]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched-ir.c
BND_TO scaffolding
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
44
45 #ifdef INSN_SCHEDULING
46 #include "sel-sched-ir.h"
47 /* We don't have to use it except for sel_print_insn. */
48 #include "sel-sched-dump.h"
49
50 /* A vector holding bb info for whole scheduling pass. */
51 vec<sel_global_bb_info_def>
52 sel_global_bb_info = vNULL;
53
54 /* A vector holding bb info. */
55 vec<sel_region_bb_info_def>
56 sel_region_bb_info = vNULL;
57
58 /* A pool for allocating all lists. */
59 alloc_pool sched_lists_pool;
60
61 /* This contains information about successors for compute_av_set. */
62 struct succs_info current_succs;
63
64 /* Data structure to describe interaction with the generic scheduler utils. */
65 static struct common_sched_info_def sel_common_sched_info;
66
67 /* The loop nest being pipelined. */
68 struct loop *current_loop_nest;
69
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72 static vec<loop_p> loop_nests = vNULL;
73
74 /* Saves blocks already in loop regions, indexed by bb->index. */
75 static sbitmap bbs_in_loop_rgns = NULL;
76
77 /* CFG hooks that are saved before changing create_basic_block hook. */
78 static struct cfg_hooks orig_cfg_hooks;
79 \f
80
81 /* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83 static int *rev_top_order_index = NULL;
84
85 /* Length of the above array. */
86 static int rev_top_order_index_len = -1;
87
88 /* A regset pool structure. */
89 static struct
90 {
91 /* The stack to which regsets are returned. */
92 regset *v;
93
94 /* Its pointer. */
95 int n;
96
97 /* Its size. */
98 int s;
99
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
104
105 /* The pointer of VV stack. */
106 int nn;
107
108 /* Its size. */
109 int ss;
110
111 /* The difference between allocated and returned regsets. */
112 int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
114
115 /* This represents the nop pool. */
116 static struct
117 {
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
120
121 /* Its pointer. */
122 int n;
123
124 /* Its size. */
125 int s;
126 } nop_pool = { NULL, 0, 0 };
127
128 /* The pool for basic block notes. */
129 static rtx_vec_t bb_note_pool;
130
131 /* A NOP pattern used to emit placeholder insns. */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx exit_insn = NULL_RTX;
136
137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139 bool preheader_removed = false;
140 \f
141
142 /* Forward static declarations. */
143 static void fence_clear (fence_t);
144
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
148
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (vec<expr_history_def> &);
152
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_merge_blocks (basic_block, basic_block);
156 static void sel_remove_loop_preheader (void);
157 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
158
159 static bool insn_is_the_only_one_in_bb_p (insn_t);
160 static void create_initial_data_sets (basic_block);
161
162 static void free_av_set (basic_block);
163 static void invalidate_av_set (basic_block);
164 static void extend_insn_data (void);
165 static void sel_init_new_insn (insn_t, int, int = -1);
166 static void finish_insns (void);
167 \f
168 /* Various list functions. */
169
170 /* Copy an instruction list L. */
171 ilist_t
172 ilist_copy (ilist_t l)
173 {
174 ilist_t head = NULL, *tailp = &head;
175
176 while (l)
177 {
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
181 }
182
183 return head;
184 }
185
186 /* Invert an instruction list L. */
187 ilist_t
188 ilist_invert (ilist_t l)
189 {
190 ilist_t res = NULL;
191
192 while (l)
193 {
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
196 }
197
198 return res;
199 }
200
201 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202 void
203 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
204 {
205 bnd_t bnd;
206
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
209
210 SET_BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
215 }
216
217 /* Remove the list note pointed to by LP. */
218 void
219 blist_remove (blist_t *lp)
220 {
221 bnd_t b = BLIST_BND (*lp);
222
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
226
227 _list_remove (lp);
228 }
229
230 /* Init a fence tail L. */
231 void
232 flist_tail_init (flist_tail_t l)
233 {
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
236 }
237
238 /* Try to find fence corresponding to INSN in L. */
239 fence_t
240 flist_lookup (flist_t l, insn_t insn)
241 {
242 while (l)
243 {
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
246
247 l = FLIST_NEXT (l);
248 }
249
250 return NULL;
251 }
252
253 /* Init the fields of F before running fill_insns. */
254 static void
255 init_fence_for_scheduling (fence_t f)
256 {
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
260 }
261
262 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263 static void
264 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
267 int cycle, int cycle_issued_insns, int issue_more,
268 bool starts_cycle_p, bool after_stall_p)
269 {
270 fence_t f;
271
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
274
275 FENCE_INSN (f) = insn;
276
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
279
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
284
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
287
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
290
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
292 FENCE_ISSUE_MORE (f) = issue_more;
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
297
298 init_fence_for_scheduling (f);
299 }
300
301 /* Remove the head node of the list pointed to by LP. */
302 static void
303 flist_remove (flist_t *lp)
304 {
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
308 }
309
310 /* Clear the fence list pointed to by LP. */
311 void
312 flist_clear (flist_t *lp)
313 {
314 while (*lp)
315 flist_remove (lp);
316 }
317
318 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319 void
320 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
321 {
322 def_t d;
323
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
326
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
329 }
330 \f
331
332 /* Functions to work with target contexts. */
333
334 /* Bulk target context. It is convenient for debugging purposes to ensure
335 that there are no uninitialized (null) target contexts. */
336 static tc_t bulk_tc = (tc_t) 1;
337
338 /* Target hooks wrappers. In the future we can provide some default
339 implementations for them. */
340
341 /* Allocate a store for the target context. */
342 static tc_t
343 alloc_target_context (void)
344 {
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
347 }
348
349 /* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352 static void
353 init_target_context (tc_t tc, bool clean_p)
354 {
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
357 }
358
359 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361 tc_t
362 create_target_context (bool clean_p)
363 {
364 tc_t tc = alloc_target_context ();
365
366 init_target_context (tc, clean_p);
367 return tc;
368 }
369
370 /* Copy TC to the current backend context. */
371 void
372 set_target_context (tc_t tc)
373 {
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
376 }
377
378 /* TC is about to be destroyed. Free any internal data. */
379 static void
380 clear_target_context (tc_t tc)
381 {
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
384 }
385
386 /* Clear and free it. */
387 static void
388 delete_target_context (tc_t tc)
389 {
390 clear_target_context (tc);
391
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
394 }
395
396 /* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398 static void
399 copy_target_context (tc_t to, tc_t from)
400 {
401 tc_t tmp = create_target_context (false);
402
403 set_target_context (from);
404 init_target_context (to, false);
405
406 set_target_context (tmp);
407 delete_target_context (tmp);
408 }
409
410 /* Create a copy of TC. */
411 static tc_t
412 create_copy_of_target_context (tc_t tc)
413 {
414 tc_t copy = alloc_target_context ();
415
416 copy_target_context (copy, tc);
417
418 return copy;
419 }
420
421 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423 void
424 reset_target_context (tc_t tc, bool clean_p)
425 {
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
428 }
429 \f
430 /* Functions to work with dependence contexts.
431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
434
435 /* Make a copy of FROM in TO. */
436 static void
437 copy_deps_context (deps_t to, deps_t from)
438 {
439 init_deps (to, false);
440 deps_join (to, from);
441 }
442
443 /* Allocate store for dep context. */
444 static deps_t
445 alloc_deps_context (void)
446 {
447 return XNEW (struct deps_desc);
448 }
449
450 /* Allocate and initialize dep context. */
451 static deps_t
452 create_deps_context (void)
453 {
454 deps_t dc = alloc_deps_context ();
455
456 init_deps (dc, false);
457 return dc;
458 }
459
460 /* Create a copy of FROM. */
461 static deps_t
462 create_copy_of_deps_context (deps_t from)
463 {
464 deps_t to = alloc_deps_context ();
465
466 copy_deps_context (to, from);
467 return to;
468 }
469
470 /* Clean up internal data of DC. */
471 static void
472 clear_deps_context (deps_t dc)
473 {
474 free_deps (dc);
475 }
476
477 /* Clear and free DC. */
478 static void
479 delete_deps_context (deps_t dc)
480 {
481 clear_deps_context (dc);
482 free (dc);
483 }
484
485 /* Clear and init DC. */
486 static void
487 reset_deps_context (deps_t dc)
488 {
489 clear_deps_context (dc);
490 init_deps (dc, false);
491 }
492
493 /* This structure describes the dependence analysis hooks for advancing
494 dependence context. */
495 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
496 {
497 NULL,
498
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
510
511 0, 0, 0
512 };
513
514 /* Process INSN and add its impact on DC. */
515 void
516 advance_deps_context (deps_t dc, insn_t insn)
517 {
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
520 }
521 \f
522
523 /* Functions to work with DFA states. */
524
525 /* Allocate store for a DFA state. */
526 static state_t
527 state_alloc (void)
528 {
529 return xmalloc (dfa_state_size);
530 }
531
532 /* Allocate and initialize DFA state. */
533 static state_t
534 state_create (void)
535 {
536 state_t state = state_alloc ();
537
538 state_reset (state);
539 advance_state (state);
540 return state;
541 }
542
543 /* Free DFA state. */
544 static void
545 state_free (state_t state)
546 {
547 free (state);
548 }
549
550 /* Make a copy of FROM in TO. */
551 static void
552 state_copy (state_t to, state_t from)
553 {
554 memcpy (to, from, dfa_state_size);
555 }
556
557 /* Create a copy of FROM. */
558 static state_t
559 state_create_copy (state_t from)
560 {
561 state_t to = state_alloc ();
562
563 state_copy (to, from);
564 return to;
565 }
566 \f
567
568 /* Functions to work with fences. */
569
570 /* Clear the fence. */
571 static void
572 fence_clear (fence_t f)
573 {
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
577
578 ilist_clear (&FENCE_BNDS (f));
579
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
582
583 free (s);
584
585 if (dc != NULL)
586 delete_deps_context (dc);
587
588 if (tc != NULL)
589 delete_target_context (tc);
590 vec_free (FENCE_EXECUTING_INSNS (f));
591 free (FENCE_READY_TICKS (f));
592 FENCE_READY_TICKS (f) = NULL;
593 }
594
595 /* Init a list of fences with successors of OLD_FENCE. */
596 void
597 init_fences (insn_t old_fence)
598 {
599 insn_t succ;
600 succ_iterator si;
601 bool first = true;
602 int ready_ticks_size = get_max_uid () + 1;
603
604 FOR_EACH_SUCC_1 (succ, si, old_fence,
605 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
606 {
607
608 if (first)
609 first = false;
610 else
611 gcc_assert (flag_sel_sched_pipelining_outer_loops);
612
613 flist_add (&fences, succ,
614 state_create (),
615 create_deps_context () /* dc */,
616 create_target_context (true) /* tc */,
617 NULL_RTX /* last_scheduled_insn */,
618 NULL, /* executing_insns */
619 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
620 ready_ticks_size,
621 NULL_RTX /* sched_next */,
622 1 /* cycle */, 0 /* cycle_issued_insns */,
623 issue_rate, /* issue_more */
624 1 /* starts_cycle_p */, 0 /* after_stall_p */);
625 }
626 }
627
628 /* Merges two fences (filling fields of fence F with resulting values) by
629 following rules: 1) state, target context and last scheduled insn are
630 propagated from fallthrough edge if it is available;
631 2) deps context and cycle is propagated from more probable edge;
632 3) all other fields are set to corresponding constant values.
633
634 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
635 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
636 and AFTER_STALL_P are the corresponding fields of the second fence. */
637 static void
638 merge_fences (fence_t f, insn_t insn,
639 state_t state, deps_t dc, void *tc,
640 rtx last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
641 int *ready_ticks, int ready_ticks_size,
642 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
643 {
644 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
645
646 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
647 && !sched_next && !FENCE_SCHED_NEXT (f));
648
649 /* Check if we can decide which path fences came.
650 If we can't (or don't want to) - reset all. */
651 if (last_scheduled_insn == NULL
652 || last_scheduled_insn_old == NULL
653 /* This is a case when INSN is reachable on several paths from
654 one insn (this can happen when pipelining of outer loops is on and
655 there are two edges: one going around of inner loop and the other -
656 right through it; in such case just reset everything). */
657 || last_scheduled_insn == last_scheduled_insn_old)
658 {
659 state_reset (FENCE_STATE (f));
660 state_free (state);
661
662 reset_deps_context (FENCE_DC (f));
663 delete_deps_context (dc);
664
665 reset_target_context (FENCE_TC (f), true);
666 delete_target_context (tc);
667
668 if (cycle > FENCE_CYCLE (f))
669 FENCE_CYCLE (f) = cycle;
670
671 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
672 FENCE_ISSUE_MORE (f) = issue_rate;
673 vec_free (executing_insns);
674 free (ready_ticks);
675 if (FENCE_EXECUTING_INSNS (f))
676 FENCE_EXECUTING_INSNS (f)->block_remove (0,
677 FENCE_EXECUTING_INSNS (f)->length ());
678 if (FENCE_READY_TICKS (f))
679 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
680 }
681 else
682 {
683 edge edge_old = NULL, edge_new = NULL;
684 edge candidate;
685 succ_iterator si;
686 insn_t succ;
687
688 /* Find fallthrough edge. */
689 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
690 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
691
692 if (!candidate
693 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
694 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
695 {
696 /* No fallthrough edge leading to basic block of INSN. */
697 state_reset (FENCE_STATE (f));
698 state_free (state);
699
700 reset_target_context (FENCE_TC (f), true);
701 delete_target_context (tc);
702
703 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
704 FENCE_ISSUE_MORE (f) = issue_rate;
705 }
706 else
707 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
708 {
709 /* Would be weird if same insn is successor of several fallthrough
710 edges. */
711 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
712 != BLOCK_FOR_INSN (last_scheduled_insn_old));
713
714 state_free (FENCE_STATE (f));
715 FENCE_STATE (f) = state;
716
717 delete_target_context (FENCE_TC (f));
718 FENCE_TC (f) = tc;
719
720 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
721 FENCE_ISSUE_MORE (f) = issue_more;
722 }
723 else
724 {
725 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
726 state_free (state);
727 delete_target_context (tc);
728
729 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
730 != BLOCK_FOR_INSN (last_scheduled_insn));
731 }
732
733 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
734 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
735 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
736 {
737 if (succ == insn)
738 {
739 /* No same successor allowed from several edges. */
740 gcc_assert (!edge_old);
741 edge_old = si.e1;
742 }
743 }
744 /* Find edge of second predecessor (last_scheduled_insn->insn). */
745 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
746 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
747 {
748 if (succ == insn)
749 {
750 /* No same successor allowed from several edges. */
751 gcc_assert (!edge_new);
752 edge_new = si.e1;
753 }
754 }
755
756 /* Check if we can choose most probable predecessor. */
757 if (edge_old == NULL || edge_new == NULL)
758 {
759 reset_deps_context (FENCE_DC (f));
760 delete_deps_context (dc);
761 vec_free (executing_insns);
762 free (ready_ticks);
763
764 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
765 if (FENCE_EXECUTING_INSNS (f))
766 FENCE_EXECUTING_INSNS (f)->block_remove (0,
767 FENCE_EXECUTING_INSNS (f)->length ());
768 if (FENCE_READY_TICKS (f))
769 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
770 }
771 else
772 if (edge_new->probability > edge_old->probability)
773 {
774 delete_deps_context (FENCE_DC (f));
775 FENCE_DC (f) = dc;
776 vec_free (FENCE_EXECUTING_INSNS (f));
777 FENCE_EXECUTING_INSNS (f) = executing_insns;
778 free (FENCE_READY_TICKS (f));
779 FENCE_READY_TICKS (f) = ready_ticks;
780 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
781 FENCE_CYCLE (f) = cycle;
782 }
783 else
784 {
785 /* Leave DC and CYCLE untouched. */
786 delete_deps_context (dc);
787 vec_free (executing_insns);
788 free (ready_ticks);
789 }
790 }
791
792 /* Fill remaining invariant fields. */
793 if (after_stall_p)
794 FENCE_AFTER_STALL_P (f) = 1;
795
796 FENCE_ISSUED_INSNS (f) = 0;
797 FENCE_STARTS_CYCLE_P (f) = 1;
798 FENCE_SCHED_NEXT (f) = NULL;
799 }
800
801 /* Add a new fence to NEW_FENCES list, initializing it from all
802 other parameters. */
803 static void
804 add_to_fences (flist_tail_t new_fences, insn_t insn,
805 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
806 vec<rtx, va_gc> *executing_insns, int *ready_ticks,
807 int ready_ticks_size, rtx sched_next, int cycle,
808 int cycle_issued_insns, int issue_rate,
809 bool starts_cycle_p, bool after_stall_p)
810 {
811 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
812
813 if (! f)
814 {
815 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
816 last_scheduled_insn, executing_insns, ready_ticks,
817 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
818 issue_rate, starts_cycle_p, after_stall_p);
819
820 FLIST_TAIL_TAILP (new_fences)
821 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
822 }
823 else
824 {
825 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
826 executing_insns, ready_ticks, ready_ticks_size,
827 sched_next, cycle, issue_rate, after_stall_p);
828 }
829 }
830
831 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
832 void
833 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
834 {
835 fence_t f, old;
836 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
837
838 old = FLIST_FENCE (old_fences);
839 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
840 FENCE_INSN (FLIST_FENCE (old_fences)));
841 if (f)
842 {
843 merge_fences (f, old->insn, old->state, old->dc, old->tc,
844 old->last_scheduled_insn, old->executing_insns,
845 old->ready_ticks, old->ready_ticks_size,
846 old->sched_next, old->cycle, old->issue_more,
847 old->after_stall_p);
848 }
849 else
850 {
851 _list_add (tailp);
852 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
853 *FLIST_FENCE (*tailp) = *old;
854 init_fence_for_scheduling (FLIST_FENCE (*tailp));
855 }
856 FENCE_INSN (old) = NULL;
857 }
858
859 /* Add a new fence to NEW_FENCES list and initialize most of its data
860 as a clean one. */
861 void
862 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
863 {
864 int ready_ticks_size = get_max_uid () + 1;
865
866 add_to_fences (new_fences,
867 succ, state_create (), create_deps_context (),
868 create_target_context (true),
869 NULL_RTX, NULL,
870 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
871 NULL_RTX, FENCE_CYCLE (fence) + 1,
872 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
873 }
874
875 /* Add a new fence to NEW_FENCES list and initialize all of its data
876 from FENCE and SUCC. */
877 void
878 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
879 {
880 int * new_ready_ticks
881 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
882
883 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
884 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
885 add_to_fences (new_fences,
886 succ, state_create_copy (FENCE_STATE (fence)),
887 create_copy_of_deps_context (FENCE_DC (fence)),
888 create_copy_of_target_context (FENCE_TC (fence)),
889 FENCE_LAST_SCHEDULED_INSN (fence),
890 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
891 new_ready_ticks,
892 FENCE_READY_TICKS_SIZE (fence),
893 FENCE_SCHED_NEXT (fence),
894 FENCE_CYCLE (fence),
895 FENCE_ISSUED_INSNS (fence),
896 FENCE_ISSUE_MORE (fence),
897 FENCE_STARTS_CYCLE_P (fence),
898 FENCE_AFTER_STALL_P (fence));
899 }
900 \f
901
902 /* Functions to work with regset and nop pools. */
903
904 /* Returns the new regset from pool. It might have some of the bits set
905 from the previous usage. */
906 regset
907 get_regset_from_pool (void)
908 {
909 regset rs;
910
911 if (regset_pool.n != 0)
912 rs = regset_pool.v[--regset_pool.n];
913 else
914 /* We need to create the regset. */
915 {
916 rs = ALLOC_REG_SET (&reg_obstack);
917
918 if (regset_pool.nn == regset_pool.ss)
919 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
920 (regset_pool.ss = 2 * regset_pool.ss + 1));
921 regset_pool.vv[regset_pool.nn++] = rs;
922 }
923
924 regset_pool.diff++;
925
926 return rs;
927 }
928
929 /* Same as above, but returns the empty regset. */
930 regset
931 get_clear_regset_from_pool (void)
932 {
933 regset rs = get_regset_from_pool ();
934
935 CLEAR_REG_SET (rs);
936 return rs;
937 }
938
939 /* Return regset RS to the pool for future use. */
940 void
941 return_regset_to_pool (regset rs)
942 {
943 gcc_assert (rs);
944 regset_pool.diff--;
945
946 if (regset_pool.n == regset_pool.s)
947 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
948 (regset_pool.s = 2 * regset_pool.s + 1));
949 regset_pool.v[regset_pool.n++] = rs;
950 }
951
952 #ifdef ENABLE_CHECKING
953 /* This is used as a qsort callback for sorting regset pool stacks.
