]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched.c
tree-core.h: Include symtab.h.
[thirdparty/gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "cfgbuild.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "except.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "output.h"
39 #include "sched-int.h"
40 #include "langhooks.h"
41 #include "rtlhooks-def.h"
42 #include "emit-rtl.h"
43 #include "ira.h"
44 #include "rtl-iter.h"
45
46 #ifdef INSN_SCHEDULING
47 #include "regset.h"
48 #include "cfgloop.h"
49 #include "sel-sched-ir.h"
50 #include "sel-sched-dump.h"
51 #include "sel-sched.h"
52 #include "dbgcnt.h"
53
54 /* Implementation of selective scheduling approach.
55 The below implementation follows the original approach with the following
56 changes:
57
58 o the scheduler works after register allocation (but can be also tuned
59 to work before RA);
60 o some instructions are not copied or register renamed;
61 o conditional jumps are not moved with code duplication;
62 o several jumps in one parallel group are not supported;
63 o when pipelining outer loops, code motion through inner loops
64 is not supported;
65 o control and data speculation are supported;
66 o some improvements for better compile time/performance were made.
67
68 Terminology
69 ===========
70
71 A vinsn, or virtual insn, is an insn with additional data characterizing
72 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
73 Vinsns also act as smart pointers to save memory by reusing them in
74 different expressions. A vinsn is described by vinsn_t type.
75
76 An expression is a vinsn with additional data characterizing its properties
77 at some point in the control flow graph. The data may be its usefulness,
78 priority, speculative status, whether it was renamed/subsituted, etc.
79 An expression is described by expr_t type.
80
81 Availability set (av_set) is a set of expressions at a given control flow
82 point. It is represented as av_set_t. The expressions in av sets are kept
83 sorted in the terms of expr_greater_p function. It allows to truncate
84 the set while leaving the best expressions.
85
86 A fence is a point through which code motion is prohibited. On each step,
87 we gather a parallel group of insns at a fence. It is possible to have
88 multiple fences. A fence is represented via fence_t.
89
90 A boundary is the border between the fence group and the rest of the code.
91 Currently, we never have more than one boundary per fence, as we finalize
92 the fence group when a jump is scheduled. A boundary is represented
93 via bnd_t.
94
95 High-level overview
96 ===================
97
98 The scheduler finds regions to schedule, schedules each one, and finalizes.
99 The regions are formed starting from innermost loops, so that when the inner
100 loop is pipelined, its prologue can be scheduled together with yet unprocessed
101 outer loop. The rest of acyclic regions are found using extend_rgns:
102 the blocks that are not yet allocated to any regions are traversed in top-down
103 order, and a block is added to a region to which all its predecessors belong;
104 otherwise, the block starts its own region.
105
106 The main scheduling loop (sel_sched_region_2) consists of just
107 scheduling on each fence and updating fences. For each fence,
108 we fill a parallel group of insns (fill_insns) until some insns can be added.
109 First, we compute available exprs (av-set) at the boundary of the current
110 group. Second, we choose the best expression from it. If the stall is
111 required to schedule any of the expressions, we advance the current cycle
112 appropriately. So, the final group does not exactly correspond to a VLIW
113 word. Third, we move the chosen expression to the boundary (move_op)
114 and update the intermediate av sets and liveness sets. We quit fill_insns
115 when either no insns left for scheduling or we have scheduled enough insns
116 so we feel like advancing a scheduling point.
117
118 Computing available expressions
119 ===============================
120
121 The computation (compute_av_set) is a bottom-up traversal. At each insn,
122 we're moving the union of its successors' sets through it via
123 moveup_expr_set. The dependent expressions are removed. Local
124 transformations (substitution, speculation) are applied to move more
125 exprs. Then the expr corresponding to the current insn is added.
126 The result is saved on each basic block header.
127
128 When traversing the CFG, we're moving down for no more than max_ws insns.
129 Also, we do not move down to ineligible successors (is_ineligible_successor),
130 which include moving along a back-edge, moving to already scheduled code,
131 and moving to another fence. The first two restrictions are lifted during
132 pipelining, which allows us to move insns along a back-edge. We always have
133 an acyclic region for scheduling because we forbid motion through fences.
134
135 Choosing the best expression
136 ============================
137
138 We sort the final availability set via sel_rank_for_schedule, then we remove
139 expressions which are not yet ready (tick_check_p) or which dest registers
140 cannot be used. For some of them, we choose another register via
141 find_best_reg. To do this, we run find_used_regs to calculate the set of
142 registers which cannot be used. The find_used_regs function performs
143 a traversal of code motion paths for an expr. We consider for renaming
144 only registers which are from the same regclass as the original one and
145 using which does not interfere with any live ranges. Finally, we convert
146 the resulting set to the ready list format and use max_issue and reorder*
147 hooks similarly to the Haifa scheduler.
148
149 Scheduling the best expression
150 ==============================
151
152 We run the move_op routine to perform the same type of code motion paths
153 traversal as in find_used_regs. (These are working via the same driver,
154 code_motion_path_driver.) When moving down the CFG, we look for original
155 instruction that gave birth to a chosen expression. We undo
156 the transformations performed on an expression via the history saved in it.
157 When found, we remove the instruction or leave a reg-reg copy/speculation
158 check if needed. On a way up, we insert bookkeeping copies at each join
159 point. If a copy is not needed, it will be removed later during this
160 traversal. We update the saved av sets and liveness sets on the way up, too.
161
162 Finalizing the schedule
163 =======================
164
165 When pipelining, we reschedule the blocks from which insns were pipelined
166 to get a tighter schedule. On Itanium, we also perform bundling via
167 the same routine from ia64.c.
168
169 Dependence analysis changes
170 ===========================
171
172 We augmented the sched-deps.c with hooks that get called when a particular
173 dependence is found in a particular part of an insn. Using these hooks, we
174 can do several actions such as: determine whether an insn can be moved through
175 another (has_dependence_p, moveup_expr); find out whether an insn can be
176 scheduled on the current cycle (tick_check_p); find out registers that
177 are set/used/clobbered by an insn and find out all the strange stuff that
178 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
179 init_global_and_expr_for_insn).
180
181 Initialization changes
182 ======================
183
184 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
185 reused in all of the schedulers. We have split up the initialization of data
186 of such parts into different functions prefixed with scheduler type and
187 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
188 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
189 The same splitting is done with current_sched_info structure:
190 dependence-related parts are in sched_deps_info, common part is in
191 common_sched_info, and haifa/sel/etc part is in current_sched_info.
192
193 Target contexts
194 ===============
195
196 As we now have multiple-point scheduling, this would not work with backends
197 which save some of the scheduler state to use it in the target hooks.
198 For this purpose, we introduce a concept of target contexts, which
199 encapsulate such information. The backend should implement simple routines
200 of allocating/freeing/setting such a context. The scheduler calls these
201 as target hooks and handles the target context as an opaque pointer (similar
202 to the DFA state type, state_t).
203
204 Various speedups
205 ================
206
207 As the correct data dependence graph is not supported during scheduling (which
208 is to be changed in mid-term), we cache as much of the dependence analysis
209 results as possible to avoid reanalyzing. This includes: bitmap caches on
210 each insn in stream of the region saying yes/no for a query with a pair of
211 UIDs; hashtables with the previously done transformations on each insn in
212 stream; a vector keeping a history of transformations on each expr.
213
214 Also, we try to minimize the dependence context used on each fence to check
215 whether the given expression is ready for scheduling by removing from it
216 insns that are definitely completed the execution. The results of
217 tick_check_p checks are also cached in a vector on each fence.
218
219 We keep a valid liveness set on each insn in a region to avoid the high
220 cost of recomputation on large basic blocks.
221
222 Finally, we try to minimize the number of needed updates to the availability
223 sets. The updates happen in two cases: when fill_insns terminates,
224 we advance all fences and increase the stage number to show that the region
225 has changed and the sets are to be recomputed; and when the next iteration
226 of a loop in fill_insns happens (but this one reuses the saved av sets
227 on bb headers.) Thus, we try to break the fill_insns loop only when
228 "significant" number of insns from the current scheduling window was
229 scheduled. This should be made a target param.
230
231
232 TODO: correctly support the data dependence graph at all stages and get rid
233 of all caches. This should speed up the scheduler.
234 TODO: implement moving cond jumps with bookkeeping copies on both targets.
235 TODO: tune the scheduler before RA so it does not create too much pseudos.
236
237
238 References:
239 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
240 selective scheduling and software pipelining.
241 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
242
243 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
244 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
245 for GCC. In Proceedings of GCC Developers' Summit 2006.
246
247 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
248 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
249 http://rogue.colorado.edu/EPIC7/.
250
251 */
252
253 /* True when pipelining is enabled. */
254 bool pipelining_p;
255
256 /* True if bookkeeping is enabled. */
257 bool bookkeeping_p;
258
259 /* Maximum number of insns that are eligible for renaming. */
260 int max_insns_to_rename;
261 \f
262
263 /* Definitions of local types and macros. */
264
265 /* Represents possible outcomes of moving an expression through an insn. */
266 enum MOVEUP_EXPR_CODE
267 {
268 /* The expression is not changed. */
269 MOVEUP_EXPR_SAME,
270
271 /* Not changed, but requires a new destination register. */
272 MOVEUP_EXPR_AS_RHS,
273
274 /* Cannot be moved. */
275 MOVEUP_EXPR_NULL,
276
277 /* Changed (substituted or speculated). */
278 MOVEUP_EXPR_CHANGED
279 };
280
281 /* The container to be passed into rtx search & replace functions. */
282 struct rtx_search_arg
283 {
284 /* What we are searching for. */
285 rtx x;
286
287 /* The occurrence counter. */
288 int n;
289 };
290
291 typedef struct rtx_search_arg *rtx_search_arg_p;
292
293 /* This struct contains precomputed hard reg sets that are needed when
294 computing registers available for renaming. */
295 struct hard_regs_data
296 {
297 /* For every mode, this stores registers available for use with
298 that mode. */
299 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
300
301 /* True when regs_for_mode[mode] is initialized. */
302 bool regs_for_mode_ok[NUM_MACHINE_MODES];
303
304 /* For every register, it has regs that are ok to rename into it.
305 The register in question is always set. If not, this means
306 that the whole set is not computed yet. */
307 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
308
309 /* For every mode, this stores registers not available due to
310 call clobbering. */
311 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
312
313 /* All registers that are used or call used. */
314 HARD_REG_SET regs_ever_used;
315
316 #ifdef STACK_REGS
317 /* Stack registers. */
318 HARD_REG_SET stack_regs;
319 #endif
320 };
321
322 /* Holds the results of computation of available for renaming and
323 unavailable hard registers. */
324 struct reg_rename
325 {
326 /* These are unavailable due to calls crossing, globalness, etc. */
327 HARD_REG_SET unavailable_hard_regs;
328
329 /* These are *available* for renaming. */
330 HARD_REG_SET available_for_renaming;
331
332 /* Whether this code motion path crosses a call. */
333 bool crosses_call;
334 };
335
336 /* A global structure that contains the needed information about harg
337 regs. */
338 static struct hard_regs_data sel_hrd;
339 \f
340
341 /* This structure holds local data used in code_motion_path_driver hooks on
342 the same or adjacent levels of recursion. Here we keep those parameters
343 that are not used in code_motion_path_driver routine itself, but only in
344 its hooks. Moreover, all parameters that can be modified in hooks are
345 in this structure, so all other parameters passed explicitly to hooks are
346 read-only. */
347 struct cmpd_local_params
348 {
349 /* Local params used in move_op_* functions. */
350
351 /* Edges for bookkeeping generation. */
352 edge e1, e2;
353
354 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
355 expr_t c_expr_merged, c_expr_local;
356
357 /* Local params used in fur_* functions. */
358 /* Copy of the ORIGINAL_INSN list, stores the original insns already
359 found before entering the current level of code_motion_path_driver. */
360 def_list_t old_original_insns;
361
362 /* Local params used in move_op_* functions. */
363 /* True when we have removed last insn in the block which was
364 also a boundary. Do not update anything or create bookkeeping copies. */
365 BOOL_BITFIELD removed_last_insn : 1;
366 };
367
368 /* Stores the static parameters for move_op_* calls. */
369 struct moveop_static_params
370 {
371 /* Destination register. */
372 rtx dest;
373
374 /* Current C_EXPR. */
375 expr_t c_expr;
376
377 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
378 they are to be removed. */
379 int uid;
380
381 #ifdef ENABLE_CHECKING
382 /* This is initialized to the insn on which the driver stopped its traversal. */
383 insn_t failed_insn;
384 #endif
385
386 /* True if we scheduled an insn with different register. */
387 bool was_renamed;
388 };
389
390 /* Stores the static parameters for fur_* calls. */
391 struct fur_static_params
392 {
393 /* Set of registers unavailable on the code motion path. */
394 regset used_regs;
395
396 /* Pointer to the list of original insns definitions. */
397 def_list_t *original_insns;
398
399 /* True if a code motion path contains a CALL insn. */
400 bool crosses_call;
401 };
402
403 typedef struct fur_static_params *fur_static_params_p;
404 typedef struct cmpd_local_params *cmpd_local_params_p;
405 typedef struct moveop_static_params *moveop_static_params_p;
406
407 /* Set of hooks and parameters that determine behaviour specific to
408 move_op or find_used_regs functions. */
409 struct code_motion_path_driver_info_def
410 {
411 /* Called on enter to the basic block. */
412 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
413
414 /* Called when original expr is found. */
415 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
416
417 /* Called while descending current basic block if current insn is not
418 the original EXPR we're searching for. */
419 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
420
421 /* Function to merge C_EXPRes from different successors. */
422 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
423
424 /* Function to finalize merge from different successors and possibly
425 deallocate temporary data structures used for merging. */
426 void (*after_merge_succs) (cmpd_local_params_p, void *);
427
428 /* Called on the backward stage of recursion to do moveup_expr.
429 Used only with move_op_*. */
430 void (*ascend) (insn_t, void *);
431
432 /* Called on the ascending pass, before returning from the current basic
433 block or from the whole traversal. */
434 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
435
436 /* When processing successors in move_op we need only descend into
437 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
438 int succ_flags;
439
440 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
441 const char *routine_name;
442 };
443
444 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
445 FUR_HOOKS. */
446 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
447
448 /* Set of hooks for performing move_op and find_used_regs routines with
449 code_motion_path_driver. */
450 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
451
452 /* True if/when we want to emulate Haifa scheduler in the common code.
453 This is used in sched_rgn_local_init and in various places in
454 sched-deps.c. */
455 int sched_emulate_haifa_p;
456
457 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
458 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
459 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
460 scheduling window. */
461 int global_level;
462
463 /* Current fences. */
464 flist_t fences;
465
466 /* True when separable insns should be scheduled as RHSes. */
467 static bool enable_schedule_as_rhs_p;
468
469 /* Used in verify_target_availability to assert that target reg is reported
470 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
471 we haven't scheduled anything on the previous fence.
472 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
473 have more conservative value than the one returned by the
474 find_used_regs, thus we shouldn't assert that these values are equal. */
475 static bool scheduled_something_on_previous_fence;
476
477 /* All newly emitted insns will have their uids greater than this value. */
478 static int first_emitted_uid;
479
480 /* Set of basic blocks that are forced to start new ebbs. This is a subset
481 of all the ebb heads. */
482 static bitmap_head _forced_ebb_heads;
483 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
484
485 /* Blocks that need to be rescheduled after pipelining. */
486 bitmap blocks_to_reschedule = NULL;
487
488 /* True when the first lv set should be ignored when updating liveness. */
489 static bool ignore_first = false;
490
491 /* Number of insns max_issue has initialized data structures for. */
492 static int max_issue_size = 0;
493
494 /* Whether we can issue more instructions. */
495 static int can_issue_more;
496
497 /* Maximum software lookahead window size, reduced when rescheduling after
498 pipelining. */
499 static int max_ws;
500
501 /* Number of insns scheduled in current region. */
502 static int num_insns_scheduled;
503
504 /* A vector of expressions is used to be able to sort them. */
505 static vec<expr_t> vec_av_set = vNULL;
506
507 /* A vector of vinsns is used to hold temporary lists of vinsns. */
508 typedef vec<vinsn_t> vinsn_vec_t;
509
510 /* This vector has the exprs which may still present in av_sets, but actually
511 can't be moved up due to bookkeeping created during code motion to another
512 fence. See comment near the call to update_and_record_unavailable_insns
513 for the detailed explanations. */
514 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
515
516 /* This vector has vinsns which are scheduled with renaming on the first fence
517 and then seen on the second. For expressions with such vinsns, target
518 availability information may be wrong. */
519 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
520
521 /* Vector to store temporary nops inserted in move_op to prevent removal
522 of empty bbs. */
523 static vec<insn_t> vec_temp_moveop_nops = vNULL;
524
525 /* These bitmaps record original instructions scheduled on the current
526 iteration and bookkeeping copies created by them. */
527 static bitmap current_originators = NULL;
528 static bitmap current_copies = NULL;
529
530 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
531 visit them afterwards. */
532 static bitmap code_motion_visited_blocks = NULL;
533
534 /* Variables to accumulate different statistics. */
535
536 /* The number of bookkeeping copies created. */
537 static int stat_bookkeeping_copies;
538
539 /* The number of insns that required bookkeeiping for their scheduling. */
540 static int stat_insns_needed_bookkeeping;
541
542 /* The number of insns that got renamed. */
543 static int stat_renamed_scheduled;
544
545 /* The number of substitutions made during scheduling. */
546 static int stat_substitutions_total;
547 \f
548
549 /* Forward declarations of static functions. */
550 static bool rtx_ok_for_substitution_p (rtx, rtx);
551 static int sel_rank_for_schedule (const void *, const void *);
552 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
553 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
554
555 static rtx get_dest_from_orig_ops (av_set_t);
556 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
557 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
558 def_list_t *);
559 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
560 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
561 cmpd_local_params_p, void *);
562 static void sel_sched_region_1 (void);
563 static void sel_sched_region_2 (int);
564 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
565
566 static void debug_state (state_t);
567 \f
568
569 /* Functions that work with fences. */
570
571 /* Advance one cycle on FENCE. */
572 static void
573 advance_one_cycle (fence_t fence)
574 {
575 unsigned i;
576 int cycle;
577 rtx_insn *insn;
578
579 advance_state (FENCE_STATE (fence));
580 cycle = ++FENCE_CYCLE (fence);
581 FENCE_ISSUED_INSNS (fence) = 0;
582 FENCE_STARTS_CYCLE_P (fence) = 1;
583 can_issue_more = issue_rate;
584 FENCE_ISSUE_MORE (fence) = can_issue_more;
585
586 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
587 {
588 if (INSN_READY_CYCLE (insn) < cycle)
589 {
590 remove_from_deps (FENCE_DC (fence), insn);
591 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
592 continue;
593 }
594 i++;
595 }
596 if (sched_verbose >= 2)
597 {
598 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
599 debug_state (FENCE_STATE (fence));
600 }
601 }
602
603 /* Returns true when SUCC in a fallthru bb of INSN, possibly
604 skipping empty basic blocks. */
605 static bool
606 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
607 {
608 basic_block bb = BLOCK_FOR_INSN (insn);
609 edge e;
610
611 if (bb == BLOCK_FOR_INSN (succ))
612 return true;
613
614 e = find_fallthru_edge_from (bb);
615 if (e)
616 bb = e->dest;
617 else
618 return false;
619
620 while (sel_bb_empty_p (bb))
621 bb = bb->next_bb;
622
623 return bb == BLOCK_FOR_INSN (succ);
624 }
625
626 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
627 When a successor will continue a ebb, transfer all parameters of a fence
628 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
629 of scheduling helping to distinguish between the old and the new code. */
630 static void
631 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
632 int orig_max_seqno)
633 {
634 bool was_here_p = false;
635 insn_t insn = NULL;
636 insn_t succ;
637 succ_iterator si;
638 ilist_iterator ii;
639 fence_t fence = FLIST_FENCE (old_fences);
640 basic_block bb;
641
642 /* Get the only element of FENCE_BNDS (fence). */
643 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
644 {
645 gcc_assert (!was_here_p);
646 was_here_p = true;
647 }
648 gcc_assert (was_here_p && insn != NULL_RTX);
649
650 /* When in the "middle" of the block, just move this fence
651 to the new list. */
652 bb = BLOCK_FOR_INSN (insn);
653 if (! sel_bb_end_p (insn)
654 || (single_succ_p (bb)
655 && single_pred_p (single_succ (bb))))
656 {
657 insn_t succ;
658
659 succ = (sel_bb_end_p (insn)
660 ? sel_bb_head (single_succ (bb))
661 : NEXT_INSN (insn));
662
663 if (INSN_SEQNO (succ) > 0
664 && INSN_SEQNO (succ) <= orig_max_seqno
665 && INSN_SCHED_TIMES (succ) <= 0)
666 {
667 FENCE_INSN (fence) = succ;
668 move_fence_to_fences (old_fences, new_fences);
669
670 if (sched_verbose >= 1)
671 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
672 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
673 }
674 return;
675 }
676
677 /* Otherwise copy fence's structures to (possibly) multiple successors. */
678 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
679 {
680 int seqno = INSN_SEQNO (succ);
681
682 if (0 < seqno && seqno <= orig_max_seqno
683 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
684 {
685 bool b = (in_same_ebb_p (insn, succ)
686 || in_fallthru_bb_p (insn, succ));
687
688 if (sched_verbose >= 1)
689 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
690 INSN_UID (insn), INSN_UID (succ),
691 BLOCK_NUM (succ), b ? "continue" : "reset");
692
693 if (b)
694 add_dirty_fence_to_fences (new_fences, succ, fence);
695 else
696 {
697 /* Mark block of the SUCC as head of the new ebb. */
698 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
699 add_clean_fence_to_fences (new_fences, succ, fence);
700 }
701 }
702 }
703 }
704 \f
705
706 /* Functions to support substitution. */
707
708 /* Returns whether INSN with dependence status DS is eligible for
709 substitution, i.e. it's a copy operation x := y, and RHS that is
710 moved up through this insn should be substituted. */
711 static bool
712 can_substitute_through_p (insn_t insn, ds_t ds)
713 {
714 /* We can substitute only true dependencies. */
715 if ((ds & DEP_OUTPUT)
716 || (ds & DEP_ANTI)
717 || ! INSN_RHS (insn)
718 || ! INSN_LHS (insn))
719 return false;
720
721 /* Now we just need to make sure the INSN_RHS consists of only one
722 simple REG rtx. */
723 if (REG_P (INSN_LHS (insn))
724 && REG_P (INSN_RHS (insn)))
725 return true;
726 return false;
727 }
728
729 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
730 source (if INSN is eligible for substitution). Returns TRUE if
731 substitution was actually performed, FALSE otherwise. Substitution might
732 be not performed because it's either EXPR' vinsn doesn't contain INSN's
733 destination or the resulting insn is invalid for the target machine.
734 When UNDO is true, perform unsubstitution instead (the difference is in
735 the part of rtx on which validate_replace_rtx is called). */
736 static bool
737 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
738 {
739 rtx *where;
740 bool new_insn_valid;
741 vinsn_t *vi = &EXPR_VINSN (expr);
742 bool has_rhs = VINSN_RHS (*vi) != NULL;
743 rtx old, new_rtx;
744
745 /* Do not try to replace in SET_DEST. Although we'll choose new
746 register for the RHS, we don't want to change RHS' original reg.
747 If the insn is not SET, we may still be able to substitute something
748 in it, and if we're here (don't have deps), it doesn't write INSN's
749 dest. */
750 where = (has_rhs
751 ? &VINSN_RHS (*vi)
752 : &PATTERN (VINSN_INSN_RTX (*vi)));
753 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
754
755 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
756 if (rtx_ok_for_substitution_p (old, *where))
757 {
758 rtx_insn *new_insn;
759 rtx *where_replace;
760
761 /* We should copy these rtxes before substitution. */
762 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
763 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
764
765 /* Where we'll replace.
766 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
767 used instead of SET_SRC. */
768 where_replace = (has_rhs
769 ? &SET_SRC (PATTERN (new_insn))
770 : &PATTERN (new_insn));
771
772 new_insn_valid
773 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
774 new_insn);
775
776 /* ??? Actually, constrain_operands result depends upon choice of
777 destination register. E.g. if we allow single register to be an rhs,
778 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
779 in invalid insn dx=dx, so we'll loose this rhs here.
780 Just can't come up with significant testcase for this, so just
781 leaving it for now. */
782 if (new_insn_valid)
783 {
784 change_vinsn_in_expr (expr,
785 create_vinsn_from_insn_rtx (new_insn, false));
786
787 /* Do not allow clobbering the address register of speculative
788 insns. */
789 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
790 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
791 expr_dest_reg (expr)))
792 EXPR_TARGET_AVAILABLE (expr) = false;
793
794 return true;
795 }
796 else
797 return false;
798 }
799 else
800 return false;
801 }
802
803 /* Return the number of places WHAT appears within WHERE.
804 Bail out when we found a reference occupying several hard registers. */
805 static int
806 count_occurrences_equiv (const_rtx what, const_rtx where)
807 {
808 int count = 0;
809 subrtx_iterator::array_type array;
810 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
811 {
812 const_rtx x = *iter;
813 if (REG_P (x) && REGNO (x) == REGNO (what))
814 {
815 /* Bail out if mode is different or more than one register is
816 used. */
817 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
818 return 0;
819 count += 1;
820 }
821 else if (GET_CODE (x) == SUBREG
822 && (!REG_P (SUBREG_REG (x))
823 || REGNO (SUBREG_REG (x)) == REGNO (what)))
824 /* ??? Do not support substituting regs inside subregs. In that case,
825 simplify_subreg will be called by validate_replace_rtx, and
826 unsubstitution will fail later. */
827 return 0;
828 }
829 return count;
830 }
831
832 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
833 static bool
834 rtx_ok_for_substitution_p (rtx what, rtx where)
835 {
836 return (count_occurrences_equiv (what, where) > 0);
837 }
838 \f
839
840 /* Functions to support register renaming. */
841
842 /* Substitute VI's set source with REGNO. Returns newly created pattern
843 that has REGNO as its source. */
844 static rtx_insn *
845 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
846 {
847 rtx lhs_rtx;
848 rtx pattern;
849 rtx_insn *insn_rtx;
850
851 lhs_rtx = copy_rtx (VINSN_LHS (vi));
852
853 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
854 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
855
856 return insn_rtx;
857 }
858
859 /* Returns whether INSN's src can be replaced with register number
860 NEW_SRC_REG. E.g. the following insn is valid for i386:
861
862 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
863 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
864 (reg:SI 0 ax [orig:770 c1 ] [770]))
865 (const_int 288 [0x120])) [0 str S1 A8])
866 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
867 (nil))
868
869 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
870 because of operand constraints:
871
872 (define_insn "*movqi_1"
873 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
874 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
875 )]
876
877 So do constrain_operands here, before choosing NEW_SRC_REG as best
878 reg for rhs. */
879
880 static bool
881 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
882 {
883 vinsn_t vi = INSN_VINSN (insn);
884 machine_mode mode;
885 rtx dst_loc;
886 bool res;
887
888 gcc_assert (VINSN_SEPARABLE_P (vi));
889
890 get_dest_and_mode (insn, &dst_loc, &mode);
891 gcc_assert (mode == GET_MODE (new_src_reg));
892
893 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
894 return true;
895
896 /* See whether SET_SRC can be replaced with this register. */
897 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
898 res = verify_changes (0);
899 cancel_changes (0);
900
901 return res;
902 }
903
904 /* Returns whether INSN still be valid after replacing it's DEST with
905 register NEW_REG. */
906 static bool
907 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
908 {
909 vinsn_t vi = INSN_VINSN (insn);
910 bool res;
911
912 /* We should deal here only with separable insns. */
913 gcc_assert (VINSN_SEPARABLE_P (vi));
914 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
915
916 /* See whether SET_DEST can be replaced with this register. */
917 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
918 res = verify_changes (0);
919 cancel_changes (0);
920
921 return res;
922 }
923
924 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
925 static rtx_insn *
926 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
927 {
928 rtx rhs_rtx;
929 rtx pattern;
930 rtx_insn *insn_rtx;
931
932 rhs_rtx = copy_rtx (VINSN_RHS (vi));
933
934 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
935 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
936
937 return insn_rtx;
938 }
939
940 /* Substitute lhs in the given expression EXPR for the register with number
941 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
942 static void
943 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
944 {
945 rtx_insn *insn_rtx;
946 vinsn_t vinsn;
947
948 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
949 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
950
951 change_vinsn_in_expr (expr, vinsn);
952 EXPR_WAS_RENAMED (expr) = 1;
953 EXPR_TARGET_AVAILABLE (expr) = 1;
954 }
955
956 /* Returns whether VI writes either one of the USED_REGS registers or,
957 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
958 static bool
959 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
960 HARD_REG_SET unavailable_hard_regs)
961 {
962 unsigned regno;
963 reg_set_iterator rsi;
964
965 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
966 {
967 if (REGNO_REG_SET_P (used_regs, regno))
968 return true;
969 if (HARD_REGISTER_NUM_P (regno)
970 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
971 return true;
972 }
973
974 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
975 {
976 if (REGNO_REG_SET_P (used_regs, regno))
977 return true;
978 if (HARD_REGISTER_NUM_P (regno)
979 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
980 return true;
981 }
982
983 return false;
984 }
985
986 /* Returns register class of the output register in INSN.
