]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched-ir.c
Change use to type-based pool allocator in
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "hashtab.h"
30 #include "hash-set.h"
31 #include "vec.h"
32 #include "machmode.h"
33 #include "input.h"
34 #include "function.h"
35 #include "predict.h"
36 #include "dominance.h"
37 #include "cfg.h"
38 #include "cfgrtl.h"
39 #include "cfganal.h"
40 #include "cfgbuild.h"
41 #include "basic-block.h"
42 #include "flags.h"
43 #include "insn-config.h"
44 #include "insn-attr.h"
45 #include "except.h"
46 #include "recog.h"
47 #include "params.h"
48 #include "target.h"
49 #include "sched-int.h"
50 #include "ggc.h"
51 #include "symtab.h"
52 #include "wide-int.h"
53 #include "inchash.h"
54 #include "tree.h"
55 #include "langhooks.h"
56 #include "rtlhooks-def.h"
57 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
58
59 #ifdef INSN_SCHEDULING
60 #include "sel-sched-ir.h"
61 /* We don't have to use it except for sel_print_insn. */
62 #include "sel-sched-dump.h"
63
64 /* A vector holding bb info for whole scheduling pass. */
65 vec<sel_global_bb_info_def>
66 sel_global_bb_info = vNULL;
67
68 /* A vector holding bb info. */
69 vec<sel_region_bb_info_def>
70 sel_region_bb_info = vNULL;
71
72 /* A pool for allocating all lists. */
73 pool_allocator<_list_node> sched_lists_pool ("sel-sched-lists", 500);
74
75 /* This contains information about successors for compute_av_set. */
76 struct succs_info current_succs;
77
78 /* Data structure to describe interaction with the generic scheduler utils. */
79 static struct common_sched_info_def sel_common_sched_info;
80
81 /* The loop nest being pipelined. */
82 struct loop *current_loop_nest;
83
84 /* LOOP_NESTS is a vector containing the corresponding loop nest for
85 each region. */
86 static vec<loop_p> loop_nests = vNULL;
87
88 /* Saves blocks already in loop regions, indexed by bb->index. */
89 static sbitmap bbs_in_loop_rgns = NULL;
90
91 /* CFG hooks that are saved before changing create_basic_block hook. */
92 static struct cfg_hooks orig_cfg_hooks;
93 \f
94
95 /* Array containing reverse topological index of function basic blocks,
96 indexed by BB->INDEX. */
97 static int *rev_top_order_index = NULL;
98
99 /* Length of the above array. */
100 static int rev_top_order_index_len = -1;
101
102 /* A regset pool structure. */
103 static struct
104 {
105 /* The stack to which regsets are returned. */
106 regset *v;
107
108 /* Its pointer. */
109 int n;
110
111 /* Its size. */
112 int s;
113
114 /* In VV we save all generated regsets so that, when destructing the
115 pool, we can compare it with V and check that every regset was returned
116 back to pool. */
117 regset *vv;
118
119 /* The pointer of VV stack. */
120 int nn;
121
122 /* Its size. */
123 int ss;
124
125 /* The difference between allocated and returned regsets. */
126 int diff;
127 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
128
129 /* This represents the nop pool. */
130 static struct
131 {
132 /* The vector which holds previously emitted nops. */
133 insn_t *v;
134
135 /* Its pointer. */
136 int n;
137
138 /* Its size. */
139 int s;
140 } nop_pool = { NULL, 0, 0 };
141
142 /* The pool for basic block notes. */
143 static vec<rtx_note *> bb_note_pool;
144
145 /* A NOP pattern used to emit placeholder insns. */
146 rtx nop_pattern = NULL_RTX;
147 /* A special instruction that resides in EXIT_BLOCK.
148 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
149 rtx_insn *exit_insn = NULL;
150
151 /* TRUE if while scheduling current region, which is loop, its preheader
152 was removed. */
153 bool preheader_removed = false;
154 \f
155
156 /* Forward static declarations. */
157 static void fence_clear (fence_t);
158
159 static void deps_init_id (idata_t, insn_t, bool);
160 static void init_id_from_df (idata_t, insn_t, bool);
161 static expr_t set_insn_init (expr_t, vinsn_t, int);
162
163 static void cfg_preds (basic_block, insn_t **, int *);
164 static void prepare_insn_expr (insn_t, int);
165 static void free_history_vect (vec<expr_history_def> &);
166
167 static void move_bb_info (basic_block, basic_block);
168 static void remove_empty_bb (basic_block, bool);
169 static void sel_merge_blocks (basic_block, basic_block);
170 static void sel_remove_loop_preheader (void);
171 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
172
173 static bool insn_is_the_only_one_in_bb_p (insn_t);
174 static void create_initial_data_sets (basic_block);
175
176 static void free_av_set (basic_block);
177 static void invalidate_av_set (basic_block);
178 static void extend_insn_data (void);
179 static void sel_init_new_insn (insn_t, int, int = -1);
180 static void finish_insns (void);
181 \f
182 /* Various list functions. */
183
184 /* Copy an instruction list L. */
185 ilist_t
186 ilist_copy (ilist_t l)
187 {
188 ilist_t head = NULL, *tailp = &head;
189
190 while (l)
191 {
192 ilist_add (tailp, ILIST_INSN (l));
193 tailp = &ILIST_NEXT (*tailp);
194 l = ILIST_NEXT (l);
195 }
196
197 return head;
198 }
199
200 /* Invert an instruction list L. */
201 ilist_t
202 ilist_invert (ilist_t l)
203 {
204 ilist_t res = NULL;
205
206 while (l)
207 {
208 ilist_add (&res, ILIST_INSN (l));
209 l = ILIST_NEXT (l);
210 }
211
212 return res;
213 }
214
215 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
216 void
217 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
218 {
219 bnd_t bnd;
220
221 _list_add (lp);
222 bnd = BLIST_BND (*lp);
223
224 BND_TO (bnd) = to;
225 BND_PTR (bnd) = ptr;
226 BND_AV (bnd) = NULL;
227 BND_AV1 (bnd) = NULL;
228 BND_DC (bnd) = dc;
229 }
230
231 /* Remove the list note pointed to by LP. */
232 void
233 blist_remove (blist_t *lp)
234 {
235 bnd_t b = BLIST_BND (*lp);
236
237 av_set_clear (&BND_AV (b));
238 av_set_clear (&BND_AV1 (b));
239 ilist_clear (&BND_PTR (b));
240
241 _list_remove (lp);
242 }
243
244 /* Init a fence tail L. */
245 void
246 flist_tail_init (flist_tail_t l)
247 {
248 FLIST_TAIL_HEAD (l) = NULL;
249 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
250 }
251
252 /* Try to find fence corresponding to INSN in L. */
253 fence_t
254 flist_lookup (flist_t l, insn_t insn)
255 {
256 while (l)
257 {
258 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
259 return FLIST_FENCE (l);
260
261 l = FLIST_NEXT (l);
262 }
263
264 return NULL;
265 }
266
267 /* Init the fields of F before running fill_insns. */
268 static void
269 init_fence_for_scheduling (fence_t f)
270 {
271 FENCE_BNDS (f) = NULL;
272 FENCE_PROCESSED_P (f) = false;
273 FENCE_SCHEDULED_P (f) = false;
274 }
275
276 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
277 static void
278 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
279 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
280 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
281 int cycle, int cycle_issued_insns, int issue_more,
282 bool starts_cycle_p, bool after_stall_p)
283 {
284 fence_t f;
285
286 _list_add (lp);
287 f = FLIST_FENCE (*lp);
288
289 FENCE_INSN (f) = insn;
290
291 gcc_assert (state != NULL);
292 FENCE_STATE (f) = state;
293
294 FENCE_CYCLE (f) = cycle;
295 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
296 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
297 FENCE_AFTER_STALL_P (f) = after_stall_p;
298
299 gcc_assert (dc != NULL);
300 FENCE_DC (f) = dc;
301
302 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
303 FENCE_TC (f) = tc;
304
305 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
306 FENCE_ISSUE_MORE (f) = issue_more;
307 FENCE_EXECUTING_INSNS (f) = executing_insns;
308 FENCE_READY_TICKS (f) = ready_ticks;
309 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
310 FENCE_SCHED_NEXT (f) = sched_next;
311
312 init_fence_for_scheduling (f);
313 }
314
315 /* Remove the head node of the list pointed to by LP. */
316 static void
317 flist_remove (flist_t *lp)
318 {
319 if (FENCE_INSN (FLIST_FENCE (*lp)))
320 fence_clear (FLIST_FENCE (*lp));
321 _list_remove (lp);
322 }
323
324 /* Clear the fence list pointed to by LP. */
325 void
326 flist_clear (flist_t *lp)
327 {
328 while (*lp)
329 flist_remove (lp);
330 }
331
332 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
333 void
334 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
335 {
336 def_t d;
337
338 _list_add (dl);
339 d = DEF_LIST_DEF (*dl);
340
341 d->orig_insn = original_insn;
342 d->crosses_call = crosses_call;
343 }
344 \f
345
346 /* Functions to work with target contexts. */
347
348 /* Bulk target context. It is convenient for debugging purposes to ensure
349 that there are no uninitialized (null) target contexts. */
350 static tc_t bulk_tc = (tc_t) 1;
351
352 /* Target hooks wrappers. In the future we can provide some default
353 implementations for them. */
354
355 /* Allocate a store for the target context. */
356 static tc_t
357 alloc_target_context (void)
358 {
359 return (targetm.sched.alloc_sched_context
360 ? targetm.sched.alloc_sched_context () : bulk_tc);
361 }
362
363 /* Init target context TC.
364 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
365 Overwise, copy current backend context to TC. */
366 static void
367 init_target_context (tc_t tc, bool clean_p)
368 {
369 if (targetm.sched.init_sched_context)
370 targetm.sched.init_sched_context (tc, clean_p);
371 }
372
373 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
374 int init_target_context (). */
375 tc_t
376 create_target_context (bool clean_p)
377 {
378 tc_t tc = alloc_target_context ();
379
380 init_target_context (tc, clean_p);
381 return tc;
382 }
383
384 /* Copy TC to the current backend context. */
385 void
386 set_target_context (tc_t tc)
387 {
388 if (targetm.sched.set_sched_context)
389 targetm.sched.set_sched_context (tc);
390 }
391
392 /* TC is about to be destroyed. Free any internal data. */
393 static void
394 clear_target_context (tc_t tc)
395 {
396 if (targetm.sched.clear_sched_context)
397 targetm.sched.clear_sched_context (tc);
398 }
399
400 /* Clear and free it. */
401 static void
402 delete_target_context (tc_t tc)
403 {
404 clear_target_context (tc);
405
406 if (targetm.sched.free_sched_context)
407 targetm.sched.free_sched_context (tc);
408 }
409
410 /* Make a copy of FROM in TO.
411 NB: May be this should be a hook. */
412 static void
413 copy_target_context (tc_t to, tc_t from)
414 {
415 tc_t tmp = create_target_context (false);
416
417 set_target_context (from);
418 init_target_context (to, false);
419
420 set_target_context (tmp);
421 delete_target_context (tmp);
422 }
423
424 /* Create a copy of TC. */
425 static tc_t
426 create_copy_of_target_context (tc_t tc)
427 {
428 tc_t copy = alloc_target_context ();
429
430 copy_target_context (copy, tc);
431
432 return copy;
433 }
434
435 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
436 is the same as in init_target_context (). */
437 void
438 reset_target_context (tc_t tc, bool clean_p)
439 {
440 clear_target_context (tc);
441 init_target_context (tc, clean_p);
442 }
443 \f
444 /* Functions to work with dependence contexts.
445 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
446 context. It accumulates information about processed insns to decide if
447 current insn is dependent on the processed ones. */
448
449 /* Make a copy of FROM in TO. */
450 static void
451 copy_deps_context (deps_t to, deps_t from)
452 {
453 init_deps (to, false);
454 deps_join (to, from);
455 }
456
457 /* Allocate store for dep context. */
458 static deps_t
459 alloc_deps_context (void)
460 {
461 return XNEW (struct deps_desc);
462 }
463
464 /* Allocate and initialize dep context. */
465 static deps_t
466 create_deps_context (void)
467 {
468 deps_t dc = alloc_deps_context ();
469
470 init_deps (dc, false);
471 return dc;
472 }
473
474 /* Create a copy of FROM. */
475 static deps_t
476 create_copy_of_deps_context (deps_t from)
477 {
478 deps_t to = alloc_deps_context ();
479
480 copy_deps_context (to, from);
481 return to;
482 }
483
484 /* Clean up internal data of DC. */
485 static void
486 clear_deps_context (deps_t dc)
487 {
488 free_deps (dc);
489 }
490
491 /* Clear and free DC. */
492 static void
493 delete_deps_context (deps_t dc)
494 {
495 clear_deps_context (dc);
496 free (dc);
497 }
498
499 /* Clear and init DC. */
500 static void
501 reset_deps_context (deps_t dc)
502 {
503 clear_deps_context (dc);
504 init_deps (dc, false);
505 }
506
507 /* This structure describes the dependence analysis hooks for advancing
508 dependence context. */
509 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
510 {
511 NULL,
512
513 NULL, /* start_insn */
514 NULL, /* finish_insn */
515 NULL, /* start_lhs */
516 NULL, /* finish_lhs */
517 NULL, /* start_rhs */
518 NULL, /* finish_rhs */
519 haifa_note_reg_set,
520 haifa_note_reg_clobber,
521 haifa_note_reg_use,
522 NULL, /* note_mem_dep */
523 NULL, /* note_dep */
524
525 0, 0, 0
526 };
527
528 /* Process INSN and add its impact on DC. */
529 void
530 advance_deps_context (deps_t dc, insn_t insn)
531 {
532 sched_deps_info = &advance_deps_context_sched_deps_info;
533 deps_analyze_insn (dc, insn);
534 }
535 \f
536
537 /* Functions to work with DFA states. */
538
539 /* Allocate store for a DFA state. */
540 static state_t
541 state_alloc (void)
542 {
543 return xmalloc (dfa_state_size);
544 }
545
546 /* Allocate and initialize DFA state. */
547 static state_t
548 state_create (void)
549 {
550 state_t state = state_alloc ();
551
552 state_reset (state);
553 advance_state (state);
554 return state;
555 }
556
557 /* Free DFA state. */
558 static void
559 state_free (state_t state)
560 {
561 free (state);
562 }
563
564 /* Make a copy of FROM in TO. */
565 static void
566 state_copy (state_t to, state_t from)
567 {
568 memcpy (to, from, dfa_state_size);
569 }
570
571 /* Create a copy of FROM. */
572 static state_t
573 state_create_copy (state_t from)
574 {
575 state_t to = state_alloc ();
576
577 state_copy (to, from);
578 return to;
579 }
580 \f
581
582 /* Functions to work with fences. */
583
584 /* Clear the fence. */
585 static void
586 fence_clear (fence_t f)
587 {
588 state_t s = FENCE_STATE (f);
589 deps_t dc = FENCE_DC (f);
590 void *tc = FENCE_TC (f);
591
592 ilist_clear (&FENCE_BNDS (f));
593
594 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
595 || (s == NULL && dc == NULL && tc == NULL));
596
597 free (s);
598
599 if (dc != NULL)
600 delete_deps_context (dc);
601
602 if (tc != NULL)
603 delete_target_context (tc);
604 vec_free (FENCE_EXECUTING_INSNS (f));
605 free (FENCE_READY_TICKS (f));
606 FENCE_READY_TICKS (f) = NULL;
607 }
608
609 /* Init a list of fences with successors of OLD_FENCE. */
610 void
611 init_fences (insn_t old_fence)
612 {
613 insn_t succ;
614 succ_iterator si;
615 bool first = true;
616 int ready_ticks_size = get_max_uid () + 1;
617
618 FOR_EACH_SUCC_1 (succ, si, old_fence,
619 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
620 {
621
622 if (first)
623 first = false;
624 else
625 gcc_assert (flag_sel_sched_pipelining_outer_loops);
626
627 flist_add (&fences, succ,
628 state_create (),
629 create_deps_context () /* dc */,
630 create_target_context (true) /* tc */,
631 NULL /* last_scheduled_insn */,
632 NULL, /* executing_insns */
633 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
634 ready_ticks_size,
635 NULL /* sched_next */,
636 1 /* cycle */, 0 /* cycle_issued_insns */,
637 issue_rate, /* issue_more */
638 1 /* starts_cycle_p */, 0 /* after_stall_p */);
639 }
640 }
641
642 /* Merges two fences (filling fields of fence F with resulting values) by
643 following rules: 1) state, target context and last scheduled insn are
644 propagated from fallthrough edge if it is available;
645 2) deps context and cycle is propagated from more probable edge;
646 3) all other fields are set to corresponding constant values.
647
648 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
649 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
650 and AFTER_STALL_P are the corresponding fields of the second fence. */
651 static void
652 merge_fences (fence_t f, insn_t insn,
653 state_t state, deps_t dc, void *tc,
654 rtx_insn *last_scheduled_insn,
655 vec<rtx_insn *, va_gc> *executing_insns,
656 int *ready_ticks, int ready_ticks_size,
657 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
658 {
659 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
660
661 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
662 && !sched_next && !FENCE_SCHED_NEXT (f));
663
664 /* Check if we can decide which path fences came.
665 If we can't (or don't want to) - reset all. */
666 if (last_scheduled_insn == NULL
667 || last_scheduled_insn_old == NULL
668 /* This is a case when INSN is reachable on several paths from
669 one insn (this can happen when pipelining of outer loops is on and
670 there are two edges: one going around of inner loop and the other -
671 right through it; in such case just reset everything). */
672 || last_scheduled_insn == last_scheduled_insn_old)
673 {
674 state_reset (FENCE_STATE (f));
675 state_free (state);
676
677 reset_deps_context (FENCE_DC (f));
678 delete_deps_context (dc);
679
680 reset_target_context (FENCE_TC (f), true);
681 delete_target_context (tc);
682
683 if (cycle > FENCE_CYCLE (f))
684 FENCE_CYCLE (f) = cycle;
685
686 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
687 FENCE_ISSUE_MORE (f) = issue_rate;
688 vec_free (executing_insns);
689 free (ready_ticks);
690 if (FENCE_EXECUTING_INSNS (f))
691 FENCE_EXECUTING_INSNS (f)->block_remove (0,
692 FENCE_EXECUTING_INSNS (f)->length ());
693 if (FENCE_READY_TICKS (f))
694 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
695 }
696 else
697 {
698 edge edge_old = NULL, edge_new = NULL;
699 edge candidate;
700 succ_iterator si;
701 insn_t succ;
702
703 /* Find fallthrough edge. */
704 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
705 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
706
707 if (!candidate
708 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
709 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
710 {
711 /* No fallthrough edge leading to basic block of INSN. */
712 state_reset (FENCE_STATE (f));
713 state_free (state);
714
715 reset_target_context (FENCE_TC (f), true);
716 delete_target_context (tc);
717
718 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
719 FENCE_ISSUE_MORE (f) = issue_rate;
720 }
721 else
722 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
723 {
724 /* Would be weird if same insn is successor of several fallthrough
725 edges. */
726 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
727 != BLOCK_FOR_INSN (last_scheduled_insn_old));
728
729 state_free (FENCE_STATE (f));
730 FENCE_STATE (f) = state;
731
732 delete_target_context (FENCE_TC (f));
733 FENCE_TC (f) = tc;
734
735 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
736 FENCE_ISSUE_MORE (f) = issue_more;
737 }
738 else
739 {
740 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
741 state_free (state);
742 delete_target_context (tc);
743
744 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
745 != BLOCK_FOR_INSN (last_scheduled_insn));
746 }
747
748 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
749 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
750 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
751 {
752 if (succ == insn)
753 {
754 /* No same successor allowed from several edges. */
755 gcc_assert (!edge_old);
756 edge_old = si.e1;
757 }
758 }
759 /* Find edge of second predecessor (last_scheduled_insn->insn). */
760 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
761 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
762 {
763 if (succ == insn)
764 {
765 /* No same successor allowed from several edges. */
766 gcc_assert (!edge_new);
767 edge_new = si.e1;
768 }
769 }
770
771 /* Check if we can choose most probable predecessor. */
772 if (edge_old == NULL || edge_new == NULL)
773 {
774 reset_deps_context (FENCE_DC (f));
775 delete_deps_context (dc);
776 vec_free (executing_insns);
777 free (ready_ticks);
778
779 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
780 if (FENCE_EXECUTING_INSNS (f))
781 FENCE_EXECUTING_INSNS (f)->block_remove (0,
782 FENCE_EXECUTING_INSNS (f)->length ());
783 if (FENCE_READY_TICKS (f))
784 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
785 }
786 else
787 if (edge_new->probability > edge_old->probability)
788 {
789 delete_deps_context (FENCE_DC (f));
790 FENCE_DC (f) = dc;
791 vec_free (FENCE_EXECUTING_INSNS (f));
792 FENCE_EXECUTING_INSNS (f) = executing_insns;
793 free (FENCE_READY_TICKS (f));
794 FENCE_READY_TICKS (f) = ready_ticks;
795 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
796 FENCE_CYCLE (f) = cycle;
797 }
798 else
799 {
800 /* Leave DC and CYCLE untouched. */
801 delete_deps_context (dc);
802 vec_free (executing_insns);
803 free (ready_ticks);
804 }
805 }
806
807 /* Fill remaining invariant fields. */
808 if (after_stall_p)
809 FENCE_AFTER_STALL_P (f) = 1;
810
811 FENCE_ISSUED_INSNS (f) = 0;
812 FENCE_STARTS_CYCLE_P (f) = 1;
813 FENCE_SCHED_NEXT (f) = NULL;
814 }
815
816 /* Add a new fence to NEW_FENCES list, initializing it from all
817 other parameters. */
818 static void
819 add_to_fences (flist_tail_t new_fences, insn_t insn,
820 state_t state, deps_t dc, void *tc,
821 rtx_insn *last_scheduled_insn,
822 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
823 int ready_ticks_size, rtx_insn *sched_next, int cycle,
824 int cycle_issued_insns, int issue_rate,
825 bool starts_cycle_p, bool after_stall_p)
826 {
827 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
828
829 if (! f)
830 {
831 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
832 last_scheduled_insn, executing_insns, ready_ticks,
833 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
834 issue_rate, starts_cycle_p, after_stall_p);
835
836 FLIST_TAIL_TAILP (new_fences)
837 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
838 }
839 else
840 {
841 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
842 executing_insns, ready_ticks, ready_ticks_size,
843 sched_next, cycle, issue_rate, after_stall_p);
844 }
845 }
846
847 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
848 void
849 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
850 {
851 fence_t f, old;
852 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
853
854 old = FLIST_FENCE (old_fences);
855 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
856 FENCE_INSN (FLIST_FENCE (old_fences)));
857 if (f)
858 {
859 merge_fences (f, old->insn, old->state, old->dc, old->tc,
860 old->last_scheduled_insn, old->executing_insns,
861 old->ready_ticks, old->ready_ticks_size,
862 old->sched_next, old->cycle, old->issue_more,
863 old->after_stall_p);
864 }
865 else
866 {
867 _list_add (tailp);
868 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
869 *FLIST_FENCE (*tailp) = *old;
870 init_fence_for_scheduling (FLIST_FENCE (*tailp));
871 }
872 FENCE_INSN (old) = NULL;
873 }
874
875 /* Add a new fence to NEW_FENCES list and initialize most of its data
876 as a clean one. */
877 void
878 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
879 {
880 int ready_ticks_size = get_max_uid () + 1;
881
882 add_to_fences (new_fences,
883 succ, state_create (), create_deps_context (),
884 create_target_context (true),
885 NULL, NULL,
886 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
887 NULL, FENCE_CYCLE (fence) + 1,
888 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
889 }
890
891 /* Add a new fence to NEW_FENCES list and initialize all of its data
892 from FENCE and SUCC. */
893 void
894 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
895 {
896 int * new_ready_ticks
897 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
898
899 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
900 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
901 add_to_fences (new_fences,
902 succ, state_create_copy (FENCE_STATE (fence)),
903 create_copy_of_deps_context (FENCE_DC (fence)),
904 create_copy_of_target_context (FENCE_TC (fence)),
905 FENCE_LAST_SCHEDULED_INSN (fence),
906 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
907 new_ready_ticks,
908 FENCE_READY_TICKS_SIZE (fence),
909 FENCE_SCHED_NEXT (fence),
910 FENCE_CYCLE (fence),
911 FENCE_ISSUED_INSNS (fence),
912 FENCE_ISSUE_MORE (fence),
913 FENCE_STARTS_CYCLE_P (fence),
914 FENCE_AFTER_STALL_P (fence));
915 }
916 \f
917
918 /* Functions to work with regset and nop pools. */
919
920 /* Returns the new regset from pool. It might have some of the bits set
921 from the previous usage. */
922 regset
923 get_regset_from_pool (void)
924 {
925 regset rs;
926
927 if (regset_pool.n != 0)
928 rs = regset_pool.v[--regset_pool.n];
929 else
930 /* We need to create the regset. */
931 {
932 rs = ALLOC_REG_SET (&reg_obstack);
933
934 if (regset_pool.nn == regset_pool.ss)
935 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
936 (regset_pool.ss = 2 * regset_pool.ss + 1));
937 regset_pool.vv[regset_pool.nn++] = rs;
938 }
939
940 regset_pool.diff++;
941
942 return rs;
943 }
944
945 /* Same as above, but returns the empty regset. */
946 regset
947 get_clear_regset_from_pool (void)
948 {
949 regset rs = get_regset_from_pool ();
950
951 CLEAR_REG_SET (rs);
952 return rs;
953 }
954
955 /* Return regset RS to the pool for future use. */
956 void
957 return_regset_to_pool (regset rs)
958 {
959 gcc_assert (rs);
960 regset_pool.diff--;
961
962 if (regset_pool.n == regset_pool.s)
963 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
964 (regset_pool.s = 2 * regset_pool.s + 1));
965 regset_pool.v[regset_pool.n++] = rs;
966 }
967
968 #ifdef ENABLE_CHECKING
969 /* This is used as a qsort callback for sorting regset pool stacks.