954 X and XX are addresses of two regsets. They are never equal. */
955 static int
956 cmp_v_in_regset_pool (const void *x, const void *xx)
957 {
958 uintptr_t r1 = (uintptr_t) *((const regset *) x);
959 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
960 if (r1 > r2)
961 return 1;
962 else if (r1 < r2)
963 return -1;
964 gcc_unreachable ();
965 }
966 #endif
967
968 /* Free the regset pool possibly checking for memory leaks. */
969 void
970 free_regset_pool (void)
971 {
972 #ifdef ENABLE_CHECKING
973 {
974 regset *v = regset_pool.v;
975 int i = 0;
976 int n = regset_pool.n;
977
978 regset *vv = regset_pool.vv;
979 int ii = 0;
980 int nn = regset_pool.nn;
981
982 int diff = 0;
983
984 gcc_assert (n <= nn);
985
986 /* Sort both vectors so it will be possible to compare them. */
987 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
988 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
989
990 while (ii < nn)
991 {
992 if (v[i] == vv[ii])
993 i++;
994 else
995 /* VV[II] was lost. */
996 diff++;
997
998 ii++;
999 }
1000
1001 gcc_assert (diff == regset_pool.diff);
1002 }
1003 #endif
1004
1005 /* If not true - we have a memory leak. */
1006 gcc_assert (regset_pool.diff == 0);
1007
1008 while (regset_pool.n)
1009 {
1010 --regset_pool.n;
1011 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1012 }
1013
1014 free (regset_pool.v);
1015 regset_pool.v = NULL;
1016 regset_pool.s = 0;
1017
1018 free (regset_pool.vv);
1019 regset_pool.vv = NULL;
1020 regset_pool.nn = 0;
1021 regset_pool.ss = 0;
1022
1023 regset_pool.diff = 0;
1024 }
1025 \f
1026
1027 /* Functions to work with nop pools. NOP insns are used as temporary
1028 placeholders of the insns being scheduled to allow correct update of
1029 the data sets. When update is finished, NOPs are deleted. */
1030
1031 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1032 nops sel-sched generates. */
1033 static vinsn_t nop_vinsn = NULL;
1034
1035 /* Emit a nop before INSN, taking it from pool. */
1036 insn_t
1037 get_nop_from_pool (insn_t insn)
1038 {
1039 insn_t nop;
1040 bool old_p = nop_pool.n != 0;
1041 int flags;
1042
1043 if (old_p)
1044 nop = nop_pool.v[--nop_pool.n];
1045 else
1046 nop = nop_pattern;
1047
1048 nop = emit_insn_before (nop, insn);
1049
1050 if (old_p)
1051 flags = INSN_INIT_TODO_SSID;
1052 else
1053 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1054
1055 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1056 sel_init_new_insn (nop, flags);
1057
1058 return nop;
1059 }
1060
1061 /* Remove NOP from the instruction stream and return it to the pool. */
1062 void
1063 return_nop_to_pool (insn_t nop, bool full_tidying)
1064 {
1065 gcc_assert (INSN_IN_STREAM_P (nop));
1066 sel_remove_insn (nop, false, full_tidying);
1067
1068 /* We'll recycle this nop. */
1069 INSN_DELETED_P (nop) = 0;
1070
1071 if (nop_pool.n == nop_pool.s)
1072 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1073 (nop_pool.s = 2 * nop_pool.s + 1));
1074 nop_pool.v[nop_pool.n++] = nop;
1075 }
1076
1077 /* Free the nop pool. */
1078 void
1079 free_nop_pool (void)
1080 {
1081 nop_pool.n = 0;
1082 nop_pool.s = 0;
1083 free (nop_pool.v);
1084 nop_pool.v = NULL;
1085 }
1086 \f
1087
1088 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1089 The callback is given two rtxes XX and YY and writes the new rtxes
1090 to NX and NY in case some needs to be skipped. */
1091 static int
1092 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1093 {
1094 const_rtx x = *xx;
1095 const_rtx y = *yy;
1096
1097 if (GET_CODE (x) == UNSPEC
1098 && (targetm.sched.skip_rtx_p == NULL
1099 || targetm.sched.skip_rtx_p (x)))
1100 {
1101 *nx = XVECEXP (x, 0, 0);
1102 *ny = CONST_CAST_RTX (y);
1103 return 1;
1104 }
1105
1106 if (GET_CODE (y) == UNSPEC
1107 && (targetm.sched.skip_rtx_p == NULL
1108 || targetm.sched.skip_rtx_p (y)))
1109 {
1110 *nx = CONST_CAST_RTX (x);
1111 *ny = XVECEXP (y, 0, 0);
1112 return 1;
1113 }
1114
1115 return 0;
1116 }
1117
1118 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1119 to support ia64 speculation. When changes are needed, new rtx X and new mode
1120 NMODE are written, and the callback returns true. */
1121 static int
1122 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1123 rtx *nx, enum machine_mode* nmode)
1124 {
1125 if (GET_CODE (x) == UNSPEC
1126 && targetm.sched.skip_rtx_p
1127 && targetm.sched.skip_rtx_p (x))
1128 {
1129 *nx = XVECEXP (x, 0 ,0);
1130 *nmode = VOIDmode;
1131 return 1;
1132 }
1133
1134 return 0;
1135 }
1136
1137 /* Returns LHS and RHS are ok to be scheduled separately. */
1138 static bool
1139 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1140 {
1141 if (lhs == NULL || rhs == NULL)
1142 return false;
1143
1144 /* Do not schedule constants as rhs: no point to use reg, if const
1145 can be used. Moreover, scheduling const as rhs may lead to mode
1146 mismatch cause consts don't have modes but they could be merged
1147 from branches where the same const used in different modes. */
1148 if (CONSTANT_P (rhs))
1149 return false;
1150
1151 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1152 if (COMPARISON_P (rhs))
1153 return false;
1154
1155 /* Do not allow single REG to be an rhs. */
1156 if (REG_P (rhs))
1157 return false;
1158
1159 /* See comment at find_used_regs_1 (*1) for explanation of this
1160 restriction. */
1161 /* FIXME: remove this later. */
1162 if (MEM_P (lhs))
1163 return false;
1164
1165 /* This will filter all tricky things like ZERO_EXTRACT etc.
1166 For now we don't handle it. */
1167 if (!REG_P (lhs) && !MEM_P (lhs))
1168 return false;
1169
1170 return true;
1171 }
1172
1173 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1174 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1175 used e.g. for insns from recovery blocks. */
1176 static void
1177 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1178 {
1179 hash_rtx_callback_function hrcf;
1180 int insn_class;
1181
1182 SET_VINSN_INSN_RTX (vi) = insn;
1183 VINSN_COUNT (vi) = 0;
1184 vi->cost = -1;
1185
1186 if (INSN_NOP_P (insn))
1187 return;
1188
1189 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1190 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1191 else
1192 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1193
1194 /* Hash vinsn depending on whether it is separable or not. */
1195 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1196 if (VINSN_SEPARABLE_P (vi))
1197 {
1198 rtx rhs = VINSN_RHS (vi);
1199
1200 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1203 VOIDmode, NULL, NULL,
1204 false, hrcf);
1205 }
1206 else
1207 {
1208 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1209 NULL, NULL, false, hrcf);
1210 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1211 }
1212
1213 insn_class = haifa_classify_insn (insn);
1214 if (insn_class >= 2
1215 && (!targetm.sched.get_insn_spec_ds
1216 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1217 == 0)))
1218 VINSN_MAY_TRAP_P (vi) = true;
1219 else
1220 VINSN_MAY_TRAP_P (vi) = false;
1221 }
1222
1223 /* Indicate that VI has become the part of an rtx object. */
1224 void
1225 vinsn_attach (vinsn_t vi)
1226 {
1227 /* Assert that VI is not pending for deletion. */
1228 gcc_assert (VINSN_INSN_RTX (vi));
1229
1230 VINSN_COUNT (vi)++;
1231 }
1232
1233 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1234 VINSN_TYPE (VI). */
1235 static vinsn_t
1236 vinsn_create (insn_t insn, bool force_unique_p)
1237 {
1238 vinsn_t vi = XCNEW (struct vinsn_def);
1239
1240 vinsn_init (vi, insn, force_unique_p);
1241 return vi;
1242 }
1243
1244 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1245 the copy. */
1246 vinsn_t
1247 vinsn_copy (vinsn_t vi, bool reattach_p)
1248 {
1249 rtx copy;
1250 bool unique = VINSN_UNIQUE_P (vi);
1251 vinsn_t new_vi;
1252
1253 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1254 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1255 if (reattach_p)
1256 {
1257 vinsn_detach (vi);
1258 vinsn_attach (new_vi);
1259 }
1260
1261 return new_vi;
1262 }
1263
1264 /* Delete the VI vinsn and free its data. */
1265 static void
1266 vinsn_delete (vinsn_t vi)
1267 {
1268 gcc_assert (VINSN_COUNT (vi) == 0);
1269
1270 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1271 {
1272 return_regset_to_pool (VINSN_REG_SETS (vi));
1273 return_regset_to_pool (VINSN_REG_USES (vi));
1274 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1275 }
1276
1277 free (vi);
1278 }
1279
1280 /* Indicate that VI is no longer a part of some rtx object.
1281 Remove VI if it is no longer needed. */
1282 void
1283 vinsn_detach (vinsn_t vi)
1284 {
1285 gcc_assert (VINSN_COUNT (vi) > 0);
1286
1287 if (--VINSN_COUNT (vi) == 0)
1288 vinsn_delete (vi);
1289 }
1290
1291 /* Returns TRUE if VI is a branch. */
1292 bool
1293 vinsn_cond_branch_p (vinsn_t vi)
1294 {
1295 insn_t insn;
1296
1297 if (!VINSN_UNIQUE_P (vi))
1298 return false;
1299
1300 insn = VINSN_INSN_RTX (vi);
1301 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1302 return false;
1303
1304 return control_flow_insn_p (insn);
1305 }
1306
1307 /* Return latency of INSN. */
1308 static int
1309 sel_insn_rtx_cost (rtx insn)
1310 {
1311 int cost;
1312
1313 /* A USE insn, or something else we don't need to
1314 understand. We can't pass these directly to
1315 result_ready_cost or insn_default_latency because it will
1316 trigger a fatal error for unrecognizable insns. */
1317 if (recog_memoized (insn) < 0)
1318 cost = 0;
1319 else
1320 {
1321 cost = insn_default_latency (insn);
1322
1323 if (cost < 0)
1324 cost = 0;
1325 }
1326
1327 return cost;
1328 }
1329
1330 /* Return the cost of the VI.
1331 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1332 int
1333 sel_vinsn_cost (vinsn_t vi)
1334 {
1335 int cost = vi->cost;
1336
1337 if (cost < 0)
1338 {
1339 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1340 vi->cost = cost;
1341 }
1342
1343 return cost;
1344 }
1345 \f
1346
1347 /* Functions for insn emitting. */
1348
1349 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1350 EXPR and SEQNO. */
1351 insn_t
1352 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1353 {
1354 insn_t new_insn;
1355
1356 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1357
1358 new_insn = emit_insn_after (pattern, after);
1359 set_insn_init (expr, NULL, seqno);
1360 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1361
1362 return new_insn;
1363 }
1364
1365 /* Force newly generated vinsns to be unique. */
1366 static bool init_insn_force_unique_p = false;
1367
1368 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1369 initialize its data from EXPR and SEQNO. */
1370 insn_t
1371 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1372 insn_t after)
1373 {
1374 insn_t insn;
1375
1376 gcc_assert (!init_insn_force_unique_p);
1377
1378 init_insn_force_unique_p = true;
1379 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1380 CANT_MOVE (insn) = 1;
1381 init_insn_force_unique_p = false;
1382
1383 return insn;
1384 }
1385
1386 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1387 take it as a new vinsn instead of EXPR's vinsn.
1388 We simplify insns later, after scheduling region in
1389 simplify_changed_insns. */
1390 insn_t
1391 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1392 insn_t after)
1393 {
1394 expr_t emit_expr;
1395 insn_t insn;
1396 int flags;
1397
1398 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1399 seqno);
1400 insn = EXPR_INSN_RTX (emit_expr);
1401
1402 /* The insn may come from the transformation cache, which may hold already
1403 deleted insns, so mark it as not deleted. */
1404 INSN_DELETED_P (insn) = 0;
1405
1406 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1407
1408 flags = INSN_INIT_TODO_SSID;
1409 if (INSN_LUID (insn) == 0)
1410 flags |= INSN_INIT_TODO_LUID;
1411 sel_init_new_insn (insn, flags);
1412
1413 return insn;
1414 }
1415
1416 /* Move insn from EXPR after AFTER. */
1417 insn_t
1418 sel_move_insn (expr_t expr, int seqno, insn_t after)
1419 {
1420 insn_t insn = EXPR_INSN_RTX (expr);
1421 basic_block bb = BLOCK_FOR_INSN (after);
1422 insn_t next = NEXT_INSN (after);
1423
1424 /* Assert that in move_op we disconnected this insn properly. */
1425 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1426 SET_PREV_INSN (insn) = after;
1427 SET_NEXT_INSN (insn) = next;
1428
1429 SET_NEXT_INSN (after) = insn;
1430 SET_PREV_INSN (next) = insn;
1431
1432 /* Update links from insn to bb and vice versa. */
1433 df_insn_change_bb (insn, bb);
1434 if (BB_END (bb) == after)
1435 SET_BB_END (bb) = insn;
1436
1437 prepare_insn_expr (insn, seqno);
1438 return insn;
1439 }
1440
1441 \f
1442 /* Functions to work with right-hand sides. */
1443
1444 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1445 VECT and return true when found. Use NEW_VINSN for comparison only when
1446 COMPARE_VINSNS is true. Write to INDP the index on which
1447 the search has stopped, such that inserting the new element at INDP will
1448 retain VECT's sort order. */
1449 static bool
1450 find_in_history_vect_1 (vec<expr_history_def> vect,
1451 unsigned uid, vinsn_t new_vinsn,
1452 bool compare_vinsns, int *indp)
1453 {
1454 expr_history_def *arr;
1455 int i, j, len = vect.length ();
1456
1457 if (len == 0)
1458 {
1459 *indp = 0;
1460 return false;
1461 }
1462
1463 arr = vect.address ();
1464 i = 0, j = len - 1;
1465
1466 while (i <= j)
1467 {
1468 unsigned auid = arr[i].uid;
1469 vinsn_t avinsn = arr[i].new_expr_vinsn;
1470
1471 if (auid == uid
1472 /* When undoing transformation on a bookkeeping copy, the new vinsn
1473 may not be exactly equal to the one that is saved in the vector.
1474 This is because the insn whose copy we're checking was possibly
1475 substituted itself. */
1476 && (! compare_vinsns
1477 || vinsn_equal_p (avinsn, new_vinsn)))
1478 {
1479 *indp = i;
1480 return true;
1481 }
1482 else if (auid > uid)
1483 break;
1484 i++;
1485 }
1486
1487 *indp = i;
1488 return false;
1489 }
1490
1491 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1492 the position found or -1, if no such value is in vector.
1493 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1494 int
1495 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1496 vinsn_t new_vinsn, bool originators_p)
1497 {
1498 int ind;
1499
1500 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1501 false, &ind))
1502 return ind;
1503
1504 if (INSN_ORIGINATORS (insn) && originators_p)
1505 {
1506 unsigned uid;
1507 bitmap_iterator bi;
1508
1509 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1510 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1511 return ind;
1512 }
1513
1514 return -1;
1515 }
1516
1517 /* Insert new element in a sorted history vector pointed to by PVECT,
1518 if it is not there already. The element is searched using
1519 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1520 the history of a transformation. */
1521 void
1522 insert_in_history_vect (vec<expr_history_def> *pvect,
1523 unsigned uid, enum local_trans_type type,
1524 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1525 ds_t spec_ds)
1526 {
1527 vec<expr_history_def> vect = *pvect;
1528 expr_history_def temp;
1529 bool res;
1530 int ind;
1531
1532 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1533
1534 if (res)
1535 {
1536 expr_history_def *phist = &vect[ind];
1537
1538 /* It is possible that speculation types of expressions that were
1539 propagated through different paths will be different here. In this
1540 case, merge the status to get the correct check later. */
1541 if (phist->spec_ds != spec_ds)
1542 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1543 return;
1544 }
1545
1546 temp.uid = uid;
1547 temp.old_expr_vinsn = old_expr_vinsn;
1548 temp.new_expr_vinsn = new_expr_vinsn;
1549 temp.spec_ds = spec_ds;
1550 temp.type = type;
1551
1552 vinsn_attach (old_expr_vinsn);
1553 vinsn_attach (new_expr_vinsn);
1554 vect.safe_insert (ind, temp);
1555 *pvect = vect;
1556 }
1557
1558 /* Free history vector PVECT. */
1559 static void
1560 free_history_vect (vec<expr_history_def> &pvect)
1561 {
1562 unsigned i;
1563 expr_history_def *phist;
1564
1565 if (! pvect.exists ())
1566 return;
1567
1568 for (i = 0; pvect.iterate (i, &phist); i++)
1569 {
1570 vinsn_detach (phist->old_expr_vinsn);
1571 vinsn_detach (phist->new_expr_vinsn);
1572 }
1573
1574 pvect.release ();
1575 }
1576
1577 /* Merge vector FROM to PVECT. */
1578 static void
1579 merge_history_vect (vec<expr_history_def> *pvect,
1580 vec<expr_history_def> from)
1581 {
1582 expr_history_def *phist;
1583 int i;
1584
1585 /* We keep this vector sorted. */
1586 for (i = 0; from.iterate (i, &phist); i++)
1587 insert_in_history_vect (pvect, phist->uid, phist->type,
1588 phist->old_expr_vinsn, phist->new_expr_vinsn,
1589 phist->spec_ds);
1590 }
1591
1592 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1593 bool
1594 vinsn_equal_p (vinsn_t x, vinsn_t y)
1595 {
1596 rtx_equal_p_callback_function repcf;
1597
1598 if (x == y)
1599 return true;
1600
1601 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1602 return false;
1603
1604 if (VINSN_HASH (x) != VINSN_HASH (y))
1605 return false;
1606
1607 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1608 if (VINSN_SEPARABLE_P (x))
1609 {
1610 /* Compare RHSes of VINSNs. */
1611 gcc_assert (VINSN_RHS (x));
1612 gcc_assert (VINSN_RHS (y));
1613
1614 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1615 }
1616
1617 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1618 }
1619 \f
1620
1621 /* Functions for working with expressions. */
1622
1623 /* Initialize EXPR. */
1624 static void
1625 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1626 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1627 ds_t spec_to_check_ds, int orig_sched_cycle,
1628 vec<expr_history_def> history,
1629 signed char target_available,
1630 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1631 bool cant_move)
1632 {
1633 vinsn_attach (vi);
1634
1635 EXPR_VINSN (expr) = vi;
1636 EXPR_SPEC (expr) = spec;
1637 EXPR_USEFULNESS (expr) = use;
1638 EXPR_PRIORITY (expr) = priority;
1639 EXPR_PRIORITY_ADJ (expr) = 0;
1640 EXPR_SCHED_TIMES (expr) = sched_times;
1641 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1642 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1643 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1644 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1645
1646 if (history.exists ())
1647 EXPR_HISTORY_OF_CHANGES (expr) = history;
1648 else
1649 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1650
1651 EXPR_TARGET_AVAILABLE (expr) = target_available;
1652 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1653 EXPR_WAS_RENAMED (expr) = was_renamed;
1654 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1655 EXPR_CANT_MOVE (expr) = cant_move;
1656 }
1657
1658 /* Make a copy of the expr FROM into the expr TO. */
1659 void
1660 copy_expr (expr_t to, expr_t from)
1661 {
1662 vec<expr_history_def> temp = vNULL;
1663
1664 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1665 {
1666 unsigned i;
1667 expr_history_def *phist;
1668
1669 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1670 for (i = 0;
1671 temp.iterate (i, &phist);
1672 i++)
1673 {
1674 vinsn_attach (phist->old_expr_vinsn);
1675 vinsn_attach (phist->new_expr_vinsn);
1676 }
1677 }
1678
1679 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1680 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1681 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1682 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1683 EXPR_ORIG_SCHED_CYCLE (from), temp,
1684 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1685 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1686 EXPR_CANT_MOVE (from));
1687 }
1688
1689 /* Same, but the final expr will not ever be in av sets, so don't copy
1690 "uninteresting" data such as bitmap cache. */
1691 void
1692 copy_expr_onside (expr_t to, expr_t from)
1693 {
1694 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1695 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1696 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1697 vNULL,
1698 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1699 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1700 EXPR_CANT_MOVE (from));
1701 }
1702
1703 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1704 initializing new insns. */
1705 static void
1706 prepare_insn_expr (insn_t insn, int seqno)
1707 {
1708 expr_t expr = INSN_EXPR (insn);
1709 ds_t ds;
1710
1711 INSN_SEQNO (insn) = seqno;
1712 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1713 EXPR_SPEC (expr) = 0;
1714 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1715 EXPR_WAS_SUBSTITUTED (expr) = 0;
1716 EXPR_WAS_RENAMED (expr) = 0;
1717 EXPR_TARGET_AVAILABLE (expr) = 1;
1718 INSN_LIVE_VALID_P (insn) = false;
1719
1720 /* ??? If this expression is speculative, make its dependence
1721 as weak as possible. We can filter this expression later
1722 in process_spec_exprs, because we do not distinguish
1723 between the status we got during compute_av_set and the
1724 existing status. To be fixed. */
1725 ds = EXPR_SPEC_DONE_DS (expr);
1726 if (ds)
1727 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1728
1729 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1730 }
1731
1732 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1733 is non-null when expressions are merged from different successors at
1734 a split point. */
1735 static void
1736 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1737 {
1738 if (EXPR_TARGET_AVAILABLE (to) < 0
1739 || EXPR_TARGET_AVAILABLE (from) < 0)
1740 EXPR_TARGET_AVAILABLE (to) = -1;
1741 else
1742 {
1743 /* We try to detect the case when one of the expressions
1744 can only be reached through another one. In this case,
1745 we can do better. */
1746 if (split_point == NULL)
1747 {
1748 int toind, fromind;
1749
1750 toind = EXPR_ORIG_BB_INDEX (to);
1751 fromind = EXPR_ORIG_BB_INDEX (from);
1752
1753 if (toind && toind == fromind)
1754 /* Do nothing -- everything is done in
1755 merge_with_other_exprs. */
1756 ;
1757 else
1758 EXPR_TARGET_AVAILABLE (to) = -1;
1759 }
1760 else if (EXPR_TARGET_AVAILABLE (from) == 0
1761 && EXPR_LHS (from)
1762 && REG_P (EXPR_LHS (from))
1763 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1764 EXPR_TARGET_AVAILABLE (to) = -1;
1765 else
1766 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1767 }
1768 }
1769
1770 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1771 is non-null when expressions are merged from different successors at
1772 a split point. */
1773 static void
1774 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1775 {
1776 ds_t old_to_ds, old_from_ds;
1777
1778 old_to_ds = EXPR_SPEC_DONE_DS (to);
1779 old_from_ds = EXPR_SPEC_DONE_DS (from);
1780
1781 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1782 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1783 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1784
1785 /* When merging e.g. control & data speculative exprs, or a control
1786 speculative with a control&data speculative one, we really have
1787 to change vinsn too. Also, when speculative status is changed,
1788 we also need to record this as a transformation in expr's history. */
1789 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1790 {
1791 old_to_ds = ds_get_speculation_types (old_to_ds);
1792 old_from_ds = ds_get_speculation_types (old_from_ds);
1793
1794 if (old_to_ds != old_from_ds)
1795 {
1796 ds_t record_ds;
1797
1798 /* When both expressions are speculative, we need to change
1799 the vinsn first. */
1800 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1801 {
1802 int res;
1803
1804 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1805 gcc_assert (res >= 0);
1806 }
1807
1808 if (split_point != NULL)
1809 {
1810 /* Record the change with proper status. */
1811 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1812 record_ds &= ~(old_to_ds & SPECULATIVE);
1813 record_ds &= ~(old_from_ds & SPECULATIVE);
1814
1815 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1816 INSN_UID (split_point), TRANS_SPECULATION,
1817 EXPR_VINSN (from), EXPR_VINSN (to),
1818 record_ds);
1819 }
1820 }
1821 }
1822 }
1823
1824
1825 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1826 this is done along different paths. */
1827 void
1828 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1829 {
1830 /* Choose the maximum of the specs of merged exprs. This is required
1831 for correctness of bookkeeping. */
1832 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1833 EXPR_SPEC (to) = EXPR_SPEC (from);
1834
1835 if (split_point)
1836 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1837 else
1838 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1839 EXPR_USEFULNESS (from));
1840
1841 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1842 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1843
1844 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1845 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1846
1847 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1848 EXPR_ORIG_BB_INDEX (to) = 0;
1849
1850 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1851 EXPR_ORIG_SCHED_CYCLE (from));
1852
1853 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1854 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1855 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1856
1857 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1858 EXPR_HISTORY_OF_CHANGES (from));
1859 update_target_availability (to, from, split_point);
1860 update_speculative_bits (to, from, split_point);
1861 }
1862
1863 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1864 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1865 are merged from different successors at a split point. */
1866 void
1867 merge_expr (expr_t to, expr_t from, insn_t split_point)
1868 {
1869 vinsn_t to_vi = EXPR_VINSN (to);
1870 vinsn_t from_vi = EXPR_VINSN (from);
1871
1872 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1873
1874 /* Make sure that speculative pattern is propagated into exprs that
1875 have non-speculative one. This will provide us with consistent
1876 speculative bits and speculative patterns inside expr. */
1877 if ((EXPR_SPEC_DONE_DS (from) != 0
1878 && EXPR_SPEC_DONE_DS (to) == 0)
1879 /* Do likewise for volatile insns, so that we always retain
1880 the may_trap_p bit on the resulting expression. */
1881 || (VINSN_MAY_TRAP_P (EXPR_VINSN (from))
1882 && !VINSN_MAY_TRAP_P (EXPR_VINSN (to))))
1883 change_vinsn_in_expr (to, EXPR_VINSN (from));
1884
1885 merge_expr_data (to, from, split_point);
1886 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1887 }
1888
1889 /* Clear the information of this EXPR. */
1890 void
1891 clear_expr (expr_t expr)
1892 {
1893
1894 vinsn_detach (EXPR_VINSN (expr));
1895 EXPR_VINSN (expr) = NULL;
1896
1897 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1898 }
1899
1900 /* For a given LV_SET, mark EXPR having unavailable target register. */
1901 static void
1902 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1903 {
1904 if (EXPR_SEPARABLE_P (expr))
1905 {
1906 if (REG_P (EXPR_LHS (expr))
1907 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1908 {
1909 /* If it's an insn like r1 = use (r1, ...), and it exists in
1910 different forms in each of the av_sets being merged, we can't say
1911 whether original destination register is available or not.
