]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched-ir.c
coretypes.h: Include input.h and as-a.h.
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "predict.h"
31 #include "dominance.h"
32 #include "cfg.h"
33 #include "cfgrtl.h"
34 #include "cfganal.h"
35 #include "cfgbuild.h"
36 #include "basic-block.h"
37 #include "flags.h"
38 #include "insn-config.h"
39 #include "insn-attr.h"
40 #include "except.h"
41 #include "recog.h"
42 #include "params.h"
43 #include "target.h"
44 #include "sched-int.h"
45 #include "symtab.h"
46 #include "tree.h"
47 #include "langhooks.h"
48 #include "rtlhooks-def.h"
49 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
50
51 #ifdef INSN_SCHEDULING
52 #include "sel-sched-ir.h"
53 /* We don't have to use it except for sel_print_insn. */
54 #include "sel-sched-dump.h"
55
56 /* A vector holding bb info for whole scheduling pass. */
57 vec<sel_global_bb_info_def>
58 sel_global_bb_info = vNULL;
59
60 /* A vector holding bb info. */
61 vec<sel_region_bb_info_def>
62 sel_region_bb_info = vNULL;
63
64 /* A pool for allocating all lists. */
65 pool_allocator<_list_node> sched_lists_pool ("sel-sched-lists", 500);
66
67 /* This contains information about successors for compute_av_set. */
68 struct succs_info current_succs;
69
70 /* Data structure to describe interaction with the generic scheduler utils. */
71 static struct common_sched_info_def sel_common_sched_info;
72
73 /* The loop nest being pipelined. */
74 struct loop *current_loop_nest;
75
76 /* LOOP_NESTS is a vector containing the corresponding loop nest for
77 each region. */
78 static vec<loop_p> loop_nests = vNULL;
79
80 /* Saves blocks already in loop regions, indexed by bb->index. */
81 static sbitmap bbs_in_loop_rgns = NULL;
82
83 /* CFG hooks that are saved before changing create_basic_block hook. */
84 static struct cfg_hooks orig_cfg_hooks;
85 \f
86
87 /* Array containing reverse topological index of function basic blocks,
88 indexed by BB->INDEX. */
89 static int *rev_top_order_index = NULL;
90
91 /* Length of the above array. */
92 static int rev_top_order_index_len = -1;
93
94 /* A regset pool structure. */
95 static struct
96 {
97 /* The stack to which regsets are returned. */
98 regset *v;
99
100 /* Its pointer. */
101 int n;
102
103 /* Its size. */
104 int s;
105
106 /* In VV we save all generated regsets so that, when destructing the
107 pool, we can compare it with V and check that every regset was returned
108 back to pool. */
109 regset *vv;
110
111 /* The pointer of VV stack. */
112 int nn;
113
114 /* Its size. */
115 int ss;
116
117 /* The difference between allocated and returned regsets. */
118 int diff;
119 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
120
121 /* This represents the nop pool. */
122 static struct
123 {
124 /* The vector which holds previously emitted nops. */
125 insn_t *v;
126
127 /* Its pointer. */
128 int n;
129
130 /* Its size. */
131 int s;
132 } nop_pool = { NULL, 0, 0 };
133
134 /* The pool for basic block notes. */
135 static vec<rtx_note *> bb_note_pool;
136
137 /* A NOP pattern used to emit placeholder insns. */
138 rtx nop_pattern = NULL_RTX;
139 /* A special instruction that resides in EXIT_BLOCK.
140 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
141 rtx_insn *exit_insn = NULL;
142
143 /* TRUE if while scheduling current region, which is loop, its preheader
144 was removed. */
145 bool preheader_removed = false;
146 \f
147
148 /* Forward static declarations. */
149 static void fence_clear (fence_t);
150
151 static void deps_init_id (idata_t, insn_t, bool);
152 static void init_id_from_df (idata_t, insn_t, bool);
153 static expr_t set_insn_init (expr_t, vinsn_t, int);
154
155 static void cfg_preds (basic_block, insn_t **, int *);
156 static void prepare_insn_expr (insn_t, int);
157 static void free_history_vect (vec<expr_history_def> &);
158
159 static void move_bb_info (basic_block, basic_block);
160 static void remove_empty_bb (basic_block, bool);
161 static void sel_merge_blocks (basic_block, basic_block);
162 static void sel_remove_loop_preheader (void);
163 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
164
165 static bool insn_is_the_only_one_in_bb_p (insn_t);
166 static void create_initial_data_sets (basic_block);
167
168 static void free_av_set (basic_block);
169 static void invalidate_av_set (basic_block);
170 static void extend_insn_data (void);
171 static void sel_init_new_insn (insn_t, int, int = -1);
172 static void finish_insns (void);
173 \f
174 /* Various list functions. */
175
176 /* Copy an instruction list L. */
177 ilist_t
178 ilist_copy (ilist_t l)
179 {
180 ilist_t head = NULL, *tailp = &head;
181
182 while (l)
183 {
184 ilist_add (tailp, ILIST_INSN (l));
185 tailp = &ILIST_NEXT (*tailp);
186 l = ILIST_NEXT (l);
187 }
188
189 return head;
190 }
191
192 /* Invert an instruction list L. */
193 ilist_t
194 ilist_invert (ilist_t l)
195 {
196 ilist_t res = NULL;
197
198 while (l)
199 {
200 ilist_add (&res, ILIST_INSN (l));
201 l = ILIST_NEXT (l);
202 }
203
204 return res;
205 }
206
207 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
208 void
209 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
210 {
211 bnd_t bnd;
212
213 _list_add (lp);
214 bnd = BLIST_BND (*lp);
215
216 BND_TO (bnd) = to;
217 BND_PTR (bnd) = ptr;
218 BND_AV (bnd) = NULL;
219 BND_AV1 (bnd) = NULL;
220 BND_DC (bnd) = dc;
221 }
222
223 /* Remove the list note pointed to by LP. */
224 void
225 blist_remove (blist_t *lp)
226 {
227 bnd_t b = BLIST_BND (*lp);
228
229 av_set_clear (&BND_AV (b));
230 av_set_clear (&BND_AV1 (b));
231 ilist_clear (&BND_PTR (b));
232
233 _list_remove (lp);
234 }
235
236 /* Init a fence tail L. */
237 void
238 flist_tail_init (flist_tail_t l)
239 {
240 FLIST_TAIL_HEAD (l) = NULL;
241 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
242 }
243
244 /* Try to find fence corresponding to INSN in L. */
245 fence_t
246 flist_lookup (flist_t l, insn_t insn)
247 {
248 while (l)
249 {
250 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
251 return FLIST_FENCE (l);
252
253 l = FLIST_NEXT (l);
254 }
255
256 return NULL;
257 }
258
259 /* Init the fields of F before running fill_insns. */
260 static void
261 init_fence_for_scheduling (fence_t f)
262 {
263 FENCE_BNDS (f) = NULL;
264 FENCE_PROCESSED_P (f) = false;
265 FENCE_SCHEDULED_P (f) = false;
266 }
267
268 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
269 static void
270 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
271 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
272 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
273 int cycle, int cycle_issued_insns, int issue_more,
274 bool starts_cycle_p, bool after_stall_p)
275 {
276 fence_t f;
277
278 _list_add (lp);
279 f = FLIST_FENCE (*lp);
280
281 FENCE_INSN (f) = insn;
282
283 gcc_assert (state != NULL);
284 FENCE_STATE (f) = state;
285
286 FENCE_CYCLE (f) = cycle;
287 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
288 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
289 FENCE_AFTER_STALL_P (f) = after_stall_p;
290
291 gcc_assert (dc != NULL);
292 FENCE_DC (f) = dc;
293
294 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
295 FENCE_TC (f) = tc;
296
297 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
298 FENCE_ISSUE_MORE (f) = issue_more;
299 FENCE_EXECUTING_INSNS (f) = executing_insns;
300 FENCE_READY_TICKS (f) = ready_ticks;
301 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
302 FENCE_SCHED_NEXT (f) = sched_next;
303
304 init_fence_for_scheduling (f);
305 }
306
307 /* Remove the head node of the list pointed to by LP. */
308 static void
309 flist_remove (flist_t *lp)
310 {
311 if (FENCE_INSN (FLIST_FENCE (*lp)))
312 fence_clear (FLIST_FENCE (*lp));
313 _list_remove (lp);
314 }
315
316 /* Clear the fence list pointed to by LP. */
317 void
318 flist_clear (flist_t *lp)
319 {
320 while (*lp)
321 flist_remove (lp);
322 }
323
324 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
325 void
326 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
327 {
328 def_t d;
329
330 _list_add (dl);
331 d = DEF_LIST_DEF (*dl);
332
333 d->orig_insn = original_insn;
334 d->crosses_call = crosses_call;
335 }
336 \f
337
338 /* Functions to work with target contexts. */
339
340 /* Bulk target context. It is convenient for debugging purposes to ensure
341 that there are no uninitialized (null) target contexts. */
342 static tc_t bulk_tc = (tc_t) 1;
343
344 /* Target hooks wrappers. In the future we can provide some default
345 implementations for them. */
346
347 /* Allocate a store for the target context. */
348 static tc_t
349 alloc_target_context (void)
350 {
351 return (targetm.sched.alloc_sched_context
352 ? targetm.sched.alloc_sched_context () : bulk_tc);
353 }
354
355 /* Init target context TC.
356 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
357 Overwise, copy current backend context to TC. */
358 static void
359 init_target_context (tc_t tc, bool clean_p)
360 {
361 if (targetm.sched.init_sched_context)
362 targetm.sched.init_sched_context (tc, clean_p);
363 }
364
365 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
366 int init_target_context (). */
367 tc_t
368 create_target_context (bool clean_p)
369 {
370 tc_t tc = alloc_target_context ();
371
372 init_target_context (tc, clean_p);
373 return tc;
374 }
375
376 /* Copy TC to the current backend context. */
377 void
378 set_target_context (tc_t tc)
379 {
380 if (targetm.sched.set_sched_context)
381 targetm.sched.set_sched_context (tc);
382 }
383
384 /* TC is about to be destroyed. Free any internal data. */
385 static void
386 clear_target_context (tc_t tc)
387 {
388 if (targetm.sched.clear_sched_context)
389 targetm.sched.clear_sched_context (tc);
390 }
391
392 /* Clear and free it. */
393 static void
394 delete_target_context (tc_t tc)
395 {
396 clear_target_context (tc);
397
398 if (targetm.sched.free_sched_context)
399 targetm.sched.free_sched_context (tc);
400 }
401
402 /* Make a copy of FROM in TO.
403 NB: May be this should be a hook. */
404 static void
405 copy_target_context (tc_t to, tc_t from)
406 {
407 tc_t tmp = create_target_context (false);
408
409 set_target_context (from);
410 init_target_context (to, false);
411
412 set_target_context (tmp);
413 delete_target_context (tmp);
414 }
415
416 /* Create a copy of TC. */
417 static tc_t
418 create_copy_of_target_context (tc_t tc)
419 {
420 tc_t copy = alloc_target_context ();
421
422 copy_target_context (copy, tc);
423
424 return copy;
425 }
426
427 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
428 is the same as in init_target_context (). */
429 void
430 reset_target_context (tc_t tc, bool clean_p)
431 {
432 clear_target_context (tc);
433 init_target_context (tc, clean_p);
434 }
435 \f
436 /* Functions to work with dependence contexts.
437 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
438 context. It accumulates information about processed insns to decide if
439 current insn is dependent on the processed ones. */
440
441 /* Make a copy of FROM in TO. */
442 static void
443 copy_deps_context (deps_t to, deps_t from)
444 {
445 init_deps (to, false);
446 deps_join (to, from);
447 }
448
449 /* Allocate store for dep context. */
450 static deps_t
451 alloc_deps_context (void)
452 {
453 return XNEW (struct deps_desc);
454 }
455
456 /* Allocate and initialize dep context. */
457 static deps_t
458 create_deps_context (void)
459 {
460 deps_t dc = alloc_deps_context ();
461
462 init_deps (dc, false);
463 return dc;
464 }
465
466 /* Create a copy of FROM. */
467 static deps_t
468 create_copy_of_deps_context (deps_t from)
469 {
470 deps_t to = alloc_deps_context ();
471
472 copy_deps_context (to, from);
473 return to;
474 }
475
476 /* Clean up internal data of DC. */
477 static void
478 clear_deps_context (deps_t dc)
479 {
480 free_deps (dc);
481 }
482
483 /* Clear and free DC. */
484 static void
485 delete_deps_context (deps_t dc)
486 {
487 clear_deps_context (dc);
488 free (dc);
489 }
490
491 /* Clear and init DC. */
492 static void
493 reset_deps_context (deps_t dc)
494 {
495 clear_deps_context (dc);
496 init_deps (dc, false);
497 }
498
499 /* This structure describes the dependence analysis hooks for advancing
500 dependence context. */
501 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
502 {
503 NULL,
504
505 NULL, /* start_insn */
506 NULL, /* finish_insn */
507 NULL, /* start_lhs */
508 NULL, /* finish_lhs */
509 NULL, /* start_rhs */
510 NULL, /* finish_rhs */
511 haifa_note_reg_set,
512 haifa_note_reg_clobber,
513 haifa_note_reg_use,
514 NULL, /* note_mem_dep */
515 NULL, /* note_dep */
516
517 0, 0, 0
518 };
519
520 /* Process INSN and add its impact on DC. */
521 void
522 advance_deps_context (deps_t dc, insn_t insn)
523 {
524 sched_deps_info = &advance_deps_context_sched_deps_info;
525 deps_analyze_insn (dc, insn);
526 }
527 \f
528
529 /* Functions to work with DFA states. */
530
531 /* Allocate store for a DFA state. */
532 static state_t
533 state_alloc (void)
534 {
535 return xmalloc (dfa_state_size);
536 }
537
538 /* Allocate and initialize DFA state. */
539 static state_t
540 state_create (void)
541 {
542 state_t state = state_alloc ();
543
544 state_reset (state);
545 advance_state (state);
546 return state;
547 }
548
549 /* Free DFA state. */
550 static void
551 state_free (state_t state)
552 {
553 free (state);
554 }
555
556 /* Make a copy of FROM in TO. */
557 static void
558 state_copy (state_t to, state_t from)
559 {
560 memcpy (to, from, dfa_state_size);
561 }
562
563 /* Create a copy of FROM. */
564 static state_t
565 state_create_copy (state_t from)
566 {
567 state_t to = state_alloc ();
568
569 state_copy (to, from);
570 return to;
571 }
572 \f
573
574 /* Functions to work with fences. */
575
576 /* Clear the fence. */
577 static void
578 fence_clear (fence_t f)
579 {
580 state_t s = FENCE_STATE (f);
581 deps_t dc = FENCE_DC (f);
582 void *tc = FENCE_TC (f);
583
584 ilist_clear (&FENCE_BNDS (f));
585
586 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
587 || (s == NULL && dc == NULL && tc == NULL));
588
589 free (s);
590
591 if (dc != NULL)
592 delete_deps_context (dc);
593
594 if (tc != NULL)
595 delete_target_context (tc);
596 vec_free (FENCE_EXECUTING_INSNS (f));
597 free (FENCE_READY_TICKS (f));
598 FENCE_READY_TICKS (f) = NULL;
599 }
600
601 /* Init a list of fences with successors of OLD_FENCE. */
602 void
603 init_fences (insn_t old_fence)
604 {
605 insn_t succ;
606 succ_iterator si;
607 bool first = true;
608 int ready_ticks_size = get_max_uid () + 1;
609
610 FOR_EACH_SUCC_1 (succ, si, old_fence,
611 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
612 {
613
614 if (first)
615 first = false;
616 else
617 gcc_assert (flag_sel_sched_pipelining_outer_loops);
618
619 flist_add (&fences, succ,
620 state_create (),
621 create_deps_context () /* dc */,
622 create_target_context (true) /* tc */,
623 NULL /* last_scheduled_insn */,
624 NULL, /* executing_insns */
625 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
626 ready_ticks_size,
627 NULL /* sched_next */,
628 1 /* cycle */, 0 /* cycle_issued_insns */,
629 issue_rate, /* issue_more */
630 1 /* starts_cycle_p */, 0 /* after_stall_p */);
631 }
632 }
633
634 /* Merges two fences (filling fields of fence F with resulting values) by
635 following rules: 1) state, target context and last scheduled insn are
636 propagated from fallthrough edge if it is available;
637 2) deps context and cycle is propagated from more probable edge;
638 3) all other fields are set to corresponding constant values.
639
640 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
641 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
642 and AFTER_STALL_P are the corresponding fields of the second fence. */
643 static void
644 merge_fences (fence_t f, insn_t insn,
645 state_t state, deps_t dc, void *tc,
646 rtx_insn *last_scheduled_insn,
647 vec<rtx_insn *, va_gc> *executing_insns,
648 int *ready_ticks, int ready_ticks_size,
649 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
650 {
651 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
652
653 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
654 && !sched_next && !FENCE_SCHED_NEXT (f));
655
656 /* Check if we can decide which path fences came.
657 If we can't (or don't want to) - reset all. */
658 if (last_scheduled_insn == NULL
659 || last_scheduled_insn_old == NULL
660 /* This is a case when INSN is reachable on several paths from
661 one insn (this can happen when pipelining of outer loops is on and
662 there are two edges: one going around of inner loop and the other -
663 right through it; in such case just reset everything). */
664 || last_scheduled_insn == last_scheduled_insn_old)
665 {
666 state_reset (FENCE_STATE (f));
667 state_free (state);
668
669 reset_deps_context (FENCE_DC (f));
670 delete_deps_context (dc);
671
672 reset_target_context (FENCE_TC (f), true);
673 delete_target_context (tc);
674
675 if (cycle > FENCE_CYCLE (f))
676 FENCE_CYCLE (f) = cycle;
677
678 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
679 FENCE_ISSUE_MORE (f) = issue_rate;
680 vec_free (executing_insns);
681 free (ready_ticks);
682 if (FENCE_EXECUTING_INSNS (f))
683 FENCE_EXECUTING_INSNS (f)->block_remove (0,
684 FENCE_EXECUTING_INSNS (f)->length ());
685 if (FENCE_READY_TICKS (f))
686 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
687 }
688 else
689 {
690 edge edge_old = NULL, edge_new = NULL;
691 edge candidate;
692 succ_iterator si;
693 insn_t succ;
694
695 /* Find fallthrough edge. */
696 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
697 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
698
699 if (!candidate
700 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
701 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
702 {
703 /* No fallthrough edge leading to basic block of INSN. */
704 state_reset (FENCE_STATE (f));
705 state_free (state);
706
707 reset_target_context (FENCE_TC (f), true);
708 delete_target_context (tc);
709
710 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
711 FENCE_ISSUE_MORE (f) = issue_rate;
712 }
713 else
714 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
715 {
716 /* Would be weird if same insn is successor of several fallthrough
717 edges. */
718 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
719 != BLOCK_FOR_INSN (last_scheduled_insn_old));
720
721 state_free (FENCE_STATE (f));
722 FENCE_STATE (f) = state;
723
724 delete_target_context (FENCE_TC (f));
725 FENCE_TC (f) = tc;
726
727 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
728 FENCE_ISSUE_MORE (f) = issue_more;
729 }
730 else
731 {
732 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
733 state_free (state);
734 delete_target_context (tc);
735
736 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
737 != BLOCK_FOR_INSN (last_scheduled_insn));
738 }
739
740 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
741 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
742 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
743 {
744 if (succ == insn)
745 {
746 /* No same successor allowed from several edges. */
747 gcc_assert (!edge_old);
748 edge_old = si.e1;
749 }
750 }
751 /* Find edge of second predecessor (last_scheduled_insn->insn). */
752 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
753 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
754 {
755 if (succ == insn)
756 {
757 /* No same successor allowed from several edges. */
758 gcc_assert (!edge_new);
759 edge_new = si.e1;
760 }
761 }
762
763 /* Check if we can choose most probable predecessor. */
764 if (edge_old == NULL || edge_new == NULL)
765 {
766 reset_deps_context (FENCE_DC (f));
767 delete_deps_context (dc);
768 vec_free (executing_insns);
769 free (ready_ticks);
770
771 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
772 if (FENCE_EXECUTING_INSNS (f))
773 FENCE_EXECUTING_INSNS (f)->block_remove (0,
774 FENCE_EXECUTING_INSNS (f)->length ());
775 if (FENCE_READY_TICKS (f))
776 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
777 }
778 else
779 if (edge_new->probability > edge_old->probability)
780 {
781 delete_deps_context (FENCE_DC (f));
782 FENCE_DC (f) = dc;
783 vec_free (FENCE_EXECUTING_INSNS (f));
784 FENCE_EXECUTING_INSNS (f) = executing_insns;
785 free (FENCE_READY_TICKS (f));
786 FENCE_READY_TICKS (f) = ready_ticks;
787 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
788 FENCE_CYCLE (f) = cycle;
789 }
790 else
791 {
792 /* Leave DC and CYCLE untouched. */
793 delete_deps_context (dc);
794 vec_free (executing_insns);
795 free (ready_ticks);
796 }
797 }
798
799 /* Fill remaining invariant fields. */
800 if (after_stall_p)
801 FENCE_AFTER_STALL_P (f) = 1;
802
803 FENCE_ISSUED_INSNS (f) = 0;
804 FENCE_STARTS_CYCLE_P (f) = 1;
805 FENCE_SCHED_NEXT (f) = NULL;
806 }
807
808 /* Add a new fence to NEW_FENCES list, initializing it from all
809 other parameters. */
810 static void
811 add_to_fences (flist_tail_t new_fences, insn_t insn,
812 state_t state, deps_t dc, void *tc,
813 rtx_insn *last_scheduled_insn,
814 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
815 int ready_ticks_size, rtx_insn *sched_next, int cycle,
816 int cycle_issued_insns, int issue_rate,
817 bool starts_cycle_p, bool after_stall_p)
818 {
819 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
820
821 if (! f)
822 {
823 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
824 last_scheduled_insn, executing_insns, ready_ticks,
825 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
826 issue_rate, starts_cycle_p, after_stall_p);
827
828 FLIST_TAIL_TAILP (new_fences)
829 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
830 }
831 else
832 {
833 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
834 executing_insns, ready_ticks, ready_ticks_size,
835 sched_next, cycle, issue_rate, after_stall_p);
836 }
837 }
838
839 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
840 void
841 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
842 {
843 fence_t f, old;
844 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
845
846 old = FLIST_FENCE (old_fences);
847 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
848 FENCE_INSN (FLIST_FENCE (old_fences)));
849 if (f)
850 {
851 merge_fences (f, old->insn, old->state, old->dc, old->tc,
852 old->last_scheduled_insn, old->executing_insns,
853 old->ready_ticks, old->ready_ticks_size,
854 old->sched_next, old->cycle, old->issue_more,
855 old->after_stall_p);
856 }
857 else
858 {
859 _list_add (tailp);
860 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
861 *FLIST_FENCE (*tailp) = *old;
862 init_fence_for_scheduling (FLIST_FENCE (*tailp));
863 }
864 FENCE_INSN (old) = NULL;
865 }
866
867 /* Add a new fence to NEW_FENCES list and initialize most of its data
868 as a clean one. */
869 void
870 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
871 {
872 int ready_ticks_size = get_max_uid () + 1;
873
874 add_to_fences (new_fences,
875 succ, state_create (), create_deps_context (),
876 create_target_context (true),
877 NULL, NULL,
878 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
879 NULL, FENCE_CYCLE (fence) + 1,
880 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
881 }
882
883 /* Add a new fence to NEW_FENCES list and initialize all of its data
884 from FENCE and SUCC. */
885 void
886 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
887 {
888 int * new_ready_ticks
889 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
890
891 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
892 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
893 add_to_fences (new_fences,
894 succ, state_create_copy (FENCE_STATE (fence)),
895 create_copy_of_deps_context (FENCE_DC (fence)),
896 create_copy_of_target_context (FENCE_TC (fence)),
897 FENCE_LAST_SCHEDULED_INSN (fence),
898 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
899 new_ready_ticks,
900 FENCE_READY_TICKS_SIZE (fence),
901 FENCE_SCHED_NEXT (fence),
902 FENCE_CYCLE (fence),
903 FENCE_ISSUED_INSNS (fence),
904 FENCE_ISSUE_MORE (fence),
905 FENCE_STARTS_CYCLE_P (fence),
906 FENCE_AFTER_STALL_P (fence));
907 }
908 \f
909
910 /* Functions to work with regset and nop pools. */
911
912 /* Returns the new regset from pool. It might have some of the bits set
913 from the previous usage. */
914 regset
915 get_regset_from_pool (void)
916 {
917 regset rs;
918
919 if (regset_pool.n != 0)
920 rs = regset_pool.v[--regset_pool.n];
921 else
922 /* We need to create the regset. */
923 {
924 rs = ALLOC_REG_SET (&reg_obstack);
925
926 if (regset_pool.nn == regset_pool.ss)
927 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
928 (regset_pool.ss = 2 * regset_pool.ss + 1));
929 regset_pool.vv[regset_pool.nn++] = rs;
930 }
931
932 regset_pool.diff++;
933
934 return rs;
935 }
936
937 /* Same as above, but returns the empty regset. */
938 regset
939 get_clear_regset_from_pool (void)
940 {
941 regset rs = get_regset_from_pool ();
942
943 CLEAR_REG_SET (rs);
944 return rs;
945 }
946
947 /* Return regset RS to the pool for future use. */
948 void
949 return_regset_to_pool (regset rs)
950 {
951 gcc_assert (rs);
952 regset_pool.diff--;
953
954 if (regset_pool.n == regset_pool.s)
955 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
956 (regset_pool.s = 2 * regset_pool.s + 1));
957 regset_pool.v[regset_pool.n++] = rs;
958 }
959
960 #ifdef ENABLE_CHECKING
961 /* This is used as a qsort callback for sorting regset pool stacks.
