]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched.c
In PR70010, a function is marked with target(no-vsx) to disable VSX code
[thirdparty/gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "memmodel.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "cfgbuild.h"
31 #include "cfgcleanup.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "params.h"
35 #include "target.h"
36 #include "sched-int.h"
37 #include "rtlhooks-def.h"
38 #include "ira.h"
39 #include "ira-int.h"
40 #include "rtl-iter.h"
41
42 #ifdef INSN_SCHEDULING
43 #include "regset.h"
44 #include "cfgloop.h"
45 #include "sel-sched-ir.h"
46 #include "sel-sched-dump.h"
47 #include "sel-sched.h"
48 #include "dbgcnt.h"
49 #include "function-abi.h"
50
51 /* Implementation of selective scheduling approach.
52 The below implementation follows the original approach with the following
53 changes:
54
55 o the scheduler works after register allocation (but can be also tuned
56 to work before RA);
57 o some instructions are not copied or register renamed;
58 o conditional jumps are not moved with code duplication;
59 o several jumps in one parallel group are not supported;
60 o when pipelining outer loops, code motion through inner loops
61 is not supported;
62 o control and data speculation are supported;
63 o some improvements for better compile time/performance were made.
64
65 Terminology
66 ===========
67
68 A vinsn, or virtual insn, is an insn with additional data characterizing
69 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
70 Vinsns also act as smart pointers to save memory by reusing them in
71 different expressions. A vinsn is described by vinsn_t type.
72
73 An expression is a vinsn with additional data characterizing its properties
74 at some point in the control flow graph. The data may be its usefulness,
75 priority, speculative status, whether it was renamed/subsituted, etc.
76 An expression is described by expr_t type.
77
78 Availability set (av_set) is a set of expressions at a given control flow
79 point. It is represented as av_set_t. The expressions in av sets are kept
80 sorted in the terms of expr_greater_p function. It allows to truncate
81 the set while leaving the best expressions.
82
83 A fence is a point through which code motion is prohibited. On each step,
84 we gather a parallel group of insns at a fence. It is possible to have
85 multiple fences. A fence is represented via fence_t.
86
87 A boundary is the border between the fence group and the rest of the code.
88 Currently, we never have more than one boundary per fence, as we finalize
89 the fence group when a jump is scheduled. A boundary is represented
90 via bnd_t.
91
92 High-level overview
93 ===================
94
95 The scheduler finds regions to schedule, schedules each one, and finalizes.
96 The regions are formed starting from innermost loops, so that when the inner
97 loop is pipelined, its prologue can be scheduled together with yet unprocessed
98 outer loop. The rest of acyclic regions are found using extend_rgns:
99 the blocks that are not yet allocated to any regions are traversed in top-down
100 order, and a block is added to a region to which all its predecessors belong;
101 otherwise, the block starts its own region.
102
103 The main scheduling loop (sel_sched_region_2) consists of just
104 scheduling on each fence and updating fences. For each fence,
105 we fill a parallel group of insns (fill_insns) until some insns can be added.
106 First, we compute available exprs (av-set) at the boundary of the current
107 group. Second, we choose the best expression from it. If the stall is
108 required to schedule any of the expressions, we advance the current cycle
109 appropriately. So, the final group does not exactly correspond to a VLIW
110 word. Third, we move the chosen expression to the boundary (move_op)
111 and update the intermediate av sets and liveness sets. We quit fill_insns
112 when either no insns left for scheduling or we have scheduled enough insns
113 so we feel like advancing a scheduling point.
114
115 Computing available expressions
116 ===============================
117
118 The computation (compute_av_set) is a bottom-up traversal. At each insn,
119 we're moving the union of its successors' sets through it via
120 moveup_expr_set. The dependent expressions are removed. Local
121 transformations (substitution, speculation) are applied to move more
122 exprs. Then the expr corresponding to the current insn is added.
123 The result is saved on each basic block header.
124
125 When traversing the CFG, we're moving down for no more than max_ws insns.
126 Also, we do not move down to ineligible successors (is_ineligible_successor),
127 which include moving along a back-edge, moving to already scheduled code,
128 and moving to another fence. The first two restrictions are lifted during
129 pipelining, which allows us to move insns along a back-edge. We always have
130 an acyclic region for scheduling because we forbid motion through fences.
131
132 Choosing the best expression
133 ============================
134
135 We sort the final availability set via sel_rank_for_schedule, then we remove
136 expressions which are not yet ready (tick_check_p) or which dest registers
137 cannot be used. For some of them, we choose another register via
138 find_best_reg. To do this, we run find_used_regs to calculate the set of
139 registers which cannot be used. The find_used_regs function performs
140 a traversal of code motion paths for an expr. We consider for renaming
141 only registers which are from the same regclass as the original one and
142 using which does not interfere with any live ranges. Finally, we convert
143 the resulting set to the ready list format and use max_issue and reorder*
144 hooks similarly to the Haifa scheduler.
145
146 Scheduling the best expression
147 ==============================
148
149 We run the move_op routine to perform the same type of code motion paths
150 traversal as in find_used_regs. (These are working via the same driver,
151 code_motion_path_driver.) When moving down the CFG, we look for original
152 instruction that gave birth to a chosen expression. We undo
153 the transformations performed on an expression via the history saved in it.
154 When found, we remove the instruction or leave a reg-reg copy/speculation
155 check if needed. On a way up, we insert bookkeeping copies at each join
156 point. If a copy is not needed, it will be removed later during this
157 traversal. We update the saved av sets and liveness sets on the way up, too.
158
159 Finalizing the schedule
160 =======================
161
162 When pipelining, we reschedule the blocks from which insns were pipelined
163 to get a tighter schedule. On Itanium, we also perform bundling via
164 the same routine from ia64.c.
165
166 Dependence analysis changes
167 ===========================
168
169 We augmented the sched-deps.c with hooks that get called when a particular
170 dependence is found in a particular part of an insn. Using these hooks, we
171 can do several actions such as: determine whether an insn can be moved through
172 another (has_dependence_p, moveup_expr); find out whether an insn can be
173 scheduled on the current cycle (tick_check_p); find out registers that
174 are set/used/clobbered by an insn and find out all the strange stuff that
175 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
176 init_global_and_expr_for_insn).
177
178 Initialization changes
179 ======================
180
181 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
182 reused in all of the schedulers. We have split up the initialization of data
183 of such parts into different functions prefixed with scheduler type and
184 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
185 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
186 The same splitting is done with current_sched_info structure:
187 dependence-related parts are in sched_deps_info, common part is in
188 common_sched_info, and haifa/sel/etc part is in current_sched_info.
189
190 Target contexts
191 ===============
192
193 As we now have multiple-point scheduling, this would not work with backends
194 which save some of the scheduler state to use it in the target hooks.
195 For this purpose, we introduce a concept of target contexts, which
196 encapsulate such information. The backend should implement simple routines
197 of allocating/freeing/setting such a context. The scheduler calls these
198 as target hooks and handles the target context as an opaque pointer (similar
199 to the DFA state type, state_t).
200
201 Various speedups
202 ================
203
204 As the correct data dependence graph is not supported during scheduling (which
205 is to be changed in mid-term), we cache as much of the dependence analysis
206 results as possible to avoid reanalyzing. This includes: bitmap caches on
207 each insn in stream of the region saying yes/no for a query with a pair of
208 UIDs; hashtables with the previously done transformations on each insn in
209 stream; a vector keeping a history of transformations on each expr.
210
211 Also, we try to minimize the dependence context used on each fence to check
212 whether the given expression is ready for scheduling by removing from it
213 insns that are definitely completed the execution. The results of
214 tick_check_p checks are also cached in a vector on each fence.
215
216 We keep a valid liveness set on each insn in a region to avoid the high
217 cost of recomputation on large basic blocks.
218
219 Finally, we try to minimize the number of needed updates to the availability
220 sets. The updates happen in two cases: when fill_insns terminates,
221 we advance all fences and increase the stage number to show that the region
222 has changed and the sets are to be recomputed; and when the next iteration
223 of a loop in fill_insns happens (but this one reuses the saved av sets
224 on bb headers.) Thus, we try to break the fill_insns loop only when
225 "significant" number of insns from the current scheduling window was
226 scheduled. This should be made a target param.
227
228
229 TODO: correctly support the data dependence graph at all stages and get rid
230 of all caches. This should speed up the scheduler.
231 TODO: implement moving cond jumps with bookkeeping copies on both targets.
232 TODO: tune the scheduler before RA so it does not create too much pseudos.
233
234
235 References:
236 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
237 selective scheduling and software pipelining.
238 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
239
240 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
241 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
242 for GCC. In Proceedings of GCC Developers' Summit 2006.
243
244 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
245 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
246 http://rogue.colorado.edu/EPIC7/.
247
248 */
249
250 /* True when pipelining is enabled. */
251 bool pipelining_p;
252
253 /* True if bookkeeping is enabled. */
254 bool bookkeeping_p;
255
256 /* Maximum number of insns that are eligible for renaming. */
257 int max_insns_to_rename;
258 \f
259
260 /* Definitions of local types and macros. */
261
262 /* Represents possible outcomes of moving an expression through an insn. */
263 enum MOVEUP_EXPR_CODE
264 {
265 /* The expression is not changed. */
266 MOVEUP_EXPR_SAME,
267
268 /* Not changed, but requires a new destination register. */
269 MOVEUP_EXPR_AS_RHS,
270
271 /* Cannot be moved. */
272 MOVEUP_EXPR_NULL,
273
274 /* Changed (substituted or speculated). */
275 MOVEUP_EXPR_CHANGED
276 };
277
278 /* The container to be passed into rtx search & replace functions. */
279 struct rtx_search_arg
280 {
281 /* What we are searching for. */
282 rtx x;
283
284 /* The occurrence counter. */
285 int n;
286 };
287
288 typedef struct rtx_search_arg *rtx_search_arg_p;
289
290 /* This struct contains precomputed hard reg sets that are needed when
291 computing registers available for renaming. */
292 struct hard_regs_data
293 {
294 /* For every mode, this stores registers available for use with
295 that mode. */
296 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
297
298 /* True when regs_for_mode[mode] is initialized. */
299 bool regs_for_mode_ok[NUM_MACHINE_MODES];
300
301 /* For every register, it has regs that are ok to rename into it.
302 The register in question is always set. If not, this means
303 that the whole set is not computed yet. */
304 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
305
306 /* All registers that are used or call used. */
307 HARD_REG_SET regs_ever_used;
308
309 #ifdef STACK_REGS
310 /* Stack registers. */
311 HARD_REG_SET stack_regs;
312 #endif
313 };
314
315 /* Holds the results of computation of available for renaming and
316 unavailable hard registers. */
317 struct reg_rename
318 {
319 /* These are unavailable due to calls crossing, globalness, etc. */
320 HARD_REG_SET unavailable_hard_regs;
321
322 /* These are *available* for renaming. */
323 HARD_REG_SET available_for_renaming;
324
325 /* The set of ABIs used by calls that the code motion path crosses. */
326 unsigned int crossed_call_abis : NUM_ABI_IDS;
327 };
328
329 /* A global structure that contains the needed information about harg
330 regs. */
331 static struct hard_regs_data sel_hrd;
332 \f
333
334 /* This structure holds local data used in code_motion_path_driver hooks on
335 the same or adjacent levels of recursion. Here we keep those parameters
336 that are not used in code_motion_path_driver routine itself, but only in
337 its hooks. Moreover, all parameters that can be modified in hooks are
338 in this structure, so all other parameters passed explicitly to hooks are
339 read-only. */
340 struct cmpd_local_params
341 {
342 /* Local params used in move_op_* functions. */
343
344 /* Edges for bookkeeping generation. */
345 edge e1, e2;
346
347 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
348 expr_t c_expr_merged, c_expr_local;
349
350 /* Local params used in fur_* functions. */
351 /* Copy of the ORIGINAL_INSN list, stores the original insns already
352 found before entering the current level of code_motion_path_driver. */
353 def_list_t old_original_insns;
354
355 /* Local params used in move_op_* functions. */
356 /* True when we have removed last insn in the block which was
357 also a boundary. Do not update anything or create bookkeeping copies. */
358 BOOL_BITFIELD removed_last_insn : 1;
359 };
360
361 /* Stores the static parameters for move_op_* calls. */
362 struct moveop_static_params
363 {
364 /* Destination register. */
365 rtx dest;
366
367 /* Current C_EXPR. */
368 expr_t c_expr;
369
370 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
371 they are to be removed. */
372 int uid;
373
374 /* This is initialized to the insn on which the driver stopped its traversal. */
375 insn_t failed_insn;
376
377 /* True if we scheduled an insn with different register. */
378 bool was_renamed;
379 };
380
381 /* Stores the static parameters for fur_* calls. */
382 struct fur_static_params
383 {
384 /* Set of registers unavailable on the code motion path. */
385 regset used_regs;
386
387 /* Pointer to the list of original insns definitions. */
388 def_list_t *original_insns;
389
390 /* The set of ABIs used by calls that the code motion path crosses. */
391 unsigned int crossed_call_abis : NUM_ABI_IDS;
392 };
393
394 typedef struct fur_static_params *fur_static_params_p;
395 typedef struct cmpd_local_params *cmpd_local_params_p;
396 typedef struct moveop_static_params *moveop_static_params_p;
397
398 /* Set of hooks and parameters that determine behavior specific to
399 move_op or find_used_regs functions. */
400 struct code_motion_path_driver_info_def
401 {
402 /* Called on enter to the basic block. */
403 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
404
405 /* Called when original expr is found. */
406 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
407
408 /* Called while descending current basic block if current insn is not
409 the original EXPR we're searching for. */
410 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
411
412 /* Function to merge C_EXPRes from different successors. */
413 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
414
415 /* Function to finalize merge from different successors and possibly
416 deallocate temporary data structures used for merging. */
417 void (*after_merge_succs) (cmpd_local_params_p, void *);
418
419 /* Called on the backward stage of recursion to do moveup_expr.
420 Used only with move_op_*. */
421 void (*ascend) (insn_t, void *);
422
423 /* Called on the ascending pass, before returning from the current basic
424 block or from the whole traversal. */
425 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
426
427 /* When processing successors in move_op we need only descend into
428 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
429 int succ_flags;
430
431 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
432 const char *routine_name;
433 };
434
435 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
436 FUR_HOOKS. */
437 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
438
439 /* Set of hooks for performing move_op and find_used_regs routines with
440 code_motion_path_driver. */
441 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
442
443 /* True if/when we want to emulate Haifa scheduler in the common code.
444 This is used in sched_rgn_local_init and in various places in
445 sched-deps.c. */
446 int sched_emulate_haifa_p;
447
448 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
449 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
450 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
451 scheduling window. */
452 int global_level;
453
454 /* Current fences. */
455 flist_t fences;
456
457 /* True when separable insns should be scheduled as RHSes. */
458 static bool enable_schedule_as_rhs_p;
459
460 /* Used in verify_target_availability to assert that target reg is reported
461 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
462 we haven't scheduled anything on the previous fence.
463 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
464 have more conservative value than the one returned by the
465 find_used_regs, thus we shouldn't assert that these values are equal. */
466 static bool scheduled_something_on_previous_fence;
467
468 /* All newly emitted insns will have their uids greater than this value. */
469 static int first_emitted_uid;
470
471 /* Set of basic blocks that are forced to start new ebbs. This is a subset
472 of all the ebb heads. */
473 bitmap forced_ebb_heads;
474
475 /* Blocks that need to be rescheduled after pipelining. */
476 bitmap blocks_to_reschedule = NULL;
477
478 /* True when the first lv set should be ignored when updating liveness. */
479 static bool ignore_first = false;
480
481 /* Number of insns max_issue has initialized data structures for. */
482 static int max_issue_size = 0;
483
484 /* Whether we can issue more instructions. */
485 static int can_issue_more;
486
487 /* Maximum software lookahead window size, reduced when rescheduling after
488 pipelining. */
489 static int max_ws;
490
491 /* Number of insns scheduled in current region. */
492 static int num_insns_scheduled;
493
494 /* A vector of expressions is used to be able to sort them. */
495 static vec<expr_t> vec_av_set;
496
497 /* A vector of vinsns is used to hold temporary lists of vinsns. */
498 typedef vec<vinsn_t> vinsn_vec_t;
499
500 /* This vector has the exprs which may still present in av_sets, but actually
501 can't be moved up due to bookkeeping created during code motion to another
502 fence. See comment near the call to update_and_record_unavailable_insns
503 for the detailed explanations. */
504 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
505
506 /* This vector has vinsns which are scheduled with renaming on the first fence
507 and then seen on the second. For expressions with such vinsns, target
508 availability information may be wrong. */
509 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
510
511 /* Vector to store temporary nops inserted in move_op to prevent removal
512 of empty bbs. */
513 static vec<insn_t> vec_temp_moveop_nops;
514
515 /* These bitmaps record original instructions scheduled on the current
516 iteration and bookkeeping copies created by them. */
517 static bitmap current_originators = NULL;
518 static bitmap current_copies = NULL;
519
520 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
521 visit them afterwards. */
522 static bitmap code_motion_visited_blocks = NULL;
523
524 /* Variables to accumulate different statistics. */
525
526 /* The number of bookkeeping copies created. */
527 static int stat_bookkeeping_copies;
528
529 /* The number of insns that required bookkeeiping for their scheduling. */
530 static int stat_insns_needed_bookkeeping;
531
532 /* The number of insns that got renamed. */
533 static int stat_renamed_scheduled;
534
535 /* The number of substitutions made during scheduling. */
536 static int stat_substitutions_total;
537 \f
538
539 /* Forward declarations of static functions. */
540 static bool rtx_ok_for_substitution_p (rtx, rtx);
541 static int sel_rank_for_schedule (const void *, const void *);
542 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
543 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
544
545 static rtx get_dest_from_orig_ops (av_set_t);
546 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
547 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
548 def_list_t *);
549 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
550 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
551 cmpd_local_params_p, void *);
552 static void sel_sched_region_1 (void);
553 static void sel_sched_region_2 (int);
554 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
555
556 static void debug_state (state_t);
557 \f
558
559 /* Functions that work with fences. */
560
561 /* Advance one cycle on FENCE. */
562 static void
563 advance_one_cycle (fence_t fence)
564 {
565 unsigned i;
566 int cycle;
567 rtx_insn *insn;
568
569 advance_state (FENCE_STATE (fence));
570 cycle = ++FENCE_CYCLE (fence);
571 FENCE_ISSUED_INSNS (fence) = 0;
572 FENCE_STARTS_CYCLE_P (fence) = 1;
573 can_issue_more = issue_rate;
574 FENCE_ISSUE_MORE (fence) = can_issue_more;
575
576 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
577 {
578 if (INSN_READY_CYCLE (insn) < cycle)
579 {
580 remove_from_deps (FENCE_DC (fence), insn);
581 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
582 continue;
583 }
584 i++;
585 }
586 if (sched_verbose >= 2)
587 {
588 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
589 debug_state (FENCE_STATE (fence));
590 }
591 }
592
593 /* Returns true when SUCC in a fallthru bb of INSN, possibly
594 skipping empty basic blocks. */
595 static bool
596 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
597 {
598 basic_block bb = BLOCK_FOR_INSN (insn);
599 edge e;
600
601 if (bb == BLOCK_FOR_INSN (succ))
602 return true;
603
604 e = find_fallthru_edge_from (bb);
605 if (e)
606 bb = e->dest;
607 else
608 return false;
609
610 while (sel_bb_empty_p (bb))
611 bb = bb->next_bb;
612
613 return bb == BLOCK_FOR_INSN (succ);
614 }
615
616 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
617 When a successor will continue a ebb, transfer all parameters of a fence
618 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
619 of scheduling helping to distinguish between the old and the new code. */
620 static void
621 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
622 int orig_max_seqno)
623 {
624 bool was_here_p = false;
625 insn_t insn = NULL;
626 insn_t succ;
627 succ_iterator si;
628 ilist_iterator ii;
629 fence_t fence = FLIST_FENCE (old_fences);
630 basic_block bb;
631
632 /* Get the only element of FENCE_BNDS (fence). */
633 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
634 {
635 gcc_assert (!was_here_p);
636 was_here_p = true;
637 }
638 gcc_assert (was_here_p && insn != NULL_RTX);
639
640 /* When in the "middle" of the block, just move this fence
641 to the new list. */
642 bb = BLOCK_FOR_INSN (insn);
643 if (! sel_bb_end_p (insn)
644 || (single_succ_p (bb)
645 && single_pred_p (single_succ (bb))))
646 {
647 insn_t succ;
648
649 succ = (sel_bb_end_p (insn)
650 ? sel_bb_head (single_succ (bb))
651 : NEXT_INSN (insn));
652
653 if (INSN_SEQNO (succ) > 0
654 && INSN_SEQNO (succ) <= orig_max_seqno
655 && INSN_SCHED_TIMES (succ) <= 0)
656 {
657 FENCE_INSN (fence) = succ;
658 move_fence_to_fences (old_fences, new_fences);
659
660 if (sched_verbose >= 1)
661 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
662 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
663 }
664 return;
665 }
666
667 /* Otherwise copy fence's structures to (possibly) multiple successors. */
668 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
669 {
670 int seqno = INSN_SEQNO (succ);
671
672 if (seqno > 0 && seqno <= orig_max_seqno
673 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
674 {
675 bool b = (in_same_ebb_p (insn, succ)
676 || in_fallthru_bb_p (insn, succ));
677
678 if (sched_verbose >= 1)
679 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
680 INSN_UID (insn), INSN_UID (succ),
681 BLOCK_NUM (succ), b ? "continue" : "reset");
682
683 if (b)
684 add_dirty_fence_to_fences (new_fences, succ, fence);
685 else
686 {
687 /* Mark block of the SUCC as head of the new ebb. */
688 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
689 add_clean_fence_to_fences (new_fences, succ, fence);
690 }
691 }
692 }
693 }
694 \f
695
696 /* Functions to support substitution. */
697
698 /* Returns whether INSN with dependence status DS is eligible for
699 substitution, i.e. it's a copy operation x := y, and RHS that is
700 moved up through this insn should be substituted. */
701 static bool
702 can_substitute_through_p (insn_t insn, ds_t ds)
703 {
704 /* We can substitute only true dependencies. */
705 if ((ds & DEP_OUTPUT)
706 || (ds & DEP_ANTI)
707 || ! INSN_RHS (insn)
708 || ! INSN_LHS (insn))
709 return false;
710
711 /* Now we just need to make sure the INSN_RHS consists of only one
712 simple REG rtx. */
713 if (REG_P (INSN_LHS (insn))
714 && REG_P (INSN_RHS (insn)))
715 return true;
716 return false;
717 }
718
719 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
720 source (if INSN is eligible for substitution). Returns TRUE if
721 substitution was actually performed, FALSE otherwise. Substitution might
722 be not performed because it's either EXPR' vinsn doesn't contain INSN's
723 destination or the resulting insn is invalid for the target machine.
724 When UNDO is true, perform unsubstitution instead (the difference is in
725 the part of rtx on which validate_replace_rtx is called). */
726 static bool
727 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
728 {
729 rtx *where;
730 bool new_insn_valid;
731 vinsn_t *vi = &EXPR_VINSN (expr);
732 bool has_rhs = VINSN_RHS (*vi) != NULL;
733 rtx old, new_rtx;
734
735 /* Do not try to replace in SET_DEST. Although we'll choose new
736 register for the RHS, we don't want to change RHS' original reg.
737 If the insn is not SET, we may still be able to substitute something
738 in it, and if we're here (don't have deps), it doesn't write INSN's
739 dest. */
740 where = (has_rhs
741 ? &VINSN_RHS (*vi)
742 : &PATTERN (VINSN_INSN_RTX (*vi)));
743 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
744
745 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
746 if (rtx_ok_for_substitution_p (old, *where))
747 {
748 rtx_insn *new_insn;
749 rtx *where_replace;
750
751 /* We should copy these rtxes before substitution. */
752 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
753 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
754
755 /* Where we'll replace.
756 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
757 used instead of SET_SRC. */
758 where_replace = (has_rhs
759 ? &SET_SRC (PATTERN (new_insn))
760 : &PATTERN (new_insn));
761
762 new_insn_valid
763 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
764 new_insn);
765
766 /* ??? Actually, constrain_operands result depends upon choice of
767 destination register. E.g. if we allow single register to be an rhs,
768 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
769 in invalid insn dx=dx, so we'll loose this rhs here.
770 Just can't come up with significant testcase for this, so just
771 leaving it for now. */
772 if (new_insn_valid)
773 {
774 change_vinsn_in_expr (expr,
775 create_vinsn_from_insn_rtx (new_insn, false));
776
777 /* Do not allow clobbering the address register of speculative
778 insns. */
779 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
780 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
781 expr_dest_reg (expr)))
782 EXPR_TARGET_AVAILABLE (expr) = false;
783
784 return true;
785 }
786 else
787 return false;
788 }
789 else
790 return false;
791 }
792
793 /* Return the number of places WHAT appears within WHERE.
794 Bail out when we found a reference occupying several hard registers. */
795 static int
796 count_occurrences_equiv (const_rtx what, const_rtx where)
797 {
798 int count = 0;
799 subrtx_iterator::array_type array;
800 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
801 {
802 const_rtx x = *iter;
803 if (REG_P (x) && REGNO (x) == REGNO (what))
804 {
805 /* Bail out if mode is different or more than one register is
806 used. */
807 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
808 return 0;
809 count += 1;
810 }
811 else if (GET_CODE (x) == SUBREG
812 && (!REG_P (SUBREG_REG (x))
813 || REGNO (SUBREG_REG (x)) == REGNO (what)))
814 /* ??? Do not support substituting regs inside subregs. In that case,
815 simplify_subreg will be called by validate_replace_rtx, and
816 unsubstitution will fail later. */
817 return 0;
818 }
819 return count;
820 }
821
822 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
823 static bool
824 rtx_ok_for_substitution_p (rtx what, rtx where)
825 {
826 return (count_occurrences_equiv (what, where) > 0);
827 }
828 \f
829
830 /* Functions to support register renaming. */
831
832 /* Substitute VI's set source with REGNO. Returns newly created pattern
833 that has REGNO as its source. */
834 static rtx_insn *
835 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
836 {
837 rtx lhs_rtx;
838 rtx pattern;
839 rtx_insn *insn_rtx;
840
841 lhs_rtx = copy_rtx (VINSN_LHS (vi));
842
843 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
844 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
845
846 return insn_rtx;
847 }
848
849 /* Returns whether INSN's src can be replaced with register number
850 NEW_SRC_REG. E.g. the following insn is valid for i386:
851
852 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
853 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
854 (reg:SI 0 ax [orig:770 c1 ] [770]))
855 (const_int 288 [0x120])) [0 str S1 A8])
856 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
857 (nil))
858
859 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
860 because of operand constraints:
861
862 (define_insn "*movqi_1"
863 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
864 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
865 )]
866
867 So do constrain_operands here, before choosing NEW_SRC_REG as best
868 reg for rhs. */
869
870 static bool
871 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
872 {
873 vinsn_t vi = INSN_VINSN (insn);
874 machine_mode mode;
875 rtx dst_loc;
876 bool res;
877
878 gcc_assert (VINSN_SEPARABLE_P (vi));
879
880 get_dest_and_mode (insn, &dst_loc, &mode);
881 gcc_assert (mode == GET_MODE (new_src_reg));
882
883 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
884 return true;
885
886 /* See whether SET_SRC can be replaced with this register. */
887 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
888 res = verify_changes (0);
889 cancel_changes (0);
890
891 return res;
892 }
893
894 /* Returns whether INSN still be valid after replacing it's DEST with
895 register NEW_REG. */
896 static bool
897 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
898 {
899 vinsn_t vi = INSN_VINSN (insn);
900 bool res;
901
902 /* We should deal here only with separable insns. */
903 gcc_assert (VINSN_SEPARABLE_P (vi));
904 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
905
906 /* See whether SET_DEST can be replaced with this register. */
907 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
908 res = verify_changes (0);
909 cancel_changes (0);
910
911 return res;
912 }
913
914 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
915 static rtx_insn *
916 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
917 {
918 rtx rhs_rtx;
919 rtx pattern;
920 rtx_insn *insn_rtx;
921
922 rhs_rtx = copy_rtx (VINSN_RHS (vi));
923
924 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
925 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
926
927 return insn_rtx;
928 }
929
930 /* Substitute lhs in the given expression EXPR for the register with number
931 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
932 static void
933 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
934 {
935 rtx_insn *insn_rtx;
936 vinsn_t vinsn;
937
938 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
939 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
940
941 change_vinsn_in_expr (expr, vinsn);
942 EXPR_WAS_RENAMED (expr) = 1;
943 EXPR_TARGET_AVAILABLE (expr) = 1;
944 }
945
946 /* Returns whether VI writes either one of the USED_REGS registers or,
947 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
948 static bool
949 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
950 HARD_REG_SET unavailable_hard_regs)
951 {
952 unsigned regno;
953 reg_set_iterator rsi;
954
955 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
956 {
957 if (REGNO_REG_SET_P (used_regs, regno))
958 return true;
959 if (HARD_REGISTER_NUM_P (regno)
960 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
961 return true;
962 }
963
964 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
965 {
966 if (REGNO_REG_SET_P (used_regs, regno))
967 return true;
968 if (HARD_REGISTER_NUM_P (regno)
969 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
970 return true;
971 }
972
973 return false;
974 }
975
976 /* Returns register class of the output register in INSN.