1912 However, this still works if destination register is not used
1913 in the original expression: if the branch at which LV_SET we're
1914 looking here is not actually 'other branch' in sense that same
1915 expression is available through it (but it can't be determined
1916 at computation stage because of transformations on one of the
1917 branches), it still won't affect the availability.
1918 Liveness of a register somewhere on a code motion path means
1919 it's either read somewhere on a codemotion path, live on
1920 'other' branch, live at the point immediately following
1921 the original operation, or is read by the original operation.
1922 The latter case is filtered out in the condition below.
1923 It still doesn't cover the case when register is defined and used
1924 somewhere within the code motion path, and in this case we could
1925 miss a unifying code motion along both branches using a renamed
1926 register, but it won't affect a code correctness since upon
1927 an actual code motion a bookkeeping code would be generated. */
1928 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1929 EXPR_LHS (expr)))
1930 EXPR_TARGET_AVAILABLE (expr) = -1;
1931 else
1932 EXPR_TARGET_AVAILABLE (expr) = false;
1933 }
1934 }
1935 else
1936 {
1937 unsigned regno;
1938 reg_set_iterator rsi;
1939
1940 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1941 0, regno, rsi)
1942 if (bitmap_bit_p (lv_set, regno))
1943 {
1944 EXPR_TARGET_AVAILABLE (expr) = false;
1945 break;
1946 }
1947
1948 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1949 0, regno, rsi)
1950 if (bitmap_bit_p (lv_set, regno))
1951 {
1952 EXPR_TARGET_AVAILABLE (expr) = false;
1953 break;
1954 }
1955 }
1956 }
1957
1958 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1959 or dependence status have changed, 2 when also the target register
1960 became unavailable, 0 if nothing had to be changed. */
1961 int
1962 speculate_expr (expr_t expr, ds_t ds)
1963 {
1964 int res;
1965 rtx orig_insn_rtx;
1966 rtx spec_pat;
1967 ds_t target_ds, current_ds;
1968
1969 /* Obtain the status we need to put on EXPR. */
1970 target_ds = (ds & SPECULATIVE);
1971 current_ds = EXPR_SPEC_DONE_DS (expr);
1972 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1973
1974 orig_insn_rtx = EXPR_INSN_RTX (expr);
1975
1976 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1977
1978 switch (res)
1979 {
1980 case 0:
1981 EXPR_SPEC_DONE_DS (expr) = ds;
1982 return current_ds != ds ? 1 : 0;
1983
1984 case 1:
1985 {
1986 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1987 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1988
1989 change_vinsn_in_expr (expr, spec_vinsn);
1990 EXPR_SPEC_DONE_DS (expr) = ds;
1991 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1992
1993 /* Do not allow clobbering the address register of speculative
1994 insns. */
1995 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1996 expr_dest_reg (expr)))
1997 {
1998 EXPR_TARGET_AVAILABLE (expr) = false;
1999 return 2;
2000 }
2001
2002 return 1;
2003 }
2004
2005 case -1:
2006 return -1;
2007
2008 default:
2009 gcc_unreachable ();
2010 return -1;
2011 }
2012 }
2013
2014 /* Return a destination register, if any, of EXPR. */
2015 rtx
2016 expr_dest_reg (expr_t expr)
2017 {
2018 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2019
2020 if (dest != NULL_RTX && REG_P (dest))
2021 return dest;
2022
2023 return NULL_RTX;
2024 }
2025
2026 /* Returns the REGNO of the R's destination. */
2027 unsigned
2028 expr_dest_regno (expr_t expr)
2029 {
2030 rtx dest = expr_dest_reg (expr);
2031
2032 gcc_assert (dest != NULL_RTX);
2033 return REGNO (dest);
2034 }
2035
2036 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2037 AV_SET having unavailable target register. */
2038 void
2039 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2040 {
2041 expr_t expr;
2042 av_set_iterator avi;
2043
2044 FOR_EACH_EXPR (expr, avi, join_set)
2045 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2046 set_unavailable_target_for_expr (expr, lv_set);
2047 }
2048 \f
2049
2050 /* Returns true if REG (at least partially) is present in REGS. */
2051 bool
2052 register_unavailable_p (regset regs, rtx reg)
2053 {
2054 unsigned regno, end_regno;
2055
2056 regno = REGNO (reg);
2057 if (bitmap_bit_p (regs, regno))
2058 return true;
2059
2060 end_regno = END_REGNO (reg);
2061
2062 while (++regno < end_regno)
2063 if (bitmap_bit_p (regs, regno))
2064 return true;
2065
2066 return false;
2067 }
2068
2069 /* Av set functions. */
2070
2071 /* Add a new element to av set SETP.
2072 Return the element added. */
2073 static av_set_t
2074 av_set_add_element (av_set_t *setp)
2075 {
2076 /* Insert at the beginning of the list. */
2077 _list_add (setp);
2078 return *setp;
2079 }
2080
2081 /* Add EXPR to SETP. */
2082 void
2083 av_set_add (av_set_t *setp, expr_t expr)
2084 {
2085 av_set_t elem;
2086
2087 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2088 elem = av_set_add_element (setp);
2089 copy_expr (_AV_SET_EXPR (elem), expr);
2090 }
2091
2092 /* Same, but do not copy EXPR. */
2093 static void
2094 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2095 {
2096 av_set_t elem;
2097
2098 elem = av_set_add_element (setp);
2099 *_AV_SET_EXPR (elem) = *expr;
2100 }
2101
2102 /* Remove expr pointed to by IP from the av_set. */
2103 void
2104 av_set_iter_remove (av_set_iterator *ip)
2105 {
2106 clear_expr (_AV_SET_EXPR (*ip->lp));
2107 _list_iter_remove (ip);
2108 }
2109
2110 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2111 sense of vinsn_equal_p function. Return NULL if no such expr is
2112 in SET was found. */
2113 expr_t
2114 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2115 {
2116 expr_t expr;
2117 av_set_iterator i;
2118
2119 FOR_EACH_EXPR (expr, i, set)
2120 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2121 return expr;
2122 return NULL;
2123 }
2124
2125 /* Same, but also remove the EXPR found. */
2126 static expr_t
2127 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2128 {
2129 expr_t expr;
2130 av_set_iterator i;
2131
2132 FOR_EACH_EXPR_1 (expr, i, setp)
2133 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2134 {
2135 _list_iter_remove_nofree (&i);
2136 return expr;
2137 }
2138 return NULL;
2139 }
2140
2141 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2142 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2143 Returns NULL if no such expr is in SET was found. */
2144 static expr_t
2145 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2146 {
2147 expr_t cur_expr;
2148 av_set_iterator i;
2149
2150 FOR_EACH_EXPR (cur_expr, i, set)
2151 {
2152 if (cur_expr == expr)
2153 continue;
2154 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2155 return cur_expr;
2156 }
2157
2158 return NULL;
2159 }
2160
2161 /* If other expression is already in AVP, remove one of them. */
2162 expr_t
2163 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2164 {
2165 expr_t expr2;
2166
2167 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2168 if (expr2 != NULL)
2169 {
2170 /* Reset target availability on merge, since taking it only from one
2171 of the exprs would be controversial for different code. */
2172 EXPR_TARGET_AVAILABLE (expr2) = -1;
2173 EXPR_USEFULNESS (expr2) = 0;
2174
2175 merge_expr (expr2, expr, NULL);
2176
2177 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2178 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2179
2180 av_set_iter_remove (ip);
2181 return expr2;
2182 }
2183
2184 return expr;
2185 }
2186
2187 /* Return true if there is an expr that correlates to VI in SET. */
2188 bool
2189 av_set_is_in_p (av_set_t set, vinsn_t vi)
2190 {
2191 return av_set_lookup (set, vi) != NULL;
2192 }
2193
2194 /* Return a copy of SET. */
2195 av_set_t
2196 av_set_copy (av_set_t set)
2197 {
2198 expr_t expr;
2199 av_set_iterator i;
2200 av_set_t res = NULL;
2201
2202 FOR_EACH_EXPR (expr, i, set)
2203 av_set_add (&res, expr);
2204
2205 return res;
2206 }
2207
2208 /* Join two av sets that do not have common elements by attaching second set
2209 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2210 _AV_SET_NEXT of first set's last element). */
2211 static void
2212 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2213 {
2214 gcc_assert (*to_tailp == NULL);
2215 *to_tailp = *fromp;
2216 *fromp = NULL;
2217 }
2218
2219 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2220 pointed to by FROMP afterwards. */
2221 void
2222 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2223 {
2224 expr_t expr1;
2225 av_set_iterator i;
2226
2227 /* Delete from TOP all exprs, that present in FROMP. */
2228 FOR_EACH_EXPR_1 (expr1, i, top)
2229 {
2230 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2231
2232 if (expr2)
2233 {
2234 merge_expr (expr2, expr1, insn);
2235 av_set_iter_remove (&i);
2236 }
2237 }
2238
2239 join_distinct_sets (i.lp, fromp);
2240 }
2241
2242 /* Same as above, but also update availability of target register in
2243 TOP judging by TO_LV_SET and FROM_LV_SET. */
2244 void
2245 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2246 regset from_lv_set, insn_t insn)
2247 {
2248 expr_t expr1;
2249 av_set_iterator i;
2250 av_set_t *to_tailp, in_both_set = NULL;
2251
2252 /* Delete from TOP all expres, that present in FROMP. */
2253 FOR_EACH_EXPR_1 (expr1, i, top)
2254 {
2255 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2256
2257 if (expr2)
2258 {
2259 /* It may be that the expressions have different destination
2260 registers, in which case we need to check liveness here. */
2261 if (EXPR_SEPARABLE_P (expr1))
2262 {
2263 int regno1 = (REG_P (EXPR_LHS (expr1))
2264 ? (int) expr_dest_regno (expr1) : -1);
2265 int regno2 = (REG_P (EXPR_LHS (expr2))
2266 ? (int) expr_dest_regno (expr2) : -1);
2267
2268 /* ??? We don't have a way to check restrictions for
2269 *other* register on the current path, we did it only
2270 for the current target register. Give up. */
2271 if (regno1 != regno2)
2272 EXPR_TARGET_AVAILABLE (expr2) = -1;
2273 }
2274 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2275 EXPR_TARGET_AVAILABLE (expr2) = -1;
2276
2277 merge_expr (expr2, expr1, insn);
2278 av_set_add_nocopy (&in_both_set, expr2);
2279 av_set_iter_remove (&i);
2280 }
2281 else
2282 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2283 FROM_LV_SET. */
2284 set_unavailable_target_for_expr (expr1, from_lv_set);
2285 }
2286 to_tailp = i.lp;
2287
2288 /* These expressions are not present in TOP. Check liveness
2289 restrictions on TO_LV_SET. */
2290 FOR_EACH_EXPR (expr1, i, *fromp)
2291 set_unavailable_target_for_expr (expr1, to_lv_set);
2292
2293 join_distinct_sets (i.lp, &in_both_set);
2294 join_distinct_sets (to_tailp, fromp);
2295 }
2296
2297 /* Clear av_set pointed to by SETP. */
2298 void
2299 av_set_clear (av_set_t *setp)
2300 {
2301 expr_t expr;
2302 av_set_iterator i;
2303
2304 FOR_EACH_EXPR_1 (expr, i, setp)
2305 av_set_iter_remove (&i);
2306
2307 gcc_assert (*setp == NULL);
2308 }
2309
2310 /* Leave only one non-speculative element in the SETP. */
2311 void
2312 av_set_leave_one_nonspec (av_set_t *setp)
2313 {
2314 expr_t expr;
2315 av_set_iterator i;
2316 bool has_one_nonspec = false;
2317
2318 /* Keep all speculative exprs, and leave one non-speculative
2319 (the first one). */
2320 FOR_EACH_EXPR_1 (expr, i, setp)
2321 {
2322 if (!EXPR_SPEC_DONE_DS (expr))
2323 {
2324 if (has_one_nonspec)
2325 av_set_iter_remove (&i);
2326 else
2327 has_one_nonspec = true;
2328 }
2329 }
2330 }
2331
2332 /* Return the N'th element of the SET. */
2333 expr_t
2334 av_set_element (av_set_t set, int n)
2335 {
2336 expr_t expr;
2337 av_set_iterator i;
2338
2339 FOR_EACH_EXPR (expr, i, set)
2340 if (n-- == 0)
2341 return expr;
2342
2343 gcc_unreachable ();
2344 return NULL;
2345 }
2346
2347 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2348 void
2349 av_set_substract_cond_branches (av_set_t *avp)
2350 {
2351 av_set_iterator i;
2352 expr_t expr;
2353
2354 FOR_EACH_EXPR_1 (expr, i, avp)
2355 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2356 av_set_iter_remove (&i);
2357 }
2358
2359 /* Multiplies usefulness attribute of each member of av-set *AVP by
2360 value PROB / ALL_PROB. */
2361 void
2362 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2363 {
2364 av_set_iterator i;
2365 expr_t expr;
2366
2367 FOR_EACH_EXPR (expr, i, av)
2368 EXPR_USEFULNESS (expr) = (all_prob
2369 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2370 : 0);
2371 }
2372
2373 /* Leave in AVP only those expressions, which are present in AV,
2374 and return it, merging history expressions. */
2375 void
2376 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2377 {
2378 av_set_iterator i;
2379 expr_t expr, expr2;
2380
2381 FOR_EACH_EXPR_1 (expr, i, avp)
2382 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2383 av_set_iter_remove (&i);
2384 else
2385 /* When updating av sets in bookkeeping blocks, we can add more insns
2386 there which will be transformed but the upper av sets will not
2387 reflect those transformations. We then fail to undo those
2388 when searching for such insns. So merge the history saved
2389 in the av set of the block we are processing. */
2390 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2391 EXPR_HISTORY_OF_CHANGES (expr2));
2392 }
2393
2394 \f
2395
2396 /* Dependence hooks to initialize insn data. */
2397
2398 /* This is used in hooks callable from dependence analysis when initializing
2399 instruction's data. */
2400 static struct
2401 {
2402 /* Where the dependence was found (lhs/rhs). */
2403 deps_where_t where;
2404
2405 /* The actual data object to initialize. */
2406 idata_t id;
2407
2408 /* True when the insn should not be made clonable. */
2409 bool force_unique_p;
2410
2411 /* True when insn should be treated as of type USE, i.e. never renamed. */
2412 bool force_use_p;
2413 } deps_init_id_data;
2414
2415
2416 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2417 clonable. */
2418 static void
2419 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2420 {
2421 int type;
2422
2423 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2424 That clonable insns which can be separated into lhs and rhs have type SET.