987 Returns NO_REGS for call insns because some targets have constraints on
988 destination register of a call insn.
989
990 Code adopted from regrename.c::build_def_use. */
991 static enum reg_class
992 get_reg_class (rtx_insn *insn)
993 {
994 int i, n_ops;
995
996 extract_constrain_insn (insn);
997 preprocess_constraints (insn);
998 n_ops = recog_data.n_operands;
999
1000 const operand_alternative *op_alt = which_op_alt ();
1001 if (asm_noperands (PATTERN (insn)) > 0)
1002 {
1003 for (i = 0; i < n_ops; i++)
1004 if (recog_data.operand_type[i] == OP_OUT)
1005 {
1006 rtx *loc = recog_data.operand_loc[i];
1007 rtx op = *loc;
1008 enum reg_class cl = alternative_class (op_alt, i);
1009
1010 if (REG_P (op)
1011 && REGNO (op) == ORIGINAL_REGNO (op))
1012 continue;
1013
1014 return cl;
1015 }
1016 }
1017 else if (!CALL_P (insn))
1018 {
1019 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1020 {
1021 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1022 enum reg_class cl = alternative_class (op_alt, opn);
1023
1024 if (recog_data.operand_type[opn] == OP_OUT ||
1025 recog_data.operand_type[opn] == OP_INOUT)
1026 return cl;
1027 }
1028 }
1029
1030 /* Insns like
1031 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1032 may result in returning NO_REGS, cause flags is written implicitly through
1033 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1034 return NO_REGS;
1035 }
1036
1037 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1038 static void
1039 init_hard_regno_rename (int regno)
1040 {
1041 int cur_reg;
1042
1043 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1044
1045 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1046 {
1047 /* We are not interested in renaming in other regs. */
1048 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1049 continue;
1050
1051 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1052 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1053 }
1054 }
1055
1056 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1057 data first. */
1058 static inline bool
1059 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1060 {
1061 /* Check whether this is all calculated. */
1062 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1063 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1064
1065 init_hard_regno_rename (from);
1066
1067 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1068 }
1069
1070 /* Calculate set of registers that are capable of holding MODE. */
1071 static void
1072 init_regs_for_mode (machine_mode mode)
1073 {
1074 int cur_reg;
1075
1076 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1077 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1078
1079 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1080 {
1081 int nregs;
1082 int i;
1083
1084 /* See whether it accepts all modes that occur in
1085 original insns. */
1086 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1087 continue;
1088
1089 nregs = hard_regno_nregs[cur_reg][mode];
1090
1091 for (i = nregs - 1; i >= 0; --i)
1092 if (fixed_regs[cur_reg + i]
1093 || global_regs[cur_reg + i]
1094 /* Can't use regs which aren't saved by
1095 the prologue. */
1096 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1097 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1098 it affects aliasing globally and invalidates all AV sets. */
1099 || get_reg_base_value (cur_reg + i)
1100 #ifdef LEAF_REGISTERS
1101 /* We can't use a non-leaf register if we're in a
1102 leaf function. */
1103 || (crtl->is_leaf
1104 && !LEAF_REGISTERS[cur_reg + i])
1105 #endif
1106 )
1107 break;
1108
1109 if (i >= 0)
1110 continue;
1111
1112 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1113 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1114 cur_reg);
1115
1116 /* If the CUR_REG passed all the checks above,
1117 then it's ok. */
1118 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1119 }
1120
1121 sel_hrd.regs_for_mode_ok[mode] = true;
1122 }
1123
1124 /* Init all register sets gathered in HRD. */
1125 static void
1126 init_hard_regs_data (void)
1127 {
1128 int cur_reg = 0;
1129 int cur_mode = 0;
1130
1131 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1132 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1133 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1134 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1135
1136 /* Initialize registers that are valid based on mode when this is
1137 really needed. */
1138 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1139 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1140
1141 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1142 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1143 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1144
1145 #ifdef STACK_REGS
1146 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1147
1148 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1149 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1150 #endif
1151 }
1152
1153 /* Mark hardware regs in REG_RENAME_P that are not suitable
1154 for renaming rhs in INSN due to hardware restrictions (register class,
1155 modes compatibility etc). This doesn't affect original insn's dest reg,
1156 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1157 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1158 Registers that are in used_regs are always marked in
1159 unavailable_hard_regs as well. */
1160
1161 static void
1162 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1163 regset used_regs ATTRIBUTE_UNUSED)
1164 {
1165 machine_mode mode;
1166 enum reg_class cl = NO_REGS;
1167 rtx orig_dest;
1168 unsigned cur_reg, regno;
1169 hard_reg_set_iterator hrsi;
1170
1171 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1172 gcc_assert (reg_rename_p);
1173
1174 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1175
1176 /* We have decided not to rename 'mem = something;' insns, as 'something'
1177 is usually a register. */
1178 if (!REG_P (orig_dest))
1179 return;
1180
1181 regno = REGNO (orig_dest);
1182
1183 /* If before reload, don't try to work with pseudos. */
1184 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1185 return;
1186
1187 if (reload_completed)
1188 cl = get_reg_class (def->orig_insn);
1189
1190 /* Stop if the original register is one of the fixed_regs, global_regs or
1191 frame pointer, or we could not discover its class. */
1192 if (fixed_regs[regno]
1193 || global_regs[regno]
1194 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1195 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1196 #else
1197 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1198 #endif
1199 || (reload_completed && cl == NO_REGS))
1200 {
1201 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1202
1203 /* Give a chance for original register, if it isn't in used_regs. */
1204 if (!def->crosses_call)
1205 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1206
1207 return;
1208 }
1209
1210 /* If something allocated on stack in this function, mark frame pointer
1211 register unavailable, considering also modes.
1212 FIXME: it is enough to do this once per all original defs. */
1213 if (frame_pointer_needed)
1214 {
1215 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1216 Pmode, FRAME_POINTER_REGNUM);
1217
1218 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1219 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1220 Pmode, HARD_FRAME_POINTER_REGNUM);
1221 }
1222
1223 #ifdef STACK_REGS
1224 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1225 is equivalent to as if all stack regs were in this set.
1226 I.e. no stack register can be renamed, and even if it's an original
1227 register here we make sure it won't be lifted over it's previous def
1228 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1229 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1230 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1231 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1232 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1233 sel_hrd.stack_regs);
1234 #endif
1235
1236 /* If there's a call on this path, make regs from call_used_reg_set
1237 unavailable. */
1238 if (def->crosses_call)
1239 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1240 call_used_reg_set);
1241
1242 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1243 but not register classes. */
1244 if (!reload_completed)
1245 return;
1246
1247 /* Leave regs as 'available' only from the current
1248 register class. */
1249 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1250 reg_class_contents[cl]);
1251
1252 mode = GET_MODE (orig_dest);
1253
1254 /* Leave only registers available for this mode. */
1255 if (!sel_hrd.regs_for_mode_ok[mode])
1256 init_regs_for_mode (mode);
1257 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1258 sel_hrd.regs_for_mode[mode]);
1259
1260 /* Exclude registers that are partially call clobbered. */
1261 if (def->crosses_call
1262 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1263 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1264 sel_hrd.regs_for_call_clobbered[mode]);
1265
1266 /* Leave only those that are ok to rename. */
1267 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1268 0, cur_reg, hrsi)
1269 {
1270 int nregs;
1271 int i;
1272
1273 nregs = hard_regno_nregs[cur_reg][mode];
1274 gcc_assert (nregs > 0);
1275
1276 for (i = nregs - 1; i >= 0; --i)
1277 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1278 break;
1279
1280 if (i >= 0)
1281 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1282 cur_reg);
1283 }
1284
1285 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1286 reg_rename_p->unavailable_hard_regs);
1287
1288 /* Regno is always ok from the renaming part of view, but it really
1289 could be in *unavailable_hard_regs already, so set it here instead
1290 of there. */
1291 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1292 }
1293
1294 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1295 best register more recently than REG2. */
1296 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1297
1298 /* Indicates the number of times renaming happened before the current one. */
1299 static int reg_rename_this_tick;
1300
1301 /* Choose the register among free, that is suitable for storing
1302 the rhs value.
1303
1304 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1305 originally appears. There could be multiple original operations
1306 for single rhs since we moving it up and merging along different
1307 paths.
1308
1309 Some code is adapted from regrename.c (regrename_optimize).
1310 If original register is available, function returns it.
1311 Otherwise it performs the checks, so the new register should
1312 comply with the following:
1313 - it should not violate any live ranges (such registers are in
1314 REG_RENAME_P->available_for_renaming set);
1315 - it should not be in the HARD_REGS_USED regset;
1316 - it should be in the class compatible with original uses;
1317 - it should not be clobbered through reference with different mode;
1318 - if we're in the leaf function, then the new register should
1319 not be in the LEAF_REGISTERS;
1320 - etc.
1321
1322 If several registers meet the conditions, the register with smallest
1323 tick is returned to achieve more even register allocation.
1324
1325 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1326
1327 If no register satisfies the above conditions, NULL_RTX is returned. */
1328 static rtx
1329 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1330 struct reg_rename *reg_rename_p,
1331 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1332 {
1333 int best_new_reg;
1334 unsigned cur_reg;
1335 machine_mode mode = VOIDmode;
1336 unsigned regno, i, n;
1337 hard_reg_set_iterator hrsi;
1338 def_list_iterator di;
1339 def_t def;
1340
1341 /* If original register is available, return it. */
1342 *is_orig_reg_p_ptr = true;
1343
1344 FOR_EACH_DEF (def, di, original_insns)
1345 {
1346 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1347
1348 gcc_assert (REG_P (orig_dest));
1349
1350 /* Check that all original operations have the same mode.
1351 This is done for the next loop; if we'd return from this
1352 loop, we'd check only part of them, but in this case
1353 it doesn't matter. */
1354 if (mode == VOIDmode)
1355 mode = GET_MODE (orig_dest);
1356 gcc_assert (mode == GET_MODE (orig_dest));
1357
1358 regno = REGNO (orig_dest);
1359 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1360 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1361 break;
1362
1363 /* All hard registers are available. */
1364 if (i == n)
1365 {
1366 gcc_assert (mode != VOIDmode);
1367
1368 /* Hard registers should not be shared. */
1369 return gen_rtx_REG (mode, regno);
1370 }
1371 }
1372
1373 *is_orig_reg_p_ptr = false;
1374 best_new_reg = -1;
1375
1376 /* Among all available regs choose the register that was
1377 allocated earliest. */
1378 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1379 0, cur_reg, hrsi)
1380 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1381 {
1382 /* Check that all hard regs for mode are available. */
1383 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1384 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1385 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1386 cur_reg + i))
1387 break;
1388
1389 if (i < n)
1390 continue;
1391
1392 /* All hard registers are available. */
1393 if (best_new_reg < 0
1394 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1395 {
1396 best_new_reg = cur_reg;
1397
1398 /* Return immediately when we know there's no better reg. */
1399 if (! reg_rename_tick[best_new_reg])
1400 break;
1401 }
1402 }
1403
1404 if (best_new_reg >= 0)
1405 {
1406 /* Use the check from the above loop. */
1407 gcc_assert (mode != VOIDmode);
1408 return gen_rtx_REG (mode, best_new_reg);
1409 }
1410
1411 return NULL_RTX;
1412 }
1413
1414 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1415 assumptions about available registers in the function. */
1416 static rtx
1417 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1418 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1419 {
1420 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1421 original_insns, is_orig_reg_p_ptr);
1422
1423 /* FIXME loop over hard_regno_nregs here. */
1424 gcc_assert (best_reg == NULL_RTX
1425 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1426
1427 return best_reg;
1428 }
1429
1430 /* Choose the pseudo register for storing rhs value. As this is supposed
1431 to work before reload, we return either the original register or make
1432 the new one. The parameters are the same that in choose_nest_reg_1
1433 functions, except that USED_REGS may contain pseudos.
1434 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1435
1436 TODO: take into account register pressure while doing this. Up to this
1437 moment, this function would never return NULL for pseudos, but we should
1438 not rely on this. */
1439 static rtx
1440 choose_best_pseudo_reg (regset used_regs,
1441 struct reg_rename *reg_rename_p,
1442 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1443 {
1444 def_list_iterator i;
1445 def_t def;
1446 machine_mode mode = VOIDmode;
1447 bool bad_hard_regs = false;
1448
1449 /* We should not use this after reload. */
1450 gcc_assert (!reload_completed);
1451
1452 /* If original register is available, return it. */
1453 *is_orig_reg_p_ptr = true;
1454
1455 FOR_EACH_DEF (def, i, original_insns)
1456 {
1457 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1458 int orig_regno;
1459
1460 gcc_assert (REG_P (dest));
1461
1462 /* Check that all original operations have the same mode. */
1463 if (mode == VOIDmode)
1464 mode = GET_MODE (dest);
1465 else
1466 gcc_assert (mode == GET_MODE (dest));
1467 orig_regno = REGNO (dest);
1468
1469 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1470 {
1471 if (orig_regno < FIRST_PSEUDO_REGISTER)
1472 {
1473 gcc_assert (df_regs_ever_live_p (orig_regno));
1474
1475 /* For hard registers, we have to check hardware imposed
1476 limitations (frame/stack registers, calls crossed). */
1477 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1478 orig_regno))
1479 {
1480 /* Don't let register cross a call if it doesn't already
1481 cross one. This condition is written in accordance with
1482 that in sched-deps.c sched_analyze_reg(). */
1483 if (!reg_rename_p->crosses_call
1484 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1485 return gen_rtx_REG (mode, orig_regno);
1486 }
1487
1488 bad_hard_regs = true;
1489 }
1490 else
1491 return dest;
1492 }
1493 }
1494
1495 *is_orig_reg_p_ptr = false;
1496
1497 /* We had some original hard registers that couldn't be used.
1498 Those were likely special. Don't try to create a pseudo. */
1499 if (bad_hard_regs)
1500 return NULL_RTX;
1501
1502 /* We haven't found a register from original operations. Get a new one.
1503 FIXME: control register pressure somehow. */
1504 {
1505 rtx new_reg = gen_reg_rtx (mode);
1506
1507 gcc_assert (mode != VOIDmode);
1508
1509 max_regno = max_reg_num ();
1510 maybe_extend_reg_info_p ();
1511 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1512
1513 return new_reg;
1514 }
1515 }
1516
1517 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1518 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1519 static void
1520 verify_target_availability (expr_t expr, regset used_regs,
1521 struct reg_rename *reg_rename_p)
1522 {
1523 unsigned n, i, regno;
1524 machine_mode mode;
1525 bool target_available, live_available, hard_available;
1526
1527 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1528 return;
1529
1530 regno = expr_dest_regno (expr);
1531 mode = GET_MODE (EXPR_LHS (expr));
1532 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1533 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1534
1535 live_available = hard_available = true;
1536 for (i = 0; i < n; i++)
1537 {
1538 if (bitmap_bit_p (used_regs, regno + i))
1539 live_available = false;
1540 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1541 hard_available = false;
1542 }
1543
1544 /* When target is not available, it may be due to hard register
1545 restrictions, e.g. crosses calls, so we check hard_available too. */
1546 if (target_available)
1547 gcc_assert (live_available);
1548 else
1549 /* Check only if we haven't scheduled something on the previous fence,
1550 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1551 and having more than one fence, we may end having targ_un in a block
1552 in which successors target register is actually available.
1553
1554 The last condition handles the case when a dependence from a call insn
1555 was created in sched-deps.c for insns with destination registers that
1556 never crossed a call before, but do cross one after our code motion.
1557
1558 FIXME: in the latter case, we just uselessly called find_used_regs,
1559 because we can't move this expression with any other register
1560 as well. */
1561 gcc_assert (scheduled_something_on_previous_fence || !live_available
1562 || !hard_available
1563 || (!reload_completed && reg_rename_p->crosses_call
1564 && REG_N_CALLS_CROSSED (regno) == 0));
1565 }
1566
1567 /* Collect unavailable registers due to liveness for EXPR from BNDS
1568 into USED_REGS. Save additional information about available
1569 registers and unavailable due to hardware restriction registers
1570 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1571 list. */
1572 static void
1573 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1574 struct reg_rename *reg_rename_p,
1575 def_list_t *original_insns)
1576 {
1577 for (; bnds; bnds = BLIST_NEXT (bnds))
1578 {
1579 bool res;
1580 av_set_t orig_ops = NULL;
1581 bnd_t bnd = BLIST_BND (bnds);
1582
1583 /* If the chosen best expr doesn't belong to current boundary,
1584 skip it. */
1585 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1586 continue;
1587
1588 /* Put in ORIG_OPS all exprs from this boundary that became
1589 RES on top. */
1590 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1591
1592 /* Compute used regs and OR it into the USED_REGS. */
1593 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1594 reg_rename_p, original_insns);
1595
1596 /* FIXME: the assert is true until we'd have several boundaries. */
1597 gcc_assert (res);
1598 av_set_clear (&orig_ops);
1599 }
1600 }
1601
1602 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1603 If BEST_REG is valid, replace LHS of EXPR with it. */
1604 static bool
1605 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1606 {
1607 /* Try whether we'll be able to generate the insn
1608 'dest := best_reg' at the place of the original operation. */
1609 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1610 {
1611 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1612
1613 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1614
1615 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1616 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1617 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1618 return false;
1619 }
1620
1621 /* Make sure that EXPR has the right destination
1622 register. */
1623 if (expr_dest_regno (expr) != REGNO (best_reg))
1624 replace_dest_with_reg_in_expr (expr, best_reg);
1625 else
1626 EXPR_TARGET_AVAILABLE (expr) = 1;
1627
1628 return true;
1629 }
1630
1631 /* Select and assign best register to EXPR searching from BNDS.
1632 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1633 Return FALSE if no register can be chosen, which could happen when:
1634 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1635 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1636 that are used on the moving path. */
1637 static bool
1638 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1639 {
1640 static struct reg_rename reg_rename_data;
1641
1642 regset used_regs;
1643 def_list_t original_insns = NULL;
1644 bool reg_ok;
1645
1646 *is_orig_reg_p = false;
1647
1648 /* Don't bother to do anything if this insn doesn't set any registers. */
1649 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1650 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1651 return true;
1652
1653 used_regs = get_clear_regset_from_pool ();
1654 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1655
1656 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1657 &original_insns);
1658
1659 #ifdef ENABLE_CHECKING
1660 /* If after reload, make sure we're working with hard regs here. */
1661 if (reload_completed)
1662 {
1663 reg_set_iterator rsi;
1664 unsigned i;
1665
1666 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1667 gcc_unreachable ();
1668 }
1669 #endif
1670
1671 if (EXPR_SEPARABLE_P (expr))
1672 {
1673 rtx best_reg = NULL_RTX;
1674 /* Check that we have computed availability of a target register
1675 correctly. */
1676 verify_target_availability (expr, used_regs, &reg_rename_data);
1677
1678 /* Turn everything in hard regs after reload. */
1679 if (reload_completed)
1680 {
1681 HARD_REG_SET hard_regs_used;
1682 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1683
1684 /* Join hard registers unavailable due to register class
1685 restrictions and live range intersection. */
1686 IOR_HARD_REG_SET (hard_regs_used,
1687 reg_rename_data.unavailable_hard_regs);
1688
1689 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1690 original_insns, is_orig_reg_p);
1691 }
1692 else
1693 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1694 original_insns, is_orig_reg_p);
1695
1696 if (!best_reg)
1697 reg_ok = false;
1698 else if (*is_orig_reg_p)
1699 {
1700 /* In case of unification BEST_REG may be different from EXPR's LHS
1701 when EXPR's LHS is unavailable, and there is another LHS among
1702 ORIGINAL_INSNS. */
1703 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1704 }
1705 else
1706 {
1707 /* Forbid renaming of low-cost insns. */
1708 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1709 reg_ok = false;
1710 else
1711 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1712 }
1713 }
1714 else
1715 {
1716 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1717 any of the HARD_REGS_USED set. */
1718 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1719 reg_rename_data.unavailable_hard_regs))
1720 {
1721 reg_ok = false;
1722 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1723 }
1724 else
1725 {
1726 reg_ok = true;
1727 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1728 }
1729 }
1730
1731 ilist_clear (&original_insns);
1732 return_regset_to_pool (used_regs);
1733
1734 return reg_ok;
1735 }
1736 \f
1737
1738 /* Return true if dependence described by DS can be overcomed. */
1739 static bool
1740 can_speculate_dep_p (ds_t ds)
1741 {
1742 if (spec_info == NULL)
1743 return false;
1744
1745 /* Leave only speculative data. */
1746 ds &= SPECULATIVE;
1747
1748 if (ds == 0)
1749 return false;
1750
1751 {
1752 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1753 that we can overcome. */
1754 ds_t spec_mask = spec_info->mask;
1755
1756 if ((ds & spec_mask) != ds)
1757 return false;
1758 }
1759
1760 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1761 return false;
1762
1763 return true;
1764 }
1765
1766 /* Get a speculation check instruction.
1767 C_EXPR is a speculative expression,
1768 CHECK_DS describes speculations that should be checked,
1769 ORIG_INSN is the original non-speculative insn in the stream. */
1770 static insn_t
1771 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1772 {
1773 rtx check_pattern;
1774 rtx_insn *insn_rtx;
1775 insn_t insn;
1776 basic_block recovery_block;
1777 rtx_insn *label;
1778
1779 /* Create a recovery block if target is going to emit branchy check, or if
1780 ORIG_INSN was speculative already. */
1781 if (targetm.sched.needs_block_p (check_ds)
1782 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1783 {
1784 recovery_block = sel_create_recovery_block (orig_insn);
1785 label = BB_HEAD (recovery_block);
1786 }
1787 else
1788 {
1789 recovery_block = NULL;
1790 label = NULL;
1791 }
1792
1793 /* Get pattern of the check. */
1794 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1795 check_ds);
1796
1797 gcc_assert (check_pattern != NULL);
1798
1799 /* Emit check. */
1800 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1801
1802 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1803 INSN_SEQNO (orig_insn), orig_insn);
1804
1805 /* Make check to be non-speculative. */
1806 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1807 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1808
1809 /* Decrease priority of check by difference of load/check instruction
1810 latencies. */
1811 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1812 - sel_vinsn_cost (INSN_VINSN (insn)));
1813
1814 /* Emit copy of original insn (though with replaced target register,
1815 if needed) to the recovery block. */
1816 if (recovery_block != NULL)
1817 {
1818 rtx twin_rtx;
1819
1820 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1821 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1822 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1823 INSN_EXPR (orig_insn),
1824 INSN_SEQNO (insn),
1825 bb_note (recovery_block));
1826 }
1827
1828 /* If we've generated a data speculation check, make sure
1829 that all the bookkeeping instruction we'll create during
1830 this move_op () will allocate an ALAT entry so that the
1831 check won't fail.
1832 In case of control speculation we must convert C_EXPR to control
1833 speculative mode, because failing to do so will bring us an exception
1834 thrown by the non-control-speculative load. */
1835 check_ds = ds_get_max_dep_weak (check_ds);
1836 speculate_expr (c_expr, check_ds);
1837
1838 return insn;
1839 }
1840
1841 /* True when INSN is a "regN = regN" copy. */
1842 static bool
1843 identical_copy_p (rtx_insn *insn)
1844 {
1845 rtx lhs, rhs, pat;
1846
1847 pat = PATTERN (insn);
1848
1849 if (GET_CODE (pat) != SET)
1850 return false;
1851
1852 lhs = SET_DEST (pat);
1853 if (!REG_P (lhs))
1854 return false;
1855
1856 rhs = SET_SRC (pat);
1857 if (!REG_P (rhs))
1858 return false;
1859
1860 return REGNO (lhs) == REGNO (rhs);
1861 }
1862
1863 /* Undo all transformations on *AV_PTR that were done when
1864 moving through INSN. */
1865 static void
1866 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1867 {
1868 av_set_iterator av_iter;
1869 expr_t expr;
1870 av_set_t new_set = NULL;
1871
1872 /* First, kill any EXPR that uses registers set by an insn. This is
1873 required for correctness. */
1874 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1875 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1876 && bitmap_intersect_p (INSN_REG_SETS (insn),
1877 VINSN_REG_USES (EXPR_VINSN (expr)))
1878 /* When an insn looks like 'r1 = r1', we could substitute through
1879 it, but the above condition will still hold. This happened with
1880 gcc.c-torture/execute/961125-1.c. */
1881 && !identical_copy_p (insn))
1882 {
1883 if (sched_verbose >= 6)
1884 sel_print ("Expr %d removed due to use/set conflict\n",
1885 INSN_UID (EXPR_INSN_RTX (expr)));
1886 av_set_iter_remove (&av_iter);
1887 }
1888
1889 /* Undo transformations looking at the history vector. */
1890 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1891 {
1892 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1893 insn, EXPR_VINSN (expr), true);
1894
1895 if (index >= 0)
1896 {
1897 expr_history_def *phist;
1898
1899 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1900
1901 switch (phist->type)
1902 {
1903 case TRANS_SPECULATION:
1904 {
1905 ds_t old_ds, new_ds;
1906
1907 /* Compute the difference between old and new speculative
1908 statuses: that's what we need to check.