962 X and XX are addresses of two regsets. They are never equal. */
963 static int
964 cmp_v_in_regset_pool (const void *x, const void *xx)
965 {
966 uintptr_t r1 = (uintptr_t) *((const regset *) x);
967 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
968 if (r1 > r2)
969 return 1;
970 else if (r1 < r2)
971 return -1;
972 gcc_unreachable ();
973 }
974 #endif
975
976 /* Free the regset pool possibly checking for memory leaks. */
977 void
978 free_regset_pool (void)
979 {
980 #ifdef ENABLE_CHECKING
981 {
982 regset *v = regset_pool.v;
983 int i = 0;
984 int n = regset_pool.n;
985
986 regset *vv = regset_pool.vv;
987 int ii = 0;
988 int nn = regset_pool.nn;
989
990 int diff = 0;
991
992 gcc_assert (n <= nn);
993
994 /* Sort both vectors so it will be possible to compare them. */
995 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
996 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
997
998 while (ii < nn)
999 {
1000 if (v[i] == vv[ii])
1001 i++;
1002 else
1003 /* VV[II] was lost. */
1004 diff++;
1005
1006 ii++;
1007 }
1008
1009 gcc_assert (diff == regset_pool.diff);
1010 }
1011 #endif
1012
1013 /* If not true - we have a memory leak. */
1014 gcc_assert (regset_pool.diff == 0);
1015
1016 while (regset_pool.n)
1017 {
1018 --regset_pool.n;
1019 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1020 }
1021
1022 free (regset_pool.v);
1023 regset_pool.v = NULL;
1024 regset_pool.s = 0;
1025
1026 free (regset_pool.vv);
1027 regset_pool.vv = NULL;
1028 regset_pool.nn = 0;
1029 regset_pool.ss = 0;
1030
1031 regset_pool.diff = 0;
1032 }
1033 \f
1034
1035 /* Functions to work with nop pools. NOP insns are used as temporary
1036 placeholders of the insns being scheduled to allow correct update of
1037 the data sets. When update is finished, NOPs are deleted. */
1038
1039 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1040 nops sel-sched generates. */
1041 static vinsn_t nop_vinsn = NULL;
1042
1043 /* Emit a nop before INSN, taking it from pool. */
1044 insn_t
1045 get_nop_from_pool (insn_t insn)
1046 {
1047 rtx nop_pat;
1048 insn_t nop;
1049 bool old_p = nop_pool.n != 0;
1050 int flags;
1051
1052 if (old_p)
1053 nop_pat = nop_pool.v[--nop_pool.n];
1054 else
1055 nop_pat = nop_pattern;
1056
1057 nop = emit_insn_before (nop_pat, insn);
1058
1059 if (old_p)
1060 flags = INSN_INIT_TODO_SSID;
1061 else
1062 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1063
1064 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1065 sel_init_new_insn (nop, flags);
1066
1067 return nop;
1068 }
1069
1070 /* Remove NOP from the instruction stream and return it to the pool. */
1071 void
1072 return_nop_to_pool (insn_t nop, bool full_tidying)
1073 {
1074 gcc_assert (INSN_IN_STREAM_P (nop));
1075 sel_remove_insn (nop, false, full_tidying);
1076
1077 /* We'll recycle this nop. */
1078 nop->set_undeleted ();
1079
1080 if (nop_pool.n == nop_pool.s)
1081 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1082 (nop_pool.s = 2 * nop_pool.s + 1));
1083 nop_pool.v[nop_pool.n++] = nop;
1084 }
1085
1086 /* Free the nop pool. */
1087 void
1088 free_nop_pool (void)
1089 {
1090 nop_pool.n = 0;
1091 nop_pool.s = 0;
1092 free (nop_pool.v);
1093 nop_pool.v = NULL;
1094 }
1095 \f
1096
1097 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1098 The callback is given two rtxes XX and YY and writes the new rtxes
1099 to NX and NY in case some needs to be skipped. */
1100 static int
1101 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1102 {
1103 const_rtx x = *xx;
1104 const_rtx y = *yy;
1105
1106 if (GET_CODE (x) == UNSPEC
1107 && (targetm.sched.skip_rtx_p == NULL
1108 || targetm.sched.skip_rtx_p (x)))
1109 {
1110 *nx = XVECEXP (x, 0, 0);
1111 *ny = CONST_CAST_RTX (y);
1112 return 1;
1113 }
1114
1115 if (GET_CODE (y) == UNSPEC
1116 && (targetm.sched.skip_rtx_p == NULL
1117 || targetm.sched.skip_rtx_p (y)))
1118 {
1119 *nx = CONST_CAST_RTX (x);
1120 *ny = XVECEXP (y, 0, 0);
1121 return 1;
1122 }
1123
1124 return 0;
1125 }
1126
1127 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1128 to support ia64 speculation. When changes are needed, new rtx X and new mode
1129 NMODE are written, and the callback returns true. */
1130 static int
1131 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1132 rtx *nx, machine_mode* nmode)
1133 {
1134 if (GET_CODE (x) == UNSPEC
1135 && targetm.sched.skip_rtx_p
1136 && targetm.sched.skip_rtx_p (x))
1137 {
1138 *nx = XVECEXP (x, 0 ,0);
1139 *nmode = VOIDmode;
1140 return 1;
1141 }
1142
1143 return 0;
1144 }
1145
1146 /* Returns LHS and RHS are ok to be scheduled separately. */
1147 static bool
1148 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1149 {
1150 if (lhs == NULL || rhs == NULL)
1151 return false;
1152
1153 /* Do not schedule constants as rhs: no point to use reg, if const
1154 can be used. Moreover, scheduling const as rhs may lead to mode
1155 mismatch cause consts don't have modes but they could be merged
1156 from branches where the same const used in different modes. */
1157 if (CONSTANT_P (rhs))
1158 return false;
1159
1160 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1161 if (COMPARISON_P (rhs))
1162 return false;
1163
1164 /* Do not allow single REG to be an rhs. */
1165 if (REG_P (rhs))
1166 return false;
1167
1168 /* See comment at find_used_regs_1 (*1) for explanation of this
1169 restriction. */
1170 /* FIXME: remove this later. */
1171 if (MEM_P (lhs))
1172 return false;
1173
1174 /* This will filter all tricky things like ZERO_EXTRACT etc.
1175 For now we don't handle it. */
1176 if (!REG_P (lhs) && !MEM_P (lhs))
1177 return false;
1178
1179 return true;
1180 }
1181
1182 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1183 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1184 used e.g. for insns from recovery blocks. */
1185 static void
1186 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1187 {
1188 hash_rtx_callback_function hrcf;
1189 int insn_class;
1190
1191 VINSN_INSN_RTX (vi) = insn;
1192 VINSN_COUNT (vi) = 0;
1193 vi->cost = -1;
1194
1195 if (INSN_NOP_P (insn))
1196 return;
1197
1198 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1199 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1200 else
1201 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1202
1203 /* Hash vinsn depending on whether it is separable or not. */
1204 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1205 if (VINSN_SEPARABLE_P (vi))
1206 {
1207 rtx rhs = VINSN_RHS (vi);
1208
1209 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1210 NULL, NULL, false, hrcf);
1211 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1212 VOIDmode, NULL, NULL,
1213 false, hrcf);
1214 }
1215 else
1216 {
1217 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1218 NULL, NULL, false, hrcf);
1219 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1220 }
1221
1222 insn_class = haifa_classify_insn (insn);
1223 if (insn_class >= 2
1224 && (!targetm.sched.get_insn_spec_ds
1225 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1226 == 0)))
1227 VINSN_MAY_TRAP_P (vi) = true;
1228 else
1229 VINSN_MAY_TRAP_P (vi) = false;
1230 }
1231
1232 /* Indicate that VI has become the part of an rtx object. */
1233 void
1234 vinsn_attach (vinsn_t vi)
1235 {
1236 /* Assert that VI is not pending for deletion. */
1237 gcc_assert (VINSN_INSN_RTX (vi));
1238
1239 VINSN_COUNT (vi)++;
1240 }
1241
1242 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1243 VINSN_TYPE (VI). */
1244 static vinsn_t
1245 vinsn_create (insn_t insn, bool force_unique_p)
1246 {
1247 vinsn_t vi = XCNEW (struct vinsn_def);
1248
1249 vinsn_init (vi, insn, force_unique_p);
1250 return vi;
1251 }
1252
1253 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1254 the copy. */
1255 vinsn_t
1256 vinsn_copy (vinsn_t vi, bool reattach_p)
1257 {
1258 rtx_insn *copy;
1259 bool unique = VINSN_UNIQUE_P (vi);
1260 vinsn_t new_vi;
1261
1262 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1263 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1264 if (reattach_p)
1265 {
1266 vinsn_detach (vi);
1267 vinsn_attach (new_vi);
1268 }
1269
1270 return new_vi;
1271 }
1272
1273 /* Delete the VI vinsn and free its data. */
1274 static void
1275 vinsn_delete (vinsn_t vi)
1276 {
1277 gcc_assert (VINSN_COUNT (vi) == 0);
1278
1279 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1280 {
1281 return_regset_to_pool (VINSN_REG_SETS (vi));
1282 return_regset_to_pool (VINSN_REG_USES (vi));
1283 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1284 }
1285
1286 free (vi);
1287 }
1288
1289 /* Indicate that VI is no longer a part of some rtx object.
1290 Remove VI if it is no longer needed. */
1291 void
1292 vinsn_detach (vinsn_t vi)
1293 {
1294 gcc_assert (VINSN_COUNT (vi) > 0);
1295
1296 if (--VINSN_COUNT (vi) == 0)
1297 vinsn_delete (vi);
1298 }
1299
1300 /* Returns TRUE if VI is a branch. */
1301 bool
1302 vinsn_cond_branch_p (vinsn_t vi)
1303 {
1304 insn_t insn;
1305
1306 if (!VINSN_UNIQUE_P (vi))
1307 return false;
1308
1309 insn = VINSN_INSN_RTX (vi);
1310 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1311 return false;
1312
1313 return control_flow_insn_p (insn);
1314 }
1315
1316 /* Return latency of INSN. */
1317 static int
1318 sel_insn_rtx_cost (rtx_insn *insn)
1319 {
1320 int cost;
1321
1322 /* A USE insn, or something else we don't need to
1323 understand. We can't pass these directly to
1324 result_ready_cost or insn_default_latency because it will
1325 trigger a fatal error for unrecognizable insns. */
1326 if (recog_memoized (insn) < 0)
1327 cost = 0;
1328 else
1329 {
1330 cost = insn_default_latency (insn);
1331
1332 if (cost < 0)
1333 cost = 0;
1334 }
1335
1336 return cost;
1337 }
1338
1339 /* Return the cost of the VI.
1340 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1341 int
1342 sel_vinsn_cost (vinsn_t vi)
1343 {
1344 int cost = vi->cost;
1345
1346 if (cost < 0)
1347 {
1348 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1349 vi->cost = cost;
1350 }
1351
1352 return cost;
1353 }
1354 \f
1355
1356 /* Functions for insn emitting. */
1357
1358 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1359 EXPR and SEQNO. */
1360 insn_t
1361 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1362 {
1363 insn_t new_insn;
1364
1365 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1366
1367 new_insn = emit_insn_after (pattern, after);
1368 set_insn_init (expr, NULL, seqno);
1369 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1370
1371 return new_insn;
1372 }
1373
1374 /* Force newly generated vinsns to be unique. */
1375 static bool init_insn_force_unique_p = false;
1376
1377 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1378 initialize its data from EXPR and SEQNO. */
1379 insn_t
1380 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1381 insn_t after)
1382 {
1383 insn_t insn;
1384
1385 gcc_assert (!init_insn_force_unique_p);
1386
1387 init_insn_force_unique_p = true;
1388 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1389 CANT_MOVE (insn) = 1;
1390 init_insn_force_unique_p = false;
1391
1392 return insn;
1393 }
1394
1395 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1396 take it as a new vinsn instead of EXPR's vinsn.
1397 We simplify insns later, after scheduling region in
1398 simplify_changed_insns. */
1399 insn_t
1400 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1401 insn_t after)
1402 {
1403 expr_t emit_expr;
1404 insn_t insn;
1405 int flags;
1406
1407 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1408 seqno);
1409 insn = EXPR_INSN_RTX (emit_expr);
1410
1411 /* The insn may come from the transformation cache, which may hold already
1412 deleted insns, so mark it as not deleted. */
1413 insn->set_undeleted ();
1414
1415 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1416
1417 flags = INSN_INIT_TODO_SSID;
1418 if (INSN_LUID (insn) == 0)
1419 flags |= INSN_INIT_TODO_LUID;
1420 sel_init_new_insn (insn, flags);
1421
1422 return insn;
1423 }
1424
1425 /* Move insn from EXPR after AFTER. */
1426 insn_t
1427 sel_move_insn (expr_t expr, int seqno, insn_t after)
1428 {
1429 insn_t insn = EXPR_INSN_RTX (expr);
1430 basic_block bb = BLOCK_FOR_INSN (after);
1431 insn_t next = NEXT_INSN (after);
1432
1433 /* Assert that in move_op we disconnected this insn properly. */
1434 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1435 SET_PREV_INSN (insn) = after;
1436 SET_NEXT_INSN (insn) = next;
1437
1438 SET_NEXT_INSN (after) = insn;
1439 SET_PREV_INSN (next) = insn;
1440
1441 /* Update links from insn to bb and vice versa. */
1442 df_insn_change_bb (insn, bb);
1443 if (BB_END (bb) == after)
1444 BB_END (bb) = insn;
1445
1446 prepare_insn_expr (insn, seqno);
1447 return insn;
1448 }
1449
1450 \f
1451 /* Functions to work with right-hand sides. */
1452
1453 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1454 VECT and return true when found. Use NEW_VINSN for comparison only when
1455 COMPARE_VINSNS is true. Write to INDP the index on which
1456 the search has stopped, such that inserting the new element at INDP will
1457 retain VECT's sort order. */
1458 static bool
1459 find_in_history_vect_1 (vec<expr_history_def> vect,
1460 unsigned uid, vinsn_t new_vinsn,
1461 bool compare_vinsns, int *indp)
1462 {
1463 expr_history_def *arr;
1464 int i, j, len = vect.length ();
1465
1466 if (len == 0)
1467 {
1468 *indp = 0;
1469 return false;
1470 }
1471
1472 arr = vect.address ();
1473 i = 0, j = len - 1;
1474
1475 while (i <= j)
1476 {
1477 unsigned auid = arr[i].uid;
1478 vinsn_t avinsn = arr[i].new_expr_vinsn;
1479
1480 if (auid == uid
1481 /* When undoing transformation on a bookkeeping copy, the new vinsn
1482 may not be exactly equal to the one that is saved in the vector.
1483 This is because the insn whose copy we're checking was possibly
1484 substituted itself. */
1485 && (! compare_vinsns
1486 || vinsn_equal_p (avinsn, new_vinsn)))
1487 {
1488 *indp = i;
1489 return true;
1490 }
1491 else if (auid > uid)
1492 break;
1493 i++;
1494 }
1495
1496 *indp = i;
1497 return false;
1498 }
1499
1500 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1501 the position found or -1, if no such value is in vector.