2425 Other clonable insns have type USE. */
2426 type = GET_CODE (insn);
2427
2428 /* Only regular insns could be cloned. */
2429 if (type == INSN && !force_unique_p)
2430 type = SET;
2431 else if (type == JUMP_INSN && simplejump_p (insn))
2432 type = PC;
2433 else if (type == DEBUG_INSN)
2434 type = !force_unique_p ? USE : INSN;
2435
2436 IDATA_TYPE (id) = type;
2437 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2438 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2439 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2440 }
2441
2442 /* Start initializing insn data. */
2443 static void
2444 deps_init_id_start_insn (insn_t insn)
2445 {
2446 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2447
2448 setup_id_for_insn (deps_init_id_data.id, insn,
2449 deps_init_id_data.force_unique_p);
2450 deps_init_id_data.where = DEPS_IN_INSN;
2451 }
2452
2453 /* Start initializing lhs data. */
2454 static void
2455 deps_init_id_start_lhs (rtx lhs)
2456 {
2457 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2458 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2459
2460 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2461 {
2462 IDATA_LHS (deps_init_id_data.id) = lhs;
2463 deps_init_id_data.where = DEPS_IN_LHS;
2464 }
2465 }
2466
2467 /* Finish initializing lhs data. */
2468 static void
2469 deps_init_id_finish_lhs (void)
2470 {
2471 deps_init_id_data.where = DEPS_IN_INSN;
2472 }
2473
2474 /* Note a set of REGNO. */
2475 static void
2476 deps_init_id_note_reg_set (int regno)
2477 {
2478 haifa_note_reg_set (regno);
2479
2480 if (deps_init_id_data.where == DEPS_IN_RHS)
2481 deps_init_id_data.force_use_p = true;
2482
2483 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2484 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2485
2486 #ifdef STACK_REGS
2487 /* Make instructions that set stack registers to be ineligible for
2488 renaming to avoid issues with find_used_regs. */
2489 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2490 deps_init_id_data.force_use_p = true;
2491 #endif
2492 }
2493
2494 /* Note a clobber of REGNO. */
2495 static void
2496 deps_init_id_note_reg_clobber (int regno)
2497 {
2498 haifa_note_reg_clobber (regno);
2499
2500 if (deps_init_id_data.where == DEPS_IN_RHS)
2501 deps_init_id_data.force_use_p = true;
2502
2503 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2504 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2505 }
2506
2507 /* Note a use of REGNO. */
2508 static void
2509 deps_init_id_note_reg_use (int regno)
2510 {
2511 haifa_note_reg_use (regno);
2512
2513 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2514 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2515 }
2516
2517 /* Start initializing rhs data. */
2518 static void
2519 deps_init_id_start_rhs (rtx rhs)
2520 {
2521 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2522
2523 /* And there was no sel_deps_reset_to_insn (). */
2524 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2525 {
2526 IDATA_RHS (deps_init_id_data.id) = rhs;
2527 deps_init_id_data.where = DEPS_IN_RHS;
2528 }
2529 }
2530
2531 /* Finish initializing rhs data. */
2532 static void
2533 deps_init_id_finish_rhs (void)
2534 {
2535 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2536 || deps_init_id_data.where == DEPS_IN_INSN);
2537 deps_init_id_data.where = DEPS_IN_INSN;
2538 }
2539
2540 /* Finish initializing insn data. */
2541 static void
2542 deps_init_id_finish_insn (void)
2543 {
2544 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2545
2546 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2547 {
2548 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2549 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2550
2551 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2552 || deps_init_id_data.force_use_p)
2553 {
2554 /* This should be a USE, as we don't want to schedule its RHS
2555 separately. However, we still want to have them recorded
2556 for the purposes of substitution. That's why we don't
2557 simply call downgrade_to_use () here. */
2558 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2559 gcc_assert (!lhs == !rhs);
2560
2561 IDATA_TYPE (deps_init_id_data.id) = USE;
2562 }
2563 }
2564
2565 deps_init_id_data.where = DEPS_IN_NOWHERE;
2566 }
2567
2568 /* This is dependence info used for initializing insn's data. */
2569 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2570
2571 /* This initializes most of the static part of the above structure. */
2572 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2573 {
2574 NULL,
2575
2576 deps_init_id_start_insn,
2577 deps_init_id_finish_insn,
2578 deps_init_id_start_lhs,
2579 deps_init_id_finish_lhs,
2580 deps_init_id_start_rhs,
2581 deps_init_id_finish_rhs,
2582 deps_init_id_note_reg_set,
2583 deps_init_id_note_reg_clobber,
2584 deps_init_id_note_reg_use,
2585 NULL, /* note_mem_dep */
2586 NULL, /* note_dep */
2587
2588 0, /* use_cselib */
2589 0, /* use_deps_list */
2590 0 /* generate_spec_deps */
2591 };
2592
2593 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2594 we don't actually need information about lhs and rhs. */
2595 static void
2596 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2597 {
2598 rtx pat = PATTERN (insn);
2599
2600 if (NONJUMP_INSN_P (insn)
2601 && GET_CODE (pat) == SET
2602 && !force_unique_p)
2603 {
2604 IDATA_RHS (id) = SET_SRC (pat);
2605 IDATA_LHS (id) = SET_DEST (pat);
2606 }
2607 else
2608 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2609 }
2610
2611 /* Possibly downgrade INSN to USE. */
2612 static void
2613 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2614 {
2615 bool must_be_use = false;
2616 df_ref def;
2617 rtx lhs = IDATA_LHS (id);
2618 rtx rhs = IDATA_RHS (id);
2619
2620 /* We downgrade only SETs. */
2621 if (IDATA_TYPE (id) != SET)
2622 return;
2623
2624 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2625 {
2626 IDATA_TYPE (id) = USE;
2627 return;
2628 }
2629
2630 FOR_EACH_INSN_DEF (def, insn)
2631 {
2632 if (DF_REF_INSN (def)
2633 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2634 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2635 {
2636 must_be_use = true;
2637 break;
2638 }
2639
2640 #ifdef STACK_REGS
2641 /* Make instructions that set stack registers to be ineligible for
2642 renaming to avoid issues with find_used_regs. */
2643 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2644 {
2645 must_be_use = true;
2646 break;
2647 }
2648 #endif
2649 }
2650
2651 if (must_be_use)
2652 IDATA_TYPE (id) = USE;
2653 }
2654
2655 /* Setup register sets describing INSN in ID. */
2656 static void
2657 setup_id_reg_sets (idata_t id, insn_t insn)
2658 {
2659 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2660 df_ref def, use;
2661 regset tmp = get_clear_regset_from_pool ();
2662
2663 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2664 {
2665 unsigned int regno = DF_REF_REGNO (def);
2666
2667 /* Post modifies are treated like clobbers by sched-deps.c. */
2668 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2669 | DF_REF_PRE_POST_MODIFY)))
2670 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2671 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2672 {
2673 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2674
2675 #ifdef STACK_REGS
2676 /* For stack registers, treat writes to them as writes
2677 to the first one to be consistent with sched-deps.c. */
2678 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2679 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2680 #endif
2681 }
2682 /* Mark special refs that generate read/write def pair. */
2683 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2684 || regno == STACK_POINTER_REGNUM)
2685 bitmap_set_bit (tmp, regno);
2686 }
2687
2688 FOR_EACH_INSN_INFO_USE (use, insn_info)
2689 {
2690 unsigned int regno = DF_REF_REGNO (use);
2691
2692 /* When these refs are met for the first time, skip them, as
2693 these uses are just counterparts of some defs. */
2694 if (bitmap_bit_p (tmp, regno))
2695 bitmap_clear_bit (tmp, regno);
2696 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2697 {
2698 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2699
2700 #ifdef STACK_REGS
2701 /* For stack registers, treat reads from them as reads from
2702 the first one to be consistent with sched-deps.c. */
2703 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2704 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2705 #endif
2706 }
2707 }
2708
2709 return_regset_to_pool (tmp);
2710 }
2711
2712 /* Initialize instruction data for INSN in ID using DF's data. */
2713 static void
2714 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2715 {
2716 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2717
2718 setup_id_for_insn (id, insn, force_unique_p);
2719 setup_id_lhs_rhs (id, insn, force_unique_p);
2720
2721 if (INSN_NOP_P (insn))
2722 return;
2723
2724 maybe_downgrade_id_to_use (id, insn);
2725 setup_id_reg_sets (id, insn);
2726 }
2727
2728 /* Initialize instruction data for INSN in ID. */
2729 static void
2730 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2731 {
2732 struct deps_desc _dc, *dc = &_dc;
2733
2734 deps_init_id_data.where = DEPS_IN_NOWHERE;
2735 deps_init_id_data.id = id;
2736 deps_init_id_data.force_unique_p = force_unique_p;
2737 deps_init_id_data.force_use_p = false;
2738
2739 init_deps (dc, false);
2740
2741 memcpy (&deps_init_id_sched_deps_info,
2742 &const_deps_init_id_sched_deps_info,
2743 sizeof (deps_init_id_sched_deps_info));
2744
2745 if (spec_info != NULL)
2746 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2747
2748 sched_deps_info = &deps_init_id_sched_deps_info;
2749
2750 deps_analyze_insn (dc, insn);
2751
2752 free_deps (dc);
2753
2754 deps_init_id_data.id = NULL;
2755 }
2756
2757 \f
2758 struct sched_scan_info_def
2759 {
2760 /* This hook notifies scheduler frontend to extend its internal per basic
2761 block data structures. This hook should be called once before a series of
2762 calls to bb_init (). */
2763 void (*extend_bb) (void);
2764
2765 /* This hook makes scheduler frontend to initialize its internal data
2766 structures for the passed basic block. */
2767 void (*init_bb) (basic_block);
2768
2769 /* This hook notifies scheduler frontend to extend its internal per insn data
2770 structures. This hook should be called once before a series of calls to
2771 insn_init (). */
2772 void (*extend_insn) (void);
2773
2774 /* This hook makes scheduler frontend to initialize its internal data
2775 structures for the passed insn. */
2776 void (*init_insn) (rtx);
2777 };
2778
2779 /* A driver function to add a set of basic blocks (BBS) to the
2780 scheduling region. */
2781 static void
2782 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2783 {
2784 unsigned i;
2785 basic_block bb;
2786
2787 if (ssi->extend_bb)
2788 ssi->extend_bb ();
2789
2790 if (ssi->init_bb)
2791 FOR_EACH_VEC_ELT (bbs, i, bb)
2792 ssi->init_bb (bb);
2793
2794 if (ssi->extend_insn)
2795 ssi->extend_insn ();
2796
2797 if (ssi->init_insn)
2798 FOR_EACH_VEC_ELT (bbs, i, bb)
2799 {
2800 rtx insn;
2801
2802 FOR_BB_INSNS (bb, insn)
2803 ssi->init_insn (insn);
2804 }
2805 }
2806
2807 /* Implement hooks for collecting fundamental insn properties like if insn is
2808 an ASM or is within a SCHED_GROUP. */
2809
2810 /* True when a "one-time init" data for INSN was already inited. */
2811 static bool
2812 first_time_insn_init (insn_t insn)
2813 {
2814 return INSN_LIVE (insn) == NULL;
2815 }
2816
2817 /* Hash an entry in a transformed_insns hashtable. */
2818 static hashval_t
2819 hash_transformed_insns (const void *p)
2820 {
2821 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2822 }
2823
2824 /* Compare the entries in a transformed_insns hashtable. */
2825 static int
2826 eq_transformed_insns (const void *p, const void *q)
2827 {
2828 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2829 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2830
2831 if (INSN_UID (i1) == INSN_UID (i2))
2832 return 1;
2833 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2834 }
2835
2836 /* Free an entry in a transformed_insns hashtable. */
2837 static void
2838 free_transformed_insns (void *p)
2839 {
2840 struct transformed_insns *pti = (struct transformed_insns *) p;
2841
2842 vinsn_detach (pti->vinsn_old);
2843 vinsn_detach (pti->vinsn_new);
2844 free (pti);
2845 }
2846
2847 /* Init the s_i_d data for INSN which should be inited just once, when
2848 we first see the insn. */
2849 static void
2850 init_first_time_insn_data (insn_t insn)
2851 {
2852 /* This should not be set if this is the first time we init data for
2853 insn. */
2854 gcc_assert (first_time_insn_init (insn));
2855
2856 /* These are needed for nops too. */
2857 INSN_LIVE (insn) = get_regset_from_pool ();
2858 INSN_LIVE_VALID_P (insn) = false;
2859
2860 if (!INSN_NOP_P (insn))
2861 {
2862 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2863 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2864 INSN_TRANSFORMED_INSNS (insn)
2865 = htab_create (16, hash_transformed_insns,
2866 eq_transformed_insns, free_transformed_insns);
2867 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2868 }
2869 }
2870
2871 /* Free almost all above data for INSN that is scheduled already.
2872 Used for extra-large basic blocks. */
2873 void
2874 free_data_for_scheduled_insn (insn_t insn)
2875 {
2876 gcc_assert (! first_time_insn_init (insn));
2877
2878 if (! INSN_ANALYZED_DEPS (insn))
2879 return;
2880
2881 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2882 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2883 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2884
2885 /* This is allocated only for bookkeeping insns. */
2886 if (INSN_ORIGINATORS (insn))
2887 BITMAP_FREE (INSN_ORIGINATORS (insn));
2888 free_deps (&INSN_DEPS_CONTEXT (insn));
2889
2890 INSN_ANALYZED_DEPS (insn) = NULL;
2891
2892 /* Clear the readonly flag so we would ICE when trying to recalculate
2893 the deps context (as we believe that it should not happen). */
2894 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2895 }
2896
2897 /* Free the same data as above for INSN. */
2898 static void
2899 free_first_time_insn_data (insn_t insn)
2900 {
2901 gcc_assert (! first_time_insn_init (insn));
2902
2903 free_data_for_scheduled_insn (insn);
2904 return_regset_to_pool (INSN_LIVE (insn));
2905 INSN_LIVE (insn) = NULL;
2906 INSN_LIVE_VALID_P (insn) = false;
2907 }
2908
2909 /* Initialize region-scope data structures for basic blocks. */
2910 static void
2911 init_global_and_expr_for_bb (basic_block bb)
2912 {
2913 if (sel_bb_empty_p (bb))
2914 return;
2915
2916 invalidate_av_set (bb);
2917 }
2918
2919 /* Data for global dependency analysis (to initialize CANT_MOVE and
2920 SCHED_GROUP_P). */
2921 static struct
2922 {
2923 /* Previous insn. */
2924 insn_t prev_insn;
2925 } init_global_data;
2926
2927 /* Determine if INSN is in the sched_group, is an asm or should not be
2928 cloned. After that initialize its expr. */
2929 static void
2930 init_global_and_expr_for_insn (insn_t insn)
2931 {
2932 if (LABEL_P (insn))
2933 return;
2934
2935 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2936 {
2937 init_global_data.prev_insn = NULL_RTX;
2938 return;
2939 }
2940
2941 gcc_assert (INSN_P (insn));
2942
2943 if (SCHED_GROUP_P (insn))
2944 /* Setup a sched_group. */
2945 {
2946 insn_t prev_insn = init_global_data.prev_insn;
2947
2948 if (prev_insn)
2949 INSN_SCHED_NEXT (prev_insn) = insn;
2950
2951 init_global_data.prev_insn = insn;
2952 }
2953 else
2954 init_global_data.prev_insn = NULL_RTX;
2955
2956 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2957 || asm_noperands (PATTERN (insn)) >= 0)
2958 /* Mark INSN as an asm. */
2959 INSN_ASM_P (insn) = true;
2960
2961 {
2962 bool force_unique_p;
2963 ds_t spec_done_ds;
2964
2965 /* Certain instructions cannot be cloned, and frame related insns and
2966 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2967 their block. */
2968 if (prologue_epilogue_contains (insn))
2969 {
2970 if (RTX_FRAME_RELATED_P (insn))
2971 CANT_MOVE (insn) = 1;
2972 else
2973 {
2974 rtx note;
2975 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2976 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2977 && ((enum insn_note) INTVAL (XEXP (note, 0))
2978 == NOTE_INSN_EPILOGUE_BEG))
2979 {
2980 CANT_MOVE (insn) = 1;
2981 break;
2982 }
2983 }
2984 force_unique_p = true;
2985 }
2986 else
2987 if (CANT_MOVE (insn)
2988 || INSN_ASM_P (insn)
2989 || SCHED_GROUP_P (insn)
2990 || CALL_P (insn)
2991 /* Exception handling insns are always unique. */
2992 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2993 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2994 || control_flow_insn_p (insn)
2995 || volatile_insn_p (PATTERN (insn))
2996 || (targetm.cannot_copy_insn_p
2997 && targetm.cannot_copy_insn_p (insn)))
2998 force_unique_p = true;
2999 else
3000 force_unique_p = false;
3001
3002 if (targetm.sched.get_insn_spec_ds)
3003 {
3004 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3005 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3006 }
3007 else
3008 spec_done_ds = 0;
3009
3010 /* Initialize INSN's expr. */
3011 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3012 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3013 spec_done_ds, 0, 0, vNULL, true,
3014 false, false, false, CANT_MOVE (insn));
3015 }
3016
3017 init_first_time_insn_data (insn);
3018 }
3019
3020 /* Scan the region and initialize instruction data for basic blocks BBS. */
3021 void
3022 sel_init_global_and_expr (bb_vec_t bbs)
3023 {
3024 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3025 const struct sched_scan_info_def ssi =
3026 {
3027 NULL, /* extend_bb */
3028 init_global_and_expr_for_bb, /* init_bb */
3029 extend_insn_data, /* extend_insn */
3030 init_global_and_expr_for_insn /* init_insn */
3031 };
3032
3033 sched_scan (&ssi, bbs);
3034 }
3035
3036 /* Finalize region-scope data structures for basic blocks. */
3037 static void
3038 finish_global_and_expr_for_bb (basic_block bb)
3039 {
3040 av_set_clear (&BB_AV_SET (bb));
3041 BB_AV_LEVEL (bb) = 0;
3042 }
3043
3044 /* Finalize INSN's data. */
3045 static void
3046 finish_global_and_expr_insn (insn_t insn)
3047 {
3048 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3049 return;
3050
3051 gcc_assert (INSN_P (insn));
3052
3053 if (INSN_LUID (insn) > 0)
3054 {
3055 free_first_time_insn_data (insn);
3056 INSN_WS_LEVEL (insn) = 0;
3057 CANT_MOVE (insn) = 0;
3058
3059 /* We can no longer assert this, as vinsns of this insn could be
3060 easily live in other insn's caches. This should be changed to
3061 a counter-like approach among all vinsns. */
3062 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3063 clear_expr (INSN_EXPR (insn));
3064 }
3065 }
3066
3067 /* Finalize per instruction data for the whole region. */
3068 void
3069 sel_finish_global_and_expr (void)
3070 {
3071 {
3072 bb_vec_t bbs;
3073 int i;
3074
3075 bbs.create (current_nr_blocks);
3076
3077 for (i = 0; i < current_nr_blocks; i++)
3078 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3079
3080 /* Clear AV_SETs and INSN_EXPRs. */
3081 {
3082 const struct sched_scan_info_def ssi =
3083 {
3084 NULL, /* extend_bb */
3085 finish_global_and_expr_for_bb, /* init_bb */
3086 NULL, /* extend_insn */
3087 finish_global_and_expr_insn /* init_insn */
3088 };
3089
3090 sched_scan (&ssi, bbs);
3091 }
3092
3093 bbs.release ();
3094 }
3095
3096 finish_insns ();
3097 }
3098 \f
3099
3100 /* In the below hooks, we merely calculate whether or not a dependence
3101 exists, and in what part of insn. However, we will need more data
3102 when we'll start caching dependence requests. */
3103
3104 /* Container to hold information for dependency analysis. */
3105 static struct
3106 {
3107 deps_t dc;
3108
3109 /* A variable to track which part of rtx we are scanning in
3110 sched-deps.c: sched_analyze_insn (). */
3111 deps_where_t where;
3112
3113 /* Current producer. */
3114 insn_t pro;
3115
3116 /* Current consumer. */
3117 vinsn_t con;
3118
3119 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3120 X is from { INSN, LHS, RHS }. */
3121 ds_t has_dep_p[DEPS_IN_NOWHERE];
3122 } has_dependence_data;
3123
3124 /* Start analyzing dependencies of INSN. */
3125 static void
3126 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3127 {
3128 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3129
3130 has_dependence_data.where = DEPS_IN_INSN;
3131 }
3132
3133 /* Finish analyzing dependencies of an insn. */
3134 static void
3135 has_dependence_finish_insn (void)
3136 {
3137 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3138
3139 has_dependence_data.where = DEPS_IN_NOWHERE;
3140 }
3141
3142 /* Start analyzing dependencies of LHS. */
3143 static void
3144 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3145 {
3146 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3147
3148 if (VINSN_LHS (has_dependence_data.con) != NULL)
3149 has_dependence_data.where = DEPS_IN_LHS;
3150 }
3151
3152 /* Finish analyzing dependencies of an lhs. */
3153 static void
3154 has_dependence_finish_lhs (void)
3155 {
3156 has_dependence_data.where = DEPS_IN_INSN;
3157 }
3158
3159 /* Start analyzing dependencies of RHS. */
3160 static void
3161 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3162 {
3163 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3164
3165 if (VINSN_RHS (has_dependence_data.con) != NULL)
3166 has_dependence_data.where = DEPS_IN_RHS;
3167 }
3168
3169 /* Start analyzing dependencies of an rhs. */
3170 static void
3171 has_dependence_finish_rhs (void)
3172 {
3173 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3174 || has_dependence_data.where == DEPS_IN_INSN);
3175
3176 has_dependence_data.where = DEPS_IN_INSN;
3177 }
3178
3179 /* Note a set of REGNO. */
3180 static void
3181 has_dependence_note_reg_set (int regno)
3182 {
3183 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3184
3185 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3186 VINSN_INSN_RTX
3187 (has_dependence_data.con)))
3188 {
3189 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3190
3191 if (reg_last->sets != NULL
3192 || reg_last->clobbers != NULL)
3193 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3194
3195 if (reg_last->uses || reg_last->implicit_sets)
3196 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3197 }
3198 }
3199
3200 /* Note a clobber of REGNO. */
3201 static void
3202 has_dependence_note_reg_clobber (int regno)
3203 {
3204 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3205
3206 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3207 VINSN_INSN_RTX
3208 (has_dependence_data.con)))
3209 {
3210 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3211
3212 if (reg_last->sets)
3213 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3214
3215 if (reg_last->uses || reg_last->implicit_sets)
3216 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3217 }
3218 }
3219
3220 /* Note a use of REGNO. */
3221 static void
3222 has_dependence_note_reg_use (int regno)
3223 {
3224 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3225
3226 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3227 VINSN_INSN_RTX
3228 (has_dependence_data.con)))
3229 {
3230 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3231
3232 if (reg_last->sets)
3233 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3234
3235 if (reg_last->clobbers || reg_last->implicit_sets)
3236 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3237
3238 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3239 is actually a check insn. We need to do this for any register
3240 read-read dependency with the check unless we track properly
3241 all registers written by BE_IN_SPEC-speculated insns, as
3242 we don't have explicit dependence lists. See PR 53975. */
3243 if (reg_last->uses)
3244 {
3245 ds_t pro_spec_checked_ds;
3246
3247 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3248 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3249
3250 if (pro_spec_checked_ds != 0)
3251 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3252 NULL_RTX, NULL_RTX);
3253 }
3254 }
3255 }
3256
3257 /* Note a memory dependence. */
3258 static void
3259 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3260 rtx pending_mem ATTRIBUTE_UNUSED,
3261 insn_t pending_insn ATTRIBUTE_UNUSED,
3262 ds_t ds ATTRIBUTE_UNUSED)
3263 {
3264 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3265 VINSN_INSN_RTX (has_dependence_data.con)))
3266 {
3267 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3268
3269 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3270 }
3271 }
3272
3273 /* Note a dependence. */
3274 static void
3275 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3276 ds_t ds ATTRIBUTE_UNUSED)
3277 {
3278 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3279 VINSN_INSN_RTX (has_dependence_data.con)))
3280 {
3281 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3282
3283 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3284 }
3285 }
3286
3287 /* Mark the insn as having a hard dependence that prevents speculation. */
3288 void
3289 sel_mark_hard_insn (rtx insn)
3290 {
3291 int i;
3292
3293 /* Only work when we're in has_dependence_p mode.
3294 ??? This is a hack, this should actually be a hook. */
3295 if (!has_dependence_data.dc || !has_dependence_data.pro)
3296 return;
3297
3298 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3299 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3300
3301 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3302 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3303 }
3304
3305 /* This structure holds the hooks for the dependency analysis used when
3306 actually processing dependencies in the scheduler. */
3307 static struct sched_deps_info_def has_dependence_sched_deps_info;
3308
3309 /* This initializes most of the fields of the above structure. */
3310 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3311 {
3312 NULL,
3313
3314 has_dependence_start_insn,
3315 has_dependence_finish_insn,
3316 has_dependence_start_lhs,
3317 has_dependence_finish_lhs,
3318 has_dependence_start_rhs,
3319 has_dependence_finish_rhs,
3320 has_dependence_note_reg_set,
3321 has_dependence_note_reg_clobber,
3322 has_dependence_note_reg_use,
3323 has_dependence_note_mem_dep,
3324 has_dependence_note_dep,
3325
3326 0, /* use_cselib */
3327 0, /* use_deps_list */
3328 0 /* generate_spec_deps */
3329 };
3330
3331 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3332 static void
3333 setup_has_dependence_sched_deps_info (void)
3334 {
3335 memcpy (&has_dependence_sched_deps_info,
3336 &const_has_dependence_sched_deps_info,
3337 sizeof (has_dependence_sched_deps_info));
3338
3339 if (spec_info != NULL)
3340 has_dependence_sched_deps_info.generate_spec_deps = 1;
3341
3342 sched_deps_info = &has_dependence_sched_deps_info;
3343 }
3344
3345 /* Remove all dependences found and recorded in has_dependence_data array. */
3346 void
3347 sel_clear_has_dependence (void)
3348 {
3349 int i;
3350
3351 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3352 has_dependence_data.has_dep_p[i] = 0;
3353 }
3354
3355 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3356 to the dependence information array in HAS_DEP_PP. */
3357 ds_t
3358 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3359 {
3360 int i;
3361 ds_t ds;
3362 struct deps_desc *dc;
3363
3364 if (INSN_SIMPLEJUMP_P (pred))
3365 /* Unconditional jump is just a transfer of control flow.
3366 Ignore it. */
3367 return false;
3368
3369 dc = &INSN_DEPS_CONTEXT (pred);
3370
3371 /* We init this field lazily. */
3372 if (dc->reg_last == NULL)
3373 init_deps_reg_last (dc);
3374
3375 if (!dc->readonly)
3376 {
3377 has_dependence_data.pro = NULL;
3378 /* Initialize empty dep context with information about PRED. */
3379 advance_deps_context (dc, pred);
3380 dc->readonly = 1;
3381 }
3382
3383 has_dependence_data.where = DEPS_IN_NOWHERE;
3384 has_dependence_data.pro = pred;
3385 has_dependence_data.con = EXPR_VINSN (expr);
3386 has_dependence_data.dc = dc;
3387
3388 sel_clear_has_dependence ();
3389
3390 /* Now catch all dependencies that would be generated between PRED and
3391 INSN. */
3392 setup_has_dependence_sched_deps_info ();
3393 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3394 has_dependence_data.dc = NULL;
3395
3396 /* When a barrier was found, set DEPS_IN_INSN bits. */
3397 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3398 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3399 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3400 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3401
3402 /* Do not allow stores to memory to move through checks. Currently
3403 we don't move this to sched-deps.c as the check doesn't have
3404 obvious places to which this dependence can be attached.