977 Returns NO_REGS for call insns because some targets have constraints on
978 destination register of a call insn.
979
980 Code adopted from regrename.c::build_def_use. */
981 static enum reg_class
982 get_reg_class (rtx_insn *insn)
983 {
984 int i, n_ops;
985
986 extract_constrain_insn (insn);
987 preprocess_constraints (insn);
988 n_ops = recog_data.n_operands;
989
990 const operand_alternative *op_alt = which_op_alt ();
991 if (asm_noperands (PATTERN (insn)) > 0)
992 {
993 for (i = 0; i < n_ops; i++)
994 if (recog_data.operand_type[i] == OP_OUT)
995 {
996 rtx *loc = recog_data.operand_loc[i];
997 rtx op = *loc;
998 enum reg_class cl = alternative_class (op_alt, i);
999
1000 if (REG_P (op)
1001 && REGNO (op) == ORIGINAL_REGNO (op))
1002 continue;
1003
1004 return cl;
1005 }
1006 }
1007 else if (!CALL_P (insn))
1008 {
1009 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1010 {
1011 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1012 enum reg_class cl = alternative_class (op_alt, opn);
1013
1014 if (recog_data.operand_type[opn] == OP_OUT ||
1015 recog_data.operand_type[opn] == OP_INOUT)
1016 return cl;
1017 }
1018 }
1019
1020 /* Insns like
1021 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1022 may result in returning NO_REGS, cause flags is written implicitly through
1023 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1024 return NO_REGS;
1025 }
1026
1027 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1028 static void
1029 init_hard_regno_rename (int regno)
1030 {
1031 int cur_reg;
1032
1033 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1034
1035 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1036 {
1037 /* We are not interested in renaming in other regs. */
1038 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1039 continue;
1040
1041 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1042 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1043 }
1044 }
1045
1046 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1047 data first. */
1048 static inline bool
1049 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1050 {
1051 /* Check whether this is all calculated. */
1052 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1053 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1054
1055 init_hard_regno_rename (from);
1056
1057 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1058 }
1059
1060 /* Calculate set of registers that are capable of holding MODE. */
1061 static void
1062 init_regs_for_mode (machine_mode mode)
1063 {
1064 int cur_reg;
1065
1066 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1067
1068 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1069 {
1070 int nregs;
1071 int i;
1072
1073 /* See whether it accepts all modes that occur in
1074 original insns. */
1075 if (!targetm.hard_regno_mode_ok (cur_reg, mode))
1076 continue;
1077
1078 nregs = hard_regno_nregs (cur_reg, mode);
1079
1080 for (i = nregs - 1; i >= 0; --i)
1081 if (fixed_regs[cur_reg + i]
1082 || global_regs[cur_reg + i]
1083 /* Can't use regs which aren't saved by
1084 the prologue. */
1085 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1086 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1087 it affects aliasing globally and invalidates all AV sets. */
1088 || get_reg_base_value (cur_reg + i)
1089 #ifdef LEAF_REGISTERS
1090 /* We can't use a non-leaf register if we're in a
1091 leaf function. */
1092 || (crtl->is_leaf
1093 && !LEAF_REGISTERS[cur_reg + i])
1094 #endif
1095 )
1096 break;
1097
1098 if (i >= 0)
1099 continue;
1100
1101 /* If the CUR_REG passed all the checks above,
1102 then it's ok. */
1103 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1104 }
1105
1106 sel_hrd.regs_for_mode_ok[mode] = true;
1107 }
1108
1109 /* Init all register sets gathered in HRD. */
1110 static void
1111 init_hard_regs_data (void)
1112 {
1113 int cur_reg = 0;
1114 int cur_mode = 0;
1115
1116 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1117 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1118 if (df_regs_ever_live_p (cur_reg)
1119 || crtl->abi->clobbers_full_reg_p (cur_reg))
1120 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1121
1122 /* Initialize registers that are valid based on mode when this is
1123 really needed. */
1124 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1125 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1126
1127 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1128 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1129 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1130
1131 #ifdef STACK_REGS
1132 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1133
1134 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1135 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1136 #endif
1137 }
1138
1139 /* Mark hardware regs in REG_RENAME_P that are not suitable
1140 for renaming rhs in INSN due to hardware restrictions (register class,
1141 modes compatibility etc). This doesn't affect original insn's dest reg,
1142 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1143 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1144 Registers that are in used_regs are always marked in
1145 unavailable_hard_regs as well. */
1146
1147 static void
1148 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1149 regset used_regs ATTRIBUTE_UNUSED)
1150 {
1151 machine_mode mode;
1152 enum reg_class cl = NO_REGS;
1153 rtx orig_dest;
1154 unsigned cur_reg, regno;
1155 hard_reg_set_iterator hrsi;
1156
1157 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1158 gcc_assert (reg_rename_p);
1159
1160 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1161
1162 /* We have decided not to rename 'mem = something;' insns, as 'something'
1163 is usually a register. */
1164 if (!REG_P (orig_dest))
1165 return;
1166
1167 regno = REGNO (orig_dest);
1168
1169 /* If before reload, don't try to work with pseudos. */
1170 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1171 return;
1172
1173 if (reload_completed)
1174 cl = get_reg_class (def->orig_insn);
1175
1176 /* Stop if the original register is one of the fixed_regs, global_regs or
1177 frame pointer, or we could not discover its class. */
1178 if (fixed_regs[regno]
1179 || global_regs[regno]
1180 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1181 && regno == HARD_FRAME_POINTER_REGNUM)
1182 || (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1183 && regno == FRAME_POINTER_REGNUM)
1184 || (reload_completed && cl == NO_REGS))
1185 {
1186 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1187
1188 /* Give a chance for original register, if it isn't in used_regs. */
1189 if (!def->crossed_call_abis)
1190 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1191
1192 return;
1193 }
1194
1195 /* If something allocated on stack in this function, mark frame pointer
1196 register unavailable, considering also modes.
1197 FIXME: it is enough to do this once per all original defs. */
1198 if (frame_pointer_needed)
1199 {
1200 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1201 Pmode, FRAME_POINTER_REGNUM);
1202
1203 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1204 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1205 Pmode, HARD_FRAME_POINTER_REGNUM);
1206 }
1207
1208 #ifdef STACK_REGS
1209 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1210 is equivalent to as if all stack regs were in this set.
1211 I.e. no stack register can be renamed, and even if it's an original
1212 register here we make sure it won't be lifted over it's previous def
1213 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1214 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1215 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1216 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1217 reg_rename_p->unavailable_hard_regs |= sel_hrd.stack_regs;
1218 #endif
1219
1220 mode = GET_MODE (orig_dest);
1221
1222 /* If there's a call on this path, make regs from full_reg_clobbers
1223 unavailable.
1224
1225 ??? It would be better to track the set of clobbered registers
1226 directly, but that would be quite expensive in a def_t. */
1227 if (def->crossed_call_abis)
1228 reg_rename_p->unavailable_hard_regs
1229 |= call_clobbers_in_region (def->crossed_call_abis,
1230 reg_class_contents[ALL_REGS], mode);
1231
1232 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and
1233 crossed_call_abis, but not register classes. */
1234 if (!reload_completed)
1235 return;
1236
1237 /* Leave regs as 'available' only from the current
1238 register class. */
1239 reg_rename_p->available_for_renaming = reg_class_contents[cl];
1240
1241 /* Leave only registers available for this mode. */
1242 if (!sel_hrd.regs_for_mode_ok[mode])
1243 init_regs_for_mode (mode);
1244 reg_rename_p->available_for_renaming &= sel_hrd.regs_for_mode[mode];
1245
1246 /* Leave only those that are ok to rename. */
1247 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1248 0, cur_reg, hrsi)
1249 {
1250 int nregs;
1251 int i;
1252
1253 nregs = hard_regno_nregs (cur_reg, mode);
1254 gcc_assert (nregs > 0);
1255
1256 for (i = nregs - 1; i >= 0; --i)
1257 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1258 break;
1259
1260 if (i >= 0)
1261 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1262 cur_reg);
1263 }
1264
1265 reg_rename_p->available_for_renaming &= ~reg_rename_p->unavailable_hard_regs;
1266
1267 /* Regno is always ok from the renaming part of view, but it really
1268 could be in *unavailable_hard_regs already, so set it here instead
1269 of there. */
1270 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1271 }
1272
1273 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1274 best register more recently than REG2. */
1275 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1276
1277 /* Indicates the number of times renaming happened before the current one. */
1278 static int reg_rename_this_tick;
1279
1280 /* Choose the register among free, that is suitable for storing
1281 the rhs value.
1282
1283 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1284 originally appears. There could be multiple original operations
1285 for single rhs since we moving it up and merging along different
1286 paths.
1287
1288 Some code is adapted from regrename.c (regrename_optimize).
1289 If original register is available, function returns it.
1290 Otherwise it performs the checks, so the new register should
1291 comply with the following:
1292 - it should not violate any live ranges (such registers are in
1293 REG_RENAME_P->available_for_renaming set);
1294 - it should not be in the HARD_REGS_USED regset;
1295 - it should be in the class compatible with original uses;
1296 - it should not be clobbered through reference with different mode;
1297 - if we're in the leaf function, then the new register should
1298 not be in the LEAF_REGISTERS;
1299 - etc.
1300
1301 If several registers meet the conditions, the register with smallest
1302 tick is returned to achieve more even register allocation.
1303
1304 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1305
1306 If no register satisfies the above conditions, NULL_RTX is returned. */
1307 static rtx
1308 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1309 struct reg_rename *reg_rename_p,
1310 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1311 {
1312 int best_new_reg;
1313 unsigned cur_reg;
1314 machine_mode mode = VOIDmode;
1315 unsigned regno, i, n;
1316 hard_reg_set_iterator hrsi;
1317 def_list_iterator di;
1318 def_t def;
1319
1320 /* If original register is available, return it. */
1321 *is_orig_reg_p_ptr = true;
1322
1323 FOR_EACH_DEF (def, di, original_insns)
1324 {
1325 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1326
1327 gcc_assert (REG_P (orig_dest));
1328
1329 /* Check that all original operations have the same mode.
1330 This is done for the next loop; if we'd return from this
1331 loop, we'd check only part of them, but in this case
1332 it doesn't matter. */
1333 if (mode == VOIDmode)
1334 mode = GET_MODE (orig_dest);
1335 gcc_assert (mode == GET_MODE (orig_dest));
1336
1337 regno = REGNO (orig_dest);
1338 for (i = 0, n = REG_NREGS (orig_dest); i < n; i++)
1339 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1340 break;
1341
1342 /* All hard registers are available. */
1343 if (i == n)
1344 {
1345 gcc_assert (mode != VOIDmode);
1346
1347 /* Hard registers should not be shared. */
1348 return gen_rtx_REG (mode, regno);
1349 }
1350 }
1351
1352 *is_orig_reg_p_ptr = false;
1353 best_new_reg = -1;
1354
1355 /* Among all available regs choose the register that was
1356 allocated earliest. */
1357 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1358 0, cur_reg, hrsi)
1359 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1360 {
1361 /* Check that all hard regs for mode are available. */
1362 for (i = 1, n = hard_regno_nregs (cur_reg, mode); i < n; i++)
1363 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1364 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1365 cur_reg + i))
1366 break;
1367
1368 if (i < n)
1369 continue;
1370
1371 /* All hard registers are available. */
1372 if (best_new_reg < 0
1373 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1374 {
1375 best_new_reg = cur_reg;
1376
1377 /* Return immediately when we know there's no better reg. */
1378 if (! reg_rename_tick[best_new_reg])
1379 break;
1380 }
1381 }
1382
1383 if (best_new_reg >= 0)
1384 {
1385 /* Use the check from the above loop. */
1386 gcc_assert (mode != VOIDmode);
1387 return gen_rtx_REG (mode, best_new_reg);
1388 }
1389
1390 return NULL_RTX;
1391 }
1392
1393 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1394 assumptions about available registers in the function. */
1395 static rtx
1396 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1397 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1398 {
1399 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1400 original_insns, is_orig_reg_p_ptr);
1401
1402 /* FIXME loop over hard_regno_nregs here. */
1403 gcc_assert (best_reg == NULL_RTX
1404 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1405
1406 return best_reg;
1407 }
1408
1409 /* Choose the pseudo register for storing rhs value. As this is supposed
1410 to work before reload, we return either the original register or make
1411 the new one. The parameters are the same that in choose_nest_reg_1
1412 functions, except that USED_REGS may contain pseudos.
1413 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1414
1415 TODO: take into account register pressure while doing this. Up to this
1416 moment, this function would never return NULL for pseudos, but we should
1417 not rely on this. */
1418 static rtx
1419 choose_best_pseudo_reg (regset used_regs,
1420 struct reg_rename *reg_rename_p,
1421 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1422 {
1423 def_list_iterator i;
1424 def_t def;
1425 machine_mode mode = VOIDmode;
1426 bool bad_hard_regs = false;
1427
1428 /* We should not use this after reload. */
1429 gcc_assert (!reload_completed);
1430
1431 /* If original register is available, return it. */
1432 *is_orig_reg_p_ptr = true;
1433
1434 FOR_EACH_DEF (def, i, original_insns)
1435 {
1436 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1437 int orig_regno;
1438
1439 gcc_assert (REG_P (dest));
1440
1441 /* Check that all original operations have the same mode. */
1442 if (mode == VOIDmode)
1443 mode = GET_MODE (dest);
1444 else
1445 gcc_assert (mode == GET_MODE (dest));
1446 orig_regno = REGNO (dest);
1447
1448 /* Check that nothing in used_regs intersects with orig_regno. When
1449 we have a hard reg here, still loop over hard_regno_nregs. */
1450 if (HARD_REGISTER_NUM_P (orig_regno))
1451 {
1452 int j, n;
1453 for (j = 0, n = REG_NREGS (dest); j < n; j++)
1454 if (REGNO_REG_SET_P (used_regs, orig_regno + j))
1455 break;
1456 if (j < n)
1457 continue;
1458 }
1459 else
1460 {
1461 if (REGNO_REG_SET_P (used_regs, orig_regno))
1462 continue;
1463 }
1464 if (HARD_REGISTER_NUM_P (orig_regno))
1465 {
1466 gcc_assert (df_regs_ever_live_p (orig_regno));
1467
1468 /* For hard registers, we have to check hardware imposed
1469 limitations (frame/stack registers, calls crossed). */
1470 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1471 orig_regno))
1472 {
1473 /* Don't let register cross a call if it doesn't already
1474 cross one. This condition is written in accordance with
1475 that in sched-deps.c sched_analyze_reg(). */
1476 if (!reg_rename_p->crossed_call_abis
1477 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1478 return gen_rtx_REG (mode, orig_regno);
1479 }
1480
1481 bad_hard_regs = true;
1482 }
1483 else
1484 return dest;
1485 }
1486
1487 *is_orig_reg_p_ptr = false;
1488
1489 /* We had some original hard registers that couldn't be used.
1490 Those were likely special. Don't try to create a pseudo. */
1491 if (bad_hard_regs)
1492 return NULL_RTX;
1493
1494 /* We haven't found a register from original operations. Get a new one.
1495 FIXME: control register pressure somehow. */
1496 {
1497 rtx new_reg = gen_reg_rtx (mode);
1498
1499 gcc_assert (mode != VOIDmode);
1500
1501 max_regno = max_reg_num ();
1502 maybe_extend_reg_info_p ();
1503 REG_N_CALLS_CROSSED (REGNO (new_reg))
1504 = reg_rename_p->crossed_call_abis ? 1 : 0;
1505
1506 return new_reg;
1507 }
1508 }
1509
1510 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1511 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1512 static void
1513 verify_target_availability (expr_t expr, regset used_regs,
1514 struct reg_rename *reg_rename_p)
1515 {
1516 unsigned n, i, regno;
1517 machine_mode mode;
1518 bool target_available, live_available, hard_available;
1519
1520 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1521 return;
1522
1523 regno = expr_dest_regno (expr);
1524 mode = GET_MODE (EXPR_LHS (expr));
1525 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1526 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs (regno, mode) : 1;
1527
1528 live_available = hard_available = true;
1529 for (i = 0; i < n; i++)
1530 {
1531 if (bitmap_bit_p (used_regs, regno + i))
1532 live_available = false;
1533 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1534 hard_available = false;
1535 }
1536
1537 /* When target is not available, it may be due to hard register
1538 restrictions, e.g. crosses calls, so we check hard_available too. */
1539 if (target_available)
1540 gcc_assert (live_available);
1541 else
1542 /* Check only if we haven't scheduled something on the previous fence,
1543 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1544 and having more than one fence, we may end having targ_un in a block
1545 in which successors target register is actually available.
1546
1547 The last condition handles the case when a dependence from a call insn
1548 was created in sched-deps.c for insns with destination registers that
1549 never crossed a call before, but do cross one after our code motion.
1550
1551 FIXME: in the latter case, we just uselessly called find_used_regs,
1552 because we can't move this expression with any other register
1553 as well. */
1554 gcc_assert (scheduled_something_on_previous_fence || !live_available
1555 || !hard_available
1556 || (!reload_completed
1557 && reg_rename_p->crossed_call_abis
1558 && REG_N_CALLS_CROSSED (regno) == 0));
1559 }
1560
1561 /* Collect unavailable registers due to liveness for EXPR from BNDS
1562 into USED_REGS. Save additional information about available
1563 registers and unavailable due to hardware restriction registers
1564 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1565 list. */
1566 static void
1567 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1568 struct reg_rename *reg_rename_p,
1569 def_list_t *original_insns)
1570 {
1571 for (; bnds; bnds = BLIST_NEXT (bnds))
1572 {
1573 bool res;
1574 av_set_t orig_ops = NULL;
1575 bnd_t bnd = BLIST_BND (bnds);
1576
1577 /* If the chosen best expr doesn't belong to current boundary,
1578 skip it. */
1579 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1580 continue;
1581
1582 /* Put in ORIG_OPS all exprs from this boundary that became
1583 RES on top. */
1584 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1585
1586 /* Compute used regs and OR it into the USED_REGS. */
1587 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1588 reg_rename_p, original_insns);
1589
1590 /* FIXME: the assert is true until we'd have several boundaries. */
1591 gcc_assert (res);
1592 av_set_clear (&orig_ops);
1593 }
1594 }
1595
1596 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1597 If BEST_REG is valid, replace LHS of EXPR with it. */
1598 static bool
1599 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1600 {
1601 /* Try whether we'll be able to generate the insn
1602 'dest := best_reg' at the place of the original operation. */
1603 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1604 {
1605 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1606
1607 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1608
1609 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1610 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1611 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1612 return false;
1613 }
1614
1615 /* Make sure that EXPR has the right destination
1616 register. */
1617 if (expr_dest_regno (expr) != REGNO (best_reg))
1618 replace_dest_with_reg_in_expr (expr, best_reg);
1619 else
1620 EXPR_TARGET_AVAILABLE (expr) = 1;
1621
1622 return true;
1623 }
1624
1625 /* Select and assign best register to EXPR searching from BNDS.
1626 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1627 Return FALSE if no register can be chosen, which could happen when:
1628 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1629 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1630 that are used on the moving path. */
1631 static bool
1632 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1633 {
1634 static struct reg_rename reg_rename_data;
1635
1636 regset used_regs;
1637 def_list_t original_insns = NULL;
1638 bool reg_ok;
1639
1640 *is_orig_reg_p = false;
1641
1642 /* Don't bother to do anything if this insn doesn't set any registers. */
1643 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1644 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1645 return true;
1646
1647 used_regs = get_clear_regset_from_pool ();
1648 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1649
1650 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1651 &original_insns);
1652
1653 /* If after reload, make sure we're working with hard regs here. */
1654 if (flag_checking && reload_completed)
1655 {
1656 reg_set_iterator rsi;
1657 unsigned i;
1658
1659 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1660 gcc_unreachable ();
1661 }
1662
1663 if (EXPR_SEPARABLE_P (expr))
1664 {
1665 rtx best_reg = NULL_RTX;
1666 /* Check that we have computed availability of a target register
1667 correctly. */
1668 verify_target_availability (expr, used_regs, &reg_rename_data);
1669
1670 /* Turn everything in hard regs after reload. */
1671 if (reload_completed)
1672 {
1673 HARD_REG_SET hard_regs_used;
1674 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1675
1676 /* Join hard registers unavailable due to register class
1677 restrictions and live range intersection. */
1678 hard_regs_used |= reg_rename_data.unavailable_hard_regs;
1679
1680 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1681 original_insns, is_orig_reg_p);
1682 }
1683 else
1684 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1685 original_insns, is_orig_reg_p);
1686
1687 if (!best_reg)
1688 reg_ok = false;
1689 else if (*is_orig_reg_p)
1690 {
1691 /* In case of unification BEST_REG may be different from EXPR's LHS
1692 when EXPR's LHS is unavailable, and there is another LHS among
1693 ORIGINAL_INSNS. */
1694 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1695 }
1696 else
1697 {
1698 /* Forbid renaming of low-cost insns. */
1699 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1700 reg_ok = false;
1701 else
1702 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1703 }
1704 }
1705 else
1706 {
1707 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1708 any of the HARD_REGS_USED set. */
1709 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1710 reg_rename_data.unavailable_hard_regs))
1711 {
1712 reg_ok = false;
1713 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1714 }
1715 else
1716 {
1717 reg_ok = true;
1718 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1719 }
1720 }
1721
1722 ilist_clear (&original_insns);
1723 return_regset_to_pool (used_regs);
1724
1725 return reg_ok;
1726 }
1727 \f
1728
1729 /* Return true if dependence described by DS can be overcomed. */
1730 static bool
1731 can_speculate_dep_p (ds_t ds)
1732 {
1733 if (spec_info == NULL)
1734 return false;
1735
1736 /* Leave only speculative data. */
1737 ds &= SPECULATIVE;
1738
1739 if (ds == 0)
1740 return false;
1741
1742 {
1743 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1744 that we can overcome. */
1745 ds_t spec_mask = spec_info->mask;
1746
1747 if ((ds & spec_mask) != ds)
1748 return false;
1749 }
1750
1751 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1752 return false;
1753
1754 return true;
1755 }
1756
1757 /* Get a speculation check instruction.
1758 C_EXPR is a speculative expression,
1759 CHECK_DS describes speculations that should be checked,
1760 ORIG_INSN is the original non-speculative insn in the stream. */
1761 static insn_t
1762 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1763 {
1764 rtx check_pattern;
1765 rtx_insn *insn_rtx;
1766 insn_t insn;
1767 basic_block recovery_block;
1768 rtx_insn *label;
1769
1770 /* Create a recovery block if target is going to emit branchy check, or if
1771 ORIG_INSN was speculative already. */
1772 if (targetm.sched.needs_block_p (check_ds)
1773 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1774 {
1775 recovery_block = sel_create_recovery_block (orig_insn);
1776 label = BB_HEAD (recovery_block);
1777 }
1778 else
1779 {
1780 recovery_block = NULL;
1781 label = NULL;
1782 }
1783
1784 /* Get pattern of the check. */
1785 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1786 check_ds);
1787
1788 gcc_assert (check_pattern != NULL);
1789
1790 /* Emit check. */
1791 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1792
1793 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1794 INSN_SEQNO (orig_insn), orig_insn);
1795
1796 /* Make check to be non-speculative. */
1797 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1798 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1799
1800 /* Decrease priority of check by difference of load/check instruction
1801 latencies. */
1802 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1803 - sel_vinsn_cost (INSN_VINSN (insn)));
1804
1805 /* Emit copy of original insn (though with replaced target register,
1806 if needed) to the recovery block. */
1807 if (recovery_block != NULL)
1808 {
1809 rtx twin_rtx;
1810
1811 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1812 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1813 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1814 INSN_EXPR (orig_insn),
1815 INSN_SEQNO (insn),
1816 bb_note (recovery_block));
1817 }
1818
1819 /* If we've generated a data speculation check, make sure
1820 that all the bookkeeping instruction we'll create during
1821 this move_op () will allocate an ALAT entry so that the
1822 check won't fail.
1823 In case of control speculation we must convert C_EXPR to control
1824 speculative mode, because failing to do so will bring us an exception
1825 thrown by the non-control-speculative load. */
1826 check_ds = ds_get_max_dep_weak (check_ds);
1827 speculate_expr (c_expr, check_ds);
1828
1829 return insn;
1830 }
1831
1832 /* True when INSN is a "regN = regN" copy. */
1833 static bool
1834 identical_copy_p (rtx_insn *insn)
1835 {
1836 rtx lhs, rhs, pat;
1837
1838 pat = PATTERN (insn);
1839
1840 if (GET_CODE (pat) != SET)
1841 return false;
1842
1843 lhs = SET_DEST (pat);
1844 if (!REG_P (lhs))
1845 return false;
1846
1847 rhs = SET_SRC (pat);
1848 if (!REG_P (rhs))
1849 return false;
1850
1851 return REGNO (lhs) == REGNO (rhs);
1852 }
1853
1854 /* Undo all transformations on *AV_PTR that were done when
1855 moving through INSN. */
1856 static void
1857 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1858 {
1859 av_set_iterator av_iter;
1860 expr_t expr;
1861 av_set_t new_set = NULL;
1862
1863 /* First, kill any EXPR that uses registers set by an insn. This is
1864 required for correctness. */
1865 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1866 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1867 && bitmap_intersect_p (INSN_REG_SETS (insn),
1868 VINSN_REG_USES (EXPR_VINSN (expr)))
1869 /* When an insn looks like 'r1 = r1', we could substitute through
1870 it, but the above condition will still hold. This happened with
1871 gcc.c-torture/execute/961125-1.c. */
1872 && !identical_copy_p (insn))
1873 {
1874 if (sched_verbose >= 6)
1875 sel_print ("Expr %d removed due to use/set conflict\n",
1876 INSN_UID (EXPR_INSN_RTX (expr)));
1877 av_set_iter_remove (&av_iter);
1878 }
1879
1880 /* Undo transformations looking at the history vector. */
1881 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1882 {
1883 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1884 insn, EXPR_VINSN (expr), true);
1885
1886 if (index >= 0)
1887 {
1888 expr_history_def *phist;
1889
1890 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1891
1892 switch (phist->type)
1893 {
1894 case TRANS_SPECULATION:
1895 {
1896 ds_t old_ds, new_ds;
1897
1898 /* Compute the difference between old and new speculative
1899 statuses: that's what we need to check.