1502 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1503 int
1504 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1505 vinsn_t new_vinsn, bool originators_p)
1506 {
1507 int ind;
1508
1509 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1510 false, &ind))
1511 return ind;
1512
1513 if (INSN_ORIGINATORS (insn) && originators_p)
1514 {
1515 unsigned uid;
1516 bitmap_iterator bi;
1517
1518 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1519 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1520 return ind;
1521 }
1522
1523 return -1;
1524 }
1525
1526 /* Insert new element in a sorted history vector pointed to by PVECT,
1527 if it is not there already. The element is searched using
1528 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1529 the history of a transformation. */
1530 void
1531 insert_in_history_vect (vec<expr_history_def> *pvect,
1532 unsigned uid, enum local_trans_type type,
1533 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1534 ds_t spec_ds)
1535 {
1536 vec<expr_history_def> vect = *pvect;
1537 expr_history_def temp;
1538 bool res;
1539 int ind;
1540
1541 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1542
1543 if (res)
1544 {
1545 expr_history_def *phist = &vect[ind];
1546
1547 /* It is possible that speculation types of expressions that were
1548 propagated through different paths will be different here. In this
1549 case, merge the status to get the correct check later. */
1550 if (phist->spec_ds != spec_ds)
1551 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1552 return;
1553 }
1554
1555 temp.uid = uid;
1556 temp.old_expr_vinsn = old_expr_vinsn;
1557 temp.new_expr_vinsn = new_expr_vinsn;
1558 temp.spec_ds = spec_ds;
1559 temp.type = type;
1560
1561 vinsn_attach (old_expr_vinsn);
1562 vinsn_attach (new_expr_vinsn);
1563 vect.safe_insert (ind, temp);
1564 *pvect = vect;
1565 }
1566
1567 /* Free history vector PVECT. */
1568 static void
1569 free_history_vect (vec<expr_history_def> &pvect)
1570 {
1571 unsigned i;
1572 expr_history_def *phist;
1573
1574 if (! pvect.exists ())
1575 return;
1576
1577 for (i = 0; pvect.iterate (i, &phist); i++)
1578 {
1579 vinsn_detach (phist->old_expr_vinsn);
1580 vinsn_detach (phist->new_expr_vinsn);
1581 }
1582
1583 pvect.release ();
1584 }
1585
1586 /* Merge vector FROM to PVECT. */
1587 static void
1588 merge_history_vect (vec<expr_history_def> *pvect,
1589 vec<expr_history_def> from)
1590 {
1591 expr_history_def *phist;
1592 int i;
1593
1594 /* We keep this vector sorted. */
1595 for (i = 0; from.iterate (i, &phist); i++)
1596 insert_in_history_vect (pvect, phist->uid, phist->type,
1597 phist->old_expr_vinsn, phist->new_expr_vinsn,
1598 phist->spec_ds);
1599 }
1600
1601 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1602 bool
1603 vinsn_equal_p (vinsn_t x, vinsn_t y)
1604 {
1605 rtx_equal_p_callback_function repcf;
1606
1607 if (x == y)
1608 return true;
1609
1610 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1611 return false;
1612
1613 if (VINSN_HASH (x) != VINSN_HASH (y))
1614 return false;
1615
1616 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1617 if (VINSN_SEPARABLE_P (x))
1618 {
1619 /* Compare RHSes of VINSNs. */
1620 gcc_assert (VINSN_RHS (x));
1621 gcc_assert (VINSN_RHS (y));
1622
1623 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1624 }
1625
1626 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1627 }
1628 \f
1629
1630 /* Functions for working with expressions. */
1631
1632 /* Initialize EXPR. */
1633 static void
1634 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1635 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1636 ds_t spec_to_check_ds, int orig_sched_cycle,
1637 vec<expr_history_def> history,
1638 signed char target_available,
1639 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1640 bool cant_move)
1641 {
1642 vinsn_attach (vi);
1643
1644 EXPR_VINSN (expr) = vi;
1645 EXPR_SPEC (expr) = spec;
1646 EXPR_USEFULNESS (expr) = use;
1647 EXPR_PRIORITY (expr) = priority;
1648 EXPR_PRIORITY_ADJ (expr) = 0;
1649 EXPR_SCHED_TIMES (expr) = sched_times;
1650 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1651 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1652 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1653 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1654
1655 if (history.exists ())
1656 EXPR_HISTORY_OF_CHANGES (expr) = history;
1657 else
1658 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1659
1660 EXPR_TARGET_AVAILABLE (expr) = target_available;
1661 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1662 EXPR_WAS_RENAMED (expr) = was_renamed;
1663 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1664 EXPR_CANT_MOVE (expr) = cant_move;
1665 }
1666
1667 /* Make a copy of the expr FROM into the expr TO. */
1668 void
1669 copy_expr (expr_t to, expr_t from)
1670 {
1671 vec<expr_history_def> temp = vNULL;
1672
1673 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1674 {
1675 unsigned i;
1676 expr_history_def *phist;
1677
1678 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1679 for (i = 0;
1680 temp.iterate (i, &phist);
1681 i++)
1682 {
1683 vinsn_attach (phist->old_expr_vinsn);
1684 vinsn_attach (phist->new_expr_vinsn);
1685 }
1686 }
1687
1688 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1689 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1690 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1691 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1692 EXPR_ORIG_SCHED_CYCLE (from), temp,
1693 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1694 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1695 EXPR_CANT_MOVE (from));
1696 }
1697
1698 /* Same, but the final expr will not ever be in av sets, so don't copy
1699 "uninteresting" data such as bitmap cache. */
1700 void
1701 copy_expr_onside (expr_t to, expr_t from)
1702 {
1703 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1704 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1705 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1706 vNULL,
1707 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1708 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1709 EXPR_CANT_MOVE (from));
1710 }
1711
1712 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1713 initializing new insns. */
1714 static void
1715 prepare_insn_expr (insn_t insn, int seqno)
1716 {
1717 expr_t expr = INSN_EXPR (insn);
1718 ds_t ds;
1719
1720 INSN_SEQNO (insn) = seqno;
1721 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1722 EXPR_SPEC (expr) = 0;
1723 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1724 EXPR_WAS_SUBSTITUTED (expr) = 0;
1725 EXPR_WAS_RENAMED (expr) = 0;
1726 EXPR_TARGET_AVAILABLE (expr) = 1;
1727 INSN_LIVE_VALID_P (insn) = false;
1728
1729 /* ??? If this expression is speculative, make its dependence
1730 as weak as possible. We can filter this expression later
1731 in process_spec_exprs, because we do not distinguish
1732 between the status we got during compute_av_set and the
1733 existing status. To be fixed. */
1734 ds = EXPR_SPEC_DONE_DS (expr);
1735 if (ds)
1736 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1737
1738 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1739 }
1740
1741 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1742 is non-null when expressions are merged from different successors at
1743 a split point. */
1744 static void
1745 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1746 {
1747 if (EXPR_TARGET_AVAILABLE (to) < 0
1748 || EXPR_TARGET_AVAILABLE (from) < 0)
1749 EXPR_TARGET_AVAILABLE (to) = -1;
1750 else
1751 {
1752 /* We try to detect the case when one of the expressions
1753 can only be reached through another one. In this case,
1754 we can do better. */
1755 if (split_point == NULL)
1756 {
1757 int toind, fromind;
1758
1759 toind = EXPR_ORIG_BB_INDEX (to);
1760 fromind = EXPR_ORIG_BB_INDEX (from);
1761
1762 if (toind && toind == fromind)
1763 /* Do nothing -- everything is done in
1764 merge_with_other_exprs. */
1765 ;
1766 else
1767 EXPR_TARGET_AVAILABLE (to) = -1;
1768 }
1769 else if (EXPR_TARGET_AVAILABLE (from) == 0
1770 && EXPR_LHS (from)
1771 && REG_P (EXPR_LHS (from))
1772 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1773 EXPR_TARGET_AVAILABLE (to) = -1;
1774 else
1775 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1776 }
1777 }
1778
1779 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1780 is non-null when expressions are merged from different successors at
1781 a split point. */
1782 static void
1783 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1784 {
1785 ds_t old_to_ds, old_from_ds;
1786
1787 old_to_ds = EXPR_SPEC_DONE_DS (to);
1788 old_from_ds = EXPR_SPEC_DONE_DS (from);
1789
1790 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1791 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1792 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1793
1794 /* When merging e.g. control & data speculative exprs, or a control
1795 speculative with a control&data speculative one, we really have
1796 to change vinsn too. Also, when speculative status is changed,
1797 we also need to record this as a transformation in expr's history. */
1798 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1799 {
1800 old_to_ds = ds_get_speculation_types (old_to_ds);
1801 old_from_ds = ds_get_speculation_types (old_from_ds);
1802
1803 if (old_to_ds != old_from_ds)
1804 {
1805 ds_t record_ds;
1806
1807 /* When both expressions are speculative, we need to change
1808 the vinsn first. */
1809 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1810 {
1811 int res;
1812
1813 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1814 gcc_assert (res >= 0);
1815 }
1816
1817 if (split_point != NULL)
1818 {
1819 /* Record the change with proper status. */
1820 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1821 record_ds &= ~(old_to_ds & SPECULATIVE);
1822 record_ds &= ~(old_from_ds & SPECULATIVE);
1823
1824 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1825 INSN_UID (split_point), TRANS_SPECULATION,
1826 EXPR_VINSN (from), EXPR_VINSN (to),
1827 record_ds);
1828 }
1829 }
1830 }
1831 }
1832
1833
1834 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1835 this is done along different paths. */
1836 void
1837 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1838 {
1839 /* Choose the maximum of the specs of merged exprs. This is required
1840 for correctness of bookkeeping. */
1841 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1842 EXPR_SPEC (to) = EXPR_SPEC (from);
1843
1844 if (split_point)
1845 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1846 else
1847 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1848 EXPR_USEFULNESS (from));
1849
1850 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1851 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1852
1853 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1854 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1855
1856 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1857 EXPR_ORIG_BB_INDEX (to) = 0;
1858
1859 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1860 EXPR_ORIG_SCHED_CYCLE (from));
1861
1862 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1863 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1864 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1865
1866 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1867 EXPR_HISTORY_OF_CHANGES (from));
1868 update_target_availability (to, from, split_point);
1869 update_speculative_bits (to, from, split_point);
1870 }
1871
1872 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1873 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1874 are merged from different successors at a split point. */
1875 void
1876 merge_expr (expr_t to, expr_t from, insn_t split_point)
1877 {
1878 vinsn_t to_vi = EXPR_VINSN (to);
1879 vinsn_t from_vi = EXPR_VINSN (from);
1880
1881 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1882
1883 /* Make sure that speculative pattern is propagated into exprs that
1884 have non-speculative one. This will provide us with consistent
1885 speculative bits and speculative patterns inside expr. */
1886 if ((EXPR_SPEC_DONE_DS (from) != 0
1887 && EXPR_SPEC_DONE_DS (to) == 0)
1888 /* Do likewise for volatile insns, so that we always retain
1889 the may_trap_p bit on the resulting expression. */
1890 || (VINSN_MAY_TRAP_P (EXPR_VINSN (from))
1891 && !VINSN_MAY_TRAP_P (EXPR_VINSN (to))))
1892 change_vinsn_in_expr (to, EXPR_VINSN (from));
1893
1894 merge_expr_data (to, from, split_point);
1895 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1896 }
1897
1898 /* Clear the information of this EXPR. */
1899 void
1900 clear_expr (expr_t expr)
1901 {
1902
1903 vinsn_detach (EXPR_VINSN (expr));
1904 EXPR_VINSN (expr) = NULL;
1905
1906 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1907 }
1908
1909 /* For a given LV_SET, mark EXPR having unavailable target register. */
1910 static void
1911 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1912 {
1913 if (EXPR_SEPARABLE_P (expr))
1914 {
1915 if (REG_P (EXPR_LHS (expr))
1916 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1917 {
1918 /* If it's an insn like r1 = use (r1, ...), and it exists in
1919 different forms in each of the av_sets being merged, we can't say
1920 whether original destination register is available or not.
1921 However, this still works if destination register is not used
1922 in the original expression: if the branch at which LV_SET we're
1923 looking here is not actually 'other branch' in sense that same
1924 expression is available through it (but it can't be determined
1925 at computation stage because of transformations on one of the
1926 branches), it still won't affect the availability.
1927 Liveness of a register somewhere on a code motion path means
1928 it's either read somewhere on a codemotion path, live on
1929 'other' branch, live at the point immediately following
1930 the original operation, or is read by the original operation.
1931 The latter case is filtered out in the condition below.
1932 It still doesn't cover the case when register is defined and used
1933 somewhere within the code motion path, and in this case we could
1934 miss a unifying code motion along both branches using a renamed
1935 register, but it won't affect a code correctness since upon
1936 an actual code motion a bookkeeping code would be generated. */
1937 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1938 EXPR_LHS (expr)))
1939 EXPR_TARGET_AVAILABLE (expr) = -1;
1940 else
1941 EXPR_TARGET_AVAILABLE (expr) = false;
1942 }
1943 }
1944 else
1945 {
1946 unsigned regno;
1947 reg_set_iterator rsi;
1948
1949 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1950 0, regno, rsi)
1951 if (bitmap_bit_p (lv_set, regno))
1952 {
1953 EXPR_TARGET_AVAILABLE (expr) = false;
1954 break;
1955 }
1956
1957 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1958 0, regno, rsi)
1959 if (bitmap_bit_p (lv_set, regno))
1960 {
1961 EXPR_TARGET_AVAILABLE (expr) = false;
1962 break;
1963 }
1964 }
1965 }
1966
1967 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1968 or dependence status have changed, 2 when also the target register
1969 became unavailable, 0 if nothing had to be changed. */
1970 int
1971 speculate_expr (expr_t expr, ds_t ds)
1972 {
1973 int res;
1974 rtx_insn *orig_insn_rtx;
1975 rtx spec_pat;
1976 ds_t target_ds, current_ds;
1977
1978 /* Obtain the status we need to put on EXPR. */
1979 target_ds = (ds & SPECULATIVE);
1980 current_ds = EXPR_SPEC_DONE_DS (expr);
1981 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1982
1983 orig_insn_rtx = EXPR_INSN_RTX (expr);
1984
1985 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1986
1987 switch (res)
1988 {
1989 case 0:
1990 EXPR_SPEC_DONE_DS (expr) = ds;
1991 return current_ds != ds ? 1 : 0;
1992
1993 case 1:
1994 {
1995 rtx_insn *spec_insn_rtx =
1996 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1997 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1998
1999 change_vinsn_in_expr (expr, spec_vinsn);
2000 EXPR_SPEC_DONE_DS (expr) = ds;
2001 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
2002
2003 /* Do not allow clobbering the address register of speculative
2004 insns. */
2005 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
2006 expr_dest_reg (expr)))
2007 {
2008 EXPR_TARGET_AVAILABLE (expr) = false;
2009 return 2;
2010 }
2011
2012 return 1;
2013 }
2014
2015 case -1:
2016 return -1;
2017
2018 default:
2019 gcc_unreachable ();
2020 return -1;
2021 }
2022 }
2023
2024 /* Return a destination register, if any, of EXPR. */
2025 rtx
2026 expr_dest_reg (expr_t expr)
2027 {
2028 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2029
2030 if (dest != NULL_RTX && REG_P (dest))
2031 return dest;
2032
2033 return NULL_RTX;
2034 }
2035
2036 /* Returns the REGNO of the R's destination. */
2037 unsigned
2038 expr_dest_regno (expr_t expr)
2039 {
2040 rtx dest = expr_dest_reg (expr);
2041
2042 gcc_assert (dest != NULL_RTX);
2043 return REGNO (dest);
2044 }
2045
2046 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2047 AV_SET having unavailable target register. */
2048 void
2049 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2050 {
2051 expr_t expr;
2052 av_set_iterator avi;
2053
2054 FOR_EACH_EXPR (expr, avi, join_set)
2055 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2056 set_unavailable_target_for_expr (expr, lv_set);
2057 }
2058 \f
2059
2060 /* Returns true if REG (at least partially) is present in REGS. */
2061 bool
2062 register_unavailable_p (regset regs, rtx reg)
2063 {
2064 unsigned regno, end_regno;
2065
2066 regno = REGNO (reg);
2067 if (bitmap_bit_p (regs, regno))
2068 return true;
2069
2070 end_regno = END_REGNO (reg);
2071
2072 while (++regno < end_regno)
2073 if (bitmap_bit_p (regs, regno))
2074 return true;
2075
2076 return false;
2077 }
2078
2079 /* Av set functions. */
2080
2081 /* Add a new element to av set SETP.
2082 Return the element added. */
2083 static av_set_t
2084 av_set_add_element (av_set_t *setp)
2085 {
2086 /* Insert at the beginning of the list. */
2087 _list_add (setp);
2088 return *setp;
2089 }
2090
2091 /* Add EXPR to SETP. */
2092 void
2093 av_set_add (av_set_t *setp, expr_t expr)
2094 {
2095 av_set_t elem;
2096
2097 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2098 elem = av_set_add_element (setp);
2099 copy_expr (_AV_SET_EXPR (elem), expr);
2100 }
2101
2102 /* Same, but do not copy EXPR. */
2103 static void
2104 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2105 {
2106 av_set_t elem;
2107
2108 elem = av_set_add_element (setp);
2109 *_AV_SET_EXPR (elem) = *expr;
2110 }
2111
2112 /* Remove expr pointed to by IP from the av_set. */
2113 void
2114 av_set_iter_remove (av_set_iterator *ip)
2115 {
2116 clear_expr (_AV_SET_EXPR (*ip->lp));
2117 _list_iter_remove (ip);
2118 }
2119
2120 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2121 sense of vinsn_equal_p function. Return NULL if no such expr is
2122 in SET was found. */
2123 expr_t
2124 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2125 {
2126 expr_t expr;
2127 av_set_iterator i;
2128
2129 FOR_EACH_EXPR (expr, i, set)
2130 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2131 return expr;
2132 return NULL;
2133 }
2134
2135 /* Same, but also remove the EXPR found. */
2136 static expr_t
2137 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2138 {
2139 expr_t expr;
2140 av_set_iterator i;
2141
2142 FOR_EACH_EXPR_1 (expr, i, setp)
2143 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2144 {
2145 _list_iter_remove_nofree (&i);
2146 return expr;
2147 }
2148 return NULL;
2149 }
2150
2151 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2152 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2153 Returns NULL if no such expr is in SET was found. */
2154 static expr_t
2155 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2156 {
2157 expr_t cur_expr;
2158 av_set_iterator i;
2159
2160 FOR_EACH_EXPR (cur_expr, i, set)
2161 {
2162 if (cur_expr == expr)
2163 continue;
2164 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2165 return cur_expr;
2166 }
2167
2168 return NULL;
2169 }
2170
2171 /* If other expression is already in AVP, remove one of them. */
2172 expr_t
2173 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2174 {
2175 expr_t expr2;
2176
2177 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2178 if (expr2 != NULL)
2179 {
2180 /* Reset target availability on merge, since taking it only from one
2181 of the exprs would be controversial for different code. */
2182 EXPR_TARGET_AVAILABLE (expr2) = -1;
2183 EXPR_USEFULNESS (expr2) = 0;
2184
2185 merge_expr (expr2, expr, NULL);
2186
2187 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2188 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2189
2190 av_set_iter_remove (ip);
2191 return expr2;
2192 }
2193
2194 return expr;
2195 }
2196
2197 /* Return true if there is an expr that correlates to VI in SET. */
2198 bool
2199 av_set_is_in_p (av_set_t set, vinsn_t vi)
2200 {
2201 return av_set_lookup (set, vi) != NULL;
2202 }
2203
2204 /* Return a copy of SET. */
2205 av_set_t
2206 av_set_copy (av_set_t set)
2207 {
2208 expr_t expr;
2209 av_set_iterator i;
2210 av_set_t res = NULL;
2211
2212 FOR_EACH_EXPR (expr, i, set)
2213 av_set_add (&res, expr);
2214
2215 return res;
2216 }
2217
2218 /* Join two av sets that do not have common elements by attaching second set
2219 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2220 _AV_SET_NEXT of first set's last element). */
2221 static void
2222 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2223 {
2224 gcc_assert (*to_tailp == NULL);
2225 *to_tailp = *fromp;
2226 *fromp = NULL;
2227 }
2228
2229 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2230 pointed to by FROMP afterwards. */
2231 void
2232 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2233 {
2234 expr_t expr1;
2235 av_set_iterator i;
2236
2237 /* Delete from TOP all exprs, that present in FROMP. */
2238 FOR_EACH_EXPR_1 (expr1, i, top)
2239 {
2240 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2241
2242 if (expr2)
2243 {
2244 merge_expr (expr2, expr1, insn);
2245 av_set_iter_remove (&i);
2246 }
2247 }
2248
2249 join_distinct_sets (i.lp, fromp);
2250 }
2251
2252 /* Same as above, but also update availability of target register in
2253 TOP judging by TO_LV_SET and FROM_LV_SET. */
2254 void
2255 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2256 regset from_lv_set, insn_t insn)
2257 {
2258 expr_t expr1;
2259 av_set_iterator i;
2260 av_set_t *to_tailp, in_both_set = NULL;
2261
2262 /* Delete from TOP all expres, that present in FROMP. */
2263 FOR_EACH_EXPR_1 (expr1, i, top)
2264 {
2265 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2266
2267 if (expr2)
2268 {
2269 /* It may be that the expressions have different destination
2270 registers, in which case we need to check liveness here. */
2271 if (EXPR_SEPARABLE_P (expr1))
2272 {
2273 int regno1 = (REG_P (EXPR_LHS (expr1))
2274 ? (int) expr_dest_regno (expr1) : -1);
2275 int regno2 = (REG_P (EXPR_LHS (expr2))
2276 ? (int) expr_dest_regno (expr2) : -1);
2277
2278 /* ??? We don't have a way to check restrictions for
2279 *other* register on the current path, we did it only
2280 for the current target register. Give up. */
2281 if (regno1 != regno2)
2282 EXPR_TARGET_AVAILABLE (expr2) = -1;
2283 }
2284 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2285 EXPR_TARGET_AVAILABLE (expr2) = -1;
2286
2287 merge_expr (expr2, expr1, insn);
2288 av_set_add_nocopy (&in_both_set, expr2);
2289 av_set_iter_remove (&i);
2290 }
2291 else
2292 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2293 FROM_LV_SET. */
2294 set_unavailable_target_for_expr (expr1, from_lv_set);
2295 }
2296 to_tailp = i.lp;
2297
2298 /* These expressions are not present in TOP. Check liveness
2299 restrictions on TO_LV_SET. */
2300 FOR_EACH_EXPR (expr1, i, *fromp)
2301 set_unavailable_target_for_expr (expr1, to_lv_set);
2302
2303 join_distinct_sets (i.lp, &in_both_set);
2304 join_distinct_sets (to_tailp, fromp);
2305 }
2306
2307 /* Clear av_set pointed to by SETP. */
2308 void
2309 av_set_clear (av_set_t *setp)
2310 {
2311 expr_t expr;
2312 av_set_iterator i;
2313
2314 FOR_EACH_EXPR_1 (expr, i, setp)
2315 av_set_iter_remove (&i);
2316
2317 gcc_assert (*setp == NULL);
2318 }
2319
2320 /* Leave only one non-speculative element in the SETP. */
2321 void
2322 av_set_leave_one_nonspec (av_set_t *setp)
2323 {
2324 expr_t expr;
2325 av_set_iterator i;
2326 bool has_one_nonspec = false;
2327
2328 /* Keep all speculative exprs, and leave one non-speculative
2329 (the first one). */
2330 FOR_EACH_EXPR_1 (expr, i, setp)
2331 {
2332 if (!EXPR_SPEC_DONE_DS (expr))
2333 {
2334 if (has_one_nonspec)
2335 av_set_iter_remove (&i);
2336 else
2337 has_one_nonspec = true;
2338 }
2339 }
2340 }
2341
2342 /* Return the N'th element of the SET. */
2343 expr_t
2344 av_set_element (av_set_t set, int n)
2345 {
2346 expr_t expr;
2347 av_set_iterator i;
2348
2349 FOR_EACH_EXPR (expr, i, set)
2350 if (n-- == 0)
2351 return expr;
2352
2353 gcc_unreachable ();
2354 return NULL;
2355 }
2356
2357 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2358 void
2359 av_set_substract_cond_branches (av_set_t *avp)
2360 {
2361 av_set_iterator i;
2362 expr_t expr;
2363
2364 FOR_EACH_EXPR_1 (expr, i, avp)
2365 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2366 av_set_iter_remove (&i);
2367 }
2368
2369 /* Multiplies usefulness attribute of each member of av-set *AVP by
2370 value PROB / ALL_PROB. */
2371 void
2372 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2373 {
2374 av_set_iterator i;
2375 expr_t expr;
2376
2377 FOR_EACH_EXPR (expr, i, av)
2378 EXPR_USEFULNESS (expr) = (all_prob
2379 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2380 : 0);
2381 }
2382
2383 /* Leave in AVP only those expressions, which are present in AV,
2384 and return it, merging history expressions. */
2385 void
2386 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2387 {
2388 av_set_iterator i;
2389 expr_t expr, expr2;
2390
2391 FOR_EACH_EXPR_1 (expr, i, avp)
2392 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2393 av_set_iter_remove (&i);
2394 else
2395 /* When updating av sets in bookkeeping blocks, we can add more insns
2396 there which will be transformed but the upper av sets will not
2397 reflect those transformations. We then fail to undo those
2398 when searching for such insns. So merge the history saved
2399 in the av set of the block we are processing. */
2400 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2401 EXPR_HISTORY_OF_CHANGES (expr2));
2402 }
2403
2404 \f
2405
2406 /* Dependence hooks to initialize insn data. */
2407
2408 /* This is used in hooks callable from dependence analysis when initializing
2409 instruction's data. */
2410 static struct
2411 {
2412 /* Where the dependence was found (lhs/rhs). */
2413 deps_where_t where;
2414
2415 /* The actual data object to initialize. */
2416 idata_t id;
2417
2418 /* True when the insn should not be made clonable. */
2419 bool force_unique_p;
2420
2421 /* True when insn should be treated as of type USE, i.e. never renamed. */
2422 bool force_use_p;
2423 } deps_init_id_data;
2424
2425
2426 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2427 clonable. */
2428 static void
2429 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2430 {
2431 int type;
2432
2433 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2434 That clonable insns which can be separated into lhs and rhs have type SET.