3405 FIMXE: this should go to a hook. */
3406 if (EXPR_LHS (expr)
3407 && MEM_P (EXPR_LHS (expr))
3408 && sel_insn_is_speculation_check (pred))
3409 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3410
3411 *has_dep_pp = has_dependence_data.has_dep_p;
3412 ds = 0;
3413 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3414 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3415 NULL_RTX, NULL_RTX);
3416
3417 return ds;
3418 }
3419 \f
3420
3421 /* Dependence hooks implementation that checks dependence latency constraints
3422 on the insns being scheduled. The entry point for these routines is
3423 tick_check_p predicate. */
3424
3425 static struct
3426 {
3427 /* An expr we are currently checking. */
3428 expr_t expr;
3429
3430 /* A minimal cycle for its scheduling. */
3431 int cycle;
3432
3433 /* Whether we have seen a true dependence while checking. */
3434 bool seen_true_dep_p;
3435 } tick_check_data;
3436
3437 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3438 on PRO with status DS and weight DW. */
3439 static void
3440 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3441 {
3442 expr_t con_expr = tick_check_data.expr;
3443 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3444
3445 if (con_insn != pro_insn)
3446 {
3447 enum reg_note dt;
3448 int tick;
3449
3450 if (/* PROducer was removed from above due to pipelining. */
3451 !INSN_IN_STREAM_P (pro_insn)
3452 /* Or PROducer was originally on the next iteration regarding the
3453 CONsumer. */
3454 || (INSN_SCHED_TIMES (pro_insn)
3455 - EXPR_SCHED_TIMES (con_expr)) > 1)
3456 /* Don't count this dependence. */
3457 return;
3458
3459 dt = ds_to_dt (ds);
3460 if (dt == REG_DEP_TRUE)
3461 tick_check_data.seen_true_dep_p = true;
3462
3463 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3464
3465 {
3466 dep_def _dep, *dep = &_dep;
3467
3468 init_dep (dep, pro_insn, con_insn, dt);
3469
3470 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3471 }
3472
3473 /* When there are several kinds of dependencies between pro and con,
3474 only REG_DEP_TRUE should be taken into account. */
3475 if (tick > tick_check_data.cycle
3476 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3477 tick_check_data.cycle = tick;
3478 }
3479 }
3480
3481 /* An implementation of note_dep hook. */
3482 static void
3483 tick_check_note_dep (insn_t pro, ds_t ds)
3484 {
3485 tick_check_dep_with_dw (pro, ds, 0);
3486 }
3487
3488 /* An implementation of note_mem_dep hook. */
3489 static void
3490 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3491 {
3492 dw_t dw;
3493
3494 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3495 ? estimate_dep_weak (mem1, mem2)
3496 : 0);
3497
3498 tick_check_dep_with_dw (pro, ds, dw);
3499 }
3500
3501 /* This structure contains hooks for dependence analysis used when determining
3502 whether an insn is ready for scheduling. */
3503 static struct sched_deps_info_def tick_check_sched_deps_info =
3504 {
3505 NULL,
3506
3507 NULL,
3508 NULL,
3509 NULL,
3510 NULL,
3511 NULL,
3512 NULL,
3513 haifa_note_reg_set,
3514 haifa_note_reg_clobber,
3515 haifa_note_reg_use,
3516 tick_check_note_mem_dep,
3517 tick_check_note_dep,
3518
3519 0, 0, 0
3520 };
3521
3522 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3523 scheduled. Return 0 if all data from producers in DC is ready. */
3524 int
3525 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3526 {
3527 int cycles_left;
3528 /* Initialize variables. */
3529 tick_check_data.expr = expr;
3530 tick_check_data.cycle = 0;
3531 tick_check_data.seen_true_dep_p = false;
3532 sched_deps_info = &tick_check_sched_deps_info;
3533
3534 gcc_assert (!dc->readonly);
3535 dc->readonly = 1;
3536 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3537 dc->readonly = 0;
3538
3539 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3540
3541 return cycles_left >= 0 ? cycles_left : 0;
3542 }
3543 \f
3544
3545 /* Functions to work with insns. */
3546
3547 /* Returns true if LHS of INSN is the same as DEST of an insn
3548 being moved. */
3549 bool
3550 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3551 {
3552 rtx lhs = INSN_LHS (insn);
3553
3554 if (lhs == NULL || dest == NULL)
3555 return false;
3556
3557 return rtx_equal_p (lhs, dest);
3558 }
3559
3560 /* Return s_i_d entry of INSN. Callable from debugger. */
3561 sel_insn_data_def
3562 insn_sid (insn_t insn)
3563 {
3564 return *SID (insn);
3565 }
3566
3567 /* True when INSN is a speculative check. We can tell this by looking
3568 at the data structures of the selective scheduler, not by examining
3569 the pattern. */
3570 bool
3571 sel_insn_is_speculation_check (rtx insn)
3572 {
3573 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3574 }
3575
3576 /* Extracts machine mode MODE and destination location DST_LOC
3577 for given INSN. */
3578 void
3579 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3580 {
3581 rtx pat = PATTERN (insn);
3582
3583 gcc_assert (dst_loc);
3584 gcc_assert (GET_CODE (pat) == SET);
3585
3586 *dst_loc = SET_DEST (pat);
3587
3588 gcc_assert (*dst_loc);
3589 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3590
3591 if (mode)
3592 *mode = GET_MODE (*dst_loc);
3593 }
3594
3595 /* Returns true when moving through JUMP will result in bookkeeping
3596 creation. */
3597 bool
3598 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3599 {
3600 insn_t succ;
3601 succ_iterator si;
3602
3603 FOR_EACH_SUCC (succ, si, jump)
3604 if (sel_num_cfg_preds_gt_1 (succ))
3605 return true;
3606
3607 return false;
3608 }
3609
3610 /* Return 'true' if INSN is the only one in its basic block. */
3611 static bool
3612 insn_is_the_only_one_in_bb_p (insn_t insn)
3613 {
3614 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3615 }
3616
3617 #ifdef ENABLE_CHECKING
3618 /* Check that the region we're scheduling still has at most one
3619 backedge. */
3620 static void
3621 verify_backedges (void)
3622 {
3623 if (pipelining_p)
3624 {
3625 int i, n = 0;
3626 edge e;
3627 edge_iterator ei;
3628
3629 for (i = 0; i < current_nr_blocks; i++)
3630 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3631 if (in_current_region_p (e->dest)
3632 && BLOCK_TO_BB (e->dest->index) < i)
3633 n++;
3634
3635 gcc_assert (n <= 1);
3636 }
3637 }
3638 #endif
3639 \f
3640
3641 /* Functions to work with control flow. */
3642
3643 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3644 are sorted in topological order (it might have been invalidated by
3645 redirecting an edge). */
3646 static void
3647 sel_recompute_toporder (void)
3648 {
3649 int i, n, rgn;
3650 int *postorder, n_blocks;
3651
3652 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3653 n_blocks = post_order_compute (postorder, false, false);
3654
3655 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3656 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3657 if (CONTAINING_RGN (postorder[i]) == rgn)
3658 {
3659 BLOCK_TO_BB (postorder[i]) = n;
3660 BB_TO_BLOCK (n) = postorder[i];
3661 n++;
3662 }
3663
3664 /* Assert that we updated info for all blocks. We may miss some blocks if
3665 this function is called when redirecting an edge made a block
3666 unreachable, but that block is not deleted yet. */
3667 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3668 }
3669
3670 /* Tidy the possibly empty block BB. */
3671 static bool
3672 maybe_tidy_empty_bb (basic_block bb)
3673 {
3674 basic_block succ_bb, pred_bb, note_bb;
3675 vec<basic_block> dom_bbs;
3676 edge e;
3677 edge_iterator ei;
3678 bool rescan_p;
3679
3680 /* Keep empty bb only if this block immediately precedes EXIT and
3681 has incoming non-fallthrough edge, or it has no predecessors or
3682 successors. Otherwise remove it. */
3683 if (!sel_bb_empty_p (bb)
3684 || (single_succ_p (bb)
3685 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3686 && (!single_pred_p (bb)
3687 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3688 || EDGE_COUNT (bb->preds) == 0
3689 || EDGE_COUNT (bb->succs) == 0)
3690 return false;
3691
3692 /* Do not attempt to redirect complex edges. */
3693 FOR_EACH_EDGE (e, ei, bb->preds)
3694 if (e->flags & EDGE_COMPLEX)
3695 return false;
3696 else if (e->flags & EDGE_FALLTHRU)
3697 {
3698 rtx note;
3699 /* If prev bb ends with asm goto, see if any of the
3700 ASM_OPERANDS_LABELs don't point to the fallthru
3701 label. Do not attempt to redirect it in that case. */
3702 if (JUMP_P (BB_END (e->src))
3703 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3704 {
3705 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3706
3707 for (i = 0; i < n; ++i)
3708 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3709 return false;
3710 }
3711 }
3712
3713 free_data_sets (bb);
3714
3715 /* Do not delete BB if it has more than one successor.
3716 That can occur when we moving a jump. */
3717 if (!single_succ_p (bb))
3718 {
3719 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3720 sel_merge_blocks (bb->prev_bb, bb);
3721 return true;
3722 }
3723
3724 succ_bb = single_succ (bb);
3725 rescan_p = true;
3726 pred_bb = NULL;
3727 dom_bbs.create (0);
3728
3729 /* Save a pred/succ from the current region to attach the notes to. */
3730 note_bb = NULL;
3731 FOR_EACH_EDGE (e, ei, bb->preds)
3732 if (in_current_region_p (e->src))
3733 {
3734 note_bb = e->src;
3735 break;
3736 }
3737 if (note_bb == NULL)
3738 note_bb = succ_bb;
3739
3740 /* Redirect all non-fallthru edges to the next bb. */
3741 while (rescan_p)
3742 {
3743 rescan_p = false;
3744
3745 FOR_EACH_EDGE (e, ei, bb->preds)
3746 {
3747 pred_bb = e->src;
3748
3749 if (!(e->flags & EDGE_FALLTHRU))
3750 {
3751 /* We can not invalidate computed topological order by moving
3752 the edge destination block (E->SUCC) along a fallthru edge.
3753
3754 We will update dominators here only when we'll get
3755 an unreachable block when redirecting, otherwise
3756 sel_redirect_edge_and_branch will take care of it. */
3757 if (e->dest != bb
3758 && single_pred_p (e->dest))
3759 dom_bbs.safe_push (e->dest);
3760 sel_redirect_edge_and_branch (e, succ_bb);
3761 rescan_p = true;
3762 break;
3763 }
3764 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3765 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3766 still have to adjust it. */
3767 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3768 {
3769 /* If possible, try to remove the unneeded conditional jump. */
3770 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3771 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3772 {
3773 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3774 tidy_fallthru_edge (e);
3775 }
3776 else
3777 sel_redirect_edge_and_branch (e, succ_bb);
3778 rescan_p = true;
3779 break;
3780 }
3781 }
3782 }
3783
3784 if (can_merge_blocks_p (bb->prev_bb, bb))
3785 sel_merge_blocks (bb->prev_bb, bb);
3786 else
3787 {
3788 /* This is a block without fallthru predecessor. Just delete it. */
3789 gcc_assert (note_bb);
3790 move_bb_info (note_bb, bb);
3791 remove_empty_bb (bb, true);
3792 }
3793
3794 if (!dom_bbs.is_empty ())
3795 {
3796 dom_bbs.safe_push (succ_bb);
3797 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3798 dom_bbs.release ();
3799 }
3800
3801 return true;
3802 }
3803
3804 /* Tidy the control flow after we have removed original insn from
3805 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3806 is true, also try to optimize control flow on non-empty blocks. */
3807 bool
3808 tidy_control_flow (basic_block xbb, bool full_tidying)
3809 {
3810 bool changed = true;
3811 insn_t first, last;
3812
3813 /* First check whether XBB is empty. */
3814 changed = maybe_tidy_empty_bb (xbb);
3815 if (changed || !full_tidying)
3816 return changed;
3817
3818 /* Check if there is a unnecessary jump after insn left. */
3819 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3820 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3821 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3822 {
3823 if (sel_remove_insn (BB_END (xbb), false, false))
3824 return true;
3825 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3826 }
3827
3828 first = sel_bb_head (xbb);
3829 last = sel_bb_end (xbb);
3830 if (MAY_HAVE_DEBUG_INSNS)
3831 {
3832 if (first != last && DEBUG_INSN_P (first))
3833 do
3834 first = NEXT_INSN (first);
3835 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3836
3837 if (first != last && DEBUG_INSN_P (last))
3838 do
3839 last = PREV_INSN (last);
3840 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3841 }
3842 /* Check if there is an unnecessary jump in previous basic block leading
3843 to next basic block left after removing INSN from stream.
3844 If it is so, remove that jump and redirect edge to current
3845 basic block (where there was INSN before deletion). This way
3846 when NOP will be deleted several instructions later with its
3847 basic block we will not get a jump to next instruction, which
3848 can be harmful. */
3849 if (first == last
3850 && !sel_bb_empty_p (xbb)
3851 && INSN_NOP_P (last)
3852 /* Flow goes fallthru from current block to the next. */
3853 && EDGE_COUNT (xbb->succs) == 1
3854 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3855 /* When successor is an EXIT block, it may not be the next block. */
3856 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3857 /* And unconditional jump in previous basic block leads to
3858 next basic block of XBB and this jump can be safely removed. */
3859 && in_current_region_p (xbb->prev_bb)
3860 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3861 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3862 /* Also this jump is not at the scheduling boundary. */
3863 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3864 {
3865 bool recompute_toporder_p;
3866 /* Clear data structures of jump - jump itself will be removed
3867 by sel_redirect_edge_and_branch. */
3868 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3869 recompute_toporder_p
3870 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3871
3872 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3873
3874 /* It can turn out that after removing unused jump, basic block
3875 that contained that jump, becomes empty too. In such case
3876 remove it too. */
3877 if (sel_bb_empty_p (xbb->prev_bb))
3878 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3879 if (recompute_toporder_p)
3880 sel_recompute_toporder ();
3881 }
3882
3883 #ifdef ENABLE_CHECKING
3884 verify_backedges ();
3885 verify_dominators (CDI_DOMINATORS);
3886 #endif
3887
3888 return changed;
3889 }
3890
3891 /* Purge meaningless empty blocks in the middle of a region. */
3892 void
3893 purge_empty_blocks (void)
3894 {
3895 int i;
3896
3897 /* Do not attempt to delete the first basic block in the region. */
3898 for (i = 1; i < current_nr_blocks; )
3899 {
3900 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3901
3902 if (maybe_tidy_empty_bb (b))
3903 continue;
3904
3905 i++;
3906 }
3907 }
3908
3909 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3910 do not delete insn's data, because it will be later re-emitted.
3911 Return true if we have removed some blocks afterwards. */
3912 bool
3913 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3914 {
3915 basic_block bb = BLOCK_FOR_INSN (insn);
3916
3917 gcc_assert (INSN_IN_STREAM_P (insn));
3918
3919 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3920 {
3921 expr_t expr;
3922 av_set_iterator i;
3923
3924 /* When we remove a debug insn that is head of a BB, it remains
3925 in the AV_SET of the block, but it shouldn't. */
3926 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3927 if (EXPR_INSN_RTX (expr) == insn)
3928 {
3929 av_set_iter_remove (&i);
3930 break;
3931 }
3932 }
3933
3934 if (only_disconnect)
3935 remove_insn (insn);
3936 else
3937 {
3938 delete_insn (insn);
3939 clear_expr (INSN_EXPR (insn));
3940 }
3941
3942 /* It is necessary to NULL these fields in case we are going to re-insert
3943 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3944 case, but also for NOPs that we will return to the nop pool. */
3945 SET_PREV_INSN (insn) = NULL_RTX;
3946 SET_NEXT_INSN (insn) = NULL_RTX;
3947 set_block_for_insn (insn, NULL);
3948
3949 return tidy_control_flow (bb, full_tidying);
3950 }
3951
3952 /* Estimate number of the insns in BB. */
3953 static int
3954 sel_estimate_number_of_insns (basic_block bb)
3955 {
3956 int res = 0;
3957 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3958
3959 for (; insn != next_tail; insn = NEXT_INSN (insn))
3960 if (NONDEBUG_INSN_P (insn))
3961 res++;
3962
3963 return res;
3964 }
3965
3966 /* We don't need separate luids for notes or labels. */
3967 static int
3968 sel_luid_for_non_insn (rtx x)
3969 {
3970 gcc_assert (NOTE_P (x) || LABEL_P (x));
3971
3972 return -1;
3973 }
3974
3975 /* Find the proper seqno for inserting at INSN by successors.
3976 Return -1 if no successors with positive seqno exist. */
3977 static int
3978 get_seqno_by_succs (rtx insn)
3979 {
3980 basic_block bb = BLOCK_FOR_INSN (insn);
3981 rtx tmp = insn, end = BB_END (bb);
3982 int seqno;
3983 insn_t succ = NULL;
3984 succ_iterator si;
3985
3986 while (tmp != end)
3987 {
3988 tmp = NEXT_INSN (tmp);
3989 if (INSN_P (tmp))
3990 return INSN_SEQNO (tmp);
3991 }
3992
3993 seqno = INT_MAX;
3994
3995 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
3996 if (INSN_SEQNO (succ) > 0)
3997 seqno = MIN (seqno, INSN_SEQNO (succ));
3998
3999 if (seqno == INT_MAX)
4000 return -1;
4001
4002 return seqno;
4003 }
4004
4005 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4006 seqno in corner cases. */
4007 static int
4008 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4009 {
4010 int seqno;
4011
4012 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4013
4014 if (!sel_bb_head_p (insn))
4015 seqno = INSN_SEQNO (PREV_INSN (insn));
4016 else
4017 {
4018 basic_block bb = BLOCK_FOR_INSN (insn);
4019
4020 if (single_pred_p (bb)
4021 && !in_current_region_p (single_pred (bb)))
4022 {
4023 /* We can have preds outside a region when splitting edges
4024 for pipelining of an outer loop. Use succ instead.
