */
5465 basic_block
5466 sel_split_edge (edge e)
5467 {
5468 basic_block new_bb, src, other_bb = NULL;
5469 int prev_max_uid;
5470 rtx jump;
5471
5472 src = e->src;
5473 prev_max_uid = get_max_uid ();
5474 new_bb = split_edge (e);
5475
5476 if (flag_sel_sched_pipelining_outer_loops
5477 && current_loop_nest)
5478 {
5479 int i;
5480 basic_block bb;
5481
5482 /* Some of the basic blocks might not have been added to the loop.
5483 Add them here, until this is fixed in force_fallthru. */
5484 for (i = 0;
5485 last_added_blocks.iterate (i, &bb); i++)
5486 if (!bb->loop_father)
5487 {
5488 add_bb_to_loop (bb, e->dest->loop_father);
5489
5490 gcc_assert (!other_bb && (new_bb->index != bb->index));
5491 other_bb = bb;
5492 }
5493 }
5494
5495 /* Add all last_added_blocks to the region. */
5496 sel_add_bb (NULL);
5497
5498 jump = find_new_jump (src, new_bb, prev_max_uid);
5499 if (jump)
5500 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5501
5502 /* Put the correct lv set on this block. */
5503 if (other_bb && !sel_bb_empty_p (other_bb))
5504 compute_live (sel_bb_head (other_bb));
5505
5506 return new_bb;
5507 }
5508
5509 /* Implement sched_create_empty_bb (). */
5510 static basic_block
5511 sel_create_empty_bb (basic_block after)
5512 {
5513 basic_block new_bb;
5514
5515 new_bb = sched_create_empty_bb_1 (after);
5516
5517 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5518 later. */
5519 gcc_assert (last_added_blocks.length () == 1
5520 && last_added_blocks[0] == new_bb);
5521
5522 last_added_blocks.release ();
5523 return new_bb;
5524 }
5525
5526 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5527 will be splitted to insert a check. */
5528 basic_block
5529 sel_create_recovery_block (insn_t orig_insn)
5530 {
5531 basic_block first_bb, second_bb, recovery_block;
5532 basic_block before_recovery = NULL;
5533 rtx jump;
5534
5535 first_bb = BLOCK_FOR_INSN (orig_insn);
5536 if (sel_bb_end_p (orig_insn))
5537 {
5538 /* Avoid introducing an empty block while splitting. */
5539 gcc_assert (single_succ_p (first_bb));
5540 second_bb = single_succ (first_bb);
5541 }
5542 else
5543 second_bb = sched_split_block (first_bb, orig_insn);
5544
5545 recovery_block = sched_create_recovery_block (&before_recovery);
5546 if (before_recovery)
5547 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5548
5549 gcc_assert (sel_bb_empty_p (recovery_block));
5550 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5551 if (current_loops != NULL)
5552 add_bb_to_loop (recovery_block, first_bb->loop_father);
5553
5554 sel_add_bb (recovery_block);
5555
5556 jump = BB_END (recovery_block);
5557 gcc_assert (sel_bb_head (recovery_block) == jump);
5558 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5559
5560 return recovery_block;
5561 }
5562
5563 /* Merge basic block B into basic block A. */
5564 static void
5565 sel_merge_blocks (basic_block a, basic_block b)
5566 {
5567 gcc_assert (sel_bb_empty_p (b)
5568 && EDGE_COUNT (b->preds) == 1
5569 && EDGE_PRED (b, 0)->src == b->prev_bb);
5570
5571 move_bb_info (b->prev_bb, b);
5572 remove_empty_bb (b, false);
5573 merge_blocks (a, b);
5574 change_loops_latches (b, a);
5575 }
5576
5577 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5578 data structures for possibly created bb and insns. Returns the newly
5579 added bb or NULL, when a bb was not needed. */
5580 void
5581 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5582 {
5583 basic_block jump_bb, src, orig_dest = e->dest;
5584 int prev_max_uid;
5585 rtx jump;
5586
5587 /* This function is now used only for bookkeeping code creation, where
5588 we'll never get the single pred of orig_dest block and thus will not
5589 hit unreachable blocks when updating dominator info. */
5590 gcc_assert (!sel_bb_empty_p (e->src)
5591 && !single_pred_p (orig_dest));
5592 src = e->src;
5593 prev_max_uid = get_max_uid ();
5594 jump_bb = redirect_edge_and_branch_force (e, to);
5595
5596 if (jump_bb != NULL)
5597 sel_add_bb (jump_bb);
5598
5599 /* This function could not be used to spoil the loop structure by now,
