]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched.c
Update copyright years in gcc/
[thirdparty/gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h"
44
45 #ifdef INSN_SCHEDULING
46 #include "sel-sched-ir.h"
47 #include "sel-sched-dump.h"
48 #include "sel-sched.h"
49 #include "dbgcnt.h"
50
51 /* Implementation of selective scheduling approach.
52 The below implementation follows the original approach with the following
53 changes:
54
55 o the scheduler works after register allocation (but can be also tuned
56 to work before RA);
57 o some instructions are not copied or register renamed;
58 o conditional jumps are not moved with code duplication;
59 o several jumps in one parallel group are not supported;
60 o when pipelining outer loops, code motion through inner loops
61 is not supported;
62 o control and data speculation are supported;
63 o some improvements for better compile time/performance were made.
64
65 Terminology
66 ===========
67
68 A vinsn, or virtual insn, is an insn with additional data characterizing
69 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
70 Vinsns also act as smart pointers to save memory by reusing them in
71 different expressions. A vinsn is described by vinsn_t type.
72
73 An expression is a vinsn with additional data characterizing its properties
74 at some point in the control flow graph. The data may be its usefulness,
75 priority, speculative status, whether it was renamed/subsituted, etc.
76 An expression is described by expr_t type.
77
78 Availability set (av_set) is a set of expressions at a given control flow
79 point. It is represented as av_set_t. The expressions in av sets are kept
80 sorted in the terms of expr_greater_p function. It allows to truncate
81 the set while leaving the best expressions.
82
83 A fence is a point through which code motion is prohibited. On each step,
84 we gather a parallel group of insns at a fence. It is possible to have
85 multiple fences. A fence is represented via fence_t.
86
87 A boundary is the border between the fence group and the rest of the code.
88 Currently, we never have more than one boundary per fence, as we finalize
89 the fence group when a jump is scheduled. A boundary is represented
90 via bnd_t.
91
92 High-level overview
93 ===================
94
95 The scheduler finds regions to schedule, schedules each one, and finalizes.
96 The regions are formed starting from innermost loops, so that when the inner
97 loop is pipelined, its prologue can be scheduled together with yet unprocessed
98 outer loop. The rest of acyclic regions are found using extend_rgns:
99 the blocks that are not yet allocated to any regions are traversed in top-down
100 order, and a block is added to a region to which all its predecessors belong;
101 otherwise, the block starts its own region.
102
103 The main scheduling loop (sel_sched_region_2) consists of just
104 scheduling on each fence and updating fences. For each fence,
105 we fill a parallel group of insns (fill_insns) until some insns can be added.
106 First, we compute available exprs (av-set) at the boundary of the current
107 group. Second, we choose the best expression from it. If the stall is
108 required to schedule any of the expressions, we advance the current cycle
109 appropriately. So, the final group does not exactly correspond to a VLIW
110 word. Third, we move the chosen expression to the boundary (move_op)
111 and update the intermediate av sets and liveness sets. We quit fill_insns
112 when either no insns left for scheduling or we have scheduled enough insns
113 so we feel like advancing a scheduling point.
114
115 Computing available expressions
116 ===============================
117
118 The computation (compute_av_set) is a bottom-up traversal. At each insn,
119 we're moving the union of its successors' sets through it via
120 moveup_expr_set. The dependent expressions are removed. Local
121 transformations (substitution, speculation) are applied to move more
122 exprs. Then the expr corresponding to the current insn is added.
123 The result is saved on each basic block header.
124
125 When traversing the CFG, we're moving down for no more than max_ws insns.
126 Also, we do not move down to ineligible successors (is_ineligible_successor),
127 which include moving along a back-edge, moving to already scheduled code,
128 and moving to another fence. The first two restrictions are lifted during
129 pipelining, which allows us to move insns along a back-edge. We always have
130 an acyclic region for scheduling because we forbid motion through fences.
131
132 Choosing the best expression
133 ============================
134
135 We sort the final availability set via sel_rank_for_schedule, then we remove
136 expressions which are not yet ready (tick_check_p) or which dest registers
137 cannot be used. For some of them, we choose another register via
138 find_best_reg. To do this, we run find_used_regs to calculate the set of
139 registers which cannot be used. The find_used_regs function performs
140 a traversal of code motion paths for an expr. We consider for renaming
141 only registers which are from the same regclass as the original one and
142 using which does not interfere with any live ranges. Finally, we convert
143 the resulting set to the ready list format and use max_issue and reorder*
144 hooks similarly to the Haifa scheduler.