1900 Earlier we used to assert that the status will really
1901 change. This no longer works because only the probability
1902 bits in the status may have changed during compute_av_set,
1903 and in the case of merging different probabilities of the
1904 same speculative status along different paths we do not
1905 record this in the history vector. */
1906 old_ds = phist->spec_ds;
1907 new_ds = EXPR_SPEC_DONE_DS (expr);
1908
1909 old_ds &= SPECULATIVE;
1910 new_ds &= SPECULATIVE;
1911 new_ds &= ~old_ds;
1912
1913 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1914 break;
1915 }
1916 case TRANS_SUBSTITUTION:
1917 {
1918 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1919 vinsn_t new_vi;
1920 bool add = true;
1921
1922 new_vi = phist->old_expr_vinsn;
1923
1924 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1925 == EXPR_SEPARABLE_P (expr));
1926 copy_expr (tmp_expr, expr);
1927
1928 if (vinsn_equal_p (phist->new_expr_vinsn,
1929 EXPR_VINSN (tmp_expr)))
1930 change_vinsn_in_expr (tmp_expr, new_vi);
1931 else
1932 /* This happens when we're unsubstituting on a bookkeeping
1933 copy, which was in turn substituted. The history is wrong
1934 in this case. Do it the hard way. */
1935 add = substitute_reg_in_expr (tmp_expr, insn, true);
1936 if (add)
1937 av_set_add (&new_set, tmp_expr);
1938 clear_expr (tmp_expr);
1939 break;
1940 }
1941 default:
1942 gcc_unreachable ();
1943 }
1944 }
1945
1946 }
1947
1948 av_set_union_and_clear (av_ptr, &new_set, NULL);
1949 }
1950 \f
1951
1952 /* Moveup_* helpers for code motion and computing av sets. */
1953
1954 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1955 The difference from the below function is that only substitution is
1956 performed. */
1957 static enum MOVEUP_EXPR_CODE
1958 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1959 {
1960 vinsn_t vi = EXPR_VINSN (expr);
1961 ds_t *has_dep_p;
1962 ds_t full_ds;
1963
1964 /* Do this only inside insn group. */
1965 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1966
1967 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1968 if (full_ds == 0)
1969 return MOVEUP_EXPR_SAME;
1970
1971 /* Substitution is the possible choice in this case. */
1972 if (has_dep_p[DEPS_IN_RHS])
1973 {
1974 /* Can't substitute UNIQUE VINSNs. */
1975 gcc_assert (!VINSN_UNIQUE_P (vi));
1976
1977 if (can_substitute_through_p (through_insn,
1978 has_dep_p[DEPS_IN_RHS])
1979 && substitute_reg_in_expr (expr, through_insn, false))
1980 {
1981 EXPR_WAS_SUBSTITUTED (expr) = true;
1982 return MOVEUP_EXPR_CHANGED;
1983 }
1984
1985 /* Don't care about this, as even true dependencies may be allowed
1986 in an insn group. */
1987 return MOVEUP_EXPR_SAME;
1988 }
1989
1990 /* This can catch output dependencies in COND_EXECs. */
1991 if (has_dep_p[DEPS_IN_INSN])
1992 return MOVEUP_EXPR_NULL;
1993
1994 /* This is either an output or an anti dependence, which usually have
1995 a zero latency. Allow this here, if we'd be wrong, tick_check_p
1996 will fix this. */
1997 gcc_assert (has_dep_p[DEPS_IN_LHS]);
1998 return MOVEUP_EXPR_AS_RHS;
1999 }
2000
2001 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2002 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2003 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2004 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2005 && !sel_insn_is_speculation_check (through_insn))
2006
2007 /* True when a conflict on a target register was found during moveup_expr. */
2008 static bool was_target_conflict = false;
2009
2010 /* Return true when moving a debug INSN across THROUGH_INSN will
2011 create a bookkeeping block. We don't want to create such blocks,
2012 for they would cause codegen differences between compilations with
2013 and without debug info. */
2014
2015 static bool
2016 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2017 insn_t through_insn)
2018 {
2019 basic_block bbi, bbt;
2020 edge e1, e2;
2021 edge_iterator ei1, ei2;
2022
2023 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2024 {
2025 if (sched_verbose >= 9)
2026 sel_print ("no bookkeeping required: ");
2027 return FALSE;
2028 }
2029
2030 bbi = BLOCK_FOR_INSN (insn);
2031
2032 if (EDGE_COUNT (bbi->preds) == 1)
2033 {
2034 if (sched_verbose >= 9)
2035 sel_print ("only one pred edge: ");
2036 return TRUE;
2037 }
2038
2039 bbt = BLOCK_FOR_INSN (through_insn);
2040
2041 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2042 {
2043 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2044 {
2045 if (find_block_for_bookkeeping (e1, e2, TRUE))
2046 {
2047 if (sched_verbose >= 9)
2048 sel_print ("found existing block: ");
2049 return FALSE;
2050 }
2051 }
2052 }
2053
2054 if (sched_verbose >= 9)
2055 sel_print ("would create bookkeeping block: ");
2056
2057 return TRUE;
2058 }
2059
2060 /* Return true when the conflict with newly created implicit clobbers
2061 between EXPR and THROUGH_INSN is found because of renaming. */
2062 static bool
2063 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2064 {
2065 HARD_REG_SET temp;
2066 rtx_insn *insn;
2067 rtx reg, rhs, pat;
2068 hard_reg_set_iterator hrsi;
2069 unsigned regno;
2070 bool valid;
2071
2072 /* Make a new pseudo register. */
2073 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2074 max_regno = max_reg_num ();
2075 maybe_extend_reg_info_p ();
2076
2077 /* Validate a change and bail out early. */
2078 insn = EXPR_INSN_RTX (expr);
2079 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2080 valid = verify_changes (0);
2081 cancel_changes (0);
2082 if (!valid)
2083 {
2084 if (sched_verbose >= 6)
2085 sel_print ("implicit clobbers failed validation, ");
2086 return true;
2087 }
2088
2089 /* Make a new insn with it. */
2090 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2091 pat = gen_rtx_SET (reg, rhs);
2092 start_sequence ();
2093 insn = emit_insn (pat);
2094 end_sequence ();
2095
2096 /* Calculate implicit clobbers. */
2097 extract_insn (insn);
2098 preprocess_constraints (insn);
2099 alternative_mask prefrred = get_preferred_alternatives (insn);
2100 ira_implicitly_set_insn_hard_regs (&temp, prefrred);
2101 temp &= ~ira_no_alloc_regs;
2102
2103 /* If any implicit clobber registers intersect with regular ones in
2104 through_insn, we have a dependency and thus bail out. */
2105 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2106 {
2107 vinsn_t vi = INSN_VINSN (through_insn);
2108 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2109 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2110 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2111 return true;
2112 }
2113
2114 return false;
2115 }
2116
2117 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2118 performing necessary transformations. Record the type of transformation
2119 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2120 permit all dependencies except true ones, and try to remove those
2121 too via forward substitution. All cases when a non-eliminable
2122 non-zero cost dependency exists inside an insn group will be fixed
2123 in tick_check_p instead. */
2124 static enum MOVEUP_EXPR_CODE
2125 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2126 enum local_trans_type *ptrans_type)
2127 {
2128 vinsn_t vi = EXPR_VINSN (expr);
2129 insn_t insn = VINSN_INSN_RTX (vi);
2130 bool was_changed = false;
2131 bool as_rhs = false;
2132 ds_t *has_dep_p;
2133 ds_t full_ds;
2134
2135 /* ??? We use dependencies of non-debug insns on debug insns to
2136 indicate that the debug insns need to be reset if the non-debug
2137 insn is pulled ahead of it. It's hard to figure out how to
2138 introduce such a notion in sel-sched, but it already fails to
2139 support debug insns in other ways, so we just go ahead and
2140 let the deug insns go corrupt for now. */
2141 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2142 return MOVEUP_EXPR_SAME;
2143
2144 /* When inside_insn_group, delegate to the helper. */
2145 if (inside_insn_group)
2146 return moveup_expr_inside_insn_group (expr, through_insn);
2147
2148 /* Deal with unique insns and control dependencies. */
2149 if (VINSN_UNIQUE_P (vi))
2150 {
2151 /* We can move jumps without side-effects or jumps that are
2152 mutually exclusive with instruction THROUGH_INSN (all in cases
2153 dependencies allow to do so and jump is not speculative). */
2154 if (control_flow_insn_p (insn))
2155 {
2156 basic_block fallthru_bb;
2157
2158 /* Do not move checks and do not move jumps through other
2159 jumps. */
2160 if (control_flow_insn_p (through_insn)
2161 || sel_insn_is_speculation_check (insn))
2162 return MOVEUP_EXPR_NULL;
2163
2164 /* Don't move jumps through CFG joins. */
2165 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2166 return MOVEUP_EXPR_NULL;
2167
2168 /* The jump should have a clear fallthru block, and
2169 this block should be in the current region. */
2170 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2171 || ! in_current_region_p (fallthru_bb))
2172 return MOVEUP_EXPR_NULL;
2173
2174 /* And it should be mutually exclusive with through_insn. */
2175 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2176 && ! DEBUG_INSN_P (through_insn))
2177 return MOVEUP_EXPR_NULL;
2178 }
2179
2180 /* Don't move what we can't move. */
2181 if (EXPR_CANT_MOVE (expr)
2182 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2183 return MOVEUP_EXPR_NULL;
2184
2185 /* Don't move SCHED_GROUP instruction through anything.
2186 If we don't force this, then it will be possible to start
2187 scheduling a sched_group before all its dependencies are
2188 resolved.
2189 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2190 as late as possible through rank_for_schedule. */
2191 if (SCHED_GROUP_P (insn))
2192 return MOVEUP_EXPR_NULL;
2193 }
2194 else
2195 gcc_assert (!control_flow_insn_p (insn));
2196
2197 /* Don't move debug insns if this would require bookkeeping. */
2198 if (DEBUG_INSN_P (insn)
2199 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2200 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2201 return MOVEUP_EXPR_NULL;
2202
2203 /* Deal with data dependencies. */
2204 was_target_conflict = false;
2205 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2206 if (full_ds == 0)
2207 {
2208 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2209 return MOVEUP_EXPR_SAME;
2210 }
2211 else
2212 {
2213 /* We can move UNIQUE insn up only as a whole and unchanged,
2214 so it shouldn't have any dependencies. */
2215 if (VINSN_UNIQUE_P (vi))
2216 return MOVEUP_EXPR_NULL;
2217 }
2218
2219 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2220 {
2221 int res;
2222
2223 res = speculate_expr (expr, full_ds);
2224 if (res >= 0)
2225 {
2226 /* Speculation was successful. */
2227 full_ds = 0;
2228 was_changed = (res > 0);
2229 if (res == 2)
2230 was_target_conflict = true;
2231 if (ptrans_type)
2232 *ptrans_type = TRANS_SPECULATION;
2233 sel_clear_has_dependence ();
2234 }
2235 }
2236
2237 if (has_dep_p[DEPS_IN_INSN])
2238 /* We have some dependency that cannot be discarded. */
2239 return MOVEUP_EXPR_NULL;
2240
2241 if (has_dep_p[DEPS_IN_LHS])
2242 {
2243 /* Only separable insns can be moved up with the new register.
2244 Anyways, we should mark that the original register is
2245 unavailable. */
2246 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2247 return MOVEUP_EXPR_NULL;
2248
2249 /* When renaming a hard register to a pseudo before reload, extra
2250 dependencies can occur from the implicit clobbers of the insn.
2251 Filter out such cases here. */
2252 if (!reload_completed && REG_P (EXPR_LHS (expr))
2253 && HARD_REGISTER_P (EXPR_LHS (expr))
2254 && implicit_clobber_conflict_p (through_insn, expr))
2255 {
2256 if (sched_verbose >= 6)
2257 sel_print ("implicit clobbers conflict detected, ");
2258 return MOVEUP_EXPR_NULL;
2259 }
2260 EXPR_TARGET_AVAILABLE (expr) = false;
2261 was_target_conflict = true;
2262 as_rhs = true;
2263 }
2264
2265 /* At this point we have either separable insns, that will be lifted
2266 up only as RHSes, or non-separable insns with no dependency in lhs.
2267 If dependency is in RHS, then try to perform substitution and move up
2268 substituted RHS:
2269
2270 Ex. 1: Ex.2
2271 y = x; y = x;
2272 z = y*2; y = y*2;
2273
2274 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2275 moved above y=x assignment as z=x*2.
2276
2277 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2278 side can be moved because of the output dependency. The operation was
2279 cropped to its rhs above. */
2280 if (has_dep_p[DEPS_IN_RHS])
2281 {
2282 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2283
2284 /* Can't substitute UNIQUE VINSNs. */
2285 gcc_assert (!VINSN_UNIQUE_P (vi));
2286
2287 if (can_speculate_dep_p (*rhs_dsp))
2288 {
2289 int res;
2290
2291 res = speculate_expr (expr, *rhs_dsp);
2292 if (res >= 0)
2293 {
2294 /* Speculation was successful. */
2295 *rhs_dsp = 0;
2296 was_changed = (res > 0);
2297 if (res == 2)
2298 was_target_conflict = true;
2299 if (ptrans_type)
2300 *ptrans_type = TRANS_SPECULATION;
2301 }
2302 else
2303 return MOVEUP_EXPR_NULL;
2304 }
2305 else if (can_substitute_through_p (through_insn,
2306 *rhs_dsp)
2307 && substitute_reg_in_expr (expr, through_insn, false))
2308 {
2309 /* ??? We cannot perform substitution AND speculation on the same
2310 insn. */
2311 gcc_assert (!was_changed);
2312 was_changed = true;
2313 if (ptrans_type)
2314 *ptrans_type = TRANS_SUBSTITUTION;
2315 EXPR_WAS_SUBSTITUTED (expr) = true;
2316 }
2317 else
2318 return MOVEUP_EXPR_NULL;
2319 }
2320
2321 /* Don't move trapping insns through jumps.
2322 This check should be at the end to give a chance to control speculation
2323 to perform its duties. */
2324 if (CANT_MOVE_TRAPPING (expr, through_insn))
2325 return MOVEUP_EXPR_NULL;
2326
2327 return (was_changed
2328 ? MOVEUP_EXPR_CHANGED
2329 : (as_rhs
2330 ? MOVEUP_EXPR_AS_RHS
2331 : MOVEUP_EXPR_SAME));
2332 }
2333
2334 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2335 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2336 that can exist within a parallel group. Write to RES the resulting
2337 code for moveup_expr. */
2338 static bool
2339 try_bitmap_cache (expr_t expr, insn_t insn,
2340 bool inside_insn_group,
2341 enum MOVEUP_EXPR_CODE *res)
2342 {
2343 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2344
2345 /* First check whether we've analyzed this situation already. */
2346 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2347 {
2348 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2349 {
2350 if (sched_verbose >= 6)
2351 sel_print ("removed (cached)\n");
2352 *res = MOVEUP_EXPR_NULL;
2353 return true;
2354 }
2355 else
2356 {
2357 if (sched_verbose >= 6)
2358 sel_print ("unchanged (cached)\n");
2359 *res = MOVEUP_EXPR_SAME;
2360 return true;
2361 }
2362 }
2363 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2364 {
2365 if (inside_insn_group)
2366 {
2367 if (sched_verbose >= 6)
2368 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2369 *res = MOVEUP_EXPR_SAME;
2370 return true;
2371
2372 }
2373 else
2374 EXPR_TARGET_AVAILABLE (expr) = false;
2375
2376 /* This is the only case when propagation result can change over time,
2377 as we can dynamically switch off scheduling as RHS. In this case,
2378 just check the flag to reach the correct decision. */
2379 if (enable_schedule_as_rhs_p)
2380 {
2381 if (sched_verbose >= 6)
2382 sel_print ("unchanged (as RHS, cached)\n");
2383 *res = MOVEUP_EXPR_AS_RHS;
2384 return true;
2385 }
2386 else
2387 {
2388 if (sched_verbose >= 6)
2389 sel_print ("removed (cached as RHS, but renaming"
2390 " is now disabled)\n");
2391 *res = MOVEUP_EXPR_NULL;
2392 return true;
2393 }
2394 }
2395
2396 return false;
2397 }
2398
2399 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2400 if successful. Write to RES the resulting code for moveup_expr. */
2401 static bool
2402 try_transformation_cache (expr_t expr, insn_t insn,
2403 enum MOVEUP_EXPR_CODE *res)
2404 {
2405 struct transformed_insns *pti
2406 = (struct transformed_insns *)
2407 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2408 &EXPR_VINSN (expr),
2409 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2410 if (pti)
2411 {
2412 /* This EXPR was already moved through this insn and was
2413 changed as a result. Fetch the proper data from
2414 the hashtable. */
2415 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2416 INSN_UID (insn), pti->type,
2417 pti->vinsn_old, pti->vinsn_new,
2418 EXPR_SPEC_DONE_DS (expr));
2419
2420 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2421 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2422 change_vinsn_in_expr (expr, pti->vinsn_new);
2423 if (pti->was_target_conflict)
2424 EXPR_TARGET_AVAILABLE (expr) = false;
2425 if (pti->type == TRANS_SPECULATION)
2426 {
2427 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2428 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2429 }
2430
2431 if (sched_verbose >= 6)
2432 {
2433 sel_print ("changed (cached): ");
2434 dump_expr (expr);
2435 sel_print ("\n");
2436 }
2437
2438 *res = MOVEUP_EXPR_CHANGED;
2439 return true;
2440 }
2441
2442 return false;
2443 }
2444
2445 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2446 static void
2447 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2448 enum MOVEUP_EXPR_CODE res)
2449 {
2450 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2451
2452 /* Do not cache result of propagating jumps through an insn group,
2453 as it is always true, which is not useful outside the group. */
2454 if (inside_insn_group)
2455 return;
2456
2457 if (res == MOVEUP_EXPR_NULL)
2458 {
2459 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2460 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2461 }
2462 else if (res == MOVEUP_EXPR_SAME)
2463 {
2464 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2465 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2466 }
2467 else if (res == MOVEUP_EXPR_AS_RHS)
2468 {
2469 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2470 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2471 }
2472 else
2473 gcc_unreachable ();
2474 }
2475
2476 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2477 and transformation type TRANS_TYPE. */
2478 static void
2479 update_transformation_cache (expr_t expr, insn_t insn,
2480 bool inside_insn_group,
2481 enum local_trans_type trans_type,
2482 vinsn_t expr_old_vinsn)
2483 {
2484 struct transformed_insns *pti;
2485
2486 if (inside_insn_group)
2487 return;
2488
2489 pti = XNEW (struct transformed_insns);
2490 pti->vinsn_old = expr_old_vinsn;
2491 pti->vinsn_new = EXPR_VINSN (expr);
2492 pti->type = trans_type;
2493 pti->was_target_conflict = was_target_conflict;
2494 pti->ds = EXPR_SPEC_DONE_DS (expr);
2495 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2496 vinsn_attach (pti->vinsn_old);
2497 vinsn_attach (pti->vinsn_new);
2498 *((struct transformed_insns **)
2499 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2500 pti, VINSN_HASH_RTX (expr_old_vinsn),
2501 INSERT)) = pti;
2502 }
2503
2504 /* Same as moveup_expr, but first looks up the result of
2505 transformation in caches. */
2506 static enum MOVEUP_EXPR_CODE
2507 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2508 {
2509 enum MOVEUP_EXPR_CODE res;
2510 bool got_answer = false;
2511
2512 if (sched_verbose >= 6)
2513 {
2514 sel_print ("Moving ");
2515 dump_expr (expr);
2516 sel_print (" through %d: ", INSN_UID (insn));
2517 }
2518
2519 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2520 && BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))
2521 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2522 == EXPR_INSN_RTX (expr)))
2523 /* Don't use cached information for debug insns that are heads of
2524 basic blocks. */;
2525 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2526 /* When inside insn group, we do not want remove stores conflicting
2527 with previosly issued loads. */
2528 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2529 else if (try_transformation_cache (expr, insn, &res))
2530 got_answer = true;
2531
2532 if (! got_answer)
2533 {
2534 /* Invoke moveup_expr and record the results. */
2535 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2536 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2537 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2538 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2539 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2540
2541 /* ??? Invent something better than this. We can't allow old_vinsn
2542 to go, we need it for the history vector. */
2543 vinsn_attach (expr_old_vinsn);
2544
2545 res = moveup_expr (expr, insn, inside_insn_group,
2546 &trans_type);
2547 switch (res)
2548 {
2549 case MOVEUP_EXPR_NULL:
2550 update_bitmap_cache (expr, insn, inside_insn_group, res);
2551 if (sched_verbose >= 6)
2552 sel_print ("removed\n");
2553 break;
2554
2555 case MOVEUP_EXPR_SAME:
2556 update_bitmap_cache (expr, insn, inside_insn_group, res);
2557 if (sched_verbose >= 6)
2558 sel_print ("unchanged\n");
2559 break;
2560
2561 case MOVEUP_EXPR_AS_RHS:
2562 gcc_assert (!unique_p || inside_insn_group);
2563 update_bitmap_cache (expr, insn, inside_insn_group, res);
2564 if (sched_verbose >= 6)
2565 sel_print ("unchanged (as RHS)\n");
2566 break;
2567
2568 case MOVEUP_EXPR_CHANGED:
2569 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2570 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2571 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2572 INSN_UID (insn), trans_type,
2573 expr_old_vinsn, EXPR_VINSN (expr),
2574 expr_old_spec_ds);
2575 update_transformation_cache (expr, insn, inside_insn_group,
2576 trans_type, expr_old_vinsn);
2577 if (sched_verbose >= 6)
2578 {
2579 sel_print ("changed: ");
2580 dump_expr (expr);
2581 sel_print ("\n");
2582 }
2583 break;
2584 default:
2585 gcc_unreachable ();
2586 }
2587
2588 vinsn_detach (expr_old_vinsn);
2589 }
2590
2591 return res;
2592 }
2593
2594 /* Moves an av set AVP up through INSN, performing necessary
2595 transformations. */
2596 static void
2597 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2598 {
2599 av_set_iterator i;
2600 expr_t expr;
2601
2602 FOR_EACH_EXPR_1 (expr, i, avp)
2603 {
2604
2605 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2606 {
2607 case MOVEUP_EXPR_SAME:
2608 case MOVEUP_EXPR_AS_RHS:
2609 break;
2610
2611 case MOVEUP_EXPR_NULL:
2612 av_set_iter_remove (&i);
2613 break;
2614
2615 case MOVEUP_EXPR_CHANGED:
2616 expr = merge_with_other_exprs (avp, &i, expr);
2617 break;
2618
2619 default:
2620 gcc_unreachable ();
2621 }
2622 }
2623 }
2624
2625 /* Moves AVP set along PATH. */
2626 static void
2627 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2628 {
2629 int last_cycle;
2630
2631 if (sched_verbose >= 6)
2632 sel_print ("Moving expressions up in the insn group...\n");
2633 if (! path)
2634 return;
2635 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2636 while (path
2637 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2638 {
2639 moveup_set_expr (avp, ILIST_INSN (path), true);
2640 path = ILIST_NEXT (path);
2641 }
2642 }
2643
2644 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2645 static bool
2646 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2647 {
2648 expr_def _tmp, *tmp = &_tmp;
2649 int last_cycle;
2650 bool res = true;
2651
2652 copy_expr_onside (tmp, expr);
2653 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2654 while (path
2655 && res
2656 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2657 {
2658 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2659 != MOVEUP_EXPR_NULL);
2660 path = ILIST_NEXT (path);
2661 }
2662
2663 if (res)
2664 {
2665 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2666 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2667
2668 if (tmp_vinsn != expr_vliw_vinsn)
2669 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2670 }
2671
2672 clear_expr (tmp);
2673 return res;
2674 }
2675 \f
2676
2677 /* Functions that compute av and lv sets. */
2678
2679 /* Returns true if INSN is not a downward continuation of the given path P in
2680 the current stage. */
2681 static bool
2682 is_ineligible_successor (insn_t insn, ilist_t p)
2683 {
2684 insn_t prev_insn;
2685
2686 /* Check if insn is not deleted. */
2687 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2688 gcc_unreachable ();
2689 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2690 gcc_unreachable ();
2691
2692 /* If it's the first insn visited, then the successor is ok. */
2693 if (!p)
2694 return false;
2695
2696 prev_insn = ILIST_INSN (p);
2697
2698 if (/* a backward edge. */
2699 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2700 /* is already visited. */
2701 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2702 && (ilist_is_in_p (p, insn)
2703 /* We can reach another fence here and still seqno of insn
2704 would be equal to seqno of prev_insn. This is possible
2705 when prev_insn is a previously created bookkeeping copy.
2706 In that case it'd get a seqno of insn. Thus, check here
2707 whether insn is in current fence too. */
2708 || IN_CURRENT_FENCE_P (insn)))
2709 /* Was already scheduled on this round. */
2710 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2711 && IN_CURRENT_FENCE_P (insn))
2712 /* An insn from another fence could also be
2713 scheduled earlier even if this insn is not in
2714 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2715 || (!pipelining_p
2716 && INSN_SCHED_TIMES (insn) > 0))
2717 return true;
2718 else
2719 return false;
2720 }
2721
2722 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2723 of handling multiple successors and properly merging its av_sets. P is
2724 the current path traversed. WS is the size of lookahead window.
2725 Return the av set computed. */
2726 static av_set_t
2727 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2728 {
2729 struct succs_info *sinfo;
2730 av_set_t expr_in_all_succ_branches = NULL;
2731 int is;
2732 insn_t succ, zero_succ = NULL;
2733 av_set_t av1 = NULL;
2734
2735 gcc_assert (sel_bb_end_p (insn));
2736
2737 /* Find different kind of successors needed for correct computing of
2738 SPEC and TARGET_AVAILABLE attributes. */
2739 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2740
2741 /* Debug output. */
2742 if (sched_verbose >= 6)
2743 {
2744 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2745 dump_insn_vector (sinfo->succs_ok);
2746 sel_print ("\n");
2747 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2748 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2749 }
2750
2751 /* Add insn to the tail of current path. */
2752 ilist_add (&p, insn);
2753
2754 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2755 {
2756 av_set_t succ_set;
2757
2758 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2759 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2760
2761 av_set_split_usefulness (succ_set,
2762 sinfo->probs_ok[is],
2763 sinfo->all_prob);
2764
2765 if (sinfo->all_succs_n > 1)
2766 {
2767 /* Find EXPR'es that came from *all* successors and save them
2768 into expr_in_all_succ_branches. This set will be used later
2769 for calculating speculation attributes of EXPR'es. */
2770 if (is == 0)
2771 {
2772 expr_in_all_succ_branches = av_set_copy (succ_set);
2773
2774 /* Remember the first successor for later. */
2775 zero_succ = succ;
2776 }
2777 else
2778 {
2779 av_set_iterator i;
2780 expr_t expr;
2781
2782 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2783 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2784 av_set_iter_remove (&i);
2785 }
2786 }
2787
2788 /* Union the av_sets. Check liveness restrictions on target registers
2789 in special case of two successors. */
2790 if (sinfo->succs_ok_n == 2 && is == 1)
2791 {
2792 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2793 basic_block bb1 = BLOCK_FOR_INSN (succ);
2794
2795 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2796 av_set_union_and_live (&av1, &succ_set,
2797 BB_LV_SET (bb0),
2798 BB_LV_SET (bb1),
2799 insn);
2800 }
2801 else
2802 av_set_union_and_clear (&av1, &succ_set, insn);
2803 }
2804
2805 /* Check liveness restrictions via hard way when there are more than
2806 two successors. */
2807 if (sinfo->succs_ok_n > 2)
2808 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2809 {
2810 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2811 av_set_t av_succ = (is_ineligible_successor (succ, p)
2812 ? NULL
2813 : BB_AV_SET (succ_bb));
2814
2815 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2816 mark_unavailable_targets (av1, av_succ, BB_LV_SET (succ_bb));
2817 }
2818
2819 /* Finally, check liveness restrictions on paths leaving the region. */
2820 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2821 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2822 mark_unavailable_targets
2823 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2824
2825 if (sinfo->all_succs_n > 1)
2826 {
2827 av_set_iterator i;
2828 expr_t expr;
2829
2830 /* Increase the spec attribute of all EXPR'es that didn't come
2831 from all successors. */
2832 FOR_EACH_EXPR (expr, i, av1)
2833 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2834 EXPR_SPEC (expr)++;
2835
2836 av_set_clear (&expr_in_all_succ_branches);
2837
2838 /* Do not move conditional branches through other
2839 conditional branches. So, remove all conditional
2840 branches from av_set if current operator is a conditional
2841 branch. */
2842 av_set_substract_cond_branches (&av1);
2843 }
2844
2845 ilist_remove (&p);
2846 free_succs_info (sinfo);
2847
2848 if (sched_verbose >= 6)
2849 {
2850 sel_print ("av_succs (%d): ", INSN_UID (insn));
2851 dump_av_set (av1);
2852 sel_print ("\n");
2853 }
2854
2855 return av1;
2856 }
2857
2858 /* This function computes av_set for the FIRST_INSN by dragging valid
2859 av_set through all basic block insns either from the end of basic block
2860 (computed using compute_av_set_at_bb_end) or from the insn on which
2861 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2862 below the basic block and handling conditional branches.