1909 Earlier we used to assert that the status will really
1910 change. This no longer works because only the probability
1911 bits in the status may have changed during compute_av_set,
1912 and in the case of merging different probabilities of the
1913 same speculative status along different paths we do not
1914 record this in the history vector. */
1915 old_ds = phist->spec_ds;
1916 new_ds = EXPR_SPEC_DONE_DS (expr);
1917
1918 old_ds &= SPECULATIVE;
1919 new_ds &= SPECULATIVE;
1920 new_ds &= ~old_ds;
1921
1922 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1923 break;
1924 }
1925 case TRANS_SUBSTITUTION:
1926 {
1927 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1928 vinsn_t new_vi;
1929 bool add = true;
1930
1931 new_vi = phist->old_expr_vinsn;
1932
1933 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1934 == EXPR_SEPARABLE_P (expr));
1935 copy_expr (tmp_expr, expr);
1936
1937 if (vinsn_equal_p (phist->new_expr_vinsn,
1938 EXPR_VINSN (tmp_expr)))
1939 change_vinsn_in_expr (tmp_expr, new_vi);
1940 else
1941 /* This happens when we're unsubstituting on a bookkeeping
1942 copy, which was in turn substituted. The history is wrong
1943 in this case. Do it the hard way. */
1944 add = substitute_reg_in_expr (tmp_expr, insn, true);
1945 if (add)
1946 av_set_add (&new_set, tmp_expr);
1947 clear_expr (tmp_expr);
1948 break;
1949 }
1950 default:
1951 gcc_unreachable ();
1952 }
1953 }
1954
1955 }
1956
1957 av_set_union_and_clear (av_ptr, &new_set, NULL);
1958 }
1959 \f
1960
1961 /* Moveup_* helpers for code motion and computing av sets. */
1962
1963 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1964 The difference from the below function is that only substitution is
1965 performed. */
1966 static enum MOVEUP_EXPR_CODE
1967 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1968 {
1969 vinsn_t vi = EXPR_VINSN (expr);
1970 ds_t *has_dep_p;
1971 ds_t full_ds;
1972
1973 /* Do this only inside insn group. */
1974 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1975
1976 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1977 if (full_ds == 0)
1978 return MOVEUP_EXPR_SAME;
1979
1980 /* Substitution is the possible choice in this case. */
1981 if (has_dep_p[DEPS_IN_RHS])
1982 {
1983 /* Can't substitute UNIQUE VINSNs. */
1984 gcc_assert (!VINSN_UNIQUE_P (vi));
1985
1986 if (can_substitute_through_p (through_insn,
1987 has_dep_p[DEPS_IN_RHS])
1988 && substitute_reg_in_expr (expr, through_insn, false))
1989 {
1990 EXPR_WAS_SUBSTITUTED (expr) = true;
1991 return MOVEUP_EXPR_CHANGED;
1992 }
1993
1994 /* Don't care about this, as even true dependencies may be allowed
1995 in an insn group. */
1996 return MOVEUP_EXPR_SAME;
1997 }
1998
1999 /* This can catch output dependencies in COND_EXECs. */
2000 if (has_dep_p[DEPS_IN_INSN])
2001 return MOVEUP_EXPR_NULL;
2002
2003 /* This is either an output or an anti dependence, which usually have
2004 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2005 will fix this. */
2006 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2007 return MOVEUP_EXPR_AS_RHS;
2008 }
2009
2010 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2011 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2012 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2013 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2014 && !sel_insn_is_speculation_check (through_insn))
2015
2016 /* True when a conflict on a target register was found during moveup_expr. */
2017 static bool was_target_conflict = false;
2018
2019 /* Return true when moving a debug INSN across THROUGH_INSN will
2020 create a bookkeeping block. We don't want to create such blocks,
2021 for they would cause codegen differences between compilations with
2022 and without debug info. */
2023
2024 static bool
2025 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2026 insn_t through_insn)
2027 {
2028 basic_block bbi, bbt;
2029 edge e1, e2;
2030 edge_iterator ei1, ei2;
2031
2032 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2033 {
2034 if (sched_verbose >= 9)
2035 sel_print ("no bookkeeping required: ");
2036 return FALSE;
2037 }
2038
2039 bbi = BLOCK_FOR_INSN (insn);
2040
2041 if (EDGE_COUNT (bbi->preds) == 1)
2042 {
2043 if (sched_verbose >= 9)
2044 sel_print ("only one pred edge: ");
2045 return TRUE;
2046 }
2047
2048 bbt = BLOCK_FOR_INSN (through_insn);
2049
2050 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2051 {
2052 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2053 {
2054 if (find_block_for_bookkeeping (e1, e2, TRUE))
2055 {
2056 if (sched_verbose >= 9)
2057 sel_print ("found existing block: ");
2058 return FALSE;
2059 }
2060 }
2061 }
2062
2063 if (sched_verbose >= 9)
2064 sel_print ("would create bookkeeping block: ");
2065
2066 return TRUE;
2067 }
2068
2069 /* Return true when the conflict with newly created implicit clobbers
2070 between EXPR and THROUGH_INSN is found because of renaming. */
2071 static bool
2072 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2073 {
2074 HARD_REG_SET temp;
2075 rtx_insn *insn;
2076 rtx reg, rhs, pat;
2077 hard_reg_set_iterator hrsi;
2078 unsigned regno;
2079 bool valid;
2080
2081 /* Make a new pseudo register. */
2082 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2083 max_regno = max_reg_num ();
2084 maybe_extend_reg_info_p ();
2085
2086 /* Validate a change and bail out early. */
2087 insn = EXPR_INSN_RTX (expr);
2088 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2089 valid = verify_changes (0);
2090 cancel_changes (0);
2091 if (!valid)
2092 {
2093 if (sched_verbose >= 6)
2094 sel_print ("implicit clobbers failed validation, ");
2095 return true;
2096 }
2097
2098 /* Make a new insn with it. */
2099 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2100 pat = gen_rtx_SET (reg, rhs);
2101 start_sequence ();
2102 insn = emit_insn (pat);
2103 end_sequence ();
2104
2105 /* Calculate implicit clobbers. */
2106 extract_insn (insn);
2107 preprocess_constraints (insn);
2108 ira_implicitly_set_insn_hard_regs (&temp);
2109 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2110
2111 /* If any implicit clobber registers intersect with regular ones in
2112 through_insn, we have a dependency and thus bail out. */
2113 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2114 {
2115 vinsn_t vi = INSN_VINSN (through_insn);
2116 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2117 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2118 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2119 return true;
2120 }
2121
2122 return false;
2123 }
2124
2125 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2126 performing necessary transformations. Record the type of transformation
2127 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2128 permit all dependencies except true ones, and try to remove those
2129 too via forward substitution. All cases when a non-eliminable
2130 non-zero cost dependency exists inside an insn group will be fixed
2131 in tick_check_p instead. */
2132 static enum MOVEUP_EXPR_CODE
2133 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2134 enum local_trans_type *ptrans_type)
2135 {
2136 vinsn_t vi = EXPR_VINSN (expr);
2137 insn_t insn = VINSN_INSN_RTX (vi);
2138 bool was_changed = false;
2139 bool as_rhs = false;
2140 ds_t *has_dep_p;
2141 ds_t full_ds;
2142
2143 /* ??? We use dependencies of non-debug insns on debug insns to
2144 indicate that the debug insns need to be reset if the non-debug
2145 insn is pulled ahead of it. It's hard to figure out how to
2146 introduce such a notion in sel-sched, but it already fails to
2147 support debug insns in other ways, so we just go ahead and
2148 let the deug insns go corrupt for now. */
2149 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2150 return MOVEUP_EXPR_SAME;
2151
2152 /* When inside_insn_group, delegate to the helper. */
2153 if (inside_insn_group)
2154 return moveup_expr_inside_insn_group (expr, through_insn);
2155
2156 /* Deal with unique insns and control dependencies. */
2157 if (VINSN_UNIQUE_P (vi))
2158 {
2159 /* We can move jumps without side-effects or jumps that are
2160 mutually exclusive with instruction THROUGH_INSN (all in cases
2161 dependencies allow to do so and jump is not speculative). */
2162 if (control_flow_insn_p (insn))
2163 {
2164 basic_block fallthru_bb;
2165
2166 /* Do not move checks and do not move jumps through other
2167 jumps. */
2168 if (control_flow_insn_p (through_insn)
2169 || sel_insn_is_speculation_check (insn))
2170 return MOVEUP_EXPR_NULL;
2171
2172 /* Don't move jumps through CFG joins. */
2173 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2174 return MOVEUP_EXPR_NULL;
2175
2176 /* The jump should have a clear fallthru block, and
2177 this block should be in the current region. */
2178 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2179 || ! in_current_region_p (fallthru_bb))
2180 return MOVEUP_EXPR_NULL;
2181
2182 /* And it should be mutually exclusive with through_insn. */
2183 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2184 && ! DEBUG_INSN_P (through_insn))
2185 return MOVEUP_EXPR_NULL;
2186 }
2187
2188 /* Don't move what we can't move. */
2189 if (EXPR_CANT_MOVE (expr)
2190 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2191 return MOVEUP_EXPR_NULL;
2192
2193 /* Don't move SCHED_GROUP instruction through anything.
2194 If we don't force this, then it will be possible to start
2195 scheduling a sched_group before all its dependencies are
2196 resolved.
2197 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2198 as late as possible through rank_for_schedule. */
2199 if (SCHED_GROUP_P (insn))
2200 return MOVEUP_EXPR_NULL;
2201 }
2202 else
2203 gcc_assert (!control_flow_insn_p (insn));
2204
2205 /* Don't move debug insns if this would require bookkeeping. */
2206 if (DEBUG_INSN_P (insn)
2207 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2208 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2209 return MOVEUP_EXPR_NULL;
2210
2211 /* Deal with data dependencies. */
2212 was_target_conflict = false;
2213 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2214 if (full_ds == 0)
2215 {
2216 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2217 return MOVEUP_EXPR_SAME;
2218 }
2219 else
2220 {
2221 /* We can move UNIQUE insn up only as a whole and unchanged,
2222 so it shouldn't have any dependencies. */
2223 if (VINSN_UNIQUE_P (vi))
2224 return MOVEUP_EXPR_NULL;
2225 }
2226
2227 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2228 {
2229 int res;
2230
2231 res = speculate_expr (expr, full_ds);
2232 if (res >= 0)
2233 {
2234 /* Speculation was successful. */
2235 full_ds = 0;
2236 was_changed = (res > 0);
2237 if (res == 2)
2238 was_target_conflict = true;
2239 if (ptrans_type)
2240 *ptrans_type = TRANS_SPECULATION;
2241 sel_clear_has_dependence ();
2242 }
2243 }
2244
2245 if (has_dep_p[DEPS_IN_INSN])
2246 /* We have some dependency that cannot be discarded. */
2247 return MOVEUP_EXPR_NULL;
2248
2249 if (has_dep_p[DEPS_IN_LHS])
2250 {
2251 /* Only separable insns can be moved up with the new register.
2252 Anyways, we should mark that the original register is
2253 unavailable. */
2254 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2255 return MOVEUP_EXPR_NULL;
2256
2257 /* When renaming a hard register to a pseudo before reload, extra
2258 dependencies can occur from the implicit clobbers of the insn.
2259 Filter out such cases here. */
2260 if (!reload_completed && REG_P (EXPR_LHS (expr))
2261 && HARD_REGISTER_P (EXPR_LHS (expr))
2262 && implicit_clobber_conflict_p (through_insn, expr))
2263 {
2264 if (sched_verbose >= 6)
2265 sel_print ("implicit clobbers conflict detected, ");
2266 return MOVEUP_EXPR_NULL;
2267 }
2268 EXPR_TARGET_AVAILABLE (expr) = false;
2269 was_target_conflict = true;
2270 as_rhs = true;
2271 }
2272
2273 /* At this point we have either separable insns, that will be lifted
2274 up only as RHSes, or non-separable insns with no dependency in lhs.
2275 If dependency is in RHS, then try to perform substitution and move up
2276 substituted RHS:
2277
2278 Ex. 1: Ex.2
2279 y = x; y = x;
2280 z = y*2; y = y*2;
2281
2282 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2283 moved above y=x assignment as z=x*2.
2284
2285 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2286 side can be moved because of the output dependency. The operation was
2287 cropped to its rhs above. */
2288 if (has_dep_p[DEPS_IN_RHS])
2289 {
2290 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2291
2292 /* Can't substitute UNIQUE VINSNs. */
2293 gcc_assert (!VINSN_UNIQUE_P (vi));
2294
2295 if (can_speculate_dep_p (*rhs_dsp))
2296 {
2297 int res;
2298
2299 res = speculate_expr (expr, *rhs_dsp);
2300 if (res >= 0)
2301 {
2302 /* Speculation was successful. */
2303 *rhs_dsp = 0;
2304 was_changed = (res > 0);
2305 if (res == 2)
2306 was_target_conflict = true;
2307 if (ptrans_type)
2308 *ptrans_type = TRANS_SPECULATION;
2309 }
2310 else
2311 return MOVEUP_EXPR_NULL;
2312 }
2313 else if (can_substitute_through_p (through_insn,
2314 *rhs_dsp)
2315 && substitute_reg_in_expr (expr, through_insn, false))
2316 {
2317 /* ??? We cannot perform substitution AND speculation on the same
2318 insn. */
2319 gcc_assert (!was_changed);
2320 was_changed = true;
2321 if (ptrans_type)
2322 *ptrans_type = TRANS_SUBSTITUTION;
2323 EXPR_WAS_SUBSTITUTED (expr) = true;
2324 }
2325 else
2326 return MOVEUP_EXPR_NULL;
2327 }
2328
2329 /* Don't move trapping insns through jumps.
2330 This check should be at the end to give a chance to control speculation
2331 to perform its duties. */
2332 if (CANT_MOVE_TRAPPING (expr, through_insn))
2333 return MOVEUP_EXPR_NULL;
2334
2335 return (was_changed
2336 ? MOVEUP_EXPR_CHANGED
2337 : (as_rhs
2338 ? MOVEUP_EXPR_AS_RHS
2339 : MOVEUP_EXPR_SAME));
2340 }
2341
2342 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2343 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2344 that can exist within a parallel group. Write to RES the resulting
2345 code for moveup_expr. */
2346 static bool
2347 try_bitmap_cache (expr_t expr, insn_t insn,
2348 bool inside_insn_group,
2349 enum MOVEUP_EXPR_CODE *res)
2350 {
2351 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2352
2353 /* First check whether we've analyzed this situation already. */
2354 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2355 {
2356 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2357 {
2358 if (sched_verbose >= 6)
2359 sel_print ("removed (cached)\n");
2360 *res = MOVEUP_EXPR_NULL;
2361 return true;
2362 }
2363 else
2364 {
2365 if (sched_verbose >= 6)
2366 sel_print ("unchanged (cached)\n");
2367 *res = MOVEUP_EXPR_SAME;
2368 return true;
2369 }
2370 }
2371 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2372 {
2373 if (inside_insn_group)
2374 {
2375 if (sched_verbose >= 6)
2376 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2377 *res = MOVEUP_EXPR_SAME;
2378 return true;
2379
2380 }
2381 else
2382 EXPR_TARGET_AVAILABLE (expr) = false;
2383
2384 /* This is the only case when propagation result can change over time,
2385 as we can dynamically switch off scheduling as RHS. In this case,
2386 just check the flag to reach the correct decision. */
2387 if (enable_schedule_as_rhs_p)
2388 {
2389 if (sched_verbose >= 6)
2390 sel_print ("unchanged (as RHS, cached)\n");
2391 *res = MOVEUP_EXPR_AS_RHS;
2392 return true;
2393 }
2394 else
2395 {
2396 if (sched_verbose >= 6)
2397 sel_print ("removed (cached as RHS, but renaming"
2398 " is now disabled)\n");
2399 *res = MOVEUP_EXPR_NULL;
2400 return true;
2401 }
2402 }
2403
2404 return false;
2405 }
2406
2407 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2408 if successful. Write to RES the resulting code for moveup_expr. */
2409 static bool
2410 try_transformation_cache (expr_t expr, insn_t insn,
2411 enum MOVEUP_EXPR_CODE *res)
2412 {
2413 struct transformed_insns *pti
2414 = (struct transformed_insns *)
2415 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2416 &EXPR_VINSN (expr),
2417 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2418 if (pti)
2419 {
2420 /* This EXPR was already moved through this insn and was
2421 changed as a result. Fetch the proper data from
2422 the hashtable. */
2423 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2424 INSN_UID (insn), pti->type,
2425 pti->vinsn_old, pti->vinsn_new,
2426 EXPR_SPEC_DONE_DS (expr));
2427
2428 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2429 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2430 change_vinsn_in_expr (expr, pti->vinsn_new);
2431 if (pti->was_target_conflict)
2432 EXPR_TARGET_AVAILABLE (expr) = false;
2433 if (pti->type == TRANS_SPECULATION)
2434 {
2435 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2436 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2437 }
2438
2439 if (sched_verbose >= 6)
2440 {
2441 sel_print ("changed (cached): ");
2442 dump_expr (expr);
2443 sel_print ("\n");
2444 }
2445
2446 *res = MOVEUP_EXPR_CHANGED;
2447 return true;
2448 }
2449
2450 return false;
2451 }
2452
2453 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2454 static void
2455 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2456 enum MOVEUP_EXPR_CODE res)
2457 {
2458 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2459
2460 /* Do not cache result of propagating jumps through an insn group,
2461 as it is always true, which is not useful outside the group. */
2462 if (inside_insn_group)
2463 return;
2464
2465 if (res == MOVEUP_EXPR_NULL)
2466 {
2467 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2468 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2469 }
2470 else if (res == MOVEUP_EXPR_SAME)
2471 {
2472 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2473 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2474 }
2475 else if (res == MOVEUP_EXPR_AS_RHS)
2476 {
2477 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2478 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2479 }
2480 else
2481 gcc_unreachable ();
2482 }
2483
2484 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2485 and transformation type TRANS_TYPE. */
2486 static void
2487 update_transformation_cache (expr_t expr, insn_t insn,
2488 bool inside_insn_group,
2489 enum local_trans_type trans_type,
2490 vinsn_t expr_old_vinsn)
2491 {
2492 struct transformed_insns *pti;
2493
2494 if (inside_insn_group)
2495 return;
2496
2497 pti = XNEW (struct transformed_insns);
2498 pti->vinsn_old = expr_old_vinsn;
2499 pti->vinsn_new = EXPR_VINSN (expr);
2500 pti->type = trans_type;
2501 pti->was_target_conflict = was_target_conflict;
2502 pti->ds = EXPR_SPEC_DONE_DS (expr);
2503 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2504 vinsn_attach (pti->vinsn_old);
2505 vinsn_attach (pti->vinsn_new);
2506 *((struct transformed_insns **)
2507 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2508 pti, VINSN_HASH_RTX (expr_old_vinsn),
2509 INSERT)) = pti;
2510 }
2511
2512 /* Same as moveup_expr, but first looks up the result of
2513 transformation in caches. */
2514 static enum MOVEUP_EXPR_CODE
2515 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2516 {
2517 enum MOVEUP_EXPR_CODE res;
2518 bool got_answer = false;
2519
2520 if (sched_verbose >= 6)
2521 {
2522 sel_print ("Moving ");
2523 dump_expr (expr);
2524 sel_print (" through %d: ", INSN_UID (insn));
2525 }
2526
2527 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2528 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2529 == EXPR_INSN_RTX (expr)))
2530 /* Don't use cached information for debug insns that are heads of
2531 basic blocks. */;
2532 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2533 /* When inside insn group, we do not want remove stores conflicting
2534 with previosly issued loads. */
2535 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2536 else if (try_transformation_cache (expr, insn, &res))
2537 got_answer = true;
2538
2539 if (! got_answer)
2540 {
2541 /* Invoke moveup_expr and record the results. */
2542 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2543 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2544 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2545 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2546 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2547
2548 /* ??? Invent something better than this. We can't allow old_vinsn
2549 to go, we need it for the history vector. */
2550 vinsn_attach (expr_old_vinsn);
2551
2552 res = moveup_expr (expr, insn, inside_insn_group,
2553 &trans_type);
2554 switch (res)
2555 {
2556 case MOVEUP_EXPR_NULL:
2557 update_bitmap_cache (expr, insn, inside_insn_group, res);
2558 if (sched_verbose >= 6)
2559 sel_print ("removed\n");
2560 break;
2561
2562 case MOVEUP_EXPR_SAME:
2563 update_bitmap_cache (expr, insn, inside_insn_group, res);
2564 if (sched_verbose >= 6)
2565 sel_print ("unchanged\n");
2566 break;
2567
2568 case MOVEUP_EXPR_AS_RHS:
2569 gcc_assert (!unique_p || inside_insn_group);
2570 update_bitmap_cache (expr, insn, inside_insn_group, res);
2571 if (sched_verbose >= 6)
2572 sel_print ("unchanged (as RHS)\n");
2573 break;
2574
2575 case MOVEUP_EXPR_CHANGED:
2576 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2577 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2578 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2579 INSN_UID (insn), trans_type,
2580 expr_old_vinsn, EXPR_VINSN (expr),
2581 expr_old_spec_ds);
2582 update_transformation_cache (expr, insn, inside_insn_group,
2583 trans_type, expr_old_vinsn);
2584 if (sched_verbose >= 6)
2585 {
2586 sel_print ("changed: ");
2587 dump_expr (expr);
2588 sel_print ("\n");
2589 }
2590 break;
2591 default:
2592 gcc_unreachable ();
2593 }
2594
2595 vinsn_detach (expr_old_vinsn);
2596 }
2597
2598 return res;
2599 }
2600
2601 /* Moves an av set AVP up through INSN, performing necessary
2602 transformations. */
2603 static void
2604 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2605 {
2606 av_set_iterator i;
2607 expr_t expr;
2608
2609 FOR_EACH_EXPR_1 (expr, i, avp)
2610 {
2611
2612 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2613 {
2614 case MOVEUP_EXPR_SAME:
2615 case MOVEUP_EXPR_AS_RHS:
2616 break;
2617
2618 case MOVEUP_EXPR_NULL:
2619 av_set_iter_remove (&i);
2620 break;
2621
2622 case MOVEUP_EXPR_CHANGED:
2623 expr = merge_with_other_exprs (avp, &i, expr);
2624 break;
2625
2626 default:
2627 gcc_unreachable ();
2628 }
2629 }
2630 }
2631
2632 /* Moves AVP set along PATH. */
2633 static void
2634 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2635 {
2636 int last_cycle;
2637
2638 if (sched_verbose >= 6)
2639 sel_print ("Moving expressions up in the insn group...\n");
2640 if (! path)
2641 return;
2642 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2643 while (path
2644 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2645 {
2646 moveup_set_expr (avp, ILIST_INSN (path), true);
2647 path = ILIST_NEXT (path);
2648 }
2649 }
2650
2651 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2652 static bool
2653 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2654 {
2655 expr_def _tmp, *tmp = &_tmp;
2656 int last_cycle;
2657 bool res = true;
2658
2659 copy_expr_onside (tmp, expr);
2660 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2661 while (path
2662 && res
2663 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2664 {
2665 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2666 != MOVEUP_EXPR_NULL);
2667 path = ILIST_NEXT (path);
2668 }
2669
2670 if (res)
2671 {
2672 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2673 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2674
2675 if (tmp_vinsn != expr_vliw_vinsn)
2676 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2677 }
2678
2679 clear_expr (tmp);
2680 return res;
2681 }
2682 \f
2683
2684 /* Functions that compute av and lv sets. */
2685
2686 /* Returns true if INSN is not a downward continuation of the given path P in
2687 the current stage. */
2688 static bool
2689 is_ineligible_successor (insn_t insn, ilist_t p)
2690 {
2691 insn_t prev_insn;
2692
2693 /* Check if insn is not deleted. */
2694 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2695 gcc_unreachable ();
2696 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2697 gcc_unreachable ();
2698
2699 /* If it's the first insn visited, then the successor is ok. */
2700 if (!p)
2701 return false;
2702
2703 prev_insn = ILIST_INSN (p);
2704
2705 if (/* a backward edge. */
2706 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2707 /* is already visited. */
2708 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2709 && (ilist_is_in_p (p, insn)
2710 /* We can reach another fence here and still seqno of insn
2711 would be equal to seqno of prev_insn. This is possible
2712 when prev_insn is a previously created bookkeeping copy.
2713 In that case it'd get a seqno of insn. Thus, check here
2714 whether insn is in current fence too. */
2715 || IN_CURRENT_FENCE_P (insn)))
2716 /* Was already scheduled on this round. */
2717 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2718 && IN_CURRENT_FENCE_P (insn))
2719 /* An insn from another fence could also be
2720 scheduled earlier even if this insn is not in
2721 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2722 || (!pipelining_p
2723 && INSN_SCHED_TIMES (insn) > 0))
2724 return true;
2725 else
2726 return false;
2727 }
2728
2729 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2730 of handling multiple successors and properly merging its av_sets. P is
2731 the current path traversed. WS is the size of lookahead window.
2732 Return the av set computed. */
2733 static av_set_t
2734 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2735 {
2736 struct succs_info *sinfo;
2737 av_set_t expr_in_all_succ_branches = NULL;
2738 int is;
2739 insn_t succ, zero_succ = NULL;
2740 av_set_t av1 = NULL;
2741
2742 gcc_assert (sel_bb_end_p (insn));
2743
2744 /* Find different kind of successors needed for correct computing of
2745 SPEC and TARGET_AVAILABLE attributes. */
2746 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2747
2748 /* Debug output. */
2749 if (sched_verbose >= 6)
2750 {
2751 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2752 dump_insn_vector (sinfo->succs_ok);
2753 sel_print ("\n");
2754 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2755 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2756 }
2757
2758 /* Add insn to the tail of current path. */
2759 ilist_add (&p, insn);
2760
2761 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2762 {
2763 av_set_t succ_set;
2764
2765 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2766 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2767
2768 av_set_split_usefulness (succ_set,
2769 sinfo->probs_ok[is],
2770 sinfo->all_prob);
2771
2772 if (sinfo->all_succs_n > 1)
2773 {
2774 /* Find EXPR'es that came from *all* successors and save them
2775 into expr_in_all_succ_branches. This set will be used later
2776 for calculating speculation attributes of EXPR'es. */
2777 if (is == 0)
2778 {
2779 expr_in_all_succ_branches = av_set_copy (succ_set);
2780
2781 /* Remember the first successor for later. */
2782 zero_succ = succ;
2783 }
2784 else
2785 {
2786 av_set_iterator i;
2787 expr_t expr;
2788
2789 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2790 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2791 av_set_iter_remove (&i);
2792 }
2793 }
2794
2795 /* Union the av_sets. Check liveness restrictions on target registers
2796 in special case of two successors. */
2797 if (sinfo->succs_ok_n == 2 && is == 1)
2798 {
2799 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2800 basic_block bb1 = BLOCK_FOR_INSN (succ);
2801
2802 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2803 av_set_union_and_live (&av1, &succ_set,
2804 BB_LV_SET (bb0),
2805 BB_LV_SET (bb1),
2806 insn);
2807 }
2808 else
2809 av_set_union_and_clear (&av1, &succ_set, insn);
2810 }
2811
2812 /* Check liveness restrictions via hard way when there are more than
2813 two successors. */
2814 if (sinfo->succs_ok_n > 2)
2815 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2816 {
2817 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2818
2819 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2820 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2821 BB_LV_SET (succ_bb));
2822 }
2823
2824 /* Finally, check liveness restrictions on paths leaving the region. */
2825 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2826 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2827 mark_unavailable_targets
2828 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2829
2830 if (sinfo->all_succs_n > 1)
2831 {
2832 av_set_iterator i;
2833 expr_t expr;
2834
2835 /* Increase the spec attribute of all EXPR'es that didn't come
2836 from all successors. */
2837 FOR_EACH_EXPR (expr, i, av1)
2838 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2839 EXPR_SPEC (expr)++;
2840
2841 av_set_clear (&expr_in_all_succ_branches);
2842
2843 /* Do not move conditional branches through other
2844 conditional branches. So, remove all conditional
2845 branches from av_set if current operator is a conditional
2846 branch. */
2847 av_set_substract_cond_branches (&av1);
2848 }
2849
2850 ilist_remove (&p);
2851 free_succs_info (sinfo);
2852
2853 if (sched_verbose >= 6)
2854 {
2855 sel_print ("av_succs (%d): ", INSN_UID (insn));
2856 dump_av_set (av1);
2857 sel_print ("\n");
2858 }
2859
2860 return av1;
2861 }
2862
2863 /* This function computes av_set for the FIRST_INSN by dragging valid
2864 av_set through all basic block insns either from the end of basic block
2865 (computed using compute_av_set_at_bb_end) or from the insn on which
2866 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2867 below the basic block and handling conditional branches.