970 X and XX are addresses of two regsets. They are never equal. */
971 static int
972 cmp_v_in_regset_pool (const void *x, const void *xx)
973 {
974 uintptr_t r1 = (uintptr_t) *((const regset *) x);
975 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
976 if (r1 > r2)
977 return 1;
978 else if (r1 < r2)
979 return -1;
980 gcc_unreachable ();
981 }
982 #endif
983
984 /* Free the regset pool possibly checking for memory leaks. */
985 void
986 free_regset_pool (void)
987 {
988 #ifdef ENABLE_CHECKING
989 {
990 regset *v = regset_pool.v;
991 int i = 0;
992 int n = regset_pool.n;
993
994 regset *vv = regset_pool.vv;
995 int ii = 0;
996 int nn = regset_pool.nn;
997
998 int diff = 0;
999
1000 gcc_assert (n <= nn);
1001
1002 /* Sort both vectors so it will be possible to compare them. */
1003 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
1004 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
1005
1006 while (ii < nn)
1007 {
1008 if (v[i] == vv[ii])
1009 i++;
1010 else
1011 /* VV[II] was lost. */
1012 diff++;
1013
1014 ii++;
1015 }
1016
1017 gcc_assert (diff == regset_pool.diff);
1018 }
1019 #endif
1020
1021 /* If not true - we have a memory leak. */
1022 gcc_assert (regset_pool.diff == 0);
1023
1024 while (regset_pool.n)
1025 {
1026 --regset_pool.n;
1027 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1028 }
1029
1030 free (regset_pool.v);
1031 regset_pool.v = NULL;
1032 regset_pool.s = 0;
1033
1034 free (regset_pool.vv);
1035 regset_pool.vv = NULL;
1036 regset_pool.nn = 0;
1037 regset_pool.ss = 0;
1038
1039 regset_pool.diff = 0;
1040 }
1041 \f
1042
1043 /* Functions to work with nop pools. NOP insns are used as temporary
1044 placeholders of the insns being scheduled to allow correct update of
1045 the data sets. When update is finished, NOPs are deleted. */
1046
1047 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1048 nops sel-sched generates. */
1049 static vinsn_t nop_vinsn = NULL;
1050
1051 /* Emit a nop before INSN, taking it from pool. */
1052 insn_t
1053 get_nop_from_pool (insn_t insn)
1054 {
1055 rtx nop_pat;
1056 insn_t nop;
1057 bool old_p = nop_pool.n != 0;
1058 int flags;
1059
1060 if (old_p)
1061 nop_pat = nop_pool.v[--nop_pool.n];
1062 else
1063 nop_pat = nop_pattern;
1064
1065 nop = emit_insn_before (nop_pat, insn);
1066
1067 if (old_p)
1068 flags = INSN_INIT_TODO_SSID;
1069 else
1070 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1071
1072 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1073 sel_init_new_insn (nop, flags);
1074
1075 return nop;
1076 }
1077
1078 /* Remove NOP from the instruction stream and return it to the pool. */
1079 void
1080 return_nop_to_pool (insn_t nop, bool full_tidying)
1081 {
1082 gcc_assert (INSN_IN_STREAM_P (nop));
1083 sel_remove_insn (nop, false, full_tidying);
1084
1085 /* We'll recycle this nop. */
1086 nop->set_undeleted ();
1087
1088 if (nop_pool.n == nop_pool.s)
1089 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1090 (nop_pool.s = 2 * nop_pool.s + 1));
1091 nop_pool.v[nop_pool.n++] = nop;
1092 }
1093
1094 /* Free the nop pool. */
1095 void
1096 free_nop_pool (void)
1097 {
1098 nop_pool.n = 0;
1099 nop_pool.s = 0;
1100 free (nop_pool.v);
1101 nop_pool.v = NULL;
1102 }
1103 \f
1104
1105 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1106 The callback is given two rtxes XX and YY and writes the new rtxes
1107 to NX and NY in case some needs to be skipped. */
1108 static int
1109 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1110 {
1111 const_rtx x = *xx;
1112 const_rtx y = *yy;
1113
1114 if (GET_CODE (x) == UNSPEC
1115 && (targetm.sched.skip_rtx_p == NULL
1116 || targetm.sched.skip_rtx_p (x)))
1117 {
1118 *nx = XVECEXP (x, 0, 0);
1119 *ny = CONST_CAST_RTX (y);
1120 return 1;
1121 }
1122
1123 if (GET_CODE (y) == UNSPEC
1124 && (targetm.sched.skip_rtx_p == NULL
1125 || targetm.sched.skip_rtx_p (y)))
1126 {
1127 *nx = CONST_CAST_RTX (x);
1128 *ny = XVECEXP (y, 0, 0);
1129 return 1;
1130 }
1131
1132 return 0;
1133 }
1134
1135 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1136 to support ia64 speculation. When changes are needed, new rtx X and new mode
1137 NMODE are written, and the callback returns true. */
1138 static int
1139 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1140 rtx *nx, machine_mode* nmode)
1141 {
1142 if (GET_CODE (x) == UNSPEC
1143 && targetm.sched.skip_rtx_p
1144 && targetm.sched.skip_rtx_p (x))
1145 {
1146 *nx = XVECEXP (x, 0 ,0);
1147 *nmode = VOIDmode;
1148 return 1;
1149 }
1150
1151 return 0;
1152 }
1153
1154 /* Returns LHS and RHS are ok to be scheduled separately. */
1155 static bool
1156 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1157 {
1158 if (lhs == NULL || rhs == NULL)
1159 return false;
1160
1161 /* Do not schedule constants as rhs: no point to use reg, if const
1162 can be used. Moreover, scheduling const as rhs may lead to mode
1163 mismatch cause consts don't have modes but they could be merged
1164 from branches where the same const used in different modes. */
1165 if (CONSTANT_P (rhs))
1166 return false;
1167
1168 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1169 if (COMPARISON_P (rhs))
1170 return false;
1171
1172 /* Do not allow single REG to be an rhs. */
1173 if (REG_P (rhs))
1174 return false;
1175
1176 /* See comment at find_used_regs_1 (*1) for explanation of this
1177 restriction. */
1178 /* FIXME: remove this later. */
1179 if (MEM_P (lhs))
1180 return false;
1181
1182 /* This will filter all tricky things like ZERO_EXTRACT etc.
1183 For now we don't handle it. */
1184 if (!REG_P (lhs) && !MEM_P (lhs))
1185 return false;
1186
1187 return true;
1188 }
1189
1190 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1191 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1192 used e.g. for insns from recovery blocks. */
1193 static void
1194 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1195 {
1196 hash_rtx_callback_function hrcf;
1197 int insn_class;
1198
1199 VINSN_INSN_RTX (vi) = insn;
1200 VINSN_COUNT (vi) = 0;
1201 vi->cost = -1;
1202
1203 if (INSN_NOP_P (insn))
1204 return;
1205
1206 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1207 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1208 else
1209 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1210
1211 /* Hash vinsn depending on whether it is separable or not. */
1212 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1213 if (VINSN_SEPARABLE_P (vi))
1214 {
1215 rtx rhs = VINSN_RHS (vi);
1216
1217 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1218 NULL, NULL, false, hrcf);
1219 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1220 VOIDmode, NULL, NULL,
1221 false, hrcf);
1222 }
1223 else
1224 {
1225 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1226 NULL, NULL, false, hrcf);
1227 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1228 }
1229
1230 insn_class = haifa_classify_insn (insn);
1231 if (insn_class >= 2
1232 && (!targetm.sched.get_insn_spec_ds
1233 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1234 == 0)))
1235 VINSN_MAY_TRAP_P (vi) = true;
1236 else
1237 VINSN_MAY_TRAP_P (vi) = false;
1238 }
1239
1240 /* Indicate that VI has become the part of an rtx object. */
1241 void
1242 vinsn_attach (vinsn_t vi)
1243 {
1244 /* Assert that VI is not pending for deletion. */
1245 gcc_assert (VINSN_INSN_RTX (vi));
1246
1247 VINSN_COUNT (vi)++;
1248 }
1249
1250 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1251 VINSN_TYPE (VI). */
1252 static vinsn_t
1253 vinsn_create (insn_t insn, bool force_unique_p)
1254 {
1255 vinsn_t vi = XCNEW (struct vinsn_def);
1256
1257 vinsn_init (vi, insn, force_unique_p);
1258 return vi;
1259 }
1260
1261 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1262 the copy. */
1263 vinsn_t
1264 vinsn_copy (vinsn_t vi, bool reattach_p)
1265 {
1266 rtx_insn *copy;
1267 bool unique = VINSN_UNIQUE_P (vi);
1268 vinsn_t new_vi;
1269
1270 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1271 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1272 if (reattach_p)
1273 {
1274 vinsn_detach (vi);
1275 vinsn_attach (new_vi);
1276 }
1277
1278 return new_vi;
1279 }
1280
1281 /* Delete the VI vinsn and free its data. */
1282 static void
1283 vinsn_delete (vinsn_t vi)
1284 {
1285 gcc_assert (VINSN_COUNT (vi) == 0);
1286
1287 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1288 {
1289 return_regset_to_pool (VINSN_REG_SETS (vi));
1290 return_regset_to_pool (VINSN_REG_USES (vi));
1291 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1292 }
1293
1294 free (vi);
1295 }
1296
1297 /* Indicate that VI is no longer a part of some rtx object.
1298 Remove VI if it is no longer needed. */
1299 void
1300 vinsn_detach (vinsn_t vi)
1301 {
1302 gcc_assert (VINSN_COUNT (vi) > 0);
1303
1304 if (--VINSN_COUNT (vi) == 0)
1305 vinsn_delete (vi);
1306 }
1307
1308 /* Returns TRUE if VI is a branch. */
1309 bool
1310 vinsn_cond_branch_p (vinsn_t vi)
1311 {
1312 insn_t insn;
1313
1314 if (!VINSN_UNIQUE_P (vi))
1315 return false;
1316
1317 insn = VINSN_INSN_RTX (vi);
1318 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1319 return false;
1320
1321 return control_flow_insn_p (insn);
1322 }
1323
1324 /* Return latency of INSN. */
1325 static int
1326 sel_insn_rtx_cost (rtx_insn *insn)
1327 {
1328 int cost;
1329
1330 /* A USE insn, or something else we don't need to
1331 understand. We can't pass these directly to
1332 result_ready_cost or insn_default_latency because it will
1333 trigger a fatal error for unrecognizable insns. */
1334 if (recog_memoized (insn) < 0)
1335 cost = 0;
1336 else
1337 {
1338 cost = insn_default_latency (insn);
1339
1340 if (cost < 0)
1341 cost = 0;
1342 }
1343
1344 return cost;
1345 }
1346
1347 /* Return the cost of the VI.
1348 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1349 int
1350 sel_vinsn_cost (vinsn_t vi)
1351 {
1352 int cost = vi->cost;
1353
1354 if (cost < 0)
1355 {
1356 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1357 vi->cost = cost;
1358 }
1359
1360 return cost;
1361 }
1362 \f
1363
1364 /* Functions for insn emitting. */
1365
1366 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1367 EXPR and SEQNO. */
1368 insn_t
1369 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1370 {
1371 insn_t new_insn;
1372
1373 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1374
1375 new_insn = emit_insn_after (pattern, after);
1376 set_insn_init (expr, NULL, seqno);
1377 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1378
1379 return new_insn;
1380 }
1381
1382 /* Force newly generated vinsns to be unique. */
1383 static bool init_insn_force_unique_p = false;
1384
1385 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1386 initialize its data from EXPR and SEQNO. */
1387 insn_t
1388 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1389 insn_t after)
1390 {
1391 insn_t insn;
1392
1393 gcc_assert (!init_insn_force_unique_p);
1394
1395 init_insn_force_unique_p = true;
1396 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1397 CANT_MOVE (insn) = 1;
1398 init_insn_force_unique_p = false;
1399
1400 return insn;
1401 }
1402
1403 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1404 take it as a new vinsn instead of EXPR's vinsn.
1405 We simplify insns later, after scheduling region in
1406 simplify_changed_insns. */
1407 insn_t
1408 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1409 insn_t after)
1410 {
1411 expr_t emit_expr;
1412 insn_t insn;
1413 int flags;
1414
1415 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1416 seqno);
1417 insn = EXPR_INSN_RTX (emit_expr);
1418
1419 /* The insn may come from the transformation cache, which may hold already
1420 deleted insns, so mark it as not deleted. */
1421 insn->set_undeleted ();
1422
1423 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1424
1425 flags = INSN_INIT_TODO_SSID;
1426 if (INSN_LUID (insn) == 0)
1427 flags |= INSN_INIT_TODO_LUID;
1428 sel_init_new_insn (insn, flags);
1429
1430 return insn;
1431 }
1432
1433 /* Move insn from EXPR after AFTER. */
1434 insn_t
1435 sel_move_insn (expr_t expr, int seqno, insn_t after)
1436 {
1437 insn_t insn = EXPR_INSN_RTX (expr);
1438 basic_block bb = BLOCK_FOR_INSN (after);
1439 insn_t next = NEXT_INSN (after);
1440
1441 /* Assert that in move_op we disconnected this insn properly. */
1442 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1443 SET_PREV_INSN (insn) = after;
1444 SET_NEXT_INSN (insn) = next;
1445
1446 SET_NEXT_INSN (after) = insn;
1447 SET_PREV_INSN (next) = insn;
1448
1449 /* Update links from insn to bb and vice versa. */
1450 df_insn_change_bb (insn, bb);
1451 if (BB_END (bb) == after)
1452 BB_END (bb) = insn;
1453
1454 prepare_insn_expr (insn, seqno);
1455 return insn;
1456 }
1457
1458 \f
1459 /* Functions to work with right-hand sides. */
1460
1461 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1462 VECT and return true when found. Use NEW_VINSN for comparison only when
1463 COMPARE_VINSNS is true. Write to INDP the index on which
1464 the search has stopped, such that inserting the new element at INDP will
1465 retain VECT's sort order. */
1466 static bool
1467 find_in_history_vect_1 (vec<expr_history_def> vect,
1468 unsigned uid, vinsn_t new_vinsn,
1469 bool compare_vinsns, int *indp)
1470 {
1471 expr_history_def *arr;
1472 int i, j, len = vect.length ();
1473
1474 if (len == 0)
1475 {
1476 *indp = 0;
1477 return false;
1478 }
1479
1480 arr = vect.address ();
1481 i = 0, j = len - 1;
1482
1483 while (i <= j)
1484 {
1485 unsigned auid = arr[i].uid;
1486 vinsn_t avinsn = arr[i].new_expr_vinsn;
1487
1488 if (auid == uid
1489 /* When undoing transformation on a bookkeeping copy, the new vinsn
1490 may not be exactly equal to the one that is saved in the vector.
1491 This is because the insn whose copy we're checking was possibly
1492 substituted itself. */
1493 && (! compare_vinsns
1494 || vinsn_equal_p (avinsn, new_vinsn)))
1495 {
1496 *indp = i;
1497 return true;
1498 }
1499 else if (auid > uid)
1500 break;
1501 i++;
1502 }
1503
1504 *indp = i;
1505 return false;
1506 }
1507
1508 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1509 the position found or -1, if no such value is in vector.