5600 thus we don't care to update anything. But check it to be sure. */
5601 if (current_loop_nest
5602 && pipelining_p)
5603 gcc_assert (loop_latch_edge (current_loop_nest));
5604
5605 jump = find_new_jump (src, jump_bb, prev_max_uid);
5606 if (jump)
5607 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5608 set_immediate_dominator (CDI_DOMINATORS, to,
5609 recompute_dominator (CDI_DOMINATORS, to));
5610 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5611 recompute_dominator (CDI_DOMINATORS, orig_dest));
5612 }
5613
5614 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5615 redirected edge are in reverse topological order. */
5616 bool
5617 sel_redirect_edge_and_branch (edge e, basic_block to)
5618 {
5619 bool latch_edge_p;
5620 basic_block src, orig_dest = e->dest;
5621 int prev_max_uid;
5622 rtx jump;
5623 edge redirected;
5624 bool recompute_toporder_p = false;
5625 bool maybe_unreachable = single_pred_p (orig_dest);
5626
5627 latch_edge_p = (pipelining_p
5628 && current_loop_nest
5629 && e == loop_latch_edge (current_loop_nest));
5630
5631 src = e->src;
5632 prev_max_uid = get_max_uid ();
5633
5634 redirected = redirect_edge_and_branch (e, to);
5635
5636 gcc_assert (redirected && !last_added_blocks.exists ());
5637
5638 /* When we've redirected a latch edge, update the header. */
5639 if (latch_edge_p)
5640 {
5641 current_loop_nest->header = to;
5642 gcc_assert (loop_latch_edge (current_loop_nest));
5643 }
5644
5645 /* In rare situations, the topological relation between the blocks connected
5646 by the redirected edge can change (see PR42245 for an example). Update
5647 block_to_bb/bb_to_block. */
5648 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5649 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5650 recompute_toporder_p = true;
5651
5652 jump = find_new_jump (src, NULL, prev_max_uid);
5653 if (jump)
5654 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5655
5656 /* Only update dominator info when we don't have unreachable blocks.
5657 Otherwise we'll update in maybe_tidy_empty_bb. */
5658 if (!maybe_unreachable)
5659 {
5660 set_immediate_dominator (CDI_DOMINATORS, to,
5661 recompute_dominator (CDI_DOMINATORS, to));
5662 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5663 recompute_dominator (CDI_DOMINATORS, orig_dest));
5664 }
5665 return recompute_toporder_p;
5666 }
5667
5668 /* This variable holds the cfg hooks used by the selective scheduler. */
5669 static struct cfg_hooks sel_cfg_hooks;
5670
5671 /* Register sel-sched cfg hooks. */
5672 void
5673 sel_register_cfg_hooks (void)
5674 {
5675 sched_split_block = sel_split_block;
5676
5677 orig_cfg_hooks = get_cfg_hooks ();
5678 sel_cfg_hooks = orig_cfg_hooks;
5679
5680 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5681
5682 set_cfg_hooks (sel_cfg_hooks);
5683
5684 sched_init_only_bb = sel_init_only_bb;
5685 sched_split_block = sel_split_block;
5686 sched_create_empty_bb = sel_create_empty_bb;
5687 }
5688
5689 /* Unregister sel-sched cfg hooks. */
5690 void
5691 sel_unregister_cfg_hooks (void)
5692 {
5693 sched_create_empty_bb = NULL;
5694 sched_split_block = NULL;
5695 sched_init_only_bb = NULL;
5696
5697 set_cfg_hooks (orig_cfg_hooks);
5698 }
5699 \f
5700
5701 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5702 LABEL is where this jump should be directed. */
5703 rtx
5704 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5705 {
5706 rtx insn_rtx;
5707
5708 gcc_assert (!INSN_P (pattern));
5709
5710 start_sequence ();
5711
5712 if (label == NULL_RTX)
5713 insn_rtx = emit_insn (pattern);
5714 else if (DEBUG_INSN_P (label))
5715 insn_rtx = emit_debug_insn (pattern);
5716 else
5717 {
5718 insn_rtx = emit_jump_insn (pattern);
5719 JUMP_LABEL (insn_rtx) = label;
5720 ++LABEL_NUSES (label);
5721 }
5722
5723 end_sequence ();
5724
5725 sched_extend_luids ();
5726 sched_extend_target ();
5727 sched_deps_init (false);
5728
5729 /* Initialize INSN_CODE now. */
5730 recog_memoized (insn_rtx);
5731 return insn_rtx;
5732 }
5733
5734 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5735 must not be clonable. */