2863 FIRST_INSN - the basic block head, P - path consisting of the insns
2864 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2865 and bb ends are added to the path), WS - current window size,
2866 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2867 static av_set_t
2868 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2869 bool need_copy_p)
2870 {
2871 insn_t cur_insn;
2872 int end_ws = ws;
2873 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2874 insn_t after_bb_end = NEXT_INSN (bb_end);
2875 insn_t last_insn;
2876 av_set_t av = NULL;
2877 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2878
2879 /* Return NULL if insn is not on the legitimate downward path. */
2880 if (is_ineligible_successor (first_insn, p))
2881 {
2882 if (sched_verbose >= 6)
2883 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2884
2885 return NULL;
2886 }
2887
2888 /* If insn already has valid av(insn) computed, just return it. */
2889 if (AV_SET_VALID_P (first_insn))
2890 {
2891 av_set_t av_set;
2892
2893 if (sel_bb_head_p (first_insn))
2894 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2895 else
2896 av_set = NULL;
2897
2898 if (sched_verbose >= 6)
2899 {
2900 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2901 dump_av_set (av_set);
2902 sel_print ("\n");
2903 }
2904
2905 return need_copy_p ? av_set_copy (av_set) : av_set;
2906 }
2907
2908 ilist_add (&p, first_insn);
2909
2910 /* As the result after this loop have completed, in LAST_INSN we'll
2911 have the insn which has valid av_set to start backward computation
2912 from: it either will be NULL because on it the window size was exceeded
2913 or other valid av_set as returned by compute_av_set for the last insn
2914 of the basic block. */
2915 for (last_insn = first_insn; last_insn != after_bb_end;
2916 last_insn = NEXT_INSN (last_insn))
2917 {
2918 /* We may encounter valid av_set not only on bb_head, but also on
2919 those insns on which previously MAX_WS was exceeded. */
2920 if (AV_SET_VALID_P (last_insn))
2921 {
2922 if (sched_verbose >= 6)
2923 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2924 break;
2925 }
2926
2927 /* The special case: the last insn of the BB may be an
2928 ineligible_successor due to its SEQ_NO that was set on
2929 it as a bookkeeping. */
2930 if (last_insn != first_insn
2931 && is_ineligible_successor (last_insn, p))
2932 {
2933 if (sched_verbose >= 6)
2934 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2935 break;
2936 }
2937
2938 if (DEBUG_INSN_P (last_insn))
2939 continue;
2940
2941 if (end_ws > max_ws)
2942 {
2943 /* We can reach max lookahead size at bb_header, so clean av_set
2944 first. */
2945 INSN_WS_LEVEL (last_insn) = global_level;
2946
2947 if (sched_verbose >= 6)
2948 sel_print ("Insn %d is beyond the software lookahead window size\n",
2949 INSN_UID (last_insn));
2950 break;
2951 }
2952
2953 end_ws++;
2954 }
2955
2956 /* Get the valid av_set into AV above the LAST_INSN to start backward
2957 computation from. It either will be empty av_set or av_set computed from
2958 the successors on the last insn of the current bb. */
2959 if (last_insn != after_bb_end)
2960 {
2961 av = NULL;
2962
2963 /* This is needed only to obtain av_sets that are identical to
2964 those computed by the old compute_av_set version. */
2965 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2966 av_set_add (&av, INSN_EXPR (last_insn));
2967 }
2968 else
2969 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2970 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2971
2972 /* Compute av_set in AV starting from below the LAST_INSN up to
2973 location above the FIRST_INSN. */
2974 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2975 cur_insn = PREV_INSN (cur_insn))
2976 if (!INSN_NOP_P (cur_insn))
2977 {
2978 expr_t expr;
2979
2980 moveup_set_expr (&av, cur_insn, false);
2981
2982 /* If the expression for CUR_INSN is already in the set,
2983 replace it by the new one. */
2984 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2985 if (expr != NULL)
2986 {
2987 clear_expr (expr);
2988 copy_expr (expr, INSN_EXPR (cur_insn));
2989 }
2990 else
2991 av_set_add (&av, INSN_EXPR (cur_insn));
2992 }
2993
2994 /* Clear stale bb_av_set. */
2995 if (sel_bb_head_p (first_insn))
2996 {
2997 av_set_clear (&BB_AV_SET (cur_bb));
2998 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2999 BB_AV_LEVEL (cur_bb) = global_level;
3000 }
3001
3002 if (sched_verbose >= 6)
3003 {
3004 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3005 dump_av_set (av);
3006 sel_print ("\n");
3007 }
3008
3009 ilist_remove (&p);
3010 return av;
3011 }
3012
3013 /* Compute av set before INSN.
3014 INSN - the current operation (actual rtx INSN)
3015 P - the current path, which is list of insns visited so far
3016 WS - software lookahead window size.
3017 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3018 if we want to save computed av_set in s_i_d, we should make a copy of it.
3019
3020 In the resulting set we will have only expressions that don't have delay
3021 stalls and nonsubstitutable dependences. */
3022 static av_set_t
3023 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3024 {
3025 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3026 }
3027
3028 /* Propagate a liveness set LV through INSN. */
3029 static void
3030 propagate_lv_set (regset lv, insn_t insn)
3031 {
3032 gcc_assert (INSN_P (insn));
3033
3034 if (INSN_NOP_P (insn))
3035 return;
3036
3037 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3038 }
3039
3040 /* Return livness set at the end of BB. */
3041 static regset
3042 compute_live_after_bb (basic_block bb)
3043 {
3044 edge e;
3045 edge_iterator ei;
3046 regset lv = get_clear_regset_from_pool ();
3047
3048 gcc_assert (!ignore_first);
3049
3050 FOR_EACH_EDGE (e, ei, bb->succs)
3051 if (sel_bb_empty_p (e->dest))
3052 {
3053 if (! BB_LV_SET_VALID_P (e->dest))
3054 {
3055 gcc_unreachable ();
3056 gcc_assert (BB_LV_SET (e->dest) == NULL);
3057 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3058 BB_LV_SET_VALID_P (e->dest) = true;
3059 }
3060 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3061 }
3062 else
3063 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3064
3065 return lv;
3066 }
3067
3068 /* Compute the set of all live registers at the point before INSN and save
3069 it at INSN if INSN is bb header. */
3070 regset
3071 compute_live (insn_t insn)
3072 {
3073 basic_block bb = BLOCK_FOR_INSN (insn);
3074 insn_t final, temp;
3075 regset lv;
3076
3077 /* Return the valid set if we're already on it. */
3078 if (!ignore_first)
3079 {
3080 regset src = NULL;
3081
3082 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3083 src = BB_LV_SET (bb);
3084 else
3085 {
3086 gcc_assert (in_current_region_p (bb));
3087 if (INSN_LIVE_VALID_P (insn))
3088 src = INSN_LIVE (insn);
3089 }
3090
3091 if (src)
3092 {
3093 lv = get_regset_from_pool ();
3094 COPY_REG_SET (lv, src);
3095
3096 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3097 {
3098 COPY_REG_SET (BB_LV_SET (bb), lv);
3099 BB_LV_SET_VALID_P (bb) = true;
3100 }
3101
3102 return_regset_to_pool (lv);
3103 return lv;
3104 }
3105 }
3106
3107 /* We've skipped the wrong lv_set. Don't skip the right one. */
3108 ignore_first = false;
3109 gcc_assert (in_current_region_p (bb));
3110
3111 /* Find a valid LV set in this block or below, if needed.
3112 Start searching from the next insn: either ignore_first is true, or
3113 INSN doesn't have a correct live set. */
3114 temp = NEXT_INSN (insn);
3115 final = NEXT_INSN (BB_END (bb));
3116 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3117 temp = NEXT_INSN (temp);
3118 if (temp == final)
3119 {
3120 lv = compute_live_after_bb (bb);
3121 temp = PREV_INSN (temp);
3122 }
3123 else
3124 {
3125 lv = get_regset_from_pool ();
3126 COPY_REG_SET (lv, INSN_LIVE (temp));
3127 }
3128
3129 /* Put correct lv sets on the insns which have bad sets. */
3130 final = PREV_INSN (insn);
3131 while (temp != final)
3132 {
3133 propagate_lv_set (lv, temp);
3134 COPY_REG_SET (INSN_LIVE (temp), lv);
3135 INSN_LIVE_VALID_P (temp) = true;
3136 temp = PREV_INSN (temp);
3137 }
3138
3139 /* Also put it in a BB. */
3140 if (sel_bb_head_p (insn))
3141 {
3142 basic_block bb = BLOCK_FOR_INSN (insn);
3143
3144 COPY_REG_SET (BB_LV_SET (bb), lv);
3145 BB_LV_SET_VALID_P (bb) = true;
3146 }
3147
3148 /* We return LV to the pool, but will not clear it there. Thus we can
3149 legimatelly use LV till the next use of regset_pool_get (). */
3150 return_regset_to_pool (lv);
3151 return lv;
3152 }
3153
3154 /* Update liveness sets for INSN. */
3155 static inline void
3156 update_liveness_on_insn (rtx_insn *insn)
3157 {
3158 ignore_first = true;
3159 compute_live (insn);
3160 }
3161
3162 /* Compute liveness below INSN and write it into REGS. */
3163 static inline void
3164 compute_live_below_insn (rtx_insn *insn, regset regs)
3165 {
3166 rtx_insn *succ;
3167 succ_iterator si;
3168
3169 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3170 IOR_REG_SET (regs, compute_live (succ));
3171 }
3172
3173 /* Update the data gathered in av and lv sets starting from INSN. */
3174 static void
3175 update_data_sets (rtx_insn *insn)
3176 {
3177 update_liveness_on_insn (insn);
3178 if (sel_bb_head_p (insn))
3179 {
3180 gcc_assert (AV_LEVEL (insn) != 0);
3181 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3182 compute_av_set (insn, NULL, 0, 0);
3183 }
3184 }
3185 \f
3186
3187 /* Helper for move_op () and find_used_regs ().
3188 Return speculation type for which a check should be created on the place
3189 of INSN. EXPR is one of the original ops we are searching for. */
3190 static ds_t
3191 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3192 {
3193 ds_t to_check_ds;
3194 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3195
3196 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3197
3198 if (targetm.sched.get_insn_checked_ds)
3199 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3200
3201 if (spec_info != NULL
3202 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3203 already_checked_ds |= BEGIN_CONTROL;
3204
3205 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3206
3207 to_check_ds &= ~already_checked_ds;
3208
3209 return to_check_ds;
3210 }
3211
3212 /* Find the set of registers that are unavailable for storing expres
3213 while moving ORIG_OPS up on the path starting from INSN due to
3214 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3215
3216 All the original operations found during the traversal are saved in the
3217 ORIGINAL_INSNS list.
3218
3219 REG_RENAME_P denotes the set of hardware registers that
3220 cannot be used with renaming due to the register class restrictions,
3221 mode restrictions and other (the register we'll choose should be
3222 compatible class with the original uses, shouldn't be in call_used_regs,
3223 should be HARD_REGNO_RENAME_OK etc).
3224
3225 Returns TRUE if we've found all original insns, FALSE otherwise.
3226
3227 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3228 to traverse the code motion paths. This helper function finds registers
3229 that are not available for storing expres while moving ORIG_OPS up on the
3230 path starting from INSN. A register considered as used on the moving path,
3231 if one of the following conditions is not satisfied:
3232
3233 (1) a register not set or read on any path from xi to an instance of
3234 the original operation,
3235 (2) not among the live registers of the point immediately following the
3236 first original operation on a given downward path, except for the
3237 original target register of the operation,
3238 (3) not live on the other path of any conditional branch that is passed
3239 by the operation, in case original operations are not present on
3240 both paths of the conditional branch.
3241
3242 All the original operations found during the traversal are saved in the
3243 ORIGINAL_INSNS list.
3244
3245 REG_RENAME_P->CROSSED_CALL_ABIS is true, if there is a call insn on the path
3246 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3247 to unavailable hard regs at the point original operation is found. */
3248
3249 static bool
3250 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3251 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3252 {
3253 def_list_iterator i;
3254 def_t def;
3255 int res;
3256 bool needs_spec_check_p = false;
3257 expr_t expr;
3258 av_set_iterator expr_iter;
3259 struct fur_static_params sparams;
3260 struct cmpd_local_params lparams;
3261
3262 /* We haven't visited any blocks yet. */
3263 bitmap_clear (code_motion_visited_blocks);
3264
3265 /* Init parameters for code_motion_path_driver. */
3266 sparams.crossed_call_abis = 0;
3267 sparams.original_insns = original_insns;
3268 sparams.used_regs = used_regs;
3269
3270 /* Set the appropriate hooks and data. */
3271 code_motion_path_driver_info = &fur_hooks;
3272
3273 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3274
3275 reg_rename_p->crossed_call_abis |= sparams.crossed_call_abis;
3276
3277 gcc_assert (res == 1);
3278 gcc_assert (original_insns && *original_insns);
3279
3280 /* ??? We calculate whether an expression needs a check when computing
3281 av sets. This information is not as precise as it could be due to
3282 merging this bit in merge_expr. We can do better in find_used_regs,
3283 but we want to avoid multiple traversals of the same code motion
3284 paths. */
3285 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3286 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3287
3288 /* Mark hardware regs in REG_RENAME_P that are not suitable
3289 for renaming expr in INSN due to hardware restrictions (register class,
3290 modes compatibility etc). */
3291 FOR_EACH_DEF (def, i, *original_insns)
3292 {
3293 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3294
3295 if (VINSN_SEPARABLE_P (vinsn))
3296 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3297
3298 /* Do not allow clobbering of ld.[sa] address in case some of the
3299 original operations need a check. */
3300 if (needs_spec_check_p)
3301 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3302 }
3303
3304 return true;
3305 }
3306 \f
3307
3308 /* Functions to choose the best insn from available ones. */
3309
3310 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3311 static int
3312 sel_target_adjust_priority (expr_t expr)
3313 {
3314 int priority = EXPR_PRIORITY (expr);
3315 int new_priority;
3316
3317 if (targetm.sched.adjust_priority)
3318 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3319 else
3320 new_priority = priority;
3321
3322 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3323 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3324
3325 if (sched_verbose >= 4)
3326 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3327 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3328 EXPR_PRIORITY_ADJ (expr), new_priority);
3329
3330 return new_priority;
3331 }
3332
3333 /* Rank two available exprs for schedule. Never return 0 here. */
3334 static int
3335 sel_rank_for_schedule (const void *x, const void *y)
3336 {
3337 expr_t tmp = *(const expr_t *) y;
3338 expr_t tmp2 = *(const expr_t *) x;
3339 insn_t tmp_insn, tmp2_insn;
3340 vinsn_t tmp_vinsn, tmp2_vinsn;
3341 int val;
3342
3343 tmp_vinsn = EXPR_VINSN (tmp);
3344 tmp2_vinsn = EXPR_VINSN (tmp2);
3345 tmp_insn = EXPR_INSN_RTX (tmp);
3346 tmp2_insn = EXPR_INSN_RTX (tmp2);
3347
3348 /* Schedule debug insns as early as possible. */
3349 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3350 return -1;
3351 else if (DEBUG_INSN_P (tmp2_insn))
3352 return 1;
3353
3354 /* Prefer SCHED_GROUP_P insns to any others. */
3355 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3356 {
3357 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3358 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3359
3360 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3361 cannot be cloned. */
3362 if (VINSN_UNIQUE_P (tmp2_vinsn))
3363 return 1;
3364 return -1;
3365 }
3366
3367 /* Discourage scheduling of speculative checks. */
3368 val = (sel_insn_is_speculation_check (tmp_insn)
3369 - sel_insn_is_speculation_check (tmp2_insn));
3370 if (val)
3371 return val;
3372
3373 /* Prefer not scheduled insn over scheduled one. */
3374 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3375 {
3376 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3377 if (val)
3378 return val;
3379 }
3380
3381 /* Prefer jump over non-jump instruction. */
3382 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3383 return -1;
3384 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3385 return 1;
3386
3387 /* Prefer an expr with non-zero usefulness. */
3388 int u1 = EXPR_USEFULNESS (tmp), u2 = EXPR_USEFULNESS (tmp2);
3389
3390 if (u1 == 0)
3391 {
3392 if (u2 == 0)
3393 u1 = u2 = 1;
3394 else
3395 return 1;
3396 }
3397 else if (u2 == 0)
3398 return -1;
3399
3400 /* Prefer an expr with greater priority. */
3401 val = (u2 * (EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2))
3402 - u1 * (EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp)));
3403 if (val)
3404 return val;
3405
3406 if (spec_info != NULL && spec_info->mask != 0)
3407 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3408 {
3409 ds_t ds1, ds2;
3410 dw_t dw1, dw2;
3411 int dw;
3412
3413 ds1 = EXPR_SPEC_DONE_DS (tmp);
3414 if (ds1)
3415 dw1 = ds_weak (ds1);
3416 else
3417 dw1 = NO_DEP_WEAK;
3418
3419 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3420 if (ds2)
3421 dw2 = ds_weak (ds2);
3422 else
3423 dw2 = NO_DEP_WEAK;
3424
3425 dw = dw2 - dw1;
3426 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3427 return dw;
3428 }
3429
3430 /* Prefer an old insn to a bookkeeping insn. */
3431 if (INSN_UID (tmp_insn) < first_emitted_uid
3432 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3433 return -1;
3434 if (INSN_UID (tmp_insn) >= first_emitted_uid
3435 && INSN_UID (tmp2_insn) < first_emitted_uid)
3436 return 1;
3437
3438 /* Prefer an insn with smaller UID, as a last resort.
3439 We can't safely use INSN_LUID as it is defined only for those insns
3440 that are in the stream. */
3441 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3442 }
3443
3444 /* Filter out expressions from av set pointed to by AV_PTR
3445 that are pipelined too many times. */
3446 static void
3447 process_pipelined_exprs (av_set_t *av_ptr)
3448 {
3449 expr_t expr;
3450 av_set_iterator si;
3451
3452 /* Don't pipeline already pipelined code as that would increase
3453 number of unnecessary register moves. */
3454 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3455 {
3456 if (EXPR_SCHED_TIMES (expr)
3457 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3458 av_set_iter_remove (&si);
3459 }
3460 }
3461
3462 /* Filter speculative insns from AV_PTR if we don't want them. */
3463 static void
3464 process_spec_exprs (av_set_t *av_ptr)
3465 {
3466 expr_t expr;
3467 av_set_iterator si;
3468
3469 if (spec_info == NULL)
3470 return;
3471
3472 /* Scan *AV_PTR to find out if we want to consider speculative
3473 instructions for scheduling. */
3474 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3475 {
3476 ds_t ds;
3477
3478 ds = EXPR_SPEC_DONE_DS (expr);
3479
3480 /* The probability of a success is too low - don't speculate. */
3481 if ((ds & SPECULATIVE)
3482 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3483 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3484 || (pipelining_p && false
3485 && (ds & DATA_SPEC)
3486 && (ds & CONTROL_SPEC))))
3487 {
3488 av_set_iter_remove (&si);
3489 continue;
3490 }
3491 }
3492 }
3493
3494 /* Search for any use-like insns in AV_PTR and decide on scheduling
3495 them. Return one when found, and NULL otherwise.
3496 Note that we check here whether a USE could be scheduled to avoid
3497 an infinite loop later. */
3498 static expr_t
3499 process_use_exprs (av_set_t *av_ptr)
3500 {
3501 expr_t expr;
3502 av_set_iterator si;
3503 bool uses_present_p = false;
3504 bool try_uses_p = true;
3505
3506 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3507 {
3508 /* This will also initialize INSN_CODE for later use. */
3509 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3510 {
3511 /* If we have a USE in *AV_PTR that was not scheduled yet,
3512 do so because it will do good only. */
3513 if (EXPR_SCHED_TIMES (expr) <= 0)
3514 {
3515 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3516 return expr;
3517
3518 av_set_iter_remove (&si);
3519 }
3520 else
3521 {
3522 gcc_assert (pipelining_p);
3523
3524 uses_present_p = true;
3525 }
3526 }
3527 else
3528 try_uses_p = false;
3529 }
3530
3531 if (uses_present_p)
3532 {
3533 /* If we don't want to schedule any USEs right now and we have some
3534 in *AV_PTR, remove them, else just return the first one found. */
3535 if (!try_uses_p)
3536 {
3537 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3538 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3539 av_set_iter_remove (&si);
3540 }
3541 else
3542 {
3543 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3544 {
3545 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3546
3547 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3548 return expr;
3549
3550 av_set_iter_remove (&si);
3551 }
3552 }
3553 }
3554
3555 return NULL;
3556 }
3557
3558 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3559 EXPR's history of changes. */
3560 static bool
3561 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3562 {
3563 vinsn_t vinsn, expr_vinsn;
3564 int n;
3565 unsigned i;
3566
3567 /* Start with checking expr itself and then proceed with all the old forms
3568 of expr taken from its history vector. */
3569 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3570 expr_vinsn;
3571 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3572 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3573 : NULL))
3574 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3575 if (VINSN_SEPARABLE_P (vinsn))
3576 {
3577 if (vinsn_equal_p (vinsn, expr_vinsn))
3578 return true;
3579 }
3580 else
3581 {
3582 /* For non-separable instructions, the blocking insn can have
3583 another pattern due to substitution, and we can't choose
3584 different register as in the above case. Check all registers
3585 being written instead. */
3586 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3587 VINSN_REG_SETS (expr_vinsn)))
3588 return true;
3589 }
3590
3591 return false;
3592 }
3593
3594 /* Return true if either of expressions from ORIG_OPS can be blocked
3595 by previously created bookkeeping code. STATIC_PARAMS points to static
3596 parameters of move_op. */
3597 static bool
3598 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3599 {
3600 expr_t expr;
3601 av_set_iterator iter;
3602 moveop_static_params_p sparams;
3603
3604 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3605 created while scheduling on another fence. */
3606 FOR_EACH_EXPR (expr, iter, orig_ops)
3607 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3608 return true;
3609
3610 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3611 sparams = (moveop_static_params_p) static_params;
3612
3613 /* Expressions can be also blocked by bookkeeping created during current
3614 move_op. */
3615 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3616 FOR_EACH_EXPR (expr, iter, orig_ops)
3617 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3618 return true;
3619
3620 /* Expressions in ORIG_OPS may have wrong destination register due to
3621 renaming. Check with the right register instead. */
3622 if (sparams->dest && REG_P (sparams->dest))
3623 {
3624 rtx reg = sparams->dest;
3625 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3626
3627 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3628 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3629 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3630 return true;
3631 }
3632
3633 return false;
3634 }
3635
3636 /* Clear VINSN_VEC and detach vinsns. */
3637 static void
3638 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3639 {
3640 unsigned len = vinsn_vec->length ();
3641 if (len > 0)
3642 {
3643 vinsn_t vinsn;
3644 int n;
3645
3646 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3647 vinsn_detach (vinsn);
3648 vinsn_vec->block_remove (0, len);
3649 }
3650 }
3651
3652 /* Add the vinsn of EXPR to the VINSN_VEC. */
3653 static void
3654 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3655 {
3656 vinsn_attach (EXPR_VINSN (expr));
3657 vinsn_vec->safe_push (EXPR_VINSN (expr));
3658 }
3659
3660 /* Free the vector representing blocked expressions. */
3661 static void
3662 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3663 {
3664 vinsn_vec.release ();
3665 }
3666
3667 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3668
3669 void sel_add_to_insn_priority (rtx insn, int amount)
3670 {
3671 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3672
3673 if (sched_verbose >= 2)
3674 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3675 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3676 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3677 }
3678
3679 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3680 true if there is something to schedule. BNDS and FENCE are current
3681 boundaries and fence, respectively. If we need to stall for some cycles
3682 before an expr from AV would become available, write this number to
3683 *PNEED_STALL. */
3684 static bool
3685 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3686 int *pneed_stall)
3687 {
3688 av_set_iterator si;
3689 expr_t expr;
3690 int sched_next_worked = 0, stalled, n;
3691 static int av_max_prio, est_ticks_till_branch;
3692 int min_need_stall = -1;
3693 deps_t dc = BND_DC (BLIST_BND (bnds));
3694
3695 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3696 already scheduled. */
3697 if (av == NULL)
3698 return false;
3699
3700 /* Empty vector from the previous stuff. */
3701 if (vec_av_set.length () > 0)
3702 vec_av_set.block_remove (0, vec_av_set.length ());
3703
3704 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3705 for each insn. */
3706 gcc_assert (vec_av_set.is_empty ());
3707 FOR_EACH_EXPR (expr, si, av)
3708 {
3709 vec_av_set.safe_push (expr);
3710
3711 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3712
3713 /* Adjust priority using target backend hook. */
3714 sel_target_adjust_priority (expr);
3715 }
3716
3717 /* Sort the vector. */
3718 vec_av_set.qsort (sel_rank_for_schedule);
3719
3720 /* We record maximal priority of insns in av set for current instruction
3721 group. */
3722 if (FENCE_STARTS_CYCLE_P (fence))
3723 av_max_prio = est_ticks_till_branch = INT_MIN;
3724
3725 /* Filter out inappropriate expressions. Loop's direction is reversed to
3726 visit "best" instructions first. We assume that vec::unordered_remove
3727 moves last element in place of one being deleted. */
3728 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3729 {
3730 expr_t expr = vec_av_set[n];
3731 insn_t insn = EXPR_INSN_RTX (expr);
3732 signed char target_available;
3733 bool is_orig_reg_p = true;
3734 int need_cycles, new_prio;
3735 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3736
3737 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3738 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3739 {
3740 vec_av_set.unordered_remove (n);
3741 continue;
3742 }
3743
3744 /* Set number of sched_next insns (just in case there
3745 could be several). */
3746 if (FENCE_SCHED_NEXT (fence))
3747 sched_next_worked++;
3748
3749 /* Check all liveness requirements and try renaming.
3750 FIXME: try to minimize calls to this. */
3751 target_available = EXPR_TARGET_AVAILABLE (expr);
3752
3753 /* If insn was already scheduled on the current fence,
3754 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3755 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3756 && !fence_insn_p)
3757 target_available = -1;
3758
3759 /* If the availability of the EXPR is invalidated by the insertion of
3760 bookkeeping earlier, make sure that we won't choose this expr for
3761 scheduling if it's not separable, and if it is separable, then
3762 we have to recompute the set of available registers for it. */
3763 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3764 {
3765 vec_av_set.unordered_remove (n);
3766 if (sched_verbose >= 4)
3767 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3768 INSN_UID (insn));
3769 continue;
3770 }
3771
3772 if (target_available == true)
3773 {
3774 /* Do nothing -- we can use an existing register. */
3775 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3776 }
3777 else if (/* Non-separable instruction will never
3778 get another register. */
3779 (target_available == false
3780 && !EXPR_SEPARABLE_P (expr))
3781 /* Don't try to find a register for low-priority expression. */
3782 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3783 /* ??? FIXME: Don't try to rename data speculation. */
3784 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3785 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3786 {
3787 vec_av_set.unordered_remove (n);
3788 if (sched_verbose >= 4)
3789 sel_print ("Expr %d has no suitable target register\n",
3790 INSN_UID (insn));
3791
3792 /* A fence insn should not get here. */
3793 gcc_assert (!fence_insn_p);
3794 continue;
3795 }
3796
3797 /* At this point a fence insn should always be available. */
3798 gcc_assert (!fence_insn_p
3799 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3800
3801 /* Filter expressions that need to be renamed or speculated when
3802 pipelining, because compensating register copies or speculation
3803 checks are likely to be placed near the beginning of the loop,
3804 causing a stall. */
3805 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3806 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3807 {
3808 /* Estimation of number of cycles until loop branch for
3809 renaming/speculation to be successful. */
3810 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3811
3812 if ((int) current_loop_nest->ninsns < 9)
3813 {
3814 vec_av_set.unordered_remove (n);
3815 if (sched_verbose >= 4)
3816 sel_print ("Pipelining expr %d will likely cause stall\n",
3817 INSN_UID (insn));
3818 continue;
3819 }
3820
3821 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3822 < need_n_ticks_till_branch * issue_rate / 2
3823 && est_ticks_till_branch < need_n_ticks_till_branch)
3824 {
3825 vec_av_set.unordered_remove (n);
3826 if (sched_verbose >= 4)
3827 sel_print ("Pipelining expr %d will likely cause stall\n",
3828 INSN_UID (insn));
3829 continue;
3830 }
3831 }
3832
3833 /* We want to schedule speculation checks as late as possible. Discard
3834 them from av set if there are instructions with higher priority. */
3835 if (sel_insn_is_speculation_check (insn)
3836 && EXPR_PRIORITY (expr) < av_max_prio)
3837 {
3838 stalled++;
3839 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3840 vec_av_set.unordered_remove (n);
3841 if (sched_verbose >= 4)
3842 sel_print ("Delaying speculation check %d until its first use\n",
3843 INSN_UID (insn));
3844 continue;
3845 }
3846
3847 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3848 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3849 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3850
3851 /* Don't allow any insns whose data is not yet ready.