2868 FIRST_INSN - the basic block head, P - path consisting of the insns
2869 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2870 and bb ends are added to the path), WS - current window size,
2871 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2872 static av_set_t
2873 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2874 bool need_copy_p)
2875 {
2876 insn_t cur_insn;
2877 int end_ws = ws;
2878 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2879 insn_t after_bb_end = NEXT_INSN (bb_end);
2880 insn_t last_insn;
2881 av_set_t av = NULL;
2882 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2883
2884 /* Return NULL if insn is not on the legitimate downward path. */
2885 if (is_ineligible_successor (first_insn, p))
2886 {
2887 if (sched_verbose >= 6)
2888 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2889
2890 return NULL;
2891 }
2892
2893 /* If insn already has valid av(insn) computed, just return it. */
2894 if (AV_SET_VALID_P (first_insn))
2895 {
2896 av_set_t av_set;
2897
2898 if (sel_bb_head_p (first_insn))
2899 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2900 else
2901 av_set = NULL;
2902
2903 if (sched_verbose >= 6)
2904 {
2905 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2906 dump_av_set (av_set);
2907 sel_print ("\n");
2908 }
2909
2910 return need_copy_p ? av_set_copy (av_set) : av_set;
2911 }
2912
2913 ilist_add (&p, first_insn);
2914
2915 /* As the result after this loop have completed, in LAST_INSN we'll
2916 have the insn which has valid av_set to start backward computation
2917 from: it either will be NULL because on it the window size was exceeded
2918 or other valid av_set as returned by compute_av_set for the last insn
2919 of the basic block. */
2920 for (last_insn = first_insn; last_insn != after_bb_end;
2921 last_insn = NEXT_INSN (last_insn))
2922 {
2923 /* We may encounter valid av_set not only on bb_head, but also on
2924 those insns on which previously MAX_WS was exceeded. */
2925 if (AV_SET_VALID_P (last_insn))
2926 {
2927 if (sched_verbose >= 6)
2928 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2929 break;
2930 }
2931
2932 /* The special case: the last insn of the BB may be an
2933 ineligible_successor due to its SEQ_NO that was set on
2934 it as a bookkeeping. */
2935 if (last_insn != first_insn
2936 && is_ineligible_successor (last_insn, p))
2937 {
2938 if (sched_verbose >= 6)
2939 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2940 break;
2941 }
2942
2943 if (DEBUG_INSN_P (last_insn))
2944 continue;
2945
2946 if (end_ws > max_ws)
2947 {
2948 /* We can reach max lookahead size at bb_header, so clean av_set
2949 first. */
2950 INSN_WS_LEVEL (last_insn) = global_level;
2951
2952 if (sched_verbose >= 6)
2953 sel_print ("Insn %d is beyond the software lookahead window size\n",
2954 INSN_UID (last_insn));
2955 break;
2956 }
2957
2958 end_ws++;
2959 }
2960
2961 /* Get the valid av_set into AV above the LAST_INSN to start backward
2962 computation from. It either will be empty av_set or av_set computed from
2963 the successors on the last insn of the current bb. */
2964 if (last_insn != after_bb_end)
2965 {
2966 av = NULL;
2967
2968 /* This is needed only to obtain av_sets that are identical to
2969 those computed by the old compute_av_set version. */
2970 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2971 av_set_add (&av, INSN_EXPR (last_insn));
2972 }
2973 else
2974 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2975 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2976
2977 /* Compute av_set in AV starting from below the LAST_INSN up to
2978 location above the FIRST_INSN. */
2979 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2980 cur_insn = PREV_INSN (cur_insn))
2981 if (!INSN_NOP_P (cur_insn))
2982 {
2983 expr_t expr;
2984
2985 moveup_set_expr (&av, cur_insn, false);
2986
2987 /* If the expression for CUR_INSN is already in the set,
2988 replace it by the new one. */
2989 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2990 if (expr != NULL)
2991 {
2992 clear_expr (expr);
2993 copy_expr (expr, INSN_EXPR (cur_insn));
2994 }
2995 else
2996 av_set_add (&av, INSN_EXPR (cur_insn));
2997 }
2998
2999 /* Clear stale bb_av_set. */
3000 if (sel_bb_head_p (first_insn))
3001 {
3002 av_set_clear (&BB_AV_SET (cur_bb));
3003 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3004 BB_AV_LEVEL (cur_bb) = global_level;
3005 }
3006
3007 if (sched_verbose >= 6)
3008 {
3009 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3010 dump_av_set (av);
3011 sel_print ("\n");
3012 }
3013
3014 ilist_remove (&p);
3015 return av;
3016 }
3017
3018 /* Compute av set before INSN.
3019 INSN - the current operation (actual rtx INSN)
3020 P - the current path, which is list of insns visited so far
3021 WS - software lookahead window size.
3022 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3023 if we want to save computed av_set in s_i_d, we should make a copy of it.
3024
3025 In the resulting set we will have only expressions that don't have delay
3026 stalls and nonsubstitutable dependences. */
3027 static av_set_t
3028 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3029 {
3030 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3031 }
3032
3033 /* Propagate a liveness set LV through INSN. */
3034 static void
3035 propagate_lv_set (regset lv, insn_t insn)
3036 {
3037 gcc_assert (INSN_P (insn));
3038
3039 if (INSN_NOP_P (insn))
3040 return;
3041
3042 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3043 }
3044
3045 /* Return livness set at the end of BB. */
3046 static regset
3047 compute_live_after_bb (basic_block bb)
3048 {
3049 edge e;
3050 edge_iterator ei;
3051 regset lv = get_clear_regset_from_pool ();
3052
3053 gcc_assert (!ignore_first);
3054
3055 FOR_EACH_EDGE (e, ei, bb->succs)
3056 if (sel_bb_empty_p (e->dest))
3057 {
3058 if (! BB_LV_SET_VALID_P (e->dest))
3059 {
3060 gcc_unreachable ();
3061 gcc_assert (BB_LV_SET (e->dest) == NULL);
3062 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3063 BB_LV_SET_VALID_P (e->dest) = true;
3064 }
3065 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3066 }
3067 else
3068 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3069
3070 return lv;
3071 }
3072
3073 /* Compute the set of all live registers at the point before INSN and save
3074 it at INSN if INSN is bb header. */
3075 regset
3076 compute_live (insn_t insn)
3077 {
3078 basic_block bb = BLOCK_FOR_INSN (insn);
3079 insn_t final, temp;
3080 regset lv;
3081
3082 /* Return the valid set if we're already on it. */
3083 if (!ignore_first)
3084 {
3085 regset src = NULL;
3086
3087 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3088 src = BB_LV_SET (bb);
3089 else
3090 {
3091 gcc_assert (in_current_region_p (bb));
3092 if (INSN_LIVE_VALID_P (insn))
3093 src = INSN_LIVE (insn);
3094 }
3095
3096 if (src)
3097 {
3098 lv = get_regset_from_pool ();
3099 COPY_REG_SET (lv, src);
3100
3101 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3102 {
3103 COPY_REG_SET (BB_LV_SET (bb), lv);
3104 BB_LV_SET_VALID_P (bb) = true;
3105 }
3106
3107 return_regset_to_pool (lv);
3108 return lv;
3109 }
3110 }
3111
3112 /* We've skipped the wrong lv_set. Don't skip the right one. */
3113 ignore_first = false;
3114 gcc_assert (in_current_region_p (bb));
3115
3116 /* Find a valid LV set in this block or below, if needed.
3117 Start searching from the next insn: either ignore_first is true, or
3118 INSN doesn't have a correct live set. */
3119 temp = NEXT_INSN (insn);
3120 final = NEXT_INSN (BB_END (bb));
3121 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3122 temp = NEXT_INSN (temp);
3123 if (temp == final)
3124 {
3125 lv = compute_live_after_bb (bb);
3126 temp = PREV_INSN (temp);
3127 }
3128 else
3129 {
3130 lv = get_regset_from_pool ();
3131 COPY_REG_SET (lv, INSN_LIVE (temp));
3132 }
3133
3134 /* Put correct lv sets on the insns which have bad sets. */
3135 final = PREV_INSN (insn);
3136 while (temp != final)
3137 {
3138 propagate_lv_set (lv, temp);
3139 COPY_REG_SET (INSN_LIVE (temp), lv);
3140 INSN_LIVE_VALID_P (temp) = true;
3141 temp = PREV_INSN (temp);
3142 }
3143
3144 /* Also put it in a BB. */
3145 if (sel_bb_head_p (insn))
3146 {
3147 basic_block bb = BLOCK_FOR_INSN (insn);
3148
3149 COPY_REG_SET (BB_LV_SET (bb), lv);
3150 BB_LV_SET_VALID_P (bb) = true;
3151 }
3152
3153 /* We return LV to the pool, but will not clear it there. Thus we can
3154 legimatelly use LV till the next use of regset_pool_get (). */
3155 return_regset_to_pool (lv);
3156 return lv;
3157 }
3158
3159 /* Update liveness sets for INSN. */
3160 static inline void
3161 update_liveness_on_insn (rtx_insn *insn)
3162 {
3163 ignore_first = true;
3164 compute_live (insn);
3165 }
3166
3167 /* Compute liveness below INSN and write it into REGS. */
3168 static inline void
3169 compute_live_below_insn (rtx_insn *insn, regset regs)
3170 {
3171 rtx_insn *succ;
3172 succ_iterator si;
3173
3174 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3175 IOR_REG_SET (regs, compute_live (succ));
3176 }
3177
3178 /* Update the data gathered in av and lv sets starting from INSN. */
3179 static void
3180 update_data_sets (rtx_insn *insn)
3181 {
3182 update_liveness_on_insn (insn);
3183 if (sel_bb_head_p (insn))
3184 {
3185 gcc_assert (AV_LEVEL (insn) != 0);
3186 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3187 compute_av_set (insn, NULL, 0, 0);
3188 }
3189 }
3190 \f
3191
3192 /* Helper for move_op () and find_used_regs ().
3193 Return speculation type for which a check should be created on the place
3194 of INSN. EXPR is one of the original ops we are searching for. */
3195 static ds_t
3196 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3197 {
3198 ds_t to_check_ds;
3199 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3200
3201 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3202
3203 if (targetm.sched.get_insn_checked_ds)
3204 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3205
3206 if (spec_info != NULL
3207 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3208 already_checked_ds |= BEGIN_CONTROL;
3209
3210 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3211
3212 to_check_ds &= ~already_checked_ds;
3213
3214 return to_check_ds;
3215 }
3216
3217 /* Find the set of registers that are unavailable for storing expres
3218 while moving ORIG_OPS up on the path starting from INSN due to
3219 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3220
3221 All the original operations found during the traversal are saved in the
3222 ORIGINAL_INSNS list.
3223
3224 REG_RENAME_P denotes the set of hardware registers that
3225 can not be used with renaming due to the register class restrictions,
3226 mode restrictions and other (the register we'll choose should be
3227 compatible class with the original uses, shouldn't be in call_used_regs,
3228 should be HARD_REGNO_RENAME_OK etc).
3229
3230 Returns TRUE if we've found all original insns, FALSE otherwise.
3231
3232 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3233 to traverse the code motion paths. This helper function finds registers
3234 that are not available for storing expres while moving ORIG_OPS up on the
3235 path starting from INSN. A register considered as used on the moving path,
3236 if one of the following conditions is not satisfied:
3237
3238 (1) a register not set or read on any path from xi to an instance of
3239 the original operation,
3240 (2) not among the live registers of the point immediately following the
3241 first original operation on a given downward path, except for the
3242 original target register of the operation,
3243 (3) not live on the other path of any conditional branch that is passed
3244 by the operation, in case original operations are not present on
3245 both paths of the conditional branch.
3246
3247 All the original operations found during the traversal are saved in the
3248 ORIGINAL_INSNS list.
3249
3250 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3251 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3252 to unavailable hard regs at the point original operation is found. */
3253
3254 static bool
3255 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3256 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3257 {
3258 def_list_iterator i;
3259 def_t def;
3260 int res;
3261 bool needs_spec_check_p = false;
3262 expr_t expr;
3263 av_set_iterator expr_iter;
3264 struct fur_static_params sparams;
3265 struct cmpd_local_params lparams;
3266
3267 /* We haven't visited any blocks yet. */
3268 bitmap_clear (code_motion_visited_blocks);
3269
3270 /* Init parameters for code_motion_path_driver. */
3271 sparams.crosses_call = false;
3272 sparams.original_insns = original_insns;
3273 sparams.used_regs = used_regs;
3274
3275 /* Set the appropriate hooks and data. */
3276 code_motion_path_driver_info = &fur_hooks;
3277
3278 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3279
3280 reg_rename_p->crosses_call |= sparams.crosses_call;
3281
3282 gcc_assert (res == 1);
3283 gcc_assert (original_insns && *original_insns);
3284
3285 /* ??? We calculate whether an expression needs a check when computing
3286 av sets. This information is not as precise as it could be due to
3287 merging this bit in merge_expr. We can do better in find_used_regs,
3288 but we want to avoid multiple traversals of the same code motion
3289 paths. */
3290 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3291 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3292
3293 /* Mark hardware regs in REG_RENAME_P that are not suitable
3294 for renaming expr in INSN due to hardware restrictions (register class,
3295 modes compatibility etc). */
3296 FOR_EACH_DEF (def, i, *original_insns)
3297 {
3298 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3299
3300 if (VINSN_SEPARABLE_P (vinsn))
3301 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3302
3303 /* Do not allow clobbering of ld.[sa] address in case some of the
3304 original operations need a check. */
3305 if (needs_spec_check_p)
3306 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3307 }
3308
3309 return true;
3310 }
3311 \f
3312
3313 /* Functions to choose the best insn from available ones. */
3314
3315 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3316 static int
3317 sel_target_adjust_priority (expr_t expr)
3318 {
3319 int priority = EXPR_PRIORITY (expr);
3320 int new_priority;
3321
3322 if (targetm.sched.adjust_priority)
3323 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3324 else
3325 new_priority = priority;
3326
3327 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3328 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3329
3330 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3331
3332 if (sched_verbose >= 4)
3333 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3334 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3335 EXPR_PRIORITY_ADJ (expr), new_priority);
3336
3337 return new_priority;
3338 }
3339
3340 /* Rank two available exprs for schedule. Never return 0 here. */
3341 static int
3342 sel_rank_for_schedule (const void *x, const void *y)
3343 {
3344 expr_t tmp = *(const expr_t *) y;
3345 expr_t tmp2 = *(const expr_t *) x;
3346 insn_t tmp_insn, tmp2_insn;
3347 vinsn_t tmp_vinsn, tmp2_vinsn;
3348 int val;
3349
3350 tmp_vinsn = EXPR_VINSN (tmp);
3351 tmp2_vinsn = EXPR_VINSN (tmp2);
3352 tmp_insn = EXPR_INSN_RTX (tmp);
3353 tmp2_insn = EXPR_INSN_RTX (tmp2);
3354
3355 /* Schedule debug insns as early as possible. */
3356 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3357 return -1;
3358 else if (DEBUG_INSN_P (tmp2_insn))
3359 return 1;
3360
3361 /* Prefer SCHED_GROUP_P insns to any others. */
3362 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3363 {
3364 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3365 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3366
3367 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3368 cannot be cloned. */
3369 if (VINSN_UNIQUE_P (tmp2_vinsn))
3370 return 1;
3371 return -1;
3372 }
3373
3374 /* Discourage scheduling of speculative checks. */
3375 val = (sel_insn_is_speculation_check (tmp_insn)
3376 - sel_insn_is_speculation_check (tmp2_insn));
3377 if (val)
3378 return val;
3379
3380 /* Prefer not scheduled insn over scheduled one. */
3381 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3382 {
3383 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3384 if (val)
3385 return val;
3386 }
3387
3388 /* Prefer jump over non-jump instruction. */
3389 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3390 return -1;
3391 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3392 return 1;
3393
3394 /* Prefer an expr with greater priority. */
3395 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3396 {
3397 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3398 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3399
3400 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3401 }
3402 else
3403 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3404 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3405 if (val)
3406 return val;
3407
3408 if (spec_info != NULL && spec_info->mask != 0)
3409 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3410 {
3411 ds_t ds1, ds2;
3412 dw_t dw1, dw2;
3413 int dw;
3414
3415 ds1 = EXPR_SPEC_DONE_DS (tmp);
3416 if (ds1)
3417 dw1 = ds_weak (ds1);
3418 else
3419 dw1 = NO_DEP_WEAK;
3420
3421 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3422 if (ds2)
3423 dw2 = ds_weak (ds2);
3424 else
3425 dw2 = NO_DEP_WEAK;
3426
3427 dw = dw2 - dw1;
3428 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3429 return dw;
3430 }
3431
3432 /* Prefer an old insn to a bookkeeping insn. */
3433 if (INSN_UID (tmp_insn) < first_emitted_uid
3434 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3435 return -1;
3436 if (INSN_UID (tmp_insn) >= first_emitted_uid
3437 && INSN_UID (tmp2_insn) < first_emitted_uid)
3438 return 1;
3439
3440 /* Prefer an insn with smaller UID, as a last resort.
3441 We can't safely use INSN_LUID as it is defined only for those insns
3442 that are in the stream. */
3443 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3444 }
3445
3446 /* Filter out expressions from av set pointed to by AV_PTR
3447 that are pipelined too many times. */
3448 static void
3449 process_pipelined_exprs (av_set_t *av_ptr)
3450 {
3451 expr_t expr;
3452 av_set_iterator si;
3453
3454 /* Don't pipeline already pipelined code as that would increase
3455 number of unnecessary register moves. */
3456 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3457 {
3458 if (EXPR_SCHED_TIMES (expr)
3459 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3460 av_set_iter_remove (&si);
3461 }
3462 }
3463
3464 /* Filter speculative insns from AV_PTR if we don't want them. */
3465 static void
3466 process_spec_exprs (av_set_t *av_ptr)
3467 {
3468 expr_t expr;
3469 av_set_iterator si;
3470
3471 if (spec_info == NULL)
3472 return;
3473
3474 /* Scan *AV_PTR to find out if we want to consider speculative
3475 instructions for scheduling. */
3476 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3477 {
3478 ds_t ds;
3479
3480 ds = EXPR_SPEC_DONE_DS (expr);
3481
3482 /* The probability of a success is too low - don't speculate. */
3483 if ((ds & SPECULATIVE)
3484 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3485 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3486 || (pipelining_p && false
3487 && (ds & DATA_SPEC)
3488 && (ds & CONTROL_SPEC))))
3489 {
3490 av_set_iter_remove (&si);
3491 continue;
3492 }
3493 }
3494 }
3495
3496 /* Search for any use-like insns in AV_PTR and decide on scheduling
3497 them. Return one when found, and NULL otherwise.
3498 Note that we check here whether a USE could be scheduled to avoid
3499 an infinite loop later. */
3500 static expr_t
3501 process_use_exprs (av_set_t *av_ptr)
3502 {
3503 expr_t expr;
3504 av_set_iterator si;
3505 bool uses_present_p = false;
3506 bool try_uses_p = true;
3507
3508 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3509 {
3510 /* This will also initialize INSN_CODE for later use. */
3511 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3512 {
3513 /* If we have a USE in *AV_PTR that was not scheduled yet,
3514 do so because it will do good only. */
3515 if (EXPR_SCHED_TIMES (expr) <= 0)
3516 {
3517 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3518 return expr;
3519
3520 av_set_iter_remove (&si);
3521 }
3522 else
3523 {
3524 gcc_assert (pipelining_p);
3525
3526 uses_present_p = true;
3527 }
3528 }
3529 else
3530 try_uses_p = false;
3531 }
3532
3533 if (uses_present_p)
3534 {
3535 /* If we don't want to schedule any USEs right now and we have some
3536 in *AV_PTR, remove them, else just return the first one found. */
3537 if (!try_uses_p)
3538 {
3539 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3540 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3541 av_set_iter_remove (&si);
3542 }
3543 else
3544 {
3545 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3546 {
3547 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3548
3549 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3550 return expr;
3551
3552 av_set_iter_remove (&si);
3553 }
3554 }
3555 }
3556
3557 return NULL;
3558 }
3559
3560 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3561 EXPR's history of changes. */
3562 static bool
3563 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3564 {
3565 vinsn_t vinsn, expr_vinsn;
3566 int n;
3567 unsigned i;
3568
3569 /* Start with checking expr itself and then proceed with all the old forms
3570 of expr taken from its history vector. */
3571 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3572 expr_vinsn;
3573 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3574 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3575 : NULL))
3576 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3577 if (VINSN_SEPARABLE_P (vinsn))
3578 {
3579 if (vinsn_equal_p (vinsn, expr_vinsn))
3580 return true;
3581 }
3582 else
3583 {
3584 /* For non-separable instructions, the blocking insn can have
3585 another pattern due to substitution, and we can't choose
3586 different register as in the above case. Check all registers
3587 being written instead. */
3588 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3589 VINSN_REG_SETS (expr_vinsn)))
3590 return true;
3591 }
3592
3593 return false;
3594 }
3595
3596 #ifdef ENABLE_CHECKING
3597 /* Return true if either of expressions from ORIG_OPS can be blocked
3598 by previously created bookkeeping code. STATIC_PARAMS points to static
3599 parameters of move_op. */
3600 static bool
3601 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3602 {
3603 expr_t expr;
3604 av_set_iterator iter;
3605 moveop_static_params_p sparams;
3606
3607 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3608 created while scheduling on another fence. */
3609 FOR_EACH_EXPR (expr, iter, orig_ops)
3610 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3611 return true;
3612
3613 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3614 sparams = (moveop_static_params_p) static_params;
3615
3616 /* Expressions can be also blocked by bookkeeping created during current
3617 move_op. */
3618 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3619 FOR_EACH_EXPR (expr, iter, orig_ops)
3620 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3621 return true;
3622
3623 /* Expressions in ORIG_OPS may have wrong destination register due to
3624 renaming. Check with the right register instead. */
3625 if (sparams->dest && REG_P (sparams->dest))
3626 {
3627 rtx reg = sparams->dest;
3628 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3629
3630 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3631 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3632 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3633 return true;
3634 }
3635
3636 return false;
3637 }
3638 #endif
3639
3640 /* Clear VINSN_VEC and detach vinsns. */
3641 static void
3642 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3643 {
3644 unsigned len = vinsn_vec->length ();
3645 if (len > 0)
3646 {
3647 vinsn_t vinsn;
3648 int n;
3649
3650 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3651 vinsn_detach (vinsn);
3652 vinsn_vec->block_remove (0, len);
3653 }
3654 }
3655
3656 /* Add the vinsn of EXPR to the VINSN_VEC. */
3657 static void
3658 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3659 {
3660 vinsn_attach (EXPR_VINSN (expr));
3661 vinsn_vec->safe_push (EXPR_VINSN (expr));
3662 }
3663
3664 /* Free the vector representing blocked expressions. */
3665 static void
3666 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3667 {
3668 vinsn_vec.release ();
3669 }
3670
3671 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3672
3673 void sel_add_to_insn_priority (rtx insn, int amount)
3674 {
3675 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3676
3677 if (sched_verbose >= 2)
3678 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3679 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3680 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3681 }
3682
3683 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3684 true if there is something to schedule. BNDS and FENCE are current
3685 boundaries and fence, respectively. If we need to stall for some cycles
3686 before an expr from AV would become available, write this number to
3687 *PNEED_STALL. */
3688 static bool
3689 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3690 int *pneed_stall)
3691 {
3692 av_set_iterator si;
3693 expr_t expr;
3694 int sched_next_worked = 0, stalled, n;
3695 static int av_max_prio, est_ticks_till_branch;
3696 int min_need_stall = -1;
3697 deps_t dc = BND_DC (BLIST_BND (bnds));
3698
3699 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3700 already scheduled. */
3701 if (av == NULL)
3702 return false;
3703
3704 /* Empty vector from the previous stuff. */
3705 if (vec_av_set.length () > 0)
3706 vec_av_set.block_remove (0, vec_av_set.length ());
3707
3708 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3709 for each insn. */
3710 gcc_assert (vec_av_set.is_empty ());
3711 FOR_EACH_EXPR (expr, si, av)
3712 {
3713 vec_av_set.safe_push (expr);
3714
3715 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3716
3717 /* Adjust priority using target backend hook. */
3718 sel_target_adjust_priority (expr);
3719 }
3720
3721 /* Sort the vector. */
3722 vec_av_set.qsort (sel_rank_for_schedule);
3723
3724 /* We record maximal priority of insns in av set for current instruction
3725 group. */
3726 if (FENCE_STARTS_CYCLE_P (fence))
3727 av_max_prio = est_ticks_till_branch = INT_MIN;
3728
3729 /* Filter out inappropriate expressions. Loop's direction is reversed to
3730 visit "best" instructions first. We assume that vec::unordered_remove
3731 moves last element in place of one being deleted. */
3732 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3733 {
3734 expr_t expr = vec_av_set[n];
3735 insn_t insn = EXPR_INSN_RTX (expr);
3736 signed char target_available;
3737 bool is_orig_reg_p = true;
3738 int need_cycles, new_prio;
3739 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3740
3741 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3742 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3743 {
3744 vec_av_set.unordered_remove (n);
3745 continue;
3746 }
3747
3748 /* Set number of sched_next insns (just in case there
3749 could be several). */
3750 if (FENCE_SCHED_NEXT (fence))
3751 sched_next_worked++;
3752
3753 /* Check all liveness requirements and try renaming.
3754 FIXME: try to minimize calls to this. */
3755 target_available = EXPR_TARGET_AVAILABLE (expr);
3756
3757 /* If insn was already scheduled on the current fence,
3758 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3759 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3760 && !fence_insn_p)
3761 target_available = -1;
3762
3763 /* If the availability of the EXPR is invalidated by the insertion of
3764 bookkeeping earlier, make sure that we won't choose this expr for
3765 scheduling if it's not separable, and if it is separable, then
3766 we have to recompute the set of available registers for it. */
3767 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3768 {
3769 vec_av_set.unordered_remove (n);
3770 if (sched_verbose >= 4)
3771 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3772 INSN_UID (insn));
3773 continue;
3774 }
3775
3776 if (target_available == true)
3777 {
3778 /* Do nothing -- we can use an existing register. */
3779 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3780 }
3781 else if (/* Non-separable instruction will never
3782 get another register. */
3783 (target_available == false
3784 && !EXPR_SEPARABLE_P (expr))
3785 /* Don't try to find a register for low-priority expression. */
3786 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3787 /* ??? FIXME: Don't try to rename data speculation. */
3788 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3789 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3790 {
3791 vec_av_set.unordered_remove (n);
3792 if (sched_verbose >= 4)
3793 sel_print ("Expr %d has no suitable target register\n",
3794 INSN_UID (insn));
3795
3796 /* A fence insn should not get here. */
3797 gcc_assert (!fence_insn_p);
3798 continue;
3799 }
3800
3801 /* At this point a fence insn should always be available. */
3802 gcc_assert (!fence_insn_p
3803 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3804
3805 /* Filter expressions that need to be renamed or speculated when
3806 pipelining, because compensating register copies or speculation
3807 checks are likely to be placed near the beginning of the loop,
3808 causing a stall. */
3809 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3810 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3811 {
3812 /* Estimation of number of cycles until loop branch for
3813 renaming/speculation to be successful. */
3814 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3815
3816 if ((int) current_loop_nest->ninsns < 9)
3817 {
3818 vec_av_set.unordered_remove (n);
3819 if (sched_verbose >= 4)
3820 sel_print ("Pipelining expr %d will likely cause stall\n",
3821 INSN_UID (insn));
3822 continue;
3823 }
3824
3825 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3826 < need_n_ticks_till_branch * issue_rate / 2
3827 && est_ticks_till_branch < need_n_ticks_till_branch)
3828 {
3829 vec_av_set.unordered_remove (n);
3830 if (sched_verbose >= 4)
3831 sel_print ("Pipelining expr %d will likely cause stall\n",
3832 INSN_UID (insn));
3833 continue;
3834 }
3835 }
3836
3837 /* We want to schedule speculation checks as late as possible. Discard
3838 them from av set if there are instructions with higher priority. */
3839 if (sel_insn_is_speculation_check (insn)
3840 && EXPR_PRIORITY (expr) < av_max_prio)
3841 {
3842 stalled++;
3843 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3844 vec_av_set.unordered_remove (n);
3845 if (sched_verbose >= 4)
3846 sel_print ("Delaying speculation check %d until its first use\n",
3847 INSN_UID (insn));
3848 continue;
3849 }
3850
3851 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3852 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3853 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3854
3855 /* Don't allow any insns whose data is not yet ready.