2435 Other clonable insns have type USE. */
2436 type = GET_CODE (insn);
2437
2438 /* Only regular insns could be cloned. */
2439 if (type == INSN && !force_unique_p)
2440 type = SET;
2441 else if (type == JUMP_INSN && simplejump_p (insn))
2442 type = PC;
2443 else if (type == DEBUG_INSN)
2444 type = !force_unique_p ? USE : INSN;
2445
2446 IDATA_TYPE (id) = type;
2447 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2448 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2449 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2450 }
2451
2452 /* Start initializing insn data. */
2453 static void
2454 deps_init_id_start_insn (insn_t insn)
2455 {
2456 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2457
2458 setup_id_for_insn (deps_init_id_data.id, insn,
2459 deps_init_id_data.force_unique_p);
2460 deps_init_id_data.where = DEPS_IN_INSN;
2461 }
2462
2463 /* Start initializing lhs data. */
2464 static void
2465 deps_init_id_start_lhs (rtx lhs)
2466 {
2467 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2468 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2469
2470 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2471 {
2472 IDATA_LHS (deps_init_id_data.id) = lhs;
2473 deps_init_id_data.where = DEPS_IN_LHS;
2474 }
2475 }
2476
2477 /* Finish initializing lhs data. */
2478 static void
2479 deps_init_id_finish_lhs (void)
2480 {
2481 deps_init_id_data.where = DEPS_IN_INSN;
2482 }
2483
2484 /* Note a set of REGNO. */
2485 static void
2486 deps_init_id_note_reg_set (int regno)
2487 {
2488 haifa_note_reg_set (regno);
2489
2490 if (deps_init_id_data.where == DEPS_IN_RHS)
2491 deps_init_id_data.force_use_p = true;
2492
2493 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2494 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2495
2496 #ifdef STACK_REGS
2497 /* Make instructions that set stack registers to be ineligible for
2498 renaming to avoid issues with find_used_regs. */
2499 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2500 deps_init_id_data.force_use_p = true;
2501 #endif
2502 }
2503
2504 /* Note a clobber of REGNO. */
2505 static void
2506 deps_init_id_note_reg_clobber (int regno)
2507 {
2508 haifa_note_reg_clobber (regno);
2509
2510 if (deps_init_id_data.where == DEPS_IN_RHS)
2511 deps_init_id_data.force_use_p = true;
2512
2513 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2514 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2515 }
2516
2517 /* Note a use of REGNO. */
2518 static void
2519 deps_init_id_note_reg_use (int regno)
2520 {
2521 haifa_note_reg_use (regno);
2522
2523 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2524 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2525 }
2526
2527 /* Start initializing rhs data. */
2528 static void
2529 deps_init_id_start_rhs (rtx rhs)
2530 {
2531 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2532
2533 /* And there was no sel_deps_reset_to_insn (). */
2534 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2535 {
2536 IDATA_RHS (deps_init_id_data.id) = rhs;
2537 deps_init_id_data.where = DEPS_IN_RHS;
2538 }
2539 }
2540
2541 /* Finish initializing rhs data. */
2542 static void
2543 deps_init_id_finish_rhs (void)
2544 {
2545 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2546 || deps_init_id_data.where == DEPS_IN_INSN);
2547 deps_init_id_data.where = DEPS_IN_INSN;
2548 }
2549
2550 /* Finish initializing insn data. */
2551 static void
2552 deps_init_id_finish_insn (void)
2553 {
2554 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2555
2556 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2557 {
2558 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2559 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2560
2561 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2562 || deps_init_id_data.force_use_p)
2563 {
2564 /* This should be a USE, as we don't want to schedule its RHS
2565 separately. However, we still want to have them recorded
2566 for the purposes of substitution. That's why we don't
2567 simply call downgrade_to_use () here. */
2568 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2569 gcc_assert (!lhs == !rhs);
2570
2571 IDATA_TYPE (deps_init_id_data.id) = USE;
2572 }
2573 }
2574
2575 deps_init_id_data.where = DEPS_IN_NOWHERE;
2576 }
2577
2578 /* This is dependence info used for initializing insn's data. */
2579 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2580
2581 /* This initializes most of the static part of the above structure. */
2582 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2583 {
2584 NULL,
2585
2586 deps_init_id_start_insn,
2587 deps_init_id_finish_insn,
2588 deps_init_id_start_lhs,
2589 deps_init_id_finish_lhs,
2590 deps_init_id_start_rhs,
2591 deps_init_id_finish_rhs,
2592 deps_init_id_note_reg_set,
2593 deps_init_id_note_reg_clobber,
2594 deps_init_id_note_reg_use,
2595 NULL, /* note_mem_dep */
2596 NULL, /* note_dep */
2597
2598 0, /* use_cselib */
2599 0, /* use_deps_list */
2600 0 /* generate_spec_deps */
2601 };
2602
2603 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2604 we don't actually need information about lhs and rhs. */
2605 static void
2606 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2607 {
2608 rtx pat = PATTERN (insn);
2609
2610 if (NONJUMP_INSN_P (insn)
2611 && GET_CODE (pat) == SET
2612 && !force_unique_p)
2613 {
2614 IDATA_RHS (id) = SET_SRC (pat);
2615 IDATA_LHS (id) = SET_DEST (pat);
2616 }
2617 else
2618 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2619 }
2620
2621 /* Possibly downgrade INSN to USE. */
2622 static void
2623 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2624 {
2625 bool must_be_use = false;
2626 df_ref def;
2627 rtx lhs = IDATA_LHS (id);
2628 rtx rhs = IDATA_RHS (id);
2629
2630 /* We downgrade only SETs. */
2631 if (IDATA_TYPE (id) != SET)
2632 return;
2633
2634 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2635 {
2636 IDATA_TYPE (id) = USE;
2637 return;
2638 }
2639
2640 FOR_EACH_INSN_DEF (def, insn)
2641 {
2642 if (DF_REF_INSN (def)
2643 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2644 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2645 {
2646 must_be_use = true;
2647 break;
2648 }
2649
2650 #ifdef STACK_REGS
2651 /* Make instructions that set stack registers to be ineligible for
2652 renaming to avoid issues with find_used_regs. */
2653 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2654 {
2655 must_be_use = true;
2656 break;
2657 }
2658 #endif
2659 }
2660
2661 if (must_be_use)
2662 IDATA_TYPE (id) = USE;
2663 }
2664
2665 /* Setup register sets describing INSN in ID. */
2666 static void
2667 setup_id_reg_sets (idata_t id, insn_t insn)
2668 {
2669 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2670 df_ref def, use;
2671 regset tmp = get_clear_regset_from_pool ();
2672
2673 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2674 {
2675 unsigned int regno = DF_REF_REGNO (def);
2676
2677 /* Post modifies are treated like clobbers by sched-deps.c. */
2678 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2679 | DF_REF_PRE_POST_MODIFY)))
2680 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2681 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2682 {
2683 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2684
2685 #ifdef STACK_REGS
2686 /* For stack registers, treat writes to them as writes
2687 to the first one to be consistent with sched-deps.c. */
2688 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2689 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2690 #endif
2691 }
2692 /* Mark special refs that generate read/write def pair. */
2693 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2694 || regno == STACK_POINTER_REGNUM)
2695 bitmap_set_bit (tmp, regno);
2696 }
2697
2698 FOR_EACH_INSN_INFO_USE (use, insn_info)
2699 {
2700 unsigned int regno = DF_REF_REGNO (use);
2701
2702 /* When these refs are met for the first time, skip them, as
2703 these uses are just counterparts of some defs. */
2704 if (bitmap_bit_p (tmp, regno))
2705 bitmap_clear_bit (tmp, regno);
2706 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2707 {
2708 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2709
2710 #ifdef STACK_REGS
2711 /* For stack registers, treat reads from them as reads from
2712 the first one to be consistent with sched-deps.c. */
2713 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2714 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2715 #endif
2716 }
2717 }
2718
2719 return_regset_to_pool (tmp);
2720 }
2721
2722 /* Initialize instruction data for INSN in ID using DF's data. */
2723 static void
2724 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2725 {
2726 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2727
2728 setup_id_for_insn (id, insn, force_unique_p);
2729 setup_id_lhs_rhs (id, insn, force_unique_p);
2730
2731 if (INSN_NOP_P (insn))
2732 return;
2733
2734 maybe_downgrade_id_to_use (id, insn);
2735 setup_id_reg_sets (id, insn);
2736 }
2737
2738 /* Initialize instruction data for INSN in ID. */
2739 static void
2740 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2741 {
2742 struct deps_desc _dc, *dc = &_dc;
2743
2744 deps_init_id_data.where = DEPS_IN_NOWHERE;
2745 deps_init_id_data.id = id;
2746 deps_init_id_data.force_unique_p = force_unique_p;
2747 deps_init_id_data.force_use_p = false;
2748
2749 init_deps (dc, false);
2750
2751 memcpy (&deps_init_id_sched_deps_info,
2752 &const_deps_init_id_sched_deps_info,
2753 sizeof (deps_init_id_sched_deps_info));
2754
2755 if (spec_info != NULL)
2756 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2757
2758 sched_deps_info = &deps_init_id_sched_deps_info;
2759
2760 deps_analyze_insn (dc, insn);
2761
2762 free_deps (dc);
2763
2764 deps_init_id_data.id = NULL;
2765 }
2766
2767 \f
2768 struct sched_scan_info_def
2769 {
2770 /* This hook notifies scheduler frontend to extend its internal per basic
2771 block data structures. This hook should be called once before a series of
2772 calls to bb_init (). */
2773 void (*extend_bb) (void);
2774
2775 /* This hook makes scheduler frontend to initialize its internal data
2776 structures for the passed basic block. */
2777 void (*init_bb) (basic_block);
2778
2779 /* This hook notifies scheduler frontend to extend its internal per insn data
2780 structures. This hook should be called once before a series of calls to
2781 insn_init (). */
2782 void (*extend_insn) (void);
2783
2784 /* This hook makes scheduler frontend to initialize its internal data
2785 structures for the passed insn. */
2786 void (*init_insn) (insn_t);
2787 };
2788
2789 /* A driver function to add a set of basic blocks (BBS) to the
2790 scheduling region. */
2791 static void
2792 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2793 {
2794 unsigned i;
2795 basic_block bb;
2796
2797 if (ssi->extend_bb)
2798 ssi->extend_bb ();
2799
2800 if (ssi->init_bb)
2801 FOR_EACH_VEC_ELT (bbs, i, bb)
2802 ssi->init_bb (bb);
2803
2804 if (ssi->extend_insn)
2805 ssi->extend_insn ();
2806
2807 if (ssi->init_insn)
2808 FOR_EACH_VEC_ELT (bbs, i, bb)
2809 {
2810 rtx_insn *insn;
2811
2812 FOR_BB_INSNS (bb, insn)
2813 ssi->init_insn (insn);
2814 }
2815 }
2816
2817 /* Implement hooks for collecting fundamental insn properties like if insn is
2818 an ASM or is within a SCHED_GROUP. */
2819
2820 /* True when a "one-time init" data for INSN was already inited. */
2821 static bool
2822 first_time_insn_init (insn_t insn)
2823 {
2824 return INSN_LIVE (insn) == NULL;
2825 }
2826
2827 /* Hash an entry in a transformed_insns hashtable. */
2828 static hashval_t
2829 hash_transformed_insns (const void *p)
2830 {
2831 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2832 }
2833
2834 /* Compare the entries in a transformed_insns hashtable. */
2835 static int
2836 eq_transformed_insns (const void *p, const void *q)
2837 {
2838 rtx_insn *i1 =
2839 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2840 rtx_insn *i2 =
2841 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2842
2843 if (INSN_UID (i1) == INSN_UID (i2))
2844 return 1;
2845 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2846 }
2847
2848 /* Free an entry in a transformed_insns hashtable. */
2849 static void
2850 free_transformed_insns (void *p)
2851 {
2852 struct transformed_insns *pti = (struct transformed_insns *) p;
2853
2854 vinsn_detach (pti->vinsn_old);
2855 vinsn_detach (pti->vinsn_new);
2856 free (pti);
2857 }
2858
2859 /* Init the s_i_d data for INSN which should be inited just once, when
2860 we first see the insn. */
2861 static void
2862 init_first_time_insn_data (insn_t insn)
2863 {
2864 /* This should not be set if this is the first time we init data for
2865 insn. */
2866 gcc_assert (first_time_insn_init (insn));
2867
2868 /* These are needed for nops too. */
2869 INSN_LIVE (insn) = get_regset_from_pool ();
2870 INSN_LIVE_VALID_P (insn) = false;
2871
2872 if (!INSN_NOP_P (insn))
2873 {
2874 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2875 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2876 INSN_TRANSFORMED_INSNS (insn)
2877 = htab_create (16, hash_transformed_insns,
2878 eq_transformed_insns, free_transformed_insns);
2879 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2880 }
2881 }
2882
2883 /* Free almost all above data for INSN that is scheduled already.
2884 Used for extra-large basic blocks. */
2885 void
2886 free_data_for_scheduled_insn (insn_t insn)
2887 {
2888 gcc_assert (! first_time_insn_init (insn));
2889
2890 if (! INSN_ANALYZED_DEPS (insn))
2891 return;
2892
2893 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2894 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2895 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2896
2897 /* This is allocated only for bookkeeping insns. */
2898 if (INSN_ORIGINATORS (insn))
2899 BITMAP_FREE (INSN_ORIGINATORS (insn));
2900 free_deps (&INSN_DEPS_CONTEXT (insn));
2901
2902 INSN_ANALYZED_DEPS (insn) = NULL;
2903
2904 /* Clear the readonly flag so we would ICE when trying to recalculate
2905 the deps context (as we believe that it should not happen). */
2906 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2907 }
2908
2909 /* Free the same data as above for INSN. */
2910 static void
2911 free_first_time_insn_data (insn_t insn)
2912 {
2913 gcc_assert (! first_time_insn_init (insn));
2914
2915 free_data_for_scheduled_insn (insn);
2916 return_regset_to_pool (INSN_LIVE (insn));
2917 INSN_LIVE (insn) = NULL;
2918 INSN_LIVE_VALID_P (insn) = false;
2919 }
2920
2921 /* Initialize region-scope data structures for basic blocks. */
2922 static void
2923 init_global_and_expr_for_bb (basic_block bb)
2924 {
2925 if (sel_bb_empty_p (bb))
2926 return;
2927
2928 invalidate_av_set (bb);
2929 }
2930
2931 /* Data for global dependency analysis (to initialize CANT_MOVE and
2932 SCHED_GROUP_P). */
2933 static struct
2934 {
2935 /* Previous insn. */
2936 insn_t prev_insn;
2937 } init_global_data;
2938
2939 /* Determine if INSN is in the sched_group, is an asm or should not be
2940 cloned. After that initialize its expr. */
2941 static void
2942 init_global_and_expr_for_insn (insn_t insn)
2943 {
2944 if (LABEL_P (insn))
2945 return;
2946
2947 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2948 {
2949 init_global_data.prev_insn = NULL;
2950 return;
2951 }
2952
2953 gcc_assert (INSN_P (insn));
2954
2955 if (SCHED_GROUP_P (insn))
2956 /* Setup a sched_group. */
2957 {
2958 insn_t prev_insn = init_global_data.prev_insn;
2959
2960 if (prev_insn)
2961 INSN_SCHED_NEXT (prev_insn) = insn;
2962
2963 init_global_data.prev_insn = insn;
2964 }
2965 else
2966 init_global_data.prev_insn = NULL;
2967
2968 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2969 || asm_noperands (PATTERN (insn)) >= 0)
2970 /* Mark INSN as an asm. */
2971 INSN_ASM_P (insn) = true;
2972
2973 {
2974 bool force_unique_p;
2975 ds_t spec_done_ds;
2976
2977 /* Certain instructions cannot be cloned, and frame related insns and
2978 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2979 their block. */
2980 if (prologue_epilogue_contains (insn))
2981 {
2982 if (RTX_FRAME_RELATED_P (insn))
2983 CANT_MOVE (insn) = 1;
2984 else
2985 {
2986 rtx note;
2987 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2988 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2989 && ((enum insn_note) INTVAL (XEXP (note, 0))
2990 == NOTE_INSN_EPILOGUE_BEG))
2991 {
2992 CANT_MOVE (insn) = 1;
2993 break;
2994 }
2995 }
2996 force_unique_p = true;
2997 }
2998 else
2999 if (CANT_MOVE (insn)
3000 || INSN_ASM_P (insn)
3001 || SCHED_GROUP_P (insn)
3002 || CALL_P (insn)
3003 /* Exception handling insns are always unique. */
3004 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3005 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
3006 || control_flow_insn_p (insn)
3007 || volatile_insn_p (PATTERN (insn))
3008 || (targetm.cannot_copy_insn_p
3009 && targetm.cannot_copy_insn_p (insn)))
3010 force_unique_p = true;
3011 else
3012 force_unique_p = false;
3013
3014 if (targetm.sched.get_insn_spec_ds)
3015 {
3016 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3017 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3018 }
3019 else
3020 spec_done_ds = 0;
3021
3022 /* Initialize INSN's expr. */
3023 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3024 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3025 spec_done_ds, 0, 0, vNULL, true,
3026 false, false, false, CANT_MOVE (insn));
3027 }
3028
3029 init_first_time_insn_data (insn);
3030 }
3031
3032 /* Scan the region and initialize instruction data for basic blocks BBS. */
3033 void
3034 sel_init_global_and_expr (bb_vec_t bbs)
3035 {
3036 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3037 const struct sched_scan_info_def ssi =
3038 {
3039 NULL, /* extend_bb */
3040 init_global_and_expr_for_bb, /* init_bb */
3041 extend_insn_data, /* extend_insn */
3042 init_global_and_expr_for_insn /* init_insn */
3043 };
3044
3045 sched_scan (&ssi, bbs);
3046 }
3047
3048 /* Finalize region-scope data structures for basic blocks. */
3049 static void
3050 finish_global_and_expr_for_bb (basic_block bb)
3051 {
3052 av_set_clear (&BB_AV_SET (bb));
3053 BB_AV_LEVEL (bb) = 0;
3054 }
3055
3056 /* Finalize INSN's data. */
3057 static void
3058 finish_global_and_expr_insn (insn_t insn)
3059 {
3060 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3061 return;
3062
3063 gcc_assert (INSN_P (insn));
3064
3065 if (INSN_LUID (insn) > 0)
3066 {
3067 free_first_time_insn_data (insn);
3068 INSN_WS_LEVEL (insn) = 0;
3069 CANT_MOVE (insn) = 0;
3070
3071 /* We can no longer assert this, as vinsns of this insn could be
3072 easily live in other insn's caches. This should be changed to
3073 a counter-like approach among all vinsns. */
3074 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3075 clear_expr (INSN_EXPR (insn));
3076 }
3077 }
3078
3079 /* Finalize per instruction data for the whole region. */
3080 void
3081 sel_finish_global_and_expr (void)
3082 {
3083 {
3084 bb_vec_t bbs;
3085 int i;
3086
3087 bbs.create (current_nr_blocks);
3088
3089 for (i = 0; i < current_nr_blocks; i++)
3090 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3091
3092 /* Clear AV_SETs and INSN_EXPRs. */
3093 {
3094 const struct sched_scan_info_def ssi =
3095 {
3096 NULL, /* extend_bb */
3097 finish_global_and_expr_for_bb, /* init_bb */
3098 NULL, /* extend_insn */
3099 finish_global_and_expr_insn /* init_insn */
3100 };
3101
3102 sched_scan (&ssi, bbs);
3103 }
3104
3105 bbs.release ();
3106 }
3107
3108 finish_insns ();
3109 }
3110 \f
3111
3112 /* In the below hooks, we merely calculate whether or not a dependence
3113 exists, and in what part of insn. However, we will need more data
3114 when we'll start caching dependence requests. */
3115
3116 /* Container to hold information for dependency analysis. */
3117 static struct
3118 {
3119 deps_t dc;
3120
3121 /* A variable to track which part of rtx we are scanning in
3122 sched-deps.c: sched_analyze_insn (). */
3123 deps_where_t where;
3124
3125 /* Current producer. */
3126 insn_t pro;
3127
3128 /* Current consumer. */
3129 vinsn_t con;
3130
3131 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3132 X is from { INSN, LHS, RHS }. */
3133 ds_t has_dep_p[DEPS_IN_NOWHERE];
3134 } has_dependence_data;
3135
3136 /* Start analyzing dependencies of INSN. */
3137 static void
3138 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3139 {
3140 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3141
3142 has_dependence_data.where = DEPS_IN_INSN;
3143 }
3144
3145 /* Finish analyzing dependencies of an insn. */
3146 static void
3147 has_dependence_finish_insn (void)
3148 {
3149 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3150
3151 has_dependence_data.where = DEPS_IN_NOWHERE;
3152 }
3153
3154 /* Start analyzing dependencies of LHS. */
3155 static void
3156 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3157 {
3158 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3159
3160 if (VINSN_LHS (has_dependence_data.con) != NULL)
3161 has_dependence_data.where = DEPS_IN_LHS;
3162 }
3163
3164 /* Finish analyzing dependencies of an lhs. */
3165 static void
3166 has_dependence_finish_lhs (void)
3167 {
3168 has_dependence_data.where = DEPS_IN_INSN;
3169 }
3170
3171 /* Start analyzing dependencies of RHS. */
3172 static void
3173 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3174 {
3175 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3176
3177 if (VINSN_RHS (has_dependence_data.con) != NULL)
3178 has_dependence_data.where = DEPS_IN_RHS;
3179 }
3180
3181 /* Start analyzing dependencies of an rhs. */
3182 static void
3183 has_dependence_finish_rhs (void)
3184 {
3185 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3186 || has_dependence_data.where == DEPS_IN_INSN);
3187
3188 has_dependence_data.where = DEPS_IN_INSN;
3189 }
3190
3191 /* Note a set of REGNO. */
3192 static void
3193 has_dependence_note_reg_set (int regno)
3194 {
3195 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3196
3197 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3198 VINSN_INSN_RTX
3199 (has_dependence_data.con)))
3200 {
3201 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3202
3203 if (reg_last->sets != NULL
3204 || reg_last->clobbers != NULL)
3205 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3206
3207 if (reg_last->uses || reg_last->implicit_sets)
3208 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3209 }
3210 }
3211
3212 /* Note a clobber of REGNO. */
3213 static void
3214 has_dependence_note_reg_clobber (int regno)
3215 {
3216 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3217
3218 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3219 VINSN_INSN_RTX
3220 (has_dependence_data.con)))
3221 {
3222 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3223
3224 if (reg_last->sets)
3225 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3226
3227 if (reg_last->uses || reg_last->implicit_sets)
3228 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3229 }
3230 }
3231
3232 /* Note a use of REGNO. */
3233 static void
3234 has_dependence_note_reg_use (int regno)
3235 {
3236 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3237
3238 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3239 VINSN_INSN_RTX
3240 (has_dependence_data.con)))
3241 {
3242 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3243
3244 if (reg_last->sets)
3245 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3246
3247 if (reg_last->clobbers || reg_last->implicit_sets)
3248 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3249
3250 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3251 is actually a check insn. We need to do this for any register
3252 read-read dependency with the check unless we track properly
3253 all registers written by BE_IN_SPEC-speculated insns, as
3254 we don't have explicit dependence lists. See PR 53975. */
3255 if (reg_last->uses)
3256 {
3257 ds_t pro_spec_checked_ds;
3258
3259 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3260 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3261
3262 if (pro_spec_checked_ds != 0)
3263 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3264 NULL_RTX, NULL_RTX);
3265 }
3266 }
3267 }
3268
3269 /* Note a memory dependence. */
3270 static void
3271 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3272 rtx pending_mem ATTRIBUTE_UNUSED,
3273 insn_t pending_insn ATTRIBUTE_UNUSED,
3274 ds_t ds ATTRIBUTE_UNUSED)
3275 {
3276 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3277 VINSN_INSN_RTX (has_dependence_data.con)))
3278 {
3279 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3280
3281 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3282 }
3283 }
3284
3285 /* Note a dependence. */
3286 static void
3287 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3288 ds_t ds ATTRIBUTE_UNUSED)
3289 {
3290 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3291 VINSN_INSN_RTX (has_dependence_data.con)))
3292 {
3293 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3294
3295 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3296 }
3297 }
3298
3299 /* Mark the insn as having a hard dependence that prevents speculation. */
3300 void
3301 sel_mark_hard_insn (rtx insn)
3302 {
3303 int i;
3304
3305 /* Only work when we're in has_dependence_p mode.