3852 Check first whether we've already tried them and failed. */
3853 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3854 {
3855 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3856 - FENCE_CYCLE (fence));
3857 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3858 est_ticks_till_branch = MAX (est_ticks_till_branch,
3859 EXPR_PRIORITY (expr) + need_cycles);
3860
3861 if (need_cycles > 0)
3862 {
3863 stalled++;
3864 min_need_stall = (min_need_stall < 0
3865 ? need_cycles
3866 : MIN (min_need_stall, need_cycles));
3867 vec_av_set.unordered_remove (n);
3868
3869 if (sched_verbose >= 4)
3870 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3871 INSN_UID (insn),
3872 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3873 continue;
3874 }
3875 }
3876
3877 /* Now resort to dependence analysis to find whether EXPR might be
3878 stalled due to dependencies from FENCE's context. */
3879 need_cycles = tick_check_p (expr, dc, fence);
3880 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3881
3882 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3883 est_ticks_till_branch = MAX (est_ticks_till_branch,
3884 new_prio);
3885
3886 if (need_cycles > 0)
3887 {
3888 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3889 {
3890 int new_size = INSN_UID (insn) * 3 / 2;
3891
3892 FENCE_READY_TICKS (fence)
3893 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3894 new_size, FENCE_READY_TICKS_SIZE (fence),
3895 sizeof (int));
3896 }
3897 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3898 = FENCE_CYCLE (fence) + need_cycles;
3899
3900 stalled++;
3901 min_need_stall = (min_need_stall < 0
3902 ? need_cycles
3903 : MIN (min_need_stall, need_cycles));
3904
3905 vec_av_set.unordered_remove (n);
3906
3907 if (sched_verbose >= 4)
3908 sel_print ("Expr %d is not ready yet until cycle %d\n",
3909 INSN_UID (insn),
3910 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3911 continue;
3912 }
3913
3914 if (sched_verbose >= 4)
3915 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3916 min_need_stall = 0;
3917 }
3918
3919 /* Clear SCHED_NEXT. */
3920 if (FENCE_SCHED_NEXT (fence))
3921 {
3922 gcc_assert (sched_next_worked == 1);
3923 FENCE_SCHED_NEXT (fence) = NULL;
3924 }
3925
3926 /* No need to stall if this variable was not initialized. */
3927 if (min_need_stall < 0)
3928 min_need_stall = 0;
3929
3930 if (vec_av_set.is_empty ())
3931 {
3932 /* We need to set *pneed_stall here, because later we skip this code
3933 when ready list is empty. */
3934 *pneed_stall = min_need_stall;
3935 return false;
3936 }
3937 else
3938 gcc_assert (min_need_stall == 0);
3939
3940 /* Sort the vector. */
3941 vec_av_set.qsort (sel_rank_for_schedule);
3942
3943 if (sched_verbose >= 4)
3944 {
3945 sel_print ("Total ready exprs: %d, stalled: %d\n",
3946 vec_av_set.length (), stalled);
3947 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3948 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3949 dump_expr (expr);
3950 sel_print ("\n");
3951 }
3952
3953 *pneed_stall = 0;
3954 return true;
3955 }
3956
3957 /* Convert a vectored and sorted av set to the ready list that
3958 the rest of the backend wants to see. */
3959 static void
3960 convert_vec_av_set_to_ready (void)
3961 {
3962 int n;
3963 expr_t expr;
3964
3965 /* Allocate and fill the ready list from the sorted vector. */
3966 ready.n_ready = vec_av_set.length ();
3967 ready.first = ready.n_ready - 1;
3968
3969 gcc_assert (ready.n_ready > 0);
3970
3971 if (ready.n_ready > max_issue_size)
3972 {
3973 max_issue_size = ready.n_ready;
3974 sched_extend_ready_list (ready.n_ready);
3975 }
3976
3977 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3978 {
3979 vinsn_t vi = EXPR_VINSN (expr);
3980 insn_t insn = VINSN_INSN_RTX (vi);
3981
3982 ready_try[n] = 0;
3983 ready.vec[n] = insn;
3984 }
3985 }
3986
3987 /* Initialize ready list from *AV_PTR for the max_issue () call.
3988 If any unrecognizable insn found in *AV_PTR, return it (and skip
3989 max_issue). BND and FENCE are current boundary and fence,
3990 respectively. If we need to stall for some cycles before an expr
3991 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3992 static expr_t
3993 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3994 int *pneed_stall)
3995 {
3996 expr_t expr;
3997
3998 /* We do not support multiple boundaries per fence. */
3999 gcc_assert (BLIST_NEXT (bnds) == NULL);
4000
4001 /* Process expressions required special handling, i.e. pipelined,
4002 speculative and recog() < 0 expressions first. */
4003 process_pipelined_exprs (av_ptr);
4004 process_spec_exprs (av_ptr);
4005
4006 /* A USE could be scheduled immediately. */
4007 expr = process_use_exprs (av_ptr);
4008 if (expr)
4009 {
4010 *pneed_stall = 0;
4011 return expr;
4012 }
4013
4014 /* Turn the av set to a vector for sorting. */
4015 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4016 {
4017 ready.n_ready = 0;
4018 return NULL;
4019 }
4020
4021 /* Build the final ready list. */
4022 convert_vec_av_set_to_ready ();
4023 return NULL;
4024 }
4025
4026 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4027 static bool
4028 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4029 {
4030 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4031 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4032 : FENCE_CYCLE (fence) - 1;
4033 bool res = false;
4034 int sort_p = 0;
4035
4036 if (!targetm.sched.dfa_new_cycle)
4037 return false;
4038
4039 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4040
4041 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4042 insn, last_scheduled_cycle,
4043 FENCE_CYCLE (fence), &sort_p))
4044 {
4045 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4046 advance_one_cycle (fence);
4047 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4048 res = true;
4049 }
4050
4051 return res;
4052 }
4053
4054 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4055 we can issue. FENCE is the current fence. */
4056 static int
4057 invoke_reorder_hooks (fence_t fence)
4058 {
4059 int issue_more;
4060 bool ran_hook = false;
4061
4062 /* Call the reorder hook at the beginning of the cycle, and call
4063 the reorder2 hook in the middle of the cycle. */
4064 if (FENCE_ISSUED_INSNS (fence) == 0)
4065 {
4066 if (targetm.sched.reorder
4067 && !SCHED_GROUP_P (ready_element (&ready, 0))
4068 && ready.n_ready > 1)
4069 {
4070 /* Don't give reorder the most prioritized insn as it can break
4071 pipelining. */
4072 if (pipelining_p)
4073 --ready.n_ready;
4074
4075 issue_more
4076 = targetm.sched.reorder (sched_dump, sched_verbose,
4077 ready_lastpos (&ready),
4078 &ready.n_ready, FENCE_CYCLE (fence));
4079
4080 if (pipelining_p)
4081 ++ready.n_ready;
4082
4083 ran_hook = true;
4084 }
4085 else
4086 /* Initialize can_issue_more for variable_issue. */
4087 issue_more = issue_rate;
4088 }
4089 else if (targetm.sched.reorder2
4090 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4091 {
4092 if (ready.n_ready == 1)
4093 issue_more =
4094 targetm.sched.reorder2 (sched_dump, sched_verbose,
4095 ready_lastpos (&ready),
4096 &ready.n_ready, FENCE_CYCLE (fence));
4097 else
4098 {
4099 if (pipelining_p)
4100 --ready.n_ready;
4101
4102 issue_more =
4103 targetm.sched.reorder2 (sched_dump, sched_verbose,
4104 ready.n_ready
4105 ? ready_lastpos (&ready) : NULL,
4106 &ready.n_ready, FENCE_CYCLE (fence));
4107
4108 if (pipelining_p)
4109 ++ready.n_ready;
4110 }
4111
4112 ran_hook = true;
4113 }
4114 else
4115 issue_more = FENCE_ISSUE_MORE (fence);
4116
4117 /* Ensure that ready list and vec_av_set are in line with each other,
4118 i.e. vec_av_set[i] == ready_element (&ready, i). */
4119 if (issue_more && ran_hook)
4120 {
4121 int i, j, n;
4122 rtx_insn **arr = ready.vec;
4123 expr_t *vec = vec_av_set.address ();
4124
4125 for (i = 0, n = ready.n_ready; i < n; i++)
4126 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4127 {
4128 for (j = i; j < n; j++)
4129 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4130 break;
4131 gcc_assert (j < n);
4132
4133 std::swap (vec[i], vec[j]);
4134 }
4135 }
4136
4137 return issue_more;
4138 }
4139
4140 /* Return an EXPR corresponding to INDEX element of ready list, if
4141 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4142 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4143 ready.vec otherwise. */
4144 static inline expr_t
4145 find_expr_for_ready (int index, bool follow_ready_element)
4146 {
4147 expr_t expr;
4148 int real_index;
4149
4150 real_index = follow_ready_element ? ready.first - index : index;
4151
4152 expr = vec_av_set[real_index];
4153 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4154
4155 return expr;
4156 }
4157
4158 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4159 of such insns found. */
4160 static int
4161 invoke_dfa_lookahead_guard (void)
4162 {
4163 int i, n;
4164 bool have_hook
4165 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4166
4167 if (sched_verbose >= 2)
4168 sel_print ("ready after reorder: ");
4169
4170 for (i = 0, n = 0; i < ready.n_ready; i++)
4171 {
4172 expr_t expr;
4173 insn_t insn;
4174 int r;
4175
4176 /* In this loop insn is Ith element of the ready list given by
4177 ready_element, not Ith element of ready.vec. */
4178 insn = ready_element (&ready, i);
4179
4180 if (! have_hook || i == 0)
4181 r = 0;
4182 else
4183 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4184
4185 gcc_assert (INSN_CODE (insn) >= 0);
4186
4187 /* Only insns with ready_try = 0 can get here
4188 from fill_ready_list. */
4189 gcc_assert (ready_try [i] == 0);
4190 ready_try[i] = r;
4191 if (!r)
4192 n++;
4193
4194 expr = find_expr_for_ready (i, true);
4195
4196 if (sched_verbose >= 2)
4197 {
4198 dump_vinsn (EXPR_VINSN (expr));
4199 sel_print (":%d; ", ready_try[i]);
4200 }
4201 }
4202
4203 if (sched_verbose >= 2)
4204 sel_print ("\n");
4205 return n;
4206 }
4207
4208 /* Calculate the number of privileged insns and return it. */
4209 static int
4210 calculate_privileged_insns (void)
4211 {
4212 expr_t cur_expr, min_spec_expr = NULL;
4213 int privileged_n = 0, i;
4214
4215 for (i = 0; i < ready.n_ready; i++)
4216 {
4217 if (ready_try[i])
4218 continue;
4219
4220 if (! min_spec_expr)
4221 min_spec_expr = find_expr_for_ready (i, true);
4222
4223 cur_expr = find_expr_for_ready (i, true);
4224
4225 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4226 break;
4227
4228 ++privileged_n;
4229 }
4230
4231 if (i == ready.n_ready)
4232 privileged_n = 0;
4233
4234 if (sched_verbose >= 2)
4235 sel_print ("privileged_n: %d insns with SPEC %d\n",
4236 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4237 return privileged_n;
4238 }
4239
4240 /* Call the rest of the hooks after the choice was made. Return
4241 the number of insns that still can be issued given that the current
4242 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4243 and the insn chosen for scheduling, respectively. */
4244 static int
4245 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4246 {
4247 gcc_assert (INSN_P (best_insn));
4248
4249 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4250 sel_dfa_new_cycle (best_insn, fence);
4251
4252 if (targetm.sched.variable_issue)
4253 {
4254 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4255 issue_more =
4256 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4257 issue_more);
4258 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4259 }
4260 else if (!DEBUG_INSN_P (best_insn)
4261 && GET_CODE (PATTERN (best_insn)) != USE
4262 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4263 issue_more--;
4264
4265 return issue_more;
4266 }
4267
4268 /* Estimate the cost of issuing INSN on DFA state STATE. */
4269 static int
4270 estimate_insn_cost (rtx_insn *insn, state_t state)
4271 {
4272 static state_t temp = NULL;
4273 int cost;
4274
4275 if (!temp)
4276 temp = xmalloc (dfa_state_size);
4277
4278 memcpy (temp, state, dfa_state_size);
4279 cost = state_transition (temp, insn);
4280
4281 if (cost < 0)
4282 return 0;
4283 else if (cost == 0)
4284 return 1;
4285 return cost;
4286 }
4287
4288 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4289 This function properly handles ASMs, USEs etc. */
4290 static int
4291 get_expr_cost (expr_t expr, fence_t fence)
4292 {
4293 rtx_insn *insn = EXPR_INSN_RTX (expr);
4294
4295 if (recog_memoized (insn) < 0)
4296 {
4297 if (!FENCE_STARTS_CYCLE_P (fence)
4298 && INSN_ASM_P (insn))
4299 /* This is asm insn which is tryed to be issued on the
4300 cycle not first. Issue it on the next cycle. */
4301 return 1;
4302 else
4303 /* A USE insn, or something else we don't need to
4304 understand. We can't pass these directly to
4305 state_transition because it will trigger a
4306 fatal error for unrecognizable insns. */
4307 return 0;
4308 }
4309 else
4310 return estimate_insn_cost (insn, FENCE_STATE (fence));
4311 }
4312
4313 /* Find the best insn for scheduling, either via max_issue or just take
4314 the most prioritized available. */
4315 static int
4316 choose_best_insn (fence_t fence, int privileged_n, int *index)
4317 {
4318 int can_issue = 0;
4319
4320 if (dfa_lookahead > 0)
4321 {
4322 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4323 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4324 can_issue = max_issue (&ready, privileged_n,
4325 FENCE_STATE (fence), true, index);
4326 if (sched_verbose >= 2)
4327 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4328 can_issue, FENCE_ISSUED_INSNS (fence));
4329 }
4330 else
4331 {
4332 /* We can't use max_issue; just return the first available element. */
4333 int i;
4334
4335 for (i = 0; i < ready.n_ready; i++)
4336 {
4337 expr_t expr = find_expr_for_ready (i, true);
4338
4339 if (get_expr_cost (expr, fence) < 1)
4340 {
4341 can_issue = can_issue_more;
4342 *index = i;
4343
4344 if (sched_verbose >= 2)
4345 sel_print ("using %dth insn from the ready list\n", i + 1);
4346
4347 break;
4348 }
4349 }
4350
4351 if (i == ready.n_ready)
4352 {
4353 can_issue = 0;
4354 *index = -1;
4355 }
4356 }
4357
4358 return can_issue;
4359 }
4360
4361 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4362 BNDS and FENCE are current boundaries and scheduling fence respectively.
4363 Return the expr found and NULL if nothing can be issued atm.
4364 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4365 static expr_t
4366 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4367 int *pneed_stall)
4368 {
4369 expr_t best;
4370
4371 /* Choose the best insn for scheduling via:
4372 1) sorting the ready list based on priority;
4373 2) calling the reorder hook;
4374 3) calling max_issue. */
4375 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4376 if (best == NULL && ready.n_ready > 0)
4377 {
4378 int privileged_n, index;
4379
4380 can_issue_more = invoke_reorder_hooks (fence);
4381 if (can_issue_more > 0)
4382 {
4383 /* Try choosing the best insn until we find one that is could be
4384 scheduled due to liveness restrictions on its destination register.
4385 In the future, we'd like to choose once and then just probe insns
4386 in the order of their priority. */
4387 invoke_dfa_lookahead_guard ();
4388 privileged_n = calculate_privileged_insns ();
4389 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4390 if (can_issue_more)
4391 best = find_expr_for_ready (index, true);
4392 }
4393 /* We had some available insns, so if we can't issue them,
4394 we have a stall. */
4395 if (can_issue_more == 0)
4396 {
4397 best = NULL;
4398 *pneed_stall = 1;
4399 }
4400 }
4401
4402 if (best != NULL)
4403 {
4404 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4405 can_issue_more);
4406 if (targetm.sched.variable_issue
4407 && can_issue_more == 0)
4408 *pneed_stall = 1;
4409 }
4410
4411 if (sched_verbose >= 2)
4412 {
4413 if (best != NULL)
4414 {
4415 sel_print ("Best expression (vliw form): ");
4416 dump_expr (best);
4417 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4418 }
4419 else
4420 sel_print ("No best expr found!\n");
4421 }
4422
4423 return best;
4424 }
4425 \f
4426
4427 /* Functions that implement the core of the scheduler. */
4428
4429
4430 /* Emit an instruction from EXPR with SEQNO and VINSN after
4431 PLACE_TO_INSERT. */
4432 static insn_t
4433 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4434 insn_t place_to_insert)
4435 {
4436 /* This assert fails when we have identical instructions
4437 one of which dominates the other. In this case move_op ()
4438 finds the first instruction and doesn't search for second one.
4439 The solution would be to compute av_set after the first found
4440 insn and, if insn present in that set, continue searching.
4441 For now we workaround this issue in move_op. */
4442 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4443
4444 if (EXPR_WAS_RENAMED (expr))
4445 {
4446 unsigned regno = expr_dest_regno (expr);
4447
4448 if (HARD_REGISTER_NUM_P (regno))
4449 {
4450 df_set_regs_ever_live (regno, true);
4451 reg_rename_tick[regno] = ++reg_rename_this_tick;
4452 }
4453 }
4454
4455 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4456 place_to_insert);
4457 }
4458
4459 /* Return TRUE if BB can hold bookkeeping code. */
4460 static bool
4461 block_valid_for_bookkeeping_p (basic_block bb)
4462 {
4463 insn_t bb_end = BB_END (bb);
4464
4465 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4466 return false;
4467
4468 if (INSN_P (bb_end))
4469 {
4470 if (INSN_SCHED_TIMES (bb_end) > 0)
4471 return false;
4472 }
4473 else
4474 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4475
4476 return true;
4477 }
4478
4479 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4480 into E2->dest, except from E1->src (there may be a sequence of empty basic
4481 blocks between E1->src and E2->dest). Return found block, or NULL if new
4482 one must be created. If LAX holds, don't assume there is a simple path
4483 from E1->src to E2->dest. */
4484 static basic_block
4485 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4486 {
4487 basic_block candidate_block = NULL;
4488 edge e;
4489
4490 /* Loop over edges from E1 to E2, inclusive. */
4491 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4492 EDGE_SUCC (e->dest, 0))
4493 {
4494 if (EDGE_COUNT (e->dest->preds) == 2)
4495 {
4496 if (candidate_block == NULL)
4497 candidate_block = (EDGE_PRED (e->dest, 0) == e
4498 ? EDGE_PRED (e->dest, 1)->src
4499 : EDGE_PRED (e->dest, 0)->src);
4500 else
4501 /* Found additional edge leading to path from e1 to e2
4502 from aside. */
4503 return NULL;
4504 }
4505 else if (EDGE_COUNT (e->dest->preds) > 2)
4506 /* Several edges leading to path from e1 to e2 from aside. */
4507 return NULL;
4508
4509 if (e == e2)
4510 return ((!lax || candidate_block)
4511 && block_valid_for_bookkeeping_p (candidate_block)
4512 ? candidate_block
4513 : NULL);
4514
4515 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4516 return NULL;
4517 }
4518
4519 if (lax)
4520 return NULL;
4521
4522 gcc_unreachable ();
4523 }
4524
4525 /* Create new basic block for bookkeeping code for path(s) incoming into
4526 E2->dest, except from E1->src. Return created block. */
4527 static basic_block
4528 create_block_for_bookkeeping (edge e1, edge e2)
4529 {
4530 basic_block new_bb, bb = e2->dest;
4531
4532 /* Check that we don't spoil the loop structure. */
4533 if (current_loop_nest)
4534 {
4535 basic_block latch = current_loop_nest->latch;
4536
4537 /* We do not split header. */
4538 gcc_assert (e2->dest != current_loop_nest->header);
4539
4540 /* We do not redirect the only edge to the latch block. */
4541 gcc_assert (e1->dest != latch
4542 || !single_pred_p (latch)
4543 || e1 != single_pred_edge (latch));
4544 }
4545
4546 /* Split BB to insert BOOK_INSN there. */
4547 new_bb = sched_split_block (bb, NULL);
4548
4549 /* Move note_list from the upper bb. */
4550 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4551 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4552 BB_NOTE_LIST (bb) = NULL;
4553
4554 gcc_assert (e2->dest == bb);
4555
4556 /* Skip block for bookkeeping copy when leaving E1->src. */
4557 if (e1->flags & EDGE_FALLTHRU)
4558 sel_redirect_edge_and_branch_force (e1, new_bb);
4559 else
4560 sel_redirect_edge_and_branch (e1, new_bb);
4561
4562 gcc_assert (e1->dest == new_bb);
4563 gcc_assert (sel_bb_empty_p (bb));
4564
4565 /* To keep basic block numbers in sync between debug and non-debug
4566 compilations, we have to rotate blocks here. Consider that we
4567 started from (a,b)->d, (c,d)->e, and d contained only debug
4568 insns. It would have been removed before if the debug insns
4569 weren't there, so we'd have split e rather than d. So what we do
4570 now is to swap the block numbers of new_bb and
4571 single_succ(new_bb) == e, so that the insns that were in e before
4572 get the new block number. */
4573
4574 if (MAY_HAVE_DEBUG_INSNS)
4575 {
4576 basic_block succ;
4577 insn_t insn = sel_bb_head (new_bb);
4578 insn_t last;
4579
4580 if (DEBUG_INSN_P (insn)
4581 && single_succ_p (new_bb)
4582 && (succ = single_succ (new_bb))
4583 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4584 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4585 {
4586 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4587 insn = NEXT_INSN (insn);
4588
4589 if (insn == last)
4590 {
4591 sel_global_bb_info_def gbi;
4592 sel_region_bb_info_def rbi;
4593
4594 if (sched_verbose >= 2)
4595 sel_print ("Swapping block ids %i and %i\n",
4596 new_bb->index, succ->index);
4597
4598 std::swap (new_bb->index, succ->index);
4599
4600 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4601 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4602
4603 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4604 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4605 sizeof (gbi));
4606 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4607
4608 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4609 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4610 sizeof (rbi));
4611 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4612
4613 std::swap (BLOCK_TO_BB (new_bb->index),
4614 BLOCK_TO_BB (succ->index));
4615
4616 std::swap (CONTAINING_RGN (new_bb->index),
4617 CONTAINING_RGN (succ->index));
4618
4619 for (int i = 0; i < current_nr_blocks; i++)
4620 if (BB_TO_BLOCK (i) == succ->index)
4621 BB_TO_BLOCK (i) = new_bb->index;
4622 else if (BB_TO_BLOCK (i) == new_bb->index)
4623 BB_TO_BLOCK (i) = succ->index;
4624
4625 FOR_BB_INSNS (new_bb, insn)
4626 if (INSN_P (insn))
4627 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4628
4629 FOR_BB_INSNS (succ, insn)
4630 if (INSN_P (insn))
4631 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4632
4633 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4634 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4635
4636 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4637 && LABEL_P (BB_HEAD (succ)));
4638
4639 if (sched_verbose >= 4)
4640 sel_print ("Swapping code labels %i and %i\n",
4641 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4642 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4643
4644 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4645 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4646 }
4647 }
4648 }
4649
4650 return bb;
4651 }
4652
4653 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4654 into E2->dest, except from E1->src. If the returned insn immediately
4655 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4656 static insn_t
4657 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4658 {
4659 insn_t place_to_insert;
4660 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4661 create new basic block, but insert bookkeeping there. */
4662 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4663
4664 if (book_block)
4665 {
4666 place_to_insert = BB_END (book_block);
4667
4668 /* Don't use a block containing only debug insns for
4669 bookkeeping, this causes scheduling differences between debug
4670 and non-debug compilations, for the block would have been
4671 removed already. */
4672 if (DEBUG_INSN_P (place_to_insert))
4673 {
4674 rtx_insn *insn = sel_bb_head (book_block);
4675
4676 while (insn != place_to_insert &&
4677 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4678 insn = NEXT_INSN (insn);
4679
4680 if (insn == place_to_insert)
4681 book_block = NULL;
4682 }
4683 }
4684
4685 if (!book_block)
4686 {
4687 book_block = create_block_for_bookkeeping (e1, e2);
4688 place_to_insert = BB_END (book_block);
4689 if (sched_verbose >= 9)
4690 sel_print ("New block is %i, split from bookkeeping block %i\n",
4691 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4692 }
4693 else
4694 {
4695 if (sched_verbose >= 9)
4696 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4697 }
4698
4699 *fence_to_rewind = NULL;
4700 /* If basic block ends with a jump, insert bookkeeping code right before it.
4701 Notice if we are crossing a fence when taking PREV_INSN. */
4702 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4703 {
4704 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4705 place_to_insert = PREV_INSN (place_to_insert);
4706 }
4707
4708 return place_to_insert;
4709 }
4710
4711 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4712 for JOIN_POINT. */
4713 static int
4714 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4715 {
4716 int seqno;
4717
4718 /* Check if we are about to insert bookkeeping copy before a jump, and use
4719 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4720 rtx_insn *next = NEXT_INSN (place_to_insert);
4721 if (INSN_P (next)
4722 && JUMP_P (next)
4723 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4724 {
4725 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4726 seqno = INSN_SEQNO (next);
4727 }
4728 else if (INSN_SEQNO (join_point) > 0)
4729 seqno = INSN_SEQNO (join_point);
4730 else
4731 {
4732 seqno = get_seqno_by_preds (place_to_insert);
4733
4734 /* Sometimes the fences can move in such a way that there will be
4735 no instructions with positive seqno around this bookkeeping.
4736 This means that there will be no way to get to it by a regular
4737 fence movement. Never mind because we pick up such pieces for
4738 rescheduling anyways, so any positive value will do for now. */
4739 if (seqno < 0)
4740 {
4741 gcc_assert (pipelining_p);
4742 seqno = 1;
4743 }
4744 }
4745
4746 gcc_assert (seqno > 0);
4747 return seqno;
4748 }
4749
4750 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4751 NEW_SEQNO to it. Return created insn. */
4752 static insn_t
4753 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4754 {
4755 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4756
4757 vinsn_t new_vinsn
4758 = create_vinsn_from_insn_rtx (new_insn_rtx,
4759 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4760
4761 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4762 place_to_insert);
4763
4764 INSN_SCHED_TIMES (new_insn) = 0;
4765 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4766
4767 return new_insn;
4768 }
4769
4770 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4771 E2->dest, except from E1->src (there may be a sequence of empty blocks
4772 between E1->src and E2->dest). Return block containing the copy.
4773 All scheduler data is initialized for the newly created insn. */
4774 static basic_block
4775 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4776 {
4777 insn_t join_point, place_to_insert, new_insn;
4778 int new_seqno;
4779 bool need_to_exchange_data_sets;
4780 fence_t fence_to_rewind;
4781
4782 if (sched_verbose >= 4)
4783 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4784 e2->dest->index);
4785
4786 join_point = sel_bb_head (e2->dest);
4787 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4788 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4789 need_to_exchange_data_sets
4790 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4791
4792 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4793
4794 if (fence_to_rewind)
4795 FENCE_INSN (fence_to_rewind) = new_insn;
4796
4797 /* When inserting bookkeeping insn in new block, av sets should be
4798 following: old basic block (that now holds bookkeeping) data sets are
4799 the same as was before generation of bookkeeping, and new basic block
4800 (that now hold all other insns of old basic block) data sets are
4801 invalid. So exchange data sets for these basic blocks as sel_split_block
4802 mistakenly exchanges them in this case. Cannot do it earlier because
4803 when single instruction is added to new basic block it should hold NULL
4804 lv_set. */
4805 if (need_to_exchange_data_sets)
4806 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4807 BLOCK_FOR_INSN (join_point));
4808
4809 stat_bookkeeping_copies++;
4810 return BLOCK_FOR_INSN (new_insn);
4811 }
4812
4813 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4814 on FENCE, but we are unable to copy them. */
4815 static void
4816 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4817 {
4818 expr_t expr;
4819 av_set_iterator i;
4820
4821 /* An expression does not need bookkeeping if it is available on all paths
4822 from current block to original block and current block dominates
4823 original block. We check availability on all paths by examining
4824 EXPR_SPEC; this is not equivalent, because it may be positive even
4825 if expr is available on all paths (but if expr is not available on
4826 any path, EXPR_SPEC will be positive). */
4827
4828 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4829 {
4830 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4831 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4832 && (EXPR_SPEC (expr)
4833 || !EXPR_ORIG_BB_INDEX (expr)
4834 || !dominated_by_p (CDI_DOMINATORS,
4835 BASIC_BLOCK_FOR_FN (cfun,
4836 EXPR_ORIG_BB_INDEX (expr)),
4837 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4838 {
4839 if (sched_verbose >= 4)
4840 sel_print ("Expr %d removed because it would need bookkeeping, which "
4841 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4842 av_set_iter_remove (&i);
4843 }
4844 }
4845 }
4846
4847 /* Moving conditional jump through some instructions.
4848
4849 Consider example:
4850
4851 ... <- current scheduling point
4852 NOTE BASIC BLOCK: <- bb header
4853 (p8) add r14=r14+0x9;;
4854 (p8) mov [r14]=r23
4855 (!p8) jump L1;;
4856 NOTE BASIC BLOCK:
4857 ...
4858
4859 We can schedule jump one cycle earlier, than mov, because they cannot be
4860 executed together as their predicates are mutually exclusive.