145
146 Scheduling the best expression
147 ==============================
148
149 We run the move_op routine to perform the same type of code motion paths
150 traversal as in find_used_regs. (These are working via the same driver,
151 code_motion_path_driver.) When moving down the CFG, we look for original
152 instruction that gave birth to a chosen expression. We undo
153 the transformations performed on an expression via the history saved in it.
154 When found, we remove the instruction or leave a reg-reg copy/speculation
155 check if needed. On a way up, we insert bookkeeping copies at each join
156 point. If a copy is not needed, it will be removed later during this
157 traversal. We update the saved av sets and liveness sets on the way up, too.
158
159 Finalizing the schedule
160 =======================
161
162 When pipelining, we reschedule the blocks from which insns were pipelined
163 to get a tighter schedule. On Itanium, we also perform bundling via
164 the same routine from ia64.c.
165
166 Dependence analysis changes
167 ===========================
168
169 We augmented the sched-deps.c with hooks that get called when a particular
170 dependence is found in a particular part of an insn. Using these hooks, we
171 can do several actions such as: determine whether an insn can be moved through
172 another (has_dependence_p, moveup_expr); find out whether an insn can be
173 scheduled on the current cycle (tick_check_p); find out registers that
174 are set/used/clobbered by an insn and find out all the strange stuff that
175 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
176 init_global_and_expr_for_insn).
177
178 Initialization changes
179 ======================
180
181 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
182 reused in all of the schedulers. We have split up the initialization of data
183 of such parts into different functions prefixed with scheduler type and
184 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
185 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
186 The same splitting is done with current_sched_info structure:
187 dependence-related parts are in sched_deps_info, common part is in
188 common_sched_info, and haifa/sel/etc part is in current_sched_info.
189
190 Target contexts
191 ===============
192
193 As we now have multiple-point scheduling, this would not work with backends
194 which save some of the scheduler state to use it in the target hooks.
195 For this purpose, we introduce a concept of target contexts, which
196 encapsulate such information. The backend should implement simple routines
197 of allocating/freeing/setting such a context. The scheduler calls these
198 as target hooks and handles the target context as an opaque pointer (similar
199 to the DFA state type, state_t).
200
201 Various speedups
202 ================
203
204 As the correct data dependence graph is not supported during scheduling (which
205 is to be changed in mid-term), we cache as much of the dependence analysis
206 results as possible to avoid reanalyzing. This includes: bitmap caches on
207 each insn in stream of the region saying yes/no for a query with a pair of
208 UIDs; hashtables with the previously done transformations on each insn in
209 stream; a vector keeping a history of transformations on each expr.
210
211 Also, we try to minimize the dependence context used on each fence to check
212 whether the given expression is ready for scheduling by removing from it
213 insns that are definitely completed the execution. The results of
214 tick_check_p checks are also cached in a vector on each fence.
215
216 We keep a valid liveness set on each insn in a region to avoid the high
217 cost of recomputation on large basic blocks.
218
219 Finally, we try to minimize the number of needed updates to the availability
220 sets. The updates happen in two cases: when fill_insns terminates,
221 we advance all fences and increase the stage number to show that the region
222 has changed and the sets are to be recomputed; and when the next iteration
223 of a loop in fill_insns happens (but this one reuses the saved av sets
224 on bb headers.) Thus, we try to break the fill_insns loop only when
225 "significant" number of insns from the current scheduling window was
226 scheduled. This should be made a target param.
227
228
229 TODO: correctly support the data dependence graph at all stages and get rid
230 of all caches. This should speed up the scheduler.
231 TODO: implement moving cond jumps with bookkeeping copies on both targets.
232 TODO: tune the scheduler before RA so it does not create too much pseudos.
233
234
235 References:
236 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
237 selective scheduling and software pipelining.
238 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
239
240 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
241 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
242 for GCC. In Proceedings of GCC Developers' Summit 2006.
243
244 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
245 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
246 http://rogue.colorado.edu/EPIC7/.