5736 vinsn_t
5737 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5738 {
5739 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5740
5741 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5742 return vinsn_create (insn_rtx, force_unique_p);
5743 }
5744
5745 /* Create a copy of INSN_RTX. */
5746 rtx
5747 create_copy_of_insn_rtx (rtx insn_rtx)
5748 {
5749 rtx res, link;
5750
5751 if (DEBUG_INSN_P (insn_rtx))
5752 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5753 insn_rtx);
5754
5755 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5756
5757 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5758 NULL_RTX);
5759
5760 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5761 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5762 there too, but are supposed to be sticky, so we copy them. */
5763 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5764 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5765 && REG_NOTE_KIND (link) != REG_EQUAL
5766 && REG_NOTE_KIND (link) != REG_EQUIV)
5767 {
5768 if (GET_CODE (link) == EXPR_LIST)
5769 add_reg_note (res, REG_NOTE_KIND (link),
5770 copy_insn_1 (XEXP (link, 0)));
5771 else
5772 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5773 }
5774
5775 return res;
5776 }
5777
5778 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5779 void
5780 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5781 {
5782 vinsn_detach (EXPR_VINSN (expr));
5783
5784 EXPR_VINSN (expr) = new_vinsn;
5785 vinsn_attach (new_vinsn);
5786 }
5787
5788 /* Helpers for global init. */
5789 /* This structure is used to be able to call existing bundling mechanism
5790 and calculate insn priorities. */
5791 static struct haifa_sched_info sched_sel_haifa_sched_info =
5792 {
5793 NULL, /* init_ready_list */
5794 NULL, /* can_schedule_ready_p */
5795 NULL, /* schedule_more_p */
5796 NULL, /* new_ready */
5797 NULL, /* rgn_rank */
5798 sel_print_insn, /* rgn_print_insn */
5799 contributes_to_priority,
5800 NULL, /* insn_finishes_block_p */
5801
5802 NULL, NULL,
5803 NULL, NULL,
5804 0, 0,
5805
5806 NULL, /* add_remove_insn */
5807 NULL, /* begin_schedule_ready */
5808 NULL, /* begin_move_insn */
5809 NULL, /* advance_target_bb */
5810
5811 NULL,
5812 NULL,
5813
5814 SEL_SCHED | NEW_BBS
5815 };
5816
5817 /* Setup special insns used in the scheduler. */
5818 void
5819 setup_nop_and_exit_insns (void)
5820 {
5821 gcc_assert (nop_pattern == NULL_RTX
5822 && exit_insn == NULL_RTX);
5823
5824 nop_pattern = constm1_rtx;
5825
5826 start_sequence ();
5827 emit_insn (nop_pattern);
5828 exit_insn = get_insns ();
5829 end_sequence ();
5830 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5831 }
5832
5833 /* Free special insns used in the scheduler. */
5834 void
5835 free_nop_and_exit_insns (void)
5836 {
5837 exit_insn = NULL_RTX;
5838 nop_pattern = NULL_RTX;
5839 }
5840
5841 /* Setup a special vinsn used in new insns initialization. */
5842 void
5843 setup_nop_vinsn (void)
5844 {
5845 nop_vinsn = vinsn_create (exit_insn, false);
5846 vinsn_attach (nop_vinsn);
5847 }
5848
5849 /* Free a special vinsn used in new insns initialization. */
5850 void
5851 free_nop_vinsn (void)
5852 {
5853 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5854 vinsn_detach (nop_vinsn);
5855 nop_vinsn = NULL;
5856 }
5857
5858 /* Call a set_sched_flags hook. */
5859 void
5860 sel_set_sched_flags (void)
5861 {
5862 /* ??? This means that set_sched_flags were called, and we decided to
5863 support speculation. However, set_sched_flags also modifies flags
5864 on current_sched_info, doing this only at global init. And we
5865 sometimes change c_s_i later. So put the correct flags again. */
5866 if (spec_info && targetm.sched.set_sched_flags)
5867 targetm.sched.set_sched_flags (spec_info);
5868 }
5869
5870 /* Setup pointers to global sched info structures. */
5871 void
5872 sel_setup_sched_infos (void)
5873 {
5874 rgn_setup_common_sched_info ();
5875
5876 memcpy (&sel_common_sched_info, common_sched_info,
5877 sizeof (sel_common_sched_info));
5878
5879 sel_common_sched_info.fix_recovery_cfg = NULL;