1510 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1511 int
1512 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1513 vinsn_t new_vinsn, bool originators_p)
1514 {
1515 int ind;
1516
1517 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1518 false, &ind))
1519 return ind;
1520
1521 if (INSN_ORIGINATORS (insn) && originators_p)
1522 {
1523 unsigned uid;
1524 bitmap_iterator bi;
1525
1526 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1527 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1528 return ind;
1529 }
1530
1531 return -1;
1532 }
1533
1534 /* Insert new element in a sorted history vector pointed to by PVECT,
1535 if it is not there already. The element is searched using
1536 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1537 the history of a transformation. */
1538 void
1539 insert_in_history_vect (vec<expr_history_def> *pvect,
1540 unsigned uid, enum local_trans_type type,
1541 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1542 ds_t spec_ds)
1543 {
1544 vec<expr_history_def> vect = *pvect;
1545 expr_history_def temp;
1546 bool res;
1547 int ind;
1548
1549 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1550
1551 if (res)
1552 {
1553 expr_history_def *phist = &vect[ind];
1554
1555 /* It is possible that speculation types of expressions that were
1556 propagated through different paths will be different here. In this
1557 case, merge the status to get the correct check later. */
1558 if (phist->spec_ds != spec_ds)
1559 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1560 return;
1561 }
1562
1563 temp.uid = uid;
1564 temp.old_expr_vinsn = old_expr_vinsn;
1565 temp.new_expr_vinsn = new_expr_vinsn;
1566 temp.spec_ds = spec_ds;
1567 temp.type = type;
1568
1569 vinsn_attach (old_expr_vinsn);
1570 vinsn_attach (new_expr_vinsn);
1571 vect.safe_insert (ind, temp);
1572 *pvect = vect;
1573 }
1574
1575 /* Free history vector PVECT. */
1576 static void
1577 free_history_vect (vec<expr_history_def> &pvect)
1578 {
1579 unsigned i;
1580 expr_history_def *phist;
1581
1582 if (! pvect.exists ())
1583 return;
1584
1585 for (i = 0; pvect.iterate (i, &phist); i++)
1586 {
1587 vinsn_detach (phist->old_expr_vinsn);
1588 vinsn_detach (phist->new_expr_vinsn);
1589 }
1590
1591 pvect.release ();
1592 }
1593
1594 /* Merge vector FROM to PVECT. */
1595 static void
1596 merge_history_vect (vec<expr_history_def> *pvect,
1597 vec<expr_history_def> from)
1598 {
1599 expr_history_def *phist;
1600 int i;
1601
1602 /* We keep this vector sorted. */
1603 for (i = 0; from.iterate (i, &phist); i++)
1604 insert_in_history_vect (pvect, phist->uid, phist->type,
1605 phist->old_expr_vinsn, phist->new_expr_vinsn,
1606 phist->spec_ds);
1607 }
1608
1609 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1610 bool
1611 vinsn_equal_p (vinsn_t x, vinsn_t y)
1612 {
1613 rtx_equal_p_callback_function repcf;
1614
1615 if (x == y)
1616 return true;
1617
1618 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1619 return false;
1620
1621 if (VINSN_HASH (x) != VINSN_HASH (y))
1622 return false;
1623
1624 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1625 if (VINSN_SEPARABLE_P (x))
1626 {
1627 /* Compare RHSes of VINSNs. */
1628 gcc_assert (VINSN_RHS (x));
1629 gcc_assert (VINSN_RHS (y));
1630
1631 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1632 }
1633
1634 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1635 }
1636 \f
1637
1638 /* Functions for working with expressions. */
1639
1640 /* Initialize EXPR. */
1641 static void
1642 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1643 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1644 ds_t spec_to_check_ds, int orig_sched_cycle,
1645 vec<expr_history_def> history,
1646 signed char target_available,
1647 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1648 bool cant_move)
1649 {
1650 vinsn_attach (vi);
1651
1652 EXPR_VINSN (expr) = vi;
1653 EXPR_SPEC (expr) = spec;
1654 EXPR_USEFULNESS (expr) = use;
1655 EXPR_PRIORITY (expr) = priority;
1656 EXPR_PRIORITY_ADJ (expr) = 0;
1657 EXPR_SCHED_TIMES (expr) = sched_times;
1658 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1659 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1660 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1661 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1662
1663 if (history.exists ())
1664 EXPR_HISTORY_OF_CHANGES (expr) = history;
1665 else
1666 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1667
1668 EXPR_TARGET_AVAILABLE (expr) = target_available;
1669 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1670 EXPR_WAS_RENAMED (expr) = was_renamed;
1671 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1672 EXPR_CANT_MOVE (expr) = cant_move;
1673 }
1674
1675 /* Make a copy of the expr FROM into the expr TO. */
1676 void
1677 copy_expr (expr_t to, expr_t from)
1678 {
1679 vec<expr_history_def> temp = vNULL;
1680
1681 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1682 {
1683 unsigned i;
1684 expr_history_def *phist;
1685
1686 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1687 for (i = 0;
1688 temp.iterate (i, &phist);
1689 i++)
1690 {
1691 vinsn_attach (phist->old_expr_vinsn);
1692 vinsn_attach (phist->new_expr_vinsn);
1693 }
1694 }
1695
1696 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1697 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1698 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1699 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1700 EXPR_ORIG_SCHED_CYCLE (from), temp,
1701 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1702 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1703 EXPR_CANT_MOVE (from));
1704 }
1705
1706 /* Same, but the final expr will not ever be in av sets, so don't copy
1707 "uninteresting" data such as bitmap cache. */
1708 void
1709 copy_expr_onside (expr_t to, expr_t from)
1710 {
1711 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1712 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1713 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1714 vNULL,
1715 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1716 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1717 EXPR_CANT_MOVE (from));
1718 }
1719
1720 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1721 initializing new insns. */
1722 static void
1723 prepare_insn_expr (insn_t insn, int seqno)
1724 {
1725 expr_t expr = INSN_EXPR (insn);
1726 ds_t ds;
1727
1728 INSN_SEQNO (insn) = seqno;
1729 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1730 EXPR_SPEC (expr) = 0;
1731 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1732 EXPR_WAS_SUBSTITUTED (expr) = 0;
1733 EXPR_WAS_RENAMED (expr) = 0;
1734 EXPR_TARGET_AVAILABLE (expr) = 1;
1735 INSN_LIVE_VALID_P (insn) = false;
1736
1737 /* ??? If this expression is speculative, make its dependence
1738 as weak as possible. We can filter this expression later
1739 in process_spec_exprs, because we do not distinguish
1740 between the status we got during compute_av_set and the
1741 existing status. To be fixed. */
1742 ds = EXPR_SPEC_DONE_DS (expr);
1743 if (ds)
1744 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1745
1746 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1747 }
1748
1749 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1750 is non-null when expressions are merged from different successors at
1751 a split point. */
1752 static void
1753 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1754 {
1755 if (EXPR_TARGET_AVAILABLE (to) < 0
1756 || EXPR_TARGET_AVAILABLE (from) < 0)
1757 EXPR_TARGET_AVAILABLE (to) = -1;
1758 else
1759 {
1760 /* We try to detect the case when one of the expressions
1761 can only be reached through another one. In this case,
1762 we can do better. */
1763 if (split_point == NULL)
1764 {
1765 int toind, fromind;
1766
1767 toind = EXPR_ORIG_BB_INDEX (to);
1768 fromind = EXPR_ORIG_BB_INDEX (from);
1769
1770 if (toind && toind == fromind)
1771 /* Do nothing -- everything is done in
1772 merge_with_other_exprs. */
1773 ;
1774 else
1775 EXPR_TARGET_AVAILABLE (to) = -1;
1776 }
1777 else if (EXPR_TARGET_AVAILABLE (from) == 0
1778 && EXPR_LHS (from)
1779 && REG_P (EXPR_LHS (from))
1780 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1781 EXPR_TARGET_AVAILABLE (to) = -1;
1782 else
1783 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1784 }
1785 }
1786
1787 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1788 is non-null when expressions are merged from different successors at
1789 a split point. */
1790 static void
1791 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1792 {
1793 ds_t old_to_ds, old_from_ds;
1794
1795 old_to_ds = EXPR_SPEC_DONE_DS (to);
1796 old_from_ds = EXPR_SPEC_DONE_DS (from);
1797
1798 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1799 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1800 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1801
1802 /* When merging e.g. control & data speculative exprs, or a control
1803 speculative with a control&data speculative one, we really have
1804 to change vinsn too. Also, when speculative status is changed,
1805 we also need to record this as a transformation in expr's history. */
1806 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1807 {
1808 old_to_ds = ds_get_speculation_types (old_to_ds);
1809 old_from_ds = ds_get_speculation_types (old_from_ds);
1810
1811 if (old_to_ds != old_from_ds)
1812 {
1813 ds_t record_ds;
1814
1815 /* When both expressions are speculative, we need to change
1816 the vinsn first. */
1817 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1818 {
1819 int res;
1820
1821 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1822 gcc_assert (res >= 0);
1823 }
1824
1825 if (split_point != NULL)
1826 {
1827 /* Record the change with proper status. */
1828 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1829 record_ds &= ~(old_to_ds & SPECULATIVE);
1830 record_ds &= ~(old_from_ds & SPECULATIVE);
1831
1832 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1833 INSN_UID (split_point), TRANS_SPECULATION,
1834 EXPR_VINSN (from), EXPR_VINSN (to),
1835 record_ds);
1836 }
1837 }
1838 }
1839 }
1840
1841
1842 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1843 this is done along different paths. */
1844 void
1845 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1846 {
1847 /* Choose the maximum of the specs of merged exprs. This is required
1848 for correctness of bookkeeping. */
1849 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1850 EXPR_SPEC (to) = EXPR_SPEC (from);
1851
1852 if (split_point)
1853 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1854 else
1855 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1856 EXPR_USEFULNESS (from));
1857
1858 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1859 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1860
1861 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1862 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1863
1864 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1865 EXPR_ORIG_BB_INDEX (to) = 0;
1866
1867 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1868 EXPR_ORIG_SCHED_CYCLE (from));
1869
1870 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1871 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1872 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1873
1874 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1875 EXPR_HISTORY_OF_CHANGES (from));
1876 update_target_availability (to, from, split_point);
1877 update_speculative_bits (to, from, split_point);
1878 }
1879
1880 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1881 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1882 are merged from different successors at a split point. */
1883 void
1884 merge_expr (expr_t to, expr_t from, insn_t split_point)
1885 {
1886 vinsn_t to_vi = EXPR_VINSN (to);
1887 vinsn_t from_vi = EXPR_VINSN (from);
1888
1889 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1890
1891 /* Make sure that speculative pattern is propagated into exprs that
1892 have non-speculative one. This will provide us with consistent
1893 speculative bits and speculative patterns inside expr. */
1894 if ((EXPR_SPEC_DONE_DS (from) != 0
1895 && EXPR_SPEC_DONE_DS (to) == 0)
1896 /* Do likewise for volatile insns, so that we always retain
1897 the may_trap_p bit on the resulting expression. */
1898 || (VINSN_MAY_TRAP_P (EXPR_VINSN (from))
1899 && !VINSN_MAY_TRAP_P (EXPR_VINSN (to))))
1900 change_vinsn_in_expr (to, EXPR_VINSN (from));
1901
1902 merge_expr_data (to, from, split_point);
1903 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1904 }
1905
1906 /* Clear the information of this EXPR. */
1907 void
1908 clear_expr (expr_t expr)
1909 {
1910
1911 vinsn_detach (EXPR_VINSN (expr));
1912 EXPR_VINSN (expr) = NULL;
1913
1914 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1915 }
1916
1917 /* For a given LV_SET, mark EXPR having unavailable target register. */
1918 static void
1919 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1920 {
1921 if (EXPR_SEPARABLE_P (expr))
1922 {
1923 if (REG_P (EXPR_LHS (expr))
1924 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1925 {
1926 /* If it's an insn like r1 = use (r1, ...), and it exists in
1927 different forms in each of the av_sets being merged, we can't say
1928 whether original destination register is available or not.
1929 However, this still works if destination register is not used
1930 in the original expression: if the branch at which LV_SET we're
1931 looking here is not actually 'other branch' in sense that same
1932 expression is available through it (but it can't be determined
1933 at computation stage because of transformations on one of the
1934 branches), it still won't affect the availability.
1935 Liveness of a register somewhere on a code motion path means
1936 it's either read somewhere on a codemotion path, live on
1937 'other' branch, live at the point immediately following
1938 the original operation, or is read by the original operation.
1939 The latter case is filtered out in the condition below.
1940 It still doesn't cover the case when register is defined and used
1941 somewhere within the code motion path, and in this case we could
1942 miss a unifying code motion along both branches using a renamed
1943 register, but it won't affect a code correctness since upon
1944 an actual code motion a bookkeeping code would be generated. */
1945 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1946 EXPR_LHS (expr)))
1947 EXPR_TARGET_AVAILABLE (expr) = -1;
1948 else
1949 EXPR_TARGET_AVAILABLE (expr) = false;
1950 }
1951 }
1952 else
1953 {
1954 unsigned regno;
1955 reg_set_iterator rsi;
1956
1957 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1958 0, regno, rsi)
1959 if (bitmap_bit_p (lv_set, regno))
1960 {
1961 EXPR_TARGET_AVAILABLE (expr) = false;
1962 break;
1963 }
1964
1965 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1966 0, regno, rsi)
1967 if (bitmap_bit_p (lv_set, regno))
1968 {
1969 EXPR_TARGET_AVAILABLE (expr) = false;
1970 break;
1971 }
1972 }
1973 }
1974
1975 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1976 or dependence status have changed, 2 when also the target register
1977 became unavailable, 0 if nothing had to be changed. */
1978 int
1979 speculate_expr (expr_t expr, ds_t ds)
1980 {
1981 int res;
1982 rtx_insn *orig_insn_rtx;
1983 rtx spec_pat;
1984 ds_t target_ds, current_ds;
1985
1986 /* Obtain the status we need to put on EXPR. */
1987 target_ds = (ds & SPECULATIVE);
1988 current_ds = EXPR_SPEC_DONE_DS (expr);
1989 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1990
1991 orig_insn_rtx = EXPR_INSN_RTX (expr);
1992
1993 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1994
1995 switch (res)
1996 {
1997 case 0:
1998 EXPR_SPEC_DONE_DS (expr) = ds;
1999 return current_ds != ds ? 1 : 0;
2000
2001 case 1:
2002 {
2003 rtx_insn *spec_insn_rtx =
2004 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
2005 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
2006
2007 change_vinsn_in_expr (expr, spec_vinsn);
2008 EXPR_SPEC_DONE_DS (expr) = ds;
2009 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
2010
2011 /* Do not allow clobbering the address register of speculative
2012 insns. */
2013 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
2014 expr_dest_reg (expr)))
2015 {
2016 EXPR_TARGET_AVAILABLE (expr) = false;
2017 return 2;
2018 }
2019
2020 return 1;
2021 }
2022
2023 case -1:
2024 return -1;
2025
2026 default:
2027 gcc_unreachable ();
2028 return -1;
2029 }
2030 }
2031
2032 /* Return a destination register, if any, of EXPR. */
2033 rtx
2034 expr_dest_reg (expr_t expr)
2035 {
2036 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2037
2038 if (dest != NULL_RTX && REG_P (dest))
2039 return dest;
2040
2041 return NULL_RTX;
2042 }
2043
2044 /* Returns the REGNO of the R's destination. */
2045 unsigned
2046 expr_dest_regno (expr_t expr)
2047 {
2048 rtx dest = expr_dest_reg (expr);
2049
2050 gcc_assert (dest != NULL_RTX);
2051 return REGNO (dest);
2052 }
2053
2054 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2055 AV_SET having unavailable target register. */
2056 void
2057 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2058 {
2059 expr_t expr;
2060 av_set_iterator avi;
2061
2062 FOR_EACH_EXPR (expr, avi, join_set)
2063 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2064 set_unavailable_target_for_expr (expr, lv_set);
2065 }
2066 \f
2067
2068 /* Returns true if REG (at least partially) is present in REGS. */
2069 bool
2070 register_unavailable_p (regset regs, rtx reg)
2071 {
2072 unsigned regno, end_regno;
2073
2074 regno = REGNO (reg);
2075 if (bitmap_bit_p (regs, regno))
2076 return true;
2077
2078 end_regno = END_REGNO (reg);
2079
2080 while (++regno < end_regno)
2081 if (bitmap_bit_p (regs, regno))
2082 return true;
2083
2084 return false;
2085 }
2086
2087 /* Av set functions. */
2088
2089 /* Add a new element to av set SETP.
2090 Return the element added. */
2091 static av_set_t
2092 av_set_add_element (av_set_t *setp)
2093 {
2094 /* Insert at the beginning of the list. */
2095 _list_add (setp);
2096 return *setp;
2097 }
2098
2099 /* Add EXPR to SETP. */
2100 void
2101 av_set_add (av_set_t *setp, expr_t expr)
2102 {
2103 av_set_t elem;
2104
2105 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2106 elem = av_set_add_element (setp);
2107 copy_expr (_AV_SET_EXPR (elem), expr);
2108 }
2109
2110 /* Same, but do not copy EXPR. */
2111 static void
2112 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2113 {
2114 av_set_t elem;
2115
2116 elem = av_set_add_element (setp);
2117 *_AV_SET_EXPR (elem) = *expr;
2118 }
2119
2120 /* Remove expr pointed to by IP from the av_set. */
2121 void
2122 av_set_iter_remove (av_set_iterator *ip)
2123 {
2124 clear_expr (_AV_SET_EXPR (*ip->lp));
2125 _list_iter_remove (ip);
2126 }
2127
2128 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2129 sense of vinsn_equal_p function. Return NULL if no such expr is
2130 in SET was found. */
2131 expr_t
2132 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2133 {
2134 expr_t expr;
2135 av_set_iterator i;
2136
2137 FOR_EACH_EXPR (expr, i, set)
2138 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2139 return expr;
2140 return NULL;
2141 }
2142
2143 /* Same, but also remove the EXPR found. */
2144 static expr_t
2145 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2146 {
2147 expr_t expr;
2148 av_set_iterator i;
2149
2150 FOR_EACH_EXPR_1 (expr, i, setp)
2151 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2152 {
2153 _list_iter_remove_nofree (&i);
2154 return expr;
2155 }
2156 return NULL;
2157 }
2158
2159 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2160 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2161 Returns NULL if no such expr is in SET was found. */
2162 static expr_t
2163 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2164 {
2165 expr_t cur_expr;
2166 av_set_iterator i;
2167
2168 FOR_EACH_EXPR (cur_expr, i, set)
2169 {
2170 if (cur_expr == expr)
2171 continue;
2172 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2173 return cur_expr;
2174 }
2175
2176 return NULL;
2177 }
2178
2179 /* If other expression is already in AVP, remove one of them. */
2180 expr_t
2181 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2182 {
2183 expr_t expr2;
2184
2185 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2186 if (expr2 != NULL)
2187 {
2188 /* Reset target availability on merge, since taking it only from one
2189 of the exprs would be controversial for different code. */
2190 EXPR_TARGET_AVAILABLE (expr2) = -1;
2191 EXPR_USEFULNESS (expr2) = 0;
2192
2193 merge_expr (expr2, expr, NULL);
2194
2195 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2196 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2197
2198 av_set_iter_remove (ip);
2199 return expr2;
2200 }
2201
2202 return expr;
2203 }
2204
2205 /* Return true if there is an expr that correlates to VI in SET. */
2206 bool
2207 av_set_is_in_p (av_set_t set, vinsn_t vi)
2208 {
2209 return av_set_lookup (set, vi) != NULL;
2210 }
2211
2212 /* Return a copy of SET. */
2213 av_set_t
2214 av_set_copy (av_set_t set)
2215 {
2216 expr_t expr;
2217 av_set_iterator i;
2218 av_set_t res = NULL;
2219
2220 FOR_EACH_EXPR (expr, i, set)
2221 av_set_add (&res, expr);
2222
2223 return res;
2224 }
2225
2226 /* Join two av sets that do not have common elements by attaching second set
2227 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2228 _AV_SET_NEXT of first set's last element). */
2229 static void
2230 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2231 {
2232 gcc_assert (*to_tailp == NULL);
2233 *to_tailp = *fromp;
2234 *fromp = NULL;
2235 }
2236
2237 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2238 pointed to by FROMP afterwards. */
2239 void
2240 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2241 {
2242 expr_t expr1;
2243 av_set_iterator i;
2244
2245 /* Delete from TOP all exprs, that present in FROMP. */
2246 FOR_EACH_EXPR_1 (expr1, i, top)
2247 {
2248 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2249
2250 if (expr2)
2251 {
2252 merge_expr (expr2, expr1, insn);
2253 av_set_iter_remove (&i);
2254 }
2255 }
2256
2257 join_distinct_sets (i.lp, fromp);
2258 }
2259
2260 /* Same as above, but also update availability of target register in
2261 TOP judging by TO_LV_SET and FROM_LV_SET. */
2262 void
2263 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2264 regset from_lv_set, insn_t insn)
2265 {
2266 expr_t expr1;
2267 av_set_iterator i;
2268 av_set_t *to_tailp, in_both_set = NULL;
2269
2270 /* Delete from TOP all expres, that present in FROMP. */
2271 FOR_EACH_EXPR_1 (expr1, i, top)
2272 {
2273 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2274
2275 if (expr2)
2276 {
2277 /* It may be that the expressions have different destination
2278 registers, in which case we need to check liveness here. */
2279 if (EXPR_SEPARABLE_P (expr1))
2280 {
2281 int regno1 = (REG_P (EXPR_LHS (expr1))
2282 ? (int) expr_dest_regno (expr1) : -1);
2283 int regno2 = (REG_P (EXPR_LHS (expr2))
2284 ? (int) expr_dest_regno (expr2) : -1);
2285
2286 /* ??? We don't have a way to check restrictions for
2287 *other* register on the current path, we did it only
2288 for the current target register. Give up. */
2289 if (regno1 != regno2)
2290 EXPR_TARGET_AVAILABLE (expr2) = -1;
2291 }
2292 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2293 EXPR_TARGET_AVAILABLE (expr2) = -1;
2294
2295 merge_expr (expr2, expr1, insn);
2296 av_set_add_nocopy (&in_both_set, expr2);
2297 av_set_iter_remove (&i);
2298 }
2299 else
2300 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2301 FROM_LV_SET. */
2302 set_unavailable_target_for_expr (expr1, from_lv_set);
2303 }
2304 to_tailp = i.lp;
2305
2306 /* These expressions are not present in TOP. Check liveness
2307 restrictions on TO_LV_SET. */
2308 FOR_EACH_EXPR (expr1, i, *fromp)
2309 set_unavailable_target_for_expr (expr1, to_lv_set);
2310
2311 join_distinct_sets (i.lp, &in_both_set);
2312 join_distinct_sets (to_tailp, fromp);
2313 }
2314
2315 /* Clear av_set pointed to by SETP. */
2316 void
2317 av_set_clear (av_set_t *setp)
2318 {
2319 expr_t expr;
2320 av_set_iterator i;
2321
2322 FOR_EACH_EXPR_1 (expr, i, setp)
2323 av_set_iter_remove (&i);
2324
2325 gcc_assert (*setp == NULL);
2326 }
2327
2328 /* Leave only one non-speculative element in the SETP. */
2329 void
2330 av_set_leave_one_nonspec (av_set_t *setp)
2331 {
2332 expr_t expr;
2333 av_set_iterator i;
2334 bool has_one_nonspec = false;
2335
2336 /* Keep all speculative exprs, and leave one non-speculative
2337 (the first one). */
2338 FOR_EACH_EXPR_1 (expr, i, setp)
2339 {
2340 if (!EXPR_SPEC_DONE_DS (expr))
2341 {
2342 if (has_one_nonspec)
2343 av_set_iter_remove (&i);
2344 else
2345 has_one_nonspec = true;
2346 }
2347 }
2348 }
2349
2350 /* Return the N'th element of the SET. */
2351 expr_t
2352 av_set_element (av_set_t set, int n)
2353 {
2354 expr_t expr;
2355 av_set_iterator i;
2356
2357 FOR_EACH_EXPR (expr, i, set)
2358 if (n-- == 0)
2359 return expr;
2360
2361 gcc_unreachable ();
2362 return NULL;
2363 }
2364
2365 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2366 void
2367 av_set_substract_cond_branches (av_set_t *avp)
2368 {
2369 av_set_iterator i;
2370 expr_t expr;
2371
2372 FOR_EACH_EXPR_1 (expr, i, avp)
2373 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2374 av_set_iter_remove (&i);
2375 }
2376
2377 /* Multiplies usefulness attribute of each member of av-set *AVP by
2378 value PROB / ALL_PROB. */
2379 void
2380 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2381 {
2382 av_set_iterator i;
2383 expr_t expr;
2384
2385 FOR_EACH_EXPR (expr, i, av)
2386 EXPR_USEFULNESS (expr) = (all_prob
2387 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2388 : 0);
2389 }
2390
2391 /* Leave in AVP only those expressions, which are present in AV,
2392 and return it, merging history expressions. */
2393 void
2394 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2395 {
2396 av_set_iterator i;
2397 expr_t expr, expr2;
2398
2399 FOR_EACH_EXPR_1 (expr, i, avp)
2400 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2401 av_set_iter_remove (&i);
2402 else
2403 /* When updating av sets in bookkeeping blocks, we can add more insns
2404 there which will be transformed but the upper av sets will not
2405 reflect those transformations. We then fail to undo those
2406 when searching for such insns. So merge the history saved
2407 in the av set of the block we are processing. */
2408 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2409 EXPR_HISTORY_OF_CHANGES (expr2));
2410 }
2411
2412 \f
2413
2414 /* Dependence hooks to initialize insn data. */
2415
2416 /* This is used in hooks callable from dependence analysis when initializing
2417 instruction's data. */
2418 static struct
2419 {
2420 /* Where the dependence was found (lhs/rhs). */
2421 deps_where_t where;
2422
2423 /* The actual data object to initialize. */
2424 idata_t id;
2425
2426 /* True when the insn should not be made clonable. */
2427 bool force_unique_p;
2428
2429 /* True when insn should be treated as of type USE, i.e. never renamed. */
2430 bool force_use_p;
2431 } deps_init_id_data;
2432
2433
2434 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2435 clonable. */
2436 static void
2437 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2438 {
2439 int type;
2440
2441 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2442 That clonable insns which can be separated into lhs and rhs have type SET.