247
248 */
249
250 /* True when pipelining is enabled. */
251 bool pipelining_p;
252
253 /* True if bookkeeping is enabled. */
254 bool bookkeeping_p;
255
256 /* Maximum number of insns that are eligible for renaming. */
257 int max_insns_to_rename;
258 \f
259
260 /* Definitions of local types and macros. */
261
262 /* Represents possible outcomes of moving an expression through an insn. */
263 enum MOVEUP_EXPR_CODE
264 {
265 /* The expression is not changed. */
266 MOVEUP_EXPR_SAME,
267
268 /* Not changed, but requires a new destination register. */
269 MOVEUP_EXPR_AS_RHS,
270
271 /* Cannot be moved. */
272 MOVEUP_EXPR_NULL,
273
274 /* Changed (substituted or speculated). */
275 MOVEUP_EXPR_CHANGED
276 };
277
278 /* The container to be passed into rtx search & replace functions. */
279 struct rtx_search_arg
280 {
281 /* What we are searching for. */
282 rtx x;
283
284 /* The occurrence counter. */
285 int n;
286 };
287
288 typedef struct rtx_search_arg *rtx_search_arg_p;
289
290 /* This struct contains precomputed hard reg sets that are needed when
291 computing registers available for renaming. */
292 struct hard_regs_data
293 {
294 /* For every mode, this stores registers available for use with
295 that mode. */
296 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
297
298 /* True when regs_for_mode[mode] is initialized. */
299 bool regs_for_mode_ok[NUM_MACHINE_MODES];
300
301 /* For every register, it has regs that are ok to rename into it.
302 The register in question is always set. If not, this means
303 that the whole set is not computed yet. */
304 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
305
306 /* For every mode, this stores registers not available due to
307 call clobbering. */
308 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
309
310 /* All registers that are used or call used. */
311 HARD_REG_SET regs_ever_used;
312
313 #ifdef STACK_REGS
314 /* Stack registers. */
315 HARD_REG_SET stack_regs;
316 #endif
317 };
318
319 /* Holds the results of computation of available for renaming and
320 unavailable hard registers. */
321 struct reg_rename
322 {
323 /* These are unavailable due to calls crossing, globalness, etc. */
324 HARD_REG_SET unavailable_hard_regs;
325
326 /* These are *available* for renaming. */
327 HARD_REG_SET available_for_renaming;
328
329 /* Whether this code motion path crosses a call. */
330 bool crosses_call;
331 };
332
333 /* A global structure that contains the needed information about harg
334 regs. */
335 static struct hard_regs_data sel_hrd;
336 \f
337
338 /* This structure holds local data used in code_motion_path_driver hooks on
339 the same or adjacent levels of recursion. Here we keep those parameters
340 that are not used in code_motion_path_driver routine itself, but only in
341 its hooks. Moreover, all parameters that can be modified in hooks are
342 in this structure, so all other parameters passed explicitly to hooks are
343 read-only. */
344 struct cmpd_local_params
345 {
346 /* Local params used in move_op_* functions. */
347
348 /* Edges for bookkeeping generation. */
349 edge e1, e2;
350
351 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
352 expr_t c_expr_merged, c_expr_local;
353
354 /* Local params used in fur_* functions. */
355 /* Copy of the ORIGINAL_INSN list, stores the original insns already
356 found before entering the current level of code_motion_path_driver. */
357 def_list_t old_original_insns;
358
359 /* Local params used in move_op_* functions. */
360 /* True when we have removed last insn in the block which was
361 also a boundary. Do not update anything or create bookkeeping copies. */
362 BOOL_BITFIELD removed_last_insn : 1;
363 };
364
365 /* Stores the static parameters for move_op_* calls. */
366 struct moveop_static_params
367 {
368 /* Destination register. */
369 rtx dest;
370
371 /* Current C_EXPR. */
372 expr_t c_expr;
373
374 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
375 they are to be removed. */
376 int uid;
377
378 #ifdef ENABLE_CHECKING
379 /* This is initialized to the insn on which the driver stopped its traversal. */
380 insn_t failed_insn;
381 #endif
382
383 /* True if we scheduled an insn with different register. */
384 bool was_renamed;
385 };
386
387 /* Stores the static parameters for fur_* calls. */
388 struct fur_static_params
389 {
390 /* Set of registers unavailable on the code motion path. */
391 regset used_regs;
392
393 /* Pointer to the list of original insns definitions. */
394 def_list_t *original_insns;
395
396 /* True if a code motion path contains a CALL insn. */
397 bool crosses_call;
398 };
399
400 typedef struct fur_static_params *fur_static_params_p;
401 typedef struct cmpd_local_params *cmpd_local_params_p;
402 typedef struct moveop_static_params *moveop_static_params_p;
403
404 /* Set of hooks and parameters that determine behaviour specific to
405 move_op or find_used_regs functions. */
406 struct code_motion_path_driver_info_def
407 {
408 /* Called on enter to the basic block. */
409 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
410
411 /* Called when original expr is found. */
412 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
413
414 /* Called while descending current basic block if current insn is not
415 the original EXPR we're searching for. */
416 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
417
418 /* Function to merge C_EXPRes from different successors. */
419 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
420
421 /* Function to finalize merge from different successors and possibly
422 deallocate temporary data structures used for merging. */
423 void (*after_merge_succs) (cmpd_local_params_p, void *);
424
425 /* Called on the backward stage of recursion to do moveup_expr.