5880 sel_common_sched_info.add_block = NULL;
5881 sel_common_sched_info.estimate_number_of_insns
5882 = sel_estimate_number_of_insns;
5883 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5884 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5885
5886 common_sched_info = &sel_common_sched_info;
5887
5888 current_sched_info = &sched_sel_haifa_sched_info;
5889 current_sched_info->sched_max_insns_priority =
5890 get_rgn_sched_max_insns_priority ();
5891
5892 sel_set_sched_flags ();
5893 }
5894 \f
5895
5896 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5897 *BB_ORD_INDEX after that is increased. */
5898 static void
5899 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5900 {
5901 RGN_NR_BLOCKS (rgn) += 1;
5902 RGN_DONT_CALC_DEPS (rgn) = 0;
5903 RGN_HAS_REAL_EBB (rgn) = 0;
5904 CONTAINING_RGN (bb->index) = rgn;
5905 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5906 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5907 (*bb_ord_index)++;
5908
5909 /* FIXME: it is true only when not scheduling ebbs. */
5910 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5911 }
5912
5913 /* Functions to support pipelining of outer loops. */
5914
5915 /* Creates a new empty region and returns it's number. */
5916 static int
5917 sel_create_new_region (void)
5918 {
5919 int new_rgn_number = nr_regions;
5920
5921 RGN_NR_BLOCKS (new_rgn_number) = 0;
5922
5923 /* FIXME: This will work only when EBBs are not created. */
5924 if (new_rgn_number != 0)
5925 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5926 RGN_NR_BLOCKS (new_rgn_number - 1);
5927 else
5928 RGN_BLOCKS (new_rgn_number) = 0;
5929
5930 /* Set the blocks of the next region so the other functions may
5931 calculate the number of blocks in the region. */
5932 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5933 RGN_NR_BLOCKS (new_rgn_number);
5934
5935 nr_regions++;
5936
5937 return new_rgn_number;
5938 }
5939
5940 /* If X has a smaller topological sort number than Y, returns -1;
5941 if greater, returns 1. */
5942 static int
5943 bb_top_order_comparator (const void *x, const void *y)
5944 {
5945 basic_block bb1 = *(const basic_block *) x;
5946 basic_block bb2 = *(const basic_block *) y;
5947
5948 gcc_assert (bb1 == bb2
5949 || rev_top_order_index[bb1->index]
5950 != rev_top_order_index[bb2->index]);
5951
5952 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5953 bbs with greater number should go earlier. */
5954 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5955 return -1;
5956 else
5957 return 1;
5958 }
5959
5960 /* Create a region for LOOP and return its number. If we don't want
5961 to pipeline LOOP, return -1. */
5962 static int
5963 make_region_from_loop (struct loop *loop)
5964 {
5965 unsigned int i;
5966 int new_rgn_number = -1;
5967 struct loop *inner;
5968
5969 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5970 int bb_ord_index = 0;
5971 basic_block *loop_blocks;
5972 basic_block preheader_block;
5973
5974 if (loop->num_nodes
5975 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5976 return -1;
5977
5978 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5979 for (inner = loop->inner; inner; inner = inner->inner)
5980 if (flow_bb_inside_loop_p (inner, loop->latch))
5981 return -1;
5982
5983 loop->ninsns = num_loop_insns (loop);
5984 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5985 return -1;
5986
5987 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5988
5989 for (i = 0; i < loop->num_nodes; i++)
5990 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5991 {
5992 free (loop_blocks);
5993 return -1;
5994 }
5995
5996 preheader_block = loop_preheader_edge (loop)->src;
5997 gcc_assert (preheader_block);
5998 gcc_assert (loop_blocks[0] == loop->header);
5999
6000 new_rgn_number = sel_create_new_region ();
6001
6002 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6003 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6004
6005 for (i = 0; i < loop->num_nodes; i++)
6006 {
6007 /* Add only those blocks that haven't been scheduled in the inner loop.