3856 Check first whether we've already tried them and failed. */
3857 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3858 {
3859 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3860 - FENCE_CYCLE (fence));
3861 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3862 est_ticks_till_branch = MAX (est_ticks_till_branch,
3863 EXPR_PRIORITY (expr) + need_cycles);
3864
3865 if (need_cycles > 0)
3866 {
3867 stalled++;
3868 min_need_stall = (min_need_stall < 0
3869 ? need_cycles
3870 : MIN (min_need_stall, need_cycles));
3871 vec_av_set.unordered_remove (n);
3872
3873 if (sched_verbose >= 4)
3874 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3875 INSN_UID (insn),
3876 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3877 continue;
3878 }
3879 }
3880
3881 /* Now resort to dependence analysis to find whether EXPR might be
3882 stalled due to dependencies from FENCE's context. */
3883 need_cycles = tick_check_p (expr, dc, fence);
3884 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3885
3886 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3887 est_ticks_till_branch = MAX (est_ticks_till_branch,
3888 new_prio);
3889
3890 if (need_cycles > 0)
3891 {
3892 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3893 {
3894 int new_size = INSN_UID (insn) * 3 / 2;
3895
3896 FENCE_READY_TICKS (fence)
3897 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3898 new_size, FENCE_READY_TICKS_SIZE (fence),
3899 sizeof (int));
3900 }
3901 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3902 = FENCE_CYCLE (fence) + need_cycles;
3903
3904 stalled++;
3905 min_need_stall = (min_need_stall < 0
3906 ? need_cycles
3907 : MIN (min_need_stall, need_cycles));
3908
3909 vec_av_set.unordered_remove (n);
3910
3911 if (sched_verbose >= 4)
3912 sel_print ("Expr %d is not ready yet until cycle %d\n",
3913 INSN_UID (insn),
3914 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3915 continue;
3916 }
3917
3918 if (sched_verbose >= 4)
3919 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3920 min_need_stall = 0;
3921 }
3922
3923 /* Clear SCHED_NEXT. */
3924 if (FENCE_SCHED_NEXT (fence))
3925 {
3926 gcc_assert (sched_next_worked == 1);
3927 FENCE_SCHED_NEXT (fence) = NULL;
3928 }
3929
3930 /* No need to stall if this variable was not initialized. */
3931 if (min_need_stall < 0)
3932 min_need_stall = 0;
3933
3934 if (vec_av_set.is_empty ())
3935 {
3936 /* We need to set *pneed_stall here, because later we skip this code
3937 when ready list is empty. */
3938 *pneed_stall = min_need_stall;
3939 return false;
3940 }
3941 else
3942 gcc_assert (min_need_stall == 0);
3943
3944 /* Sort the vector. */
3945 vec_av_set.qsort (sel_rank_for_schedule);
3946
3947 if (sched_verbose >= 4)
3948 {
3949 sel_print ("Total ready exprs: %d, stalled: %d\n",
3950 vec_av_set.length (), stalled);
3951 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3952 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3953 dump_expr (expr);
3954 sel_print ("\n");
3955 }
3956
3957 *pneed_stall = 0;
3958 return true;
3959 }
3960
3961 /* Convert a vectored and sorted av set to the ready list that
3962 the rest of the backend wants to see. */
3963 static void
3964 convert_vec_av_set_to_ready (void)
3965 {
3966 int n;
3967 expr_t expr;
3968
3969 /* Allocate and fill the ready list from the sorted vector. */
3970 ready.n_ready = vec_av_set.length ();
3971 ready.first = ready.n_ready - 1;
3972
3973 gcc_assert (ready.n_ready > 0);
3974
3975 if (ready.n_ready > max_issue_size)
3976 {
3977 max_issue_size = ready.n_ready;
3978 sched_extend_ready_list (ready.n_ready);
3979 }
3980
3981 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3982 {
3983 vinsn_t vi = EXPR_VINSN (expr);
3984 insn_t insn = VINSN_INSN_RTX (vi);
3985
3986 ready_try[n] = 0;
3987 ready.vec[n] = insn;
3988 }
3989 }
3990
3991 /* Initialize ready list from *AV_PTR for the max_issue () call.
3992 If any unrecognizable insn found in *AV_PTR, return it (and skip
3993 max_issue). BND and FENCE are current boundary and fence,
3994 respectively. If we need to stall for some cycles before an expr
3995 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3996 static expr_t
3997 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3998 int *pneed_stall)
3999 {
4000 expr_t expr;
4001
4002 /* We do not support multiple boundaries per fence. */
4003 gcc_assert (BLIST_NEXT (bnds) == NULL);
4004
4005 /* Process expressions required special handling, i.e. pipelined,
4006 speculative and recog() < 0 expressions first. */
4007 process_pipelined_exprs (av_ptr);
4008 process_spec_exprs (av_ptr);
4009
4010 /* A USE could be scheduled immediately. */
4011 expr = process_use_exprs (av_ptr);
4012 if (expr)
4013 {
4014 *pneed_stall = 0;
4015 return expr;
4016 }
4017
4018 /* Turn the av set to a vector for sorting. */
4019 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4020 {
4021 ready.n_ready = 0;
4022 return NULL;
4023 }
4024
4025 /* Build the final ready list. */
4026 convert_vec_av_set_to_ready ();
4027 return NULL;
4028 }
4029
4030 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4031 static bool
4032 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4033 {
4034 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4035 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4036 : FENCE_CYCLE (fence) - 1;
4037 bool res = false;
4038 int sort_p = 0;
4039
4040 if (!targetm.sched.dfa_new_cycle)
4041 return false;
4042
4043 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4044
4045 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4046 insn, last_scheduled_cycle,
4047 FENCE_CYCLE (fence), &sort_p))
4048 {
4049 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4050 advance_one_cycle (fence);
4051 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4052 res = true;
4053 }
4054
4055 return res;
4056 }
4057
4058 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4059 we can issue. FENCE is the current fence. */
4060 static int
4061 invoke_reorder_hooks (fence_t fence)
4062 {
4063 int issue_more;
4064 bool ran_hook = false;
4065
4066 /* Call the reorder hook at the beginning of the cycle, and call
4067 the reorder2 hook in the middle of the cycle. */
4068 if (FENCE_ISSUED_INSNS (fence) == 0)
4069 {
4070 if (targetm.sched.reorder
4071 && !SCHED_GROUP_P (ready_element (&ready, 0))
4072 && ready.n_ready > 1)
4073 {
4074 /* Don't give reorder the most prioritized insn as it can break
4075 pipelining. */
4076 if (pipelining_p)
4077 --ready.n_ready;
4078
4079 issue_more
4080 = targetm.sched.reorder (sched_dump, sched_verbose,
4081 ready_lastpos (&ready),
4082 &ready.n_ready, FENCE_CYCLE (fence));
4083
4084 if (pipelining_p)
4085 ++ready.n_ready;
4086
4087 ran_hook = true;
4088 }
4089 else
4090 /* Initialize can_issue_more for variable_issue. */
4091 issue_more = issue_rate;
4092 }
4093 else if (targetm.sched.reorder2
4094 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4095 {
4096 if (ready.n_ready == 1)
4097 issue_more =
4098 targetm.sched.reorder2 (sched_dump, sched_verbose,
4099 ready_lastpos (&ready),
4100 &ready.n_ready, FENCE_CYCLE (fence));
4101 else
4102 {
4103 if (pipelining_p)
4104 --ready.n_ready;
4105
4106 issue_more =
4107 targetm.sched.reorder2 (sched_dump, sched_verbose,
4108 ready.n_ready
4109 ? ready_lastpos (&ready) : NULL,
4110 &ready.n_ready, FENCE_CYCLE (fence));
4111
4112 if (pipelining_p)
4113 ++ready.n_ready;
4114 }
4115
4116 ran_hook = true;
4117 }
4118 else
4119 issue_more = FENCE_ISSUE_MORE (fence);
4120
4121 /* Ensure that ready list and vec_av_set are in line with each other,
4122 i.e. vec_av_set[i] == ready_element (&ready, i). */
4123 if (issue_more && ran_hook)
4124 {
4125 int i, j, n;
4126 rtx_insn **arr = ready.vec;
4127 expr_t *vec = vec_av_set.address ();
4128
4129 for (i = 0, n = ready.n_ready; i < n; i++)
4130 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4131 {
4132 for (j = i; j < n; j++)
4133 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4134 break;
4135 gcc_assert (j < n);
4136
4137 std::swap (vec[i], vec[j]);
4138 }
4139 }
4140
4141 return issue_more;
4142 }
4143
4144 /* Return an EXPR corresponding to INDEX element of ready list, if
4145 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4146 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4147 ready.vec otherwise. */
4148 static inline expr_t
4149 find_expr_for_ready (int index, bool follow_ready_element)
4150 {
4151 expr_t expr;
4152 int real_index;
4153
4154 real_index = follow_ready_element ? ready.first - index : index;
4155
4156 expr = vec_av_set[real_index];
4157 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4158
4159 return expr;
4160 }
4161
4162 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4163 of such insns found. */
4164 static int
4165 invoke_dfa_lookahead_guard (void)
4166 {
4167 int i, n;
4168 bool have_hook
4169 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4170
4171 if (sched_verbose >= 2)
4172 sel_print ("ready after reorder: ");
4173
4174 for (i = 0, n = 0; i < ready.n_ready; i++)
4175 {
4176 expr_t expr;
4177 insn_t insn;
4178 int r;
4179
4180 /* In this loop insn is Ith element of the ready list given by
4181 ready_element, not Ith element of ready.vec. */
4182 insn = ready_element (&ready, i);
4183
4184 if (! have_hook || i == 0)
4185 r = 0;
4186 else
4187 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4188
4189 gcc_assert (INSN_CODE (insn) >= 0);
4190
4191 /* Only insns with ready_try = 0 can get here
4192 from fill_ready_list. */
4193 gcc_assert (ready_try [i] == 0);
4194 ready_try[i] = r;
4195 if (!r)
4196 n++;
4197
4198 expr = find_expr_for_ready (i, true);
4199
4200 if (sched_verbose >= 2)
4201 {
4202 dump_vinsn (EXPR_VINSN (expr));
4203 sel_print (":%d; ", ready_try[i]);
4204 }
4205 }
4206
4207 if (sched_verbose >= 2)
4208 sel_print ("\n");
4209 return n;
4210 }
4211
4212 /* Calculate the number of privileged insns and return it. */
4213 static int
4214 calculate_privileged_insns (void)
4215 {
4216 expr_t cur_expr, min_spec_expr = NULL;
4217 int privileged_n = 0, i;
4218
4219 for (i = 0; i < ready.n_ready; i++)
4220 {
4221 if (ready_try[i])
4222 continue;
4223
4224 if (! min_spec_expr)
4225 min_spec_expr = find_expr_for_ready (i, true);
4226
4227 cur_expr = find_expr_for_ready (i, true);
4228
4229 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4230 break;
4231
4232 ++privileged_n;
4233 }
4234
4235 if (i == ready.n_ready)
4236 privileged_n = 0;
4237
4238 if (sched_verbose >= 2)
4239 sel_print ("privileged_n: %d insns with SPEC %d\n",
4240 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4241 return privileged_n;
4242 }
4243
4244 /* Call the rest of the hooks after the choice was made. Return
4245 the number of insns that still can be issued given that the current
4246 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4247 and the insn chosen for scheduling, respectively. */
4248 static int
4249 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4250 {
4251 gcc_assert (INSN_P (best_insn));
4252
4253 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4254 sel_dfa_new_cycle (best_insn, fence);
4255
4256 if (targetm.sched.variable_issue)
4257 {
4258 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4259 issue_more =
4260 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4261 issue_more);
4262 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4263 }
4264 else if (GET_CODE (PATTERN (best_insn)) != USE
4265 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4266 issue_more--;
4267
4268 return issue_more;
4269 }
4270
4271 /* Estimate the cost of issuing INSN on DFA state STATE. */
4272 static int
4273 estimate_insn_cost (rtx_insn *insn, state_t state)
4274 {
4275 static state_t temp = NULL;
4276 int cost;
4277
4278 if (!temp)
4279 temp = xmalloc (dfa_state_size);
4280
4281 memcpy (temp, state, dfa_state_size);
4282 cost = state_transition (temp, insn);
4283
4284 if (cost < 0)
4285 return 0;
4286 else if (cost == 0)
4287 return 1;
4288 return cost;
4289 }
4290
4291 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4292 This function properly handles ASMs, USEs etc. */
4293 static int
4294 get_expr_cost (expr_t expr, fence_t fence)
4295 {
4296 rtx_insn *insn = EXPR_INSN_RTX (expr);
4297
4298 if (recog_memoized (insn) < 0)
4299 {
4300 if (!FENCE_STARTS_CYCLE_P (fence)
4301 && INSN_ASM_P (insn))
4302 /* This is asm insn which is tryed to be issued on the
4303 cycle not first. Issue it on the next cycle. */
4304 return 1;
4305 else
4306 /* A USE insn, or something else we don't need to
4307 understand. We can't pass these directly to
4308 state_transition because it will trigger a
4309 fatal error for unrecognizable insns. */
4310 return 0;
4311 }
4312 else
4313 return estimate_insn_cost (insn, FENCE_STATE (fence));
4314 }
4315
4316 /* Find the best insn for scheduling, either via max_issue or just take
4317 the most prioritized available. */
4318 static int
4319 choose_best_insn (fence_t fence, int privileged_n, int *index)
4320 {
4321 int can_issue = 0;
4322
4323 if (dfa_lookahead > 0)
4324 {
4325 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4326 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4327 can_issue = max_issue (&ready, privileged_n,
4328 FENCE_STATE (fence), true, index);
4329 if (sched_verbose >= 2)
4330 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4331 can_issue, FENCE_ISSUED_INSNS (fence));
4332 }
4333 else
4334 {
4335 /* We can't use max_issue; just return the first available element. */
4336 int i;
4337
4338 for (i = 0; i < ready.n_ready; i++)
4339 {
4340 expr_t expr = find_expr_for_ready (i, true);
4341
4342 if (get_expr_cost (expr, fence) < 1)
4343 {
4344 can_issue = can_issue_more;
4345 *index = i;
4346
4347 if (sched_verbose >= 2)
4348 sel_print ("using %dth insn from the ready list\n", i + 1);
4349
4350 break;
4351 }
4352 }
4353
4354 if (i == ready.n_ready)
4355 {
4356 can_issue = 0;
4357 *index = -1;
4358 }
4359 }
4360
4361 return can_issue;
4362 }
4363
4364 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4365 BNDS and FENCE are current boundaries and scheduling fence respectively.
4366 Return the expr found and NULL if nothing can be issued atm.
4367 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4368 static expr_t
4369 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4370 int *pneed_stall)
4371 {
4372 expr_t best;
4373
4374 /* Choose the best insn for scheduling via:
4375 1) sorting the ready list based on priority;
4376 2) calling the reorder hook;
4377 3) calling max_issue. */
4378 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4379 if (best == NULL && ready.n_ready > 0)
4380 {
4381 int privileged_n, index;
4382
4383 can_issue_more = invoke_reorder_hooks (fence);
4384 if (can_issue_more > 0)
4385 {
4386 /* Try choosing the best insn until we find one that is could be
4387 scheduled due to liveness restrictions on its destination register.
4388 In the future, we'd like to choose once and then just probe insns
4389 in the order of their priority. */
4390 invoke_dfa_lookahead_guard ();
4391 privileged_n = calculate_privileged_insns ();
4392 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4393 if (can_issue_more)
4394 best = find_expr_for_ready (index, true);
4395 }
4396 /* We had some available insns, so if we can't issue them,
4397 we have a stall. */
4398 if (can_issue_more == 0)
4399 {
4400 best = NULL;
4401 *pneed_stall = 1;
4402 }
4403 }
4404
4405 if (best != NULL)
4406 {
4407 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4408 can_issue_more);
4409 if (targetm.sched.variable_issue
4410 && can_issue_more == 0)
4411 *pneed_stall = 1;
4412 }
4413
4414 if (sched_verbose >= 2)
4415 {
4416 if (best != NULL)
4417 {
4418 sel_print ("Best expression (vliw form): ");
4419 dump_expr (best);
4420 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4421 }
4422 else
4423 sel_print ("No best expr found!\n");
4424 }
4425
4426 return best;
4427 }
4428 \f
4429
4430 /* Functions that implement the core of the scheduler. */
4431
4432
4433 /* Emit an instruction from EXPR with SEQNO and VINSN after
4434 PLACE_TO_INSERT. */
4435 static insn_t
4436 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4437 insn_t place_to_insert)
4438 {
4439 /* This assert fails when we have identical instructions
4440 one of which dominates the other. In this case move_op ()
4441 finds the first instruction and doesn't search for second one.
4442 The solution would be to compute av_set after the first found
4443 insn and, if insn present in that set, continue searching.
4444 For now we workaround this issue in move_op. */
4445 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4446
4447 if (EXPR_WAS_RENAMED (expr))
4448 {
4449 unsigned regno = expr_dest_regno (expr);
4450
4451 if (HARD_REGISTER_NUM_P (regno))
4452 {
4453 df_set_regs_ever_live (regno, true);
4454 reg_rename_tick[regno] = ++reg_rename_this_tick;
4455 }
4456 }
4457
4458 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4459 place_to_insert);
4460 }
4461
4462 /* Return TRUE if BB can hold bookkeeping code. */
4463 static bool
4464 block_valid_for_bookkeeping_p (basic_block bb)
4465 {
4466 insn_t bb_end = BB_END (bb);
4467
4468 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4469 return false;
4470
4471 if (INSN_P (bb_end))
4472 {
4473 if (INSN_SCHED_TIMES (bb_end) > 0)
4474 return false;
4475 }
4476 else
4477 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4478
4479 return true;
4480 }
4481
4482 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4483 into E2->dest, except from E1->src (there may be a sequence of empty basic
4484 blocks between E1->src and E2->dest). Return found block, or NULL if new
4485 one must be created. If LAX holds, don't assume there is a simple path
4486 from E1->src to E2->dest. */
4487 static basic_block
4488 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4489 {
4490 basic_block candidate_block = NULL;
4491 edge e;
4492
4493 /* Loop over edges from E1 to E2, inclusive. */
4494 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4495 EDGE_SUCC (e->dest, 0))
4496 {
4497 if (EDGE_COUNT (e->dest->preds) == 2)
4498 {
4499 if (candidate_block == NULL)
4500 candidate_block = (EDGE_PRED (e->dest, 0) == e
4501 ? EDGE_PRED (e->dest, 1)->src
4502 : EDGE_PRED (e->dest, 0)->src);
4503 else
4504 /* Found additional edge leading to path from e1 to e2
4505 from aside. */
4506 return NULL;
4507 }
4508 else if (EDGE_COUNT (e->dest->preds) > 2)
4509 /* Several edges leading to path from e1 to e2 from aside. */
4510 return NULL;
4511
4512 if (e == e2)
4513 return ((!lax || candidate_block)
4514 && block_valid_for_bookkeeping_p (candidate_block)
4515 ? candidate_block
4516 : NULL);
4517
4518 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4519 return NULL;
4520 }
4521
4522 if (lax)
4523 return NULL;
4524
4525 gcc_unreachable ();
4526 }
4527
4528 /* Create new basic block for bookkeeping code for path(s) incoming into
4529 E2->dest, except from E1->src. Return created block. */
4530 static basic_block
4531 create_block_for_bookkeeping (edge e1, edge e2)
4532 {
4533 basic_block new_bb, bb = e2->dest;
4534
4535 /* Check that we don't spoil the loop structure. */
4536 if (current_loop_nest)
4537 {
4538 basic_block latch = current_loop_nest->latch;
4539
4540 /* We do not split header. */
4541 gcc_assert (e2->dest != current_loop_nest->header);
4542
4543 /* We do not redirect the only edge to the latch block. */
4544 gcc_assert (e1->dest != latch
4545 || !single_pred_p (latch)
4546 || e1 != single_pred_edge (latch));
4547 }
4548
4549 /* Split BB to insert BOOK_INSN there. */
4550 new_bb = sched_split_block (bb, NULL);
4551
4552 /* Move note_list from the upper bb. */
4553 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4554 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4555 BB_NOTE_LIST (bb) = NULL;
4556
4557 gcc_assert (e2->dest == bb);
4558
4559 /* Skip block for bookkeeping copy when leaving E1->src. */
4560 if (e1->flags & EDGE_FALLTHRU)
4561 sel_redirect_edge_and_branch_force (e1, new_bb);
4562 else
4563 sel_redirect_edge_and_branch (e1, new_bb);
4564
4565 gcc_assert (e1->dest == new_bb);
4566 gcc_assert (sel_bb_empty_p (bb));
4567
4568 /* To keep basic block numbers in sync between debug and non-debug
4569 compilations, we have to rotate blocks here. Consider that we
4570 started from (a,b)->d, (c,d)->e, and d contained only debug
4571 insns. It would have been removed before if the debug insns
4572 weren't there, so we'd have split e rather than d. So what we do
4573 now is to swap the block numbers of new_bb and
4574 single_succ(new_bb) == e, so that the insns that were in e before
4575 get the new block number. */
4576
4577 if (MAY_HAVE_DEBUG_INSNS)
4578 {
4579 basic_block succ;
4580 insn_t insn = sel_bb_head (new_bb);
4581 insn_t last;
4582
4583 if (DEBUG_INSN_P (insn)
4584 && single_succ_p (new_bb)
4585 && (succ = single_succ (new_bb))
4586 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4587 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4588 {
4589 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4590 insn = NEXT_INSN (insn);
4591
4592 if (insn == last)
4593 {
4594 sel_global_bb_info_def gbi;
4595 sel_region_bb_info_def rbi;
4596
4597 if (sched_verbose >= 2)
4598 sel_print ("Swapping block ids %i and %i\n",
4599 new_bb->index, succ->index);
4600
4601 std::swap (new_bb->index, succ->index);
4602
4603 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4604 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4605
4606 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4607 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4608 sizeof (gbi));
4609 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4610
4611 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4612 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4613 sizeof (rbi));
4614 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4615
4616 std::swap (BLOCK_TO_BB (new_bb->index),
4617 BLOCK_TO_BB (succ->index));
4618
4619 std::swap (CONTAINING_RGN (new_bb->index),
4620 CONTAINING_RGN (succ->index));
4621
4622 for (int i = 0; i < current_nr_blocks; i++)
4623 if (BB_TO_BLOCK (i) == succ->index)
4624 BB_TO_BLOCK (i) = new_bb->index;
4625 else if (BB_TO_BLOCK (i) == new_bb->index)
4626 BB_TO_BLOCK (i) = succ->index;
4627
4628 FOR_BB_INSNS (new_bb, insn)
4629 if (INSN_P (insn))
4630 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4631
4632 FOR_BB_INSNS (succ, insn)
4633 if (INSN_P (insn))
4634 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4635
4636 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4637 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4638
4639 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4640 && LABEL_P (BB_HEAD (succ)));
4641
4642 if (sched_verbose >= 4)
4643 sel_print ("Swapping code labels %i and %i\n",
4644 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4645 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4646
4647 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4648 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4649 }
4650 }
4651 }
4652
4653 return bb;
4654 }
4655
4656 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4657 into E2->dest, except from E1->src. If the returned insn immediately
4658 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4659 static insn_t
4660 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4661 {
4662 insn_t place_to_insert;
4663 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4664 create new basic block, but insert bookkeeping there. */
4665 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4666
4667 if (book_block)
4668 {
4669 place_to_insert = BB_END (book_block);
4670
4671 /* Don't use a block containing only debug insns for
4672 bookkeeping, this causes scheduling differences between debug
4673 and non-debug compilations, for the block would have been
4674 removed already. */
4675 if (DEBUG_INSN_P (place_to_insert))
4676 {
4677 rtx_insn *insn = sel_bb_head (book_block);
4678
4679 while (insn != place_to_insert &&
4680 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4681 insn = NEXT_INSN (insn);
4682
4683 if (insn == place_to_insert)
4684 book_block = NULL;
4685 }
4686 }
4687
4688 if (!book_block)
4689 {
4690 book_block = create_block_for_bookkeeping (e1, e2);
4691 place_to_insert = BB_END (book_block);
4692 if (sched_verbose >= 9)
4693 sel_print ("New block is %i, split from bookkeeping block %i\n",
4694 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4695 }
4696 else
4697 {
4698 if (sched_verbose >= 9)
4699 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4700 }
4701
4702 *fence_to_rewind = NULL;
4703 /* If basic block ends with a jump, insert bookkeeping code right before it.
4704 Notice if we are crossing a fence when taking PREV_INSN. */
4705 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4706 {
4707 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4708 place_to_insert = PREV_INSN (place_to_insert);
4709 }
4710
4711 return place_to_insert;
4712 }
4713
4714 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4715 for JOIN_POINT. */
4716 static int
4717 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4718 {
4719 int seqno;
4720
4721 /* Check if we are about to insert bookkeeping copy before a jump, and use
4722 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4723 rtx_insn *next = NEXT_INSN (place_to_insert);
4724 if (INSN_P (next)
4725 && JUMP_P (next)
4726 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4727 {
4728 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4729 seqno = INSN_SEQNO (next);
4730 }
4731 else if (INSN_SEQNO (join_point) > 0)
4732 seqno = INSN_SEQNO (join_point);
4733 else
4734 {
4735 seqno = get_seqno_by_preds (place_to_insert);
4736
4737 /* Sometimes the fences can move in such a way that there will be
4738 no instructions with positive seqno around this bookkeeping.
4739 This means that there will be no way to get to it by a regular
4740 fence movement. Never mind because we pick up such pieces for
4741 rescheduling anyways, so any positive value will do for now. */
4742 if (seqno < 0)
4743 {
4744 gcc_assert (pipelining_p);
4745 seqno = 1;
4746 }
4747 }
4748
4749 gcc_assert (seqno > 0);
4750 return seqno;
4751 }
4752
4753 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4754 NEW_SEQNO to it. Return created insn. */
4755 static insn_t
4756 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4757 {
4758 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4759
4760 vinsn_t new_vinsn
4761 = create_vinsn_from_insn_rtx (new_insn_rtx,
4762 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4763
4764 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4765 place_to_insert);
4766
4767 INSN_SCHED_TIMES (new_insn) = 0;
4768 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4769
4770 return new_insn;
4771 }
4772
4773 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4774 E2->dest, except from E1->src (there may be a sequence of empty blocks
4775 between E1->src and E2->dest). Return block containing the copy.
4776 All scheduler data is initialized for the newly created insn. */
4777 static basic_block
4778 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4779 {
4780 insn_t join_point, place_to_insert, new_insn;
4781 int new_seqno;
4782 bool need_to_exchange_data_sets;
4783 fence_t fence_to_rewind;
4784
4785 if (sched_verbose >= 4)
4786 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4787 e2->dest->index);
4788
4789 join_point = sel_bb_head (e2->dest);
4790 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4791 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4792 need_to_exchange_data_sets
4793 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4794
4795 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4796
4797 if (fence_to_rewind)
4798 FENCE_INSN (fence_to_rewind) = new_insn;
4799
4800 /* When inserting bookkeeping insn in new block, av sets should be
4801 following: old basic block (that now holds bookkeeping) data sets are
4802 the same as was before generation of bookkeeping, and new basic block
4803 (that now hold all other insns of old basic block) data sets are
4804 invalid. So exchange data sets for these basic blocks as sel_split_block
4805 mistakenly exchanges them in this case. Cannot do it earlier because
4806 when single instruction is added to new basic block it should hold NULL
4807 lv_set. */
4808 if (need_to_exchange_data_sets)
4809 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4810 BLOCK_FOR_INSN (join_point));
4811
4812 stat_bookkeeping_copies++;
4813 return BLOCK_FOR_INSN (new_insn);
4814 }
4815
4816 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4817 on FENCE, but we are unable to copy them. */
4818 static void
4819 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4820 {
4821 expr_t expr;
4822 av_set_iterator i;
4823
4824 /* An expression does not need bookkeeping if it is available on all paths
4825 from current block to original block and current block dominates
4826 original block. We check availability on all paths by examining
4827 EXPR_SPEC; this is not equivalent, because it may be positive even
4828 if expr is available on all paths (but if expr is not available on
4829 any path, EXPR_SPEC will be positive). */
4830
4831 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4832 {
4833 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4834 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4835 && (EXPR_SPEC (expr)
4836 || !EXPR_ORIG_BB_INDEX (expr)
4837 || !dominated_by_p (CDI_DOMINATORS,
4838 BASIC_BLOCK_FOR_FN (cfun,
4839 EXPR_ORIG_BB_INDEX (expr)),
4840 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4841 {
4842 if (sched_verbose >= 4)
4843 sel_print ("Expr %d removed because it would need bookkeeping, which "
4844 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4845 av_set_iter_remove (&i);
4846 }
4847 }
4848 }
4849
4850 /* Moving conditional jump through some instructions.
4851
4852 Consider example:
4853
4854 ... <- current scheduling point
4855 NOTE BASIC BLOCK: <- bb header
4856 (p8) add r14=r14+0x9;;
4857 (p8) mov [r14]=r23
4858 (!p8) jump L1;;
4859 NOTE BASIC BLOCK:
4860 ...
4861
4862 We can schedule jump one cycle earlier, than mov, because they cannot be
4863 executed together as their predicates are mutually exclusive.
4864
4865 This is done in this way: first, new fallthrough basic block is created
4866 after jump (it is always can be done, because there already should be a
4867 fallthrough block, where control flow goes in case of predicate being true -
4868 in our example; otherwise there should be a dependence between those
4869 instructions and jump and we cannot schedule jump right now);
4870 next, all instructions between jump and current scheduling point are moved
4871 to this new block. And the result is this:
4872
4873 NOTE BASIC BLOCK:
4874 (!p8) jump L1 <- current scheduling point
4875 NOTE BASIC BLOCK: <- bb header
4876 (p8) add r14=r14+0x9;;
4877 (p8) mov [r14]=r23
4878 NOTE BASIC BLOCK:
4879 ...