3306 ??? This is a hack, this should actually be a hook. */
3307 if (!has_dependence_data.dc || !has_dependence_data.pro)
3308 return;
3309
3310 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3311 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3312
3313 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3314 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3315 }
3316
3317 /* This structure holds the hooks for the dependency analysis used when
3318 actually processing dependencies in the scheduler. */
3319 static struct sched_deps_info_def has_dependence_sched_deps_info;
3320
3321 /* This initializes most of the fields of the above structure. */
3322 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3323 {
3324 NULL,
3325
3326 has_dependence_start_insn,
3327 has_dependence_finish_insn,
3328 has_dependence_start_lhs,
3329 has_dependence_finish_lhs,
3330 has_dependence_start_rhs,
3331 has_dependence_finish_rhs,
3332 has_dependence_note_reg_set,
3333 has_dependence_note_reg_clobber,
3334 has_dependence_note_reg_use,
3335 has_dependence_note_mem_dep,
3336 has_dependence_note_dep,
3337
3338 0, /* use_cselib */
3339 0, /* use_deps_list */
3340 0 /* generate_spec_deps */
3341 };
3342
3343 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3344 static void
3345 setup_has_dependence_sched_deps_info (void)
3346 {
3347 memcpy (&has_dependence_sched_deps_info,
3348 &const_has_dependence_sched_deps_info,
3349 sizeof (has_dependence_sched_deps_info));
3350
3351 if (spec_info != NULL)
3352 has_dependence_sched_deps_info.generate_spec_deps = 1;
3353
3354 sched_deps_info = &has_dependence_sched_deps_info;
3355 }
3356
3357 /* Remove all dependences found and recorded in has_dependence_data array. */
3358 void
3359 sel_clear_has_dependence (void)
3360 {
3361 int i;
3362
3363 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3364 has_dependence_data.has_dep_p[i] = 0;
3365 }
3366
3367 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3368 to the dependence information array in HAS_DEP_PP. */
3369 ds_t
3370 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3371 {
3372 int i;
3373 ds_t ds;
3374 struct deps_desc *dc;
3375
3376 if (INSN_SIMPLEJUMP_P (pred))
3377 /* Unconditional jump is just a transfer of control flow.
3378 Ignore it. */
3379 return false;
3380
3381 dc = &INSN_DEPS_CONTEXT (pred);
3382
3383 /* We init this field lazily. */
3384 if (dc->reg_last == NULL)
3385 init_deps_reg_last (dc);
3386
3387 if (!dc->readonly)
3388 {
3389 has_dependence_data.pro = NULL;
3390 /* Initialize empty dep context with information about PRED. */
3391 advance_deps_context (dc, pred);
3392 dc->readonly = 1;
3393 }
3394
3395 has_dependence_data.where = DEPS_IN_NOWHERE;
3396 has_dependence_data.pro = pred;
3397 has_dependence_data.con = EXPR_VINSN (expr);
3398 has_dependence_data.dc = dc;
3399
3400 sel_clear_has_dependence ();
3401
3402 /* Now catch all dependencies that would be generated between PRED and
3403 INSN. */
3404 setup_has_dependence_sched_deps_info ();
3405 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3406 has_dependence_data.dc = NULL;
3407
3408 /* When a barrier was found, set DEPS_IN_INSN bits. */
3409 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3410 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3411 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3412 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3413
3414 /* Do not allow stores to memory to move through checks. Currently
3415 we don't move this to sched-deps.c as the check doesn't have
3416 obvious places to which this dependence can be attached.
3417 FIMXE: this should go to a hook. */
3418 if (EXPR_LHS (expr)
3419 && MEM_P (EXPR_LHS (expr))
3420 && sel_insn_is_speculation_check (pred))
3421 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3422
3423 *has_dep_pp = has_dependence_data.has_dep_p;
3424 ds = 0;
3425 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3426 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3427 NULL_RTX, NULL_RTX);
3428
3429 return ds;
3430 }
3431 \f
3432
3433 /* Dependence hooks implementation that checks dependence latency constraints
3434 on the insns being scheduled. The entry point for these routines is
3435 tick_check_p predicate. */
3436
3437 static struct
3438 {
3439 /* An expr we are currently checking. */
3440 expr_t expr;
3441
3442 /* A minimal cycle for its scheduling. */
3443 int cycle;
3444
3445 /* Whether we have seen a true dependence while checking. */
3446 bool seen_true_dep_p;
3447 } tick_check_data;
3448
3449 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3450 on PRO with status DS and weight DW. */
3451 static void
3452 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3453 {
3454 expr_t con_expr = tick_check_data.expr;
3455 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3456
3457 if (con_insn != pro_insn)
3458 {
3459 enum reg_note dt;
3460 int tick;
3461
3462 if (/* PROducer was removed from above due to pipelining. */
3463 !INSN_IN_STREAM_P (pro_insn)
3464 /* Or PROducer was originally on the next iteration regarding the
3465 CONsumer. */
3466 || (INSN_SCHED_TIMES (pro_insn)
3467 - EXPR_SCHED_TIMES (con_expr)) > 1)
3468 /* Don't count this dependence. */
3469 return;
3470
3471 dt = ds_to_dt (ds);
3472 if (dt == REG_DEP_TRUE)
3473 tick_check_data.seen_true_dep_p = true;
3474
3475 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3476
3477 {
3478 dep_def _dep, *dep = &_dep;
3479
3480 init_dep (dep, pro_insn, con_insn, dt);
3481
3482 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3483 }
3484
3485 /* When there are several kinds of dependencies between pro and con,
3486 only REG_DEP_TRUE should be taken into account. */
3487 if (tick > tick_check_data.cycle
3488 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3489 tick_check_data.cycle = tick;
3490 }
3491 }
3492
3493 /* An implementation of note_dep hook. */
3494 static void
3495 tick_check_note_dep (insn_t pro, ds_t ds)
3496 {
3497 tick_check_dep_with_dw (pro, ds, 0);
3498 }
3499
3500 /* An implementation of note_mem_dep hook. */
3501 static void
3502 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3503 {
3504 dw_t dw;
3505
3506 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3507 ? estimate_dep_weak (mem1, mem2)
3508 : 0);
3509
3510 tick_check_dep_with_dw (pro, ds, dw);
3511 }
3512
3513 /* This structure contains hooks for dependence analysis used when determining
3514 whether an insn is ready for scheduling. */
3515 static struct sched_deps_info_def tick_check_sched_deps_info =
3516 {
3517 NULL,
3518
3519 NULL,
3520 NULL,
3521 NULL,
3522 NULL,
3523 NULL,
3524 NULL,
3525 haifa_note_reg_set,
3526 haifa_note_reg_clobber,
3527 haifa_note_reg_use,
3528 tick_check_note_mem_dep,
3529 tick_check_note_dep,
3530
3531 0, 0, 0
3532 };
3533
3534 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3535 scheduled. Return 0 if all data from producers in DC is ready. */
3536 int
3537 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3538 {
3539 int cycles_left;
3540 /* Initialize variables. */
3541 tick_check_data.expr = expr;
3542 tick_check_data.cycle = 0;
3543 tick_check_data.seen_true_dep_p = false;
3544 sched_deps_info = &tick_check_sched_deps_info;
3545
3546 gcc_assert (!dc->readonly);
3547 dc->readonly = 1;
3548 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3549 dc->readonly = 0;
3550
3551 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3552
3553 return cycles_left >= 0 ? cycles_left : 0;
3554 }
3555 \f
3556
3557 /* Functions to work with insns. */
3558
3559 /* Returns true if LHS of INSN is the same as DEST of an insn
3560 being moved. */
3561 bool
3562 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3563 {
3564 rtx lhs = INSN_LHS (insn);
3565
3566 if (lhs == NULL || dest == NULL)
3567 return false;
3568
3569 return rtx_equal_p (lhs, dest);
3570 }
3571
3572 /* Return s_i_d entry of INSN. Callable from debugger. */
3573 sel_insn_data_def
3574 insn_sid (insn_t insn)
3575 {
3576 return *SID (insn);
3577 }
3578
3579 /* True when INSN is a speculative check. We can tell this by looking
3580 at the data structures of the selective scheduler, not by examining
3581 the pattern. */
3582 bool
3583 sel_insn_is_speculation_check (rtx insn)
3584 {
3585 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3586 }
3587
3588 /* Extracts machine mode MODE and destination location DST_LOC
3589 for given INSN. */
3590 void
3591 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3592 {
3593 rtx pat = PATTERN (insn);
3594
3595 gcc_assert (dst_loc);
3596 gcc_assert (GET_CODE (pat) == SET);
3597
3598 *dst_loc = SET_DEST (pat);
3599
3600 gcc_assert (*dst_loc);
3601 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3602
3603 if (mode)
3604 *mode = GET_MODE (*dst_loc);
3605 }
3606
3607 /* Returns true when moving through JUMP will result in bookkeeping
3608 creation. */
3609 bool
3610 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3611 {
3612 insn_t succ;
3613 succ_iterator si;
3614
3615 FOR_EACH_SUCC (succ, si, jump)
3616 if (sel_num_cfg_preds_gt_1 (succ))
3617 return true;
3618
3619 return false;
3620 }
3621
3622 /* Return 'true' if INSN is the only one in its basic block. */
3623 static bool
3624 insn_is_the_only_one_in_bb_p (insn_t insn)
3625 {
3626 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3627 }
3628
3629 #ifdef ENABLE_CHECKING
3630 /* Check that the region we're scheduling still has at most one
3631 backedge. */
3632 static void
3633 verify_backedges (void)
3634 {
3635 if (pipelining_p)
3636 {
3637 int i, n = 0;
3638 edge e;
3639 edge_iterator ei;
3640
3641 for (i = 0; i < current_nr_blocks; i++)
3642 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3643 if (in_current_region_p (e->dest)
3644 && BLOCK_TO_BB (e->dest->index) < i)
3645 n++;
3646
3647 gcc_assert (n <= 1);
3648 }
3649 }
3650 #endif
3651 \f
3652
3653 /* Functions to work with control flow. */
3654
3655 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3656 are sorted in topological order (it might have been invalidated by
3657 redirecting an edge). */
3658 static void
3659 sel_recompute_toporder (void)
3660 {
3661 int i, n, rgn;
3662 int *postorder, n_blocks;
3663
3664 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3665 n_blocks = post_order_compute (postorder, false, false);
3666
3667 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3668 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3669 if (CONTAINING_RGN (postorder[i]) == rgn)
3670 {
3671 BLOCK_TO_BB (postorder[i]) = n;
3672 BB_TO_BLOCK (n) = postorder[i];
3673 n++;
3674 }
3675
3676 /* Assert that we updated info for all blocks. We may miss some blocks if
3677 this function is called when redirecting an edge made a block
3678 unreachable, but that block is not deleted yet. */
3679 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3680 }
3681
3682 /* Tidy the possibly empty block BB. */
3683 static bool
3684 maybe_tidy_empty_bb (basic_block bb)
3685 {
3686 basic_block succ_bb, pred_bb, note_bb;
3687 vec<basic_block> dom_bbs;
3688 edge e;
3689 edge_iterator ei;
3690 bool rescan_p;
3691
3692 /* Keep empty bb only if this block immediately precedes EXIT and
3693 has incoming non-fallthrough edge, or it has no predecessors or
3694 successors. Otherwise remove it. */
3695 if (!sel_bb_empty_p (bb)
3696 || (single_succ_p (bb)
3697 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3698 && (!single_pred_p (bb)
3699 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3700 || EDGE_COUNT (bb->preds) == 0
3701 || EDGE_COUNT (bb->succs) == 0)
3702 return false;
3703
3704 /* Do not attempt to redirect complex edges. */
3705 FOR_EACH_EDGE (e, ei, bb->preds)
3706 if (e->flags & EDGE_COMPLEX)
3707 return false;
3708 else if (e->flags & EDGE_FALLTHRU)
3709 {
3710 rtx note;
3711 /* If prev bb ends with asm goto, see if any of the
3712 ASM_OPERANDS_LABELs don't point to the fallthru
3713 label. Do not attempt to redirect it in that case. */
3714 if (JUMP_P (BB_END (e->src))
3715 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3716 {
3717 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3718
3719 for (i = 0; i < n; ++i)
3720 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3721 return false;
3722 }
3723 }
3724
3725 free_data_sets (bb);
3726
3727 /* Do not delete BB if it has more than one successor.
3728 That can occur when we moving a jump. */
3729 if (!single_succ_p (bb))
3730 {
3731 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3732 sel_merge_blocks (bb->prev_bb, bb);
3733 return true;
3734 }
3735
3736 succ_bb = single_succ (bb);
3737 rescan_p = true;
3738 pred_bb = NULL;
3739 dom_bbs.create (0);
3740
3741 /* Save a pred/succ from the current region to attach the notes to. */
3742 note_bb = NULL;
3743 FOR_EACH_EDGE (e, ei, bb->preds)
3744 if (in_current_region_p (e->src))
3745 {
3746 note_bb = e->src;
3747 break;
3748 }
3749 if (note_bb == NULL)
3750 note_bb = succ_bb;
3751
3752 /* Redirect all non-fallthru edges to the next bb. */
3753 while (rescan_p)
3754 {
3755 rescan_p = false;
3756
3757 FOR_EACH_EDGE (e, ei, bb->preds)
3758 {
3759 pred_bb = e->src;
3760
3761 if (!(e->flags & EDGE_FALLTHRU))
3762 {
3763 /* We can not invalidate computed topological order by moving
3764 the edge destination block (E->SUCC) along a fallthru edge.
3765
3766 We will update dominators here only when we'll get
3767 an unreachable block when redirecting, otherwise
3768 sel_redirect_edge_and_branch will take care of it. */
3769 if (e->dest != bb
3770 && single_pred_p (e->dest))
3771 dom_bbs.safe_push (e->dest);
3772 sel_redirect_edge_and_branch (e, succ_bb);
3773 rescan_p = true;
3774 break;
3775 }
3776 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3777 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3778 still have to adjust it. */
3779 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3780 {
3781 /* If possible, try to remove the unneeded conditional jump. */
3782 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3783 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3784 {
3785 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3786 tidy_fallthru_edge (e);
3787 }
3788 else
3789 sel_redirect_edge_and_branch (e, succ_bb);
3790 rescan_p = true;
3791 break;
3792 }
3793 }
3794 }
3795
3796 if (can_merge_blocks_p (bb->prev_bb, bb))
3797 sel_merge_blocks (bb->prev_bb, bb);
3798 else
3799 {
3800 /* This is a block without fallthru predecessor. Just delete it. */
3801 gcc_assert (note_bb);
3802 move_bb_info (note_bb, bb);
3803 remove_empty_bb (bb, true);
3804 }
3805
3806 if (!dom_bbs.is_empty ())
3807 {
3808 dom_bbs.safe_push (succ_bb);
3809 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3810 dom_bbs.release ();
3811 }
3812
3813 return true;
3814 }
3815
3816 /* Tidy the control flow after we have removed original insn from
3817 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3818 is true, also try to optimize control flow on non-empty blocks. */
3819 bool
3820 tidy_control_flow (basic_block xbb, bool full_tidying)
3821 {
3822 bool changed = true;
3823 insn_t first, last;
3824
3825 /* First check whether XBB is empty. */
3826 changed = maybe_tidy_empty_bb (xbb);
3827 if (changed || !full_tidying)
3828 return changed;
3829
3830 /* Check if there is a unnecessary jump after insn left. */
3831 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3832 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3833 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3834 {
3835 if (sel_remove_insn (BB_END (xbb), false, false))
3836 return true;
3837 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3838 }
3839
3840 first = sel_bb_head (xbb);
3841 last = sel_bb_end (xbb);
3842 if (MAY_HAVE_DEBUG_INSNS)
3843 {
3844 if (first != last && DEBUG_INSN_P (first))
3845 do
3846 first = NEXT_INSN (first);
3847 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3848
3849 if (first != last && DEBUG_INSN_P (last))
3850 do
3851 last = PREV_INSN (last);
3852 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3853 }
3854 /* Check if there is an unnecessary jump in previous basic block leading
3855 to next basic block left after removing INSN from stream.
3856 If it is so, remove that jump and redirect edge to current
3857 basic block (where there was INSN before deletion). This way
3858 when NOP will be deleted several instructions later with its
3859 basic block we will not get a jump to next instruction, which
3860 can be harmful. */
3861 if (first == last
3862 && !sel_bb_empty_p (xbb)
3863 && INSN_NOP_P (last)
3864 /* Flow goes fallthru from current block to the next. */
3865 && EDGE_COUNT (xbb->succs) == 1
3866 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3867 /* When successor is an EXIT block, it may not be the next block. */
3868 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3869 /* And unconditional jump in previous basic block leads to
3870 next basic block of XBB and this jump can be safely removed. */
3871 && in_current_region_p (xbb->prev_bb)
3872 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3873 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3874 /* Also this jump is not at the scheduling boundary. */
3875 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3876 {
3877 bool recompute_toporder_p;
3878 /* Clear data structures of jump - jump itself will be removed
3879 by sel_redirect_edge_and_branch. */
3880 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3881 recompute_toporder_p
3882 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3883
3884 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3885
3886 /* It can turn out that after removing unused jump, basic block
3887 that contained that jump, becomes empty too. In such case
3888 remove it too. */
3889 if (sel_bb_empty_p (xbb->prev_bb))
3890 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3891 if (recompute_toporder_p)
3892 sel_recompute_toporder ();
3893 }
3894
3895 #ifdef ENABLE_CHECKING
3896 verify_backedges ();
3897 verify_dominators (CDI_DOMINATORS);
3898 #endif
3899
3900 return changed;
3901 }
3902
3903 /* Purge meaningless empty blocks in the middle of a region. */
3904 void
3905 purge_empty_blocks (void)
3906 {
3907 int i;
3908
3909 /* Do not attempt to delete the first basic block in the region. */
3910 for (i = 1; i < current_nr_blocks; )
3911 {
3912 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3913
3914 if (maybe_tidy_empty_bb (b))
3915 continue;
3916
3917 i++;
3918 }
3919 }
3920
3921 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3922 do not delete insn's data, because it will be later re-emitted.
3923 Return true if we have removed some blocks afterwards. */
3924 bool
3925 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3926 {
3927 basic_block bb = BLOCK_FOR_INSN (insn);
3928
3929 gcc_assert (INSN_IN_STREAM_P (insn));
3930
3931 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3932 {
3933 expr_t expr;
3934 av_set_iterator i;
3935
3936 /* When we remove a debug insn that is head of a BB, it remains
3937 in the AV_SET of the block, but it shouldn't. */
3938 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3939 if (EXPR_INSN_RTX (expr) == insn)
3940 {
3941 av_set_iter_remove (&i);
3942 break;
3943 }
3944 }
3945
3946 if (only_disconnect)
3947 remove_insn (insn);
3948 else
3949 {
3950 delete_insn (insn);
3951 clear_expr (INSN_EXPR (insn));
3952 }
3953
3954 /* It is necessary to NULL these fields in case we are going to re-insert
3955 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3956 case, but also for NOPs that we will return to the nop pool. */
3957 SET_PREV_INSN (insn) = NULL_RTX;
3958 SET_NEXT_INSN (insn) = NULL_RTX;
3959 set_block_for_insn (insn, NULL);
3960
3961 return tidy_control_flow (bb, full_tidying);
3962 }
3963
3964 /* Estimate number of the insns in BB. */
3965 static int
3966 sel_estimate_number_of_insns (basic_block bb)
3967 {
3968 int res = 0;
3969 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3970
3971 for (; insn != next_tail; insn = NEXT_INSN (insn))
3972 if (NONDEBUG_INSN_P (insn))
3973 res++;
3974
3975 return res;
3976 }
3977
3978 /* We don't need separate luids for notes or labels. */
3979 static int
3980 sel_luid_for_non_insn (rtx x)
3981 {
3982 gcc_assert (NOTE_P (x) || LABEL_P (x));
3983
3984 return -1;
3985 }
3986
3987 /* Find the proper seqno for inserting at INSN by successors.
3988 Return -1 if no successors with positive seqno exist. */
3989 static int
3990 get_seqno_by_succs (rtx_insn *insn)
3991 {
3992 basic_block bb = BLOCK_FOR_INSN (insn);
3993 rtx_insn *tmp = insn, *end = BB_END (bb);
3994 int seqno;
3995 insn_t succ = NULL;
3996 succ_iterator si;
3997
3998 while (tmp != end)
3999 {
4000 tmp = NEXT_INSN (tmp);
4001 if (INSN_P (tmp))
4002 return INSN_SEQNO (tmp);
4003 }
4004
4005 seqno = INT_MAX;
4006
4007 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4008 if (INSN_SEQNO (succ) > 0)
4009 seqno = MIN (seqno, INSN_SEQNO (succ));
4010
4011 if (seqno == INT_MAX)
4012 return -1;
4013
4014 return seqno;
4015 }
4016
4017 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4018 seqno in corner cases. */
4019 static int
4020 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4021 {
4022 int seqno;
4023
4024 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4025
4026 if (!sel_bb_head_p (insn))
4027 seqno = INSN_SEQNO (PREV_INSN (insn));
4028 else
4029 {
4030 basic_block bb = BLOCK_FOR_INSN (insn);
4031
4032 if (single_pred_p (bb)
4033 && !in_current_region_p (single_pred (bb)))
4034 {
4035 /* We can have preds outside a region when splitting edges
4036 for pipelining of an outer loop. Use succ instead.