426 Used only with move_op_*. */
427 void (*ascend) (insn_t, void *);
428
429 /* Called on the ascending pass, before returning from the current basic
430 block or from the whole traversal. */
431 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
432
433 /* When processing successors in move_op we need only descend into
434 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
435 int succ_flags;
436
437 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
438 const char *routine_name;
439 };
440
441 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
442 FUR_HOOKS. */
443 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
444
445 /* Set of hooks for performing move_op and find_used_regs routines with
446 code_motion_path_driver. */
447 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
448
449 /* True if/when we want to emulate Haifa scheduler in the common code.
450 This is used in sched_rgn_local_init and in various places in
451 sched-deps.c. */
452 int sched_emulate_haifa_p;
453
454 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
455 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
456 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
457 scheduling window. */
458 int global_level;
459
460 /* Current fences. */
461 flist_t fences;
462
463 /* True when separable insns should be scheduled as RHSes. */
464 static bool enable_schedule_as_rhs_p;
465
466 /* Used in verify_target_availability to assert that target reg is reported
467 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
468 we haven't scheduled anything on the previous fence.
469 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
470 have more conservative value than the one returned by the
471 find_used_regs, thus we shouldn't assert that these values are equal. */
472 static bool scheduled_something_on_previous_fence;
473
474 /* All newly emitted insns will have their uids greater than this value. */
475 static int first_emitted_uid;
476
477 /* Set of basic blocks that are forced to start new ebbs. This is a subset
478 of all the ebb heads. */
479 static bitmap_head _forced_ebb_heads;
480 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
481
482 /* Blocks that need to be rescheduled after pipelining. */
483 bitmap blocks_to_reschedule = NULL;
484
485 /* True when the first lv set should be ignored when updating liveness. */
486 static bool ignore_first = false;
487
488 /* Number of insns max_issue has initialized data structures for. */
489 static int max_issue_size = 0;
490
491 /* Whether we can issue more instructions. */
492 static int can_issue_more;
493
494 /* Maximum software lookahead window size, reduced when rescheduling after
495 pipelining. */
496 static int max_ws;
497
498 /* Number of insns scheduled in current region. */
499 static int num_insns_scheduled;
500
501 /* A vector of expressions is used to be able to sort them. */
502 static vec<expr_t> vec_av_set = vNULL;
503
504 /* A vector of vinsns is used to hold temporary lists of vinsns. */
505 typedef vec<vinsn_t> vinsn_vec_t;
506
507 /* This vector has the exprs which may still present in av_sets, but actually
508 can't be moved up due to bookkeeping created during code motion to another
509 fence. See comment near the call to update_and_record_unavailable_insns
510 for the detailed explanations. */
511 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t();
512
513 /* This vector has vinsns which are scheduled with renaming on the first fence
514 and then seen on the second. For expressions with such vinsns, target
515 availability information may be wrong. */
516 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t();
517
518 /* Vector to store temporary nops inserted in move_op to prevent removal
519 of empty bbs. */
520 static vec<insn_t> vec_temp_moveop_nops = vNULL;
521
522 /* These bitmaps record original instructions scheduled on the current
523 iteration and bookkeeping copies created by them. */
524 static bitmap current_originators = NULL;
525 static bitmap current_copies = NULL;
526
527 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
528 visit them afterwards. */
529 static bitmap code_motion_visited_blocks = NULL;
530
531 /* Variables to accumulate different statistics. */
532
533 /* The number of bookkeeping copies created. */
534 static int stat_bookkeeping_copies;
535
536 /* The number of insns that required bookkeeiping for their scheduling. */
537 static int stat_insns_needed_bookkeeping;
538
539 /* The number of insns that got renamed. */
540 static int stat_renamed_scheduled;
541
542 /* The number of substitutions made during scheduling. */