2443 Other clonable insns have type USE. */
2444 type = GET_CODE (insn);
2445
2446 /* Only regular insns could be cloned. */
2447 if (type == INSN && !force_unique_p)
2448 type = SET;
2449 else if (type == JUMP_INSN && simplejump_p (insn))
2450 type = PC;
2451 else if (type == DEBUG_INSN)
2452 type = !force_unique_p ? USE : INSN;
2453
2454 IDATA_TYPE (id) = type;
2455 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2456 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2457 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2458 }
2459
2460 /* Start initializing insn data. */
2461 static void
2462 deps_init_id_start_insn (insn_t insn)
2463 {
2464 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2465
2466 setup_id_for_insn (deps_init_id_data.id, insn,
2467 deps_init_id_data.force_unique_p);
2468 deps_init_id_data.where = DEPS_IN_INSN;
2469 }
2470
2471 /* Start initializing lhs data. */
2472 static void
2473 deps_init_id_start_lhs (rtx lhs)
2474 {
2475 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2476 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2477
2478 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2479 {
2480 IDATA_LHS (deps_init_id_data.id) = lhs;
2481 deps_init_id_data.where = DEPS_IN_LHS;
2482 }
2483 }
2484
2485 /* Finish initializing lhs data. */
2486 static void
2487 deps_init_id_finish_lhs (void)
2488 {
2489 deps_init_id_data.where = DEPS_IN_INSN;
2490 }
2491
2492 /* Note a set of REGNO. */
2493 static void
2494 deps_init_id_note_reg_set (int regno)
2495 {
2496 haifa_note_reg_set (regno);
2497
2498 if (deps_init_id_data.where == DEPS_IN_RHS)
2499 deps_init_id_data.force_use_p = true;
2500
2501 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2502 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2503
2504 #ifdef STACK_REGS
2505 /* Make instructions that set stack registers to be ineligible for
2506 renaming to avoid issues with find_used_regs. */
2507 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2508 deps_init_id_data.force_use_p = true;
2509 #endif
2510 }
2511
2512 /* Note a clobber of REGNO. */
2513 static void
2514 deps_init_id_note_reg_clobber (int regno)
2515 {
2516 haifa_note_reg_clobber (regno);
2517
2518 if (deps_init_id_data.where == DEPS_IN_RHS)
2519 deps_init_id_data.force_use_p = true;
2520
2521 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2522 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2523 }
2524
2525 /* Note a use of REGNO. */
2526 static void
2527 deps_init_id_note_reg_use (int regno)
2528 {
2529 haifa_note_reg_use (regno);
2530
2531 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2532 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2533 }
2534
2535 /* Start initializing rhs data. */
2536 static void
2537 deps_init_id_start_rhs (rtx rhs)
2538 {
2539 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2540
2541 /* And there was no sel_deps_reset_to_insn (). */
2542 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2543 {
2544 IDATA_RHS (deps_init_id_data.id) = rhs;
2545 deps_init_id_data.where = DEPS_IN_RHS;
2546 }
2547 }
2548
2549 /* Finish initializing rhs data. */
2550 static void
2551 deps_init_id_finish_rhs (void)
2552 {
2553 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2554 || deps_init_id_data.where == DEPS_IN_INSN);
2555 deps_init_id_data.where = DEPS_IN_INSN;
2556 }
2557
2558 /* Finish initializing insn data. */
2559 static void
2560 deps_init_id_finish_insn (void)
2561 {
2562 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2563
2564 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2565 {
2566 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2567 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2568
2569 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2570 || deps_init_id_data.force_use_p)
2571 {
2572 /* This should be a USE, as we don't want to schedule its RHS
2573 separately. However, we still want to have them recorded
2574 for the purposes of substitution. That's why we don't
2575 simply call downgrade_to_use () here. */
2576 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2577 gcc_assert (!lhs == !rhs);
2578
2579 IDATA_TYPE (deps_init_id_data.id) = USE;
2580 }
2581 }
2582
2583 deps_init_id_data.where = DEPS_IN_NOWHERE;
2584 }
2585
2586 /* This is dependence info used for initializing insn's data. */
2587 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2588
2589 /* This initializes most of the static part of the above structure. */
2590 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2591 {
2592 NULL,
2593
2594 deps_init_id_start_insn,
2595 deps_init_id_finish_insn,
2596 deps_init_id_start_lhs,
2597 deps_init_id_finish_lhs,
2598 deps_init_id_start_rhs,
2599 deps_init_id_finish_rhs,
2600 deps_init_id_note_reg_set,
2601 deps_init_id_note_reg_clobber,
2602 deps_init_id_note_reg_use,
2603 NULL, /* note_mem_dep */
2604 NULL, /* note_dep */
2605
2606 0, /* use_cselib */
2607 0, /* use_deps_list */
2608 0 /* generate_spec_deps */
2609 };
2610
2611 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2612 we don't actually need information about lhs and rhs. */
2613 static void
2614 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2615 {
2616 rtx pat = PATTERN (insn);
2617
2618 if (NONJUMP_INSN_P (insn)
2619 && GET_CODE (pat) == SET
2620 && !force_unique_p)
2621 {
2622 IDATA_RHS (id) = SET_SRC (pat);
2623 IDATA_LHS (id) = SET_DEST (pat);
2624 }
2625 else
2626 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2627 }
2628
2629 /* Possibly downgrade INSN to USE. */
2630 static void
2631 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2632 {
2633 bool must_be_use = false;
2634 df_ref def;
2635 rtx lhs = IDATA_LHS (id);
2636 rtx rhs = IDATA_RHS (id);
2637
2638 /* We downgrade only SETs. */
2639 if (IDATA_TYPE (id) != SET)
2640 return;
2641
2642 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2643 {
2644 IDATA_TYPE (id) = USE;
2645 return;
2646 }
2647
2648 FOR_EACH_INSN_DEF (def, insn)
2649 {
2650 if (DF_REF_INSN (def)
2651 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2652 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2653 {
2654 must_be_use = true;
2655 break;
2656 }
2657
2658 #ifdef STACK_REGS
2659 /* Make instructions that set stack registers to be ineligible for
2660 renaming to avoid issues with find_used_regs. */
2661 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2662 {
2663 must_be_use = true;
2664 break;
2665 }
2666 #endif
2667 }
2668
2669 if (must_be_use)
2670 IDATA_TYPE (id) = USE;
2671 }
2672
2673 /* Setup register sets describing INSN in ID. */
2674 static void
2675 setup_id_reg_sets (idata_t id, insn_t insn)
2676 {
2677 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2678 df_ref def, use;
2679 regset tmp = get_clear_regset_from_pool ();
2680
2681 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2682 {
2683 unsigned int regno = DF_REF_REGNO (def);
2684
2685 /* Post modifies are treated like clobbers by sched-deps.c. */
2686 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2687 | DF_REF_PRE_POST_MODIFY)))
2688 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2689 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2690 {
2691 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2692
2693 #ifdef STACK_REGS
2694 /* For stack registers, treat writes to them as writes
2695 to the first one to be consistent with sched-deps.c. */
2696 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2697 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2698 #endif
2699 }
2700 /* Mark special refs that generate read/write def pair. */
2701 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2702 || regno == STACK_POINTER_REGNUM)
2703 bitmap_set_bit (tmp, regno);
2704 }
2705
2706 FOR_EACH_INSN_INFO_USE (use, insn_info)
2707 {
2708 unsigned int regno = DF_REF_REGNO (use);
2709
2710 /* When these refs are met for the first time, skip them, as
2711 these uses are just counterparts of some defs. */
2712 if (bitmap_bit_p (tmp, regno))
2713 bitmap_clear_bit (tmp, regno);
2714 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2715 {
2716 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2717
2718 #ifdef STACK_REGS
2719 /* For stack registers, treat reads from them as reads from
2720 the first one to be consistent with sched-deps.c. */
2721 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2722 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2723 #endif
2724 }
2725 }
2726
2727 return_regset_to_pool (tmp);
2728 }
2729
2730 /* Initialize instruction data for INSN in ID using DF's data. */
2731 static void
2732 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2733 {
2734 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2735
2736 setup_id_for_insn (id, insn, force_unique_p);
2737 setup_id_lhs_rhs (id, insn, force_unique_p);
2738
2739 if (INSN_NOP_P (insn))
2740 return;
2741
2742 maybe_downgrade_id_to_use (id, insn);
2743 setup_id_reg_sets (id, insn);
2744 }
2745
2746 /* Initialize instruction data for INSN in ID. */
2747 static void
2748 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2749 {
2750 struct deps_desc _dc, *dc = &_dc;
2751
2752 deps_init_id_data.where = DEPS_IN_NOWHERE;
2753 deps_init_id_data.id = id;
2754 deps_init_id_data.force_unique_p = force_unique_p;
2755 deps_init_id_data.force_use_p = false;
2756
2757 init_deps (dc, false);
2758
2759 memcpy (&deps_init_id_sched_deps_info,
2760 &const_deps_init_id_sched_deps_info,
2761 sizeof (deps_init_id_sched_deps_info));
2762
2763 if (spec_info != NULL)
2764 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2765
2766 sched_deps_info = &deps_init_id_sched_deps_info;
2767
2768 deps_analyze_insn (dc, insn);
2769
2770 free_deps (dc);
2771
2772 deps_init_id_data.id = NULL;
2773 }
2774
2775 \f
2776 struct sched_scan_info_def
2777 {
2778 /* This hook notifies scheduler frontend to extend its internal per basic
2779 block data structures. This hook should be called once before a series of
2780 calls to bb_init (). */
2781 void (*extend_bb) (void);
2782
2783 /* This hook makes scheduler frontend to initialize its internal data
2784 structures for the passed basic block. */
2785 void (*init_bb) (basic_block);
2786
2787 /* This hook notifies scheduler frontend to extend its internal per insn data
2788 structures. This hook should be called once before a series of calls to
2789 insn_init (). */
2790 void (*extend_insn) (void);
2791
2792 /* This hook makes scheduler frontend to initialize its internal data
2793 structures for the passed insn. */
2794 void (*init_insn) (insn_t);
2795 };
2796
2797 /* A driver function to add a set of basic blocks (BBS) to the
2798 scheduling region. */
2799 static void
2800 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2801 {
2802 unsigned i;
2803 basic_block bb;
2804
2805 if (ssi->extend_bb)
2806 ssi->extend_bb ();
2807
2808 if (ssi->init_bb)
2809 FOR_EACH_VEC_ELT (bbs, i, bb)
2810 ssi->init_bb (bb);
2811
2812 if (ssi->extend_insn)
2813 ssi->extend_insn ();
2814
2815 if (ssi->init_insn)
2816 FOR_EACH_VEC_ELT (bbs, i, bb)
2817 {
2818 rtx_insn *insn;
2819
2820 FOR_BB_INSNS (bb, insn)
2821 ssi->init_insn (insn);
2822 }
2823 }
2824
2825 /* Implement hooks for collecting fundamental insn properties like if insn is
2826 an ASM or is within a SCHED_GROUP. */
2827
2828 /* True when a "one-time init" data for INSN was already inited. */
2829 static bool
2830 first_time_insn_init (insn_t insn)
2831 {
2832 return INSN_LIVE (insn) == NULL;
2833 }
2834
2835 /* Hash an entry in a transformed_insns hashtable. */
2836 static hashval_t
2837 hash_transformed_insns (const void *p)
2838 {
2839 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2840 }
2841
2842 /* Compare the entries in a transformed_insns hashtable. */
2843 static int
2844 eq_transformed_insns (const void *p, const void *q)
2845 {
2846 rtx_insn *i1 =
2847 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2848 rtx_insn *i2 =
2849 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2850
2851 if (INSN_UID (i1) == INSN_UID (i2))
2852 return 1;
2853 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2854 }
2855
2856 /* Free an entry in a transformed_insns hashtable. */
2857 static void
2858 free_transformed_insns (void *p)
2859 {
2860 struct transformed_insns *pti = (struct transformed_insns *) p;
2861
2862 vinsn_detach (pti->vinsn_old);
2863 vinsn_detach (pti->vinsn_new);
2864 free (pti);
2865 }
2866
2867 /* Init the s_i_d data for INSN which should be inited just once, when
2868 we first see the insn. */
2869 static void
2870 init_first_time_insn_data (insn_t insn)
2871 {
2872 /* This should not be set if this is the first time we init data for
2873 insn. */
2874 gcc_assert (first_time_insn_init (insn));
2875
2876 /* These are needed for nops too. */
2877 INSN_LIVE (insn) = get_regset_from_pool ();
2878 INSN_LIVE_VALID_P (insn) = false;
2879
2880 if (!INSN_NOP_P (insn))
2881 {
2882 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2883 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2884 INSN_TRANSFORMED_INSNS (insn)
2885 = htab_create (16, hash_transformed_insns,
2886 eq_transformed_insns, free_transformed_insns);
2887 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2888 }
2889 }
2890
2891 /* Free almost all above data for INSN that is scheduled already.
2892 Used for extra-large basic blocks. */
2893 void
2894 free_data_for_scheduled_insn (insn_t insn)
2895 {
2896 gcc_assert (! first_time_insn_init (insn));
2897
2898 if (! INSN_ANALYZED_DEPS (insn))
2899 return;
2900
2901 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2902 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2903 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2904
2905 /* This is allocated only for bookkeeping insns. */
2906 if (INSN_ORIGINATORS (insn))
2907 BITMAP_FREE (INSN_ORIGINATORS (insn));
2908 free_deps (&INSN_DEPS_CONTEXT (insn));
2909
2910 INSN_ANALYZED_DEPS (insn) = NULL;
2911
2912 /* Clear the readonly flag so we would ICE when trying to recalculate
2913 the deps context (as we believe that it should not happen). */
2914 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2915 }
2916
2917 /* Free the same data as above for INSN. */
2918 static void
2919 free_first_time_insn_data (insn_t insn)
2920 {
2921 gcc_assert (! first_time_insn_init (insn));
2922
2923 free_data_for_scheduled_insn (insn);
2924 return_regset_to_pool (INSN_LIVE (insn));
2925 INSN_LIVE (insn) = NULL;
2926 INSN_LIVE_VALID_P (insn) = false;
2927 }
2928
2929 /* Initialize region-scope data structures for basic blocks. */
2930 static void
2931 init_global_and_expr_for_bb (basic_block bb)
2932 {
2933 if (sel_bb_empty_p (bb))
2934 return;
2935
2936 invalidate_av_set (bb);
2937 }
2938
2939 /* Data for global dependency analysis (to initialize CANT_MOVE and
2940 SCHED_GROUP_P). */
2941 static struct
2942 {
2943 /* Previous insn. */
2944 insn_t prev_insn;
2945 } init_global_data;
2946
2947 /* Determine if INSN is in the sched_group, is an asm or should not be
2948 cloned. After that initialize its expr. */
2949 static void
2950 init_global_and_expr_for_insn (insn_t insn)
2951 {
2952 if (LABEL_P (insn))
2953 return;
2954
2955 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2956 {
2957 init_global_data.prev_insn = NULL;
2958 return;
2959 }
2960
2961 gcc_assert (INSN_P (insn));
2962
2963 if (SCHED_GROUP_P (insn))
2964 /* Setup a sched_group. */
2965 {
2966 insn_t prev_insn = init_global_data.prev_insn;
2967
2968 if (prev_insn)
2969 INSN_SCHED_NEXT (prev_insn) = insn;
2970
2971 init_global_data.prev_insn = insn;
2972 }
2973 else
2974 init_global_data.prev_insn = NULL;
2975
2976 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2977 || asm_noperands (PATTERN (insn)) >= 0)
2978 /* Mark INSN as an asm. */
2979 INSN_ASM_P (insn) = true;
2980
2981 {
2982 bool force_unique_p;
2983 ds_t spec_done_ds;
2984
2985 /* Certain instructions cannot be cloned, and frame related insns and
2986 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2987 their block. */
2988 if (prologue_epilogue_contains (insn))
2989 {
2990 if (RTX_FRAME_RELATED_P (insn))
2991 CANT_MOVE (insn) = 1;
2992 else
2993 {
2994 rtx note;
2995 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2996 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2997 && ((enum insn_note) INTVAL (XEXP (note, 0))
2998 == NOTE_INSN_EPILOGUE_BEG))
2999 {
3000 CANT_MOVE (insn) = 1;
3001 break;
3002 }
3003 }
3004 force_unique_p = true;
3005 }
3006 else
3007 if (CANT_MOVE (insn)
3008 || INSN_ASM_P (insn)
3009 || SCHED_GROUP_P (insn)
3010 || CALL_P (insn)
3011 /* Exception handling insns are always unique. */
3012 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3013 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
3014 || control_flow_insn_p (insn)
3015 || volatile_insn_p (PATTERN (insn))
3016 || (targetm.cannot_copy_insn_p
3017 && targetm.cannot_copy_insn_p (insn)))
3018 force_unique_p = true;
3019 else
3020 force_unique_p = false;
3021
3022 if (targetm.sched.get_insn_spec_ds)
3023 {
3024 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3025 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3026 }
3027 else
3028 spec_done_ds = 0;
3029
3030 /* Initialize INSN's expr. */
3031 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3032 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3033 spec_done_ds, 0, 0, vNULL, true,
3034 false, false, false, CANT_MOVE (insn));
3035 }
3036
3037 init_first_time_insn_data (insn);
3038 }
3039
3040 /* Scan the region and initialize instruction data for basic blocks BBS. */
3041 void
3042 sel_init_global_and_expr (bb_vec_t bbs)
3043 {
3044 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3045 const struct sched_scan_info_def ssi =
3046 {
3047 NULL, /* extend_bb */
3048 init_global_and_expr_for_bb, /* init_bb */
3049 extend_insn_data, /* extend_insn */
3050 init_global_and_expr_for_insn /* init_insn */
3051 };
3052
3053 sched_scan (&ssi, bbs);
3054 }
3055
3056 /* Finalize region-scope data structures for basic blocks. */
3057 static void
3058 finish_global_and_expr_for_bb (basic_block bb)
3059 {
3060 av_set_clear (&BB_AV_SET (bb));
3061 BB_AV_LEVEL (bb) = 0;
3062 }
3063
3064 /* Finalize INSN's data. */
3065 static void
3066 finish_global_and_expr_insn (insn_t insn)
3067 {
3068 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3069 return;
3070
3071 gcc_assert (INSN_P (insn));
3072
3073 if (INSN_LUID (insn) > 0)
3074 {
3075 free_first_time_insn_data (insn);
3076 INSN_WS_LEVEL (insn) = 0;
3077 CANT_MOVE (insn) = 0;
3078
3079 /* We can no longer assert this, as vinsns of this insn could be
3080 easily live in other insn's caches. This should be changed to
3081 a counter-like approach among all vinsns. */
3082 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3083 clear_expr (INSN_EXPR (insn));
3084 }
3085 }
3086
3087 /* Finalize per instruction data for the whole region. */
3088 void
3089 sel_finish_global_and_expr (void)
3090 {
3091 {
3092 bb_vec_t bbs;
3093 int i;
3094
3095 bbs.create (current_nr_blocks);
3096
3097 for (i = 0; i < current_nr_blocks; i++)
3098 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3099
3100 /* Clear AV_SETs and INSN_EXPRs. */
3101 {
3102 const struct sched_scan_info_def ssi =
3103 {
3104 NULL, /* extend_bb */
3105 finish_global_and_expr_for_bb, /* init_bb */
3106 NULL, /* extend_insn */
3107 finish_global_and_expr_insn /* init_insn */
3108 };
3109
3110 sched_scan (&ssi, bbs);
3111 }
3112
3113 bbs.release ();
3114 }
3115
3116 finish_insns ();
3117 }
3118 \f
3119
3120 /* In the below hooks, we merely calculate whether or not a dependence
3121 exists, and in what part of insn. However, we will need more data
3122 when we'll start caching dependence requests. */
3123
3124 /* Container to hold information for dependency analysis. */
3125 static struct
3126 {
3127 deps_t dc;
3128
3129 /* A variable to track which part of rtx we are scanning in
3130 sched-deps.c: sched_analyze_insn (). */
3131 deps_where_t where;
3132
3133 /* Current producer. */
3134 insn_t pro;
3135
3136 /* Current consumer. */
3137 vinsn_t con;
3138
3139 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3140 X is from { INSN, LHS, RHS }. */
3141 ds_t has_dep_p[DEPS_IN_NOWHERE];
3142 } has_dependence_data;
3143
3144 /* Start analyzing dependencies of INSN. */
3145 static void
3146 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3147 {
3148 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3149
3150 has_dependence_data.where = DEPS_IN_INSN;
3151 }
3152
3153 /* Finish analyzing dependencies of an insn. */
3154 static void
3155 has_dependence_finish_insn (void)
3156 {
3157 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3158
3159 has_dependence_data.where = DEPS_IN_NOWHERE;
3160 }
3161
3162 /* Start analyzing dependencies of LHS. */
3163 static void
3164 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3165 {
3166 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3167
3168 if (VINSN_LHS (has_dependence_data.con) != NULL)
3169 has_dependence_data.where = DEPS_IN_LHS;
3170 }
3171
3172 /* Finish analyzing dependencies of an lhs. */
3173 static void
3174 has_dependence_finish_lhs (void)
3175 {
3176 has_dependence_data.where = DEPS_IN_INSN;
3177 }
3178
3179 /* Start analyzing dependencies of RHS. */
3180 static void
3181 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3182 {
3183 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3184
3185 if (VINSN_RHS (has_dependence_data.con) != NULL)
3186 has_dependence_data.where = DEPS_IN_RHS;
3187 }
3188
3189 /* Start analyzing dependencies of an rhs. */
3190 static void
3191 has_dependence_finish_rhs (void)
3192 {
3193 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3194 || has_dependence_data.where == DEPS_IN_INSN);
3195
3196 has_dependence_data.where = DEPS_IN_INSN;
3197 }
3198
3199 /* Note a set of REGNO. */
3200 static void
3201 has_dependence_note_reg_set (int regno)
3202 {
3203 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3204
3205 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3206 VINSN_INSN_RTX
3207 (has_dependence_data.con)))
3208 {
3209 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3210
3211 if (reg_last->sets != NULL
3212 || reg_last->clobbers != NULL)
3213 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3214
3215 if (reg_last->uses || reg_last->implicit_sets)
3216 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3217 }
3218 }
3219
3220 /* Note a clobber of REGNO. */
3221 static void
3222 has_dependence_note_reg_clobber (int regno)
3223 {
3224 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3225
3226 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3227 VINSN_INSN_RTX
3228 (has_dependence_data.con)))
3229 {
3230 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3231
3232 if (reg_last->sets)
3233 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3234
3235 if (reg_last->uses || reg_last->implicit_sets)
3236 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3237 }
3238 }
3239
3240 /* Note a use of REGNO. */
3241 static void
3242 has_dependence_note_reg_use (int regno)
3243 {
3244 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3245
3246 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3247 VINSN_INSN_RTX
3248 (has_dependence_data.con)))
3249 {
3250 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3251
3252 if (reg_last->sets)
3253 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3254
3255 if (reg_last->clobbers || reg_last->implicit_sets)
3256 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3257
3258 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3259 is actually a check insn. We need to do this for any register
3260 read-read dependency with the check unless we track properly
3261 all registers written by BE_IN_SPEC-speculated insns, as
3262 we don't have explicit dependence lists. See PR 53975. */
3263 if (reg_last->uses)
3264 {
3265 ds_t pro_spec_checked_ds;
3266
3267 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3268 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3269
3270 if (pro_spec_checked_ds != 0)
3271 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3272 NULL_RTX, NULL_RTX);
3273 }
3274 }
3275 }
3276
3277 /* Note a memory dependence. */
3278 static void
3279 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3280 rtx pending_mem ATTRIBUTE_UNUSED,
3281 insn_t pending_insn ATTRIBUTE_UNUSED,
3282 ds_t ds ATTRIBUTE_UNUSED)
3283 {
3284 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3285 VINSN_INSN_RTX (has_dependence_data.con)))
3286 {
3287 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3288
3289 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3290 }
3291 }
3292
3293 /* Note a dependence. */
3294 static void
3295 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3296 ds_t ds ATTRIBUTE_UNUSED)
3297 {
3298 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3299 VINSN_INSN_RTX (has_dependence_data.con)))
3300 {
3301 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3302
3303 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3304 }
3305 }
3306
3307 /* Mark the insn as having a hard dependence that prevents speculation. */
3308 void
3309 sel_mark_hard_insn (rtx insn)
3310 {
3311 int i;
3312
3313 /* Only work when we're in has_dependence_p mode.