4861
4862 This is done in this way: first, new fallthrough basic block is created
4863 after jump (it is always can be done, because there already should be a
4864 fallthrough block, where control flow goes in case of predicate being true -
4865 in our example; otherwise there should be a dependence between those
4866 instructions and jump and we cannot schedule jump right now);
4867 next, all instructions between jump and current scheduling point are moved
4868 to this new block. And the result is this:
4869
4870 NOTE BASIC BLOCK:
4871 (!p8) jump L1 <- current scheduling point
4872 NOTE BASIC BLOCK: <- bb header
4873 (p8) add r14=r14+0x9;;
4874 (p8) mov [r14]=r23
4875 NOTE BASIC BLOCK:
4876 ...
4877 */
4878 static void
4879 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4880 {
4881 edge ft_edge;
4882 basic_block block_from, block_next, block_new, block_bnd, bb;
4883 rtx_insn *next, *prev, *link, *head;
4884
4885 block_from = BLOCK_FOR_INSN (insn);
4886 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4887 prev = BND_TO (bnd);
4888
4889 /* Moving of jump should not cross any other jumps or beginnings of new
4890 basic blocks. The only exception is when we move a jump through
4891 mutually exclusive insns along fallthru edges. */
4892 if (flag_checking && block_from != block_bnd)
4893 {
4894 bb = block_from;
4895 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4896 link = PREV_INSN (link))
4897 {
4898 if (INSN_P (link))
4899 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4900 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4901 {
4902 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4903 bb = BLOCK_FOR_INSN (link);
4904 }
4905 }
4906 }
4907
4908 /* Jump is moved to the boundary. */
4909 next = PREV_INSN (insn);
4910 BND_TO (bnd) = insn;
4911
4912 ft_edge = find_fallthru_edge_from (block_from);
4913 block_next = ft_edge->dest;
4914 /* There must be a fallthrough block (or where should go
4915 control flow in case of false jump predicate otherwise?). */
4916 gcc_assert (block_next);
4917
4918 /* Create new empty basic block after source block. */
4919 block_new = sel_split_edge (ft_edge);
4920 gcc_assert (block_new->next_bb == block_next
4921 && block_from->next_bb == block_new);
4922
4923 /* Move all instructions except INSN to BLOCK_NEW. */
4924 bb = block_bnd;
4925 head = BB_HEAD (block_new);
4926 while (bb != block_from->next_bb)
4927 {
4928 rtx_insn *from, *to;
4929 from = bb == block_bnd ? prev : sel_bb_head (bb);
4930 to = bb == block_from ? next : sel_bb_end (bb);
4931
4932 /* The jump being moved can be the first insn in the block.
4933 In this case we don't have to move anything in this block. */
4934 if (NEXT_INSN (to) != from)
4935 {
4936 reorder_insns (from, to, head);
4937
4938 for (link = to; link != head; link = PREV_INSN (link))
4939 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4940 head = to;
4941 }
4942
4943 /* Cleanup possibly empty blocks left. */
4944 block_next = bb->next_bb;
4945 if (bb != block_from)
4946 tidy_control_flow (bb, false);
4947 bb = block_next;
4948 }
4949
4950 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4951 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4952
4953 gcc_assert (!sel_bb_empty_p (block_from)
4954 && !sel_bb_empty_p (block_new));
4955
4956 /* Update data sets for BLOCK_NEW to represent that INSN and
4957 instructions from the other branch of INSN is no longer
4958 available at BLOCK_NEW. */
4959 BB_AV_LEVEL (block_new) = global_level;
4960 gcc_assert (BB_LV_SET (block_new) == NULL);
4961 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4962 update_data_sets (sel_bb_head (block_new));
4963
4964 /* INSN is a new basic block header - so prepare its data
4965 structures and update availability and liveness sets. */
4966 update_data_sets (insn);
4967
4968 if (sched_verbose >= 4)
4969 sel_print ("Moving jump %d\n", INSN_UID (insn));
4970 }
4971
4972 /* Remove nops generated during move_op for preventing removal of empty
4973 basic blocks. */
4974 static void
4975 remove_temp_moveop_nops (bool full_tidying)
4976 {
4977 int i;
4978 insn_t insn;
4979
4980 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4981 {
4982 gcc_assert (INSN_NOP_P (insn));
4983 return_nop_to_pool (insn, full_tidying);
4984 }
4985
4986 /* Empty the vector. */
4987 if (vec_temp_moveop_nops.length () > 0)
4988 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
4989 }
4990
4991 /* Records the maximal UID before moving up an instruction. Used for
4992 distinguishing between bookkeeping copies and original insns. */
4993 static int max_uid_before_move_op = 0;
4994
4995 /* When true, we're always scheduling next insn on the already scheduled code
4996 to get the right insn data for the following bundling or other passes. */
4997 static int force_next_insn = 0;
4998
4999 /* Remove from AV_VLIW_P all instructions but next when debug counter
5000 tells us so. Next instruction is fetched from BNDS. */
5001 static void
5002 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5003 {
5004 if (! dbg_cnt (sel_sched_insn_cnt) || force_next_insn)
5005 /* Leave only the next insn in av_vliw. */
5006 {
5007 av_set_iterator av_it;
5008 expr_t expr;
5009 bnd_t bnd = BLIST_BND (bnds);
5010 insn_t next = BND_TO (bnd);
5011
5012 gcc_assert (BLIST_NEXT (bnds) == NULL);
5013
5014 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5015 if (EXPR_INSN_RTX (expr) != next)
5016 av_set_iter_remove (&av_it);
5017 }
5018 }
5019
5020 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5021 the computed set to *AV_VLIW_P. */
5022 static void
5023 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5024 {
5025 if (sched_verbose >= 2)
5026 {
5027 sel_print ("Boundaries: ");
5028 dump_blist (bnds);
5029 sel_print ("\n");
5030 }
5031
5032 for (; bnds; bnds = BLIST_NEXT (bnds))
5033 {
5034 bnd_t bnd = BLIST_BND (bnds);
5035 av_set_t av1_copy;
5036 insn_t bnd_to = BND_TO (bnd);
5037
5038 /* Rewind BND->TO to the basic block header in case some bookkeeping
5039 instructions were inserted before BND->TO and it needs to be
5040 adjusted. */
5041 if (sel_bb_head_p (bnd_to))
5042 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5043 else
5044 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5045 {
5046 bnd_to = PREV_INSN (bnd_to);
5047 if (sel_bb_head_p (bnd_to))
5048 break;
5049 }
5050
5051 if (BND_TO (bnd) != bnd_to)
5052 {
5053 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5054 FENCE_INSN (fence) = bnd_to;
5055 BND_TO (bnd) = bnd_to;
5056 }
5057
5058 av_set_clear (&BND_AV (bnd));
5059 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5060
5061 av_set_clear (&BND_AV1 (bnd));
5062 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5063
5064 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5065
5066 av1_copy = av_set_copy (BND_AV1 (bnd));
5067 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5068 }
5069
5070 if (sched_verbose >= 2)
5071 {
5072 sel_print ("Available exprs (vliw form): ");
5073 dump_av_set (*av_vliw_p);
5074 sel_print ("\n");
5075 }
5076 }
5077
5078 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5079 expression. When FOR_MOVEOP is true, also replace the register of
5080 expressions found with the register from EXPR_VLIW. */
5081 static av_set_t
5082 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5083 {
5084 av_set_t expr_seq = NULL;
5085 expr_t expr;
5086 av_set_iterator i;
5087
5088 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5089 {
5090 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5091 {
5092 if (for_moveop)
5093 {
5094 /* The sequential expression has the right form to pass
5095 to move_op except when renaming happened. Put the
5096 correct register in EXPR then. */
5097 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5098 {
5099 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5100 {
5101 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5102 stat_renamed_scheduled++;
5103 }
5104 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5105 This is needed when renaming came up with original
5106 register. */
5107 else if (EXPR_TARGET_AVAILABLE (expr)
5108 != EXPR_TARGET_AVAILABLE (expr_vliw))
5109 {
5110 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5111 EXPR_TARGET_AVAILABLE (expr) = 1;
5112 }
5113 }
5114 if (EXPR_WAS_SUBSTITUTED (expr))
5115 stat_substitutions_total++;
5116 }
5117
5118 av_set_add (&expr_seq, expr);
5119
5120 /* With substitution inside insn group, it is possible
5121 that more than one expression in expr_seq will correspond
5122 to expr_vliw. In this case, choose one as the attempt to
5123 move both leads to miscompiles. */
5124 break;
5125 }
5126 }
5127
5128 if (for_moveop && sched_verbose >= 2)
5129 {
5130 sel_print ("Best expression(s) (sequential form): ");
5131 dump_av_set (expr_seq);
5132 sel_print ("\n");
5133 }
5134
5135 return expr_seq;
5136 }
5137
5138
5139 /* Move nop to previous block. */
5140 static void ATTRIBUTE_UNUSED
5141 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5142 {
5143 insn_t prev_insn, next_insn;
5144
5145 gcc_assert (sel_bb_head_p (nop)
5146 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5147 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
5148 prev_insn = sel_bb_end (prev_bb);
5149 next_insn = NEXT_INSN (nop);
5150 gcc_assert (prev_insn != NULL_RTX
5151 && PREV_INSN (note) == prev_insn);
5152
5153 SET_NEXT_INSN (prev_insn) = nop;
5154 SET_PREV_INSN (nop) = prev_insn;
5155
5156 SET_PREV_INSN (note) = nop;
5157 SET_NEXT_INSN (note) = next_insn;
5158
5159 SET_NEXT_INSN (nop) = note;
5160 SET_PREV_INSN (next_insn) = note;
5161
5162 BB_END (prev_bb) = nop;
5163 BLOCK_FOR_INSN (nop) = prev_bb;
5164 }
5165
5166 /* Prepare a place to insert the chosen expression on BND. */
5167 static insn_t
5168 prepare_place_to_insert (bnd_t bnd)
5169 {
5170 insn_t place_to_insert;
5171
5172 /* Init place_to_insert before calling move_op, as the later
5173 can possibly remove BND_TO (bnd). */
5174 if (/* If this is not the first insn scheduled. */
5175 BND_PTR (bnd))
5176 {
5177 /* Add it after last scheduled. */
5178 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5179 if (DEBUG_INSN_P (place_to_insert))
5180 {
5181 ilist_t l = BND_PTR (bnd);
5182 while ((l = ILIST_NEXT (l)) &&
5183 DEBUG_INSN_P (ILIST_INSN (l)))
5184 ;
5185 if (!l)
5186 place_to_insert = NULL;
5187 }
5188 }
5189 else
5190 place_to_insert = NULL;
5191
5192 if (!place_to_insert)
5193 {
5194 /* Add it before BND_TO. The difference is in the
5195 basic block, where INSN will be added. */
5196 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5197 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5198 == BLOCK_FOR_INSN (BND_TO (bnd)));
5199 }
5200
5201 return place_to_insert;
5202 }
5203
5204 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5205 Return the expression to emit in C_EXPR. */
5206 static bool
5207 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5208 av_set_t expr_seq, expr_t c_expr)
5209 {
5210 bool b, should_move;
5211 unsigned book_uid;
5212 bitmap_iterator bi;
5213 int n_bookkeeping_copies_before_moveop;
5214
5215 /* Make a move. This call will remove the original operation,
5216 insert all necessary bookkeeping instructions and update the
5217 data sets. After that all we have to do is add the operation
5218 at before BND_TO (BND). */
5219 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5220 max_uid_before_move_op = get_max_uid ();
5221 bitmap_clear (current_copies);
5222 bitmap_clear (current_originators);
5223
5224 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5225 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5226
5227 /* We should be able to find the expression we've chosen for
5228 scheduling. */
5229 gcc_assert (b);
5230
5231 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5232 stat_insns_needed_bookkeeping++;
5233
5234 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5235 {
5236 unsigned uid;
5237 bitmap_iterator bi;
5238
5239 /* We allocate these bitmaps lazily. */
5240 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5241 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5242
5243 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5244 current_originators);
5245
5246 /* Transitively add all originators' originators. */
5247 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5248 if (INSN_ORIGINATORS_BY_UID (uid))
5249 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5250 INSN_ORIGINATORS_BY_UID (uid));
5251 }
5252
5253 return should_move;
5254 }
5255
5256
5257 /* Debug a DFA state as an array of bytes. */
5258 static void
5259 debug_state (state_t state)
5260 {
5261 unsigned char *p;
5262 unsigned int i, size = dfa_state_size;
5263
5264 sel_print ("state (%u):", size);
5265 for (i = 0, p = (unsigned char *) state; i < size; i++)
5266 sel_print (" %d", p[i]);
5267 sel_print ("\n");
5268 }
5269
5270 /* Advance state on FENCE with INSN. Return true if INSN is
5271 an ASM, and we should advance state once more. */
5272 static bool
5273 advance_state_on_fence (fence_t fence, insn_t insn)
5274 {
5275 bool asm_p;
5276
5277 if (recog_memoized (insn) >= 0)
5278 {
5279 int res;
5280 state_t temp_state = alloca (dfa_state_size);
5281
5282 gcc_assert (!INSN_ASM_P (insn));
5283 asm_p = false;
5284
5285 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5286 res = state_transition (FENCE_STATE (fence), insn);
5287 gcc_assert (res < 0);
5288
5289 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5290 {
5291 FENCE_ISSUED_INSNS (fence)++;
5292
5293 /* We should never issue more than issue_rate insns. */
5294 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5295 gcc_unreachable ();
5296 }
5297 }
5298 else
5299 {
5300 /* This could be an ASM insn which we'd like to schedule
5301 on the next cycle. */
5302 asm_p = INSN_ASM_P (insn);
5303 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5304 advance_one_cycle (fence);
5305 }
5306
5307 if (sched_verbose >= 2)
5308 debug_state (FENCE_STATE (fence));
5309 if (!DEBUG_INSN_P (insn))
5310 FENCE_STARTS_CYCLE_P (fence) = 0;
5311 FENCE_ISSUE_MORE (fence) = can_issue_more;
5312 return asm_p;
5313 }
5314
5315 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5316 is nonzero if we need to stall after issuing INSN. */
5317 static void
5318 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5319 {
5320 bool asm_p;
5321
5322 /* First, reflect that something is scheduled on this fence. */
5323 asm_p = advance_state_on_fence (fence, insn);
5324 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5325 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5326 if (SCHED_GROUP_P (insn))
5327 {
5328 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5329 SCHED_GROUP_P (insn) = 0;
5330 }
5331 else
5332 FENCE_SCHED_NEXT (fence) = NULL;
5333 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5334 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5335
5336 /* Set instruction scheduling info. This will be used in bundling,
5337 pipelining, tick computations etc. */
5338 ++INSN_SCHED_TIMES (insn);
5339 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5340 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5341 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5342 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5343
5344 /* This does not account for adjust_cost hooks, just add the biggest
5345 constant the hook may add to the latency. TODO: make this
5346 a target dependent constant. */
5347 INSN_READY_CYCLE (insn)
5348 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5349 ? 1
5350 : maximal_insn_latency (insn) + 1);
5351
5352 /* Change these fields last, as they're used above. */
5353 FENCE_AFTER_STALL_P (fence) = 0;
5354 if (asm_p || need_stall)
5355 advance_one_cycle (fence);
5356
5357 /* Indicate that we've scheduled something on this fence. */
5358 FENCE_SCHEDULED_P (fence) = true;
5359 scheduled_something_on_previous_fence = true;
5360
5361 /* Print debug information when insn's fields are updated. */
5362 if (sched_verbose >= 2)
5363 {
5364 sel_print ("Scheduling insn: ");
5365 dump_insn_1 (insn, 1);
5366 sel_print ("\n");
5367 }
5368 }
5369
5370 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5371 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5372 return it. */
5373 static blist_t *
5374 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5375 blist_t *bnds_tailp)
5376 {
5377 succ_iterator si;
5378 insn_t succ;
5379
5380 advance_deps_context (BND_DC (bnd), insn);
5381 FOR_EACH_SUCC_1 (succ, si, insn,
5382 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5383 {
5384 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5385
5386 ilist_add (&ptr, insn);
5387
5388 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5389 && is_ineligible_successor (succ, ptr))
5390 {
5391 ilist_clear (&ptr);
5392 continue;
5393 }
5394
5395 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5396 {
5397 if (sched_verbose >= 9)
5398 sel_print ("Updating fence insn from %i to %i\n",
5399 INSN_UID (insn), INSN_UID (succ));
5400 FENCE_INSN (fence) = succ;
5401 }
5402 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5403 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5404 }
5405
5406 blist_remove (bndsp);
5407 return bnds_tailp;
5408 }
5409
5410 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5411 static insn_t
5412 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5413 {
5414 av_set_t expr_seq;
5415 expr_t c_expr = XALLOCA (expr_def);
5416 insn_t place_to_insert;
5417 insn_t insn;
5418 bool should_move;
5419
5420 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5421
5422 /* In case of scheduling a jump skipping some other instructions,
5423 prepare CFG. After this, jump is at the boundary and can be
5424 scheduled as usual insn by MOVE_OP. */
5425 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5426 {
5427 insn = EXPR_INSN_RTX (expr_vliw);
5428
5429 /* Speculative jumps are not handled. */
5430 if (insn != BND_TO (bnd)
5431 && !sel_insn_is_speculation_check (insn))
5432 move_cond_jump (insn, bnd);
5433 }
5434
5435 /* Find a place for C_EXPR to schedule. */
5436 place_to_insert = prepare_place_to_insert (bnd);
5437 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5438 clear_expr (c_expr);
5439
5440 /* Add the instruction. The corner case to care about is when
5441 the expr_seq set has more than one expr, and we chose the one that
5442 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5443 we can't use it. Generate the new vinsn. */
5444 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5445 {
5446 vinsn_t vinsn_new;
5447
5448 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5449 change_vinsn_in_expr (expr_vliw, vinsn_new);
5450 should_move = false;
5451 }
5452 if (should_move)
5453 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5454 else
5455 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5456 place_to_insert);
5457
5458 /* Return the nops generated for preserving of data sets back
5459 into pool. */
5460 if (INSN_NOP_P (place_to_insert))
5461 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5462 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5463
5464 av_set_clear (&expr_seq);
5465
5466 /* Save the expression scheduled so to reset target availability if we'll
5467 meet it later on the same fence. */
5468 if (EXPR_WAS_RENAMED (expr_vliw))
5469 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5470
5471 /* Check that the recent movement didn't destroyed loop
5472 structure. */
5473 gcc_assert (!pipelining_p
5474 || current_loop_nest == NULL
5475 || loop_latch_edge (current_loop_nest));
5476 return insn;
5477 }
5478
5479 /* Stall for N cycles on FENCE. */
5480 static void
5481 stall_for_cycles (fence_t fence, int n)
5482 {
5483 int could_more;
5484
5485 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5486 while (n--)
5487 advance_one_cycle (fence);
5488 if (could_more)
5489 FENCE_AFTER_STALL_P (fence) = 1;
5490 }
5491
5492 /* Gather a parallel group of insns at FENCE and assign their seqno
5493 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5494 list for later recalculation of seqnos. */
5495 static void
5496 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5497 {
5498 blist_t bnds = NULL, *bnds_tailp;
5499 av_set_t av_vliw = NULL;
5500 insn_t insn = FENCE_INSN (fence);
5501
5502 if (sched_verbose >= 2)
5503 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5504 INSN_UID (insn), FENCE_CYCLE (fence));
5505
5506 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5507 bnds_tailp = &BLIST_NEXT (bnds);
5508 set_target_context (FENCE_TC (fence));
5509 can_issue_more = FENCE_ISSUE_MORE (fence);
5510 target_bb = INSN_BB (insn);
5511
5512 /* Do while we can add any operation to the current group. */
5513 do
5514 {
5515 blist_t *bnds_tailp1, *bndsp;
5516 expr_t expr_vliw;
5517 int need_stall = false;
5518 int was_stall = 0, scheduled_insns = 0;
5519 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5520 int max_stall = pipelining_p ? 1 : 3;
5521 bool last_insn_was_debug = false;
5522 bool was_debug_bb_end_p = false;
5523
5524 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5525 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5526 remove_insns_for_debug (bnds, &av_vliw);
5527
5528 /* Return early if we have nothing to schedule. */
5529 if (av_vliw == NULL)
5530 break;
5531
5532 /* Choose the best expression and, if needed, destination register
5533 for it. */
5534 do
5535 {
5536 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5537 if (! expr_vliw && need_stall)
5538 {
5539 /* All expressions required a stall. Do not recompute av sets
5540 as we'll get the same answer (modulo the insns between
5541 the fence and its boundary, which will not be available for
5542 pipelining).
5543 If we are going to stall for too long, break to recompute av
5544 sets and bring more insns for pipelining. */
5545 was_stall++;
5546 if (need_stall <= 3)
5547 stall_for_cycles (fence, need_stall);
5548 else
5549 {
5550 stall_for_cycles (fence, 1);
5551 break;
5552 }
5553 }
5554 }
5555 while (! expr_vliw && need_stall);
5556
5557 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5558 if (!expr_vliw)
5559 {
5560 av_set_clear (&av_vliw);
5561 break;
5562 }
5563
5564 bndsp = &bnds;
5565 bnds_tailp1 = bnds_tailp;
5566
5567 do
5568 /* This code will be executed only once until we'd have several
5569 boundaries per fence. */
5570 {
5571 bnd_t bnd = BLIST_BND (*bndsp);
5572
5573 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5574 {
5575 bndsp = &BLIST_NEXT (*bndsp);
5576 continue;
5577 }
5578
5579 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5580 last_insn_was_debug = DEBUG_INSN_P (insn);
5581 if (last_insn_was_debug)
5582 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5583 update_fence_and_insn (fence, insn, need_stall);
5584 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5585
5586 /* Add insn to the list of scheduled on this cycle instructions. */
5587 ilist_add (*scheduled_insns_tailpp, insn);
5588 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5589 }
5590 while (*bndsp != *bnds_tailp1);
5591
5592 av_set_clear (&av_vliw);
5593 if (!last_insn_was_debug)
5594 scheduled_insns++;
5595
5596 /* We currently support information about candidate blocks only for
5597 one 'target_bb' block. Hence we can't schedule after jump insn,
5598 as this will bring two boundaries and, hence, necessity to handle
5599 information for two or more blocks concurrently. */
5600 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5601 || (was_stall
5602 && (was_stall >= max_stall
5603 || scheduled_insns >= max_insns)))
5604 break;
5605 }
5606 while (bnds);
5607
5608 gcc_assert (!FENCE_BNDS (fence));
5609
5610 /* Update boundaries of the FENCE. */
5611 while (bnds)
5612 {
5613 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5614
5615 if (ptr)
5616 {
5617 insn = ILIST_INSN (ptr);
5618
5619 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5620 ilist_add (&FENCE_BNDS (fence), insn);
5621 }
5622
5623 blist_remove (&bnds);
5624 }
5625
5626 /* Update target context on the fence. */
5627 reset_target_context (FENCE_TC (fence), false);
5628 }
5629
5630 /* All exprs in ORIG_OPS must have the same destination register or memory.
5631 Return that destination. */
5632 static rtx
5633 get_dest_from_orig_ops (av_set_t orig_ops)
5634 {
5635 rtx dest = NULL_RTX;
5636 av_set_iterator av_it;
5637 expr_t expr;
5638 bool first_p = true;
5639
5640 FOR_EACH_EXPR (expr, av_it, orig_ops)
5641 {
5642 rtx x = EXPR_LHS (expr);
5643
5644 if (first_p)
5645 {
5646 first_p = false;
5647 dest = x;
5648 }
5649 else
5650 gcc_assert (dest == x
5651 || (dest != NULL_RTX && x != NULL_RTX
5652 && rtx_equal_p (dest, x)));
5653 }
5654
5655 return dest;
5656 }
5657
5658 /* Update data sets for the bookkeeping block and record those expressions
5659 which become no longer available after inserting this bookkeeping. */
5660 static void
5661 update_and_record_unavailable_insns (basic_block book_block)
5662 {
5663 av_set_iterator i;
5664 av_set_t old_av_set = NULL;
5665 expr_t cur_expr;
5666 rtx_insn *bb_end = sel_bb_end (book_block);
5667
5668 /* First, get correct liveness in the bookkeeping block. The problem is
5669 the range between the bookeeping insn and the end of block. */
5670 update_liveness_on_insn (bb_end);
5671 if (control_flow_insn_p (bb_end))
5672 update_liveness_on_insn (PREV_INSN (bb_end));
5673
5674 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5675 fence above, where we may choose to schedule an insn which is
5676 actually blocked from moving up with the bookkeeping we create here. */
5677 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5678 {
5679 old_av_set = av_set_copy (BB_AV_SET (book_block));
5680 update_data_sets (sel_bb_head (book_block));
5681
5682 /* Traverse all the expressions in the old av_set and check whether
5683 CUR_EXPR is in new AV_SET. */
5684 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5685 {
5686 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5687 EXPR_VINSN (cur_expr));
5688
5689 if (! new_expr
5690 /* In this case, we can just turn off the E_T_A bit, but we can't
5691 represent this information with the current vector. */
5692 || EXPR_TARGET_AVAILABLE (new_expr)
5693 != EXPR_TARGET_AVAILABLE (cur_expr))
5694 /* Unfortunately, the below code could be also fired up on
5695 separable insns, e.g. when moving insns through the new
5696 speculation check as in PR 53701. */
5697 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5698 }
5699
5700 av_set_clear (&old_av_set);
5701 }
5702 }
5703
5704 /* The main effect of this function is that sparams->c_expr is merged
5705 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5706 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5707 lparams->c_expr_merged is copied back to sparams->c_expr after all
5708 successors has been traversed. lparams->c_expr_local is an expr allocated
5709 on stack in the caller function, and is used if there is more than one
5710 successor.
5711
5712 SUCC is one of the SUCCS_NORMAL successors of INSN,
5713 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5714 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5715 static void
5716 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5717 insn_t succ ATTRIBUTE_UNUSED,
5718 int moveop_drv_call_res,
5719 cmpd_local_params_p lparams, void *static_params)
5720 {
5721 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5722
5723 /* Nothing to do, if original expr wasn't found below. */
5724 if (moveop_drv_call_res != 1)
5725 return;
5726
5727 /* If this is a first successor. */
5728 if (!lparams->c_expr_merged)
5729 {
5730 lparams->c_expr_merged = sparams->c_expr;
5731 sparams->c_expr = lparams->c_expr_local;
5732 }
5733 else
5734 {
5735 /* We must merge all found expressions to get reasonable
5736 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5737 do so then we can first find the expr with epsilon
5738 speculation success probability and only then with the
5739 good probability. As a result the insn will get epsilon
5740 probability and will never be scheduled because of
5741 weakness_cutoff in find_best_expr.
5742
5743 We call merge_expr_data here instead of merge_expr
5744 because due to speculation C_EXPR and X may have the
5745 same insns with different speculation types. And as of
5746 now such insns are considered non-equal.
5747
5748 However, EXPR_SCHED_TIMES is different -- we must get
5749 SCHED_TIMES from a real insn, not a bookkeeping copy.
5750 We force this here. Instead, we may consider merging
5751 SCHED_TIMES to the maximum instead of minimum in the
5752 below function. */
5753 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5754
5755 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5756 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5757 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5758
5759 clear_expr (sparams->c_expr);
5760 }
5761 }
5762
5763 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5764
5765 SUCC is one of the SUCCS_NORMAL successors of INSN,
5766 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5767 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5768 STATIC_PARAMS contain USED_REGS set. */
5769 static void
5770 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5771 int moveop_drv_call_res,
5772 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5773 void *static_params)
5774 {
5775 regset succ_live;
5776 fur_static_params_p sparams = (fur_static_params_p) static_params;
5777
5778 /* Here we compute live regsets only for branches that do not lie
5779 on the code motion paths. These branches correspond to value
5780 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5781 for such branches code_motion_path_driver is not called. */
5782 if (moveop_drv_call_res != 0)
5783 return;
5784
5785 /* Mark all registers that do not meet the following condition:
5786 (3) not live on the other path of any conditional branch
5787 that is passed by the operation, in case original
5788 operations are not present on both paths of the
5789 conditional branch. */
5790 succ_live = compute_live (succ);
5791 IOR_REG_SET (sparams->used_regs, succ_live);
5792 }
5793
5794 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5795 into SP->CEXPR. */
5796 static void
5797 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5798 {
5799 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5800
5801 sp->c_expr = lp->c_expr_merged;
5802 }
5803
5804 /* Track bookkeeping copies created, insns scheduled, and blocks for
5805 rescheduling when INSN is found by move_op. */
5806 static void
5807 track_scheduled_insns_and_blocks (rtx_insn *insn)
5808 {
5809 /* Even if this insn can be a copy that will be removed during current move_op,
5810 we still need to count it as an originator. */
5811 bitmap_set_bit (current_originators, INSN_UID (insn));
5812
5813 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5814 {
5815 /* Note that original block needs to be rescheduled, as we pulled an
5816 instruction out of it. */
5817 if (INSN_SCHED_TIMES (insn) > 0)
5818 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5819 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5820 num_insns_scheduled++;
5821 }
5822
5823 /* For instructions we must immediately remove insn from the
5824 stream, so subsequent update_data_sets () won't include this
5825 insn into av_set.