6008 The exception is the basic blocks with bookkeeping code - they should
6009 be added to the region (and they actually don't belong to the loop
6010 body, but to the region containing that loop body). */
6011
6012 gcc_assert (new_rgn_number >= 0);
6013
6014 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6015 {
6016 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6017 new_rgn_number);
6018 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6019 }
6020 }
6021
6022 free (loop_blocks);
6023 MARK_LOOP_FOR_PIPELINING (loop);
6024
6025 return new_rgn_number;
6026 }
6027
6028 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6029 void
6030 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6031 {
6032 unsigned int i;
6033 int new_rgn_number = -1;
6034 basic_block bb;
6035
6036 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6037 int bb_ord_index = 0;
6038
6039 new_rgn_number = sel_create_new_region ();
6040
6041 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6042 {
6043 gcc_assert (new_rgn_number >= 0);
6044
6045 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6046 }
6047
6048 vec_free (loop_blocks);
6049 }
6050
6051
6052 /* Create region(s) from loop nest LOOP, such that inner loops will be
6053 pipelined before outer loops. Returns true when a region for LOOP
6054 is created. */
6055 static bool
6056 make_regions_from_loop_nest (struct loop *loop)
6057 {
6058 struct loop *cur_loop;
6059 int rgn_number;
6060
6061 /* Traverse all inner nodes of the loop. */
6062 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6063 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6064 return false;
6065
6066 /* At this moment all regular inner loops should have been pipelined.
6067 Try to create a region from this loop. */
6068 rgn_number = make_region_from_loop (loop);
6069
6070 if (rgn_number < 0)
6071 return false;
6072
6073 loop_nests.safe_push (loop);
6074 return true;
6075 }
6076
6077 /* Initalize data structures needed. */
6078 void
6079 sel_init_pipelining (void)
6080 {
6081 /* Collect loop information to be used in outer loops pipelining. */
6082 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6083 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6084 | LOOPS_HAVE_RECORDED_EXITS
6085 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6086 current_loop_nest = NULL;
6087
6088 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
6089 bitmap_clear (bbs_in_loop_rgns);
6090
6091 recompute_rev_top_order ();
6092 }
6093
6094 /* Returns a struct loop for region RGN. */
6095 loop_p
6096 get_loop_nest_for_rgn (unsigned int rgn)
6097 {
6098 /* Regions created with extend_rgns don't have corresponding loop nests,
6099 because they don't represent loops. */
6100 if (rgn < loop_nests.length ())
6101 return loop_nests[rgn];
6102 else
6103 return NULL;
6104 }
6105
6106 /* True when LOOP was included into pipelining regions. */
6107 bool
6108 considered_for_pipelining_p (struct loop *loop)
6109 {
6110 if (loop_depth (loop) == 0)
6111 return false;
6112
6113 /* Now, the loop could be too large or irreducible. Check whether its
6114 region is in LOOP_NESTS.
6115 We determine the region number of LOOP as the region number of its
6116 latch. We can't use header here, because this header could be
6117 just removed preheader and it will give us the wrong region number.