3314 ??? This is a hack, this should actually be a hook. */
3315 if (!has_dependence_data.dc || !has_dependence_data.pro)
3316 return;
3317
3318 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3319 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3320
3321 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3322 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3323 }
3324
3325 /* This structure holds the hooks for the dependency analysis used when
3326 actually processing dependencies in the scheduler. */
3327 static struct sched_deps_info_def has_dependence_sched_deps_info;
3328
3329 /* This initializes most of the fields of the above structure. */
3330 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3331 {
3332 NULL,
3333
3334 has_dependence_start_insn,
3335 has_dependence_finish_insn,
3336 has_dependence_start_lhs,
3337 has_dependence_finish_lhs,
3338 has_dependence_start_rhs,
3339 has_dependence_finish_rhs,
3340 has_dependence_note_reg_set,
3341 has_dependence_note_reg_clobber,
3342 has_dependence_note_reg_use,
3343 has_dependence_note_mem_dep,
3344 has_dependence_note_dep,
3345
3346 0, /* use_cselib */
3347 0, /* use_deps_list */
3348 0 /* generate_spec_deps */
3349 };
3350
3351 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3352 static void
3353 setup_has_dependence_sched_deps_info (void)
3354 {
3355 memcpy (&has_dependence_sched_deps_info,
3356 &const_has_dependence_sched_deps_info,
3357 sizeof (has_dependence_sched_deps_info));
3358
3359 if (spec_info != NULL)
3360 has_dependence_sched_deps_info.generate_spec_deps = 1;
3361
3362 sched_deps_info = &has_dependence_sched_deps_info;
3363 }
3364
3365 /* Remove all dependences found and recorded in has_dependence_data array. */
3366 void
3367 sel_clear_has_dependence (void)
3368 {
3369 int i;
3370
3371 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3372 has_dependence_data.has_dep_p[i] = 0;
3373 }
3374
3375 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3376 to the dependence information array in HAS_DEP_PP. */
3377 ds_t
3378 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3379 {
3380 int i;
3381 ds_t ds;
3382 struct deps_desc *dc;
3383
3384 if (INSN_SIMPLEJUMP_P (pred))
3385 /* Unconditional jump is just a transfer of control flow.
3386 Ignore it. */
3387 return false;
3388
3389 dc = &INSN_DEPS_CONTEXT (pred);
3390
3391 /* We init this field lazily. */
3392 if (dc->reg_last == NULL)
3393 init_deps_reg_last (dc);
3394
3395 if (!dc->readonly)
3396 {
3397 has_dependence_data.pro = NULL;
3398 /* Initialize empty dep context with information about PRED. */
3399 advance_deps_context (dc, pred);
3400 dc->readonly = 1;
3401 }
3402
3403 has_dependence_data.where = DEPS_IN_NOWHERE;
3404 has_dependence_data.pro = pred;
3405 has_dependence_data.con = EXPR_VINSN (expr);
3406 has_dependence_data.dc = dc;
3407
3408 sel_clear_has_dependence ();
3409
3410 /* Now catch all dependencies that would be generated between PRED and
3411 INSN. */
3412 setup_has_dependence_sched_deps_info ();
3413 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3414 has_dependence_data.dc = NULL;
3415
3416 /* When a barrier was found, set DEPS_IN_INSN bits. */
3417 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3418 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3419 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3420 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3421
3422 /* Do not allow stores to memory to move through checks. Currently
3423 we don't move this to sched-deps.c as the check doesn't have
3424 obvious places to which this dependence can be attached.
3425 FIMXE: this should go to a hook. */
3426 if (EXPR_LHS (expr)
3427 && MEM_P (EXPR_LHS (expr))
3428 && sel_insn_is_speculation_check (pred))
3429 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3430
3431 *has_dep_pp = has_dependence_data.has_dep_p;
3432 ds = 0;
3433 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3434 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3435 NULL_RTX, NULL_RTX);
3436
3437 return ds;
3438 }
3439 \f
3440
3441 /* Dependence hooks implementation that checks dependence latency constraints
3442 on the insns being scheduled. The entry point for these routines is
3443 tick_check_p predicate. */
3444
3445 static struct
3446 {
3447 /* An expr we are currently checking. */
3448 expr_t expr;
3449
3450 /* A minimal cycle for its scheduling. */
3451 int cycle;
3452
3453 /* Whether we have seen a true dependence while checking. */
3454 bool seen_true_dep_p;
3455 } tick_check_data;
3456
3457 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3458 on PRO with status DS and weight DW. */
3459 static void
3460 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3461 {
3462 expr_t con_expr = tick_check_data.expr;
3463 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3464
3465 if (con_insn != pro_insn)
3466 {
3467 enum reg_note dt;
3468 int tick;
3469
3470 if (/* PROducer was removed from above due to pipelining. */
3471 !INSN_IN_STREAM_P (pro_insn)
3472 /* Or PROducer was originally on the next iteration regarding the
3473 CONsumer. */
3474 || (INSN_SCHED_TIMES (pro_insn)
3475 - EXPR_SCHED_TIMES (con_expr)) > 1)
3476 /* Don't count this dependence. */
3477 return;
3478
3479 dt = ds_to_dt (ds);
3480 if (dt == REG_DEP_TRUE)
3481 tick_check_data.seen_true_dep_p = true;
3482
3483 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3484
3485 {
3486 dep_def _dep, *dep = &_dep;
3487
3488 init_dep (dep, pro_insn, con_insn, dt);
3489
3490 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3491 }
3492
3493 /* When there are several kinds of dependencies between pro and con,
3494 only REG_DEP_TRUE should be taken into account. */
3495 if (tick > tick_check_data.cycle
3496 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3497 tick_check_data.cycle = tick;
3498 }
3499 }
3500
3501 /* An implementation of note_dep hook. */
3502 static void
3503 tick_check_note_dep (insn_t pro, ds_t ds)
3504 {
3505 tick_check_dep_with_dw (pro, ds, 0);
3506 }
3507
3508 /* An implementation of note_mem_dep hook. */
3509 static void
3510 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3511 {
3512 dw_t dw;
3513
3514 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3515 ? estimate_dep_weak (mem1, mem2)
3516 : 0);
3517
3518 tick_check_dep_with_dw (pro, ds, dw);
3519 }
3520
3521 /* This structure contains hooks for dependence analysis used when determining
3522 whether an insn is ready for scheduling. */
3523 static struct sched_deps_info_def tick_check_sched_deps_info =
3524 {
3525 NULL,
3526
3527 NULL,
3528 NULL,
3529 NULL,
3530 NULL,
3531 NULL,
3532 NULL,
3533 haifa_note_reg_set,
3534 haifa_note_reg_clobber,
3535 haifa_note_reg_use,
3536 tick_check_note_mem_dep,
3537 tick_check_note_dep,
3538
3539 0, 0, 0
3540 };
3541
3542 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3543 scheduled. Return 0 if all data from producers in DC is ready. */
3544 int
3545 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3546 {
3547 int cycles_left;
3548 /* Initialize variables. */
3549 tick_check_data.expr = expr;
3550 tick_check_data.cycle = 0;
3551 tick_check_data.seen_true_dep_p = false;
3552 sched_deps_info = &tick_check_sched_deps_info;
3553
3554 gcc_assert (!dc->readonly);
3555 dc->readonly = 1;
3556 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3557 dc->readonly = 0;
3558
3559 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3560
3561 return cycles_left >= 0 ? cycles_left : 0;
3562 }
3563 \f
3564
3565 /* Functions to work with insns. */
3566
3567 /* Returns true if LHS of INSN is the same as DEST of an insn
3568 being moved. */
3569 bool
3570 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3571 {
3572 rtx lhs = INSN_LHS (insn);
3573
3574 if (lhs == NULL || dest == NULL)
3575 return false;
3576
3577 return rtx_equal_p (lhs, dest);
3578 }
3579
3580 /* Return s_i_d entry of INSN. Callable from debugger. */
3581 sel_insn_data_def
3582 insn_sid (insn_t insn)
3583 {
3584 return *SID (insn);
3585 }
3586
3587 /* True when INSN is a speculative check. We can tell this by looking
3588 at the data structures of the selective scheduler, not by examining
3589 the pattern. */
3590 bool
3591 sel_insn_is_speculation_check (rtx insn)
3592 {
3593 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3594 }
3595
3596 /* Extracts machine mode MODE and destination location DST_LOC
3597 for given INSN. */
3598 void
3599 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3600 {
3601 rtx pat = PATTERN (insn);
3602
3603 gcc_assert (dst_loc);
3604 gcc_assert (GET_CODE (pat) == SET);
3605
3606 *dst_loc = SET_DEST (pat);
3607
3608 gcc_assert (*dst_loc);
3609 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3610
3611 if (mode)
3612 *mode = GET_MODE (*dst_loc);
3613 }
3614
3615 /* Returns true when moving through JUMP will result in bookkeeping
3616 creation. */
3617 bool
3618 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3619 {
3620 insn_t succ;
3621 succ_iterator si;
3622
3623 FOR_EACH_SUCC (succ, si, jump)
3624 if (sel_num_cfg_preds_gt_1 (succ))
3625 return true;
3626
3627 return false;
3628 }
3629
3630 /* Return 'true' if INSN is the only one in its basic block. */
3631 static bool
3632 insn_is_the_only_one_in_bb_p (insn_t insn)
3633 {
3634 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3635 }
3636
3637 #ifdef ENABLE_CHECKING
3638 /* Check that the region we're scheduling still has at most one
3639 backedge. */
3640 static void
3641 verify_backedges (void)
3642 {
3643 if (pipelining_p)
3644 {
3645 int i, n = 0;
3646 edge e;
3647 edge_iterator ei;
3648
3649 for (i = 0; i < current_nr_blocks; i++)
3650 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3651 if (in_current_region_p (e->dest)
3652 && BLOCK_TO_BB (e->dest->index) < i)
3653 n++;
3654
3655 gcc_assert (n <= 1);
3656 }
3657 }
3658 #endif
3659 \f
3660
3661 /* Functions to work with control flow. */
3662
3663 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3664 are sorted in topological order (it might have been invalidated by
3665 redirecting an edge). */
3666 static void
3667 sel_recompute_toporder (void)
3668 {
3669 int i, n, rgn;
3670 int *postorder, n_blocks;
3671
3672 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3673 n_blocks = post_order_compute (postorder, false, false);
3674
3675 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3676 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3677 if (CONTAINING_RGN (postorder[i]) == rgn)
3678 {
3679 BLOCK_TO_BB (postorder[i]) = n;
3680 BB_TO_BLOCK (n) = postorder[i];
3681 n++;
3682 }
3683
3684 /* Assert that we updated info for all blocks. We may miss some blocks if
3685 this function is called when redirecting an edge made a block
3686 unreachable, but that block is not deleted yet. */
3687 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3688 }
3689
3690 /* Tidy the possibly empty block BB. */
3691 static bool
3692 maybe_tidy_empty_bb (basic_block bb)
3693 {
3694 basic_block succ_bb, pred_bb, note_bb;
3695 vec<basic_block> dom_bbs;
3696 edge e;
3697 edge_iterator ei;
3698 bool rescan_p;
3699
3700 /* Keep empty bb only if this block immediately precedes EXIT and
3701 has incoming non-fallthrough edge, or it has no predecessors or
3702 successors. Otherwise remove it. */
3703 if (!sel_bb_empty_p (bb)
3704 || (single_succ_p (bb)
3705 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3706 && (!single_pred_p (bb)
3707 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3708 || EDGE_COUNT (bb->preds) == 0
3709 || EDGE_COUNT (bb->succs) == 0)
3710 return false;
3711
3712 /* Do not attempt to redirect complex edges. */
3713 FOR_EACH_EDGE (e, ei, bb->preds)
3714 if (e->flags & EDGE_COMPLEX)
3715 return false;
3716 else if (e->flags & EDGE_FALLTHRU)
3717 {
3718 rtx note;
3719 /* If prev bb ends with asm goto, see if any of the
3720 ASM_OPERANDS_LABELs don't point to the fallthru
3721 label. Do not attempt to redirect it in that case. */
3722 if (JUMP_P (BB_END (e->src))
3723 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3724 {
3725 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3726
3727 for (i = 0; i < n; ++i)
3728 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3729 return false;
3730 }
3731 }
3732
3733 free_data_sets (bb);
3734
3735 /* Do not delete BB if it has more than one successor.
3736 That can occur when we moving a jump. */
3737 if (!single_succ_p (bb))
3738 {
3739 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3740 sel_merge_blocks (bb->prev_bb, bb);
3741 return true;
3742 }
3743
3744 succ_bb = single_succ (bb);
3745 rescan_p = true;
3746 pred_bb = NULL;
3747 dom_bbs.create (0);
3748
3749 /* Save a pred/succ from the current region to attach the notes to. */
3750 note_bb = NULL;
3751 FOR_EACH_EDGE (e, ei, bb->preds)
3752 if (in_current_region_p (e->src))
3753 {
3754 note_bb = e->src;
3755 break;
3756 }
3757 if (note_bb == NULL)
3758 note_bb = succ_bb;
3759
3760 /* Redirect all non-fallthru edges to the next bb. */
3761 while (rescan_p)
3762 {
3763 rescan_p = false;
3764
3765 FOR_EACH_EDGE (e, ei, bb->preds)
3766 {
3767 pred_bb = e->src;
3768
3769 if (!(e->flags & EDGE_FALLTHRU))
3770 {
3771 /* We can not invalidate computed topological order by moving
3772 the edge destination block (E->SUCC) along a fallthru edge.
3773
3774 We will update dominators here only when we'll get
3775 an unreachable block when redirecting, otherwise
3776 sel_redirect_edge_and_branch will take care of it. */
3777 if (e->dest != bb
3778 && single_pred_p (e->dest))
3779 dom_bbs.safe_push (e->dest);
3780 sel_redirect_edge_and_branch (e, succ_bb);
3781 rescan_p = true;
3782 break;
3783 }
3784 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3785 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3786 still have to adjust it. */
3787 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3788 {
3789 /* If possible, try to remove the unneeded conditional jump. */
3790 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3791 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3792 {
3793 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3794 tidy_fallthru_edge (e);
3795 }
3796 else
3797 sel_redirect_edge_and_branch (e, succ_bb);
3798 rescan_p = true;
3799 break;
3800 }
3801 }
3802 }
3803
3804 if (can_merge_blocks_p (bb->prev_bb, bb))
3805 sel_merge_blocks (bb->prev_bb, bb);
3806 else
3807 {
3808 /* This is a block without fallthru predecessor. Just delete it. */
3809 gcc_assert (note_bb);
3810 move_bb_info (note_bb, bb);
3811 remove_empty_bb (bb, true);
3812 }
3813
3814 if (!dom_bbs.is_empty ())
3815 {
3816 dom_bbs.safe_push (succ_bb);
3817 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3818 dom_bbs.release ();
3819 }
3820
3821 return true;
3822 }
3823
3824 /* Tidy the control flow after we have removed original insn from
3825 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3826 is true, also try to optimize control flow on non-empty blocks. */
3827 bool
3828 tidy_control_flow (basic_block xbb, bool full_tidying)
3829 {
3830 bool changed = true;
3831 insn_t first, last;
3832
3833 /* First check whether XBB is empty. */
3834 changed = maybe_tidy_empty_bb (xbb);
3835 if (changed || !full_tidying)
3836 return changed;
3837
3838 /* Check if there is a unnecessary jump after insn left. */
3839 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3840 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3841 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3842 {
3843 if (sel_remove_insn (BB_END (xbb), false, false))
3844 return true;
3845 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3846 }
3847
3848 first = sel_bb_head (xbb);
3849 last = sel_bb_end (xbb);
3850 if (MAY_HAVE_DEBUG_INSNS)
3851 {
3852 if (first != last && DEBUG_INSN_P (first))
3853 do
3854 first = NEXT_INSN (first);
3855 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3856
3857 if (first != last && DEBUG_INSN_P (last))
3858 do
3859 last = PREV_INSN (last);
3860 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3861 }
3862 /* Check if there is an unnecessary jump in previous basic block leading
3863 to next basic block left after removing INSN from stream.
3864 If it is so, remove that jump and redirect edge to current
3865 basic block (where there was INSN before deletion). This way
3866 when NOP will be deleted several instructions later with its
3867 basic block we will not get a jump to next instruction, which
3868 can be harmful. */
3869 if (first == last
3870 && !sel_bb_empty_p (xbb)
3871 && INSN_NOP_P (last)
3872 /* Flow goes fallthru from current block to the next. */
3873 && EDGE_COUNT (xbb->succs) == 1
3874 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3875 /* When successor is an EXIT block, it may not be the next block. */
3876 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3877 /* And unconditional jump in previous basic block leads to
3878 next basic block of XBB and this jump can be safely removed. */
3879 && in_current_region_p (xbb->prev_bb)
3880 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3881 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3882 /* Also this jump is not at the scheduling boundary. */
3883 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3884 {
3885 bool recompute_toporder_p;
3886 /* Clear data structures of jump - jump itself will be removed
3887 by sel_redirect_edge_and_branch. */
3888 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3889 recompute_toporder_p
3890 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3891
3892 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3893
3894 /* It can turn out that after removing unused jump, basic block
3895 that contained that jump, becomes empty too. In such case
3896 remove it too. */
3897 if (sel_bb_empty_p (xbb->prev_bb))
3898 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3899 if (recompute_toporder_p)
3900 sel_recompute_toporder ();
3901 }
3902
3903 #ifdef ENABLE_CHECKING
3904 verify_backedges ();
3905 verify_dominators (CDI_DOMINATORS);
3906 #endif
3907
3908 return changed;
3909 }
3910
3911 /* Purge meaningless empty blocks in the middle of a region. */
3912 void
3913 purge_empty_blocks (void)
3914 {
3915 int i;
3916
3917 /* Do not attempt to delete the first basic block in the region. */
3918 for (i = 1; i < current_nr_blocks; )
3919 {
3920 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3921
3922 if (maybe_tidy_empty_bb (b))
3923 continue;
3924
3925 i++;
3926 }
3927 }
3928
3929 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3930 do not delete insn's data, because it will be later re-emitted.
3931 Return true if we have removed some blocks afterwards. */
3932 bool
3933 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3934 {
3935 basic_block bb = BLOCK_FOR_INSN (insn);
3936
3937 gcc_assert (INSN_IN_STREAM_P (insn));
3938
3939 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3940 {
3941 expr_t expr;
3942 av_set_iterator i;
3943
3944 /* When we remove a debug insn that is head of a BB, it remains
3945 in the AV_SET of the block, but it shouldn't. */
3946 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3947 if (EXPR_INSN_RTX (expr) == insn)
3948 {
3949 av_set_iter_remove (&i);
3950 break;
3951 }
3952 }
3953
3954 if (only_disconnect)
3955 remove_insn (insn);
3956 else
3957 {
3958 delete_insn (insn);
3959 clear_expr (INSN_EXPR (insn));
3960 }
3961
3962 /* It is necessary to NULL these fields in case we are going to re-insert
3963 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3964 case, but also for NOPs that we will return to the nop pool. */
3965 SET_PREV_INSN (insn) = NULL_RTX;
3966 SET_NEXT_INSN (insn) = NULL_RTX;
3967 set_block_for_insn (insn, NULL);
3968
3969 return tidy_control_flow (bb, full_tidying);
3970 }
3971
3972 /* Estimate number of the insns in BB. */
3973 static int
3974 sel_estimate_number_of_insns (basic_block bb)
3975 {
3976 int res = 0;
3977 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3978
3979 for (; insn != next_tail; insn = NEXT_INSN (insn))
3980 if (NONDEBUG_INSN_P (insn))
3981 res++;
3982
3983 return res;
3984 }
3985
3986 /* We don't need separate luids for notes or labels. */
3987 static int
3988 sel_luid_for_non_insn (rtx x)
3989 {
3990 gcc_assert (NOTE_P (x) || LABEL_P (x));
3991
3992 return -1;
3993 }
3994
3995 /* Find the proper seqno for inserting at INSN by successors.
3996 Return -1 if no successors with positive seqno exist. */
3997 static int
3998 get_seqno_by_succs (rtx_insn *insn)
3999 {
4000 basic_block bb = BLOCK_FOR_INSN (insn);
4001 rtx_insn *tmp = insn, *end = BB_END (bb);
4002 int seqno;
4003 insn_t succ = NULL;
4004 succ_iterator si;
4005
4006 while (tmp != end)
4007 {
4008 tmp = NEXT_INSN (tmp);
4009 if (INSN_P (tmp))
4010 return INSN_SEQNO (tmp);
4011 }
4012
4013 seqno = INT_MAX;
4014
4015 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4016 if (INSN_SEQNO (succ) > 0)
4017 seqno = MIN (seqno, INSN_SEQNO (succ));
4018
4019 if (seqno == INT_MAX)
4020 return -1;
4021
4022 return seqno;
4023 }
4024
4025 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4026 seqno in corner cases. */
4027 static int
4028 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4029 {
4030 int seqno;
4031
4032 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4033
4034 if (!sel_bb_head_p (insn))
4035 seqno = INSN_SEQNO (PREV_INSN (insn));
4036 else
4037 {
4038 basic_block bb = BLOCK_FOR_INSN (insn);
4039
4040 if (single_pred_p (bb)
4041 && !in_current_region_p (single_pred (bb)))
4042 {
4043 /* We can have preds outside a region when splitting edges
4044 for pipelining of an outer loop. Use succ instead.