5826 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5827 if (INSN_UID (insn) > max_uid_before_move_op)
5828 stat_bookkeeping_copies--;
5829 }
5830
5831 /* Emit a register-register copy for INSN if needed. Return true if
5832 emitted one. PARAMS is the move_op static parameters. */
5833 static bool
5834 maybe_emit_renaming_copy (rtx_insn *insn,
5835 moveop_static_params_p params)
5836 {
5837 bool insn_emitted = false;
5838 rtx cur_reg;
5839
5840 /* Bail out early when expression cannot be renamed at all. */
5841 if (!EXPR_SEPARABLE_P (params->c_expr))
5842 return false;
5843
5844 cur_reg = expr_dest_reg (params->c_expr);
5845 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5846
5847 /* If original operation has expr and the register chosen for
5848 that expr is not original operation's dest reg, substitute
5849 operation's right hand side with the register chosen. */
5850 if (REGNO (params->dest) != REGNO (cur_reg))
5851 {
5852 insn_t reg_move_insn, reg_move_insn_rtx;
5853
5854 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5855 params->dest);
5856 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5857 INSN_EXPR (insn),
5858 INSN_SEQNO (insn),
5859 insn);
5860 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5861 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5862
5863 insn_emitted = true;
5864 params->was_renamed = true;
5865 }
5866
5867 return insn_emitted;
5868 }
5869
5870 /* Emit a speculative check for INSN speculated as EXPR if needed.
5871 Return true if we've emitted one. PARAMS is the move_op static
5872 parameters. */
5873 static bool
5874 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5875 moveop_static_params_p params)
5876 {
5877 bool insn_emitted = false;
5878 insn_t x;
5879 ds_t check_ds;
5880
5881 check_ds = get_spec_check_type_for_insn (insn, expr);
5882 if (check_ds != 0)
5883 {
5884 /* A speculation check should be inserted. */
5885 x = create_speculation_check (params->c_expr, check_ds, insn);
5886 insn_emitted = true;
5887 }
5888 else
5889 {
5890 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5891 x = insn;
5892 }
5893
5894 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5895 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5896 return insn_emitted;
5897 }
5898
5899 /* Handle transformations that leave an insn in place of original
5900 insn such as renaming/speculation. Return true if one of such
5901 transformations actually happened, and we have emitted this insn. */
5902 static bool
5903 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5904 moveop_static_params_p params)
5905 {
5906 bool insn_emitted = false;
5907
5908 insn_emitted = maybe_emit_renaming_copy (insn, params);
5909 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5910
5911 return insn_emitted;
5912 }
5913
5914 /* If INSN is the only insn in the basic block (not counting JUMP,
5915 which may be a jump to next insn, and DEBUG_INSNs), we want to
5916 leave a NOP there till the return to fill_insns. */
5917
5918 static bool
5919 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5920 {
5921 insn_t bb_head, bb_end, bb_next, in_next;
5922 basic_block bb = BLOCK_FOR_INSN (insn);
5923
5924 bb_head = sel_bb_head (bb);
5925 bb_end = sel_bb_end (bb);
5926
5927 if (bb_head == bb_end)
5928 return true;
5929
5930 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5931 bb_head = NEXT_INSN (bb_head);
5932
5933 if (bb_head == bb_end)
5934 return true;
5935
5936 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5937 bb_end = PREV_INSN (bb_end);
5938
5939 if (bb_head == bb_end)
5940 return true;
5941
5942 bb_next = NEXT_INSN (bb_head);
5943 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5944 bb_next = NEXT_INSN (bb_next);
5945
5946 if (bb_next == bb_end && JUMP_P (bb_end))
5947 return true;
5948
5949 in_next = NEXT_INSN (insn);
5950 while (DEBUG_INSN_P (in_next))
5951 in_next = NEXT_INSN (in_next);
5952
5953 if (IN_CURRENT_FENCE_P (in_next))
5954 return true;
5955
5956 return false;
5957 }
5958
5959 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5960 is not removed but reused when INSN is re-emitted. */
5961 static void
5962 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5963 {
5964 /* If there's only one insn in the BB, make sure that a nop is
5965 inserted into it, so the basic block won't disappear when we'll
5966 delete INSN below with sel_remove_insn. It should also survive
5967 till the return to fill_insns. */
5968 if (need_nop_to_preserve_insn_bb (insn))
5969 {
5970 insn_t nop = get_nop_from_pool (insn);
5971 gcc_assert (INSN_NOP_P (nop));
5972 vec_temp_moveop_nops.safe_push (nop);
5973 }
5974
5975 sel_remove_insn (insn, only_disconnect, false);
5976 }
5977
5978 /* This function is called when original expr is found.
5979 INSN - current insn traversed, EXPR - the corresponding expr found.
5980 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5981 is static parameters of move_op. */
5982 static void
5983 move_op_orig_expr_found (insn_t insn, expr_t expr,
5984 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5985 void *static_params)
5986 {
5987 bool only_disconnect;
5988 moveop_static_params_p params = (moveop_static_params_p) static_params;
5989
5990 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5991 track_scheduled_insns_and_blocks (insn);
5992 handle_emitting_transformations (insn, expr, params);
5993 only_disconnect = params->uid == INSN_UID (insn);
5994
5995 /* Mark that we've disconnected an insn. */
5996 if (only_disconnect)
5997 params->uid = -1;
5998 remove_insn_from_stream (insn, only_disconnect);
5999 }
6000
6001 /* The function is called when original expr is found.
6002 INSN - current insn traversed, EXPR - the corresponding expr found,
6003 crossed_call_abis and original_insns in STATIC_PARAMS are updated. */
6004 static void
6005 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6006 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6007 void *static_params)
6008 {
6009 fur_static_params_p params = (fur_static_params_p) static_params;
6010 regset tmp;
6011
6012 if (CALL_P (insn))
6013 params->crossed_call_abis |= 1 << insn_callee_abi (insn).id ();
6014
6015 def_list_add (params->original_insns, insn, params->crossed_call_abis);
6016
6017 /* Mark the registers that do not meet the following condition:
6018 (2) not among the live registers of the point
6019 immediately following the first original operation on
6020 a given downward path, except for the original target
6021 register of the operation. */
6022 tmp = get_clear_regset_from_pool ();
6023 compute_live_below_insn (insn, tmp);
6024 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6025 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6026 IOR_REG_SET (params->used_regs, tmp);
6027 return_regset_to_pool (tmp);
6028
6029 /* (*1) We need to add to USED_REGS registers that are read by
6030 INSN's lhs. This may lead to choosing wrong src register.
6031 E.g. (scheduling const expr enabled):
6032
6033 429: ax=0x0 <- Can't use AX for this expr (0x0)
6034 433: dx=[bp-0x18]
6035 427: [ax+dx+0x1]=ax
6036 REG_DEAD: ax
6037 168: di=dx
6038 REG_DEAD: dx
6039 */
6040 /* FIXME: see comment above and enable MEM_P
6041 in vinsn_separable_p. */
6042 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6043 || !MEM_P (INSN_LHS (insn)));
6044 }
6045
6046 /* This function is called on the ascending pass, before returning from
6047 current basic block. */
6048 static void
6049 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6050 void *static_params)
6051 {
6052 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6053 basic_block book_block = NULL;
6054
6055 /* When we have removed the boundary insn for scheduling, which also
6056 happened to be the end insn in its bb, we don't need to update sets. */
6057 if (!lparams->removed_last_insn
6058 && lparams->e1
6059 && sel_bb_head_p (insn))
6060 {
6061 /* We should generate bookkeeping code only if we are not at the
6062 top level of the move_op. */
6063 if (sel_num_cfg_preds_gt_1 (insn))
6064 book_block = generate_bookkeeping_insn (sparams->c_expr,
6065 lparams->e1, lparams->e2);
6066 /* Update data sets for the current insn. */
6067 update_data_sets (insn);
6068 }
6069
6070 /* If bookkeeping code was inserted, we need to update av sets of basic
6071 block that received bookkeeping. After generation of bookkeeping insn,
6072 bookkeeping block does not contain valid av set because we are not following
6073 the original algorithm in every detail with regards to e.g. renaming
6074 simple reg-reg copies. Consider example:
6075
6076 bookkeeping block scheduling fence
6077 \ /
6078 \ join /
6079 ----------
6080 | |
6081 ----------
6082 / \
6083 / \
6084 r1 := r2 r1 := r3
6085
6086 We try to schedule insn "r1 := r3" on the current
6087 scheduling fence. Also, note that av set of bookkeeping block
6088 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6089 been scheduled, the CFG is as follows:
6090
6091 r1 := r3 r1 := r3
6092 bookkeeping block scheduling fence
6093 \ /
6094 \ join /
6095 ----------
6096 | |
6097 ----------
6098 / \
6099 / \
6100 r1 := r2
6101
6102 Here, insn "r1 := r3" was scheduled at the current scheduling point
6103 and bookkeeping code was generated at the bookeeping block. This
6104 way insn "r1 := r2" is no longer available as a whole instruction
6105 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6106 This situation is handled by calling update_data_sets.
6107
6108 Since update_data_sets is called only on the bookkeeping block, and
6109 it also may have predecessors with av_sets, containing instructions that
6110 are no longer available, we save all such expressions that become
6111 unavailable during data sets update on the bookkeeping block in
6112 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6113 expressions for scheduling. This allows us to avoid recomputation of
6114 av_sets outside the code motion path. */
6115
6116 if (book_block)
6117 update_and_record_unavailable_insns (book_block);
6118
6119 /* If INSN was previously marked for deletion, it's time to do it. */
6120 if (lparams->removed_last_insn)
6121 insn = PREV_INSN (insn);
6122
6123 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6124 kill a block with a single nop in which the insn should be emitted. */
6125 if (lparams->e1)
6126 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6127 }
6128
6129 /* This function is called on the ascending pass, before returning from the
6130 current basic block. */
6131 static void
6132 fur_at_first_insn (insn_t insn,
6133 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6134 void *static_params ATTRIBUTE_UNUSED)
6135 {
6136 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6137 || AV_LEVEL (insn) == -1);
6138 }
6139
6140 /* Called on the backward stage of recursion to call moveup_expr for insn
6141 and sparams->c_expr. */
6142 static void
6143 move_op_ascend (insn_t insn, void *static_params)
6144 {
6145 enum MOVEUP_EXPR_CODE res;
6146 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6147
6148 if (! INSN_NOP_P (insn))
6149 {
6150 res = moveup_expr_cached (sparams->c_expr, insn, false);
6151 gcc_assert (res != MOVEUP_EXPR_NULL);
6152 }
6153
6154 /* Update liveness for this insn as it was invalidated. */
6155 update_liveness_on_insn (insn);
6156 }
6157
6158 /* This function is called on enter to the basic block.
6159 Returns TRUE if this block already have been visited and
6160 code_motion_path_driver should return 1, FALSE otherwise. */
6161 static int
6162 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6163 void *static_params, bool visited_p)
6164 {
6165 fur_static_params_p sparams = (fur_static_params_p) static_params;
6166
6167 if (visited_p)
6168 {
6169 /* If we have found something below this block, there should be at
6170 least one insn in ORIGINAL_INSNS. */
6171 gcc_assert (*sparams->original_insns);
6172
6173 /* Adjust CROSSED_CALL_ABIS, since we may have come to this block along
6174 different path. */
6175 DEF_LIST_DEF (*sparams->original_insns)->crossed_call_abis
6176 |= sparams->crossed_call_abis;
6177 }
6178 else
6179 local_params->old_original_insns = *sparams->original_insns;
6180
6181 return 1;
6182 }
6183
6184 /* Same as above but for move_op. */
6185 static int
6186 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6187 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6188 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6189 {
6190 if (visited_p)
6191 return -1;
6192 return 1;
6193 }
6194
6195 /* This function is called while descending current basic block if current
6196 insn is not the original EXPR we're searching for.
6197
6198 Return value: FALSE, if code_motion_path_driver should perform a local
6199 cleanup and return 0 itself;
6200 TRUE, if code_motion_path_driver should continue. */
6201 static bool
6202 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6203 void *static_params)
6204 {
6205 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6206
6207 sparams->failed_insn = insn;
6208
6209 /* If we're scheduling separate expr, in order to generate correct code
6210 we need to stop the search at bookkeeping code generated with the
6211 same destination register or memory. */
6212 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6213 return false;
6214 return true;
6215 }
6216
6217 /* This function is called while descending current basic block if current
6218 insn is not the original EXPR we're searching for.
6219
6220 Return value: TRUE (code_motion_path_driver should continue). */
6221 static bool
6222 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6223 {
6224 bool mutexed;
6225 expr_t r;
6226 av_set_iterator avi;
6227 fur_static_params_p sparams = (fur_static_params_p) static_params;
6228
6229 if (CALL_P (insn))
6230 sparams->crossed_call_abis |= 1 << insn_callee_abi (insn).id ();
6231 else if (DEBUG_INSN_P (insn))
6232 return true;
6233
6234 /* If current insn we are looking at cannot be executed together
6235 with original insn, then we can skip it safely.
6236
6237 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6238 INSN = (!p6) r14 = r14 + 1;
6239
6240 Here we can schedule ORIG_OP with lhs = r14, though only
6241 looking at the set of used and set registers of INSN we must
6242 forbid it. So, add set/used in INSN registers to the
6243 untouchable set only if there is an insn in ORIG_OPS that can
6244 affect INSN. */
6245 mutexed = true;
6246 FOR_EACH_EXPR (r, avi, orig_ops)
6247 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6248 {
6249 mutexed = false;
6250 break;
6251 }
6252
6253 /* Mark all registers that do not meet the following condition:
6254 (1) Not set or read on any path from xi to an instance of the
6255 original operation. */
6256 if (!mutexed)
6257 {
6258 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6259 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6260 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6261 }
6262
6263 return true;
6264 }
6265
6266 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6267 struct code_motion_path_driver_info_def move_op_hooks = {
6268 move_op_on_enter,
6269 move_op_orig_expr_found,
6270 move_op_orig_expr_not_found,
6271 move_op_merge_succs,
6272 move_op_after_merge_succs,
6273 move_op_ascend,
6274 move_op_at_first_insn,
6275 SUCCS_NORMAL,
6276 "move_op"
6277 };
6278
6279 /* Hooks and data to perform find_used_regs operations
6280 with code_motion_path_driver. */
6281 struct code_motion_path_driver_info_def fur_hooks = {
6282 fur_on_enter,
6283 fur_orig_expr_found,
6284 fur_orig_expr_not_found,
6285 fur_merge_succs,
6286 NULL, /* fur_after_merge_succs */
6287 NULL, /* fur_ascend */
6288 fur_at_first_insn,
6289 SUCCS_ALL,
6290 "find_used_regs"
6291 };
6292
6293 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6294 code_motion_path_driver is called recursively. Original operation
6295 was found at least on one path that is starting with one of INSN's
6296 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6297 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6298 of either move_op or find_used_regs depending on the caller.
6299
6300 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6301 know for sure at this point. */
6302 static int
6303 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6304 ilist_t path, void *static_params)
6305 {
6306 int res = 0;
6307 succ_iterator succ_i;
6308 insn_t succ;
6309 basic_block bb;
6310 int old_index;
6311 unsigned old_succs;
6312
6313 struct cmpd_local_params lparams;
6314 expr_def _x;
6315
6316 lparams.c_expr_local = &_x;
6317 lparams.c_expr_merged = NULL;
6318
6319 /* We need to process only NORMAL succs for move_op, and collect live
6320 registers from ALL branches (including those leading out of the
6321 region) for find_used_regs.
6322
6323 In move_op, there can be a case when insn's bb number has changed
6324 due to created bookkeeping. This happens very rare, as we need to
6325 move expression from the beginning to the end of the same block.
6326 Rescan successors in this case. */
6327
6328 rescan:
6329 bb = BLOCK_FOR_INSN (insn);
6330 old_index = bb->index;
6331 old_succs = EDGE_COUNT (bb->succs);
6332
6333 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6334 {
6335 int b;
6336
6337 lparams.e1 = succ_i.e1;
6338 lparams.e2 = succ_i.e2;
6339
6340 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6341 current region). */
6342 if (succ_i.current_flags == SUCCS_NORMAL)
6343 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6344 static_params);
6345 else
6346 b = 0;
6347
6348 /* Merge c_expres found or unify live register sets from different
6349 successors. */
6350 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6351 static_params);
6352 if (b == 1)
6353 res = b;
6354 else if (b == -1 && res != 1)
6355 res = b;
6356
6357 /* We have simplified the control flow below this point. In this case,
6358 the iterator becomes invalid. We need to try again.
6359 If we have removed the insn itself, it could be only an
6360 unconditional jump. Thus, do not rescan but break immediately --
6361 we have already visited the only successor block. */
6362 if (!BLOCK_FOR_INSN (insn))
6363 {
6364 if (sched_verbose >= 6)
6365 sel_print ("Not doing rescan: already visited the only successor"
6366 " of block %d\n", old_index);
6367 break;
6368 }
6369 if (BLOCK_FOR_INSN (insn)->index != old_index
6370 || EDGE_COUNT (bb->succs) != old_succs)
6371 {
6372 if (sched_verbose >= 6)
6373 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6374 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6375 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6376 goto rescan;
6377 }
6378 }
6379
6380 /* Here, RES==1 if original expr was found at least for one of the
6381 successors. After the loop, RES may happen to have zero value
6382 only if at some point the expr searched is present in av_set, but is
6383 not found below. In most cases, this situation is an error.
6384 The exception is when the original operation is blocked by
6385 bookkeeping generated for another fence or for another path in current
6386 move_op. */
6387 gcc_checking_assert (res == 1
6388 || (res == 0
6389 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
6390 || res == -1);
6391
6392 /* Merge data, clean up, etc. */
6393 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6394 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6395
6396 return res;
6397 }
6398
6399
6400 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6401 is the pointer to the av set with expressions we were looking for,
6402 PATH_P is the pointer to the traversed path. */
6403 static inline void
6404 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6405 {
6406 ilist_remove (path_p);
6407 av_set_clear (orig_ops_p);
6408 }
6409
6410 /* The driver function that implements move_op or find_used_regs
6411 functionality dependent whether code_motion_path_driver_INFO is set to
6412 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6413 of code (CFG traversal etc) that are shared among both functions. INSN
6414 is the insn we're starting the search from, ORIG_OPS are the expressions
6415 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6416 parameters of the driver, and STATIC_PARAMS are static parameters of
6417 the caller.
6418
6419 Returns whether original instructions were found. Note that top-level
6420 code_motion_path_driver always returns true. */
6421 static int
6422 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6423 cmpd_local_params_p local_params_in,
6424 void *static_params)
6425 {
6426 expr_t expr = NULL;
6427 basic_block bb = BLOCK_FOR_INSN (insn);
6428 insn_t first_insn, original_insn, bb_tail, before_first;
6429 bool removed_last_insn = false;
6430
6431 if (sched_verbose >= 6)
6432 {
6433 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6434 dump_insn (insn);
6435 sel_print (",");
6436 dump_av_set (orig_ops);
6437 sel_print (")\n");
6438 }
6439
6440 gcc_assert (orig_ops);
6441
6442 /* If no original operations exist below this insn, return immediately. */
6443 if (is_ineligible_successor (insn, path))
6444 {
6445 if (sched_verbose >= 6)
6446 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6447 return false;
6448 }
6449
6450 /* The block can have invalid av set, in which case it was created earlier
6451 during move_op. Return immediately. */
6452 if (sel_bb_head_p (insn))
6453 {
6454 if (! AV_SET_VALID_P (insn))
6455 {
6456 if (sched_verbose >= 6)
6457 sel_print ("Returned from block %d as it had invalid av set\n",
6458 bb->index);
6459 return false;
6460 }
6461
6462 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6463 {
6464 /* We have already found an original operation on this branch, do not
6465 go any further and just return TRUE here. If we don't stop here,
6466 function can have exponential behavior even on the small code
6467 with many different paths (e.g. with data speculation and
6468 recovery blocks). */
6469 if (sched_verbose >= 6)
6470 sel_print ("Block %d already visited in this traversal\n", bb->index);
6471 if (code_motion_path_driver_info->on_enter)
6472 return code_motion_path_driver_info->on_enter (insn,
6473 local_params_in,
6474 static_params,
6475 true);
6476 }
6477 }
6478
6479 if (code_motion_path_driver_info->on_enter)
6480 code_motion_path_driver_info->on_enter (insn, local_params_in,
6481 static_params, false);
6482 orig_ops = av_set_copy (orig_ops);
6483
6484 /* Filter the orig_ops set. */
6485 if (AV_SET_VALID_P (insn))
6486 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6487
6488 /* If no more original ops, return immediately. */
6489 if (!orig_ops)
6490 {
6491 if (sched_verbose >= 6)
6492 sel_print ("No intersection with av set of block %d\n", bb->index);
6493 return false;
6494 }
6495
6496 /* For non-speculative insns we have to leave only one form of the
6497 original operation, because if we don't, we may end up with
6498 different C_EXPRes and, consequently, with bookkeepings for different
6499 expression forms along the same code motion path. That may lead to
6500 generation of incorrect code. So for each code motion we stick to
6501 the single form of the instruction, except for speculative insns
6502 which we need to keep in different forms with all speculation
6503 types. */
6504 av_set_leave_one_nonspec (&orig_ops);
6505
6506 /* It is not possible that all ORIG_OPS are filtered out. */
6507 gcc_assert (orig_ops);
6508
6509 /* It is enough to place only heads and tails of visited basic blocks into
6510 the PATH. */
6511 ilist_add (&path, insn);
6512 first_insn = original_insn = insn;
6513 bb_tail = sel_bb_end (bb);
6514
6515 /* Descend the basic block in search of the original expr; this part
6516 corresponds to the part of the original move_op procedure executed
6517 before the recursive call. */
6518 for (;;)
6519 {
6520 /* Look at the insn and decide if it could be an ancestor of currently
6521 scheduling operation. If it is so, then the insn "dest = op" could
6522 either be replaced with "dest = reg", because REG now holds the result
6523 of OP, or just removed, if we've scheduled the insn as a whole.
6524
6525 If this insn doesn't contain currently scheduling OP, then proceed
6526 with searching and look at its successors. Operations we're searching
6527 for could have changed when moving up through this insn via
6528 substituting. In this case, perform unsubstitution on them first.
6529
6530 When traversing the DAG below this insn is finished, insert
6531 bookkeeping code, if the insn is a joint point, and remove
6532 leftovers. */
6533
6534 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6535 if (expr)
6536 {
6537 insn_t last_insn = PREV_INSN (insn);
6538
6539 /* We have found the original operation. */
6540 if (sched_verbose >= 6)
6541 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6542
6543 code_motion_path_driver_info->orig_expr_found
6544 (insn, expr, local_params_in, static_params);
6545
6546 /* Step back, so on the way back we'll start traversing from the
6547 previous insn (or we'll see that it's bb_note and skip that
6548 loop). */
6549 if (insn == first_insn)
6550 {
6551 first_insn = NEXT_INSN (last_insn);
6552 removed_last_insn = sel_bb_end_p (last_insn);
6553 }
6554 insn = last_insn;
6555 break;
6556 }
6557 else
6558 {
6559 /* We haven't found the original expr, continue descending the basic
6560 block. */
6561 if (code_motion_path_driver_info->orig_expr_not_found
6562 (insn, orig_ops, static_params))
6563 {
6564 /* Av set ops could have been changed when moving through this
6565 insn. To find them below it, we have to un-substitute them. */
6566 undo_transformations (&orig_ops, insn);
6567 }
6568 else
6569 {
6570 /* Clean up and return, if the hook tells us to do so. It may
6571 happen if we've encountered the previously created
6572 bookkeeping. */
6573 code_motion_path_driver_cleanup (&orig_ops, &path);
6574 return -1;
6575 }
6576
6577 gcc_assert (orig_ops);
6578 }
6579
6580 /* Stop at insn if we got to the end of BB. */
6581 if (insn == bb_tail)
6582 break;
6583
6584 insn = NEXT_INSN (insn);
6585 }
6586
6587 /* Here INSN either points to the insn before the original insn (may be
6588 bb_note, if original insn was a bb_head) or to the bb_end. */
6589 if (!expr)
6590 {
6591 int res;
6592 rtx_insn *last_insn = PREV_INSN (insn);
6593 bool added_to_path;
6594
6595 gcc_assert (insn == sel_bb_end (bb));
6596
6597 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6598 it's already in PATH then). */
6599 if (insn != first_insn)
6600 {
6601 ilist_add (&path, insn);
6602 added_to_path = true;
6603 }
6604 else
6605 added_to_path = false;
6606
6607 /* Process_successors should be able to find at least one
6608 successor for which code_motion_path_driver returns TRUE. */
6609 res = code_motion_process_successors (insn, orig_ops,
6610 path, static_params);
6611
6612 /* Jump in the end of basic block could have been removed or replaced
6613 during code_motion_process_successors, so recompute insn as the
6614 last insn in bb. */
6615 if (NEXT_INSN (last_insn) != insn)
6616 {
6617 insn = sel_bb_end (bb);
6618 first_insn = sel_bb_head (bb);
6619 if (first_insn != original_insn)
6620 first_insn = original_insn;
6621 }
6622
6623 /* Remove bb tail from path. */
6624 if (added_to_path)
6625 ilist_remove (&path);
6626
6627 if (res != 1)
6628 {
6629 /* This is the case when one of the original expr is no longer available
6630 due to bookkeeping created on this branch with the same register.
6631 In the original algorithm, which doesn't have update_data_sets call
6632 on a bookkeeping block, it would simply result in returning
6633 FALSE when we've encountered a previously generated bookkeeping
6634 insn in moveop_orig_expr_not_found. */
6635 code_motion_path_driver_cleanup (&orig_ops, &path);
6636 return res;
6637 }
6638 }
6639
6640 /* Don't need it any more. */
6641 av_set_clear (&orig_ops);
6642
6643 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6644 the beginning of the basic block. */
6645 before_first = PREV_INSN (first_insn);
6646 while (insn != before_first)
6647 {
6648 if (code_motion_path_driver_info->ascend)
6649 code_motion_path_driver_info->ascend (insn, static_params);
6650
6651 insn = PREV_INSN (insn);
6652 }
6653
6654 /* Now we're at the bb head. */
6655 insn = first_insn;
6656 ilist_remove (&path);
6657 local_params_in->removed_last_insn = removed_last_insn;
6658 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6659
6660 /* This should be the very last operation as at bb head we could change
6661 the numbering by creating bookkeeping blocks. */
6662 if (removed_last_insn)
6663 insn = PREV_INSN (insn);
6664
6665 /* If we have simplified the control flow and removed the first jump insn,
6666 there's no point in marking this block in the visited blocks bitmap. */
6667 if (BLOCK_FOR_INSN (insn))
6668 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6669 return true;
6670 }
6671
6672 /* Move up the operations from ORIG_OPS set traversing the dag starting
6673 from INSN. PATH represents the edges traversed so far.
6674 DEST is the register chosen for scheduling the current expr. Insert
6675 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6676 C_EXPR is how it looks like at the given cfg point.
6677 Set *SHOULD_MOVE to indicate whether we have only disconnected
6678 one of the insns found.
6679
6680 Returns whether original instructions were found, which is asserted
6681 to be true in the caller. */
6682 static bool
6683 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6684 rtx dest, expr_t c_expr, bool *should_move)
6685 {
6686 struct moveop_static_params sparams;
6687 struct cmpd_local_params lparams;
6688 int res;
6689
6690 /* Init params for code_motion_path_driver. */
6691 sparams.dest = dest;
6692 sparams.c_expr = c_expr;
6693 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6694 sparams.failed_insn = NULL;
6695 sparams.was_renamed = false;
6696 lparams.e1 = NULL;
6697
6698 /* We haven't visited any blocks yet. */
6699 bitmap_clear (code_motion_visited_blocks);
6700
6701 /* Set appropriate hooks and data. */
6702 code_motion_path_driver_info = &move_op_hooks;
6703 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6704
6705 gcc_assert (res != -1);
6706
6707 if (sparams.was_renamed)
6708 EXPR_WAS_RENAMED (expr_vliw) = true;
6709
6710 *should_move = (sparams.uid == -1);
6711
6712 return res;
6713 }
6714 \f
6715
6716 /* Functions that work with regions. */
6717
6718 /* Current number of seqno used in init_seqno and init_seqno_1. */
6719 static int cur_seqno;
6720
6721 /* A helper for init_seqno. Traverse the region starting from BB and
6722 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6723 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6724 static void
6725 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6726 {
6727 int bbi = BLOCK_TO_BB (bb->index);
6728 insn_t insn;
6729 insn_t succ_insn;
6730 succ_iterator si;
6731
6732 rtx_note *note = bb_note (bb);
6733 bitmap_set_bit (visited_bbs, bbi);
6734 if (blocks_to_reschedule)
6735 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6736
6737 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6738 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6739 {
6740 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6741 int succ_bbi = BLOCK_TO_BB (succ->index);
6742
6743 gcc_assert (in_current_region_p (succ));
6744
6745 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6746 {
6747 gcc_assert (succ_bbi > bbi);
6748
6749 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6750 }
6751 else if (blocks_to_reschedule)
6752 bitmap_set_bit (forced_ebb_heads, succ->index);
6753 }
6754
6755 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6756 INSN_SEQNO (insn) = cur_seqno--;
6757 }
6758
6759 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6760 blocks on which we're rescheduling when pipelining, FROM is the block where
6761 traversing region begins (it may not be the head of the region when
6762 pipelining, but the head of the loop instead).