4880 */
4881 static void
4882 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4883 {
4884 edge ft_edge;
4885 basic_block block_from, block_next, block_new, block_bnd, bb;
4886 rtx_insn *next, *prev, *link, *head;
4887
4888 block_from = BLOCK_FOR_INSN (insn);
4889 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4890 prev = BND_TO (bnd);
4891
4892 #ifdef ENABLE_CHECKING
4893 /* Moving of jump should not cross any other jumps or beginnings of new
4894 basic blocks. The only exception is when we move a jump through
4895 mutually exclusive insns along fallthru edges. */
4896 if (block_from != block_bnd)
4897 {
4898 bb = block_from;
4899 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4900 link = PREV_INSN (link))
4901 {
4902 if (INSN_P (link))
4903 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4904 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4905 {
4906 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4907 bb = BLOCK_FOR_INSN (link);
4908 }
4909 }
4910 }
4911 #endif
4912
4913 /* Jump is moved to the boundary. */
4914 next = PREV_INSN (insn);
4915 BND_TO (bnd) = insn;
4916
4917 ft_edge = find_fallthru_edge_from (block_from);
4918 block_next = ft_edge->dest;
4919 /* There must be a fallthrough block (or where should go
4920 control flow in case of false jump predicate otherwise?). */
4921 gcc_assert (block_next);
4922
4923 /* Create new empty basic block after source block. */
4924 block_new = sel_split_edge (ft_edge);
4925 gcc_assert (block_new->next_bb == block_next
4926 && block_from->next_bb == block_new);
4927
4928 /* Move all instructions except INSN to BLOCK_NEW. */
4929 bb = block_bnd;
4930 head = BB_HEAD (block_new);
4931 while (bb != block_from->next_bb)
4932 {
4933 rtx_insn *from, *to;
4934 from = bb == block_bnd ? prev : sel_bb_head (bb);
4935 to = bb == block_from ? next : sel_bb_end (bb);
4936
4937 /* The jump being moved can be the first insn in the block.
4938 In this case we don't have to move anything in this block. */
4939 if (NEXT_INSN (to) != from)
4940 {
4941 reorder_insns (from, to, head);
4942
4943 for (link = to; link != head; link = PREV_INSN (link))
4944 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4945 head = to;
4946 }
4947
4948 /* Cleanup possibly empty blocks left. */
4949 block_next = bb->next_bb;
4950 if (bb != block_from)
4951 tidy_control_flow (bb, false);
4952 bb = block_next;
4953 }
4954
4955 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4956 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4957
4958 gcc_assert (!sel_bb_empty_p (block_from)
4959 && !sel_bb_empty_p (block_new));
4960
4961 /* Update data sets for BLOCK_NEW to represent that INSN and
4962 instructions from the other branch of INSN is no longer
4963 available at BLOCK_NEW. */
4964 BB_AV_LEVEL (block_new) = global_level;
4965 gcc_assert (BB_LV_SET (block_new) == NULL);
4966 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4967 update_data_sets (sel_bb_head (block_new));
4968
4969 /* INSN is a new basic block header - so prepare its data
4970 structures and update availability and liveness sets. */
4971 update_data_sets (insn);
4972
4973 if (sched_verbose >= 4)
4974 sel_print ("Moving jump %d\n", INSN_UID (insn));
4975 }
4976
4977 /* Remove nops generated during move_op for preventing removal of empty
4978 basic blocks. */
4979 static void
4980 remove_temp_moveop_nops (bool full_tidying)
4981 {
4982 int i;
4983 insn_t insn;
4984
4985 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4986 {
4987 gcc_assert (INSN_NOP_P (insn));
4988 return_nop_to_pool (insn, full_tidying);
4989 }
4990
4991 /* Empty the vector. */
4992 if (vec_temp_moveop_nops.length () > 0)
4993 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
4994 }
4995
4996 /* Records the maximal UID before moving up an instruction. Used for
4997 distinguishing between bookkeeping copies and original insns. */
4998 static int max_uid_before_move_op = 0;
4999
5000 /* Remove from AV_VLIW_P all instructions but next when debug counter
5001 tells us so. Next instruction is fetched from BNDS. */
5002 static void
5003 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5004 {
5005 if (! dbg_cnt (sel_sched_insn_cnt))
5006 /* Leave only the next insn in av_vliw. */
5007 {
5008 av_set_iterator av_it;
5009 expr_t expr;
5010 bnd_t bnd = BLIST_BND (bnds);
5011 insn_t next = BND_TO (bnd);
5012
5013 gcc_assert (BLIST_NEXT (bnds) == NULL);
5014
5015 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5016 if (EXPR_INSN_RTX (expr) != next)
5017 av_set_iter_remove (&av_it);
5018 }
5019 }
5020
5021 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5022 the computed set to *AV_VLIW_P. */
5023 static void
5024 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5025 {
5026 if (sched_verbose >= 2)
5027 {
5028 sel_print ("Boundaries: ");
5029 dump_blist (bnds);
5030 sel_print ("\n");
5031 }
5032
5033 for (; bnds; bnds = BLIST_NEXT (bnds))
5034 {
5035 bnd_t bnd = BLIST_BND (bnds);
5036 av_set_t av1_copy;
5037 insn_t bnd_to = BND_TO (bnd);
5038
5039 /* Rewind BND->TO to the basic block header in case some bookkeeping
5040 instructions were inserted before BND->TO and it needs to be
5041 adjusted. */
5042 if (sel_bb_head_p (bnd_to))
5043 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5044 else
5045 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5046 {
5047 bnd_to = PREV_INSN (bnd_to);
5048 if (sel_bb_head_p (bnd_to))
5049 break;
5050 }
5051
5052 if (BND_TO (bnd) != bnd_to)
5053 {
5054 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5055 FENCE_INSN (fence) = bnd_to;
5056 BND_TO (bnd) = bnd_to;
5057 }
5058
5059 av_set_clear (&BND_AV (bnd));
5060 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5061
5062 av_set_clear (&BND_AV1 (bnd));
5063 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5064
5065 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5066
5067 av1_copy = av_set_copy (BND_AV1 (bnd));
5068 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5069 }
5070
5071 if (sched_verbose >= 2)
5072 {
5073 sel_print ("Available exprs (vliw form): ");
5074 dump_av_set (*av_vliw_p);
5075 sel_print ("\n");
5076 }
5077 }
5078
5079 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5080 expression. When FOR_MOVEOP is true, also replace the register of
5081 expressions found with the register from EXPR_VLIW. */
5082 static av_set_t
5083 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5084 {
5085 av_set_t expr_seq = NULL;
5086 expr_t expr;
5087 av_set_iterator i;
5088
5089 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5090 {
5091 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5092 {
5093 if (for_moveop)
5094 {
5095 /* The sequential expression has the right form to pass
5096 to move_op except when renaming happened. Put the
5097 correct register in EXPR then. */
5098 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5099 {
5100 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5101 {
5102 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5103 stat_renamed_scheduled++;
5104 }
5105 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5106 This is needed when renaming came up with original
5107 register. */
5108 else if (EXPR_TARGET_AVAILABLE (expr)
5109 != EXPR_TARGET_AVAILABLE (expr_vliw))
5110 {
5111 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5112 EXPR_TARGET_AVAILABLE (expr) = 1;
5113 }
5114 }
5115 if (EXPR_WAS_SUBSTITUTED (expr))
5116 stat_substitutions_total++;
5117 }
5118
5119 av_set_add (&expr_seq, expr);
5120
5121 /* With substitution inside insn group, it is possible
5122 that more than one expression in expr_seq will correspond
5123 to expr_vliw. In this case, choose one as the attempt to
5124 move both leads to miscompiles. */
5125 break;
5126 }
5127 }
5128
5129 if (for_moveop && sched_verbose >= 2)
5130 {
5131 sel_print ("Best expression(s) (sequential form): ");
5132 dump_av_set (expr_seq);
5133 sel_print ("\n");
5134 }
5135
5136 return expr_seq;
5137 }
5138
5139
5140 /* Move nop to previous block. */
5141 static void ATTRIBUTE_UNUSED
5142 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5143 {
5144 insn_t prev_insn, next_insn;
5145
5146 gcc_assert (sel_bb_head_p (nop)
5147 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5148 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
5149 prev_insn = sel_bb_end (prev_bb);
5150 next_insn = NEXT_INSN (nop);
5151 gcc_assert (prev_insn != NULL_RTX
5152 && PREV_INSN (note) == prev_insn);
5153
5154 SET_NEXT_INSN (prev_insn) = nop;
5155 SET_PREV_INSN (nop) = prev_insn;
5156
5157 SET_PREV_INSN (note) = nop;
5158 SET_NEXT_INSN (note) = next_insn;
5159
5160 SET_NEXT_INSN (nop) = note;
5161 SET_PREV_INSN (next_insn) = note;
5162
5163 BB_END (prev_bb) = nop;
5164 BLOCK_FOR_INSN (nop) = prev_bb;
5165 }
5166
5167 /* Prepare a place to insert the chosen expression on BND. */
5168 static insn_t
5169 prepare_place_to_insert (bnd_t bnd)
5170 {
5171 insn_t place_to_insert;
5172
5173 /* Init place_to_insert before calling move_op, as the later
5174 can possibly remove BND_TO (bnd). */
5175 if (/* If this is not the first insn scheduled. */
5176 BND_PTR (bnd))
5177 {
5178 /* Add it after last scheduled. */
5179 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5180 if (DEBUG_INSN_P (place_to_insert))
5181 {
5182 ilist_t l = BND_PTR (bnd);
5183 while ((l = ILIST_NEXT (l)) &&
5184 DEBUG_INSN_P (ILIST_INSN (l)))
5185 ;
5186 if (!l)
5187 place_to_insert = NULL;
5188 }
5189 }
5190 else
5191 place_to_insert = NULL;
5192
5193 if (!place_to_insert)
5194 {
5195 /* Add it before BND_TO. The difference is in the
5196 basic block, where INSN will be added. */
5197 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5198 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5199 == BLOCK_FOR_INSN (BND_TO (bnd)));
5200 }
5201
5202 return place_to_insert;
5203 }
5204
5205 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5206 Return the expression to emit in C_EXPR. */
5207 static bool
5208 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5209 av_set_t expr_seq, expr_t c_expr)
5210 {
5211 bool b, should_move;
5212 unsigned book_uid;
5213 bitmap_iterator bi;
5214 int n_bookkeeping_copies_before_moveop;
5215
5216 /* Make a move. This call will remove the original operation,
5217 insert all necessary bookkeeping instructions and update the
5218 data sets. After that all we have to do is add the operation
5219 at before BND_TO (BND). */
5220 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5221 max_uid_before_move_op = get_max_uid ();
5222 bitmap_clear (current_copies);
5223 bitmap_clear (current_originators);
5224
5225 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5226 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5227
5228 /* We should be able to find the expression we've chosen for
5229 scheduling. */
5230 gcc_assert (b);
5231
5232 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5233 stat_insns_needed_bookkeeping++;
5234
5235 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5236 {
5237 unsigned uid;
5238 bitmap_iterator bi;
5239
5240 /* We allocate these bitmaps lazily. */
5241 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5242 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5243
5244 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5245 current_originators);
5246
5247 /* Transitively add all originators' originators. */
5248 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5249 if (INSN_ORIGINATORS_BY_UID (uid))
5250 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5251 INSN_ORIGINATORS_BY_UID (uid));
5252 }
5253
5254 return should_move;
5255 }
5256
5257
5258 /* Debug a DFA state as an array of bytes. */
5259 static void
5260 debug_state (state_t state)
5261 {
5262 unsigned char *p;
5263 unsigned int i, size = dfa_state_size;
5264
5265 sel_print ("state (%u):", size);
5266 for (i = 0, p = (unsigned char *) state; i < size; i++)
5267 sel_print (" %d", p[i]);
5268 sel_print ("\n");
5269 }
5270
5271 /* Advance state on FENCE with INSN. Return true if INSN is
5272 an ASM, and we should advance state once more. */
5273 static bool
5274 advance_state_on_fence (fence_t fence, insn_t insn)
5275 {
5276 bool asm_p;
5277
5278 if (recog_memoized (insn) >= 0)
5279 {
5280 int res;
5281 state_t temp_state = alloca (dfa_state_size);
5282
5283 gcc_assert (!INSN_ASM_P (insn));
5284 asm_p = false;
5285
5286 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5287 res = state_transition (FENCE_STATE (fence), insn);
5288 gcc_assert (res < 0);
5289
5290 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5291 {
5292 FENCE_ISSUED_INSNS (fence)++;
5293
5294 /* We should never issue more than issue_rate insns. */
5295 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5296 gcc_unreachable ();
5297 }
5298 }
5299 else
5300 {
5301 /* This could be an ASM insn which we'd like to schedule
5302 on the next cycle. */
5303 asm_p = INSN_ASM_P (insn);
5304 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5305 advance_one_cycle (fence);
5306 }
5307
5308 if (sched_verbose >= 2)
5309 debug_state (FENCE_STATE (fence));
5310 if (!DEBUG_INSN_P (insn))
5311 FENCE_STARTS_CYCLE_P (fence) = 0;
5312 FENCE_ISSUE_MORE (fence) = can_issue_more;
5313 return asm_p;
5314 }
5315
5316 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5317 is nonzero if we need to stall after issuing INSN. */
5318 static void
5319 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5320 {
5321 bool asm_p;
5322
5323 /* First, reflect that something is scheduled on this fence. */
5324 asm_p = advance_state_on_fence (fence, insn);
5325 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5326 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5327 if (SCHED_GROUP_P (insn))
5328 {
5329 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5330 SCHED_GROUP_P (insn) = 0;
5331 }
5332 else
5333 FENCE_SCHED_NEXT (fence) = NULL;
5334 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5335 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5336
5337 /* Set instruction scheduling info. This will be used in bundling,
5338 pipelining, tick computations etc. */
5339 ++INSN_SCHED_TIMES (insn);
5340 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5341 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5342 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5343 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5344
5345 /* This does not account for adjust_cost hooks, just add the biggest
5346 constant the hook may add to the latency. TODO: make this
5347 a target dependent constant. */
5348 INSN_READY_CYCLE (insn)
5349 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5350 ? 1
5351 : maximal_insn_latency (insn) + 1);
5352
5353 /* Change these fields last, as they're used above. */
5354 FENCE_AFTER_STALL_P (fence) = 0;
5355 if (asm_p || need_stall)
5356 advance_one_cycle (fence);
5357
5358 /* Indicate that we've scheduled something on this fence. */
5359 FENCE_SCHEDULED_P (fence) = true;
5360 scheduled_something_on_previous_fence = true;
5361
5362 /* Print debug information when insn's fields are updated. */
5363 if (sched_verbose >= 2)
5364 {
5365 sel_print ("Scheduling insn: ");
5366 dump_insn_1 (insn, 1);
5367 sel_print ("\n");
5368 }
5369 }
5370
5371 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5372 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5373 return it. */
5374 static blist_t *
5375 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5376 blist_t *bnds_tailp)
5377 {
5378 succ_iterator si;
5379 insn_t succ;
5380
5381 advance_deps_context (BND_DC (bnd), insn);
5382 FOR_EACH_SUCC_1 (succ, si, insn,
5383 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5384 {
5385 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5386
5387 ilist_add (&ptr, insn);
5388
5389 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5390 && is_ineligible_successor (succ, ptr))
5391 {
5392 ilist_clear (&ptr);
5393 continue;
5394 }
5395
5396 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5397 {
5398 if (sched_verbose >= 9)
5399 sel_print ("Updating fence insn from %i to %i\n",
5400 INSN_UID (insn), INSN_UID (succ));
5401 FENCE_INSN (fence) = succ;
5402 }
5403 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5404 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5405 }
5406
5407 blist_remove (bndsp);
5408 return bnds_tailp;
5409 }
5410
5411 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5412 static insn_t
5413 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5414 {
5415 av_set_t expr_seq;
5416 expr_t c_expr = XALLOCA (expr_def);
5417 insn_t place_to_insert;
5418 insn_t insn;
5419 bool should_move;
5420
5421 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5422
5423 /* In case of scheduling a jump skipping some other instructions,
5424 prepare CFG. After this, jump is at the boundary and can be
5425 scheduled as usual insn by MOVE_OP. */
5426 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5427 {
5428 insn = EXPR_INSN_RTX (expr_vliw);
5429
5430 /* Speculative jumps are not handled. */
5431 if (insn != BND_TO (bnd)
5432 && !sel_insn_is_speculation_check (insn))
5433 move_cond_jump (insn, bnd);
5434 }
5435
5436 /* Find a place for C_EXPR to schedule. */
5437 place_to_insert = prepare_place_to_insert (bnd);
5438 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5439 clear_expr (c_expr);
5440
5441 /* Add the instruction. The corner case to care about is when
5442 the expr_seq set has more than one expr, and we chose the one that
5443 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5444 we can't use it. Generate the new vinsn. */
5445 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5446 {
5447 vinsn_t vinsn_new;
5448
5449 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5450 change_vinsn_in_expr (expr_vliw, vinsn_new);
5451 should_move = false;
5452 }
5453 if (should_move)
5454 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5455 else
5456 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5457 place_to_insert);
5458
5459 /* Return the nops generated for preserving of data sets back
5460 into pool. */
5461 if (INSN_NOP_P (place_to_insert))
5462 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5463 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5464
5465 av_set_clear (&expr_seq);
5466
5467 /* Save the expression scheduled so to reset target availability if we'll
5468 meet it later on the same fence. */
5469 if (EXPR_WAS_RENAMED (expr_vliw))
5470 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5471
5472 /* Check that the recent movement didn't destroyed loop
5473 structure. */
5474 gcc_assert (!pipelining_p
5475 || current_loop_nest == NULL
5476 || loop_latch_edge (current_loop_nest));
5477 return insn;
5478 }
5479
5480 /* Stall for N cycles on FENCE. */
5481 static void
5482 stall_for_cycles (fence_t fence, int n)
5483 {
5484 int could_more;
5485
5486 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5487 while (n--)
5488 advance_one_cycle (fence);
5489 if (could_more)
5490 FENCE_AFTER_STALL_P (fence) = 1;
5491 }
5492
5493 /* Gather a parallel group of insns at FENCE and assign their seqno
5494 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5495 list for later recalculation of seqnos. */
5496 static void
5497 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5498 {
5499 blist_t bnds = NULL, *bnds_tailp;
5500 av_set_t av_vliw = NULL;
5501 insn_t insn = FENCE_INSN (fence);
5502
5503 if (sched_verbose >= 2)
5504 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5505 INSN_UID (insn), FENCE_CYCLE (fence));
5506
5507 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5508 bnds_tailp = &BLIST_NEXT (bnds);
5509 set_target_context (FENCE_TC (fence));
5510 can_issue_more = FENCE_ISSUE_MORE (fence);
5511 target_bb = INSN_BB (insn);
5512
5513 /* Do while we can add any operation to the current group. */
5514 do
5515 {
5516 blist_t *bnds_tailp1, *bndsp;
5517 expr_t expr_vliw;
5518 int need_stall = false;
5519 int was_stall = 0, scheduled_insns = 0;
5520 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5521 int max_stall = pipelining_p ? 1 : 3;
5522 bool last_insn_was_debug = false;
5523 bool was_debug_bb_end_p = false;
5524
5525 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5526 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5527 remove_insns_for_debug (bnds, &av_vliw);
5528
5529 /* Return early if we have nothing to schedule. */
5530 if (av_vliw == NULL)
5531 break;
5532
5533 /* Choose the best expression and, if needed, destination register
5534 for it. */
5535 do
5536 {
5537 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5538 if (! expr_vliw && need_stall)
5539 {
5540 /* All expressions required a stall. Do not recompute av sets
5541 as we'll get the same answer (modulo the insns between
5542 the fence and its boundary, which will not be available for
5543 pipelining).
5544 If we are going to stall for too long, break to recompute av
5545 sets and bring more insns for pipelining. */
5546 was_stall++;
5547 if (need_stall <= 3)
5548 stall_for_cycles (fence, need_stall);
5549 else
5550 {
5551 stall_for_cycles (fence, 1);
5552 break;
5553 }
5554 }
5555 }
5556 while (! expr_vliw && need_stall);
5557
5558 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5559 if (!expr_vliw)
5560 {
5561 av_set_clear (&av_vliw);
5562 break;
5563 }
5564
5565 bndsp = &bnds;
5566 bnds_tailp1 = bnds_tailp;
5567
5568 do
5569 /* This code will be executed only once until we'd have several
5570 boundaries per fence. */
5571 {
5572 bnd_t bnd = BLIST_BND (*bndsp);
5573
5574 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5575 {
5576 bndsp = &BLIST_NEXT (*bndsp);
5577 continue;
5578 }
5579
5580 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5581 last_insn_was_debug = DEBUG_INSN_P (insn);
5582 if (last_insn_was_debug)
5583 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5584 update_fence_and_insn (fence, insn, need_stall);
5585 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5586
5587 /* Add insn to the list of scheduled on this cycle instructions. */
5588 ilist_add (*scheduled_insns_tailpp, insn);
5589 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5590 }
5591 while (*bndsp != *bnds_tailp1);
5592
5593 av_set_clear (&av_vliw);
5594 if (!last_insn_was_debug)
5595 scheduled_insns++;
5596
5597 /* We currently support information about candidate blocks only for
5598 one 'target_bb' block. Hence we can't schedule after jump insn,
5599 as this will bring two boundaries and, hence, necessity to handle
5600 information for two or more blocks concurrently. */
5601 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5602 || (was_stall
5603 && (was_stall >= max_stall
5604 || scheduled_insns >= max_insns)))
5605 break;
5606 }
5607 while (bnds);
5608
5609 gcc_assert (!FENCE_BNDS (fence));
5610
5611 /* Update boundaries of the FENCE. */
5612 while (bnds)
5613 {
5614 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5615
5616 if (ptr)
5617 {
5618 insn = ILIST_INSN (ptr);
5619
5620 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5621 ilist_add (&FENCE_BNDS (fence), insn);
5622 }
5623
5624 blist_remove (&bnds);
5625 }
5626
5627 /* Update target context on the fence. */
5628 reset_target_context (FENCE_TC (fence), false);
5629 }
5630
5631 /* All exprs in ORIG_OPS must have the same destination register or memory.
5632 Return that destination. */
5633 static rtx
5634 get_dest_from_orig_ops (av_set_t orig_ops)
5635 {
5636 rtx dest = NULL_RTX;
5637 av_set_iterator av_it;
5638 expr_t expr;
5639 bool first_p = true;
5640
5641 FOR_EACH_EXPR (expr, av_it, orig_ops)
5642 {
5643 rtx x = EXPR_LHS (expr);
5644
5645 if (first_p)
5646 {
5647 first_p = false;
5648 dest = x;
5649 }
5650 else
5651 gcc_assert (dest == x
5652 || (dest != NULL_RTX && x != NULL_RTX
5653 && rtx_equal_p (dest, x)));
5654 }
5655
5656 return dest;
5657 }
5658
5659 /* Update data sets for the bookkeeping block and record those expressions
5660 which become no longer available after inserting this bookkeeping. */
5661 static void
5662 update_and_record_unavailable_insns (basic_block book_block)
5663 {
5664 av_set_iterator i;
5665 av_set_t old_av_set = NULL;
5666 expr_t cur_expr;
5667 rtx_insn *bb_end = sel_bb_end (book_block);
5668
5669 /* First, get correct liveness in the bookkeeping block. The problem is
5670 the range between the bookeeping insn and the end of block. */
5671 update_liveness_on_insn (bb_end);
5672 if (control_flow_insn_p (bb_end))
5673 update_liveness_on_insn (PREV_INSN (bb_end));
5674
5675 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5676 fence above, where we may choose to schedule an insn which is
5677 actually blocked from moving up with the bookkeeping we create here. */
5678 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5679 {
5680 old_av_set = av_set_copy (BB_AV_SET (book_block));
5681 update_data_sets (sel_bb_head (book_block));
5682
5683 /* Traverse all the expressions in the old av_set and check whether
5684 CUR_EXPR is in new AV_SET. */
5685 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5686 {
5687 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5688 EXPR_VINSN (cur_expr));
5689
5690 if (! new_expr
5691 /* In this case, we can just turn off the E_T_A bit, but we can't
5692 represent this information with the current vector. */
5693 || EXPR_TARGET_AVAILABLE (new_expr)
5694 != EXPR_TARGET_AVAILABLE (cur_expr))
5695 /* Unfortunately, the below code could be also fired up on
5696 separable insns, e.g. when moving insns through the new
5697 speculation check as in PR 53701. */
5698 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5699 }
5700
5701 av_set_clear (&old_av_set);
5702 }
5703 }
5704
5705 /* The main effect of this function is that sparams->c_expr is merged
5706 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5707 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5708 lparams->c_expr_merged is copied back to sparams->c_expr after all
5709 successors has been traversed. lparams->c_expr_local is an expr allocated
5710 on stack in the caller function, and is used if there is more than one
5711 successor.
5712
5713 SUCC is one of the SUCCS_NORMAL successors of INSN,
5714 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5715 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5716 static void
5717 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5718 insn_t succ ATTRIBUTE_UNUSED,
5719 int moveop_drv_call_res,
5720 cmpd_local_params_p lparams, void *static_params)
5721 {
5722 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5723
5724 /* Nothing to do, if original expr wasn't found below. */
5725 if (moveop_drv_call_res != 1)
5726 return;
5727
5728 /* If this is a first successor. */
5729 if (!lparams->c_expr_merged)
5730 {
5731 lparams->c_expr_merged = sparams->c_expr;
5732 sparams->c_expr = lparams->c_expr_local;
5733 }
5734 else
5735 {
5736 /* We must merge all found expressions to get reasonable
5737 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5738 do so then we can first find the expr with epsilon
5739 speculation success probability and only then with the
5740 good probability. As a result the insn will get epsilon
5741 probability and will never be scheduled because of
5742 weakness_cutoff in find_best_expr.
5743
5744 We call merge_expr_data here instead of merge_expr
5745 because due to speculation C_EXPR and X may have the
5746 same insns with different speculation types. And as of
5747 now such insns are considered non-equal.
5748
5749 However, EXPR_SCHED_TIMES is different -- we must get
5750 SCHED_TIMES from a real insn, not a bookkeeping copy.
5751 We force this here. Instead, we may consider merging
5752 SCHED_TIMES to the maximum instead of minimum in the
5753 below function. */
5754 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5755
5756 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5757 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5758 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5759
5760 clear_expr (sparams->c_expr);
5761 }
5762 }
5763
5764 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5765
5766 SUCC is one of the SUCCS_NORMAL successors of INSN,
5767 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5768 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5769 STATIC_PARAMS contain USED_REGS set. */
5770 static void
5771 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5772 int moveop_drv_call_res,
5773 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5774 void *static_params)
5775 {
5776 regset succ_live;
5777 fur_static_params_p sparams = (fur_static_params_p) static_params;
5778
5779 /* Here we compute live regsets only for branches that do not lie
5780 on the code motion paths. These branches correspond to value
5781 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5782 for such branches code_motion_path_driver is not called. */
5783 if (moveop_drv_call_res != 0)
5784 return;
5785
5786 /* Mark all registers that do not meet the following condition:
5787 (3) not live on the other path of any conditional branch
5788 that is passed by the operation, in case original
5789 operations are not present on both paths of the
5790 conditional branch. */
5791 succ_live = compute_live (succ);
5792 IOR_REG_SET (sparams->used_regs, succ_live);
5793 }
5794
5795 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5796 into SP->CEXPR. */
5797 static void
5798 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5799 {
5800 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5801
5802 sp->c_expr = lp->c_expr_merged;
5803 }
5804
5805 /* Track bookkeeping copies created, insns scheduled, and blocks for
5806 rescheduling when INSN is found by move_op. */
5807 static void
5808 track_scheduled_insns_and_blocks (rtx_insn *insn)
5809 {
5810 /* Even if this insn can be a copy that will be removed during current move_op,
5811 we still need to count it as an originator. */
5812 bitmap_set_bit (current_originators, INSN_UID (insn));
5813
5814 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5815 {
5816 /* Note that original block needs to be rescheduled, as we pulled an
5817 instruction out of it. */
5818 if (INSN_SCHED_TIMES (insn) > 0)
5819 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5820 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5821 num_insns_scheduled++;
5822 }
5823
5824 /* For instructions we must immediately remove insn from the
5825 stream, so subsequent update_data_sets () won't include this
5826 insn into av_set.