4045 There should be only one of them. */
4046 insn_t succ = NULL;
4047 succ_iterator si;
4048 bool first = true;
4049
4050 gcc_assert (flag_sel_sched_pipelining_outer_loops
4051 && current_loop_nest);
4052 FOR_EACH_SUCC_1 (succ, si, insn,
4053 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4054 {
4055 gcc_assert (first);
4056 first = false;
4057 }
4058
4059 gcc_assert (succ != NULL);
4060 seqno = INSN_SEQNO (succ);
4061 }
4062 else
4063 {
4064 insn_t *preds;
4065 int n;
4066
4067 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4068
4069 gcc_assert (n > 0);
4070 /* For one predecessor, use simple method. */
4071 if (n == 1)
4072 seqno = INSN_SEQNO (preds[0]);
4073 else
4074 seqno = get_seqno_by_preds (insn);
4075
4076 free (preds);
4077 }
4078 }
4079
4080 /* We were unable to find a good seqno among preds. */
4081 if (seqno < 0)
4082 seqno = get_seqno_by_succs (insn);
4083
4084 if (seqno < 0)
4085 {
4086 /* The only case where this could be here legally is that the only
4087 unscheduled insn was a conditional jump that got removed and turned
4088 into this unconditional one. Initialize from the old seqno
4089 of that jump passed down to here. */
4090 seqno = old_seqno;
4091 }
4092
4093 gcc_assert (seqno >= 0);
4094 return seqno;
4095 }
4096
4097 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4098 with positive seqno exist. */
4099 int
4100 get_seqno_by_preds (rtx_insn *insn)
4101 {
4102 basic_block bb = BLOCK_FOR_INSN (insn);
4103 rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4104 insn_t *preds;
4105 int n, i, seqno;
4106
4107 while (tmp != head)
4108 {
4109 tmp = PREV_INSN (tmp);
4110 if (INSN_P (tmp))
4111 return INSN_SEQNO (tmp);
4112 }
4113
4114 cfg_preds (bb, &preds, &n);
4115 for (i = 0, seqno = -1; i < n; i++)
4116 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4117
4118 return seqno;
4119 }
4120
4121 \f
4122
4123 /* Extend pass-scope data structures for basic blocks. */
4124 void
4125 sel_extend_global_bb_info (void)
4126 {
4127 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4128 }
4129
4130 /* Extend region-scope data structures for basic blocks. */
4131 static void
4132 extend_region_bb_info (void)
4133 {
4134 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4135 }
4136
4137 /* Extend all data structures to fit for all basic blocks. */
4138 static void
4139 extend_bb_info (void)
4140 {
4141 sel_extend_global_bb_info ();
4142 extend_region_bb_info ();
4143 }
4144
4145 /* Finalize pass-scope data structures for basic blocks. */
4146 void
4147 sel_finish_global_bb_info (void)
4148 {
4149 sel_global_bb_info.release ();
4150 }
4151
4152 /* Finalize region-scope data structures for basic blocks. */
4153 static void
4154 finish_region_bb_info (void)
4155 {
4156 sel_region_bb_info.release ();
4157 }
4158 \f
4159
4160 /* Data for each insn in current region. */
4161 vec<sel_insn_data_def> s_i_d = vNULL;
4162
4163 /* Extend data structures for insns from current region. */
4164 static void
4165 extend_insn_data (void)
4166 {
4167 int reserve;
4168
4169 sched_extend_target ();
4170 sched_deps_init (false);
4171
4172 /* Extend data structures for insns from current region. */
4173 reserve = (sched_max_luid + 1 - s_i_d.length ());
4174 if (reserve > 0 && ! s_i_d.space (reserve))
4175 {
4176 int size;
4177
4178 if (sched_max_luid / 2 > 1024)
4179 size = sched_max_luid + 1024;
4180 else
4181 size = 3 * sched_max_luid / 2;
4182
4183
4184 s_i_d.safe_grow_cleared (size);
4185 }
4186 }
4187
4188 /* Finalize data structures for insns from current region. */
4189 static void
4190 finish_insns (void)
4191 {
4192 unsigned i;
4193
4194 /* Clear here all dependence contexts that may have left from insns that were
4195 removed during the scheduling. */
4196 for (i = 0; i < s_i_d.length (); i++)
4197 {
4198 sel_insn_data_def *sid_entry = &s_i_d[i];
4199
4200 if (sid_entry->live)
4201 return_regset_to_pool (sid_entry->live);
4202 if (sid_entry->analyzed_deps)
4203 {
4204 BITMAP_FREE (sid_entry->analyzed_deps);
4205 BITMAP_FREE (sid_entry->found_deps);
4206 htab_delete (sid_entry->transformed_insns);
4207 free_deps (&sid_entry->deps_context);
4208 }
4209 if (EXPR_VINSN (&sid_entry->expr))
4210 {
4211 clear_expr (&sid_entry->expr);
4212
4213 /* Also, clear CANT_MOVE bit here, because we really don't want it
4214 to be passed to the next region. */
4215 CANT_MOVE_BY_LUID (i) = 0;
4216 }
4217 }
4218
4219 s_i_d.release ();
4220 }
4221
4222 /* A proxy to pass initialization data to init_insn (). */
4223 static sel_insn_data_def _insn_init_ssid;
4224 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4225
4226 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4227 static bool insn_init_create_new_vinsn_p;
4228
4229 /* Set all necessary data for initialization of the new insn[s]. */
4230 static expr_t
4231 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4232 {
4233 expr_t x = &insn_init_ssid->expr;
4234
4235 copy_expr_onside (x, expr);
4236 if (vi != NULL)
4237 {
4238 insn_init_create_new_vinsn_p = false;
4239 change_vinsn_in_expr (x, vi);
4240 }
4241 else
4242 insn_init_create_new_vinsn_p = true;
4243
4244 insn_init_ssid->seqno = seqno;
4245 return x;
4246 }
4247
4248 /* Init data for INSN. */
4249 static void
4250 init_insn_data (insn_t insn)
4251 {
4252 expr_t expr;
4253 sel_insn_data_t ssid = insn_init_ssid;
4254
4255 /* The fields mentioned below are special and hence are not being
4256 propagated to the new insns. */
4257 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4258 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4259 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4260
4261 expr = INSN_EXPR (insn);
4262 copy_expr (expr, &ssid->expr);
4263 prepare_insn_expr (insn, ssid->seqno);
4264
4265 if (insn_init_create_new_vinsn_p)
4266 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4267
4268 if (first_time_insn_init (insn))
4269 init_first_time_insn_data (insn);
4270 }
4271
4272 /* This is used to initialize spurious jumps generated by
4273 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4274 in corner cases within get_seqno_for_a_jump. */
4275 static void
4276 init_simplejump_data (insn_t insn, int old_seqno)
4277 {
4278 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4279 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4280 vNULL, true, false, false,
4281 false, true);
4282 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4283 init_first_time_insn_data (insn);
4284 }
4285
4286 /* Perform deferred initialization of insns. This is used to process
4287 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4288 for initializing simplejumps in init_simplejump_data. */
4289 static void
4290 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4291 {
4292 /* We create data structures for bb when the first insn is emitted in it. */
4293 if (INSN_P (insn)
4294 && INSN_IN_STREAM_P (insn)
4295 && insn_is_the_only_one_in_bb_p (insn))
4296 {
4297 extend_bb_info ();
4298 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4299 }
4300
4301 if (flags & INSN_INIT_TODO_LUID)
4302 {
4303 sched_extend_luids ();
4304 sched_init_insn_luid (insn);
4305 }
4306
4307 if (flags & INSN_INIT_TODO_SSID)
4308 {
4309 extend_insn_data ();
4310 init_insn_data (insn);
4311 clear_expr (&insn_init_ssid->expr);
4312 }
4313
4314 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4315 {
4316 extend_insn_data ();
4317 init_simplejump_data (insn, old_seqno);
4318 }
4319
4320 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4321 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4322 }
4323 \f
4324
4325 /* Functions to init/finish work with lv sets. */
4326
4327 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4328 static void
4329 init_lv_set (basic_block bb)
4330 {
4331 gcc_assert (!BB_LV_SET_VALID_P (bb));
4332
4333 BB_LV_SET (bb) = get_regset_from_pool ();
4334 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4335 BB_LV_SET_VALID_P (bb) = true;
4336 }
4337
4338 /* Copy liveness information to BB from FROM_BB. */
4339 static void
4340 copy_lv_set_from (basic_block bb, basic_block from_bb)
4341 {
4342 gcc_assert (!BB_LV_SET_VALID_P (bb));
4343
4344 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4345 BB_LV_SET_VALID_P (bb) = true;
4346 }
4347
4348 /* Initialize lv set of all bb headers. */
4349 void
4350 init_lv_sets (void)
4351 {
4352 basic_block bb;
4353
4354 /* Initialize of LV sets. */
4355 FOR_EACH_BB_FN (bb, cfun)
4356 init_lv_set (bb);
4357
4358 /* Don't forget EXIT_BLOCK. */
4359 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4360 }
4361
4362 /* Release lv set of HEAD. */
4363 static void
4364 free_lv_set (basic_block bb)
4365 {
4366 gcc_assert (BB_LV_SET (bb) != NULL);
4367
4368 return_regset_to_pool (BB_LV_SET (bb));
4369 BB_LV_SET (bb) = NULL;
4370 BB_LV_SET_VALID_P (bb) = false;
4371 }
4372
4373 /* Finalize lv sets of all bb headers. */
4374 void
4375 free_lv_sets (void)
4376 {
4377 basic_block bb;
4378
4379 /* Don't forget EXIT_BLOCK. */
4380 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4381
4382 /* Free LV sets. */
4383 FOR_EACH_BB_FN (bb, cfun)
4384 if (BB_LV_SET (bb))
4385 free_lv_set (bb);
4386 }
4387
4388 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4389 compute_av() processes BB. This function is called when creating new basic
4390 blocks, as well as for blocks (either new or existing) where new jumps are
4391 created when the control flow is being updated. */
4392 static void
4393 invalidate_av_set (basic_block bb)
4394 {
4395 BB_AV_LEVEL (bb) = -1;
4396 }
4397
4398 /* Create initial data sets for BB (they will be invalid). */
4399 static void
4400 create_initial_data_sets (basic_block bb)
4401 {
4402 if (BB_LV_SET (bb))
4403 BB_LV_SET_VALID_P (bb) = false;
4404 else
4405 BB_LV_SET (bb) = get_regset_from_pool ();
4406 invalidate_av_set (bb);
4407 }
4408
4409 /* Free av set of BB. */
4410 static void
4411 free_av_set (basic_block bb)
4412 {
4413 av_set_clear (&BB_AV_SET (bb));
4414 BB_AV_LEVEL (bb) = 0;
4415 }
4416
4417 /* Free data sets of BB. */
4418 void
4419 free_data_sets (basic_block bb)
4420 {
4421 free_lv_set (bb);
4422 free_av_set (bb);
4423 }
4424
4425 /* Exchange lv sets of TO and FROM. */
4426 static void
4427 exchange_lv_sets (basic_block to, basic_block from)
4428 {
4429 {
4430 regset to_lv_set = BB_LV_SET (to);
4431
4432 BB_LV_SET (to) = BB_LV_SET (from);
4433 BB_LV_SET (from) = to_lv_set;
4434 }
4435
4436 {
4437 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4438
4439 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4440 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4441 }
4442 }
4443
4444
4445 /* Exchange av sets of TO and FROM. */
4446 static void
4447 exchange_av_sets (basic_block to, basic_block from)
4448 {
4449 {
4450 av_set_t to_av_set = BB_AV_SET (to);
4451
4452 BB_AV_SET (to) = BB_AV_SET (from);
4453 BB_AV_SET (from) = to_av_set;
4454 }
4455
4456 {
4457 int to_av_level = BB_AV_LEVEL (to);
4458
4459 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4460 BB_AV_LEVEL (from) = to_av_level;
4461 }
4462 }
4463
4464 /* Exchange data sets of TO and FROM. */
4465 void
4466 exchange_data_sets (basic_block to, basic_block from)
4467 {
4468 exchange_lv_sets (to, from);
4469 exchange_av_sets (to, from);
4470 }
4471
4472 /* Copy data sets of FROM to TO. */
4473 void
4474 copy_data_sets (basic_block to, basic_block from)
4475 {
4476 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4477 gcc_assert (BB_AV_SET (to) == NULL);
4478
4479 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4480 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4481
4482 if (BB_AV_SET_VALID_P (from))
4483 {
4484 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4485 }
4486 if (BB_LV_SET_VALID_P (from))
4487 {
4488 gcc_assert (BB_LV_SET (to) != NULL);
4489 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4490 }
4491 }
4492
4493 /* Return an av set for INSN, if any. */
4494 av_set_t
4495 get_av_set (insn_t insn)
4496 {
4497 av_set_t av_set;
4498
4499 gcc_assert (AV_SET_VALID_P (insn));
4500
4501 if (sel_bb_head_p (insn))
4502 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4503 else
4504 av_set = NULL;
4505
4506 return av_set;
4507 }
4508
4509 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4510 int
4511 get_av_level (insn_t insn)
4512 {
4513 int av_level;
4514
4515 gcc_assert (INSN_P (insn));
4516
4517 if (sel_bb_head_p (insn))
4518 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4519 else
4520 av_level = INSN_WS_LEVEL (insn);
4521
4522 return av_level;
4523 }
4524
4525 \f
4526
4527 /* Variables to work with control-flow graph. */
4528
4529 /* The basic block that already has been processed by the sched_data_update (),
4530 but hasn't been in sel_add_bb () yet. */
4531 static vec<basic_block>
4532 last_added_blocks = vNULL;
4533
4534 /* A pool for allocating successor infos. */
4535 static struct
4536 {
4537 /* A stack for saving succs_info structures. */
4538 struct succs_info *stack;
4539
4540 /* Its size. */
4541 int size;
4542
4543 /* Top of the stack. */
4544 int top;
4545
4546 /* Maximal value of the top. */
4547 int max_top;
4548 } succs_info_pool;
4549
4550 /* Functions to work with control-flow graph. */
4551
4552 /* Return basic block note of BB. */
4553 rtx_insn *
4554 sel_bb_head (basic_block bb)
4555 {
4556 rtx_insn *head;
4557
4558 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4559 {
4560 gcc_assert (exit_insn != NULL_RTX);
4561 head = exit_insn;
4562 }
4563 else
4564 {
4565 insn_t note;
4566
4567 note = bb_note (bb);
4568 head = next_nonnote_insn (note);
4569
4570 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4571 head = NULL;
4572 }
4573
4574 return head;
4575 }
4576
4577 /* Return true if INSN is a basic block header. */
4578 bool
4579 sel_bb_head_p (insn_t insn)
4580 {
4581 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4582 }
4583
4584 /* Return last insn of BB. */
4585 rtx_insn *
4586 sel_bb_end (basic_block bb)
4587 {
4588 if (sel_bb_empty_p (bb))
4589 return NULL;
4590
4591 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4592
4593 return BB_END (bb);
4594 }
4595
4596 /* Return true if INSN is the last insn in its basic block. */
4597 bool
4598 sel_bb_end_p (insn_t insn)
4599 {
4600 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4601 }
4602
4603 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4604 bool
4605 sel_bb_empty_p (basic_block bb)
4606 {
4607 return sel_bb_head (bb) == NULL;
4608 }
4609
4610 /* True when BB belongs to the current scheduling region. */
4611 bool
4612 in_current_region_p (basic_block bb)
4613 {
4614 if (bb->index < NUM_FIXED_BLOCKS)
4615 return false;
4616
4617 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4618 }
4619
4620 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4621 basic_block
4622 fallthru_bb_of_jump (const rtx_insn *jump)
4623 {
4624 if (!JUMP_P (jump))
4625 return NULL;
4626
4627 if (!any_condjump_p (jump))
4628 return NULL;
4629
4630 /* A basic block that ends with a conditional jump may still have one successor
4631 (and be followed by a barrier), we are not interested. */
4632 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4633 return NULL;
4634
4635 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4636 }
4637
4638 /* Remove all notes from BB. */
4639 static void
4640 init_bb (basic_block bb)
4641 {
4642 remove_notes (bb_note (bb), BB_END (bb));
4643 BB_NOTE_LIST (bb) = note_list;
4644 }
4645
4646 void
4647 sel_init_bbs (bb_vec_t bbs)
4648 {
4649 const struct sched_scan_info_def ssi =
4650 {
4651 extend_bb_info, /* extend_bb */
4652 init_bb, /* init_bb */
4653 NULL, /* extend_insn */
4654 NULL /* init_insn */
4655 };
4656
4657 sched_scan (&ssi, bbs);
4658 }
4659
4660 /* Restore notes for the whole region. */
4661 static void
4662 sel_restore_notes (void)
4663 {
4664 int bb;
4665 insn_t insn;
4666
4667 for (bb = 0; bb < current_nr_blocks; bb++)
4668 {
4669 basic_block first, last;
4670
4671 first = EBB_FIRST_BB (bb);
4672 last = EBB_LAST_BB (bb)->next_bb;
4673
4674 do
4675 {
4676 note_list = BB_NOTE_LIST (first);
4677 restore_other_notes (NULL, first);
4678 BB_NOTE_LIST (first) = NULL;
4679
4680 FOR_BB_INSNS (first, insn)
4681 if (NONDEBUG_INSN_P (insn))
4682 reemit_notes (insn);
4683
4684 first = first->next_bb;
4685 }
4686 while (first != last);
4687 }
4688 }
4689
4690 /* Free per-bb data structures. */
4691 void
4692 sel_finish_bbs (void)
4693 {
4694 sel_restore_notes ();
4695
4696 /* Remove current loop preheader from this loop. */
4697 if (current_loop_nest)
4698 sel_remove_loop_preheader ();
4699
4700 finish_region_bb_info ();
4701 }
4702
4703 /* Return true if INSN has a single successor of type FLAGS. */
4704 bool
4705 sel_insn_has_single_succ_p (insn_t insn, int flags)
4706 {
4707 insn_t succ;
4708 succ_iterator si;
4709 bool first_p = true;
4710
4711 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4712 {
4713 if (first_p)
4714 first_p = false;
4715 else
4716 return false;
4717 }
4718
4719 return true;
4720 }
4721
4722 /* Allocate successor's info. */
4723 static struct succs_info *
4724 alloc_succs_info (void)
4725 {
4726 if (succs_info_pool.top == succs_info_pool.max_top)
4727 {
4728 int i;
4729
4730 if (++succs_info_pool.max_top >= succs_info_pool.size)
4731 gcc_unreachable ();
4732
4733 i = ++succs_info_pool.top;
4734 succs_info_pool.stack[i].succs_ok.create (10);
4735 succs_info_pool.stack[i].succs_other.create (10);
4736 succs_info_pool.stack[i].probs_ok.create (10);
4737 }
4738 else
4739 succs_info_pool.top++;
4740
4741 return &succs_info_pool.stack[succs_info_pool.top];
4742 }
4743
4744 /* Free successor's info. */
4745 void
4746 free_succs_info (struct succs_info * sinfo)
4747 {
4748 gcc_assert (succs_info_pool.top >= 0
4749 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4750 succs_info_pool.top--;
4751
4752 /* Clear stale info. */
4753 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4754 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4755 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4756 sinfo->all_prob = 0;
4757 sinfo->succs_ok_n = 0;
4758 sinfo->all_succs_n = 0;
4759 }
4760
4761 /* Compute successor info for INSN. FLAGS are the flags passed
4762 to the FOR_EACH_SUCC_1 iterator. */
4763 struct succs_info *
4764 compute_succs_info (insn_t insn, short flags)
4765 {
4766 succ_iterator si;
4767 insn_t succ;
4768 struct succs_info *sinfo = alloc_succs_info ();
4769
4770 /* Traverse *all* successors and decide what to do with each. */
4771 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4772 {
4773 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4774 perform code motion through inner loops. */
4775 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4776
4777 if (current_flags & flags)
4778 {
4779 sinfo->succs_ok.safe_push (succ);
4780 sinfo->probs_ok.safe_push (
4781 /* FIXME: Improve calculation when skipping
4782 inner loop to exits. */
4783 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4784 sinfo->succs_ok_n++;
4785 }
4786 else
4787 sinfo->succs_other.safe_push (succ);
4788
4789 /* Compute all_prob. */
4790 if (!si.bb_end)
4791 sinfo->all_prob = REG_BR_PROB_BASE;
4792 else
4793 sinfo->all_prob += si.e1->probability;
4794
4795 sinfo->all_succs_n++;
4796 }
4797
4798 return sinfo;
4799 }
4800
4801 /* Return the predecessors of BB in PREDS and their number in N.