6763
6764 Returns the maximal seqno found. */
6765 static int
6766 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6767 {
6768 bitmap_iterator bi;
6769 unsigned bbi;
6770
6771 auto_sbitmap visited_bbs (current_nr_blocks);
6772
6773 if (blocks_to_reschedule)
6774 {
6775 bitmap_ones (visited_bbs);
6776 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6777 {
6778 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6779 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6780 }
6781 }
6782 else
6783 {
6784 bitmap_clear (visited_bbs);
6785 from = EBB_FIRST_BB (0);
6786 }
6787
6788 cur_seqno = sched_max_luid - 1;
6789 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6790
6791 /* cur_seqno may be positive if the number of instructions is less than
6792 sched_max_luid - 1 (when rescheduling or if some instructions have been
6793 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6794 gcc_assert (cur_seqno >= 0);
6795
6796 return sched_max_luid - 1;
6797 }
6798
6799 /* Initialize scheduling parameters for current region. */
6800 static void
6801 sel_setup_region_sched_flags (void)
6802 {
6803 enable_schedule_as_rhs_p = 1;
6804 bookkeeping_p = 1;
6805 pipelining_p = (bookkeeping_p
6806 && (flag_sel_sched_pipelining != 0)
6807 && current_loop_nest != NULL
6808 && loop_has_exit_edges (current_loop_nest));
6809 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6810 max_ws = MAX_WS;
6811 }
6812
6813 /* Return true if all basic blocks of current region are empty. */
6814 static bool
6815 current_region_empty_p (void)
6816 {
6817 int i;
6818 for (i = 0; i < current_nr_blocks; i++)
6819 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6820 return false;
6821
6822 return true;
6823 }
6824
6825 /* Prepare and verify loop nest for pipelining. */
6826 static void
6827 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6828 {
6829 current_loop_nest = get_loop_nest_for_rgn (rgn);
6830
6831 if (!current_loop_nest)
6832 return;
6833
6834 /* If this loop has any saved loop preheaders from nested loops,
6835 add these basic blocks to the current region. */
6836 sel_add_loop_preheaders (bbs);
6837
6838 /* Check that we're starting with a valid information. */
6839 gcc_assert (loop_latch_edge (current_loop_nest));
6840 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6841 }
6842
6843 /* Compute instruction priorities for current region. */
6844 static void
6845 sel_compute_priorities (int rgn)
6846 {
6847 sched_rgn_compute_dependencies (rgn);
6848
6849 /* Compute insn priorities in haifa style. Then free haifa style
6850 dependencies that we've calculated for this. */
6851 compute_priorities ();
6852
6853 if (sched_verbose >= 5)
6854 debug_rgn_dependencies (0);
6855
6856 free_rgn_deps ();
6857 }
6858
6859 /* Init scheduling data for RGN. Returns true when this region should not
6860 be scheduled. */
6861 static bool
6862 sel_region_init (int rgn)
6863 {
6864 int i;
6865 bb_vec_t bbs;
6866
6867 rgn_setup_region (rgn);
6868
6869 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6870 do region initialization here so the region can be bundled correctly,
6871 but we'll skip the scheduling in sel_sched_region (). */
6872 if (current_region_empty_p ())
6873 return true;
6874
6875 bbs.create (current_nr_blocks);
6876
6877 for (i = 0; i < current_nr_blocks; i++)
6878 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6879
6880 sel_init_bbs (bbs);
6881
6882 if (flag_sel_sched_pipelining)
6883 setup_current_loop_nest (rgn, &bbs);
6884
6885 sel_setup_region_sched_flags ();
6886
6887 /* Initialize luids and dependence analysis which both sel-sched and haifa
6888 need. */
6889 sched_init_luids (bbs);
6890 sched_deps_init (false);
6891
6892 /* Initialize haifa data. */
6893 rgn_setup_sched_infos ();
6894 sel_set_sched_flags ();
6895 haifa_init_h_i_d (bbs);
6896
6897 sel_compute_priorities (rgn);
6898 init_deps_global ();
6899
6900 /* Main initialization. */
6901 sel_setup_sched_infos ();
6902 sel_init_global_and_expr (bbs);
6903
6904 bbs.release ();
6905
6906 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6907
6908 /* Init correct liveness sets on each instruction of a single-block loop.
6909 This is the only situation when we can't update liveness when calling
6910 compute_live for the first insn of the loop. */
6911 if (current_loop_nest)
6912 {
6913 int header =
6914 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6915 ? 1
6916 : 0);
6917
6918 if (current_nr_blocks == header + 1)
6919 update_liveness_on_insn
6920 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6921 }
6922
6923 /* Set hooks so that no newly generated insn will go out unnoticed. */
6924 sel_register_cfg_hooks ();
6925
6926 /* !!! We call target.sched.init () for the whole region, but we invoke
6927 targetm.sched.finish () for every ebb. */
6928 if (targetm.sched.init)
6929 /* None of the arguments are actually used in any target. */
6930 targetm.sched.init (sched_dump, sched_verbose, -1);
6931
6932 first_emitted_uid = get_max_uid () + 1;
6933 preheader_removed = false;
6934
6935 /* Reset register allocation ticks array. */
6936 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6937 reg_rename_this_tick = 0;
6938
6939 forced_ebb_heads = BITMAP_ALLOC (NULL);
6940
6941 setup_nop_vinsn ();
6942 current_copies = BITMAP_ALLOC (NULL);
6943 current_originators = BITMAP_ALLOC (NULL);
6944 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6945
6946 return false;
6947 }
6948
6949 /* Simplify insns after the scheduling. */
6950 static void
6951 simplify_changed_insns (void)
6952 {
6953 int i;
6954
6955 for (i = 0; i < current_nr_blocks; i++)
6956 {
6957 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6958 rtx_insn *insn;
6959
6960 FOR_BB_INSNS (bb, insn)
6961 if (INSN_P (insn))
6962 {
6963 expr_t expr = INSN_EXPR (insn);
6964
6965 if (EXPR_WAS_SUBSTITUTED (expr))
6966 validate_simplify_insn (insn);
6967 }
6968 }
6969 }
6970
6971 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6972 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6973 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6974 static void
6975 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6976 {
6977 rtx_insn *head, *tail;
6978 basic_block bb1 = bb;
6979 if (sched_verbose >= 2)
6980 sel_print ("Finishing schedule in bbs: ");
6981
6982 do
6983 {
6984 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6985
6986 if (sched_verbose >= 2)
6987 sel_print ("%d; ", bb1->index);
6988 }
6989 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6990
6991 if (sched_verbose >= 2)
6992 sel_print ("\n");
6993
6994 get_ebb_head_tail (bb, bb1, &head, &tail);
6995
6996 current_sched_info->head = head;
6997 current_sched_info->tail = tail;
6998 current_sched_info->prev_head = PREV_INSN (head);
6999 current_sched_info->next_tail = NEXT_INSN (tail);
7000 }
7001
7002 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7003 static void
7004 reset_sched_cycles_in_current_ebb (void)
7005 {
7006 int last_clock = 0;
7007 int haifa_last_clock = -1;
7008 int haifa_clock = 0;
7009 int issued_insns = 0;
7010 insn_t insn;
7011
7012 if (targetm.sched.init)
7013 {
7014 /* None of the arguments are actually used in any target.
7015 NB: We should have md_reset () hook for cases like this. */
7016 targetm.sched.init (sched_dump, sched_verbose, -1);
7017 }
7018
7019 state_reset (curr_state);
7020 advance_state (curr_state);
7021
7022 for (insn = current_sched_info->head;
7023 insn != current_sched_info->next_tail;
7024 insn = NEXT_INSN (insn))
7025 {
7026 int cost, haifa_cost;
7027 int sort_p;
7028 bool asm_p, real_insn, after_stall, all_issued;
7029 int clock;
7030
7031 if (!INSN_P (insn))
7032 continue;
7033
7034 asm_p = false;
7035 real_insn = recog_memoized (insn) >= 0;
7036 clock = INSN_SCHED_CYCLE (insn);
7037
7038 cost = clock - last_clock;
7039
7040 /* Initialize HAIFA_COST. */
7041 if (! real_insn)
7042 {
7043 asm_p = INSN_ASM_P (insn);
7044
7045 if (asm_p)
7046 /* This is asm insn which *had* to be scheduled first
7047 on the cycle. */
7048 haifa_cost = 1;
7049 else
7050 /* This is a use/clobber insn. It should not change
7051 cost. */
7052 haifa_cost = 0;
7053 }
7054 else
7055 haifa_cost = estimate_insn_cost (insn, curr_state);
7056
7057 /* Stall for whatever cycles we've stalled before. */
7058 after_stall = 0;
7059 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7060 {
7061 haifa_cost = cost;
7062 after_stall = 1;
7063 }
7064 all_issued = issued_insns == issue_rate;
7065 if (haifa_cost == 0 && all_issued)
7066 haifa_cost = 1;
7067 if (haifa_cost > 0)
7068 {
7069 int i = 0;
7070
7071 while (haifa_cost--)
7072 {
7073 advance_state (curr_state);
7074 issued_insns = 0;
7075 i++;
7076
7077 if (sched_verbose >= 2)
7078 {
7079 sel_print ("advance_state (state_transition)\n");
7080 debug_state (curr_state);
7081 }
7082
7083 /* The DFA may report that e.g. insn requires 2 cycles to be
7084 issued, but on the next cycle it says that insn is ready
7085 to go. Check this here. */
7086 if (!after_stall
7087 && real_insn
7088 && haifa_cost > 0
7089 && estimate_insn_cost (insn, curr_state) == 0)
7090 break;
7091
7092 /* When the data dependency stall is longer than the DFA stall,
7093 and when we have issued exactly issue_rate insns and stalled,
7094 it could be that after this longer stall the insn will again
7095 become unavailable to the DFA restrictions. Looks strange
7096 but happens e.g. on x86-64. So recheck DFA on the last
7097 iteration. */
7098 if ((after_stall || all_issued)
7099 && real_insn
7100 && haifa_cost == 0)
7101 haifa_cost = estimate_insn_cost (insn, curr_state);
7102 }
7103
7104 haifa_clock += i;
7105 if (sched_verbose >= 2)
7106 sel_print ("haifa clock: %d\n", haifa_clock);
7107 }
7108 else
7109 gcc_assert (haifa_cost == 0);
7110
7111 if (sched_verbose >= 2)
7112 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7113
7114 if (targetm.sched.dfa_new_cycle)
7115 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7116 haifa_last_clock, haifa_clock,
7117 &sort_p))
7118 {
7119 advance_state (curr_state);
7120 issued_insns = 0;
7121 haifa_clock++;
7122 if (sched_verbose >= 2)
7123 {
7124 sel_print ("advance_state (dfa_new_cycle)\n");
7125 debug_state (curr_state);
7126 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7127 }
7128 }
7129
7130 if (real_insn)
7131 {
7132 static state_t temp = NULL;
7133
7134 if (!temp)
7135 temp = xmalloc (dfa_state_size);
7136 memcpy (temp, curr_state, dfa_state_size);
7137
7138 cost = state_transition (curr_state, insn);
7139 if (memcmp (temp, curr_state, dfa_state_size))
7140 issued_insns++;
7141
7142 if (sched_verbose >= 2)
7143 {
7144 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7145 haifa_clock + 1);
7146 debug_state (curr_state);
7147 }
7148 gcc_assert (cost < 0);
7149 }
7150
7151 if (targetm.sched.variable_issue)
7152 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7153
7154 INSN_SCHED_CYCLE (insn) = haifa_clock;
7155
7156 last_clock = clock;
7157 haifa_last_clock = haifa_clock;
7158 }
7159 }
7160
7161 /* Put TImode markers on insns starting a new issue group. */
7162 static void
7163 put_TImodes (void)
7164 {
7165 int last_clock = -1;
7166 insn_t insn;
7167
7168 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7169 insn = NEXT_INSN (insn))
7170 {
7171 int cost, clock;
7172
7173 if (!INSN_P (insn))
7174 continue;
7175
7176 clock = INSN_SCHED_CYCLE (insn);
7177 cost = (last_clock == -1) ? 1 : clock - last_clock;
7178
7179 gcc_assert (cost >= 0);
7180
7181 if (issue_rate > 1
7182 && GET_CODE (PATTERN (insn)) != USE
7183 && GET_CODE (PATTERN (insn)) != CLOBBER)
7184 {
7185 if (reload_completed && cost > 0)
7186 PUT_MODE (insn, TImode);
7187
7188 last_clock = clock;
7189 }
7190
7191 if (sched_verbose >= 2)
7192 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7193 }
7194 }
7195
7196 /* Perform MD_FINISH on EBBs comprising current region. When
7197 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7198 to produce correct sched cycles on insns. */
7199 static void
7200 sel_region_target_finish (bool reset_sched_cycles_p)
7201 {
7202 int i;
7203 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7204
7205 for (i = 0; i < current_nr_blocks; i++)
7206 {
7207 if (bitmap_bit_p (scheduled_blocks, i))
7208 continue;
7209
7210 /* While pipelining outer loops, skip bundling for loop
7211 preheaders. Those will be rescheduled in the outer loop. */
7212 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7213 continue;
7214
7215 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7216
7217 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7218 continue;
7219
7220 if (reset_sched_cycles_p)
7221 reset_sched_cycles_in_current_ebb ();
7222
7223 if (targetm.sched.init)
7224 targetm.sched.init (sched_dump, sched_verbose, -1);
7225
7226 put_TImodes ();
7227
7228 if (targetm.sched.finish)
7229 {
7230 targetm.sched.finish (sched_dump, sched_verbose);
7231
7232 /* Extend luids so that insns generated by the target will
7233 get zero luid. */
7234 sched_extend_luids ();
7235 }
7236 }
7237
7238 BITMAP_FREE (scheduled_blocks);
7239 }
7240
7241 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7242 is true, make an additional pass emulating scheduler to get correct insn
7243 cycles for md_finish calls. */
7244 static void
7245 sel_region_finish (bool reset_sched_cycles_p)
7246 {
7247 simplify_changed_insns ();
7248 sched_finish_ready_list ();
7249 free_nop_pool ();
7250
7251 /* Free the vectors. */
7252 vec_av_set.release ();
7253 BITMAP_FREE (current_copies);
7254 BITMAP_FREE (current_originators);
7255 BITMAP_FREE (code_motion_visited_blocks);
7256 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7257 vinsn_vec_free (vec_target_unavailable_vinsns);
7258
7259 /* If LV_SET of the region head should be updated, do it now because
7260 there will be no other chance. */
7261 {
7262 succ_iterator si;
7263 insn_t insn;
7264
7265 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7266 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7267 {
7268 basic_block bb = BLOCK_FOR_INSN (insn);
7269
7270 if (!BB_LV_SET_VALID_P (bb))
7271 compute_live (insn);
7272 }
7273 }
7274
7275 /* Emulate the Haifa scheduler for bundling. */
7276 if (reload_completed)
7277 sel_region_target_finish (reset_sched_cycles_p);
7278
7279 sel_finish_global_and_expr ();
7280
7281 BITMAP_FREE (forced_ebb_heads);
7282
7283 free_nop_vinsn ();
7284
7285 finish_deps_global ();
7286 sched_finish_luids ();
7287 h_d_i_d.release ();
7288
7289 sel_finish_bbs ();
7290 BITMAP_FREE (blocks_to_reschedule);
7291
7292 sel_unregister_cfg_hooks ();
7293
7294 max_issue_size = 0;
7295 }
7296 \f
7297
7298 /* Functions that implement the scheduler driver. */
7299
7300 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7301 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7302 of insns scheduled -- these would be postprocessed later. */
7303 static void
7304 schedule_on_fences (flist_t fences, int max_seqno,
7305 ilist_t **scheduled_insns_tailpp)
7306 {
7307 flist_t old_fences = fences;
7308
7309 if (sched_verbose >= 1)
7310 {
7311 sel_print ("\nScheduling on fences: ");
7312 dump_flist (fences);
7313 sel_print ("\n");
7314 }
7315
7316 scheduled_something_on_previous_fence = false;
7317 for (; fences; fences = FLIST_NEXT (fences))
7318 {
7319 fence_t fence = NULL;
7320 int seqno = 0;
7321 flist_t fences2;
7322 bool first_p = true;
7323
7324 /* Choose the next fence group to schedule.
7325 The fact that insn can be scheduled only once
7326 on the cycle is guaranteed by two properties:
7327 1. seqnos of parallel groups decrease with each iteration.
7328 2. If is_ineligible_successor () sees the larger seqno, it
7329 checks if candidate insn is_in_current_fence_p (). */
7330 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7331 {
7332 fence_t f = FLIST_FENCE (fences2);
7333
7334 if (!FENCE_PROCESSED_P (f))
7335 {
7336 int i = INSN_SEQNO (FENCE_INSN (f));
7337
7338 if (first_p || i > seqno)
7339 {
7340 seqno = i;
7341 fence = f;
7342 first_p = false;
7343 }
7344 else
7345 /* ??? Seqnos of different groups should be different. */
7346 gcc_assert (1 || i != seqno);
7347 }
7348 }
7349
7350 gcc_assert (fence);
7351
7352 /* As FENCE is nonnull, SEQNO is initialized. */
7353 seqno -= max_seqno + 1;
7354 fill_insns (fence, seqno, scheduled_insns_tailpp);
7355 FENCE_PROCESSED_P (fence) = true;
7356 }
7357
7358 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7359 don't need to keep bookkeeping-invalidated and target-unavailable
7360 vinsns any more. */
7361 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7362 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7363 }
7364
7365 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7366 static void
7367 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7368 {
7369 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7370
7371 /* The first element is already processed. */
7372 while ((fences = FLIST_NEXT (fences)))
7373 {
7374 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7375
7376 if (*min_seqno > seqno)
7377 *min_seqno = seqno;
7378 else if (*max_seqno < seqno)
7379 *max_seqno = seqno;
7380 }
7381 }
7382
7383 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7384 static flist_t
7385 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7386 {
7387 flist_t old_fences = fences;
7388 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7389 int max_time = 0;
7390
7391 flist_tail_init (new_fences);
7392 for (; fences; fences = FLIST_NEXT (fences))
7393 {
7394 fence_t fence = FLIST_FENCE (fences);
7395 insn_t insn;
7396
7397 if (!FENCE_BNDS (fence))
7398 {
7399 /* This fence doesn't have any successors. */
7400 if (!FENCE_SCHEDULED_P (fence))
7401 {
7402 /* Nothing was scheduled on this fence. */
7403 int seqno;
7404
7405 insn = FENCE_INSN (fence);
7406 seqno = INSN_SEQNO (insn);
7407 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7408
7409 if (sched_verbose >= 1)
7410 sel_print ("Fence %d[%d] has not changed\n",
7411 INSN_UID (insn),
7412 BLOCK_NUM (insn));
7413 move_fence_to_fences (fences, new_fences);
7414 }
7415 }
7416 else
7417 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7418 max_time = MAX (max_time, FENCE_CYCLE (fence));
7419 }
7420
7421 flist_clear (&old_fences);
7422 *ptime = max_time;
7423 return FLIST_TAIL_HEAD (new_fences);
7424 }
7425
7426 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7427 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7428 the highest seqno used in a region. Return the updated highest seqno. */
7429 static int
7430 update_seqnos_and_stage (int min_seqno, int max_seqno,
7431 int highest_seqno_in_use,
7432 ilist_t *pscheduled_insns)
7433 {
7434 int new_hs;
7435 ilist_iterator ii;
7436 insn_t insn;
7437
7438 /* Actually, new_hs is the seqno of the instruction, that was
7439 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7440 if (*pscheduled_insns)
7441 {
7442 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7443 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7444 gcc_assert (new_hs > highest_seqno_in_use);
7445 }
7446 else
7447 new_hs = highest_seqno_in_use;
7448
7449 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7450 {
7451 gcc_assert (INSN_SEQNO (insn) < 0);
7452 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7453 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7454
7455 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7456 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7457 require > 1GB of memory e.g. on limit-fnargs.c. */
7458 if (! pipelining_p)
7459 free_data_for_scheduled_insn (insn);
7460 }
7461
7462 ilist_clear (pscheduled_insns);
7463 global_level++;
7464
7465 return new_hs;
7466 }
7467
7468 /* The main driver for scheduling a region. This function is responsible
7469 for correct propagation of fences (i.e. scheduling points) and creating
7470 a group of parallel insns at each of them. It also supports
7471 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7472 of scheduling. */
7473 static void
7474 sel_sched_region_2 (int orig_max_seqno)
7475 {
7476 int highest_seqno_in_use = orig_max_seqno;
7477 int max_time = 0;
7478
7479 stat_bookkeeping_copies = 0;
7480 stat_insns_needed_bookkeeping = 0;
7481 stat_renamed_scheduled = 0;
7482 stat_substitutions_total = 0;
7483 num_insns_scheduled = 0;
7484
7485 while (fences)
7486 {
7487 int min_seqno, max_seqno;
7488 ilist_t scheduled_insns = NULL;
7489 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7490
7491 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7492 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7493 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7494 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7495 highest_seqno_in_use,
7496 &scheduled_insns);
7497 }
7498
7499 if (sched_verbose >= 1)
7500 {
7501 sel_print ("Total scheduling time: %d cycles\n", max_time);
7502 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7503 "bookkeeping, %d insns renamed, %d insns substituted\n",
7504 stat_bookkeeping_copies,
7505 stat_insns_needed_bookkeeping,
7506 stat_renamed_scheduled,
7507 stat_substitutions_total);
7508 }
7509 }
7510
7511 /* Schedule a region. When pipelining, search for possibly never scheduled
7512 bookkeeping code and schedule it. Reschedule pipelined code without
7513 pipelining after. */
7514 static void
7515 sel_sched_region_1 (void)
7516 {
7517 int orig_max_seqno;
7518
7519 /* Remove empty blocks that might be in the region from the beginning. */
7520 purge_empty_blocks ();
7521
7522 orig_max_seqno = init_seqno (NULL, NULL);
7523 gcc_assert (orig_max_seqno >= 1);
7524
7525 /* When pipelining outer loops, create fences on the loop header,
7526 not preheader. */
7527 fences = NULL;
7528 if (current_loop_nest)
7529 init_fences (BB_END (EBB_FIRST_BB (0)));
7530 else
7531 init_fences (bb_note (EBB_FIRST_BB (0)));
7532 global_level = 1;
7533
7534 sel_sched_region_2 (orig_max_seqno);
7535
7536 gcc_assert (fences == NULL);
7537
7538 if (pipelining_p)
7539 {
7540 int i;
7541 basic_block bb;
7542 struct flist_tail_def _new_fences;
7543 flist_tail_t new_fences = &_new_fences;
7544 bool do_p = true;
7545
7546 pipelining_p = false;
7547 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7548 bookkeeping_p = false;
7549 enable_schedule_as_rhs_p = false;
7550
7551 /* Schedule newly created code, that has not been scheduled yet. */
7552 do_p = true;
7553
7554 while (do_p)
7555 {
7556 do_p = false;
7557
7558 for (i = 0; i < current_nr_blocks; i++)
7559 {
7560 basic_block bb = EBB_FIRST_BB (i);
7561
7562 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7563 {
7564 if (! bb_ends_ebb_p (bb))
7565 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7566 if (sel_bb_empty_p (bb))
7567 {
7568 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7569 continue;
7570 }
7571 clear_outdated_rtx_info (bb);
7572 if (sel_insn_is_speculation_check (BB_END (bb))
7573 && JUMP_P (BB_END (bb)))
7574 bitmap_set_bit (blocks_to_reschedule,
7575 BRANCH_EDGE (bb)->dest->index);
7576 }
7577 else if (! sel_bb_empty_p (bb)
7578 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7579 bitmap_set_bit (blocks_to_reschedule, bb->index);
7580 }
7581
7582 for (i = 0; i < current_nr_blocks; i++)
7583 {
7584 bb = EBB_FIRST_BB (i);
7585
7586 /* While pipelining outer loops, skip bundling for loop
7587 preheaders. Those will be rescheduled in the outer
7588 loop. */
7589 if (sel_is_loop_preheader_p (bb))
7590 {
7591 clear_outdated_rtx_info (bb);
7592 continue;
7593 }
7594
7595 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7596 {
7597 flist_tail_init (new_fences);
7598
7599 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7600
7601 /* Mark BB as head of the new ebb. */
7602 bitmap_set_bit (forced_ebb_heads, bb->index);
7603
7604 gcc_assert (fences == NULL);
7605
7606 init_fences (bb_note (bb));
7607
7608 sel_sched_region_2 (orig_max_seqno);
7609
7610 do_p = true;
7611 break;
7612 }
7613 }
7614 }
7615 }
7616 }
7617
7618 /* Schedule the RGN region. */
7619 void
7620 sel_sched_region (int rgn)
7621 {
7622 bool schedule_p;
7623 bool reset_sched_cycles_p;
7624
7625 if (sel_region_init (rgn))
7626 return;
7627
7628 if (sched_verbose >= 1)
7629 sel_print ("Scheduling region %d\n", rgn);
7630
7631 schedule_p = (!sched_is_disabled_for_current_region_p ()
7632 && dbg_cnt (sel_sched_region_cnt));
7633 reset_sched_cycles_p = pipelining_p;
7634 if (schedule_p)
7635 sel_sched_region_1 ();
7636 else
7637 {
7638 /* Schedule always selecting the next insn to make the correct data
7639 for bundling or other later passes. */
7640 pipelining_p = false;
7641 reset_sched_cycles_p = false;
7642 force_next_insn = 1;
7643 sel_sched_region_1 ();
7644 force_next_insn = 0;
7645 }
7646 sel_region_finish (reset_sched_cycles_p);
7647 }
7648
7649 /* Perform global init for the scheduler. */
7650 static void
7651 sel_global_init (void)
7652 {
7653 /* Remove empty blocks: their presence can break assumptions elsewhere,
7654 e.g. the logic to invoke update_liveness_on_insn in sel_region_init. */
7655 cleanup_cfg (0);
7656
7657 calculate_dominance_info (CDI_DOMINATORS);
7658 alloc_sched_pools ();
7659
7660 /* Setup the infos for sched_init. */
7661 sel_setup_sched_infos ();
7662 setup_sched_dump ();
7663
7664 sched_rgn_init (false);
7665 sched_init ();
7666
7667 sched_init_bbs ();
7668 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7669 after_recovery = 0;
7670 can_issue_more = issue_rate;
7671
7672 sched_extend_target ();
7673 sched_deps_init (true);
7674 setup_nop_and_exit_insns ();
7675 sel_extend_global_bb_info ();
7676 init_lv_sets ();
7677 init_hard_regs_data ();
7678 }
7679
7680 /* Free the global data of the scheduler. */
7681 static void
7682 sel_global_finish (void)
7683 {
7684 free_bb_note_pool ();
7685 free_lv_sets ();
7686 sel_finish_global_bb_info ();
7687
7688 free_regset_pool ();
7689 free_nop_and_exit_insns ();
7690
7691 sched_rgn_finish ();
7692 sched_deps_finish ();
7693 sched_finish ();
7694
7695 if (current_loops)
7696 sel_finish_pipelining ();
7697
7698 free_sched_pools ();
7699 free_dominance_info (CDI_DOMINATORS);
7700 }
7701
7702 /* Return true when we need to skip selective scheduling. Used for debugging. */
7703 bool
7704 maybe_skip_selective_scheduling (void)
7705 {
7706 return ! dbg_cnt (sel_sched_cnt);
7707 }
7708
7709 /* The entry point. */
7710 void
7711 run_selective_scheduling (void)
7712 {
7713 int rgn;
7714
7715 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7716 return;
7717
7718 sel_global_init ();
7719
7720 for (rgn = 0; rgn < nr_regions; rgn++)
7721 sel_sched_region (rgn);
7722
7723 sel_global_finish ();
7724 }
7725
7726 #endif