5827 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5828 if (INSN_UID (insn) > max_uid_before_move_op)
5829 stat_bookkeeping_copies--;
5830 }
5831
5832 /* Emit a register-register copy for INSN if needed. Return true if
5833 emitted one. PARAMS is the move_op static parameters. */
5834 static bool
5835 maybe_emit_renaming_copy (rtx_insn *insn,
5836 moveop_static_params_p params)
5837 {
5838 bool insn_emitted = false;
5839 rtx cur_reg;
5840
5841 /* Bail out early when expression can not be renamed at all. */
5842 if (!EXPR_SEPARABLE_P (params->c_expr))
5843 return false;
5844
5845 cur_reg = expr_dest_reg (params->c_expr);
5846 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5847
5848 /* If original operation has expr and the register chosen for
5849 that expr is not original operation's dest reg, substitute
5850 operation's right hand side with the register chosen. */
5851 if (REGNO (params->dest) != REGNO (cur_reg))
5852 {
5853 insn_t reg_move_insn, reg_move_insn_rtx;
5854
5855 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5856 params->dest);
5857 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5858 INSN_EXPR (insn),
5859 INSN_SEQNO (insn),
5860 insn);
5861 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5862 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5863
5864 insn_emitted = true;
5865 params->was_renamed = true;
5866 }
5867
5868 return insn_emitted;
5869 }
5870
5871 /* Emit a speculative check for INSN speculated as EXPR if needed.
5872 Return true if we've emitted one. PARAMS is the move_op static
5873 parameters. */
5874 static bool
5875 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5876 moveop_static_params_p params)
5877 {
5878 bool insn_emitted = false;
5879 insn_t x;
5880 ds_t check_ds;
5881
5882 check_ds = get_spec_check_type_for_insn (insn, expr);
5883 if (check_ds != 0)
5884 {
5885 /* A speculation check should be inserted. */
5886 x = create_speculation_check (params->c_expr, check_ds, insn);
5887 insn_emitted = true;
5888 }
5889 else
5890 {
5891 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5892 x = insn;
5893 }
5894
5895 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5896 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5897 return insn_emitted;
5898 }
5899
5900 /* Handle transformations that leave an insn in place of original
5901 insn such as renaming/speculation. Return true if one of such
5902 transformations actually happened, and we have emitted this insn. */
5903 static bool
5904 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5905 moveop_static_params_p params)
5906 {
5907 bool insn_emitted = false;
5908
5909 insn_emitted = maybe_emit_renaming_copy (insn, params);
5910 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5911
5912 return insn_emitted;
5913 }
5914
5915 /* If INSN is the only insn in the basic block (not counting JUMP,
5916 which may be a jump to next insn, and DEBUG_INSNs), we want to
5917 leave a NOP there till the return to fill_insns. */
5918
5919 static bool
5920 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5921 {
5922 insn_t bb_head, bb_end, bb_next, in_next;
5923 basic_block bb = BLOCK_FOR_INSN (insn);
5924
5925 bb_head = sel_bb_head (bb);
5926 bb_end = sel_bb_end (bb);
5927
5928 if (bb_head == bb_end)
5929 return true;
5930
5931 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5932 bb_head = NEXT_INSN (bb_head);
5933
5934 if (bb_head == bb_end)
5935 return true;
5936
5937 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5938 bb_end = PREV_INSN (bb_end);
5939
5940 if (bb_head == bb_end)
5941 return true;
5942
5943 bb_next = NEXT_INSN (bb_head);
5944 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5945 bb_next = NEXT_INSN (bb_next);
5946
5947 if (bb_next == bb_end && JUMP_P (bb_end))
5948 return true;
5949
5950 in_next = NEXT_INSN (insn);
5951 while (DEBUG_INSN_P (in_next))
5952 in_next = NEXT_INSN (in_next);
5953
5954 if (IN_CURRENT_FENCE_P (in_next))
5955 return true;
5956
5957 return false;
5958 }
5959
5960 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5961 is not removed but reused when INSN is re-emitted. */
5962 static void
5963 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5964 {
5965 /* If there's only one insn in the BB, make sure that a nop is
5966 inserted into it, so the basic block won't disappear when we'll
5967 delete INSN below with sel_remove_insn. It should also survive
5968 till the return to fill_insns. */
5969 if (need_nop_to_preserve_insn_bb (insn))
5970 {
5971 insn_t nop = get_nop_from_pool (insn);
5972 gcc_assert (INSN_NOP_P (nop));
5973 vec_temp_moveop_nops.safe_push (nop);
5974 }
5975
5976 sel_remove_insn (insn, only_disconnect, false);
5977 }
5978
5979 /* This function is called when original expr is found.
5980 INSN - current insn traversed, EXPR - the corresponding expr found.
5981 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5982 is static parameters of move_op. */
5983 static void
5984 move_op_orig_expr_found (insn_t insn, expr_t expr,
5985 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5986 void *static_params)
5987 {
5988 bool only_disconnect;
5989 moveop_static_params_p params = (moveop_static_params_p) static_params;
5990
5991 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5992 track_scheduled_insns_and_blocks (insn);
5993 handle_emitting_transformations (insn, expr, params);
5994 only_disconnect = params->uid == INSN_UID (insn);
5995
5996 /* Mark that we've disconnected an insn. */
5997 if (only_disconnect)
5998 params->uid = -1;
5999 remove_insn_from_stream (insn, only_disconnect);
6000 }
6001
6002 /* The function is called when original expr is found.
6003 INSN - current insn traversed, EXPR - the corresponding expr found,
6004 crosses_call and original_insns in STATIC_PARAMS are updated. */
6005 static void
6006 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6007 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6008 void *static_params)
6009 {
6010 fur_static_params_p params = (fur_static_params_p) static_params;
6011 regset tmp;
6012
6013 if (CALL_P (insn))
6014 params->crosses_call = true;
6015
6016 def_list_add (params->original_insns, insn, params->crosses_call);
6017
6018 /* Mark the registers that do not meet the following condition:
6019 (2) not among the live registers of the point
6020 immediately following the first original operation on
6021 a given downward path, except for the original target
6022 register of the operation. */
6023 tmp = get_clear_regset_from_pool ();
6024 compute_live_below_insn (insn, tmp);
6025 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6026 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6027 IOR_REG_SET (params->used_regs, tmp);
6028 return_regset_to_pool (tmp);
6029
6030 /* (*1) We need to add to USED_REGS registers that are read by
6031 INSN's lhs. This may lead to choosing wrong src register.
6032 E.g. (scheduling const expr enabled):
6033
6034 429: ax=0x0 <- Can't use AX for this expr (0x0)
6035 433: dx=[bp-0x18]
6036 427: [ax+dx+0x1]=ax
6037 REG_DEAD: ax
6038 168: di=dx
6039 REG_DEAD: dx
6040 */
6041 /* FIXME: see comment above and enable MEM_P
6042 in vinsn_separable_p. */
6043 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6044 || !MEM_P (INSN_LHS (insn)));
6045 }
6046
6047 /* This function is called on the ascending pass, before returning from
6048 current basic block. */
6049 static void
6050 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6051 void *static_params)
6052 {
6053 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6054 basic_block book_block = NULL;
6055
6056 /* When we have removed the boundary insn for scheduling, which also
6057 happened to be the end insn in its bb, we don't need to update sets. */
6058 if (!lparams->removed_last_insn
6059 && lparams->e1
6060 && sel_bb_head_p (insn))
6061 {
6062 /* We should generate bookkeeping code only if we are not at the
6063 top level of the move_op. */
6064 if (sel_num_cfg_preds_gt_1 (insn))
6065 book_block = generate_bookkeeping_insn (sparams->c_expr,
6066 lparams->e1, lparams->e2);
6067 /* Update data sets for the current insn. */
6068 update_data_sets (insn);
6069 }
6070
6071 /* If bookkeeping code was inserted, we need to update av sets of basic
6072 block that received bookkeeping. After generation of bookkeeping insn,
6073 bookkeeping block does not contain valid av set because we are not following
6074 the original algorithm in every detail with regards to e.g. renaming
6075 simple reg-reg copies. Consider example:
6076
6077 bookkeeping block scheduling fence
6078 \ /
6079 \ join /
6080 ----------
6081 | |
6082 ----------
6083 / \
6084 / \
6085 r1 := r2 r1 := r3
6086
6087 We try to schedule insn "r1 := r3" on the current
6088 scheduling fence. Also, note that av set of bookkeeping block
6089 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6090 been scheduled, the CFG is as follows:
6091
6092 r1 := r3 r1 := r3
6093 bookkeeping block scheduling fence
6094 \ /
6095 \ join /
6096 ----------
6097 | |
6098 ----------
6099 / \
6100 / \
6101 r1 := r2
6102
6103 Here, insn "r1 := r3" was scheduled at the current scheduling point
6104 and bookkeeping code was generated at the bookeeping block. This
6105 way insn "r1 := r2" is no longer available as a whole instruction
6106 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6107 This situation is handled by calling update_data_sets.
6108
6109 Since update_data_sets is called only on the bookkeeping block, and
6110 it also may have predecessors with av_sets, containing instructions that
6111 are no longer available, we save all such expressions that become
6112 unavailable during data sets update on the bookkeeping block in
6113 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6114 expressions for scheduling. This allows us to avoid recomputation of
6115 av_sets outside the code motion path. */
6116
6117 if (book_block)
6118 update_and_record_unavailable_insns (book_block);
6119
6120 /* If INSN was previously marked for deletion, it's time to do it. */
6121 if (lparams->removed_last_insn)
6122 insn = PREV_INSN (insn);
6123
6124 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6125 kill a block with a single nop in which the insn should be emitted. */
6126 if (lparams->e1)
6127 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6128 }
6129
6130 /* This function is called on the ascending pass, before returning from the
6131 current basic block. */
6132 static void
6133 fur_at_first_insn (insn_t insn,
6134 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6135 void *static_params ATTRIBUTE_UNUSED)
6136 {
6137 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6138 || AV_LEVEL (insn) == -1);
6139 }
6140
6141 /* Called on the backward stage of recursion to call moveup_expr for insn
6142 and sparams->c_expr. */
6143 static void
6144 move_op_ascend (insn_t insn, void *static_params)
6145 {
6146 enum MOVEUP_EXPR_CODE res;
6147 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6148
6149 if (! INSN_NOP_P (insn))
6150 {
6151 res = moveup_expr_cached (sparams->c_expr, insn, false);
6152 gcc_assert (res != MOVEUP_EXPR_NULL);
6153 }
6154
6155 /* Update liveness for this insn as it was invalidated. */
6156 update_liveness_on_insn (insn);
6157 }
6158
6159 /* This function is called on enter to the basic block.
6160 Returns TRUE if this block already have been visited and
6161 code_motion_path_driver should return 1, FALSE otherwise. */
6162 static int
6163 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6164 void *static_params, bool visited_p)
6165 {
6166 fur_static_params_p sparams = (fur_static_params_p) static_params;
6167
6168 if (visited_p)
6169 {
6170 /* If we have found something below this block, there should be at
6171 least one insn in ORIGINAL_INSNS. */
6172 gcc_assert (*sparams->original_insns);
6173
6174 /* Adjust CROSSES_CALL, since we may have come to this block along
6175 different path. */
6176 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6177 |= sparams->crosses_call;
6178 }
6179 else
6180 local_params->old_original_insns = *sparams->original_insns;
6181
6182 return 1;
6183 }
6184
6185 /* Same as above but for move_op. */
6186 static int
6187 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6188 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6189 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6190 {
6191 if (visited_p)
6192 return -1;
6193 return 1;
6194 }
6195
6196 /* This function is called while descending current basic block if current
6197 insn is not the original EXPR we're searching for.
6198
6199 Return value: FALSE, if code_motion_path_driver should perform a local
6200 cleanup and return 0 itself;
6201 TRUE, if code_motion_path_driver should continue. */
6202 static bool
6203 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6204 void *static_params)
6205 {
6206 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6207
6208 #ifdef ENABLE_CHECKING
6209 sparams->failed_insn = insn;
6210 #endif
6211
6212 /* If we're scheduling separate expr, in order to generate correct code
6213 we need to stop the search at bookkeeping code generated with the
6214 same destination register or memory. */
6215 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6216 return false;
6217 return true;
6218 }
6219
6220 /* This function is called while descending current basic block if current
6221 insn is not the original EXPR we're searching for.
6222
6223 Return value: TRUE (code_motion_path_driver should continue). */
6224 static bool
6225 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6226 {
6227 bool mutexed;
6228 expr_t r;
6229 av_set_iterator avi;
6230 fur_static_params_p sparams = (fur_static_params_p) static_params;
6231
6232 if (CALL_P (insn))
6233 sparams->crosses_call = true;
6234 else if (DEBUG_INSN_P (insn))
6235 return true;
6236
6237 /* If current insn we are looking at cannot be executed together
6238 with original insn, then we can skip it safely.
6239
6240 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6241 INSN = (!p6) r14 = r14 + 1;
6242
6243 Here we can schedule ORIG_OP with lhs = r14, though only
6244 looking at the set of used and set registers of INSN we must
6245 forbid it. So, add set/used in INSN registers to the
6246 untouchable set only if there is an insn in ORIG_OPS that can
6247 affect INSN. */
6248 mutexed = true;
6249 FOR_EACH_EXPR (r, avi, orig_ops)
6250 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6251 {
6252 mutexed = false;
6253 break;
6254 }
6255
6256 /* Mark all registers that do not meet the following condition:
6257 (1) Not set or read on any path from xi to an instance of the
6258 original operation. */
6259 if (!mutexed)
6260 {
6261 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6262 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6263 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6264 }
6265
6266 return true;
6267 }
6268
6269 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6270 struct code_motion_path_driver_info_def move_op_hooks = {
6271 move_op_on_enter,
6272 move_op_orig_expr_found,
6273 move_op_orig_expr_not_found,
6274 move_op_merge_succs,
6275 move_op_after_merge_succs,
6276 move_op_ascend,
6277 move_op_at_first_insn,
6278 SUCCS_NORMAL,
6279 "move_op"
6280 };
6281
6282 /* Hooks and data to perform find_used_regs operations
6283 with code_motion_path_driver. */
6284 struct code_motion_path_driver_info_def fur_hooks = {
6285 fur_on_enter,
6286 fur_orig_expr_found,
6287 fur_orig_expr_not_found,
6288 fur_merge_succs,
6289 NULL, /* fur_after_merge_succs */
6290 NULL, /* fur_ascend */
6291 fur_at_first_insn,
6292 SUCCS_ALL,
6293 "find_used_regs"
6294 };
6295
6296 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6297 code_motion_path_driver is called recursively. Original operation
6298 was found at least on one path that is starting with one of INSN's
6299 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6300 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6301 of either move_op or find_used_regs depending on the caller.
6302
6303 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6304 know for sure at this point. */
6305 static int
6306 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6307 ilist_t path, void *static_params)
6308 {
6309 int res = 0;
6310 succ_iterator succ_i;
6311 insn_t succ;
6312 basic_block bb;
6313 int old_index;
6314 unsigned old_succs;
6315
6316 struct cmpd_local_params lparams;
6317 expr_def _x;
6318
6319 lparams.c_expr_local = &_x;
6320 lparams.c_expr_merged = NULL;
6321
6322 /* We need to process only NORMAL succs for move_op, and collect live
6323 registers from ALL branches (including those leading out of the
6324 region) for find_used_regs.
6325
6326 In move_op, there can be a case when insn's bb number has changed
6327 due to created bookkeeping. This happens very rare, as we need to
6328 move expression from the beginning to the end of the same block.
6329 Rescan successors in this case. */
6330
6331 rescan:
6332 bb = BLOCK_FOR_INSN (insn);
6333 old_index = bb->index;
6334 old_succs = EDGE_COUNT (bb->succs);
6335
6336 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6337 {
6338 int b;
6339
6340 lparams.e1 = succ_i.e1;
6341 lparams.e2 = succ_i.e2;
6342
6343 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6344 current region). */
6345 if (succ_i.current_flags == SUCCS_NORMAL)
6346 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6347 static_params);
6348 else
6349 b = 0;
6350
6351 /* Merge c_expres found or unify live register sets from different
6352 successors. */
6353 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6354 static_params);
6355 if (b == 1)
6356 res = b;
6357 else if (b == -1 && res != 1)
6358 res = b;
6359
6360 /* We have simplified the control flow below this point. In this case,
6361 the iterator becomes invalid. We need to try again.
6362 If we have removed the insn itself, it could be only an
6363 unconditional jump. Thus, do not rescan but break immediately --
6364 we have already visited the only successor block. */
6365 if (!BLOCK_FOR_INSN (insn))
6366 {
6367 if (sched_verbose >= 6)
6368 sel_print ("Not doing rescan: already visited the only successor"
6369 " of block %d\n", old_index);
6370 break;
6371 }
6372 if (BLOCK_FOR_INSN (insn)->index != old_index
6373 || EDGE_COUNT (bb->succs) != old_succs)
6374 {
6375 if (sched_verbose >= 6)
6376 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6377 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6378 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6379 goto rescan;
6380 }
6381 }
6382
6383 #ifdef ENABLE_CHECKING
6384 /* Here, RES==1 if original expr was found at least for one of the
6385 successors. After the loop, RES may happen to have zero value
6386 only if at some point the expr searched is present in av_set, but is
6387 not found below. In most cases, this situation is an error.
6388 The exception is when the original operation is blocked by
6389 bookkeeping generated for another fence or for another path in current
6390 move_op. */
6391 gcc_assert (res == 1
6392 || (res == 0
6393 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6394 static_params))
6395 || res == -1);
6396 #endif
6397
6398 /* Merge data, clean up, etc. */
6399 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6400 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6401
6402 return res;
6403 }
6404
6405
6406 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6407 is the pointer to the av set with expressions we were looking for,
6408 PATH_P is the pointer to the traversed path. */
6409 static inline void
6410 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6411 {
6412 ilist_remove (path_p);
6413 av_set_clear (orig_ops_p);
6414 }
6415
6416 /* The driver function that implements move_op or find_used_regs
6417 functionality dependent whether code_motion_path_driver_INFO is set to
6418 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6419 of code (CFG traversal etc) that are shared among both functions. INSN
6420 is the insn we're starting the search from, ORIG_OPS are the expressions
6421 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6422 parameters of the driver, and STATIC_PARAMS are static parameters of
6423 the caller.
6424
6425 Returns whether original instructions were found. Note that top-level
6426 code_motion_path_driver always returns true. */
6427 static int
6428 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6429 cmpd_local_params_p local_params_in,
6430 void *static_params)
6431 {
6432 expr_t expr = NULL;
6433 basic_block bb = BLOCK_FOR_INSN (insn);
6434 insn_t first_insn, bb_tail, before_first;
6435 bool removed_last_insn = false;
6436
6437 if (sched_verbose >= 6)
6438 {
6439 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6440 dump_insn (insn);
6441 sel_print (",");
6442 dump_av_set (orig_ops);
6443 sel_print (")\n");
6444 }
6445
6446 gcc_assert (orig_ops);
6447
6448 /* If no original operations exist below this insn, return immediately. */
6449 if (is_ineligible_successor (insn, path))
6450 {
6451 if (sched_verbose >= 6)
6452 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6453 return false;
6454 }
6455
6456 /* The block can have invalid av set, in which case it was created earlier
6457 during move_op. Return immediately. */
6458 if (sel_bb_head_p (insn))
6459 {
6460 if (! AV_SET_VALID_P (insn))
6461 {
6462 if (sched_verbose >= 6)
6463 sel_print ("Returned from block %d as it had invalid av set\n",
6464 bb->index);
6465 return false;
6466 }
6467
6468 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6469 {
6470 /* We have already found an original operation on this branch, do not
6471 go any further and just return TRUE here. If we don't stop here,
6472 function can have exponential behaviour even on the small code
6473 with many different paths (e.g. with data speculation and
6474 recovery blocks). */
6475 if (sched_verbose >= 6)
6476 sel_print ("Block %d already visited in this traversal\n", bb->index);
6477 if (code_motion_path_driver_info->on_enter)
6478 return code_motion_path_driver_info->on_enter (insn,
6479 local_params_in,
6480 static_params,
6481 true);
6482 }
6483 }
6484
6485 if (code_motion_path_driver_info->on_enter)
6486 code_motion_path_driver_info->on_enter (insn, local_params_in,
6487 static_params, false);
6488 orig_ops = av_set_copy (orig_ops);
6489
6490 /* Filter the orig_ops set. */
6491 if (AV_SET_VALID_P (insn))
6492 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6493
6494 /* If no more original ops, return immediately. */
6495 if (!orig_ops)
6496 {
6497 if (sched_verbose >= 6)
6498 sel_print ("No intersection with av set of block %d\n", bb->index);
6499 return false;
6500 }
6501
6502 /* For non-speculative insns we have to leave only one form of the
6503 original operation, because if we don't, we may end up with
6504 different C_EXPRes and, consequently, with bookkeepings for different
6505 expression forms along the same code motion path. That may lead to
6506 generation of incorrect code. So for each code motion we stick to
6507 the single form of the instruction, except for speculative insns
6508 which we need to keep in different forms with all speculation
6509 types. */
6510 av_set_leave_one_nonspec (&orig_ops);
6511
6512 /* It is not possible that all ORIG_OPS are filtered out. */
6513 gcc_assert (orig_ops);
6514
6515 /* It is enough to place only heads and tails of visited basic blocks into
6516 the PATH. */
6517 ilist_add (&path, insn);
6518 first_insn = insn;
6519 bb_tail = sel_bb_end (bb);
6520
6521 /* Descend the basic block in search of the original expr; this part
6522 corresponds to the part of the original move_op procedure executed
6523 before the recursive call. */
6524 for (;;)
6525 {
6526 /* Look at the insn and decide if it could be an ancestor of currently
6527 scheduling operation. If it is so, then the insn "dest = op" could
6528 either be replaced with "dest = reg", because REG now holds the result
6529 of OP, or just removed, if we've scheduled the insn as a whole.
6530
6531 If this insn doesn't contain currently scheduling OP, then proceed
6532 with searching and look at its successors. Operations we're searching
6533 for could have changed when moving up through this insn via
6534 substituting. In this case, perform unsubstitution on them first.
6535
6536 When traversing the DAG below this insn is finished, insert
6537 bookkeeping code, if the insn is a joint point, and remove
6538 leftovers. */
6539
6540 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6541 if (expr)
6542 {
6543 insn_t last_insn = PREV_INSN (insn);
6544
6545 /* We have found the original operation. */
6546 if (sched_verbose >= 6)
6547 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6548
6549 code_motion_path_driver_info->orig_expr_found
6550 (insn, expr, local_params_in, static_params);
6551
6552 /* Step back, so on the way back we'll start traversing from the
6553 previous insn (or we'll see that it's bb_note and skip that
6554 loop). */
6555 if (insn == first_insn)
6556 {
6557 first_insn = NEXT_INSN (last_insn);
6558 removed_last_insn = sel_bb_end_p (last_insn);
6559 }
6560 insn = last_insn;
6561 break;
6562 }
6563 else
6564 {
6565 /* We haven't found the original expr, continue descending the basic
6566 block. */
6567 if (code_motion_path_driver_info->orig_expr_not_found
6568 (insn, orig_ops, static_params))
6569 {
6570 /* Av set ops could have been changed when moving through this
6571 insn. To find them below it, we have to un-substitute them. */
6572 undo_transformations (&orig_ops, insn);
6573 }
6574 else
6575 {
6576 /* Clean up and return, if the hook tells us to do so. It may
6577 happen if we've encountered the previously created
6578 bookkeeping. */
6579 code_motion_path_driver_cleanup (&orig_ops, &path);
6580 return -1;
6581 }
6582
6583 gcc_assert (orig_ops);
6584 }
6585
6586 /* Stop at insn if we got to the end of BB. */
6587 if (insn == bb_tail)
6588 break;
6589
6590 insn = NEXT_INSN (insn);
6591 }
6592
6593 /* Here INSN either points to the insn before the original insn (may be
6594 bb_note, if original insn was a bb_head) or to the bb_end. */
6595 if (!expr)
6596 {
6597 int res;
6598 rtx_insn *last_insn = PREV_INSN (insn);
6599 bool added_to_path;
6600
6601 gcc_assert (insn == sel_bb_end (bb));
6602
6603 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6604 it's already in PATH then). */
6605 if (insn != first_insn)
6606 {
6607 ilist_add (&path, insn);
6608 added_to_path = true;
6609 }
6610 else
6611 added_to_path = false;
6612
6613 /* Process_successors should be able to find at least one
6614 successor for which code_motion_path_driver returns TRUE. */
6615 res = code_motion_process_successors (insn, orig_ops,
6616 path, static_params);
6617
6618 /* Jump in the end of basic block could have been removed or replaced
6619 during code_motion_process_successors, so recompute insn as the
6620 last insn in bb. */
6621 if (NEXT_INSN (last_insn) != insn)
6622 {
6623 insn = sel_bb_end (bb);
6624 first_insn = sel_bb_head (bb);
6625 }
6626
6627 /* Remove bb tail from path. */
6628 if (added_to_path)
6629 ilist_remove (&path);
6630
6631 if (res != 1)
6632 {
6633 /* This is the case when one of the original expr is no longer available
6634 due to bookkeeping created on this branch with the same register.
6635 In the original algorithm, which doesn't have update_data_sets call
6636 on a bookkeeping block, it would simply result in returning
6637 FALSE when we've encountered a previously generated bookkeeping
6638 insn in moveop_orig_expr_not_found. */
6639 code_motion_path_driver_cleanup (&orig_ops, &path);
6640 return res;
6641 }
6642 }
6643
6644 /* Don't need it any more. */
6645 av_set_clear (&orig_ops);
6646
6647 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6648 the beginning of the basic block. */
6649 before_first = PREV_INSN (first_insn);
6650 while (insn != before_first)
6651 {
6652 if (code_motion_path_driver_info->ascend)
6653 code_motion_path_driver_info->ascend (insn, static_params);
6654
6655 insn = PREV_INSN (insn);
6656 }
6657
6658 /* Now we're at the bb head. */
6659 insn = first_insn;
6660 ilist_remove (&path);
6661 local_params_in->removed_last_insn = removed_last_insn;
6662 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6663
6664 /* This should be the very last operation as at bb head we could change
6665 the numbering by creating bookkeeping blocks. */
6666 if (removed_last_insn)
6667 insn = PREV_INSN (insn);
6668
6669 /* If we have simplified the control flow and removed the first jump insn,
6670 there's no point in marking this block in the visited blocks bitmap. */
6671 if (BLOCK_FOR_INSN (insn))
6672 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6673 return true;
6674 }
6675
6676 /* Move up the operations from ORIG_OPS set traversing the dag starting
6677 from INSN. PATH represents the edges traversed so far.
6678 DEST is the register chosen for scheduling the current expr. Insert
6679 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6680 C_EXPR is how it looks like at the given cfg point.
6681 Set *SHOULD_MOVE to indicate whether we have only disconnected
6682 one of the insns found.
6683
6684 Returns whether original instructions were found, which is asserted
6685 to be true in the caller. */
6686 static bool
6687 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6688 rtx dest, expr_t c_expr, bool *should_move)
6689 {
6690 struct moveop_static_params sparams;
6691 struct cmpd_local_params lparams;
6692 int res;
6693
6694 /* Init params for code_motion_path_driver. */
6695 sparams.dest = dest;
6696 sparams.c_expr = c_expr;
6697 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6698 #ifdef ENABLE_CHECKING
6699 sparams.failed_insn = NULL;
6700 #endif
6701 sparams.was_renamed = false;
6702 lparams.e1 = NULL;
6703
6704 /* We haven't visited any blocks yet. */
6705 bitmap_clear (code_motion_visited_blocks);
6706
6707 /* Set appropriate hooks and data. */
6708 code_motion_path_driver_info = &move_op_hooks;
6709 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6710
6711 gcc_assert (res != -1);
6712
6713 if (sparams.was_renamed)
6714 EXPR_WAS_RENAMED (expr_vliw) = true;
6715
6716 *should_move = (sparams.uid == -1);
6717
6718 return res;
6719 }
6720 \f
6721
6722 /* Functions that work with regions. */
6723
6724 /* Current number of seqno used in init_seqno and init_seqno_1. */
6725 static int cur_seqno;
6726
6727 /* A helper for init_seqno. Traverse the region starting from BB and
6728 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6729 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6730 static void
6731 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6732 {
6733 int bbi = BLOCK_TO_BB (bb->index);
6734 insn_t insn;
6735 insn_t succ_insn;
6736 succ_iterator si;
6737
6738 rtx_note *note = bb_note (bb);
6739 bitmap_set_bit (visited_bbs, bbi);
6740 if (blocks_to_reschedule)
6741 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6742
6743 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6744 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6745 {
6746 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6747 int succ_bbi = BLOCK_TO_BB (succ->index);
6748
6749 gcc_assert (in_current_region_p (succ));
6750
6751 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6752 {
6753 gcc_assert (succ_bbi > bbi);
6754
6755 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6756 }
6757 else if (blocks_to_reschedule)
6758 bitmap_set_bit (forced_ebb_heads, succ->index);
6759 }
6760
6761 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6762 INSN_SEQNO (insn) = cur_seqno--;
6763 }
6764
6765 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6766 blocks on which we're rescheduling when pipelining, FROM is the block where
6767 traversing region begins (it may not be the head of the region when
6768 pipelining, but the head of the loop instead).