4802 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4803 static void
4804 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4805 {
4806 edge e;
4807 edge_iterator ei;
4808
4809 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4810
4811 FOR_EACH_EDGE (e, ei, bb->preds)
4812 {
4813 basic_block pred_bb = e->src;
4814 insn_t bb_end = BB_END (pred_bb);
4815
4816 if (!in_current_region_p (pred_bb))
4817 {
4818 gcc_assert (flag_sel_sched_pipelining_outer_loops
4819 && current_loop_nest);
4820 continue;
4821 }
4822
4823 if (sel_bb_empty_p (pred_bb))
4824 cfg_preds_1 (pred_bb, preds, n, size);
4825 else
4826 {
4827 if (*n == *size)
4828 *preds = XRESIZEVEC (insn_t, *preds,
4829 (*size = 2 * *size + 1));
4830 (*preds)[(*n)++] = bb_end;
4831 }
4832 }
4833
4834 gcc_assert (*n != 0
4835 || (flag_sel_sched_pipelining_outer_loops
4836 && current_loop_nest));
4837 }
4838
4839 /* Find all predecessors of BB and record them in PREDS and their number
4840 in N. Empty blocks are skipped, and only normal (forward in-region)
4841 edges are processed. */
4842 static void
4843 cfg_preds (basic_block bb, insn_t **preds, int *n)
4844 {
4845 int size = 0;
4846
4847 *preds = NULL;
4848 *n = 0;
4849 cfg_preds_1 (bb, preds, n, &size);
4850 }
4851
4852 /* Returns true if we are moving INSN through join point. */
4853 bool
4854 sel_num_cfg_preds_gt_1 (insn_t insn)
4855 {
4856 basic_block bb;
4857
4858 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4859 return false;
4860
4861 bb = BLOCK_FOR_INSN (insn);
4862
4863 while (1)
4864 {
4865 if (EDGE_COUNT (bb->preds) > 1)
4866 return true;
4867
4868 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4869 bb = EDGE_PRED (bb, 0)->src;
4870
4871 if (!sel_bb_empty_p (bb))
4872 break;
4873 }
4874
4875 return false;
4876 }
4877
4878 /* Returns true when BB should be the end of an ebb. Adapted from the
4879 code in sched-ebb.c. */
4880 bool
4881 bb_ends_ebb_p (basic_block bb)
4882 {
4883 basic_block next_bb = bb_next_bb (bb);
4884 edge e;
4885
4886 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4887 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4888 || (LABEL_P (BB_HEAD (next_bb))
4889 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4890 Work around that. */
4891 && !single_pred_p (next_bb)))
4892 return true;
4893
4894 if (!in_current_region_p (next_bb))
4895 return true;
4896
4897 e = find_fallthru_edge (bb->succs);
4898 if (e)
4899 {
4900 gcc_assert (e->dest == next_bb);
4901
4902 return false;
4903 }
4904
4905 return true;
4906 }
4907
4908 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4909 successor of INSN. */
4910 bool
4911 in_same_ebb_p (insn_t insn, insn_t succ)
4912 {
4913 basic_block ptr = BLOCK_FOR_INSN (insn);
4914
4915 for (;;)
4916 {
4917 if (ptr == BLOCK_FOR_INSN (succ))
4918 return true;
4919
4920 if (bb_ends_ebb_p (ptr))
4921 return false;
4922
4923 ptr = bb_next_bb (ptr);
4924 }
4925
4926 gcc_unreachable ();
4927 return false;
4928 }
4929
4930 /* Recomputes the reverse topological order for the function and
4931 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4932 modified appropriately. */
4933 static void
4934 recompute_rev_top_order (void)
4935 {
4936 int *postorder;
4937 int n_blocks, i;
4938
4939 if (!rev_top_order_index
4940 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4941 {
4942 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4943 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4944 rev_top_order_index_len);
4945 }
4946
4947 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4948
4949 n_blocks = post_order_compute (postorder, true, false);
4950 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4951
4952 /* Build reverse function: for each basic block with BB->INDEX == K
4953 rev_top_order_index[K] is it's reverse topological sort number. */
4954 for (i = 0; i < n_blocks; i++)
4955 {
4956 gcc_assert (postorder[i] < rev_top_order_index_len);
4957 rev_top_order_index[postorder[i]] = i;
4958 }
4959
4960 free (postorder);
4961 }
4962
4963 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4964 void
4965 clear_outdated_rtx_info (basic_block bb)
4966 {
4967 rtx_insn *insn;
4968
4969 FOR_BB_INSNS (bb, insn)
4970 if (INSN_P (insn))
4971 {
4972 SCHED_GROUP_P (insn) = 0;
4973 INSN_AFTER_STALL_P (insn) = 0;
4974 INSN_SCHED_TIMES (insn) = 0;
4975 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4976
4977 /* We cannot use the changed caches, as previously we could ignore
4978 the LHS dependence due to enabled renaming and transform
4979 the expression, and currently we'll be unable to do this. */
4980 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4981 }
4982 }
4983
4984 /* Add BB_NOTE to the pool of available basic block notes. */
4985 static void
4986 return_bb_to_pool (basic_block bb)
4987 {
4988 rtx note = bb_note (bb);
4989
4990 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4991 && bb->aux == NULL);
4992
4993 /* It turns out that current cfg infrastructure does not support
4994 reuse of basic blocks. Don't bother for now. */
4995 /*bb_note_pool.safe_push (note);*/
4996 }
4997
4998 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4999 static rtx_note *
5000 get_bb_note_from_pool (void)
5001 {
5002 if (bb_note_pool.is_empty ())
5003 return NULL;
5004 else
5005 {
5006 rtx_note *note = bb_note_pool.pop ();
5007
5008 SET_PREV_INSN (note) = NULL_RTX;
5009 SET_NEXT_INSN (note) = NULL_RTX;
5010
5011 return note;
5012 }
5013 }
5014
5015 /* Free bb_note_pool. */
5016 void
5017 free_bb_note_pool (void)
5018 {
5019 bb_note_pool.release ();
5020 }
5021
5022 /* Setup scheduler pool and successor structure. */
5023 void
5024 alloc_sched_pools (void)
5025 {
5026 int succs_size;
5027
5028 succs_size = MAX_WS + 1;
5029 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5030 succs_info_pool.size = succs_size;
5031 succs_info_pool.top = -1;
5032 succs_info_pool.max_top = -1;
5033 }
5034
5035 /* Free the pools. */
5036 void
5037 free_sched_pools (void)
5038 {
5039 int i;
5040
5041 sched_lists_pool.release ();
5042 gcc_assert (succs_info_pool.top == -1);
5043 for (i = 0; i <= succs_info_pool.max_top; i++)
5044 {
5045 succs_info_pool.stack[i].succs_ok.release ();
5046 succs_info_pool.stack[i].succs_other.release ();
5047 succs_info_pool.stack[i].probs_ok.release ();
5048 }
5049 free (succs_info_pool.stack);
5050 }
5051 \f
5052
5053 /* Returns a position in RGN where BB can be inserted retaining
5054 topological order. */
5055 static int
5056 find_place_to_insert_bb (basic_block bb, int rgn)
5057 {
5058 bool has_preds_outside_rgn = false;
5059 edge e;
5060 edge_iterator ei;
5061
5062 /* Find whether we have preds outside the region. */
5063 FOR_EACH_EDGE (e, ei, bb->preds)
5064 if (!in_current_region_p (e->src))
5065 {
5066 has_preds_outside_rgn = true;
5067 break;
5068 }
5069
5070 /* Recompute the top order -- needed when we have > 1 pred
5071 and in case we don't have preds outside. */
5072 if (flag_sel_sched_pipelining_outer_loops
5073 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5074 {
5075 int i, bbi = bb->index, cur_bbi;
5076
5077 recompute_rev_top_order ();
5078 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5079 {
5080 cur_bbi = BB_TO_BLOCK (i);
5081 if (rev_top_order_index[bbi]
5082 < rev_top_order_index[cur_bbi])
5083 break;
5084 }
5085
5086 /* We skipped the right block, so we increase i. We accommodate
5087 it for increasing by step later, so we decrease i. */
5088 return (i + 1) - 1;
5089 }
5090 else if (has_preds_outside_rgn)
5091 {
5092 /* This is the case when we generate an extra empty block
5093 to serve as region head during pipelining. */
5094 e = EDGE_SUCC (bb, 0);
5095 gcc_assert (EDGE_COUNT (bb->succs) == 1
5096 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5097 && (BLOCK_TO_BB (e->dest->index) == 0));
5098 return -1;
5099 }
5100
5101 /* We don't have preds outside the region. We should have
5102 the only pred, because the multiple preds case comes from
5103 the pipelining of outer loops, and that is handled above.
5104 Just take the bbi of this single pred. */
5105 if (EDGE_COUNT (bb->succs) > 0)
5106 {
5107 int pred_bbi;
5108
5109 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5110
5111 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5112 return BLOCK_TO_BB (pred_bbi);
5113 }
5114 else
5115 /* BB has no successors. It is safe to put it in the end. */
5116 return current_nr_blocks - 1;
5117 }
5118
5119 /* Deletes an empty basic block freeing its data. */
5120 static void
5121 delete_and_free_basic_block (basic_block bb)
5122 {
5123 gcc_assert (sel_bb_empty_p (bb));
5124
5125 if (BB_LV_SET (bb))
5126 free_lv_set (bb);
5127
5128 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5129
5130 /* Can't assert av_set properties because we use sel_aremove_bb
5131 when removing loop preheader from the region. At the point of
5132 removing the preheader we already have deallocated sel_region_bb_info. */
5133 gcc_assert (BB_LV_SET (bb) == NULL
5134 && !BB_LV_SET_VALID_P (bb)
5135 && BB_AV_LEVEL (bb) == 0
5136 && BB_AV_SET (bb) == NULL);
5137
5138 delete_basic_block (bb);
5139 }
5140
5141 /* Add BB to the current region and update the region data. */
5142 static void
5143 add_block_to_current_region (basic_block bb)
5144 {
5145 int i, pos, bbi = -2, rgn;
5146
5147 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5148 bbi = find_place_to_insert_bb (bb, rgn);
5149 bbi += 1;
5150 pos = RGN_BLOCKS (rgn) + bbi;
5151
5152 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5153 && ebb_head[bbi] == pos);
5154
5155 /* Make a place for the new block. */
5156 extend_regions ();
5157
5158 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5159 BLOCK_TO_BB (rgn_bb_table[i])++;
5160
5161 memmove (rgn_bb_table + pos + 1,
5162 rgn_bb_table + pos,
5163 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5164
5165 /* Initialize data for BB. */
5166 rgn_bb_table[pos] = bb->index;
5167 BLOCK_TO_BB (bb->index) = bbi;
5168 CONTAINING_RGN (bb->index) = rgn;
5169
5170 RGN_NR_BLOCKS (rgn)++;
5171
5172 for (i = rgn + 1; i <= nr_regions; i++)
5173 RGN_BLOCKS (i)++;
5174 }
5175
5176 /* Remove BB from the current region and update the region data. */
5177 static void
5178 remove_bb_from_region (basic_block bb)
5179 {
5180 int i, pos, bbi = -2, rgn;
5181
5182 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5183 bbi = BLOCK_TO_BB (bb->index);
5184 pos = RGN_BLOCKS (rgn) + bbi;
5185
5186 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5187 && ebb_head[bbi] == pos);
5188
5189 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5190 BLOCK_TO_BB (rgn_bb_table[i])--;
5191
5192 memmove (rgn_bb_table + pos,
5193 rgn_bb_table + pos + 1,
5194 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5195
5196 RGN_NR_BLOCKS (rgn)--;
5197 for (i = rgn + 1; i <= nr_regions; i++)
5198 RGN_BLOCKS (i)--;
5199 }
5200
5201 /* Add BB to the current region and update all data. If BB is NULL, add all
5202 blocks from last_added_blocks vector. */
5203 static void
5204 sel_add_bb (basic_block bb)
5205 {
5206 /* Extend luids so that new notes will receive zero luids. */
5207 sched_extend_luids ();
5208 sched_init_bbs ();
5209 sel_init_bbs (last_added_blocks);
5210
5211 /* When bb is passed explicitly, the vector should contain
5212 the only element that equals to bb; otherwise, the vector
5213 should not be NULL. */
5214 gcc_assert (last_added_blocks.exists ());
5215
5216 if (bb != NULL)
5217 {
5218 gcc_assert (last_added_blocks.length () == 1
5219 && last_added_blocks[0] == bb);
5220 add_block_to_current_region (bb);
5221
5222 /* We associate creating/deleting data sets with the first insn
5223 appearing / disappearing in the bb. */
5224 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5225 create_initial_data_sets (bb);
5226
5227 last_added_blocks.release ();
5228 }
5229 else
5230 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5231 {
5232 int i;
5233 basic_block temp_bb = NULL;
5234
5235 for (i = 0;
5236 last_added_blocks.iterate (i, &bb); i++)
5237 {
5238 add_block_to_current_region (bb);
5239 temp_bb = bb;
5240 }
5241
5242 /* We need to fetch at least one bb so we know the region
5243 to update. */
5244 gcc_assert (temp_bb != NULL);
5245 bb = temp_bb;
5246
5247 last_added_blocks.release ();
5248 }
5249
5250 rgn_setup_region (CONTAINING_RGN (bb->index));
5251 }
5252
5253 /* Remove BB from the current region and update all data.
5254 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5255 static void
5256 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5257 {
5258 unsigned idx = bb->index;
5259
5260 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5261
5262 remove_bb_from_region (bb);
5263 return_bb_to_pool (bb);
5264 bitmap_clear_bit (blocks_to_reschedule, idx);
5265
5266 if (remove_from_cfg_p)
5267 {
5268 basic_block succ = single_succ (bb);
5269 delete_and_free_basic_block (bb);
5270 set_immediate_dominator (CDI_DOMINATORS, succ,
5271 recompute_dominator (CDI_DOMINATORS, succ));
5272 }
5273
5274 rgn_setup_region (CONTAINING_RGN (idx));
5275 }
5276
5277 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5278 static void
5279 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5280 {
5281 if (in_current_region_p (merge_bb))
5282 concat_note_lists (BB_NOTE_LIST (empty_bb),
5283 &BB_NOTE_LIST (merge_bb));
5284 BB_NOTE_LIST (empty_bb) = NULL;
5285
5286 }
5287
5288 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5289 region, but keep it in CFG. */
5290 static void
5291 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5292 {
5293 /* The block should contain just a note or a label.
5294 We try to check whether it is unused below. */
5295 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5296 || LABEL_P (BB_HEAD (empty_bb)));
5297
5298 /* If basic block has predecessors or successors, redirect them. */
5299 if (remove_from_cfg_p
5300 && (EDGE_COUNT (empty_bb->preds) > 0
5301 || EDGE_COUNT (empty_bb->succs) > 0))
5302 {
5303 basic_block pred;
5304 basic_block succ;
5305
5306 /* We need to init PRED and SUCC before redirecting edges. */
5307 if (EDGE_COUNT (empty_bb->preds) > 0)
5308 {
5309 edge e;
5310
5311 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5312
5313 e = EDGE_PRED (empty_bb, 0);
5314 gcc_assert (e->src == empty_bb->prev_bb
5315 && (e->flags & EDGE_FALLTHRU));
5316
5317 pred = empty_bb->prev_bb;
5318 }
5319 else
5320 pred = NULL;
5321
5322 if (EDGE_COUNT (empty_bb->succs) > 0)
5323 {
5324 /* We do not check fallthruness here as above, because
5325 after removing a jump the edge may actually be not fallthru. */
5326 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5327 succ = EDGE_SUCC (empty_bb, 0)->dest;
5328 }
5329 else
5330 succ = NULL;
5331
5332 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5333 {
5334 edge e = EDGE_PRED (empty_bb, 0);
5335
5336 if (e->flags & EDGE_FALLTHRU)
5337 redirect_edge_succ_nodup (e, succ);
5338 else
5339 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5340 }
5341
5342 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5343 {
5344 edge e = EDGE_SUCC (empty_bb, 0);
5345
5346 if (find_edge (pred, e->dest) == NULL)
5347 redirect_edge_pred (e, pred);
5348 }
5349 }
5350
5351 /* Finish removing. */
5352 sel_remove_bb (empty_bb, remove_from_cfg_p);
5353 }
5354
5355 /* An implementation of create_basic_block hook, which additionally updates
5356 per-bb data structures. */
5357 static basic_block
5358 sel_create_basic_block (void *headp, void *endp, basic_block after)
5359 {
5360 basic_block new_bb;
5361 rtx_note *new_bb_note;
5362
5363 gcc_assert (flag_sel_sched_pipelining_outer_loops
5364 || !last_added_blocks.exists ());
5365
5366 new_bb_note = get_bb_note_from_pool ();
5367
5368 if (new_bb_note == NULL_RTX)
5369 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5370 else
5371 {
5372 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5373 (rtx_insn *) endp,
5374 new_bb_note, after);
5375 new_bb->aux = NULL;
5376 }
5377
5378 last_added_blocks.safe_push (new_bb);
5379
5380 return new_bb;
5381 }
5382
5383 /* Implement sched_init_only_bb (). */
5384 static void
5385 sel_init_only_bb (basic_block bb, basic_block after)
5386 {
5387 gcc_assert (after == NULL);
5388
5389 extend_regions ();
5390 rgn_make_new_region_out_of_new_block (bb);
5391 }
5392
5393 /* Update the latch when we've splitted or merged it from FROM block to TO.
5394 This should be checked for all outer loops, too. */
5395 static void
5396 change_loops_latches (basic_block from, basic_block to)
5397 {
5398 gcc_assert (from != to);
5399
5400 if (current_loop_nest)
5401 {
5402 struct loop *loop;
5403
5404 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5405 if (considered_for_pipelining_p (loop) && loop->latch == from)
5406 {
5407 gcc_assert (loop == current_loop_nest);
5408 loop->latch = to;
5409 gcc_assert (loop_latch_edge (loop));
5410 }
5411 }
5412 }
5413
5414 /* Splits BB on two basic blocks, adding it to the region and extending
5415 per-bb data structures. Returns the newly created bb. */
5416 static basic_block
5417 sel_split_block (basic_block bb, rtx after)
5418 {
5419 basic_block new_bb;
5420 insn_t insn;
5421
5422 new_bb = sched_split_block_1 (bb, after);
5423 sel_add_bb (new_bb);
5424
5425 /* This should be called after sel_add_bb, because this uses
5426 CONTAINING_RGN for the new block, which is not yet initialized.
5427 FIXME: this function may be a no-op now. */
5428 change_loops_latches (bb, new_bb);
5429
5430 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5431 FOR_BB_INSNS (new_bb, insn)
5432 if (INSN_P (insn))
5433 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5434
5435 if (sel_bb_empty_p (bb))
5436 {
5437 gcc_assert (!sel_bb_empty_p (new_bb));
5438
5439 /* NEW_BB has data sets that need to be updated and BB holds
5440 data sets that should be removed. Exchange these data sets
5441 so that we won't lose BB's valid data sets. */
5442 exchange_data_sets (new_bb, bb);
5443 free_data_sets (bb);
5444 }
5445
5446 if (!sel_bb_empty_p (new_bb)
5447 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5448 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5449
5450 return new_bb;
5451 }
5452
5453 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5454 Otherwise returns NULL. */
5455 static rtx_insn *
5456 check_for_new_jump (basic_block bb, int prev_max_uid)
5457 {
5458 rtx_insn *end;
5459
5460 end = sel_bb_end (bb);
5461 if (end && INSN_UID (end) >= prev_max_uid)
5462 return end;
5463 return NULL;
5464 }
5465
5466 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5467 New means having UID at least equal to PREV_MAX_UID. */
5468 static rtx_insn *
5469 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5470 {
5471 rtx_insn *jump;
5472
5473 /* Return immediately if no new insns were emitted. */
5474 if (get_max_uid () == prev_max_uid)
5475 return NULL;
5476
5477 /* Now check both blocks for new jumps. It will ever be only one. */
5478 if ((jump = check_for_new_jump (from, prev_max_uid)))
5479 return jump;
5480
5481 if (jump_bb != NULL
5482 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5483 return jump;
5484 return NULL;
5485 }
5486
5487 /* Splits E and adds the newly created basic block to the current region.
5488 Returns this basic block. */
5489 basic_block
5490 sel_split_edge (edge e)
5491 {
5492 basic_block new_bb, src, other_bb = NULL;
5493 int prev_max_uid;
5494 rtx_insn *jump;
5495
5496 src = e->src;
5497 prev_max_uid = get_max_uid ();
5498 new_bb = split_edge (e);
5499
5500 if (flag_sel_sched_pipelining_outer_loops
5501 && current_loop_nest)
5502 {
5503 int i;
5504 basic_block bb;
5505
5506 /* Some of the basic blocks might not have been added to the loop.
5507 Add them here, until this is fixed in force_fallthru. */
5508 for (i = 0;
5509 last_added_blocks.iterate (i, &bb); i++)
5510 if (!bb->loop_father)
5511 {
5512 add_bb_to_loop (bb, e->dest->loop_father);
5513
5514 gcc_assert (!other_bb && (new_bb->index != bb->index));
5515 other_bb = bb;
5516 }
5517 }
5518
5519 /* Add all last_added_blocks to the region. */
5520 sel_add_bb (NULL);
5521
5522 jump = find_new_jump (src, new_bb, prev_max_uid);
5523 if (jump)
5524 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5525
5526 /* Put the correct lv set on this block. */
5527 if (other_bb && !sel_bb_empty_p (other_bb))
5528 compute_live (sel_bb_head (other_bb));
5529
5530 return new_bb;
5531 }
5532
5533 /* Implement sched_create_empty_bb (). */
5534 static basic_block
5535 sel_create_empty_bb (basic_block after)
5536 {
5537 basic_block new_bb;
5538
5539 new_bb = sched_create_empty_bb_1 (after);
5540
5541 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5542 later. */
5543 gcc_assert (last_added_blocks.length () == 1
5544 && last_added_blocks[0] == new_bb);
5545
5546 last_added_blocks.release ();
5547 return new_bb;
5548 }
5549
5550 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5551 will be splitted to insert a check. */
5552 basic_block
5553 sel_create_recovery_block (insn_t orig_insn)
5554 {
5555 basic_block first_bb, second_bb, recovery_block;
5556 basic_block before_recovery = NULL;
5557 rtx_insn *jump;
5558
5559 first_bb = BLOCK_FOR_INSN (orig_insn);
5560 if (sel_bb_end_p (orig_insn))
5561 {
5562 /* Avoid introducing an empty block while splitting. */
5563 gcc_assert (single_succ_p (first_bb));
5564 second_bb = single_succ (first_bb);
5565 }
5566 else
5567 second_bb = sched_split_block (first_bb, orig_insn);
5568
5569 recovery_block = sched_create_recovery_block (&before_recovery);
5570 if (before_recovery)
5571 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5572
5573 gcc_assert (sel_bb_empty_p (recovery_block));
5574 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5575 if (current_loops != NULL)
5576 add_bb_to_loop (recovery_block, first_bb->loop_father);
5577
5578 sel_add_bb (recovery_block);
5579
5580 jump = BB_END (recovery_block);
5581 gcc_assert (sel_bb_head (recovery_block) == jump);
5582 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5583
5584 return recovery_block;
5585 }
5586
5587 /* Merge basic block B into basic block A. */
5588 static void
5589 sel_merge_blocks (basic_block a, basic_block b)
5590 {
5591 gcc_assert (sel_bb_empty_p (b)
5592 && EDGE_COUNT (b->preds) == 1
5593 && EDGE_PRED (b, 0)->src == b->prev_bb);
5594
5595 move_bb_info (b->prev_bb, b);
5596 remove_empty_bb (b, false);
5597 merge_blocks (a, b);
5598 change_loops_latches (b, a);
5599 }
5600
5601 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5602 data structures for possibly created bb and insns. */
5603 void
5604 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5605 {
5606 basic_block jump_bb, src, orig_dest = e->dest;
5607 int prev_max_uid;
5608 rtx_insn *jump;
5609 int old_seqno = -1;
5610
5611 /* This function is now used only for bookkeeping code creation, where
5612 we'll never get the single pred of orig_dest block and thus will not
5613 hit unreachable blocks when updating dominator info. */
5614 gcc_assert (!sel_bb_empty_p (e->src)
5615 && !single_pred_p (orig_dest));
5616 src = e->src;
5617 prev_max_uid = get_max_uid ();
5618 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5619 when the conditional jump being redirected may become unconditional. */
5620 if (any_condjump_p (BB_END (src))
5621 && INSN_SEQNO (BB_END (src)) >= 0)
5622 old_seqno = INSN_SEQNO (BB_END (src));
5623
5624 jump_bb = redirect_edge_and_branch_force (e, to);
5625 if (jump_bb != NULL)
5626 sel_add_bb (jump_bb);
5627
5628 /* This function could not be used to spoil the loop structure by now,
5629 thus we don't care to update anything. But check it to be sure. */
5630 if (current_loop_nest
5631 && pipelining_p)
5632 gcc_assert (loop_latch_edge (current_loop_nest));
5633
5634 jump = find_new_jump (src, jump_bb, prev_max_uid);
5635 if (jump)
5636 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5637 old_seqno);
5638 set_immediate_dominator (CDI_DOMINATORS, to,
5639 recompute_dominator (CDI_DOMINATORS, to));
5640 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5641 recompute_dominator (CDI_DOMINATORS, orig_dest));
5642 }
5643
5644 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5645 redirected edge are in reverse topological order. */
5646 bool
5647 sel_redirect_edge_and_branch (edge e, basic_block to)
5648 {
5649 bool latch_edge_p;
5650 basic_block src, orig_dest = e->dest;
5651 int prev_max_uid;
5652 rtx_insn *jump;
5653 edge redirected;
5654 bool recompute_toporder_p = false;
5655 bool maybe_unreachable = single_pred_p (orig_dest);
5656 int old_seqno = -1;
5657
5658 latch_edge_p = (pipelining_p
5659 && current_loop_nest
5660 && e == loop_latch_edge (current_loop_nest));
5661
5662 src = e->src;
5663 prev_max_uid = get_max_uid ();
5664
5665 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5666 when the conditional jump being redirected may become unconditional. */
5667 if (any_condjump_p (BB_END (src))
5668 && INSN_SEQNO (BB_END (src)) >= 0)
5669 old_seqno = INSN_SEQNO (BB_END (src));
5670
5671 redirected = redirect_edge_and_branch (e, to);
5672
5673 gcc_assert (redirected && !last_added_blocks.exists ());
5674
5675 /* When we've redirected a latch edge, update the header. */
5676 if (latch_edge_p)
5677 {
5678 current_loop_nest->header = to;
5679 gcc_assert (loop_latch_edge (current_loop_nest));
5680 }
5681
5682 /* In rare situations, the topological relation between the blocks connected
5683 by the redirected edge can change (see PR42245 for an example). Update
5684 block_to_bb/bb_to_block. */
5685 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5686 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5687 recompute_toporder_p = true;
5688
5689 jump = find_new_jump (src, NULL, prev_max_uid);
5690 if (jump)
5691 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5692
5693 /* Only update dominator info when we don't have unreachable blocks.