4025 There should be only one of them. */
4026 insn_t succ = NULL;
4027 succ_iterator si;
4028 bool first = true;
4029
4030 gcc_assert (flag_sel_sched_pipelining_outer_loops
4031 && current_loop_nest);
4032 FOR_EACH_SUCC_1 (succ, si, insn,
4033 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4034 {
4035 gcc_assert (first);
4036 first = false;
4037 }
4038
4039 gcc_assert (succ != NULL);
4040 seqno = INSN_SEQNO (succ);
4041 }
4042 else
4043 {
4044 insn_t *preds;
4045 int n;
4046
4047 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4048
4049 gcc_assert (n > 0);
4050 /* For one predecessor, use simple method. */
4051 if (n == 1)
4052 seqno = INSN_SEQNO (preds[0]);
4053 else
4054 seqno = get_seqno_by_preds (insn);
4055
4056 free (preds);
4057 }
4058 }
4059
4060 /* We were unable to find a good seqno among preds. */
4061 if (seqno < 0)
4062 seqno = get_seqno_by_succs (insn);
4063
4064 if (seqno < 0)
4065 {
4066 /* The only case where this could be here legally is that the only
4067 unscheduled insn was a conditional jump that got removed and turned
4068 into this unconditional one. Initialize from the old seqno
4069 of that jump passed down to here. */
4070 seqno = old_seqno;
4071 }
4072
4073 gcc_assert (seqno >= 0);
4074 return seqno;
4075 }
4076
4077 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4078 with positive seqno exist. */
4079 int
4080 get_seqno_by_preds (rtx insn)
4081 {
4082 basic_block bb = BLOCK_FOR_INSN (insn);
4083 rtx tmp = insn, head = BB_HEAD (bb);
4084 insn_t *preds;
4085 int n, i, seqno;
4086
4087 while (tmp != head)
4088 {
4089 tmp = PREV_INSN (tmp);
4090 if (INSN_P (tmp))
4091 return INSN_SEQNO (tmp);
4092 }
4093
4094 cfg_preds (bb, &preds, &n);
4095 for (i = 0, seqno = -1; i < n; i++)
4096 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4097
4098 return seqno;
4099 }
4100
4101 \f
4102
4103 /* Extend pass-scope data structures for basic blocks. */
4104 void
4105 sel_extend_global_bb_info (void)
4106 {
4107 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4108 }
4109
4110 /* Extend region-scope data structures for basic blocks. */
4111 static void
4112 extend_region_bb_info (void)
4113 {
4114 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4115 }
4116
4117 /* Extend all data structures to fit for all basic blocks. */
4118 static void
4119 extend_bb_info (void)
4120 {
4121 sel_extend_global_bb_info ();
4122 extend_region_bb_info ();
4123 }
4124
4125 /* Finalize pass-scope data structures for basic blocks. */
4126 void
4127 sel_finish_global_bb_info (void)
4128 {
4129 sel_global_bb_info.release ();
4130 }
4131
4132 /* Finalize region-scope data structures for basic blocks. */
4133 static void
4134 finish_region_bb_info (void)
4135 {
4136 sel_region_bb_info.release ();
4137 }
4138 \f
4139
4140 /* Data for each insn in current region. */
4141 vec<sel_insn_data_def> s_i_d = vNULL;
4142
4143 /* Extend data structures for insns from current region. */
4144 static void
4145 extend_insn_data (void)
4146 {
4147 int reserve;
4148
4149 sched_extend_target ();
4150 sched_deps_init (false);
4151
4152 /* Extend data structures for insns from current region. */
4153 reserve = (sched_max_luid + 1 - s_i_d.length ());
4154 if (reserve > 0 && ! s_i_d.space (reserve))
4155 {
4156 int size;
4157
4158 if (sched_max_luid / 2 > 1024)
4159 size = sched_max_luid + 1024;
4160 else
4161 size = 3 * sched_max_luid / 2;
4162
4163
4164 s_i_d.safe_grow_cleared (size);
4165 }
4166 }
4167
4168 /* Finalize data structures for insns from current region. */
4169 static void
4170 finish_insns (void)
4171 {
4172 unsigned i;
4173
4174 /* Clear here all dependence contexts that may have left from insns that were
4175 removed during the scheduling. */
4176 for (i = 0; i < s_i_d.length (); i++)
4177 {
4178 sel_insn_data_def *sid_entry = &s_i_d[i];
4179
4180 if (sid_entry->live)
4181 return_regset_to_pool (sid_entry->live);
4182 if (sid_entry->analyzed_deps)
4183 {
4184 BITMAP_FREE (sid_entry->analyzed_deps);
4185 BITMAP_FREE (sid_entry->found_deps);
4186 htab_delete (sid_entry->transformed_insns);
4187 free_deps (&sid_entry->deps_context);
4188 }
4189 if (EXPR_VINSN (&sid_entry->expr))
4190 {
4191 clear_expr (&sid_entry->expr);
4192
4193 /* Also, clear CANT_MOVE bit here, because we really don't want it
4194 to be passed to the next region. */
4195 CANT_MOVE_BY_LUID (i) = 0;
4196 }
4197 }
4198
4199 s_i_d.release ();
4200 }
4201
4202 /* A proxy to pass initialization data to init_insn (). */
4203 static sel_insn_data_def _insn_init_ssid;
4204 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4205
4206 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4207 static bool insn_init_create_new_vinsn_p;
4208
4209 /* Set all necessary data for initialization of the new insn[s]. */
4210 static expr_t
4211 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4212 {
4213 expr_t x = &insn_init_ssid->expr;
4214
4215 copy_expr_onside (x, expr);
4216 if (vi != NULL)
4217 {
4218 insn_init_create_new_vinsn_p = false;
4219 change_vinsn_in_expr (x, vi);
4220 }
4221 else
4222 insn_init_create_new_vinsn_p = true;
4223
4224 insn_init_ssid->seqno = seqno;
4225 return x;
4226 }
4227
4228 /* Init data for INSN. */
4229 static void
4230 init_insn_data (insn_t insn)
4231 {
4232 expr_t expr;
4233 sel_insn_data_t ssid = insn_init_ssid;
4234
4235 /* The fields mentioned below are special and hence are not being
4236 propagated to the new insns. */
4237 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4238 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4239 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4240
4241 expr = INSN_EXPR (insn);
4242 copy_expr (expr, &ssid->expr);
4243 prepare_insn_expr (insn, ssid->seqno);
4244
4245 if (insn_init_create_new_vinsn_p)
4246 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4247
4248 if (first_time_insn_init (insn))
4249 init_first_time_insn_data (insn);
4250 }
4251
4252 /* This is used to initialize spurious jumps generated by
4253 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4254 in corner cases within get_seqno_for_a_jump. */
4255 static void
4256 init_simplejump_data (insn_t insn, int old_seqno)
4257 {
4258 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4259 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4260 vNULL, true, false, false,
4261 false, true);
4262 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4263 init_first_time_insn_data (insn);
4264 }
4265
4266 /* Perform deferred initialization of insns. This is used to process
4267 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4268 for initializing simplejumps in init_simplejump_data. */
4269 static void
4270 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4271 {
4272 /* We create data structures for bb when the first insn is emitted in it. */
4273 if (INSN_P (insn)
4274 && INSN_IN_STREAM_P (insn)
4275 && insn_is_the_only_one_in_bb_p (insn))
4276 {
4277 extend_bb_info ();
4278 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4279 }
4280
4281 if (flags & INSN_INIT_TODO_LUID)
4282 {
4283 sched_extend_luids ();
4284 sched_init_insn_luid (insn);
4285 }
4286
4287 if (flags & INSN_INIT_TODO_SSID)
4288 {
4289 extend_insn_data ();
4290 init_insn_data (insn);
4291 clear_expr (&insn_init_ssid->expr);
4292 }
4293
4294 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4295 {
4296 extend_insn_data ();
4297 init_simplejump_data (insn, old_seqno);
4298 }
4299
4300 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4301 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4302 }
4303 \f
4304
4305 /* Functions to init/finish work with lv sets. */
4306
4307 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4308 static void
4309 init_lv_set (basic_block bb)
4310 {
4311 gcc_assert (!BB_LV_SET_VALID_P (bb));
4312
4313 BB_LV_SET (bb) = get_regset_from_pool ();
4314 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4315 BB_LV_SET_VALID_P (bb) = true;
4316 }
4317
4318 /* Copy liveness information to BB from FROM_BB. */
4319 static void
4320 copy_lv_set_from (basic_block bb, basic_block from_bb)
4321 {
4322 gcc_assert (!BB_LV_SET_VALID_P (bb));
4323
4324 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4325 BB_LV_SET_VALID_P (bb) = true;
4326 }
4327
4328 /* Initialize lv set of all bb headers. */
4329 void
4330 init_lv_sets (void)
4331 {
4332 basic_block bb;
4333
4334 /* Initialize of LV sets. */
4335 FOR_EACH_BB_FN (bb, cfun)
4336 init_lv_set (bb);
4337
4338 /* Don't forget EXIT_BLOCK. */
4339 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4340 }
4341
4342 /* Release lv set of HEAD. */
4343 static void
4344 free_lv_set (basic_block bb)
4345 {
4346 gcc_assert (BB_LV_SET (bb) != NULL);
4347
4348 return_regset_to_pool (BB_LV_SET (bb));
4349 BB_LV_SET (bb) = NULL;
4350 BB_LV_SET_VALID_P (bb) = false;
4351 }
4352
4353 /* Finalize lv sets of all bb headers. */
4354 void
4355 free_lv_sets (void)
4356 {
4357 basic_block bb;
4358
4359 /* Don't forget EXIT_BLOCK. */
4360 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4361
4362 /* Free LV sets. */
4363 FOR_EACH_BB_FN (bb, cfun)
4364 if (BB_LV_SET (bb))
4365 free_lv_set (bb);
4366 }
4367
4368 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4369 compute_av() processes BB. This function is called when creating new basic
4370 blocks, as well as for blocks (either new or existing) where new jumps are
4371 created when the control flow is being updated. */
4372 static void
4373 invalidate_av_set (basic_block bb)
4374 {
4375 BB_AV_LEVEL (bb) = -1;
4376 }
4377
4378 /* Create initial data sets for BB (they will be invalid). */
4379 static void
4380 create_initial_data_sets (basic_block bb)
4381 {
4382 if (BB_LV_SET (bb))
4383 BB_LV_SET_VALID_P (bb) = false;
4384 else
4385 BB_LV_SET (bb) = get_regset_from_pool ();
4386 invalidate_av_set (bb);
4387 }
4388
4389 /* Free av set of BB. */
4390 static void
4391 free_av_set (basic_block bb)
4392 {
4393 av_set_clear (&BB_AV_SET (bb));
4394 BB_AV_LEVEL (bb) = 0;
4395 }
4396
4397 /* Free data sets of BB. */
4398 void
4399 free_data_sets (basic_block bb)
4400 {
4401 free_lv_set (bb);
4402 free_av_set (bb);
4403 }
4404
4405 /* Exchange lv sets of TO and FROM. */
4406 static void
4407 exchange_lv_sets (basic_block to, basic_block from)
4408 {
4409 {
4410 regset to_lv_set = BB_LV_SET (to);
4411
4412 BB_LV_SET (to) = BB_LV_SET (from);
4413 BB_LV_SET (from) = to_lv_set;
4414 }
4415
4416 {
4417 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4418
4419 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4420 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4421 }
4422 }
4423
4424
4425 /* Exchange av sets of TO and FROM. */
4426 static void
4427 exchange_av_sets (basic_block to, basic_block from)
4428 {
4429 {
4430 av_set_t to_av_set = BB_AV_SET (to);
4431
4432 BB_AV_SET (to) = BB_AV_SET (from);
4433 BB_AV_SET (from) = to_av_set;
4434 }
4435
4436 {
4437 int to_av_level = BB_AV_LEVEL (to);
4438
4439 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4440 BB_AV_LEVEL (from) = to_av_level;
4441 }
4442 }
4443
4444 /* Exchange data sets of TO and FROM. */
4445 void
4446 exchange_data_sets (basic_block to, basic_block from)
4447 {
4448 exchange_lv_sets (to, from);
4449 exchange_av_sets (to, from);
4450 }
4451
4452 /* Copy data sets of FROM to TO. */
4453 void
4454 copy_data_sets (basic_block to, basic_block from)
4455 {
4456 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4457 gcc_assert (BB_AV_SET (to) == NULL);
4458
4459 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4460 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4461
4462 if (BB_AV_SET_VALID_P (from))
4463 {
4464 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4465 }
4466 if (BB_LV_SET_VALID_P (from))
4467 {
4468 gcc_assert (BB_LV_SET (to) != NULL);
4469 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4470 }
4471 }
4472
4473 /* Return an av set for INSN, if any. */
4474 av_set_t
4475 get_av_set (insn_t insn)
4476 {
4477 av_set_t av_set;
4478
4479 gcc_assert (AV_SET_VALID_P (insn));
4480
4481 if (sel_bb_head_p (insn))
4482 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4483 else
4484 av_set = NULL;
4485
4486 return av_set;
4487 }
4488
4489 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4490 int
4491 get_av_level (insn_t insn)
4492 {
4493 int av_level;
4494
4495 gcc_assert (INSN_P (insn));
4496
4497 if (sel_bb_head_p (insn))
4498 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4499 else
4500 av_level = INSN_WS_LEVEL (insn);
4501
4502 return av_level;
4503 }
4504
4505 \f
4506
4507 /* Variables to work with control-flow graph. */
4508
4509 /* The basic block that already has been processed by the sched_data_update (),
4510 but hasn't been in sel_add_bb () yet. */
4511 static vec<basic_block>
4512 last_added_blocks = vNULL;
4513
4514 /* A pool for allocating successor infos. */
4515 static struct
4516 {
4517 /* A stack for saving succs_info structures. */
4518 struct succs_info *stack;
4519
4520 /* Its size. */
4521 int size;
4522
4523 /* Top of the stack. */
4524 int top;
4525
4526 /* Maximal value of the top. */
4527 int max_top;
4528 } succs_info_pool;
4529
4530 /* Functions to work with control-flow graph. */
4531
4532 /* Return basic block note of BB. */
4533 insn_t
4534 sel_bb_head (basic_block bb)
4535 {
4536 insn_t head;
4537
4538 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4539 {
4540 gcc_assert (exit_insn != NULL_RTX);
4541 head = exit_insn;
4542 }
4543 else
4544 {
4545 insn_t note;
4546
4547 note = bb_note (bb);
4548 head = next_nonnote_insn (note);
4549
4550 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4551 head = NULL_RTX;
4552 }
4553
4554 return head;
4555 }
4556
4557 /* Return true if INSN is a basic block header. */
4558 bool
4559 sel_bb_head_p (insn_t insn)
4560 {
4561 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4562 }
4563
4564 /* Return last insn of BB. */
4565 insn_t
4566 sel_bb_end (basic_block bb)
4567 {
4568 if (sel_bb_empty_p (bb))
4569 return NULL_RTX;
4570
4571 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4572
4573 return BB_END (bb);
4574 }
4575
4576 /* Return true if INSN is the last insn in its basic block. */
4577 bool
4578 sel_bb_end_p (insn_t insn)
4579 {
4580 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4581 }
4582
4583 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4584 bool
4585 sel_bb_empty_p (basic_block bb)
4586 {
4587 return sel_bb_head (bb) == NULL;
4588 }
4589
4590 /* True when BB belongs to the current scheduling region. */
4591 bool
4592 in_current_region_p (basic_block bb)
4593 {
4594 if (bb->index < NUM_FIXED_BLOCKS)
4595 return false;
4596
4597 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4598 }
4599
4600 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4601 basic_block
4602 fallthru_bb_of_jump (rtx jump)
4603 {
4604 if (!JUMP_P (jump))
4605 return NULL;
4606
4607 if (!any_condjump_p (jump))
4608 return NULL;
4609
4610 /* A basic block that ends with a conditional jump may still have one successor
4611 (and be followed by a barrier), we are not interested. */
4612 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4613 return NULL;
4614
4615 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4616 }
4617
4618 /* Remove all notes from BB. */
4619 static void
4620 init_bb (basic_block bb)
4621 {
4622 remove_notes (bb_note (bb), BB_END (bb));
4623 SET_BB_NOTE_LIST (bb) = note_list;
4624 }
4625
4626 void
4627 sel_init_bbs (bb_vec_t bbs)
4628 {
4629 const struct sched_scan_info_def ssi =
4630 {
4631 extend_bb_info, /* extend_bb */
4632 init_bb, /* init_bb */
4633 NULL, /* extend_insn */
4634 NULL /* init_insn */
4635 };
4636
4637 sched_scan (&ssi, bbs);
4638 }
4639
4640 /* Restore notes for the whole region. */
4641 static void
4642 sel_restore_notes (void)
4643 {
4644 int bb;
4645 insn_t insn;
4646
4647 for (bb = 0; bb < current_nr_blocks; bb++)
4648 {
4649 basic_block first, last;
4650
4651 first = EBB_FIRST_BB (bb);
4652 last = EBB_LAST_BB (bb)->next_bb;
4653
4654 do
4655 {
4656 note_list = BB_NOTE_LIST (first);
4657 restore_other_notes (NULL, first);
4658 SET_BB_NOTE_LIST (first) = NULL_RTX;
4659
4660 FOR_BB_INSNS (first, insn)
4661 if (NONDEBUG_INSN_P (insn))
4662 reemit_notes (insn);
4663
4664 first = first->next_bb;
4665 }
4666 while (first != last);
4667 }
4668 }
4669
4670 /* Free per-bb data structures. */
4671 void
4672 sel_finish_bbs (void)
4673 {
4674 sel_restore_notes ();
4675
4676 /* Remove current loop preheader from this loop. */
4677 if (current_loop_nest)
4678 sel_remove_loop_preheader ();
4679
4680 finish_region_bb_info ();
4681 }
4682
4683 /* Return true if INSN has a single successor of type FLAGS. */
4684 bool
4685 sel_insn_has_single_succ_p (insn_t insn, int flags)
4686 {
4687 insn_t succ;
4688 succ_iterator si;
4689 bool first_p = true;
4690
4691 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4692 {
4693 if (first_p)
4694 first_p = false;
4695 else
4696 return false;
4697 }
4698
4699 return true;
4700 }
4701
4702 /* Allocate successor's info. */
4703 static struct succs_info *
4704 alloc_succs_info (void)
4705 {
4706 if (succs_info_pool.top == succs_info_pool.max_top)
4707 {
4708 int i;
4709
4710 if (++succs_info_pool.max_top >= succs_info_pool.size)
4711 gcc_unreachable ();
4712
4713 i = ++succs_info_pool.top;
4714 succs_info_pool.stack[i].succs_ok.create (10);
4715 succs_info_pool.stack[i].succs_other.create (10);
4716 succs_info_pool.stack[i].probs_ok.create (10);
4717 }
4718 else
4719 succs_info_pool.top++;
4720
4721 return &succs_info_pool.stack[succs_info_pool.top];
4722 }
4723
4724 /* Free successor's info. */
4725 void
4726 free_succs_info (struct succs_info * sinfo)
4727 {
4728 gcc_assert (succs_info_pool.top >= 0
4729 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4730 succs_info_pool.top--;
4731
4732 /* Clear stale info. */
4733 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4734 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4735 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4736 sinfo->all_prob = 0;
4737 sinfo->succs_ok_n = 0;
4738 sinfo->all_succs_n = 0;
4739 }
4740
4741 /* Compute successor info for INSN. FLAGS are the flags passed
4742 to the FOR_EACH_SUCC_1 iterator. */
4743 struct succs_info *
4744 compute_succs_info (insn_t insn, short flags)
4745 {
4746 succ_iterator si;
4747 insn_t succ;
4748 struct succs_info *sinfo = alloc_succs_info ();
4749
4750 /* Traverse *all* successors and decide what to do with each. */
4751 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4752 {
4753 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4754 perform code motion through inner loops. */
4755 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4756
4757 if (current_flags & flags)
4758 {
4759 sinfo->succs_ok.safe_push (succ);
4760 sinfo->probs_ok.safe_push (
4761 /* FIXME: Improve calculation when skipping
4762 inner loop to exits. */
4763 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4764 sinfo->succs_ok_n++;
4765 }
4766 else
4767 sinfo->succs_other.safe_push (succ);
4768
4769 /* Compute all_prob. */
4770 if (!si.bb_end)
4771 sinfo->all_prob = REG_BR_PROB_BASE;
4772 else
4773 sinfo->all_prob += si.e1->probability;
4774
4775 sinfo->all_succs_n++;
4776 }
4777
4778 return sinfo;
4779 }
4780
4781 /* Return the predecessors of BB in PREDS and their number in N.
4782 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4783 static void
4784 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4785 {
4786 edge e;
4787 edge_iterator ei;
4788
4789 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4790
4791 FOR_EACH_EDGE (e, ei, bb->preds)
4792 {
4793 basic_block pred_bb = e->src;
4794 insn_t bb_end = BB_END (pred_bb);
4795
4796 if (!in_current_region_p (pred_bb))
4797 {
4798 gcc_assert (flag_sel_sched_pipelining_outer_loops
4799 && current_loop_nest);
4800 continue;
4801 }
4802
4803 if (sel_bb_empty_p (pred_bb))
4804 cfg_preds_1 (pred_bb, preds, n, size);
4805 else
4806 {
4807 if (*n == *size)
4808 *preds = XRESIZEVEC (insn_t, *preds,
4809 (*size = 2 * *size + 1));
4810 (*preds)[(*n)++] = bb_end;
4811 }
4812 }
4813
4814 gcc_assert (*n != 0
4815 || (flag_sel_sched_pipelining_outer_loops
4816 && current_loop_nest));
4817 }
4818
4819 /* Find all predecessors of BB and record them in PREDS and their number
4820 in N. Empty blocks are skipped, and only normal (forward in-region)
4821 edges are processed. */
4822 static void
4823 cfg_preds (basic_block bb, insn_t **preds, int *n)
4824 {
4825 int size = 0;
4826
4827 *preds = NULL;
4828 *n = 0;
4829 cfg_preds_1 (bb, preds, n, &size);
4830 }
4831
4832 /* Returns true if we are moving INSN through join point. */
4833 bool
4834 sel_num_cfg_preds_gt_1 (insn_t insn)
4835 {
4836 basic_block bb;
4837
4838 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4839 return false;
4840
4841 bb = BLOCK_FOR_INSN (insn);
4842
4843 while (1)
4844 {
4845 if (EDGE_COUNT (bb->preds) > 1)
4846 return true;
4847
4848 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4849 bb = EDGE_PRED (bb, 0)->src;
4850
4851 if (!sel_bb_empty_p (bb))
4852 break;
4853 }
4854
4855 return false;
4856 }
4857
4858 /* Returns true when BB should be the end of an ebb. Adapted from the
4859 code in sched-ebb.c. */
4860 bool
4861 bb_ends_ebb_p (basic_block bb)
4862 {
4863 basic_block next_bb = bb_next_bb (bb);
4864 edge e;
4865
4866 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4867 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4868 || (LABEL_P (BB_HEAD (next_bb))
4869 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4870 Work around that. */
4871 && !single_pred_p (next_bb)))
4872 return true;
4873
4874 if (!in_current_region_p (next_bb))
4875 return true;
4876
4877 e = find_fallthru_edge (bb->succs);
4878 if (e)
4879 {
4880 gcc_assert (e->dest == next_bb);
4881
4882 return false;
4883 }
4884
4885 return true;
4886 }
4887
4888 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4889 successor of INSN. */
4890 bool
4891 in_same_ebb_p (insn_t insn, insn_t succ)
4892 {
4893 basic_block ptr = BLOCK_FOR_INSN (insn);
4894
4895 for (;;)
4896 {
4897 if (ptr == BLOCK_FOR_INSN (succ))
4898 return true;
4899
4900 if (bb_ends_ebb_p (ptr))
4901 return false;
4902
4903 ptr = bb_next_bb (ptr);
4904 }
4905
4906 gcc_unreachable ();
4907 return false;
4908 }
4909
4910 /* Recomputes the reverse topological order for the function and
4911 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4912 modified appropriately. */
4913 static void
4914 recompute_rev_top_order (void)
4915 {
4916 int *postorder;
4917 int n_blocks, i;
4918
4919 if (!rev_top_order_index
4920 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4921 {
4922 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4923 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4924 rev_top_order_index_len);
4925 }
4926
4927 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4928
4929 n_blocks = post_order_compute (postorder, true, false);
4930 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4931
4932 /* Build reverse function: for each basic block with BB->INDEX == K
4933 rev_top_order_index[K] is it's reverse topological sort number. */
4934 for (i = 0; i < n_blocks; i++)
4935 {
4936 gcc_assert (postorder[i] < rev_top_order_index_len);
4937 rev_top_order_index[postorder[i]] = i;
4938 }
4939
4940 free (postorder);
4941 }
4942
4943 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4944 void
4945 clear_outdated_rtx_info (basic_block bb)
4946 {
4947 rtx insn;
4948
4949 FOR_BB_INSNS (bb, insn)
4950 if (INSN_P (insn))
4951 {
4952 SCHED_GROUP_P (insn) = 0;
4953 INSN_AFTER_STALL_P (insn) = 0;
4954 INSN_SCHED_TIMES (insn) = 0;
4955 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4956
4957 /* We cannot use the changed caches, as previously we could ignore
4958 the LHS dependence due to enabled renaming and transform
4959 the expression, and currently we'll be unable to do this. */
4960 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4961 }
4962 }
4963
4964 /* Add BB_NOTE to the pool of available basic block notes. */
4965 static void
4966 return_bb_to_pool (basic_block bb)
4967 {
4968 rtx note = bb_note (bb);
4969
4970 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4971 && bb->aux == NULL);
4972
4973 /* It turns out that current cfg infrastructure does not support
4974 reuse of basic blocks. Don't bother for now. */
4975 /*bb_note_pool.safe_push (note);*/
4976 }
4977
4978 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4979 static rtx
4980 get_bb_note_from_pool (void)
4981 {
4982 if (bb_note_pool.is_empty ())
4983 return NULL_RTX;
4984 else
4985 {
4986 rtx note = bb_note_pool.pop ();
4987
4988 SET_PREV_INSN (note) = NULL_RTX;
4989 SET_NEXT_INSN (note) = NULL_RTX;
4990
4991 return note;
4992 }
4993 }
4994
4995 /* Free bb_note_pool. */
4996 void
4997 free_bb_note_pool (void)
4998 {
4999 bb_note_pool.release ();
5000 }
5001
5002 /* Setup scheduler pool and successor structure. */
5003 void
5004 alloc_sched_pools (void)
5005 {
5006 int succs_size;
5007
5008 succs_size = MAX_WS + 1;
5009 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5010 succs_info_pool.size = succs_size;
5011 succs_info_pool.top = -1;
5012 succs_info_pool.max_top = -1;
5013
5014 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
5015 sizeof (struct _list_node), 500);
5016 }
5017
5018 /* Free the pools. */
5019 void
5020 free_sched_pools (void)
5021 {
5022 int i;
5023
5024 free_alloc_pool (sched_lists_pool);
5025 gcc_assert (succs_info_pool.top == -1);
5026 for (i = 0; i <= succs_info_pool.max_top; i++)
5027 {
5028 succs_info_pool.stack[i].succs_ok.release ();
5029 succs_info_pool.stack[i].succs_other.release ();
5030 succs_info_pool.stack[i].probs_ok.release ();
5031 }
5032 free (succs_info_pool.stack);
5033 }
5034 \f
5035
5036 /* Returns a position in RGN where BB can be inserted retaining
5037 topological order. */
5038 static int
5039 find_place_to_insert_bb (basic_block bb, int rgn)
5040 {
5041 bool has_preds_outside_rgn = false;
5042 edge e;
5043 edge_iterator ei;
5044
5045 /* Find whether we have preds outside the region. */
5046 FOR_EACH_EDGE (e, ei, bb->preds)
5047 if (!in_current_region_p (e->src))
5048 {
5049 has_preds_outside_rgn = true;
5050 break;
5051 }
5052
5053 /* Recompute the top order -- needed when we have > 1 pred
5054 and in case we don't have preds outside. */
5055 if (flag_sel_sched_pipelining_outer_loops
5056 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5057 {
5058 int i, bbi = bb->index, cur_bbi;
5059
5060 recompute_rev_top_order ();
5061 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5062 {
5063 cur_bbi = BB_TO_BLOCK (i);
5064 if (rev_top_order_index[bbi]
5065 < rev_top_order_index[cur_bbi])
5066 break;
5067 }
5068
5069 /* We skipped the right block, so we increase i. We accommodate
5070 it for increasing by step later, so we decrease i. */
5071 return (i + 1) - 1;
5072 }
5073 else if (has_preds_outside_rgn)
5074 {
5075 /* This is the case when we generate an extra empty block
5076 to serve as region head during pipelining. */
5077 e = EDGE_SUCC (bb, 0);
5078 gcc_assert (EDGE_COUNT (bb->succs) == 1
5079 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5080 && (BLOCK_TO_BB (e->dest->index) == 0));
5081 return -1;
5082 }
5083
5084 /* We don't have preds outside the region. We should have
5085 the only pred, because the multiple preds case comes from
5086 the pipelining of outer loops, and that is handled above.