6769
6770 Returns the maximal seqno found. */
6771 static int
6772 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6773 {
6774 sbitmap visited_bbs;
6775 bitmap_iterator bi;
6776 unsigned bbi;
6777
6778 visited_bbs = sbitmap_alloc (current_nr_blocks);
6779
6780 if (blocks_to_reschedule)
6781 {
6782 bitmap_ones (visited_bbs);
6783 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6784 {
6785 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6786 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6787 }
6788 }
6789 else
6790 {
6791 bitmap_clear (visited_bbs);
6792 from = EBB_FIRST_BB (0);
6793 }
6794
6795 cur_seqno = sched_max_luid - 1;
6796 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6797
6798 /* cur_seqno may be positive if the number of instructions is less than
6799 sched_max_luid - 1 (when rescheduling or if some instructions have been
6800 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6801 gcc_assert (cur_seqno >= 0);
6802
6803 sbitmap_free (visited_bbs);
6804 return sched_max_luid - 1;
6805 }
6806
6807 /* Initialize scheduling parameters for current region. */
6808 static void
6809 sel_setup_region_sched_flags (void)
6810 {
6811 enable_schedule_as_rhs_p = 1;
6812 bookkeeping_p = 1;
6813 pipelining_p = (bookkeeping_p
6814 && (flag_sel_sched_pipelining != 0)
6815 && current_loop_nest != NULL
6816 && loop_has_exit_edges (current_loop_nest));
6817 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6818 max_ws = MAX_WS;
6819 }
6820
6821 /* Return true if all basic blocks of current region are empty. */
6822 static bool
6823 current_region_empty_p (void)
6824 {
6825 int i;
6826 for (i = 0; i < current_nr_blocks; i++)
6827 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6828 return false;
6829
6830 return true;
6831 }
6832
6833 /* Prepare and verify loop nest for pipelining. */
6834 static void
6835 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6836 {
6837 current_loop_nest = get_loop_nest_for_rgn (rgn);
6838
6839 if (!current_loop_nest)
6840 return;
6841
6842 /* If this loop has any saved loop preheaders from nested loops,
6843 add these basic blocks to the current region. */
6844 sel_add_loop_preheaders (bbs);
6845
6846 /* Check that we're starting with a valid information. */
6847 gcc_assert (loop_latch_edge (current_loop_nest));
6848 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6849 }
6850
6851 /* Compute instruction priorities for current region. */
6852 static void
6853 sel_compute_priorities (int rgn)
6854 {
6855 sched_rgn_compute_dependencies (rgn);
6856
6857 /* Compute insn priorities in haifa style. Then free haifa style
6858 dependencies that we've calculated for this. */
6859 compute_priorities ();
6860
6861 if (sched_verbose >= 5)
6862 debug_rgn_dependencies (0);
6863
6864 free_rgn_deps ();
6865 }
6866
6867 /* Init scheduling data for RGN. Returns true when this region should not
6868 be scheduled. */
6869 static bool
6870 sel_region_init (int rgn)
6871 {
6872 int i;
6873 bb_vec_t bbs;
6874
6875 rgn_setup_region (rgn);
6876
6877 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6878 do region initialization here so the region can be bundled correctly,
6879 but we'll skip the scheduling in sel_sched_region (). */
6880 if (current_region_empty_p ())
6881 return true;
6882
6883 bbs.create (current_nr_blocks);
6884
6885 for (i = 0; i < current_nr_blocks; i++)
6886 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6887
6888 sel_init_bbs (bbs);
6889
6890 if (flag_sel_sched_pipelining)
6891 setup_current_loop_nest (rgn, &bbs);
6892
6893 sel_setup_region_sched_flags ();
6894
6895 /* Initialize luids and dependence analysis which both sel-sched and haifa
6896 need. */
6897 sched_init_luids (bbs);
6898 sched_deps_init (false);
6899
6900 /* Initialize haifa data. */
6901 rgn_setup_sched_infos ();
6902 sel_set_sched_flags ();
6903 haifa_init_h_i_d (bbs);
6904
6905 sel_compute_priorities (rgn);
6906 init_deps_global ();
6907
6908 /* Main initialization. */
6909 sel_setup_sched_infos ();
6910 sel_init_global_and_expr (bbs);
6911
6912 bbs.release ();
6913
6914 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6915
6916 /* Init correct liveness sets on each instruction of a single-block loop.
6917 This is the only situation when we can't update liveness when calling
6918 compute_live for the first insn of the loop. */
6919 if (current_loop_nest)
6920 {
6921 int header =
6922 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6923 ? 1
6924 : 0);
6925
6926 if (current_nr_blocks == header + 1)
6927 update_liveness_on_insn
6928 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6929 }
6930
6931 /* Set hooks so that no newly generated insn will go out unnoticed. */
6932 sel_register_cfg_hooks ();
6933
6934 /* !!! We call target.sched.init () for the whole region, but we invoke
6935 targetm.sched.finish () for every ebb. */
6936 if (targetm.sched.init)
6937 /* None of the arguments are actually used in any target. */
6938 targetm.sched.init (sched_dump, sched_verbose, -1);
6939
6940 first_emitted_uid = get_max_uid () + 1;
6941 preheader_removed = false;
6942
6943 /* Reset register allocation ticks array. */
6944 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6945 reg_rename_this_tick = 0;
6946
6947 bitmap_initialize (forced_ebb_heads, 0);
6948 bitmap_clear (forced_ebb_heads);
6949
6950 setup_nop_vinsn ();
6951 current_copies = BITMAP_ALLOC (NULL);
6952 current_originators = BITMAP_ALLOC (NULL);
6953 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6954
6955 return false;
6956 }
6957
6958 /* Simplify insns after the scheduling. */
6959 static void
6960 simplify_changed_insns (void)
6961 {
6962 int i;
6963
6964 for (i = 0; i < current_nr_blocks; i++)
6965 {
6966 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6967 rtx_insn *insn;
6968
6969 FOR_BB_INSNS (bb, insn)
6970 if (INSN_P (insn))
6971 {
6972 expr_t expr = INSN_EXPR (insn);
6973
6974 if (EXPR_WAS_SUBSTITUTED (expr))
6975 validate_simplify_insn (insn);
6976 }
6977 }
6978 }
6979
6980 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6981 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6982 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6983 static void
6984 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6985 {
6986 rtx_insn *head, *tail;
6987 basic_block bb1 = bb;
6988 if (sched_verbose >= 2)
6989 sel_print ("Finishing schedule in bbs: ");
6990
6991 do
6992 {
6993 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6994
6995 if (sched_verbose >= 2)
6996 sel_print ("%d; ", bb1->index);
6997 }
6998 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6999
7000 if (sched_verbose >= 2)
7001 sel_print ("\n");
7002
7003 get_ebb_head_tail (bb, bb1, &head, &tail);
7004
7005 current_sched_info->head = head;
7006 current_sched_info->tail = tail;
7007 current_sched_info->prev_head = PREV_INSN (head);
7008 current_sched_info->next_tail = NEXT_INSN (tail);
7009 }
7010
7011 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7012 static void
7013 reset_sched_cycles_in_current_ebb (void)
7014 {
7015 int last_clock = 0;
7016 int haifa_last_clock = -1;
7017 int haifa_clock = 0;
7018 int issued_insns = 0;
7019 insn_t insn;
7020
7021 if (targetm.sched.init)
7022 {
7023 /* None of the arguments are actually used in any target.
7024 NB: We should have md_reset () hook for cases like this. */
7025 targetm.sched.init (sched_dump, sched_verbose, -1);
7026 }
7027
7028 state_reset (curr_state);
7029 advance_state (curr_state);
7030
7031 for (insn = current_sched_info->head;
7032 insn != current_sched_info->next_tail;
7033 insn = NEXT_INSN (insn))
7034 {
7035 int cost, haifa_cost;
7036 int sort_p;
7037 bool asm_p, real_insn, after_stall, all_issued;
7038 int clock;
7039
7040 if (!INSN_P (insn))
7041 continue;
7042
7043 asm_p = false;
7044 real_insn = recog_memoized (insn) >= 0;
7045 clock = INSN_SCHED_CYCLE (insn);
7046
7047 cost = clock - last_clock;
7048
7049 /* Initialize HAIFA_COST. */
7050 if (! real_insn)
7051 {
7052 asm_p = INSN_ASM_P (insn);
7053
7054 if (asm_p)
7055 /* This is asm insn which *had* to be scheduled first
7056 on the cycle. */
7057 haifa_cost = 1;
7058 else
7059 /* This is a use/clobber insn. It should not change
7060 cost. */
7061 haifa_cost = 0;
7062 }
7063 else
7064 haifa_cost = estimate_insn_cost (insn, curr_state);
7065
7066 /* Stall for whatever cycles we've stalled before. */
7067 after_stall = 0;
7068 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7069 {
7070 haifa_cost = cost;
7071 after_stall = 1;
7072 }
7073 all_issued = issued_insns == issue_rate;
7074 if (haifa_cost == 0 && all_issued)
7075 haifa_cost = 1;
7076 if (haifa_cost > 0)
7077 {
7078 int i = 0;
7079
7080 while (haifa_cost--)
7081 {
7082 advance_state (curr_state);
7083 issued_insns = 0;
7084 i++;
7085
7086 if (sched_verbose >= 2)
7087 {
7088 sel_print ("advance_state (state_transition)\n");
7089 debug_state (curr_state);
7090 }
7091
7092 /* The DFA may report that e.g. insn requires 2 cycles to be
7093 issued, but on the next cycle it says that insn is ready
7094 to go. Check this here. */
7095 if (!after_stall
7096 && real_insn
7097 && haifa_cost > 0
7098 && estimate_insn_cost (insn, curr_state) == 0)
7099 break;
7100
7101 /* When the data dependency stall is longer than the DFA stall,
7102 and when we have issued exactly issue_rate insns and stalled,
7103 it could be that after this longer stall the insn will again
7104 become unavailable to the DFA restrictions. Looks strange
7105 but happens e.g. on x86-64. So recheck DFA on the last
7106 iteration. */
7107 if ((after_stall || all_issued)
7108 && real_insn
7109 && haifa_cost == 0)
7110 haifa_cost = estimate_insn_cost (insn, curr_state);
7111 }
7112
7113 haifa_clock += i;
7114 if (sched_verbose >= 2)
7115 sel_print ("haifa clock: %d\n", haifa_clock);
7116 }
7117 else
7118 gcc_assert (haifa_cost == 0);
7119
7120 if (sched_verbose >= 2)
7121 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7122
7123 if (targetm.sched.dfa_new_cycle)
7124 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7125 haifa_last_clock, haifa_clock,
7126 &sort_p))
7127 {
7128 advance_state (curr_state);
7129 issued_insns = 0;
7130 haifa_clock++;
7131 if (sched_verbose >= 2)
7132 {
7133 sel_print ("advance_state (dfa_new_cycle)\n");
7134 debug_state (curr_state);
7135 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7136 }
7137 }
7138
7139 if (real_insn)
7140 {
7141 static state_t temp = NULL;
7142
7143 if (!temp)
7144 temp = xmalloc (dfa_state_size);
7145 memcpy (temp, curr_state, dfa_state_size);
7146
7147 cost = state_transition (curr_state, insn);
7148 if (memcmp (temp, curr_state, dfa_state_size))
7149 issued_insns++;
7150
7151 if (sched_verbose >= 2)
7152 {
7153 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7154 haifa_clock + 1);
7155 debug_state (curr_state);
7156 }
7157 gcc_assert (cost < 0);
7158 }
7159
7160 if (targetm.sched.variable_issue)
7161 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7162
7163 INSN_SCHED_CYCLE (insn) = haifa_clock;
7164
7165 last_clock = clock;
7166 haifa_last_clock = haifa_clock;
7167 }
7168 }
7169
7170 /* Put TImode markers on insns starting a new issue group. */
7171 static void
7172 put_TImodes (void)
7173 {
7174 int last_clock = -1;
7175 insn_t insn;
7176
7177 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7178 insn = NEXT_INSN (insn))
7179 {
7180 int cost, clock;
7181
7182 if (!INSN_P (insn))
7183 continue;
7184
7185 clock = INSN_SCHED_CYCLE (insn);
7186 cost = (last_clock == -1) ? 1 : clock - last_clock;
7187
7188 gcc_assert (cost >= 0);
7189
7190 if (issue_rate > 1
7191 && GET_CODE (PATTERN (insn)) != USE
7192 && GET_CODE (PATTERN (insn)) != CLOBBER)
7193 {
7194 if (reload_completed && cost > 0)
7195 PUT_MODE (insn, TImode);
7196
7197 last_clock = clock;
7198 }
7199
7200 if (sched_verbose >= 2)
7201 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7202 }
7203 }
7204
7205 /* Perform MD_FINISH on EBBs comprising current region. When
7206 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7207 to produce correct sched cycles on insns. */
7208 static void
7209 sel_region_target_finish (bool reset_sched_cycles_p)
7210 {
7211 int i;
7212 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7213
7214 for (i = 0; i < current_nr_blocks; i++)
7215 {
7216 if (bitmap_bit_p (scheduled_blocks, i))
7217 continue;
7218
7219 /* While pipelining outer loops, skip bundling for loop
7220 preheaders. Those will be rescheduled in the outer loop. */
7221 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7222 continue;
7223
7224 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7225
7226 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7227 continue;
7228
7229 if (reset_sched_cycles_p)
7230 reset_sched_cycles_in_current_ebb ();
7231
7232 if (targetm.sched.init)
7233 targetm.sched.init (sched_dump, sched_verbose, -1);
7234
7235 put_TImodes ();
7236
7237 if (targetm.sched.finish)
7238 {
7239 targetm.sched.finish (sched_dump, sched_verbose);
7240
7241 /* Extend luids so that insns generated by the target will
7242 get zero luid. */
7243 sched_extend_luids ();
7244 }
7245 }
7246
7247 BITMAP_FREE (scheduled_blocks);
7248 }
7249
7250 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7251 is true, make an additional pass emulating scheduler to get correct insn
7252 cycles for md_finish calls. */
7253 static void
7254 sel_region_finish (bool reset_sched_cycles_p)
7255 {
7256 simplify_changed_insns ();
7257 sched_finish_ready_list ();
7258 free_nop_pool ();
7259
7260 /* Free the vectors. */
7261 vec_av_set.release ();
7262 BITMAP_FREE (current_copies);
7263 BITMAP_FREE (current_originators);
7264 BITMAP_FREE (code_motion_visited_blocks);
7265 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7266 vinsn_vec_free (vec_target_unavailable_vinsns);
7267
7268 /* If LV_SET of the region head should be updated, do it now because
7269 there will be no other chance. */
7270 {
7271 succ_iterator si;
7272 insn_t insn;
7273
7274 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7275 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7276 {
7277 basic_block bb = BLOCK_FOR_INSN (insn);
7278
7279 if (!BB_LV_SET_VALID_P (bb))
7280 compute_live (insn);
7281 }
7282 }
7283
7284 /* Emulate the Haifa scheduler for bundling. */
7285 if (reload_completed)
7286 sel_region_target_finish (reset_sched_cycles_p);
7287
7288 sel_finish_global_and_expr ();
7289
7290 bitmap_clear (forced_ebb_heads);
7291
7292 free_nop_vinsn ();
7293
7294 finish_deps_global ();
7295 sched_finish_luids ();
7296 h_d_i_d.release ();
7297
7298 sel_finish_bbs ();
7299 BITMAP_FREE (blocks_to_reschedule);
7300
7301 sel_unregister_cfg_hooks ();
7302
7303 max_issue_size = 0;
7304 }
7305 \f
7306
7307 /* Functions that implement the scheduler driver. */
7308
7309 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7310 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7311 of insns scheduled -- these would be postprocessed later. */
7312 static void
7313 schedule_on_fences (flist_t fences, int max_seqno,
7314 ilist_t **scheduled_insns_tailpp)
7315 {
7316 flist_t old_fences = fences;
7317
7318 if (sched_verbose >= 1)
7319 {
7320 sel_print ("\nScheduling on fences: ");
7321 dump_flist (fences);
7322 sel_print ("\n");
7323 }
7324
7325 scheduled_something_on_previous_fence = false;
7326 for (; fences; fences = FLIST_NEXT (fences))
7327 {
7328 fence_t fence = NULL;
7329 int seqno = 0;
7330 flist_t fences2;
7331 bool first_p = true;
7332
7333 /* Choose the next fence group to schedule.
7334 The fact that insn can be scheduled only once
7335 on the cycle is guaranteed by two properties:
7336 1. seqnos of parallel groups decrease with each iteration.
7337 2. If is_ineligible_successor () sees the larger seqno, it
7338 checks if candidate insn is_in_current_fence_p (). */
7339 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7340 {
7341 fence_t f = FLIST_FENCE (fences2);
7342
7343 if (!FENCE_PROCESSED_P (f))
7344 {
7345 int i = INSN_SEQNO (FENCE_INSN (f));
7346
7347 if (first_p || i > seqno)
7348 {
7349 seqno = i;
7350 fence = f;
7351 first_p = false;
7352 }
7353 else
7354 /* ??? Seqnos of different groups should be different. */
7355 gcc_assert (1 || i != seqno);
7356 }
7357 }
7358
7359 gcc_assert (fence);
7360
7361 /* As FENCE is nonnull, SEQNO is initialized. */
7362 seqno -= max_seqno + 1;
7363 fill_insns (fence, seqno, scheduled_insns_tailpp);
7364 FENCE_PROCESSED_P (fence) = true;
7365 }
7366
7367 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7368 don't need to keep bookkeeping-invalidated and target-unavailable
7369 vinsns any more. */
7370 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7371 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7372 }
7373
7374 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7375 static void
7376 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7377 {
7378 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7379
7380 /* The first element is already processed. */
7381 while ((fences = FLIST_NEXT (fences)))
7382 {
7383 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7384
7385 if (*min_seqno > seqno)
7386 *min_seqno = seqno;
7387 else if (*max_seqno < seqno)
7388 *max_seqno = seqno;
7389 }
7390 }
7391
7392 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7393 static flist_t
7394 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7395 {
7396 flist_t old_fences = fences;
7397 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7398 int max_time = 0;
7399
7400 flist_tail_init (new_fences);
7401 for (; fences; fences = FLIST_NEXT (fences))
7402 {
7403 fence_t fence = FLIST_FENCE (fences);
7404 insn_t insn;
7405
7406 if (!FENCE_BNDS (fence))
7407 {
7408 /* This fence doesn't have any successors. */
7409 if (!FENCE_SCHEDULED_P (fence))
7410 {
7411 /* Nothing was scheduled on this fence. */
7412 int seqno;
7413
7414 insn = FENCE_INSN (fence);
7415 seqno = INSN_SEQNO (insn);
7416 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7417
7418 if (sched_verbose >= 1)
7419 sel_print ("Fence %d[%d] has not changed\n",
7420 INSN_UID (insn),
7421 BLOCK_NUM (insn));
7422 move_fence_to_fences (fences, new_fences);
7423 }
7424 }
7425 else
7426 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7427 max_time = MAX (max_time, FENCE_CYCLE (fence));
7428 }
7429
7430 flist_clear (&old_fences);
7431 *ptime = max_time;
7432 return FLIST_TAIL_HEAD (new_fences);
7433 }
7434
7435 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7436 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7437 the highest seqno used in a region. Return the updated highest seqno. */
7438 static int
7439 update_seqnos_and_stage (int min_seqno, int max_seqno,
7440 int highest_seqno_in_use,
7441 ilist_t *pscheduled_insns)
7442 {
7443 int new_hs;
7444 ilist_iterator ii;
7445 insn_t insn;
7446
7447 /* Actually, new_hs is the seqno of the instruction, that was
7448 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7449 if (*pscheduled_insns)
7450 {
7451 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7452 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7453 gcc_assert (new_hs > highest_seqno_in_use);
7454 }
7455 else
7456 new_hs = highest_seqno_in_use;
7457
7458 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7459 {
7460 gcc_assert (INSN_SEQNO (insn) < 0);
7461 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7462 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7463
7464 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7465 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7466 require > 1GB of memory e.g. on limit-fnargs.c. */
7467 if (! pipelining_p)
7468 free_data_for_scheduled_insn (insn);
7469 }
7470
7471 ilist_clear (pscheduled_insns);
7472 global_level++;
7473
7474 return new_hs;
7475 }
7476
7477 /* The main driver for scheduling a region. This function is responsible
7478 for correct propagation of fences (i.e. scheduling points) and creating
7479 a group of parallel insns at each of them. It also supports
7480 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7481 of scheduling. */
7482 static void
7483 sel_sched_region_2 (int orig_max_seqno)
7484 {
7485 int highest_seqno_in_use = orig_max_seqno;
7486 int max_time = 0;
7487
7488 stat_bookkeeping_copies = 0;
7489 stat_insns_needed_bookkeeping = 0;
7490 stat_renamed_scheduled = 0;
7491 stat_substitutions_total = 0;
7492 num_insns_scheduled = 0;
7493
7494 while (fences)
7495 {
7496 int min_seqno, max_seqno;
7497 ilist_t scheduled_insns = NULL;
7498 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7499
7500 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7501 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7502 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7503 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7504 highest_seqno_in_use,
7505 &scheduled_insns);
7506 }
7507
7508 if (sched_verbose >= 1)
7509 {
7510 sel_print ("Total scheduling time: %d cycles\n", max_time);
7511 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7512 "bookkeeping, %d insns renamed, %d insns substituted\n",
7513 stat_bookkeeping_copies,
7514 stat_insns_needed_bookkeeping,
7515 stat_renamed_scheduled,
7516 stat_substitutions_total);
7517 }
7518 }
7519
7520 /* Schedule a region. When pipelining, search for possibly never scheduled
7521 bookkeeping code and schedule it. Reschedule pipelined code without
7522 pipelining after. */
7523 static void
7524 sel_sched_region_1 (void)
7525 {
7526 int orig_max_seqno;
7527
7528 /* Remove empty blocks that might be in the region from the beginning. */
7529 purge_empty_blocks ();
7530
7531 orig_max_seqno = init_seqno (NULL, NULL);
7532 gcc_assert (orig_max_seqno >= 1);
7533
7534 /* When pipelining outer loops, create fences on the loop header,
7535 not preheader. */
7536 fences = NULL;
7537 if (current_loop_nest)
7538 init_fences (BB_END (EBB_FIRST_BB (0)));
7539 else
7540 init_fences (bb_note (EBB_FIRST_BB (0)));
7541 global_level = 1;
7542
7543 sel_sched_region_2 (orig_max_seqno);
7544
7545 gcc_assert (fences == NULL);
7546
7547 if (pipelining_p)
7548 {
7549 int i;
7550 basic_block bb;
7551 struct flist_tail_def _new_fences;
7552 flist_tail_t new_fences = &_new_fences;
7553 bool do_p = true;
7554
7555 pipelining_p = false;
7556 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7557 bookkeeping_p = false;
7558 enable_schedule_as_rhs_p = false;
7559
7560 /* Schedule newly created code, that has not been scheduled yet. */
7561 do_p = true;
7562
7563 while (do_p)
7564 {
7565 do_p = false;
7566
7567 for (i = 0; i < current_nr_blocks; i++)
7568 {
7569 basic_block bb = EBB_FIRST_BB (i);
7570
7571 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7572 {
7573 if (! bb_ends_ebb_p (bb))
7574 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7575 if (sel_bb_empty_p (bb))
7576 {
7577 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7578 continue;
7579 }
7580 clear_outdated_rtx_info (bb);
7581 if (sel_insn_is_speculation_check (BB_END (bb))
7582 && JUMP_P (BB_END (bb)))
7583 bitmap_set_bit (blocks_to_reschedule,
7584 BRANCH_EDGE (bb)->dest->index);
7585 }
7586 else if (! sel_bb_empty_p (bb)
7587 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7588 bitmap_set_bit (blocks_to_reschedule, bb->index);
7589 }
7590
7591 for (i = 0; i < current_nr_blocks; i++)
7592 {
7593 bb = EBB_FIRST_BB (i);
7594
7595 /* While pipelining outer loops, skip bundling for loop
7596 preheaders. Those will be rescheduled in the outer
7597 loop. */
7598 if (sel_is_loop_preheader_p (bb))
7599 {
7600 clear_outdated_rtx_info (bb);
7601 continue;
7602 }
7603
7604 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7605 {
7606 flist_tail_init (new_fences);
7607
7608 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7609
7610 /* Mark BB as head of the new ebb. */
7611 bitmap_set_bit (forced_ebb_heads, bb->index);
7612
7613 gcc_assert (fences == NULL);
7614
7615 init_fences (bb_note (bb));
7616
7617 sel_sched_region_2 (orig_max_seqno);
7618
7619 do_p = true;
7620 break;
7621 }
7622 }
7623 }
7624 }
7625 }
7626
7627 /* Schedule the RGN region. */
7628 void
7629 sel_sched_region (int rgn)
7630 {
7631 bool schedule_p;
7632 bool reset_sched_cycles_p;
7633
7634 if (sel_region_init (rgn))
7635 return;
7636
7637 if (sched_verbose >= 1)
7638 sel_print ("Scheduling region %d\n", rgn);
7639
7640 schedule_p = (!sched_is_disabled_for_current_region_p ()
7641 && dbg_cnt (sel_sched_region_cnt));
7642 reset_sched_cycles_p = pipelining_p;
7643 if (schedule_p)
7644 sel_sched_region_1 ();
7645 else
7646 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7647 reset_sched_cycles_p = true;
7648
7649 sel_region_finish (reset_sched_cycles_p);
7650 }
7651
7652 /* Perform global init for the scheduler. */
7653 static void
7654 sel_global_init (void)
7655 {
7656 calculate_dominance_info (CDI_DOMINATORS);
7657 alloc_sched_pools ();
7658
7659 /* Setup the infos for sched_init. */
7660 sel_setup_sched_infos ();
7661 setup_sched_dump ();
7662
7663 sched_rgn_init (false);
7664 sched_init ();
7665
7666 sched_init_bbs ();
7667 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7668 after_recovery = 0;
7669 can_issue_more = issue_rate;
7670
7671 sched_extend_target ();
7672 sched_deps_init (true);
7673 setup_nop_and_exit_insns ();
7674 sel_extend_global_bb_info ();
7675 init_lv_sets ();
7676 init_hard_regs_data ();
7677 }
7678
7679 /* Free the global data of the scheduler. */
7680 static void
7681 sel_global_finish (void)
7682 {
7683 free_bb_note_pool ();
7684 free_lv_sets ();
7685 sel_finish_global_bb_info ();
7686
7687 free_regset_pool ();
7688 free_nop_and_exit_insns ();
7689
7690 sched_rgn_finish ();
7691 sched_deps_finish ();
7692 sched_finish ();
7693
7694 if (current_loops)
7695 sel_finish_pipelining ();
7696
7697 free_sched_pools ();
7698 free_dominance_info (CDI_DOMINATORS);
7699 }
7700
7701 /* Return true when we need to skip selective scheduling. Used for debugging. */
7702 bool
7703 maybe_skip_selective_scheduling (void)
7704 {
7705 return ! dbg_cnt (sel_sched_cnt);
7706 }
7707
7708 /* The entry point. */
7709 void
7710 run_selective_scheduling (void)
7711 {
7712 int rgn;
7713
7714 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7715 return;
7716
7717 sel_global_init ();
7718
7719 for (rgn = 0; rgn < nr_regions; rgn++)
7720 sel_sched_region (rgn);
7721
7722 sel_global_finish ();
7723 }
7724
7725 #endif