5694 Otherwise we'll update in maybe_tidy_empty_bb. */
5695 if (!maybe_unreachable)
5696 {
5697 set_immediate_dominator (CDI_DOMINATORS, to,
5698 recompute_dominator (CDI_DOMINATORS, to));
5699 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5700 recompute_dominator (CDI_DOMINATORS, orig_dest));
5701 }
5702 return recompute_toporder_p;
5703 }
5704
5705 /* This variable holds the cfg hooks used by the selective scheduler. */
5706 static struct cfg_hooks sel_cfg_hooks;
5707
5708 /* Register sel-sched cfg hooks. */
5709 void
5710 sel_register_cfg_hooks (void)
5711 {
5712 sched_split_block = sel_split_block;
5713
5714 orig_cfg_hooks = get_cfg_hooks ();
5715 sel_cfg_hooks = orig_cfg_hooks;
5716
5717 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5718
5719 set_cfg_hooks (sel_cfg_hooks);
5720
5721 sched_init_only_bb = sel_init_only_bb;
5722 sched_split_block = sel_split_block;
5723 sched_create_empty_bb = sel_create_empty_bb;
5724 }
5725
5726 /* Unregister sel-sched cfg hooks. */
5727 void
5728 sel_unregister_cfg_hooks (void)
5729 {
5730 sched_create_empty_bb = NULL;
5731 sched_split_block = NULL;
5732 sched_init_only_bb = NULL;
5733
5734 set_cfg_hooks (orig_cfg_hooks);
5735 }
5736 \f
5737
5738 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5739 LABEL is where this jump should be directed. */
5740 rtx_insn *
5741 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5742 {
5743 rtx_insn *insn_rtx;
5744
5745 gcc_assert (!INSN_P (pattern));
5746
5747 start_sequence ();
5748
5749 if (label == NULL_RTX)
5750 insn_rtx = emit_insn (pattern);
5751 else if (DEBUG_INSN_P (label))
5752 insn_rtx = emit_debug_insn (pattern);
5753 else
5754 {
5755 insn_rtx = emit_jump_insn (pattern);
5756 JUMP_LABEL (insn_rtx) = label;
5757 ++LABEL_NUSES (label);
5758 }
5759
5760 end_sequence ();
5761
5762 sched_extend_luids ();
5763 sched_extend_target ();
5764 sched_deps_init (false);
5765
5766 /* Initialize INSN_CODE now. */
5767 recog_memoized (insn_rtx);
5768 return insn_rtx;
5769 }
5770
5771 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5772 must not be clonable. */
5773 vinsn_t
5774 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5775 {
5776 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5777
5778 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5779 return vinsn_create (insn_rtx, force_unique_p);
5780 }
5781
5782 /* Create a copy of INSN_RTX. */
5783 rtx_insn *
5784 create_copy_of_insn_rtx (rtx insn_rtx)
5785 {
5786 rtx_insn *res;
5787 rtx link;
5788
5789 if (DEBUG_INSN_P (insn_rtx))
5790 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5791 insn_rtx);
5792
5793 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5794
5795 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5796 NULL_RTX);
5797
5798 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5799 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5800 there too, but are supposed to be sticky, so we copy them. */
5801 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5802 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5803 && REG_NOTE_KIND (link) != REG_EQUAL
5804 && REG_NOTE_KIND (link) != REG_EQUIV)
5805 {
5806 if (GET_CODE (link) == EXPR_LIST)
5807 add_reg_note (res, REG_NOTE_KIND (link),
5808 copy_insn_1 (XEXP (link, 0)));
5809 else
5810 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5811 }
5812
5813 return res;
5814 }
5815
5816 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5817 void
5818 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5819 {
5820 vinsn_detach (EXPR_VINSN (expr));
5821
5822 EXPR_VINSN (expr) = new_vinsn;
5823 vinsn_attach (new_vinsn);
5824 }
5825
5826 /* Helpers for global init. */
5827 /* This structure is used to be able to call existing bundling mechanism
5828 and calculate insn priorities. */
5829 static struct haifa_sched_info sched_sel_haifa_sched_info =
5830 {
5831 NULL, /* init_ready_list */
5832 NULL, /* can_schedule_ready_p */
5833 NULL, /* schedule_more_p */
5834 NULL, /* new_ready */
5835 NULL, /* rgn_rank */
5836 sel_print_insn, /* rgn_print_insn */
5837 contributes_to_priority,
5838 NULL, /* insn_finishes_block_p */
5839
5840 NULL, NULL,
5841 NULL, NULL,
5842 0, 0,
5843
5844 NULL, /* add_remove_insn */
5845 NULL, /* begin_schedule_ready */
5846 NULL, /* begin_move_insn */
5847 NULL, /* advance_target_bb */
5848
5849 NULL,
5850 NULL,
5851
5852 SEL_SCHED | NEW_BBS
5853 };
5854
5855 /* Setup special insns used in the scheduler. */
5856 void
5857 setup_nop_and_exit_insns (void)
5858 {
5859 gcc_assert (nop_pattern == NULL_RTX
5860 && exit_insn == NULL_RTX);
5861
5862 nop_pattern = constm1_rtx;
5863
5864 start_sequence ();
5865 emit_insn (nop_pattern);
5866 exit_insn = get_insns ();
5867 end_sequence ();
5868 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5869 }
5870
5871 /* Free special insns used in the scheduler. */
5872 void
5873 free_nop_and_exit_insns (void)
5874 {
5875 exit_insn = NULL;
5876 nop_pattern = NULL_RTX;
5877 }
5878
5879 /* Setup a special vinsn used in new insns initialization. */
5880 void
5881 setup_nop_vinsn (void)
5882 {
5883 nop_vinsn = vinsn_create (exit_insn, false);
5884 vinsn_attach (nop_vinsn);
5885 }
5886
5887 /* Free a special vinsn used in new insns initialization. */
5888 void
5889 free_nop_vinsn (void)
5890 {
5891 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5892 vinsn_detach (nop_vinsn);
5893 nop_vinsn = NULL;
5894 }
5895
5896 /* Call a set_sched_flags hook. */
5897 void
5898 sel_set_sched_flags (void)
5899 {
5900 /* ??? This means that set_sched_flags were called, and we decided to
5901 support speculation. However, set_sched_flags also modifies flags
5902 on current_sched_info, doing this only at global init. And we
5903 sometimes change c_s_i later. So put the correct flags again. */
5904 if (spec_info && targetm.sched.set_sched_flags)
5905 targetm.sched.set_sched_flags (spec_info);
5906 }
5907
5908 /* Setup pointers to global sched info structures. */
5909 void
5910 sel_setup_sched_infos (void)
5911 {
5912 rgn_setup_common_sched_info ();
5913
5914 memcpy (&sel_common_sched_info, common_sched_info,
5915 sizeof (sel_common_sched_info));
5916
5917 sel_common_sched_info.fix_recovery_cfg = NULL;
5918 sel_common_sched_info.add_block = NULL;
5919 sel_common_sched_info.estimate_number_of_insns
5920 = sel_estimate_number_of_insns;
5921 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5922 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5923
5924 common_sched_info = &sel_common_sched_info;
5925
5926 current_sched_info = &sched_sel_haifa_sched_info;
5927 current_sched_info->sched_max_insns_priority =
5928 get_rgn_sched_max_insns_priority ();
5929
5930 sel_set_sched_flags ();
5931 }
5932 \f
5933
5934 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5935 *BB_ORD_INDEX after that is increased. */
5936 static void
5937 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5938 {
5939 RGN_NR_BLOCKS (rgn) += 1;
5940 RGN_DONT_CALC_DEPS (rgn) = 0;
5941 RGN_HAS_REAL_EBB (rgn) = 0;
5942 CONTAINING_RGN (bb->index) = rgn;
5943 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5944 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5945 (*bb_ord_index)++;
5946
5947 /* FIXME: it is true only when not scheduling ebbs. */
5948 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5949 }
5950
5951 /* Functions to support pipelining of outer loops. */
5952
5953 /* Creates a new empty region and returns it's number. */
5954 static int
5955 sel_create_new_region (void)
5956 {
5957 int new_rgn_number = nr_regions;
5958
5959 RGN_NR_BLOCKS (new_rgn_number) = 0;
5960
5961 /* FIXME: This will work only when EBBs are not created. */
5962 if (new_rgn_number != 0)
5963 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5964 RGN_NR_BLOCKS (new_rgn_number - 1);
5965 else
5966 RGN_BLOCKS (new_rgn_number) = 0;
5967
5968 /* Set the blocks of the next region so the other functions may
5969 calculate the number of blocks in the region. */
5970 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5971 RGN_NR_BLOCKS (new_rgn_number);
5972
5973 nr_regions++;
5974
5975 return new_rgn_number;
5976 }
5977
5978 /* If X has a smaller topological sort number than Y, returns -1;
5979 if greater, returns 1. */
5980 static int
5981 bb_top_order_comparator (const void *x, const void *y)
5982 {
5983 basic_block bb1 = *(const basic_block *) x;
5984 basic_block bb2 = *(const basic_block *) y;
5985
5986 gcc_assert (bb1 == bb2
5987 || rev_top_order_index[bb1->index]
5988 != rev_top_order_index[bb2->index]);
5989
5990 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5991 bbs with greater number should go earlier. */
5992 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5993 return -1;
5994 else
5995 return 1;
5996 }
5997
5998 /* Create a region for LOOP and return its number. If we don't want
5999 to pipeline LOOP, return -1. */
6000 static int
6001 make_region_from_loop (struct loop *loop)
6002 {
6003 unsigned int i;
6004 int new_rgn_number = -1;
6005 struct loop *inner;
6006
6007 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6008 int bb_ord_index = 0;
6009 basic_block *loop_blocks;
6010 basic_block preheader_block;
6011
6012 if (loop->num_nodes
6013 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
6014 return -1;
6015
6016 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
6017 for (inner = loop->inner; inner; inner = inner->inner)
6018 if (flow_bb_inside_loop_p (inner, loop->latch))
6019 return -1;
6020
6021 loop->ninsns = num_loop_insns (loop);
6022 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
6023 return -1;
6024
6025 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6026
6027 for (i = 0; i < loop->num_nodes; i++)
6028 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6029 {
6030 free (loop_blocks);
6031 return -1;
6032 }
6033
6034 preheader_block = loop_preheader_edge (loop)->src;
6035 gcc_assert (preheader_block);
6036 gcc_assert (loop_blocks[0] == loop->header);
6037
6038 new_rgn_number = sel_create_new_region ();
6039
6040 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6041 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6042
6043 for (i = 0; i < loop->num_nodes; i++)
6044 {
6045 /* Add only those blocks that haven't been scheduled in the inner loop.
6046 The exception is the basic blocks with bookkeeping code - they should
6047 be added to the region (and they actually don't belong to the loop
6048 body, but to the region containing that loop body). */
6049
6050 gcc_assert (new_rgn_number >= 0);
6051
6052 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6053 {
6054 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6055 new_rgn_number);
6056 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6057 }
6058 }
6059
6060 free (loop_blocks);
6061 MARK_LOOP_FOR_PIPELINING (loop);
6062
6063 return new_rgn_number;
6064 }
6065
6066 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6067 void
6068 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6069 {
6070 unsigned int i;
6071 int new_rgn_number = -1;
6072 basic_block bb;
6073
6074 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6075 int bb_ord_index = 0;
6076
6077 new_rgn_number = sel_create_new_region ();
6078
6079 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6080 {
6081 gcc_assert (new_rgn_number >= 0);
6082
6083 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6084 }
6085
6086 vec_free (loop_blocks);
6087 }
6088
6089
6090 /* Create region(s) from loop nest LOOP, such that inner loops will be
6091 pipelined before outer loops. Returns true when a region for LOOP
6092 is created. */
6093 static bool
6094 make_regions_from_loop_nest (struct loop *loop)
6095 {
6096 struct loop *cur_loop;
6097 int rgn_number;
6098
6099 /* Traverse all inner nodes of the loop. */
6100 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6101 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6102 return false;
6103
6104 /* At this moment all regular inner loops should have been pipelined.
6105 Try to create a region from this loop. */
6106 rgn_number = make_region_from_loop (loop);
6107
6108 if (rgn_number < 0)
6109 return false;
6110
6111 loop_nests.safe_push (loop);
6112 return true;
6113 }
6114
6115 /* Initalize data structures needed. */
6116 void
6117 sel_init_pipelining (void)
6118 {
6119 /* Collect loop information to be used in outer loops pipelining. */
6120 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6121 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6122 | LOOPS_HAVE_RECORDED_EXITS
6123 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6124 current_loop_nest = NULL;
6125
6126 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6127 bitmap_clear (bbs_in_loop_rgns);
6128
6129 recompute_rev_top_order ();
6130 }
6131
6132 /* Returns a struct loop for region RGN. */
6133 loop_p
6134 get_loop_nest_for_rgn (unsigned int rgn)
6135 {
6136 /* Regions created with extend_rgns don't have corresponding loop nests,
6137 because they don't represent loops. */
6138 if (rgn < loop_nests.length ())
6139 return loop_nests[rgn];
6140 else
6141 return NULL;
6142 }
6143
6144 /* True when LOOP was included into pipelining regions. */
6145 bool
6146 considered_for_pipelining_p (struct loop *loop)
6147 {
6148 if (loop_depth (loop) == 0)
6149 return false;
6150
6151 /* Now, the loop could be too large or irreducible. Check whether its
6152 region is in LOOP_NESTS.
6153 We determine the region number of LOOP as the region number of its
6154 latch. We can't use header here, because this header could be
6155 just removed preheader and it will give us the wrong region number.
6156 Latch can't be used because it could be in the inner loop too. */
6157 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6158 {
6159 int rgn = CONTAINING_RGN (loop->latch->index);
6160
6161 gcc_assert ((unsigned) rgn < loop_nests.length ());
6162 return true;
6163 }
6164
6165 return false;
6166 }
6167
6168 /* Makes regions from the rest of the blocks, after loops are chosen
6169 for pipelining. */
6170 static void
6171 make_regions_from_the_rest (void)
6172 {
6173 int cur_rgn_blocks;
6174 int *loop_hdr;
6175 int i;
6176
6177 basic_block bb;
6178 edge e;
6179 edge_iterator ei;
6180 int *degree;
6181
6182 /* Index in rgn_bb_table where to start allocating new regions. */
6183 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6184
6185 /* Make regions from all the rest basic blocks - those that don't belong to
6186 any loop or belong to irreducible loops. Prepare the data structures
6187 for extend_rgns. */
6188
6189 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6190 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6191 loop. */
6192 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6193 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6194
6195
6196 /* For each basic block that belongs to some loop assign the number
6197 of innermost loop it belongs to. */
6198 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6199 loop_hdr[i] = -1;
6200
6201 FOR_EACH_BB_FN (bb, cfun)
6202 {
6203 if (bb->loop_father && bb->loop_father->num != 0
6204 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6205 loop_hdr[bb->index] = bb->loop_father->num;
6206 }
6207
6208 /* For each basic block degree is calculated as the number of incoming
6209 edges, that are going out of bbs that are not yet scheduled.
6210 The basic blocks that are scheduled have degree value of zero. */
6211 FOR_EACH_BB_FN (bb, cfun)
6212 {
6213 degree[bb->index] = 0;
6214
6215 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6216 {
6217 FOR_EACH_EDGE (e, ei, bb->preds)
6218 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6219 degree[bb->index]++;
6220 }
6221 else
6222 degree[bb->index] = -1;
6223 }
6224
6225 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6226
6227 /* Any block that did not end up in a region is placed into a region
6228 by itself. */
6229 FOR_EACH_BB_FN (bb, cfun)
6230 if (degree[bb->index] >= 0)
6231 {
6232 rgn_bb_table[cur_rgn_blocks] = bb->index;
6233 RGN_NR_BLOCKS (nr_regions) = 1;
6234 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6235 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6236 RGN_HAS_REAL_EBB (nr_regions) = 0;
6237 CONTAINING_RGN (bb->index) = nr_regions++;
6238 BLOCK_TO_BB (bb->index) = 0;
6239 }
6240
6241 free (degree);
6242 free (loop_hdr);
6243 }
6244
6245 /* Free data structures used in pipelining of loops. */
6246 void sel_finish_pipelining (void)
6247 {
6248 struct loop *loop;
6249
6250 /* Release aux fields so we don't free them later by mistake. */
6251 FOR_EACH_LOOP (loop, 0)
6252 loop->aux = NULL;
6253
6254 loop_optimizer_finalize ();
6255
6256 loop_nests.release ();
6257
6258 free (rev_top_order_index);
6259 rev_top_order_index = NULL;
6260 }
6261
6262 /* This function replaces the find_rgns when
6263 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6264 void
6265 sel_find_rgns (void)
6266 {
6267 sel_init_pipelining ();
6268 extend_regions ();
6269
6270 if (current_loops)
6271 {
6272 loop_p loop;
6273
6274 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6275 ? LI_FROM_INNERMOST
6276 : LI_ONLY_INNERMOST))
6277 make_regions_from_loop_nest (loop);
6278 }
6279
6280 /* Make regions from all the rest basic blocks and schedule them.
6281 These blocks include blocks that don't belong to any loop or belong
6282 to irreducible loops. */
6283 make_regions_from_the_rest ();
6284
6285 /* We don't need bbs_in_loop_rgns anymore. */
6286 sbitmap_free (bbs_in_loop_rgns);
6287 bbs_in_loop_rgns = NULL;
6288 }
6289
6290 /* Add the preheader blocks from previous loop to current region taking
6291 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6292 This function is only used with -fsel-sched-pipelining-outer-loops. */
6293 void
6294 sel_add_loop_preheaders (bb_vec_t *bbs)
6295 {
6296 int i;
6297 basic_block bb;
6298 vec<basic_block> *preheader_blocks
6299 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6300
6301 if (!preheader_blocks)
6302 return;
6303
6304 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6305 {
6306 bbs->safe_push (bb);
6307 last_added_blocks.safe_push (bb);
6308 sel_add_bb (bb);
6309 }
6310
6311 vec_free (preheader_blocks);
6312 }
6313
6314 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6315 Please note that the function should also work when pipelining_p is
6316 false, because it is used when deciding whether we should or should
6317 not reschedule pipelined code. */
6318 bool
6319 sel_is_loop_preheader_p (basic_block bb)
6320 {
6321 if (current_loop_nest)
6322 {
6323 struct loop *outer;
6324
6325 if (preheader_removed)
6326 return false;
6327
6328 /* Preheader is the first block in the region. */
6329 if (BLOCK_TO_BB (bb->index) == 0)
6330 return true;
6331
6332 /* We used to find a preheader with the topological information.
6333 Check that the above code is equivalent to what we did before. */
6334
6335 if (in_current_region_p (current_loop_nest->header))
6336 gcc_assert (!(BLOCK_TO_BB (bb->index)
6337 < BLOCK_TO_BB (current_loop_nest->header->index)));
6338
6339 /* Support the situation when the latch block of outer loop
6340 could be from here. */
6341 for (outer = loop_outer (current_loop_nest);
6342 outer;
6343 outer = loop_outer (outer))
6344 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6345 gcc_unreachable ();
6346 }
6347
6348 return false;
6349 }
6350
6351 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6352 can be removed, making the corresponding edge fallthrough (assuming that
6353 all basic blocks between JUMP_BB and DEST_BB are empty). */
6354 static bool
6355 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6356 {
6357 if (!onlyjump_p (BB_END (jump_bb))
6358 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6359 return false;
6360
6361 /* Several outgoing edges, abnormal edge or destination of jump is
6362 not DEST_BB. */
6363 if (EDGE_COUNT (jump_bb->succs) != 1
6364 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6365 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6366 return false;
6367
6368 /* If not anything of the upper. */
6369 return true;
6370 }
6371
6372 /* Removes the loop preheader from the current region and saves it in
6373 PREHEADER_BLOCKS of the father loop, so they will be added later to
6374 region that represents an outer loop. */
6375 static void
6376 sel_remove_loop_preheader (void)
6377 {
6378 int i, old_len;
6379 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6380 basic_block bb;
6381 bool all_empty_p = true;
6382 vec<basic_block> *preheader_blocks
6383 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6384
6385 vec_check_alloc (preheader_blocks, 0);
6386
6387 gcc_assert (current_loop_nest);
6388 old_len = preheader_blocks->length ();
6389
6390 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6391 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6392 {
6393 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6394
6395 /* If the basic block belongs to region, but doesn't belong to
6396 corresponding loop, then it should be a preheader. */
6397 if (sel_is_loop_preheader_p (bb))
6398 {
6399 preheader_blocks->safe_push (bb);
6400 if (BB_END (bb) != bb_note (bb))
6401 all_empty_p = false;
6402 }
6403 }
6404
6405 /* Remove these blocks only after iterating over the whole region. */
6406 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6407 {
6408 bb = (*preheader_blocks)[i];
6409 sel_remove_bb (bb, false);
6410 }
6411
6412 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6413 {
6414 if (!all_empty_p)
6415 /* Immediately create new region from preheader. */
6416 make_region_from_loop_preheader (preheader_blocks);
6417 else
6418 {
6419 /* If all preheader blocks are empty - dont create new empty region.
6420 Instead, remove them completely. */
6421 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6422 {
6423 edge e;
6424 edge_iterator ei;
6425 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6426
6427 /* Redirect all incoming edges to next basic block. */
6428 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6429 {
6430 if (! (e->flags & EDGE_FALLTHRU))
6431 redirect_edge_and_branch (e, bb->next_bb);
6432 else
6433 redirect_edge_succ (e, bb->next_bb);
6434 }
6435 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6436 delete_and_free_basic_block (bb);
6437
6438 /* Check if after deleting preheader there is a nonconditional
6439 jump in PREV_BB that leads to the next basic block NEXT_BB.
6440 If it is so - delete this jump and clear data sets of its
6441 basic block if it becomes empty. */
6442 if (next_bb->prev_bb == prev_bb
6443 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6444 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6445 {
6446 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6447 if (BB_END (prev_bb) == bb_note (prev_bb))
6448 free_data_sets (prev_bb);
6449 }
6450
6451 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6452 recompute_dominator (CDI_DOMINATORS,
6453 next_bb));
6454 }
6455 }
6456 vec_free (preheader_blocks);
6457 }
6458 else
6459 /* Store preheader within the father's loop structure. */
6460 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6461 preheader_blocks);
6462 }
6463
6464 #endif