4037 There should be only one of them. */
4038 insn_t succ = NULL;
4039 succ_iterator si;
4040 bool first = true;
4041
4042 gcc_assert (flag_sel_sched_pipelining_outer_loops
4043 && current_loop_nest);
4044 FOR_EACH_SUCC_1 (succ, si, insn,
4045 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4046 {
4047 gcc_assert (first);
4048 first = false;
4049 }
4050
4051 gcc_assert (succ != NULL);
4052 seqno = INSN_SEQNO (succ);
4053 }
4054 else
4055 {
4056 insn_t *preds;
4057 int n;
4058
4059 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4060
4061 gcc_assert (n > 0);
4062 /* For one predecessor, use simple method. */
4063 if (n == 1)
4064 seqno = INSN_SEQNO (preds[0]);
4065 else
4066 seqno = get_seqno_by_preds (insn);
4067
4068 free (preds);
4069 }
4070 }
4071
4072 /* We were unable to find a good seqno among preds. */
4073 if (seqno < 0)
4074 seqno = get_seqno_by_succs (insn);
4075
4076 if (seqno < 0)
4077 {
4078 /* The only case where this could be here legally is that the only
4079 unscheduled insn was a conditional jump that got removed and turned
4080 into this unconditional one. Initialize from the old seqno
4081 of that jump passed down to here. */
4082 seqno = old_seqno;
4083 }
4084
4085 gcc_assert (seqno >= 0);
4086 return seqno;
4087 }
4088
4089 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4090 with positive seqno exist. */
4091 int
4092 get_seqno_by_preds (rtx_insn *insn)
4093 {
4094 basic_block bb = BLOCK_FOR_INSN (insn);
4095 rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4096 insn_t *preds;
4097 int n, i, seqno;
4098
4099 while (tmp != head)
4100 {
4101 tmp = PREV_INSN (tmp);
4102 if (INSN_P (tmp))
4103 return INSN_SEQNO (tmp);
4104 }
4105
4106 cfg_preds (bb, &preds, &n);
4107 for (i = 0, seqno = -1; i < n; i++)
4108 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4109
4110 return seqno;
4111 }
4112
4113 \f
4114
4115 /* Extend pass-scope data structures for basic blocks. */
4116 void
4117 sel_extend_global_bb_info (void)
4118 {
4119 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4120 }
4121
4122 /* Extend region-scope data structures for basic blocks. */
4123 static void
4124 extend_region_bb_info (void)
4125 {
4126 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4127 }
4128
4129 /* Extend all data structures to fit for all basic blocks. */
4130 static void
4131 extend_bb_info (void)
4132 {
4133 sel_extend_global_bb_info ();
4134 extend_region_bb_info ();
4135 }
4136
4137 /* Finalize pass-scope data structures for basic blocks. */
4138 void
4139 sel_finish_global_bb_info (void)
4140 {
4141 sel_global_bb_info.release ();
4142 }
4143
4144 /* Finalize region-scope data structures for basic blocks. */
4145 static void
4146 finish_region_bb_info (void)
4147 {
4148 sel_region_bb_info.release ();
4149 }
4150 \f
4151
4152 /* Data for each insn in current region. */
4153 vec<sel_insn_data_def> s_i_d = vNULL;
4154
4155 /* Extend data structures for insns from current region. */
4156 static void
4157 extend_insn_data (void)
4158 {
4159 int reserve;
4160
4161 sched_extend_target ();
4162 sched_deps_init (false);
4163
4164 /* Extend data structures for insns from current region. */
4165 reserve = (sched_max_luid + 1 - s_i_d.length ());
4166 if (reserve > 0 && ! s_i_d.space (reserve))
4167 {
4168 int size;
4169
4170 if (sched_max_luid / 2 > 1024)
4171 size = sched_max_luid + 1024;
4172 else
4173 size = 3 * sched_max_luid / 2;
4174
4175
4176 s_i_d.safe_grow_cleared (size);
4177 }
4178 }
4179
4180 /* Finalize data structures for insns from current region. */
4181 static void
4182 finish_insns (void)
4183 {
4184 unsigned i;
4185
4186 /* Clear here all dependence contexts that may have left from insns that were
4187 removed during the scheduling. */
4188 for (i = 0; i < s_i_d.length (); i++)
4189 {
4190 sel_insn_data_def *sid_entry = &s_i_d[i];
4191
4192 if (sid_entry->live)
4193 return_regset_to_pool (sid_entry->live);
4194 if (sid_entry->analyzed_deps)
4195 {
4196 BITMAP_FREE (sid_entry->analyzed_deps);
4197 BITMAP_FREE (sid_entry->found_deps);
4198 htab_delete (sid_entry->transformed_insns);
4199 free_deps (&sid_entry->deps_context);
4200 }
4201 if (EXPR_VINSN (&sid_entry->expr))
4202 {
4203 clear_expr (&sid_entry->expr);
4204
4205 /* Also, clear CANT_MOVE bit here, because we really don't want it
4206 to be passed to the next region. */
4207 CANT_MOVE_BY_LUID (i) = 0;
4208 }
4209 }
4210
4211 s_i_d.release ();
4212 }
4213
4214 /* A proxy to pass initialization data to init_insn (). */
4215 static sel_insn_data_def _insn_init_ssid;
4216 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4217
4218 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4219 static bool insn_init_create_new_vinsn_p;
4220
4221 /* Set all necessary data for initialization of the new insn[s]. */
4222 static expr_t
4223 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4224 {
4225 expr_t x = &insn_init_ssid->expr;
4226
4227 copy_expr_onside (x, expr);
4228 if (vi != NULL)
4229 {
4230 insn_init_create_new_vinsn_p = false;
4231 change_vinsn_in_expr (x, vi);
4232 }
4233 else
4234 insn_init_create_new_vinsn_p = true;
4235
4236 insn_init_ssid->seqno = seqno;
4237 return x;
4238 }
4239
4240 /* Init data for INSN. */
4241 static void
4242 init_insn_data (insn_t insn)
4243 {
4244 expr_t expr;
4245 sel_insn_data_t ssid = insn_init_ssid;
4246
4247 /* The fields mentioned below are special and hence are not being
4248 propagated to the new insns. */
4249 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4250 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4251 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4252
4253 expr = INSN_EXPR (insn);
4254 copy_expr (expr, &ssid->expr);
4255 prepare_insn_expr (insn, ssid->seqno);
4256
4257 if (insn_init_create_new_vinsn_p)
4258 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4259
4260 if (first_time_insn_init (insn))
4261 init_first_time_insn_data (insn);
4262 }
4263
4264 /* This is used to initialize spurious jumps generated by
4265 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4266 in corner cases within get_seqno_for_a_jump. */
4267 static void
4268 init_simplejump_data (insn_t insn, int old_seqno)
4269 {
4270 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4271 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4272 vNULL, true, false, false,
4273 false, true);
4274 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4275 init_first_time_insn_data (insn);
4276 }
4277
4278 /* Perform deferred initialization of insns. This is used to process
4279 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4280 for initializing simplejumps in init_simplejump_data. */
4281 static void
4282 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4283 {
4284 /* We create data structures for bb when the first insn is emitted in it. */
4285 if (INSN_P (insn)
4286 && INSN_IN_STREAM_P (insn)
4287 && insn_is_the_only_one_in_bb_p (insn))
4288 {
4289 extend_bb_info ();
4290 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4291 }
4292
4293 if (flags & INSN_INIT_TODO_LUID)
4294 {
4295 sched_extend_luids ();
4296 sched_init_insn_luid (insn);
4297 }
4298
4299 if (flags & INSN_INIT_TODO_SSID)
4300 {
4301 extend_insn_data ();
4302 init_insn_data (insn);
4303 clear_expr (&insn_init_ssid->expr);
4304 }
4305
4306 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4307 {
4308 extend_insn_data ();
4309 init_simplejump_data (insn, old_seqno);
4310 }
4311
4312 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4313 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4314 }
4315 \f
4316
4317 /* Functions to init/finish work with lv sets. */
4318
4319 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4320 static void
4321 init_lv_set (basic_block bb)
4322 {
4323 gcc_assert (!BB_LV_SET_VALID_P (bb));
4324
4325 BB_LV_SET (bb) = get_regset_from_pool ();
4326 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4327 BB_LV_SET_VALID_P (bb) = true;
4328 }
4329
4330 /* Copy liveness information to BB from FROM_BB. */
4331 static void
4332 copy_lv_set_from (basic_block bb, basic_block from_bb)
4333 {
4334 gcc_assert (!BB_LV_SET_VALID_P (bb));
4335
4336 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4337 BB_LV_SET_VALID_P (bb) = true;
4338 }
4339
4340 /* Initialize lv set of all bb headers. */
4341 void
4342 init_lv_sets (void)
4343 {
4344 basic_block bb;
4345
4346 /* Initialize of LV sets. */
4347 FOR_EACH_BB_FN (bb, cfun)
4348 init_lv_set (bb);
4349
4350 /* Don't forget EXIT_BLOCK. */
4351 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4352 }
4353
4354 /* Release lv set of HEAD. */
4355 static void
4356 free_lv_set (basic_block bb)
4357 {
4358 gcc_assert (BB_LV_SET (bb) != NULL);
4359
4360 return_regset_to_pool (BB_LV_SET (bb));
4361 BB_LV_SET (bb) = NULL;
4362 BB_LV_SET_VALID_P (bb) = false;
4363 }
4364
4365 /* Finalize lv sets of all bb headers. */
4366 void
4367 free_lv_sets (void)
4368 {
4369 basic_block bb;
4370
4371 /* Don't forget EXIT_BLOCK. */
4372 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4373
4374 /* Free LV sets. */
4375 FOR_EACH_BB_FN (bb, cfun)
4376 if (BB_LV_SET (bb))
4377 free_lv_set (bb);
4378 }
4379
4380 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4381 compute_av() processes BB. This function is called when creating new basic
4382 blocks, as well as for blocks (either new or existing) where new jumps are
4383 created when the control flow is being updated. */
4384 static void
4385 invalidate_av_set (basic_block bb)
4386 {
4387 BB_AV_LEVEL (bb) = -1;
4388 }
4389
4390 /* Create initial data sets for BB (they will be invalid). */
4391 static void
4392 create_initial_data_sets (basic_block bb)
4393 {
4394 if (BB_LV_SET (bb))
4395 BB_LV_SET_VALID_P (bb) = false;
4396 else
4397 BB_LV_SET (bb) = get_regset_from_pool ();
4398 invalidate_av_set (bb);
4399 }
4400
4401 /* Free av set of BB. */
4402 static void
4403 free_av_set (basic_block bb)
4404 {
4405 av_set_clear (&BB_AV_SET (bb));
4406 BB_AV_LEVEL (bb) = 0;
4407 }
4408
4409 /* Free data sets of BB. */
4410 void
4411 free_data_sets (basic_block bb)
4412 {
4413 free_lv_set (bb);
4414 free_av_set (bb);
4415 }
4416
4417 /* Exchange lv sets of TO and FROM. */
4418 static void
4419 exchange_lv_sets (basic_block to, basic_block from)
4420 {
4421 {
4422 regset to_lv_set = BB_LV_SET (to);
4423
4424 BB_LV_SET (to) = BB_LV_SET (from);
4425 BB_LV_SET (from) = to_lv_set;
4426 }
4427
4428 {
4429 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4430
4431 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4432 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4433 }
4434 }
4435
4436
4437 /* Exchange av sets of TO and FROM. */
4438 static void
4439 exchange_av_sets (basic_block to, basic_block from)
4440 {
4441 {
4442 av_set_t to_av_set = BB_AV_SET (to);
4443
4444 BB_AV_SET (to) = BB_AV_SET (from);
4445 BB_AV_SET (from) = to_av_set;
4446 }
4447
4448 {
4449 int to_av_level = BB_AV_LEVEL (to);
4450
4451 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4452 BB_AV_LEVEL (from) = to_av_level;
4453 }
4454 }
4455
4456 /* Exchange data sets of TO and FROM. */
4457 void
4458 exchange_data_sets (basic_block to, basic_block from)
4459 {
4460 exchange_lv_sets (to, from);
4461 exchange_av_sets (to, from);
4462 }
4463
4464 /* Copy data sets of FROM to TO. */
4465 void
4466 copy_data_sets (basic_block to, basic_block from)
4467 {
4468 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4469 gcc_assert (BB_AV_SET (to) == NULL);
4470
4471 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4472 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4473
4474 if (BB_AV_SET_VALID_P (from))
4475 {
4476 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4477 }
4478 if (BB_LV_SET_VALID_P (from))
4479 {
4480 gcc_assert (BB_LV_SET (to) != NULL);
4481 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4482 }
4483 }
4484
4485 /* Return an av set for INSN, if any. */
4486 av_set_t
4487 get_av_set (insn_t insn)
4488 {
4489 av_set_t av_set;
4490
4491 gcc_assert (AV_SET_VALID_P (insn));
4492
4493 if (sel_bb_head_p (insn))
4494 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4495 else
4496 av_set = NULL;
4497
4498 return av_set;
4499 }
4500
4501 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4502 int
4503 get_av_level (insn_t insn)
4504 {
4505 int av_level;
4506
4507 gcc_assert (INSN_P (insn));
4508
4509 if (sel_bb_head_p (insn))
4510 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4511 else
4512 av_level = INSN_WS_LEVEL (insn);
4513
4514 return av_level;
4515 }
4516
4517 \f
4518
4519 /* Variables to work with control-flow graph. */
4520
4521 /* The basic block that already has been processed by the sched_data_update (),
4522 but hasn't been in sel_add_bb () yet. */
4523 static vec<basic_block>
4524 last_added_blocks = vNULL;
4525
4526 /* A pool for allocating successor infos. */
4527 static struct
4528 {
4529 /* A stack for saving succs_info structures. */
4530 struct succs_info *stack;
4531
4532 /* Its size. */
4533 int size;
4534
4535 /* Top of the stack. */
4536 int top;
4537
4538 /* Maximal value of the top. */
4539 int max_top;
4540 } succs_info_pool;
4541
4542 /* Functions to work with control-flow graph. */
4543
4544 /* Return basic block note of BB. */
4545 rtx_insn *
4546 sel_bb_head (basic_block bb)
4547 {
4548 rtx_insn *head;
4549
4550 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4551 {
4552 gcc_assert (exit_insn != NULL_RTX);
4553 head = exit_insn;
4554 }
4555 else
4556 {
4557 rtx_note *note = bb_note (bb);
4558 head = next_nonnote_insn (note);
4559
4560 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4561 head = NULL;
4562 }
4563
4564 return head;
4565 }
4566
4567 /* Return true if INSN is a basic block header. */
4568 bool
4569 sel_bb_head_p (insn_t insn)
4570 {
4571 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4572 }
4573
4574 /* Return last insn of BB. */
4575 rtx_insn *
4576 sel_bb_end (basic_block bb)
4577 {
4578 if (sel_bb_empty_p (bb))
4579 return NULL;
4580
4581 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4582
4583 return BB_END (bb);
4584 }
4585
4586 /* Return true if INSN is the last insn in its basic block. */
4587 bool
4588 sel_bb_end_p (insn_t insn)
4589 {
4590 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4591 }
4592
4593 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4594 bool
4595 sel_bb_empty_p (basic_block bb)
4596 {
4597 return sel_bb_head (bb) == NULL;
4598 }
4599
4600 /* True when BB belongs to the current scheduling region. */
4601 bool
4602 in_current_region_p (basic_block bb)
4603 {
4604 if (bb->index < NUM_FIXED_BLOCKS)
4605 return false;
4606
4607 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4608 }
4609
4610 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4611 basic_block
4612 fallthru_bb_of_jump (const rtx_insn *jump)
4613 {
4614 if (!JUMP_P (jump))
4615 return NULL;
4616
4617 if (!any_condjump_p (jump))
4618 return NULL;
4619
4620 /* A basic block that ends with a conditional jump may still have one successor
4621 (and be followed by a barrier), we are not interested. */
4622 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4623 return NULL;
4624
4625 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4626 }
4627
4628 /* Remove all notes from BB. */
4629 static void
4630 init_bb (basic_block bb)
4631 {
4632 remove_notes (bb_note (bb), BB_END (bb));
4633 BB_NOTE_LIST (bb) = note_list;
4634 }
4635
4636 void
4637 sel_init_bbs (bb_vec_t bbs)
4638 {
4639 const struct sched_scan_info_def ssi =
4640 {
4641 extend_bb_info, /* extend_bb */
4642 init_bb, /* init_bb */
4643 NULL, /* extend_insn */
4644 NULL /* init_insn */
4645 };
4646
4647 sched_scan (&ssi, bbs);
4648 }
4649
4650 /* Restore notes for the whole region. */
4651 static void
4652 sel_restore_notes (void)
4653 {
4654 int bb;
4655 insn_t insn;
4656
4657 for (bb = 0; bb < current_nr_blocks; bb++)
4658 {
4659 basic_block first, last;
4660
4661 first = EBB_FIRST_BB (bb);
4662 last = EBB_LAST_BB (bb)->next_bb;
4663
4664 do
4665 {
4666 note_list = BB_NOTE_LIST (first);
4667 restore_other_notes (NULL, first);
4668 BB_NOTE_LIST (first) = NULL;
4669
4670 FOR_BB_INSNS (first, insn)
4671 if (NONDEBUG_INSN_P (insn))
4672 reemit_notes (insn);
4673
4674 first = first->next_bb;
4675 }
4676 while (first != last);
4677 }
4678 }
4679
4680 /* Free per-bb data structures. */
4681 void
4682 sel_finish_bbs (void)
4683 {
4684 sel_restore_notes ();
4685
4686 /* Remove current loop preheader from this loop. */
4687 if (current_loop_nest)
4688 sel_remove_loop_preheader ();
4689
4690 finish_region_bb_info ();
4691 }
4692
4693 /* Return true if INSN has a single successor of type FLAGS. */
4694 bool
4695 sel_insn_has_single_succ_p (insn_t insn, int flags)
4696 {
4697 insn_t succ;
4698 succ_iterator si;
4699 bool first_p = true;
4700
4701 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4702 {
4703 if (first_p)
4704 first_p = false;
4705 else
4706 return false;
4707 }
4708
4709 return true;
4710 }
4711
4712 /* Allocate successor's info. */
4713 static struct succs_info *
4714 alloc_succs_info (void)
4715 {
4716 if (succs_info_pool.top == succs_info_pool.max_top)
4717 {
4718 int i;
4719
4720 if (++succs_info_pool.max_top >= succs_info_pool.size)
4721 gcc_unreachable ();
4722
4723 i = ++succs_info_pool.top;
4724 succs_info_pool.stack[i].succs_ok.create (10);
4725 succs_info_pool.stack[i].succs_other.create (10);
4726 succs_info_pool.stack[i].probs_ok.create (10);
4727 }
4728 else
4729 succs_info_pool.top++;
4730
4731 return &succs_info_pool.stack[succs_info_pool.top];
4732 }
4733
4734 /* Free successor's info. */
4735 void
4736 free_succs_info (struct succs_info * sinfo)
4737 {
4738 gcc_assert (succs_info_pool.top >= 0
4739 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4740 succs_info_pool.top--;
4741
4742 /* Clear stale info. */
4743 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4744 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4745 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4746 sinfo->all_prob = 0;
4747 sinfo->succs_ok_n = 0;
4748 sinfo->all_succs_n = 0;
4749 }
4750
4751 /* Compute successor info for INSN. FLAGS are the flags passed
4752 to the FOR_EACH_SUCC_1 iterator. */
4753 struct succs_info *
4754 compute_succs_info (insn_t insn, short flags)
4755 {
4756 succ_iterator si;
4757 insn_t succ;
4758 struct succs_info *sinfo = alloc_succs_info ();
4759
4760 /* Traverse *all* successors and decide what to do with each. */
4761 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4762 {
4763 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4764 perform code motion through inner loops. */
4765 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4766
4767 if (current_flags & flags)
4768 {
4769 sinfo->succs_ok.safe_push (succ);
4770 sinfo->probs_ok.safe_push (
4771 /* FIXME: Improve calculation when skipping
4772 inner loop to exits. */
4773 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4774 sinfo->succs_ok_n++;
4775 }
4776 else
4777 sinfo->succs_other.safe_push (succ);
4778
4779 /* Compute all_prob. */
4780 if (!si.bb_end)
4781 sinfo->all_prob = REG_BR_PROB_BASE;
4782 else
4783 sinfo->all_prob += si.e1->probability;
4784
4785 sinfo->all_succs_n++;
4786 }
4787
4788 return sinfo;
4789 }
4790
4791 /* Return the predecessors of BB in PREDS and their number in N.