6118 Latch can't be used because it could be in the inner loop too. */
6119 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6120 {
6121 int rgn = CONTAINING_RGN (loop->latch->index);
6122
6123 gcc_assert ((unsigned) rgn < loop_nests.length ());
6124 return true;
6125 }
6126
6127 return false;
6128 }
6129
6130 /* Makes regions from the rest of the blocks, after loops are chosen
6131 for pipelining. */
6132 static void
6133 make_regions_from_the_rest (void)
6134 {
6135 int cur_rgn_blocks;
6136 int *loop_hdr;
6137 int i;
6138
6139 basic_block bb;
6140 edge e;
6141 edge_iterator ei;
6142 int *degree;
6143
6144 /* Index in rgn_bb_table where to start allocating new regions. */
6145 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6146
6147 /* Make regions from all the rest basic blocks - those that don't belong to
6148 any loop or belong to irreducible loops. Prepare the data structures
6149 for extend_rgns. */
6150
6151 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6152 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6153 loop. */
6154 loop_hdr = XNEWVEC (int, last_basic_block);
6155 degree = XCNEWVEC (int, last_basic_block);
6156
6157
6158 /* For each basic block that belongs to some loop assign the number
6159 of innermost loop it belongs to. */
6160 for (i = 0; i < last_basic_block; i++)
6161 loop_hdr[i] = -1;
6162
6163 FOR_EACH_BB (bb)
6164 {
6165 if (bb->loop_father && !bb->loop_father->num == 0
6166 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6167 loop_hdr[bb->index] = bb->loop_father->num;
6168 }
6169
6170 /* For each basic block degree is calculated as the number of incoming
6171 edges, that are going out of bbs that are not yet scheduled.
6172 The basic blocks that are scheduled have degree value of zero. */
6173 FOR_EACH_BB (bb)
6174 {
6175 degree[bb->index] = 0;
6176
6177 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6178 {
6179 FOR_EACH_EDGE (e, ei, bb->preds)
6180 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6181 degree[bb->index]++;
6182 }
6183 else
6184 degree[bb->index] = -1;
6185 }
6186
6187 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6188
6189 /* Any block that did not end up in a region is placed into a region
6190 by itself. */
6191 FOR_EACH_BB (bb)
6192 if (degree[bb->index] >= 0)
6193 {
6194 rgn_bb_table[cur_rgn_blocks] = bb->index;
6195 RGN_NR_BLOCKS (nr_regions) = 1;
6196 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6197 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6198 RGN_HAS_REAL_EBB (nr_regions) = 0;
6199 CONTAINING_RGN (bb->index) = nr_regions++;
6200 BLOCK_TO_BB (bb->index) = 0;
6201 }
6202
6203 free (degree);
6204 free (loop_hdr);
6205 }
6206
6207 /* Free data structures used in pipelining of loops. */
6208 void sel_finish_pipelining (void)
6209 {
6210 loop_iterator li;
6211 struct loop *loop;
6212
6213 /* Release aux fields so we don't free them later by mistake. */
6214 FOR_EACH_LOOP (li, loop, 0)
6215 loop->aux = NULL;
6216
6217 loop_optimizer_finalize ();
6218
6219 loop_nests.release ();
6220
6221 free (rev_top_order_index);
6222 rev_top_order_index = NULL;
6223 }
6224
6225 /* This function replaces the find_rgns when
6226 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6227 void
6228 sel_find_rgns (void)
6229 {
6230 sel_init_pipelining ();
6231 extend_regions ();
6232
6233 if (current_loops)
6234 {
6235 loop_p loop;
6236 loop_iterator li;
6237
6238 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6239 ? LI_FROM_INNERMOST
6240 : LI_ONLY_INNERMOST))
6241 make_regions_from_loop_nest (loop);
6242 }
6243
6244 /* Make regions from all the rest basic blocks and schedule them.
6245 These blocks include blocks that don't belong to any loop or belong
6246 to irreducible loops. */
6247 make_regions_from_the_rest ();
6248
6249 /* We don't need bbs_in_loop_rgns anymore. */
6250 sbitmap_free (bbs_in_loop_rgns);
6251 bbs_in_loop_rgns = NULL;
6252 }
6253
6254 /* Add the preheader blocks from previous loop to current region taking
6255 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6256 This function is only used with -fsel-sched-pipelining-outer-loops. */
6257 void
6258 sel_add_loop_preheaders (bb_vec_t *bbs)
6259 {
6260 int i;
6261 basic_block bb;
6262 vec<basic_block> *preheader_blocks
6263 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6264
6265 if (!preheader_blocks)
6266 return;
6267
6268 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6269 {
6270 bbs->safe_push (bb);
6271 last_added_blocks.safe_push (bb);
6272 sel_add_bb (bb);
6273 }
6274
6275 vec_free (preheader_blocks);
6276 }
6277
6278 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6279 Please note that the function should also work when pipelining_p is
6280 false, because it is used when deciding whether we should or should
6281 not reschedule pipelined code. */
6282 bool
6283 sel_is_loop_preheader_p (basic_block bb)
6284 {
6285 if (current_loop_nest)
6286 {
6287 struct loop *outer;
6288
6289 if (preheader_removed)
6290 return false;
6291
6292 /* Preheader is the first block in the region. */
6293 if (BLOCK_TO_BB (bb->index) == 0)
6294 return true;
6295
6296 /* We used to find a preheader with the topological information.