5087 Just take the bbi of this single pred. */
5088 if (EDGE_COUNT (bb->succs) > 0)
5089 {
5090 int pred_bbi;
5091
5092 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5093
5094 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5095 return BLOCK_TO_BB (pred_bbi);
5096 }
5097 else
5098 /* BB has no successors. It is safe to put it in the end. */
5099 return current_nr_blocks - 1;
5100 }
5101
5102 /* Deletes an empty basic block freeing its data. */
5103 static void
5104 delete_and_free_basic_block (basic_block bb)
5105 {
5106 gcc_assert (sel_bb_empty_p (bb));
5107
5108 if (BB_LV_SET (bb))
5109 free_lv_set (bb);
5110
5111 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5112
5113 /* Can't assert av_set properties because we use sel_aremove_bb
5114 when removing loop preheader from the region. At the point of
5115 removing the preheader we already have deallocated sel_region_bb_info. */
5116 gcc_assert (BB_LV_SET (bb) == NULL
5117 && !BB_LV_SET_VALID_P (bb)
5118 && BB_AV_LEVEL (bb) == 0
5119 && BB_AV_SET (bb) == NULL);
5120
5121 delete_basic_block (bb);
5122 }
5123
5124 /* Add BB to the current region and update the region data. */
5125 static void
5126 add_block_to_current_region (basic_block bb)
5127 {
5128 int i, pos, bbi = -2, rgn;
5129
5130 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5131 bbi = find_place_to_insert_bb (bb, rgn);
5132 bbi += 1;
5133 pos = RGN_BLOCKS (rgn) + bbi;
5134
5135 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5136 && ebb_head[bbi] == pos);
5137
5138 /* Make a place for the new block. */
5139 extend_regions ();
5140
5141 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5142 BLOCK_TO_BB (rgn_bb_table[i])++;
5143
5144 memmove (rgn_bb_table + pos + 1,
5145 rgn_bb_table + pos,
5146 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5147
5148 /* Initialize data for BB. */
5149 rgn_bb_table[pos] = bb->index;
5150 BLOCK_TO_BB (bb->index) = bbi;
5151 CONTAINING_RGN (bb->index) = rgn;
5152
5153 RGN_NR_BLOCKS (rgn)++;
5154
5155 for (i = rgn + 1; i <= nr_regions; i++)
5156 RGN_BLOCKS (i)++;
5157 }
5158
5159 /* Remove BB from the current region and update the region data. */
5160 static void
5161 remove_bb_from_region (basic_block bb)
5162 {
5163 int i, pos, bbi = -2, rgn;
5164
5165 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5166 bbi = BLOCK_TO_BB (bb->index);
5167 pos = RGN_BLOCKS (rgn) + bbi;
5168
5169 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5170 && ebb_head[bbi] == pos);
5171
5172 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5173 BLOCK_TO_BB (rgn_bb_table[i])--;
5174
5175 memmove (rgn_bb_table + pos,
5176 rgn_bb_table + pos + 1,
5177 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5178
5179 RGN_NR_BLOCKS (rgn)--;
5180 for (i = rgn + 1; i <= nr_regions; i++)
5181 RGN_BLOCKS (i)--;
5182 }
5183
5184 /* Add BB to the current region and update all data. If BB is NULL, add all
5185 blocks from last_added_blocks vector. */
5186 static void
5187 sel_add_bb (basic_block bb)
5188 {
5189 /* Extend luids so that new notes will receive zero luids. */
5190 sched_extend_luids ();
5191 sched_init_bbs ();
5192 sel_init_bbs (last_added_blocks);
5193
5194 /* When bb is passed explicitly, the vector should contain
5195 the only element that equals to bb; otherwise, the vector
5196 should not be NULL. */
5197 gcc_assert (last_added_blocks.exists ());
5198
5199 if (bb != NULL)
5200 {
5201 gcc_assert (last_added_blocks.length () == 1
5202 && last_added_blocks[0] == bb);
5203 add_block_to_current_region (bb);
5204
5205 /* We associate creating/deleting data sets with the first insn
5206 appearing / disappearing in the bb. */
5207 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5208 create_initial_data_sets (bb);
5209
5210 last_added_blocks.release ();
5211 }
5212 else
5213 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5214 {
5215 int i;
5216 basic_block temp_bb = NULL;
5217
5218 for (i = 0;
5219 last_added_blocks.iterate (i, &bb); i++)
5220 {
5221 add_block_to_current_region (bb);
5222 temp_bb = bb;
5223 }
5224
5225 /* We need to fetch at least one bb so we know the region
5226 to update. */
5227 gcc_assert (temp_bb != NULL);
5228 bb = temp_bb;
5229
5230 last_added_blocks.release ();
5231 }
5232
5233 rgn_setup_region (CONTAINING_RGN (bb->index));
5234 }
5235
5236 /* Remove BB from the current region and update all data.
5237 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5238 static void
5239 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5240 {
5241 unsigned idx = bb->index;
5242
5243 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5244
5245 remove_bb_from_region (bb);
5246 return_bb_to_pool (bb);
5247 bitmap_clear_bit (blocks_to_reschedule, idx);
5248
5249 if (remove_from_cfg_p)
5250 {
5251 basic_block succ = single_succ (bb);
5252 delete_and_free_basic_block (bb);
5253 set_immediate_dominator (CDI_DOMINATORS, succ,
5254 recompute_dominator (CDI_DOMINATORS, succ));
5255 }
5256
5257 rgn_setup_region (CONTAINING_RGN (idx));
5258 }
5259
5260 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5261 static void
5262 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5263 {
5264 if (in_current_region_p (merge_bb))
5265 concat_note_lists (BB_NOTE_LIST (empty_bb),
5266 &SET_BB_NOTE_LIST (merge_bb));
5267 SET_BB_NOTE_LIST (empty_bb) = NULL_RTX;
5268
5269 }
5270
5271 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5272 region, but keep it in CFG. */
5273 static void
5274 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5275 {
5276 /* The block should contain just a note or a label.
5277 We try to check whether it is unused below. */
5278 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5279 || LABEL_P (BB_HEAD (empty_bb)));
5280
5281 /* If basic block has predecessors or successors, redirect them. */
5282 if (remove_from_cfg_p
5283 && (EDGE_COUNT (empty_bb->preds) > 0
5284 || EDGE_COUNT (empty_bb->succs) > 0))
5285 {
5286 basic_block pred;
5287 basic_block succ;
5288
5289 /* We need to init PRED and SUCC before redirecting edges. */
5290 if (EDGE_COUNT (empty_bb->preds) > 0)
5291 {
5292 edge e;
5293
5294 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5295
5296 e = EDGE_PRED (empty_bb, 0);
5297 gcc_assert (e->src == empty_bb->prev_bb
5298 && (e->flags & EDGE_FALLTHRU));
5299
5300 pred = empty_bb->prev_bb;
5301 }
5302 else
5303 pred = NULL;
5304
5305 if (EDGE_COUNT (empty_bb->succs) > 0)
5306 {
5307 /* We do not check fallthruness here as above, because
5308 after removing a jump the edge may actually be not fallthru. */
5309 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5310 succ = EDGE_SUCC (empty_bb, 0)->dest;
5311 }
5312 else
5313 succ = NULL;
5314
5315 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5316 {
5317 edge e = EDGE_PRED (empty_bb, 0);
5318
5319 if (e->flags & EDGE_FALLTHRU)
5320 redirect_edge_succ_nodup (e, succ);
5321 else
5322 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5323 }
5324
5325 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5326 {
5327 edge e = EDGE_SUCC (empty_bb, 0);
5328
5329 if (find_edge (pred, e->dest) == NULL)
5330 redirect_edge_pred (e, pred);
5331 }
5332 }
5333
5334 /* Finish removing. */
5335 sel_remove_bb (empty_bb, remove_from_cfg_p);
5336 }
5337
5338 /* An implementation of create_basic_block hook, which additionally updates
5339 per-bb data structures. */
5340 static basic_block
5341 sel_create_basic_block (void *headp, void *endp, basic_block after)
5342 {
5343 basic_block new_bb;
5344 insn_t new_bb_note;
5345
5346 gcc_assert (flag_sel_sched_pipelining_outer_loops
5347 || !last_added_blocks.exists ());
5348
5349 new_bb_note = get_bb_note_from_pool ();
5350
5351 if (new_bb_note == NULL_RTX)
5352 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5353 else
5354 {
5355 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5356 new_bb_note, after);
5357 new_bb->aux = NULL;
5358 }
5359
5360 last_added_blocks.safe_push (new_bb);
5361
5362 return new_bb;
5363 }
5364
5365 /* Implement sched_init_only_bb (). */
5366 static void
5367 sel_init_only_bb (basic_block bb, basic_block after)
5368 {
5369 gcc_assert (after == NULL);
5370
5371 extend_regions ();
5372 rgn_make_new_region_out_of_new_block (bb);
5373 }
5374
5375 /* Update the latch when we've splitted or merged it from FROM block to TO.
5376 This should be checked for all outer loops, too. */
5377 static void
5378 change_loops_latches (basic_block from, basic_block to)
5379 {
5380 gcc_assert (from != to);
5381
5382 if (current_loop_nest)
5383 {
5384 struct loop *loop;
5385
5386 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5387 if (considered_for_pipelining_p (loop) && loop->latch == from)
5388 {
5389 gcc_assert (loop == current_loop_nest);
5390 loop->latch = to;
5391 gcc_assert (loop_latch_edge (loop));
5392 }
5393 }
5394 }
5395
5396 /* Splits BB on two basic blocks, adding it to the region and extending
5397 per-bb data structures. Returns the newly created bb. */
5398 static basic_block
5399 sel_split_block (basic_block bb, rtx after)
5400 {
5401 basic_block new_bb;
5402 insn_t insn;
5403
5404 new_bb = sched_split_block_1 (bb, after);
5405 sel_add_bb (new_bb);
5406
5407 /* This should be called after sel_add_bb, because this uses
5408 CONTAINING_RGN for the new block, which is not yet initialized.
5409 FIXME: this function may be a no-op now. */
5410 change_loops_latches (bb, new_bb);
5411
5412 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5413 FOR_BB_INSNS (new_bb, insn)
5414 if (INSN_P (insn))
5415 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5416
5417 if (sel_bb_empty_p (bb))
5418 {
5419 gcc_assert (!sel_bb_empty_p (new_bb));
5420
5421 /* NEW_BB has data sets that need to be updated and BB holds
5422 data sets that should be removed. Exchange these data sets
5423 so that we won't lose BB's valid data sets. */
5424 exchange_data_sets (new_bb, bb);
5425 free_data_sets (bb);
5426 }
5427
5428 if (!sel_bb_empty_p (new_bb)
5429 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5430 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5431
5432 return new_bb;
5433 }
5434
5435 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5436 Otherwise returns NULL. */
5437 static rtx
5438 check_for_new_jump (basic_block bb, int prev_max_uid)
5439 {
5440 rtx end;
5441
5442 end = sel_bb_end (bb);
5443 if (end && INSN_UID (end) >= prev_max_uid)
5444 return end;
5445 return NULL;
5446 }
5447
5448 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5449 New means having UID at least equal to PREV_MAX_UID. */
5450 static rtx
5451 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5452 {
5453 rtx jump;
5454
5455 /* Return immediately if no new insns were emitted. */
5456 if (get_max_uid () == prev_max_uid)
5457 return NULL;
5458
5459 /* Now check both blocks for new jumps. It will ever be only one. */
5460 if ((jump = check_for_new_jump (from, prev_max_uid)))
5461 return jump;
5462
5463 if (jump_bb != NULL
5464 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5465 return jump;
5466 return NULL;
5467 }
5468
5469 /* Splits E and adds the newly created basic block to the current region.
5470 Returns this basic block. */
5471 basic_block
5472 sel_split_edge (edge e)
5473 {
5474 basic_block new_bb, src, other_bb = NULL;
5475 int prev_max_uid;
5476 rtx jump;
5477
5478 src = e->src;
5479 prev_max_uid = get_max_uid ();
5480 new_bb = split_edge (e);
5481
5482 if (flag_sel_sched_pipelining_outer_loops
5483 && current_loop_nest)
5484 {
5485 int i;
5486 basic_block bb;
5487
5488 /* Some of the basic blocks might not have been added to the loop.
5489 Add them here, until this is fixed in force_fallthru. */
5490 for (i = 0;
5491 last_added_blocks.iterate (i, &bb); i++)
5492 if (!bb->loop_father)
5493 {
5494 add_bb_to_loop (bb, e->dest->loop_father);
5495
5496 gcc_assert (!other_bb && (new_bb->index != bb->index));
5497 other_bb = bb;
5498 }
5499 }
5500
5501 /* Add all last_added_blocks to the region. */
5502 sel_add_bb (NULL);
5503
5504 jump = find_new_jump (src, new_bb, prev_max_uid);
5505 if (jump)
5506 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5507
5508 /* Put the correct lv set on this block. */
5509 if (other_bb && !sel_bb_empty_p (other_bb))
5510 compute_live (sel_bb_head (other_bb));
5511
5512 return new_bb;
5513 }
5514
5515 /* Implement sched_create_empty_bb (). */
5516 static basic_block
5517 sel_create_empty_bb (basic_block after)
5518 {
5519 basic_block new_bb;
5520
5521 new_bb = sched_create_empty_bb_1 (after);
5522
5523 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5524 later. */
5525 gcc_assert (last_added_blocks.length () == 1
5526 && last_added_blocks[0] == new_bb);
5527
5528 last_added_blocks.release ();
5529 return new_bb;
5530 }
5531
5532 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5533 will be splitted to insert a check. */
5534 basic_block
5535 sel_create_recovery_block (insn_t orig_insn)
5536 {
5537 basic_block first_bb, second_bb, recovery_block;
5538 basic_block before_recovery = NULL;
5539 rtx jump;
5540
5541 first_bb = BLOCK_FOR_INSN (orig_insn);
5542 if (sel_bb_end_p (orig_insn))
5543 {
5544 /* Avoid introducing an empty block while splitting. */
5545 gcc_assert (single_succ_p (first_bb));
5546 second_bb = single_succ (first_bb);
5547 }
5548 else
5549 second_bb = sched_split_block (first_bb, orig_insn);
5550
5551 recovery_block = sched_create_recovery_block (&before_recovery);
5552 if (before_recovery)
5553 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5554
5555 gcc_assert (sel_bb_empty_p (recovery_block));
5556 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5557 if (current_loops != NULL)
5558 add_bb_to_loop (recovery_block, first_bb->loop_father);
5559
5560 sel_add_bb (recovery_block);
5561
5562 jump = BB_END (recovery_block);
5563 gcc_assert (sel_bb_head (recovery_block) == jump);
5564 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5565
5566 return recovery_block;
5567 }
5568
5569 /* Merge basic block B into basic block A. */
5570 static void
5571 sel_merge_blocks (basic_block a, basic_block b)
5572 {
5573 gcc_assert (sel_bb_empty_p (b)
5574 && EDGE_COUNT (b->preds) == 1
5575 && EDGE_PRED (b, 0)->src == b->prev_bb);
5576
5577 move_bb_info (b->prev_bb, b);
5578 remove_empty_bb (b, false);
5579 merge_blocks (a, b);
5580 change_loops_latches (b, a);
5581 }
5582
5583 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5584 data structures for possibly created bb and insns. */
5585 void
5586 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5587 {
5588 basic_block jump_bb, src, orig_dest = e->dest;
5589 int prev_max_uid;
5590 rtx jump;
5591 int old_seqno = -1;
5592
5593 /* This function is now used only for bookkeeping code creation, where
5594 we'll never get the single pred of orig_dest block and thus will not
5595 hit unreachable blocks when updating dominator info. */
5596 gcc_assert (!sel_bb_empty_p (e->src)
5597 && !single_pred_p (orig_dest));
5598 src = e->src;
5599 prev_max_uid = get_max_uid ();
5600 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5601 when the conditional jump being redirected may become unconditional. */
5602 if (any_condjump_p (BB_END (src))
5603 && INSN_SEQNO (BB_END (src)) >= 0)
5604 old_seqno = INSN_SEQNO (BB_END (src));
5605
5606 jump_bb = redirect_edge_and_branch_force (e, to);
5607 if (jump_bb != NULL)
5608 sel_add_bb (jump_bb);
5609
5610 /* This function could not be used to spoil the loop structure by now,
5611 thus we don't care to update anything. But check it to be sure. */
5612 if (current_loop_nest
5613 && pipelining_p)
5614 gcc_assert (loop_latch_edge (current_loop_nest));
5615
5616 jump = find_new_jump (src, jump_bb, prev_max_uid);
5617 if (jump)
5618 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5619 old_seqno);
5620 set_immediate_dominator (CDI_DOMINATORS, to,
5621 recompute_dominator (CDI_DOMINATORS, to));
5622 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5623 recompute_dominator (CDI_DOMINATORS, orig_dest));
5624 }
5625
5626 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5627 redirected edge are in reverse topological order. */
5628 bool
5629 sel_redirect_edge_and_branch (edge e, basic_block to)
5630 {
5631 bool latch_edge_p;
5632 basic_block src, orig_dest = e->dest;
5633 int prev_max_uid;
5634 rtx jump;
5635 edge redirected;
5636 bool recompute_toporder_p = false;
5637 bool maybe_unreachable = single_pred_p (orig_dest);
5638 int old_seqno = -1;
5639
5640 latch_edge_p = (pipelining_p
5641 && current_loop_nest
5642 && e == loop_latch_edge (current_loop_nest));
5643
5644 src = e->src;
5645 prev_max_uid = get_max_uid ();
5646
5647 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5648 when the conditional jump being redirected may become unconditional. */
5649 if (any_condjump_p (BB_END (src))
5650 && INSN_SEQNO (BB_END (src)) >= 0)
5651 old_seqno = INSN_SEQNO (BB_END (src));
5652
5653 redirected = redirect_edge_and_branch (e, to);
5654
5655 gcc_assert (redirected && !last_added_blocks.exists ());
5656
5657 /* When we've redirected a latch edge, update the header. */
5658 if (latch_edge_p)
5659 {
5660 current_loop_nest->header = to;
5661 gcc_assert (loop_latch_edge (current_loop_nest));
5662 }
5663
5664 /* In rare situations, the topological relation between the blocks connected
5665 by the redirected edge can change (see PR42245 for an example). Update
5666 block_to_bb/bb_to_block. */
5667 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5668 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5669 recompute_toporder_p = true;
5670
5671 jump = find_new_jump (src, NULL, prev_max_uid);
5672 if (jump)
5673 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5674
5675 /* Only update dominator info when we don't have unreachable blocks.