4792 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4793 static void
4794 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4795 {
4796 edge e;
4797 edge_iterator ei;
4798
4799 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4800
4801 FOR_EACH_EDGE (e, ei, bb->preds)
4802 {
4803 basic_block pred_bb = e->src;
4804 insn_t bb_end = BB_END (pred_bb);
4805
4806 if (!in_current_region_p (pred_bb))
4807 {
4808 gcc_assert (flag_sel_sched_pipelining_outer_loops
4809 && current_loop_nest);
4810 continue;
4811 }
4812
4813 if (sel_bb_empty_p (pred_bb))
4814 cfg_preds_1 (pred_bb, preds, n, size);
4815 else
4816 {
4817 if (*n == *size)
4818 *preds = XRESIZEVEC (insn_t, *preds,
4819 (*size = 2 * *size + 1));
4820 (*preds)[(*n)++] = bb_end;
4821 }
4822 }
4823
4824 gcc_assert (*n != 0
4825 || (flag_sel_sched_pipelining_outer_loops
4826 && current_loop_nest));
4827 }
4828
4829 /* Find all predecessors of BB and record them in PREDS and their number
4830 in N. Empty blocks are skipped, and only normal (forward in-region)
4831 edges are processed. */
4832 static void
4833 cfg_preds (basic_block bb, insn_t **preds, int *n)
4834 {
4835 int size = 0;
4836
4837 *preds = NULL;
4838 *n = 0;
4839 cfg_preds_1 (bb, preds, n, &size);
4840 }
4841
4842 /* Returns true if we are moving INSN through join point. */
4843 bool
4844 sel_num_cfg_preds_gt_1 (insn_t insn)
4845 {
4846 basic_block bb;
4847
4848 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4849 return false;
4850
4851 bb = BLOCK_FOR_INSN (insn);
4852
4853 while (1)
4854 {
4855 if (EDGE_COUNT (bb->preds) > 1)
4856 return true;
4857
4858 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4859 bb = EDGE_PRED (bb, 0)->src;
4860
4861 if (!sel_bb_empty_p (bb))
4862 break;
4863 }
4864
4865 return false;
4866 }
4867
4868 /* Returns true when BB should be the end of an ebb. Adapted from the
4869 code in sched-ebb.c. */
4870 bool
4871 bb_ends_ebb_p (basic_block bb)
4872 {
4873 basic_block next_bb = bb_next_bb (bb);
4874 edge e;
4875
4876 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4877 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4878 || (LABEL_P (BB_HEAD (next_bb))
4879 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4880 Work around that. */
4881 && !single_pred_p (next_bb)))
4882 return true;
4883
4884 if (!in_current_region_p (next_bb))
4885 return true;
4886
4887 e = find_fallthru_edge (bb->succs);
4888 if (e)
4889 {
4890 gcc_assert (e->dest == next_bb);
4891
4892 return false;
4893 }
4894
4895 return true;
4896 }
4897
4898 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4899 successor of INSN. */
4900 bool
4901 in_same_ebb_p (insn_t insn, insn_t succ)
4902 {
4903 basic_block ptr = BLOCK_FOR_INSN (insn);
4904
4905 for (;;)
4906 {
4907 if (ptr == BLOCK_FOR_INSN (succ))
4908 return true;
4909
4910 if (bb_ends_ebb_p (ptr))
4911 return false;
4912
4913 ptr = bb_next_bb (ptr);
4914 }
4915
4916 gcc_unreachable ();
4917 return false;
4918 }
4919
4920 /* Recomputes the reverse topological order for the function and
4921 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4922 modified appropriately. */
4923 static void
4924 recompute_rev_top_order (void)
4925 {
4926 int *postorder;
4927 int n_blocks, i;
4928
4929 if (!rev_top_order_index
4930 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4931 {
4932 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4933 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4934 rev_top_order_index_len);
4935 }
4936
4937 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4938
4939 n_blocks = post_order_compute (postorder, true, false);
4940 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4941
4942 /* Build reverse function: for each basic block with BB->INDEX == K
4943 rev_top_order_index[K] is it's reverse topological sort number. */
4944 for (i = 0; i < n_blocks; i++)
4945 {
4946 gcc_assert (postorder[i] < rev_top_order_index_len);
4947 rev_top_order_index[postorder[i]] = i;
4948 }
4949
4950 free (postorder);
4951 }
4952
4953 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4954 void
4955 clear_outdated_rtx_info (basic_block bb)
4956 {
4957 rtx_insn *insn;
4958
4959 FOR_BB_INSNS (bb, insn)
4960 if (INSN_P (insn))
4961 {
4962 SCHED_GROUP_P (insn) = 0;
4963 INSN_AFTER_STALL_P (insn) = 0;
4964 INSN_SCHED_TIMES (insn) = 0;
4965 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4966
4967 /* We cannot use the changed caches, as previously we could ignore
4968 the LHS dependence due to enabled renaming and transform
4969 the expression, and currently we'll be unable to do this. */
4970 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4971 }
4972 }
4973
4974 /* Add BB_NOTE to the pool of available basic block notes. */
4975 static void
4976 return_bb_to_pool (basic_block bb)
4977 {
4978 rtx_note *note = bb_note (bb);
4979
4980 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4981 && bb->aux == NULL);
4982
4983 /* It turns out that current cfg infrastructure does not support
4984 reuse of basic blocks. Don't bother for now. */
4985 /*bb_note_pool.safe_push (note);*/
4986 }
4987
4988 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4989 static rtx_note *
4990 get_bb_note_from_pool (void)
4991 {
4992 if (bb_note_pool.is_empty ())
4993 return NULL;
4994 else
4995 {
4996 rtx_note *note = bb_note_pool.pop ();
4997
4998 SET_PREV_INSN (note) = NULL_RTX;
4999 SET_NEXT_INSN (note) = NULL_RTX;
5000
5001 return note;
5002 }
5003 }
5004
5005 /* Free bb_note_pool. */
5006 void
5007 free_bb_note_pool (void)
5008 {
5009 bb_note_pool.release ();
5010 }
5011
5012 /* Setup scheduler pool and successor structure. */
5013 void
5014 alloc_sched_pools (void)
5015 {
5016 int succs_size;
5017
5018 succs_size = MAX_WS + 1;
5019 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5020 succs_info_pool.size = succs_size;
5021 succs_info_pool.top = -1;
5022 succs_info_pool.max_top = -1;
5023 }
5024
5025 /* Free the pools. */
5026 void
5027 free_sched_pools (void)
5028 {
5029 int i;
5030
5031 sched_lists_pool.release ();
5032 gcc_assert (succs_info_pool.top == -1);
5033 for (i = 0; i <= succs_info_pool.max_top; i++)
5034 {
5035 succs_info_pool.stack[i].succs_ok.release ();
5036 succs_info_pool.stack[i].succs_other.release ();
5037 succs_info_pool.stack[i].probs_ok.release ();
5038 }
5039 free (succs_info_pool.stack);
5040 }
5041 \f
5042
5043 /* Returns a position in RGN where BB can be inserted retaining
5044 topological order. */
5045 static int
5046 find_place_to_insert_bb (basic_block bb, int rgn)
5047 {
5048 bool has_preds_outside_rgn = false;
5049 edge e;
5050 edge_iterator ei;
5051
5052 /* Find whether we have preds outside the region. */
5053 FOR_EACH_EDGE (e, ei, bb->preds)
5054 if (!in_current_region_p (e->src))
5055 {
5056 has_preds_outside_rgn = true;
5057 break;
5058 }
5059
5060 /* Recompute the top order -- needed when we have > 1 pred
5061 and in case we don't have preds outside. */
5062 if (flag_sel_sched_pipelining_outer_loops
5063 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5064 {
5065 int i, bbi = bb->index, cur_bbi;
5066
5067 recompute_rev_top_order ();
5068 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5069 {
5070 cur_bbi = BB_TO_BLOCK (i);
5071 if (rev_top_order_index[bbi]
5072 < rev_top_order_index[cur_bbi])
5073 break;
5074 }
5075
5076 /* We skipped the right block, so we increase i. We accommodate
5077 it for increasing by step later, so we decrease i. */
5078 return (i + 1) - 1;
5079 }
5080 else if (has_preds_outside_rgn)
5081 {
5082 /* This is the case when we generate an extra empty block
5083 to serve as region head during pipelining. */
5084 e = EDGE_SUCC (bb, 0);
5085 gcc_assert (EDGE_COUNT (bb->succs) == 1
5086 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5087 && (BLOCK_TO_BB (e->dest->index) == 0));
5088 return -1;
5089 }
5090
5091 /* We don't have preds outside the region. We should have
5092 the only pred, because the multiple preds case comes from
5093 the pipelining of outer loops, and that is handled above.
5094 Just take the bbi of this single pred. */
5095 if (EDGE_COUNT (bb->succs) > 0)
5096 {
5097 int pred_bbi;
5098
5099 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5100
5101 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5102 return BLOCK_TO_BB (pred_bbi);
5103 }
5104 else
5105 /* BB has no successors. It is safe to put it in the end. */
5106 return current_nr_blocks - 1;
5107 }
5108
5109 /* Deletes an empty basic block freeing its data. */
5110 static void
5111 delete_and_free_basic_block (basic_block bb)
5112 {
5113 gcc_assert (sel_bb_empty_p (bb));
5114
5115 if (BB_LV_SET (bb))
5116 free_lv_set (bb);
5117
5118 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5119
5120 /* Can't assert av_set properties because we use sel_aremove_bb
5121 when removing loop preheader from the region. At the point of
5122 removing the preheader we already have deallocated sel_region_bb_info. */
5123 gcc_assert (BB_LV_SET (bb) == NULL
5124 && !BB_LV_SET_VALID_P (bb)
5125 && BB_AV_LEVEL (bb) == 0
5126 && BB_AV_SET (bb) == NULL);
5127
5128 delete_basic_block (bb);
5129 }
5130
5131 /* Add BB to the current region and update the region data. */
5132 static void
5133 add_block_to_current_region (basic_block bb)
5134 {
5135 int i, pos, bbi = -2, rgn;
5136
5137 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5138 bbi = find_place_to_insert_bb (bb, rgn);
5139 bbi += 1;
5140 pos = RGN_BLOCKS (rgn) + bbi;
5141
5142 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5143 && ebb_head[bbi] == pos);
5144
5145 /* Make a place for the new block. */
5146 extend_regions ();
5147
5148 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5149 BLOCK_TO_BB (rgn_bb_table[i])++;
5150
5151 memmove (rgn_bb_table + pos + 1,
5152 rgn_bb_table + pos,
5153 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5154
5155 /* Initialize data for BB. */
5156 rgn_bb_table[pos] = bb->index;
5157 BLOCK_TO_BB (bb->index) = bbi;
5158 CONTAINING_RGN (bb->index) = rgn;
5159
5160 RGN_NR_BLOCKS (rgn)++;
5161
5162 for (i = rgn + 1; i <= nr_regions; i++)
5163 RGN_BLOCKS (i)++;
5164 }
5165
5166 /* Remove BB from the current region and update the region data. */
5167 static void
5168 remove_bb_from_region (basic_block bb)
5169 {
5170 int i, pos, bbi = -2, rgn;
5171
5172 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5173 bbi = BLOCK_TO_BB (bb->index);
5174 pos = RGN_BLOCKS (rgn) + bbi;
5175
5176 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5177 && ebb_head[bbi] == pos);
5178
5179 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5180 BLOCK_TO_BB (rgn_bb_table[i])--;
5181
5182 memmove (rgn_bb_table + pos,
5183 rgn_bb_table + pos + 1,
5184 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5185
5186 RGN_NR_BLOCKS (rgn)--;
5187 for (i = rgn + 1; i <= nr_regions; i++)
5188 RGN_BLOCKS (i)--;
5189 }
5190
5191 /* Add BB to the current region and update all data. If BB is NULL, add all
5192 blocks from last_added_blocks vector. */
5193 static void
5194 sel_add_bb (basic_block bb)
5195 {
5196 /* Extend luids so that new notes will receive zero luids. */
5197 sched_extend_luids ();
5198 sched_init_bbs ();
5199 sel_init_bbs (last_added_blocks);
5200
5201 /* When bb is passed explicitly, the vector should contain
5202 the only element that equals to bb; otherwise, the vector
5203 should not be NULL. */
5204 gcc_assert (last_added_blocks.exists ());
5205
5206 if (bb != NULL)
5207 {
5208 gcc_assert (last_added_blocks.length () == 1
5209 && last_added_blocks[0] == bb);
5210 add_block_to_current_region (bb);
5211
5212 /* We associate creating/deleting data sets with the first insn
5213 appearing / disappearing in the bb. */
5214 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5215 create_initial_data_sets (bb);
5216
5217 last_added_blocks.release ();
5218 }
5219 else
5220 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5221 {
5222 int i;
5223 basic_block temp_bb = NULL;
5224
5225 for (i = 0;
5226 last_added_blocks.iterate (i, &bb); i++)
5227 {
5228 add_block_to_current_region (bb);
5229 temp_bb = bb;
5230 }
5231
5232 /* We need to fetch at least one bb so we know the region
5233 to update. */
5234 gcc_assert (temp_bb != NULL);
5235 bb = temp_bb;
5236
5237 last_added_blocks.release ();
5238 }
5239
5240 rgn_setup_region (CONTAINING_RGN (bb->index));
5241 }
5242
5243 /* Remove BB from the current region and update all data.
5244 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5245 static void
5246 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5247 {
5248 unsigned idx = bb->index;
5249
5250 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5251
5252 remove_bb_from_region (bb);
5253 return_bb_to_pool (bb);
5254 bitmap_clear_bit (blocks_to_reschedule, idx);
5255
5256 if (remove_from_cfg_p)
5257 {
5258 basic_block succ = single_succ (bb);
5259 delete_and_free_basic_block (bb);
5260 set_immediate_dominator (CDI_DOMINATORS, succ,
5261 recompute_dominator (CDI_DOMINATORS, succ));
5262 }
5263
5264 rgn_setup_region (CONTAINING_RGN (idx));
5265 }
5266
5267 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5268 static void
5269 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5270 {
5271 if (in_current_region_p (merge_bb))
5272 concat_note_lists (BB_NOTE_LIST (empty_bb),
5273 &BB_NOTE_LIST (merge_bb));
5274 BB_NOTE_LIST (empty_bb) = NULL;
5275
5276 }
5277
5278 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5279 region, but keep it in CFG. */
5280 static void
5281 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5282 {
5283 /* The block should contain just a note or a label.
5284 We try to check whether it is unused below. */
5285 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5286 || LABEL_P (BB_HEAD (empty_bb)));
5287
5288 /* If basic block has predecessors or successors, redirect them. */
5289 if (remove_from_cfg_p
5290 && (EDGE_COUNT (empty_bb->preds) > 0
5291 || EDGE_COUNT (empty_bb->succs) > 0))
5292 {
5293 basic_block pred;
5294 basic_block succ;
5295
5296 /* We need to init PRED and SUCC before redirecting edges. */
5297 if (EDGE_COUNT (empty_bb->preds) > 0)
5298 {
5299 edge e;
5300
5301 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5302
5303 e = EDGE_PRED (empty_bb, 0);
5304 gcc_assert (e->src == empty_bb->prev_bb
5305 && (e->flags & EDGE_FALLTHRU));
5306
5307 pred = empty_bb->prev_bb;
5308 }
5309 else
5310 pred = NULL;
5311
5312 if (EDGE_COUNT (empty_bb->succs) > 0)
5313 {
5314 /* We do not check fallthruness here as above, because
5315 after removing a jump the edge may actually be not fallthru. */
5316 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5317 succ = EDGE_SUCC (empty_bb, 0)->dest;
5318 }
5319 else
5320 succ = NULL;
5321
5322 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5323 {
5324 edge e = EDGE_PRED (empty_bb, 0);
5325
5326 if (e->flags & EDGE_FALLTHRU)
5327 redirect_edge_succ_nodup (e, succ);
5328 else
5329 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5330 }
5331
5332 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5333 {
5334 edge e = EDGE_SUCC (empty_bb, 0);
5335
5336 if (find_edge (pred, e->dest) == NULL)
5337 redirect_edge_pred (e, pred);
5338 }
5339 }
5340
5341 /* Finish removing. */
5342 sel_remove_bb (empty_bb, remove_from_cfg_p);
5343 }
5344
5345 /* An implementation of create_basic_block hook, which additionally updates
5346 per-bb data structures. */
5347 static basic_block
5348 sel_create_basic_block (void *headp, void *endp, basic_block after)
5349 {
5350 basic_block new_bb;
5351 rtx_note *new_bb_note;
5352
5353 gcc_assert (flag_sel_sched_pipelining_outer_loops
5354 || !last_added_blocks.exists ());
5355
5356 new_bb_note = get_bb_note_from_pool ();
5357
5358 if (new_bb_note == NULL_RTX)
5359 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5360 else
5361 {
5362 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5363 (rtx_insn *) endp,
5364 new_bb_note, after);
5365 new_bb->aux = NULL;
5366 }
5367
5368 last_added_blocks.safe_push (new_bb);
5369
5370 return new_bb;
5371 }
5372
5373 /* Implement sched_init_only_bb (). */
5374 static void
5375 sel_init_only_bb (basic_block bb, basic_block after)
5376 {
5377 gcc_assert (after == NULL);
5378
5379 extend_regions ();
5380 rgn_make_new_region_out_of_new_block (bb);
5381 }
5382
5383 /* Update the latch when we've splitted or merged it from FROM block to TO.
5384 This should be checked for all outer loops, too. */
5385 static void
5386 change_loops_latches (basic_block from, basic_block to)
5387 {
5388 gcc_assert (from != to);
5389
5390 if (current_loop_nest)
5391 {
5392 struct loop *loop;
5393
5394 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5395 if (considered_for_pipelining_p (loop) && loop->latch == from)
5396 {
5397 gcc_assert (loop == current_loop_nest);
5398 loop->latch = to;
5399 gcc_assert (loop_latch_edge (loop));
5400 }
5401 }
5402 }
5403
5404 /* Splits BB on two basic blocks, adding it to the region and extending
5405 per-bb data structures. Returns the newly created bb. */
5406 static basic_block
5407 sel_split_block (basic_block bb, rtx after)
5408 {
5409 basic_block new_bb;
5410 insn_t insn;
5411
5412 new_bb = sched_split_block_1 (bb, after);
5413 sel_add_bb (new_bb);
5414
5415 /* This should be called after sel_add_bb, because this uses
5416 CONTAINING_RGN for the new block, which is not yet initialized.
5417 FIXME: this function may be a no-op now. */
5418 change_loops_latches (bb, new_bb);
5419
5420 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5421 FOR_BB_INSNS (new_bb, insn)
5422 if (INSN_P (insn))
5423 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5424
5425 if (sel_bb_empty_p (bb))
5426 {
5427 gcc_assert (!sel_bb_empty_p (new_bb));
5428
5429 /* NEW_BB has data sets that need to be updated and BB holds
5430 data sets that should be removed. Exchange these data sets
5431 so that we won't lose BB's valid data sets. */
5432 exchange_data_sets (new_bb, bb);
5433 free_data_sets (bb);
5434 }
5435
5436 if (!sel_bb_empty_p (new_bb)
5437 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5438 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5439
5440 return new_bb;
5441 }
5442
5443 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5444 Otherwise returns NULL. */
5445 static rtx_insn *
5446 check_for_new_jump (basic_block bb, int prev_max_uid)
5447 {
5448 rtx_insn *end;
5449
5450 end = sel_bb_end (bb);
5451 if (end && INSN_UID (end) >= prev_max_uid)
5452 return end;
5453 return NULL;
5454 }
5455
5456 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5457 New means having UID at least equal to PREV_MAX_UID. */
5458 static rtx_insn *
5459 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5460 {
5461 rtx_insn *jump;
5462
5463 /* Return immediately if no new insns were emitted. */
5464 if (get_max_uid () == prev_max_uid)
5465 return NULL;
5466
5467 /* Now check both blocks for new jumps. It will ever be only one. */
5468 if ((jump = check_for_new_jump (from, prev_max_uid)))
5469 return jump;
5470
5471 if (jump_bb != NULL
5472 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5473 return jump;
5474 return NULL;
5475 }
5476
5477 /* Splits E and adds the newly created basic block to the current region.
5478 Returns this basic block. */
5479 basic_block
5480 sel_split_edge (edge e)
5481 {
5482 basic_block new_bb, src, other_bb = NULL;
5483 int prev_max_uid;
5484 rtx_insn *jump;
5485
5486 src = e->src;
5487 prev_max_uid = get_max_uid ();
5488 new_bb = split_edge (e);
5489
5490 if (flag_sel_sched_pipelining_outer_loops
5491 && current_loop_nest)
5492 {
5493 int i;
5494 basic_block bb;
5495
5496 /* Some of the basic blocks might not have been added to the loop.
5497 Add them here, until this is fixed in force_fallthru. */
5498 for (i = 0;
5499 last_added_blocks.iterate (i, &bb); i++)
5500 if (!bb->loop_father)
5501 {
5502 add_bb_to_loop (bb, e->dest->loop_father);
5503
5504 gcc_assert (!other_bb && (new_bb->index != bb->index));
5505 other_bb = bb;
5506 }
5507 }
5508
5509 /* Add all last_added_blocks to the region. */
5510 sel_add_bb (NULL);
5511
5512 jump = find_new_jump (src, new_bb, prev_max_uid);
5513 if (jump)
5514 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5515
5516 /* Put the correct lv set on this block. */
5517 if (other_bb && !sel_bb_empty_p (other_bb))
5518 compute_live (sel_bb_head (other_bb));
5519
5520 return new_bb;
5521 }
5522
5523 /* Implement sched_create_empty_bb (). */
5524 static basic_block
5525 sel_create_empty_bb (basic_block after)
5526 {
5527 basic_block new_bb;
5528
5529 new_bb = sched_create_empty_bb_1 (after);
5530
5531 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5532 later. */
5533 gcc_assert (last_added_blocks.length () == 1
5534 && last_added_blocks[0] == new_bb);
5535
5536 last_added_blocks.release ();
5537 return new_bb;
5538 }
5539
5540 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5541 will be splitted to insert a check. */
5542 basic_block
5543 sel_create_recovery_block (insn_t orig_insn)
5544 {
5545 basic_block first_bb, second_bb, recovery_block;
5546 basic_block before_recovery = NULL;
5547 rtx_insn *jump;
5548
5549 first_bb = BLOCK_FOR_INSN (orig_insn);
5550 if (sel_bb_end_p (orig_insn))
5551 {
5552 /* Avoid introducing an empty block while splitting. */
5553 gcc_assert (single_succ_p (first_bb));
5554 second_bb = single_succ (first_bb);
5555 }
5556 else
5557 second_bb = sched_split_block (first_bb, orig_insn);
5558
5559 recovery_block = sched_create_recovery_block (&before_recovery);
5560 if (before_recovery)
5561 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5562
5563 gcc_assert (sel_bb_empty_p (recovery_block));
5564 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5565 if (current_loops != NULL)
5566 add_bb_to_loop (recovery_block, first_bb->loop_father);
5567
5568 sel_add_bb (recovery_block);
5569
5570 jump = BB_END (recovery_block);
5571 gcc_assert (sel_bb_head (recovery_block) == jump);
5572 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5573
5574 return recovery_block;
5575 }
5576
5577 /* Merge basic block B into basic block A. */
5578 static void
5579 sel_merge_blocks (basic_block a, basic_block b)
5580 {
5581 gcc_assert (sel_bb_empty_p (b)
5582 && EDGE_COUNT (b->preds) == 1
5583 && EDGE_PRED (b, 0)->src == b->prev_bb);
5584
5585 move_bb_info (b->prev_bb, b);
5586 remove_empty_bb (b, false);
5587 merge_blocks (a, b);
5588 change_loops_latches (b, a);
5589 }
5590
5591 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5592 data structures for possibly created bb and insns. */
5593 void
5594 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5595 {
5596 basic_block jump_bb, src, orig_dest = e->dest;
5597 int prev_max_uid;
5598 rtx_insn *jump;
5599 int old_seqno = -1;
5600
5601 /* This function is now used only for bookkeeping code creation, where
5602 we'll never get the single pred of orig_dest block and thus will not
5603 hit unreachable blocks when updating dominator info. */
5604 gcc_assert (!sel_bb_empty_p (e->src)
5605 && !single_pred_p (orig_dest));
5606 src = e->src;
5607 prev_max_uid = get_max_uid ();
5608 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5609 when the conditional jump being redirected may become unconditional. */
5610 if (any_condjump_p (BB_END (src))
5611 && INSN_SEQNO (BB_END (src)) >= 0)
5612 old_seqno = INSN_SEQNO (BB_END (src));
5613
5614 jump_bb = redirect_edge_and_branch_force (e, to);
5615 if (jump_bb != NULL)
5616 sel_add_bb (jump_bb);
5617
5618 /* This function could not be used to spoil the loop structure by now,
5619 thus we don't care to update anything. But check it to be sure. */
5620 if (current_loop_nest
5621 && pipelining_p)
5622 gcc_assert (loop_latch_edge (current_loop_nest));
5623
5624 jump = find_new_jump (src, jump_bb, prev_max_uid);
5625 if (jump)
5626 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5627 old_seqno);
5628 set_immediate_dominator (CDI_DOMINATORS, to,
5629 recompute_dominator (CDI_DOMINATORS, to));
5630 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5631 recompute_dominator (CDI_DOMINATORS, orig_dest));
5632 }
5633
5634 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5635 redirected edge are in reverse topological order. */
5636 bool
5637 sel_redirect_edge_and_branch (edge e, basic_block to)
5638 {
5639 bool latch_edge_p;
5640 basic_block src, orig_dest = e->dest;
5641 int prev_max_uid;
5642 rtx_insn *jump;
5643 edge redirected;
5644 bool recompute_toporder_p = false;
5645 bool maybe_unreachable = single_pred_p (orig_dest);
5646 int old_seqno = -1;
5647
5648 latch_edge_p = (pipelining_p
5649 && current_loop_nest
5650 && e == loop_latch_edge (current_loop_nest));
5651
5652 src = e->src;
5653 prev_max_uid = get_max_uid ();
5654
5655 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5656 when the conditional jump being redirected may become unconditional. */
5657 if (any_condjump_p (BB_END (src))
5658 && INSN_SEQNO (BB_END (src)) >= 0)
5659 old_seqno = INSN_SEQNO (BB_END (src));
5660
5661 redirected = redirect_edge_and_branch (e, to);
5662
5663 gcc_assert (redirected && !last_added_blocks.exists ());
5664
5665 /* When we've redirected a latch edge, update the header. */
5666 if (latch_edge_p)
5667 {
5668 current_loop_nest->header = to;
5669 gcc_assert (loop_latch_edge (current_loop_nest));
5670 }
5671
5672 /* In rare situations, the topological relation between the blocks connected
5673 by the redirected edge can change (see PR42245 for an example). Update
5674 block_to_bb/bb_to_block. */
5675 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5676 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5677 recompute_toporder_p = true;
5678
5679 jump = find_new_jump (src, NULL, prev_max_uid);
5680 if (jump)
5681 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5682
5683 /* Only update dominator info when we don't have unreachable blocks.