6297 Check that the above code is equivalent to what we did before. */
6298
6299 if (in_current_region_p (current_loop_nest->header))
6300 gcc_assert (!(BLOCK_TO_BB (bb->index)
6301 < BLOCK_TO_BB (current_loop_nest->header->index)));
6302
6303 /* Support the situation when the latch block of outer loop
6304 could be from here. */
6305 for (outer = loop_outer (current_loop_nest);
6306 outer;
6307 outer = loop_outer (outer))
6308 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6309 gcc_unreachable ();
6310 }
6311
6312 return false;
6313 }
6314
6315 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6316 can be removed, making the corresponding edge fallthrough (assuming that
6317 all basic blocks between JUMP_BB and DEST_BB are empty). */
6318 static bool
6319 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6320 {
6321 if (!onlyjump_p (BB_END (jump_bb))
6322 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6323 return false;
6324
6325 /* Several outgoing edges, abnormal edge or destination of jump is
6326 not DEST_BB. */
6327 if (EDGE_COUNT (jump_bb->succs) != 1
6328 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6329 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6330 return false;
6331
6332 /* If not anything of the upper. */
6333 return true;
6334 }
6335
6336 /* Removes the loop preheader from the current region and saves it in
6337 PREHEADER_BLOCKS of the father loop, so they will be added later to
6338 region that represents an outer loop. */
6339 static void
6340 sel_remove_loop_preheader (void)
6341 {
6342 int i, old_len;
6343 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6344 basic_block bb;
6345 bool all_empty_p = true;
6346 vec<basic_block> *preheader_blocks
6347 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6348
6349 vec_check_alloc (preheader_blocks, 0);
6350
6351 gcc_assert (current_loop_nest);
6352 old_len = preheader_blocks->length ();
6353
6354 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6355 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6356 {
6357 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6358
6359 /* If the basic block belongs to region, but doesn't belong to
6360 corresponding loop, then it should be a preheader. */
6361 if (sel_is_loop_preheader_p (bb))
6362 {
6363 preheader_blocks->safe_push (bb);
6364 if (BB_END (bb) != bb_note (bb))
6365 all_empty_p = false;
6366 }
6367 }
6368
6369 /* Remove these blocks only after iterating over the whole region. */
6370 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6371 {
6372 bb = (*preheader_blocks)[i];
6373 sel_remove_bb (bb, false);
6374 }
6375
6376 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6377 {
6378 if (!all_empty_p)
6379 /* Immediately create new region from preheader. */
6380 make_region_from_loop_preheader (preheader_blocks);
6381 else
6382 {
6383 /* If all preheader blocks are empty - dont create new empty region.
6384 Instead, remove them completely. */
6385 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6386 {
6387 edge e;
6388 edge_iterator ei;
6389 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6390
6391 /* Redirect all incoming edges to next basic block. */
6392 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6393 {
6394 if (! (e->flags & EDGE_FALLTHRU))
6395 redirect_edge_and_branch (e, bb->next_bb);
6396 else
6397 redirect_edge_succ (e, bb->next_bb);
6398 }
6399 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6400 delete_and_free_basic_block (bb);
6401
6402 /* Check if after deleting preheader there is a nonconditional
6403 jump in PREV_BB that leads to the next basic block NEXT_BB.
6404 If it is so - delete this jump and clear data sets of its
6405 basic block if it becomes empty. */
6406 if (next_bb->prev_bb == prev_bb
6407 && prev_bb != ENTRY_BLOCK_PTR
6408 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6409 {
6410 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6411 if (BB_END (prev_bb) == bb_note (prev_bb))
6412 free_data_sets (prev_bb);
6413 }
6414
6415 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6416 recompute_dominator (CDI_DOMINATORS,
6417 next_bb));
6418 }
6419 }
6420 vec_free (preheader_blocks);
6421 }
6422 else
6423 /* Store preheader within the father's loop structure. */
6424 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6425 preheader_blocks);
6426 }
6427 #endif