5676 Otherwise we'll update in maybe_tidy_empty_bb. */
5677 if (!maybe_unreachable)
5678 {
5679 set_immediate_dominator (CDI_DOMINATORS, to,
5680 recompute_dominator (CDI_DOMINATORS, to));
5681 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5682 recompute_dominator (CDI_DOMINATORS, orig_dest));
5683 }
5684 return recompute_toporder_p;
5685 }
5686
5687 /* This variable holds the cfg hooks used by the selective scheduler. */
5688 static struct cfg_hooks sel_cfg_hooks;
5689
5690 /* Register sel-sched cfg hooks. */
5691 void
5692 sel_register_cfg_hooks (void)
5693 {
5694 sched_split_block = sel_split_block;
5695
5696 orig_cfg_hooks = get_cfg_hooks ();
5697 sel_cfg_hooks = orig_cfg_hooks;
5698
5699 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5700
5701 set_cfg_hooks (sel_cfg_hooks);
5702
5703 sched_init_only_bb = sel_init_only_bb;
5704 sched_split_block = sel_split_block;
5705 sched_create_empty_bb = sel_create_empty_bb;
5706 }
5707
5708 /* Unregister sel-sched cfg hooks. */
5709 void
5710 sel_unregister_cfg_hooks (void)
5711 {
5712 sched_create_empty_bb = NULL;
5713 sched_split_block = NULL;
5714 sched_init_only_bb = NULL;
5715
5716 set_cfg_hooks (orig_cfg_hooks);
5717 }
5718 \f
5719
5720 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5721 LABEL is where this jump should be directed. */
5722 rtx
5723 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5724 {
5725 rtx insn_rtx;
5726
5727 gcc_assert (!INSN_P (pattern));
5728
5729 start_sequence ();
5730
5731 if (label == NULL_RTX)
5732 insn_rtx = emit_insn (pattern);
5733 else if (DEBUG_INSN_P (label))
5734 insn_rtx = emit_debug_insn (pattern);
5735 else
5736 {
5737 insn_rtx = emit_jump_insn (pattern);
5738 JUMP_LABEL (insn_rtx) = label;
5739 ++LABEL_NUSES (label);
5740 }
5741
5742 end_sequence ();
5743
5744 sched_extend_luids ();
5745 sched_extend_target ();
5746 sched_deps_init (false);
5747
5748 /* Initialize INSN_CODE now. */
5749 recog_memoized (insn_rtx);
5750 return insn_rtx;
5751 }
5752
5753 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5754 must not be clonable. */
5755 vinsn_t
5756 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5757 {
5758 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5759
5760 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5761 return vinsn_create (insn_rtx, force_unique_p);
5762 }
5763
5764 /* Create a copy of INSN_RTX. */
5765 rtx
5766 create_copy_of_insn_rtx (rtx insn_rtx)
5767 {
5768 rtx res, link;
5769
5770 if (DEBUG_INSN_P (insn_rtx))
5771 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5772 insn_rtx);
5773
5774 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5775
5776 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5777 NULL_RTX);
5778
5779 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5780 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5781 there too, but are supposed to be sticky, so we copy them. */
5782 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5783 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5784 && REG_NOTE_KIND (link) != REG_EQUAL
5785 && REG_NOTE_KIND (link) != REG_EQUIV)
5786 {
5787 if (GET_CODE (link) == EXPR_LIST)
5788 add_reg_note (res, REG_NOTE_KIND (link),
5789 copy_insn_1 (XEXP (link, 0)));
5790 else
5791 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5792 }
5793
5794 return res;
5795 }
5796
5797 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5798 void
5799 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5800 {
5801 vinsn_detach (EXPR_VINSN (expr));
5802
5803 EXPR_VINSN (expr) = new_vinsn;
5804 vinsn_attach (new_vinsn);
5805 }
5806
5807 /* Helpers for global init. */
5808 /* This structure is used to be able to call existing bundling mechanism
5809 and calculate insn priorities. */
5810 static struct haifa_sched_info sched_sel_haifa_sched_info =
5811 {
5812 NULL, /* init_ready_list */
5813 NULL, /* can_schedule_ready_p */
5814 NULL, /* schedule_more_p */
5815 NULL, /* new_ready */
5816 NULL, /* rgn_rank */
5817 sel_print_insn, /* rgn_print_insn */
5818 contributes_to_priority,
5819 NULL, /* insn_finishes_block_p */
5820
5821 NULL, NULL,
5822 NULL, NULL,
5823 0, 0,
5824
5825 NULL, /* add_remove_insn */
5826 NULL, /* begin_schedule_ready */
5827 NULL, /* begin_move_insn */
5828 NULL, /* advance_target_bb */
5829
5830 NULL,
5831 NULL,
5832
5833 SEL_SCHED | NEW_BBS
5834 };
5835
5836 /* Setup special insns used in the scheduler. */
5837 void
5838 setup_nop_and_exit_insns (void)
5839 {
5840 gcc_assert (nop_pattern == NULL_RTX
5841 && exit_insn == NULL_RTX);
5842
5843 nop_pattern = constm1_rtx;
5844
5845 start_sequence ();
5846 emit_insn (nop_pattern);
5847 exit_insn = get_insns ();
5848 end_sequence ();
5849 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5850 }
5851
5852 /* Free special insns used in the scheduler. */
5853 void
5854 free_nop_and_exit_insns (void)
5855 {
5856 exit_insn = NULL_RTX;
5857 nop_pattern = NULL_RTX;
5858 }
5859
5860 /* Setup a special vinsn used in new insns initialization. */
5861 void
5862 setup_nop_vinsn (void)
5863 {
5864 nop_vinsn = vinsn_create (exit_insn, false);
5865 vinsn_attach (nop_vinsn);
5866 }
5867
5868 /* Free a special vinsn used in new insns initialization. */
5869 void
5870 free_nop_vinsn (void)
5871 {
5872 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5873 vinsn_detach (nop_vinsn);
5874 nop_vinsn = NULL;
5875 }
5876
5877 /* Call a set_sched_flags hook. */
5878 void
5879 sel_set_sched_flags (void)
5880 {
5881 /* ??? This means that set_sched_flags were called, and we decided to
5882 support speculation. However, set_sched_flags also modifies flags
5883 on current_sched_info, doing this only at global init. And we
5884 sometimes change c_s_i later. So put the correct flags again. */
5885 if (spec_info && targetm.sched.set_sched_flags)
5886 targetm.sched.set_sched_flags (spec_info);
5887 }
5888
5889 /* Setup pointers to global sched info structures. */
5890 void
5891 sel_setup_sched_infos (void)
5892 {
5893 rgn_setup_common_sched_info ();
5894
5895 memcpy (&sel_common_sched_info, common_sched_info,
5896 sizeof (sel_common_sched_info));
5897
5898 sel_common_sched_info.fix_recovery_cfg = NULL;
5899 sel_common_sched_info.add_block = NULL;
5900 sel_common_sched_info.estimate_number_of_insns
5901 = sel_estimate_number_of_insns;
5902 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5903 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5904
5905 common_sched_info = &sel_common_sched_info;
5906
5907 current_sched_info = &sched_sel_haifa_sched_info;
5908 current_sched_info->sched_max_insns_priority =
5909 get_rgn_sched_max_insns_priority ();
5910
5911 sel_set_sched_flags ();
5912 }
5913 \f
5914
5915 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5916 *BB_ORD_INDEX after that is increased. */
5917 static void
5918 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5919 {
5920 RGN_NR_BLOCKS (rgn) += 1;
5921 RGN_DONT_CALC_DEPS (rgn) = 0;
5922 RGN_HAS_REAL_EBB (rgn) = 0;
5923 CONTAINING_RGN (bb->index) = rgn;
5924 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5925 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5926 (*bb_ord_index)++;
5927
5928 /* FIXME: it is true only when not scheduling ebbs. */
5929 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5930 }
5931
5932 /* Functions to support pipelining of outer loops. */
5933
5934 /* Creates a new empty region and returns it's number. */
5935 static int
5936 sel_create_new_region (void)
5937 {
5938 int new_rgn_number = nr_regions;
5939
5940 RGN_NR_BLOCKS (new_rgn_number) = 0;
5941
5942 /* FIXME: This will work only when EBBs are not created. */
5943 if (new_rgn_number != 0)
5944 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5945 RGN_NR_BLOCKS (new_rgn_number - 1);
5946 else
5947 RGN_BLOCKS (new_rgn_number) = 0;
5948
5949 /* Set the blocks of the next region so the other functions may
5950 calculate the number of blocks in the region. */
5951 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5952 RGN_NR_BLOCKS (new_rgn_number);
5953
5954 nr_regions++;
5955
5956 return new_rgn_number;
5957 }
5958
5959 /* If X has a smaller topological sort number than Y, returns -1;
5960 if greater, returns 1. */
5961 static int
5962 bb_top_order_comparator (const void *x, const void *y)
5963 {
5964 basic_block bb1 = *(const basic_block *) x;
5965 basic_block bb2 = *(const basic_block *) y;
5966
5967 gcc_assert (bb1 == bb2
5968 || rev_top_order_index[bb1->index]
5969 != rev_top_order_index[bb2->index]);
5970
5971 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5972 bbs with greater number should go earlier. */
5973 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5974 return -1;
5975 else
5976 return 1;
5977 }
5978
5979 /* Create a region for LOOP and return its number. If we don't want
5980 to pipeline LOOP, return -1. */
5981 static int
5982 make_region_from_loop (struct loop *loop)
5983 {
5984 unsigned int i;
5985 int new_rgn_number = -1;
5986 struct loop *inner;
5987
5988 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5989 int bb_ord_index = 0;
5990 basic_block *loop_blocks;
5991 basic_block preheader_block;
5992
5993 if (loop->num_nodes
5994 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5995 return -1;
5996
5997 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5998 for (inner = loop->inner; inner; inner = inner->inner)
5999 if (flow_bb_inside_loop_p (inner, loop->latch))
6000 return -1;
6001
6002 loop->ninsns = num_loop_insns (loop);
6003 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
6004 return -1;
6005
6006 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6007
6008 for (i = 0; i < loop->num_nodes; i++)
6009 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6010 {
6011 free (loop_blocks);
6012 return -1;
6013 }
6014
6015 preheader_block = loop_preheader_edge (loop)->src;
6016 gcc_assert (preheader_block);
6017 gcc_assert (loop_blocks[0] == loop->header);
6018
6019 new_rgn_number = sel_create_new_region ();
6020
6021 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6022 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6023
6024 for (i = 0; i < loop->num_nodes; i++)
6025 {
6026 /* Add only those blocks that haven't been scheduled in the inner loop.
6027 The exception is the basic blocks with bookkeeping code - they should
6028 be added to the region (and they actually don't belong to the loop
6029 body, but to the region containing that loop body). */
6030
6031 gcc_assert (new_rgn_number >= 0);
6032
6033 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6034 {
6035 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6036 new_rgn_number);
6037 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6038 }
6039 }
6040
6041 free (loop_blocks);
6042 MARK_LOOP_FOR_PIPELINING (loop);
6043
6044 return new_rgn_number;
6045 }
6046
6047 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6048 void
6049 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6050 {
6051 unsigned int i;
6052 int new_rgn_number = -1;
6053 basic_block bb;
6054
6055 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6056 int bb_ord_index = 0;
6057
6058 new_rgn_number = sel_create_new_region ();
6059
6060 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6061 {
6062 gcc_assert (new_rgn_number >= 0);
6063
6064 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6065 }
6066
6067 vec_free (loop_blocks);
6068 }
6069
6070
6071 /* Create region(s) from loop nest LOOP, such that inner loops will be
6072 pipelined before outer loops. Returns true when a region for LOOP
6073 is created. */
6074 static bool
6075 make_regions_from_loop_nest (struct loop *loop)
6076 {
6077 struct loop *cur_loop;
6078 int rgn_number;
6079
6080 /* Traverse all inner nodes of the loop. */
6081 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6082 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6083 return false;
6084
6085 /* At this moment all regular inner loops should have been pipelined.
6086 Try to create a region from this loop. */
6087 rgn_number = make_region_from_loop (loop);
6088
6089 if (rgn_number < 0)
6090 return false;
6091
6092 loop_nests.safe_push (loop);
6093 return true;
6094 }
6095
6096 /* Initalize data structures needed. */
6097 void
6098 sel_init_pipelining (void)
6099 {
6100 /* Collect loop information to be used in outer loops pipelining. */
6101 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6102 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6103 | LOOPS_HAVE_RECORDED_EXITS
6104 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6105 current_loop_nest = NULL;
6106
6107 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6108 bitmap_clear (bbs_in_loop_rgns);
6109
6110 recompute_rev_top_order ();
6111 }
6112
6113 /* Returns a struct loop for region RGN. */
6114 loop_p
6115 get_loop_nest_for_rgn (unsigned int rgn)
6116 {
6117 /* Regions created with extend_rgns don't have corresponding loop nests,
6118 because they don't represent loops. */
6119 if (rgn < loop_nests.length ())
6120 return loop_nests[rgn];
6121 else
6122 return NULL;
6123 }
6124
6125 /* True when LOOP was included into pipelining regions. */
6126 bool
6127 considered_for_pipelining_p (struct loop *loop)
6128 {
6129 if (loop_depth (loop) == 0)
6130 return false;
6131
6132 /* Now, the loop could be too large or irreducible. Check whether its
6133 region is in LOOP_NESTS.
6134 We determine the region number of LOOP as the region number of its
6135 latch. We can't use header here, because this header could be
6136 just removed preheader and it will give us the wrong region number.
6137 Latch can't be used because it could be in the inner loop too. */
6138 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6139 {
6140 int rgn = CONTAINING_RGN (loop->latch->index);
6141
6142 gcc_assert ((unsigned) rgn < loop_nests.length ());
6143 return true;
6144 }
6145
6146 return false;
6147 }
6148
6149 /* Makes regions from the rest of the blocks, after loops are chosen
6150 for pipelining. */
6151 static void
6152 make_regions_from_the_rest (void)
6153 {
6154 int cur_rgn_blocks;
6155 int *loop_hdr;
6156 int i;
6157
6158 basic_block bb;
6159 edge e;
6160 edge_iterator ei;
6161 int *degree;
6162
6163 /* Index in rgn_bb_table where to start allocating new regions. */
6164 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6165
6166 /* Make regions from all the rest basic blocks - those that don't belong to
6167 any loop or belong to irreducible loops. Prepare the data structures
6168 for extend_rgns. */
6169
6170 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6171 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6172 loop. */
6173 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6174 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6175
6176
6177 /* For each basic block that belongs to some loop assign the number
6178 of innermost loop it belongs to. */
6179 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6180 loop_hdr[i] = -1;
6181
6182 FOR_EACH_BB_FN (bb, cfun)
6183 {
6184 if (bb->loop_father && !bb->loop_father->num == 0
6185 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6186 loop_hdr[bb->index] = bb->loop_father->num;
6187 }
6188
6189 /* For each basic block degree is calculated as the number of incoming
6190 edges, that are going out of bbs that are not yet scheduled.
6191 The basic blocks that are scheduled have degree value of zero. */
6192 FOR_EACH_BB_FN (bb, cfun)
6193 {
6194 degree[bb->index] = 0;
6195
6196 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6197 {
6198 FOR_EACH_EDGE (e, ei, bb->preds)
6199 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6200 degree[bb->index]++;
6201 }
6202 else
6203 degree[bb->index] = -1;
6204 }
6205
6206 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6207
6208 /* Any block that did not end up in a region is placed into a region
6209 by itself. */
6210 FOR_EACH_BB_FN (bb, cfun)
6211 if (degree[bb->index] >= 0)
6212 {
6213 rgn_bb_table[cur_rgn_blocks] = bb->index;
6214 RGN_NR_BLOCKS (nr_regions) = 1;
6215 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6216 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6217 RGN_HAS_REAL_EBB (nr_regions) = 0;
6218 CONTAINING_RGN (bb->index) = nr_regions++;
6219 BLOCK_TO_BB (bb->index) = 0;
6220 }
6221
6222 free (degree);
6223 free (loop_hdr);
6224 }
6225
6226 /* Free data structures used in pipelining of loops. */
6227 void sel_finish_pipelining (void)
6228 {
6229 struct loop *loop;
6230
6231 /* Release aux fields so we don't free them later by mistake. */
6232 FOR_EACH_LOOP (loop, 0)
6233 loop->aux = NULL;
6234
6235 loop_optimizer_finalize ();
6236
6237 loop_nests.release ();
6238
6239 free (rev_top_order_index);
6240 rev_top_order_index = NULL;
6241 }
6242
6243 /* This function replaces the find_rgns when
6244 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6245 void
6246 sel_find_rgns (void)
6247 {
6248 sel_init_pipelining ();
6249 extend_regions ();
6250
6251 if (current_loops)
6252 {
6253 loop_p loop;
6254
6255 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6256 ? LI_FROM_INNERMOST
6257 : LI_ONLY_INNERMOST))
6258 make_regions_from_loop_nest (loop);
6259 }
6260
6261 /* Make regions from all the rest basic blocks and schedule them.
6262 These blocks include blocks that don't belong to any loop or belong
6263 to irreducible loops. */
6264 make_regions_from_the_rest ();
6265
6266 /* We don't need bbs_in_loop_rgns anymore. */
6267 sbitmap_free (bbs_in_loop_rgns);
6268 bbs_in_loop_rgns = NULL;
6269 }
6270
6271 /* Add the preheader blocks from previous loop to current region taking
6272 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6273 This function is only used with -fsel-sched-pipelining-outer-loops. */
6274 void
6275 sel_add_loop_preheaders (bb_vec_t *bbs)
6276 {
6277 int i;
6278 basic_block bb;
6279 vec<basic_block> *preheader_blocks
6280 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6281
6282 if (!preheader_blocks)
6283 return;
6284
6285 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6286 {
6287 bbs->safe_push (bb);
6288 last_added_blocks.safe_push (bb);
6289 sel_add_bb (bb);
6290 }
6291
6292 vec_free (preheader_blocks);
6293 }
6294
6295 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6296 Please note that the function should also work when pipelining_p is
6297 false, because it is used when deciding whether we should or should
6298 not reschedule pipelined code. */
6299 bool
6300 sel_is_loop_preheader_p (basic_block bb)
6301 {
6302 if (current_loop_nest)
6303 {
6304 struct loop *outer;
6305
6306 if (preheader_removed)
6307 return false;
6308
6309 /* Preheader is the first block in the region. */
6310 if (BLOCK_TO_BB (bb->index) == 0)
6311 return true;
6312
6313 /* We used to find a preheader with the topological information.
6314 Check that the above code is equivalent to what we did before. */
6315
6316 if (in_current_region_p (current_loop_nest->header))
6317 gcc_assert (!(BLOCK_TO_BB (bb->index)
6318 < BLOCK_TO_BB (current_loop_nest->header->index)));
6319
6320 /* Support the situation when the latch block of outer loop
6321 could be from here. */
6322 for (outer = loop_outer (current_loop_nest);
6323 outer;
6324 outer = loop_outer (outer))
6325 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6326 gcc_unreachable ();
6327 }
6328
6329 return false;
6330 }
6331
6332 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6333 can be removed, making the corresponding edge fallthrough (assuming that
6334 all basic blocks between JUMP_BB and DEST_BB are empty). */
6335 static bool
6336 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6337 {
6338 if (!onlyjump_p (BB_END (jump_bb))
6339 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6340 return false;
6341
6342 /* Several outgoing edges, abnormal edge or destination of jump is
6343 not DEST_BB. */
6344 if (EDGE_COUNT (jump_bb->succs) != 1
6345 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6346 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6347 return false;
6348
6349 /* If not anything of the upper. */
6350 return true;
6351 }
6352
6353 /* Removes the loop preheader from the current region and saves it in
6354 PREHEADER_BLOCKS of the father loop, so they will be added later to
6355 region that represents an outer loop. */
6356 static void
6357 sel_remove_loop_preheader (void)
6358 {
6359 int i, old_len;
6360 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6361 basic_block bb;
6362 bool all_empty_p = true;
6363 vec<basic_block> *preheader_blocks
6364 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6365
6366 vec_check_alloc (preheader_blocks, 0);
6367
6368 gcc_assert (current_loop_nest);
6369 old_len = preheader_blocks->length ();
6370
6371 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6372 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6373 {
6374 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6375
6376 /* If the basic block belongs to region, but doesn't belong to
6377 corresponding loop, then it should be a preheader. */
6378 if (sel_is_loop_preheader_p (bb))
6379 {
6380 preheader_blocks->safe_push (bb);
6381 if (BB_END (bb) != bb_note (bb))
6382 all_empty_p = false;
6383 }
6384 }
6385
6386 /* Remove these blocks only after iterating over the whole region. */
6387 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6388 {
6389 bb = (*preheader_blocks)[i];
6390 sel_remove_bb (bb, false);
6391 }
6392
6393 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6394 {
6395 if (!all_empty_p)
6396 /* Immediately create new region from preheader. */
6397 make_region_from_loop_preheader (preheader_blocks);
6398 else
6399 {
6400 /* If all preheader blocks are empty - dont create new empty region.
6401 Instead, remove them completely. */
6402 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6403 {
6404 edge e;
6405 edge_iterator ei;
6406 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6407
6408 /* Redirect all incoming edges to next basic block. */
6409 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6410 {
6411 if (! (e->flags & EDGE_FALLTHRU))
6412 redirect_edge_and_branch (e, bb->next_bb);
6413 else
6414 redirect_edge_succ (e, bb->next_bb);
6415 }
6416 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6417 delete_and_free_basic_block (bb);
6418
6419 /* Check if after deleting preheader there is a nonconditional
6420 jump in PREV_BB that leads to the next basic block NEXT_BB.
6421 If it is so - delete this jump and clear data sets of its
6422 basic block if it becomes empty. */
6423 if (next_bb->prev_bb == prev_bb
6424 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6425 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6426 {
6427 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6428 if (BB_END (prev_bb) == bb_note (prev_bb))
6429 free_data_sets (prev_bb);
6430 }
6431
6432 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6433 recompute_dominator (CDI_DOMINATORS,
6434 next_bb));
6435 }
6436 }
6437 vec_free (preheader_blocks);
6438 }
6439 else
6440 /* Store preheader within the father's loop structure. */
6441 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6442 preheader_blocks);
6443 }
6444
6445 rtx_insn *VINSN_INSN_RTX (vinsn_t vi)
6446 {
6447 return safe_as_a <rtx_insn *> (vi->insn_rtx);
6448 }
6449
6450 rtx& SET_VINSN_INSN_RTX (vinsn_t vi)
6451 {
6452 return vi->insn_rtx;
6453 }
6454
6455 rtx_insn *BB_NOTE_LIST (basic_block bb)
6456 {
6457 rtx note_list = SEL_REGION_BB_INFO (bb)->note_list;
6458 return safe_as_a <rtx_insn *> (note_list);
6459 }
6460
6461 rtx& SET_BB_NOTE_LIST (basic_block bb)
6462 {
6463 return SEL_REGION_BB_INFO (bb)->note_list;
6464 }
6465
6466 rtx_insn *BND_TO (bnd_t bnd)
6467 {
6468 return safe_as_a <rtx_insn *> (bnd->to);
6469 }
6470
6471 insn_t& SET_BND_TO (bnd_t bnd)
6472 {
6473 return bnd->to;
6474 }
6475
6476 #endif