5684 Otherwise we'll update in maybe_tidy_empty_bb. */
5685 if (!maybe_unreachable)
5686 {
5687 set_immediate_dominator (CDI_DOMINATORS, to,
5688 recompute_dominator (CDI_DOMINATORS, to));
5689 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5690 recompute_dominator (CDI_DOMINATORS, orig_dest));
5691 }
5692 return recompute_toporder_p;
5693 }
5694
5695 /* This variable holds the cfg hooks used by the selective scheduler. */
5696 static struct cfg_hooks sel_cfg_hooks;
5697
5698 /* Register sel-sched cfg hooks. */
5699 void
5700 sel_register_cfg_hooks (void)
5701 {
5702 sched_split_block = sel_split_block;
5703
5704 orig_cfg_hooks = get_cfg_hooks ();
5705 sel_cfg_hooks = orig_cfg_hooks;
5706
5707 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5708
5709 set_cfg_hooks (sel_cfg_hooks);
5710
5711 sched_init_only_bb = sel_init_only_bb;
5712 sched_split_block = sel_split_block;
5713 sched_create_empty_bb = sel_create_empty_bb;
5714 }
5715
5716 /* Unregister sel-sched cfg hooks. */
5717 void
5718 sel_unregister_cfg_hooks (void)
5719 {
5720 sched_create_empty_bb = NULL;
5721 sched_split_block = NULL;
5722 sched_init_only_bb = NULL;
5723
5724 set_cfg_hooks (orig_cfg_hooks);
5725 }
5726 \f
5727
5728 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5729 LABEL is where this jump should be directed. */
5730 rtx_insn *
5731 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5732 {
5733 rtx_insn *insn_rtx;
5734
5735 gcc_assert (!INSN_P (pattern));
5736
5737 start_sequence ();
5738
5739 if (label == NULL_RTX)
5740 insn_rtx = emit_insn (pattern);
5741 else if (DEBUG_INSN_P (label))
5742 insn_rtx = emit_debug_insn (pattern);
5743 else
5744 {
5745 insn_rtx = emit_jump_insn (pattern);
5746 JUMP_LABEL (insn_rtx) = label;
5747 ++LABEL_NUSES (label);
5748 }
5749
5750 end_sequence ();
5751
5752 sched_extend_luids ();
5753 sched_extend_target ();
5754 sched_deps_init (false);
5755
5756 /* Initialize INSN_CODE now. */
5757 recog_memoized (insn_rtx);
5758 return insn_rtx;
5759 }
5760
5761 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5762 must not be clonable. */
5763 vinsn_t
5764 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5765 {
5766 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5767
5768 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5769 return vinsn_create (insn_rtx, force_unique_p);
5770 }
5771
5772 /* Create a copy of INSN_RTX. */
5773 rtx_insn *
5774 create_copy_of_insn_rtx (rtx insn_rtx)
5775 {
5776 rtx_insn *res;
5777 rtx link;
5778
5779 if (DEBUG_INSN_P (insn_rtx))
5780 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5781 insn_rtx);
5782
5783 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5784
5785 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5786 NULL_RTX);
5787
5788 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5789 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5790 there too, but are supposed to be sticky, so we copy them. */
5791 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5792 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5793 && REG_NOTE_KIND (link) != REG_EQUAL
5794 && REG_NOTE_KIND (link) != REG_EQUIV)
5795 {
5796 if (GET_CODE (link) == EXPR_LIST)
5797 add_reg_note (res, REG_NOTE_KIND (link),
5798 copy_insn_1 (XEXP (link, 0)));
5799 else
5800 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5801 }
5802
5803 return res;
5804 }
5805
5806 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5807 void
5808 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5809 {
5810 vinsn_detach (EXPR_VINSN (expr));
5811
5812 EXPR_VINSN (expr) = new_vinsn;
5813 vinsn_attach (new_vinsn);
5814 }
5815
5816 /* Helpers for global init. */
5817 /* This structure is used to be able to call existing bundling mechanism
5818 and calculate insn priorities. */
5819 static struct haifa_sched_info sched_sel_haifa_sched_info =
5820 {
5821 NULL, /* init_ready_list */
5822 NULL, /* can_schedule_ready_p */
5823 NULL, /* schedule_more_p */
5824 NULL, /* new_ready */
5825 NULL, /* rgn_rank */
5826 sel_print_insn, /* rgn_print_insn */
5827 contributes_to_priority,
5828 NULL, /* insn_finishes_block_p */
5829
5830 NULL, NULL,
5831 NULL, NULL,
5832 0, 0,
5833
5834 NULL, /* add_remove_insn */
5835 NULL, /* begin_schedule_ready */
5836 NULL, /* begin_move_insn */
5837 NULL, /* advance_target_bb */
5838
5839 NULL,
5840 NULL,
5841
5842 SEL_SCHED | NEW_BBS
5843 };
5844
5845 /* Setup special insns used in the scheduler. */
5846 void
5847 setup_nop_and_exit_insns (void)
5848 {
5849 gcc_assert (nop_pattern == NULL_RTX
5850 && exit_insn == NULL_RTX);
5851
5852 nop_pattern = constm1_rtx;
5853
5854 start_sequence ();
5855 emit_insn (nop_pattern);
5856 exit_insn = get_insns ();
5857 end_sequence ();
5858 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5859 }
5860
5861 /* Free special insns used in the scheduler. */
5862 void
5863 free_nop_and_exit_insns (void)
5864 {
5865 exit_insn = NULL;
5866 nop_pattern = NULL_RTX;
5867 }
5868
5869 /* Setup a special vinsn used in new insns initialization. */
5870 void
5871 setup_nop_vinsn (void)
5872 {
5873 nop_vinsn = vinsn_create (exit_insn, false);
5874 vinsn_attach (nop_vinsn);
5875 }
5876
5877 /* Free a special vinsn used in new insns initialization. */
5878 void
5879 free_nop_vinsn (void)
5880 {
5881 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5882 vinsn_detach (nop_vinsn);
5883 nop_vinsn = NULL;
5884 }
5885
5886 /* Call a set_sched_flags hook. */
5887 void
5888 sel_set_sched_flags (void)
5889 {
5890 /* ??? This means that set_sched_flags were called, and we decided to
5891 support speculation. However, set_sched_flags also modifies flags
5892 on current_sched_info, doing this only at global init. And we
5893 sometimes change c_s_i later. So put the correct flags again. */
5894 if (spec_info && targetm.sched.set_sched_flags)
5895 targetm.sched.set_sched_flags (spec_info);
5896 }
5897
5898 /* Setup pointers to global sched info structures. */
5899 void
5900 sel_setup_sched_infos (void)
5901 {
5902 rgn_setup_common_sched_info ();
5903
5904 memcpy (&sel_common_sched_info, common_sched_info,
5905 sizeof (sel_common_sched_info));
5906
5907 sel_common_sched_info.fix_recovery_cfg = NULL;
5908 sel_common_sched_info.add_block = NULL;
5909 sel_common_sched_info.estimate_number_of_insns
5910 = sel_estimate_number_of_insns;
5911 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5912 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5913
5914 common_sched_info = &sel_common_sched_info;
5915
5916 current_sched_info = &sched_sel_haifa_sched_info;
5917 current_sched_info->sched_max_insns_priority =
5918 get_rgn_sched_max_insns_priority ();
5919
5920 sel_set_sched_flags ();
5921 }
5922 \f
5923
5924 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5925 *BB_ORD_INDEX after that is increased. */
5926 static void
5927 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5928 {
5929 RGN_NR_BLOCKS (rgn) += 1;
5930 RGN_DONT_CALC_DEPS (rgn) = 0;
5931 RGN_HAS_REAL_EBB (rgn) = 0;
5932 CONTAINING_RGN (bb->index) = rgn;
5933 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5934 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5935 (*bb_ord_index)++;
5936
5937 /* FIXME: it is true only when not scheduling ebbs. */
5938 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5939 }
5940
5941 /* Functions to support pipelining of outer loops. */
5942
5943 /* Creates a new empty region and returns it's number. */
5944 static int
5945 sel_create_new_region (void)
5946 {
5947 int new_rgn_number = nr_regions;
5948
5949 RGN_NR_BLOCKS (new_rgn_number) = 0;
5950
5951 /* FIXME: This will work only when EBBs are not created. */
5952 if (new_rgn_number != 0)
5953 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5954 RGN_NR_BLOCKS (new_rgn_number - 1);
5955 else
5956 RGN_BLOCKS (new_rgn_number) = 0;
5957
5958 /* Set the blocks of the next region so the other functions may
5959 calculate the number of blocks in the region. */
5960 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5961 RGN_NR_BLOCKS (new_rgn_number);
5962
5963 nr_regions++;
5964
5965 return new_rgn_number;
5966 }
5967
5968 /* If X has a smaller topological sort number than Y, returns -1;
5969 if greater, returns 1. */
5970 static int
5971 bb_top_order_comparator (const void *x, const void *y)
5972 {
5973 basic_block bb1 = *(const basic_block *) x;
5974 basic_block bb2 = *(const basic_block *) y;
5975
5976 gcc_assert (bb1 == bb2
5977 || rev_top_order_index[bb1->index]
5978 != rev_top_order_index[bb2->index]);
5979
5980 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5981 bbs with greater number should go earlier. */
5982 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5983 return -1;
5984 else
5985 return 1;
5986 }
5987
5988 /* Create a region for LOOP and return its number. If we don't want
5989 to pipeline LOOP, return -1. */
5990 static int
5991 make_region_from_loop (struct loop *loop)
5992 {
5993 unsigned int i;
5994 int new_rgn_number = -1;
5995 struct loop *inner;
5996
5997 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5998 int bb_ord_index = 0;
5999 basic_block *loop_blocks;
6000 basic_block preheader_block;
6001
6002 if (loop->num_nodes
6003 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
6004 return -1;
6005
6006 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
6007 for (inner = loop->inner; inner; inner = inner->inner)
6008 if (flow_bb_inside_loop_p (inner, loop->latch))
6009 return -1;
6010
6011 loop->ninsns = num_loop_insns (loop);
6012 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
6013 return -1;
6014
6015 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6016
6017 for (i = 0; i < loop->num_nodes; i++)
6018 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6019 {
6020 free (loop_blocks);
6021 return -1;
6022 }
6023
6024 preheader_block = loop_preheader_edge (loop)->src;
6025 gcc_assert (preheader_block);
6026 gcc_assert (loop_blocks[0] == loop->header);
6027
6028 new_rgn_number = sel_create_new_region ();
6029
6030 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6031 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6032
6033 for (i = 0; i < loop->num_nodes; i++)
6034 {
6035 /* Add only those blocks that haven't been scheduled in the inner loop.
6036 The exception is the basic blocks with bookkeeping code - they should
6037 be added to the region (and they actually don't belong to the loop
6038 body, but to the region containing that loop body). */
6039
6040 gcc_assert (new_rgn_number >= 0);
6041
6042 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6043 {
6044 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6045 new_rgn_number);
6046 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6047 }
6048 }
6049
6050 free (loop_blocks);
6051 MARK_LOOP_FOR_PIPELINING (loop);
6052
6053 return new_rgn_number;
6054 }
6055
6056 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6057 void
6058 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6059 {
6060 unsigned int i;
6061 int new_rgn_number = -1;
6062 basic_block bb;
6063
6064 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6065 int bb_ord_index = 0;
6066
6067 new_rgn_number = sel_create_new_region ();
6068
6069 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6070 {
6071 gcc_assert (new_rgn_number >= 0);
6072
6073 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6074 }
6075
6076 vec_free (loop_blocks);
6077 }
6078
6079
6080 /* Create region(s) from loop nest LOOP, such that inner loops will be
6081 pipelined before outer loops. Returns true when a region for LOOP
6082 is created. */
6083 static bool
6084 make_regions_from_loop_nest (struct loop *loop)
6085 {
6086 struct loop *cur_loop;
6087 int rgn_number;
6088
6089 /* Traverse all inner nodes of the loop. */
6090 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6091 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6092 return false;
6093
6094 /* At this moment all regular inner loops should have been pipelined.
6095 Try to create a region from this loop. */
6096 rgn_number = make_region_from_loop (loop);
6097
6098 if (rgn_number < 0)
6099 return false;
6100
6101 loop_nests.safe_push (loop);
6102 return true;
6103 }
6104
6105 /* Initalize data structures needed. */
6106 void
6107 sel_init_pipelining (void)
6108 {
6109 /* Collect loop information to be used in outer loops pipelining. */
6110 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6111 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6112 | LOOPS_HAVE_RECORDED_EXITS
6113 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6114 current_loop_nest = NULL;
6115
6116 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6117 bitmap_clear (bbs_in_loop_rgns);
6118
6119 recompute_rev_top_order ();
6120 }
6121
6122 /* Returns a struct loop for region RGN. */
6123 loop_p
6124 get_loop_nest_for_rgn (unsigned int rgn)
6125 {
6126 /* Regions created with extend_rgns don't have corresponding loop nests,
6127 because they don't represent loops. */
6128 if (rgn < loop_nests.length ())
6129 return loop_nests[rgn];
6130 else
6131 return NULL;
6132 }
6133
6134 /* True when LOOP was included into pipelining regions. */
6135 bool
6136 considered_for_pipelining_p (struct loop *loop)
6137 {
6138 if (loop_depth (loop) == 0)
6139 return false;
6140
6141 /* Now, the loop could be too large or irreducible. Check whether its
6142 region is in LOOP_NESTS.
6143 We determine the region number of LOOP as the region number of its
6144 latch. We can't use header here, because this header could be
6145 just removed preheader and it will give us the wrong region number.
6146 Latch can't be used because it could be in the inner loop too. */
6147 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6148 {
6149 int rgn = CONTAINING_RGN (loop->latch->index);
6150
6151 gcc_assert ((unsigned) rgn < loop_nests.length ());
6152 return true;
6153 }
6154
6155 return false;
6156 }
6157
6158 /* Makes regions from the rest of the blocks, after loops are chosen
6159 for pipelining. */
6160 static void
6161 make_regions_from_the_rest (void)
6162 {
6163 int cur_rgn_blocks;
6164 int *loop_hdr;
6165 int i;
6166
6167 basic_block bb;
6168 edge e;
6169 edge_iterator ei;
6170 int *degree;
6171
6172 /* Index in rgn_bb_table where to start allocating new regions. */
6173 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6174
6175 /* Make regions from all the rest basic blocks - those that don't belong to
6176 any loop or belong to irreducible loops. Prepare the data structures
6177 for extend_rgns. */
6178
6179 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6180 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6181 loop. */
6182 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6183 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6184
6185
6186 /* For each basic block that belongs to some loop assign the number
6187 of innermost loop it belongs to. */
6188 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6189 loop_hdr[i] = -1;
6190
6191 FOR_EACH_BB_FN (bb, cfun)
6192 {
6193 if (bb->loop_father && bb->loop_father->num != 0
6194 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6195 loop_hdr[bb->index] = bb->loop_father->num;
6196 }
6197
6198 /* For each basic block degree is calculated as the number of incoming
6199 edges, that are going out of bbs that are not yet scheduled.
6200 The basic blocks that are scheduled have degree value of zero. */
6201 FOR_EACH_BB_FN (bb, cfun)
6202 {
6203 degree[bb->index] = 0;
6204
6205 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6206 {
6207 FOR_EACH_EDGE (e, ei, bb->preds)
6208 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6209 degree[bb->index]++;
6210 }
6211 else
6212 degree[bb->index] = -1;
6213 }
6214
6215 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6216
6217 /* Any block that did not end up in a region is placed into a region
6218 by itself. */
6219 FOR_EACH_BB_FN (bb, cfun)
6220 if (degree[bb->index] >= 0)
6221 {
6222 rgn_bb_table[cur_rgn_blocks] = bb->index;
6223 RGN_NR_BLOCKS (nr_regions) = 1;
6224 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6225 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6226 RGN_HAS_REAL_EBB (nr_regions) = 0;
6227 CONTAINING_RGN (bb->index) = nr_regions++;
6228 BLOCK_TO_BB (bb->index) = 0;
6229 }
6230
6231 free (degree);
6232 free (loop_hdr);
6233 }
6234
6235 /* Free data structures used in pipelining of loops. */
6236 void sel_finish_pipelining (void)
6237 {
6238 struct loop *loop;
6239
6240 /* Release aux fields so we don't free them later by mistake. */
6241 FOR_EACH_LOOP (loop, 0)
6242 loop->aux = NULL;
6243
6244 loop_optimizer_finalize ();
6245
6246 loop_nests.release ();
6247
6248 free (rev_top_order_index);
6249 rev_top_order_index = NULL;
6250 }
6251
6252 /* This function replaces the find_rgns when
6253 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6254 void
6255 sel_find_rgns (void)
6256 {
6257 sel_init_pipelining ();
6258 extend_regions ();
6259
6260 if (current_loops)
6261 {
6262 loop_p loop;
6263
6264 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6265 ? LI_FROM_INNERMOST
6266 : LI_ONLY_INNERMOST))
6267 make_regions_from_loop_nest (loop);
6268 }
6269
6270 /* Make regions from all the rest basic blocks and schedule them.
6271 These blocks include blocks that don't belong to any loop or belong
6272 to irreducible loops. */
6273 make_regions_from_the_rest ();
6274
6275 /* We don't need bbs_in_loop_rgns anymore. */
6276 sbitmap_free (bbs_in_loop_rgns);
6277 bbs_in_loop_rgns = NULL;
6278 }
6279
6280 /* Add the preheader blocks from previous loop to current region taking
6281 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6282 This function is only used with -fsel-sched-pipelining-outer-loops. */
6283 void
6284 sel_add_loop_preheaders (bb_vec_t *bbs)
6285 {
6286 int i;
6287 basic_block bb;
6288 vec<basic_block> *preheader_blocks
6289 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6290
6291 if (!preheader_blocks)
6292 return;
6293
6294 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6295 {
6296 bbs->safe_push (bb);
6297 last_added_blocks.safe_push (bb);
6298 sel_add_bb (bb);
6299 }
6300
6301 vec_free (preheader_blocks);
6302 }
6303
6304 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6305 Please note that the function should also work when pipelining_p is
6306 false, because it is used when deciding whether we should or should
6307 not reschedule pipelined code. */
6308 bool
6309 sel_is_loop_preheader_p (basic_block bb)
6310 {
6311 if (current_loop_nest)
6312 {
6313 struct loop *outer;
6314
6315 if (preheader_removed)
6316 return false;
6317
6318 /* Preheader is the first block in the region. */
6319 if (BLOCK_TO_BB (bb->index) == 0)
6320 return true;
6321
6322 /* We used to find a preheader with the topological information.
6323 Check that the above code is equivalent to what we did before. */
6324
6325 if (in_current_region_p (current_loop_nest->header))
6326 gcc_assert (!(BLOCK_TO_BB (bb->index)
6327 < BLOCK_TO_BB (current_loop_nest->header->index)));
6328
6329 /* Support the situation when the latch block of outer loop
6330 could be from here. */
6331 for (outer = loop_outer (current_loop_nest);
6332 outer;
6333 outer = loop_outer (outer))
6334 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6335 gcc_unreachable ();
6336 }
6337
6338 return false;
6339 }
6340
6341 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6342 can be removed, making the corresponding edge fallthrough (assuming that
6343 all basic blocks between JUMP_BB and DEST_BB are empty). */
6344 static bool
6345 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6346 {
6347 if (!onlyjump_p (BB_END (jump_bb))
6348 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6349 return false;
6350
6351 /* Several outgoing edges, abnormal edge or destination of jump is
6352 not DEST_BB. */
6353 if (EDGE_COUNT (jump_bb->succs) != 1
6354 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6355 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6356 return false;
6357
6358 /* If not anything of the upper. */
6359 return true;
6360 }
6361
6362 /* Removes the loop preheader from the current region and saves it in
6363 PREHEADER_BLOCKS of the father loop, so they will be added later to
6364 region that represents an outer loop. */
6365 static void
6366 sel_remove_loop_preheader (void)
6367 {
6368 int i, old_len;
6369 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6370 basic_block bb;
6371 bool all_empty_p = true;
6372 vec<basic_block> *preheader_blocks
6373 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6374
6375 vec_check_alloc (preheader_blocks, 0);
6376
6377 gcc_assert (current_loop_nest);
6378 old_len = preheader_blocks->length ();
6379
6380 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6381 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6382 {
6383 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6384
6385 /* If the basic block belongs to region, but doesn't belong to
6386 corresponding loop, then it should be a preheader. */
6387 if (sel_is_loop_preheader_p (bb))
6388 {
6389 preheader_blocks->safe_push (bb);
6390 if (BB_END (bb) != bb_note (bb))
6391 all_empty_p = false;
6392 }
6393 }
6394
6395 /* Remove these blocks only after iterating over the whole region. */
6396 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6397 {
6398 bb = (*preheader_blocks)[i];
6399 sel_remove_bb (bb, false);
6400 }
6401
6402 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6403 {
6404 if (!all_empty_p)
6405 /* Immediately create new region from preheader. */
6406 make_region_from_loop_preheader (preheader_blocks);
6407 else
6408 {
6409 /* If all preheader blocks are empty - dont create new empty region.
6410 Instead, remove them completely. */
6411 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6412 {
6413 edge e;
6414 edge_iterator ei;
6415 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6416
6417 /* Redirect all incoming edges to next basic block. */
6418 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6419 {
6420 if (! (e->flags & EDGE_FALLTHRU))
6421 redirect_edge_and_branch (e, bb->next_bb);
6422 else
6423 redirect_edge_succ (e, bb->next_bb);
6424 }
6425 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6426 delete_and_free_basic_block (bb);
6427
6428 /* Check if after deleting preheader there is a nonconditional
6429 jump in PREV_BB that leads to the next basic block NEXT_BB.
6430 If it is so - delete this jump and clear data sets of its
6431 basic block if it becomes empty. */
6432 if (next_bb->prev_bb == prev_bb
6433 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6434 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6435 {
6436 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6437 if (BB_END (prev_bb) == bb_note (prev_bb))
6438 free_data_sets (prev_bb);
6439 }
6440
6441 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6442 recompute_dominator (CDI_DOMINATORS,
6443 next_bb));
6444 }
6445 }
6446 vec_free (preheader_blocks);
6447 }
6448 else
6449 /* Store preheader within the father's loop structure. */
6450 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6451 preheader_blocks);
6452 }
6453
6454 #endif