543 static int stat_substitutions_total;
544 \f
545
546 /* Forward declarations of static functions. */
547 static bool rtx_ok_for_substitution_p (rtx, rtx);
548 static int sel_rank_for_schedule (const void *, const void *);
549 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
550 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
551
552 static rtx get_dest_from_orig_ops (av_set_t);
553 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
554 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
555 def_list_t *);
556 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
557 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
558 cmpd_local_params_p, void *);
559 static void sel_sched_region_1 (void);
560 static void sel_sched_region_2 (int);
561 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
562
563 static void debug_state (state_t);
564 \f
565
566 /* Functions that work with fences. */
567
568 /* Advance one cycle on FENCE. */
569 static void
570 advance_one_cycle (fence_t fence)
571 {
572 unsigned i;
573 int cycle;
574 rtx insn;
575
576 advance_state (FENCE_STATE (fence));
577 cycle = ++FENCE_CYCLE (fence);
578 FENCE_ISSUED_INSNS (fence) = 0;
579 FENCE_STARTS_CYCLE_P (fence) = 1;
580 can_issue_more = issue_rate;
581 FENCE_ISSUE_MORE (fence) = can_issue_more;
582
583 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
584 {
585 if (INSN_READY_CYCLE (insn) < cycle)
586 {
587 remove_from_deps (FENCE_DC (fence), insn);
588 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
589 continue;
590 }
591 i++;
592 }
593 if (sched_verbose >= 2)
594 {
595 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
596 debug_state (FENCE_STATE (fence));
597 }
598 }
599
600 /* Returns true when SUCC in a fallthru bb of INSN, possibly
601 skipping empty basic blocks. */
602 static bool
603 in_fallthru_bb_p (rtx insn, rtx succ)
604 {
605 basic_block bb = BLOCK_FOR_INSN (insn);
606 edge e;
607
608 if (bb == BLOCK_FOR_INSN (succ))
609 return true;
610
611 e = find_fallthru_edge_from (bb);
612 if (e)
613 bb = e->dest;
614 else
615 return false;
616
617 while (sel_bb_empty_p (bb))
618 bb = bb->next_bb;
619
620 return bb == BLOCK_FOR_INSN (succ);
621 }
622
623 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
624 When a successor will continue a ebb, transfer all parameters of a fence
625 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
626 of scheduling helping to distinguish between the old and the new code. */
627 static void
628 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
629 int orig_max_seqno)
630 {
631 bool was_here_p = false;
632 insn_t insn = NULL_RTX;
633 insn_t succ;
634 succ_iterator si;
635 ilist_iterator ii;
636 fence_t fence = FLIST_FENCE (old_fences);
637 basic_block bb;
638
639 /* Get the only element of FENCE_BNDS (fence). */
640 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
641 {
642 gcc_assert (!was_here_p);
643 was_here_p = true;
644 }
645 gcc_assert (was_here_p && insn != NULL_RTX);
646
647 /* When in the "middle" of the block, just move this fence
648 to the new list. */
649 bb = BLOCK_FOR_INSN (insn);
650 if (! sel_bb_end_p (insn)
651 || (single_succ_p (bb)
652 && single_pred_p (single_succ (bb))))
653 {
654 insn_t succ;
655
656 succ = (sel_bb_end_p (insn)
657 ? sel_bb_head (single_succ (bb))
658 : NEXT_INSN (insn));
659
660 if (INSN_SEQNO (succ) > 0
661 && INSN_SEQNO (succ) <= orig_max_seqno
662 && INSN_SCHED_TIMES (succ) <= 0)
663 {
664 FENCE_INSN (fence) = succ;
665 move_fence_to_fences (old_fences, new_fences);
666
667 if (sched_verbose >= 1)
668 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
669 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
670 }
671 return;
672 }
673
674 /* Otherwise copy fence's structures to (possibly) multiple successors. */
675 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
676 {
677 int seqno = INSN_SEQNO (succ);
678
679 if (0 < seqno && seqno <= orig_max_seqno
680 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
681 {
682 bool b = (in_same_ebb_p (insn, succ)
683 || in_fallthru_bb_p (insn, succ));
684
685 if (sched_verbose >= 1)
686 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
687 INSN_UID (insn), INSN_UID (succ),
688 BLOCK_NUM (succ), b ? "continue" : "reset");
689
690 if (b)
691 add_dirty_fence_to_fences (new_fences, succ, fence);
692 else
693 {
694 /* Mark block of the SUCC as head of the new ebb. */
695 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
696 add_clean_fence_to_fences (new_fences, succ, fence);
697 }
698 }
699 }
700 }
701 \f
702
703 /* Functions to support substitution. */
704
705 /* Returns whether INSN with dependence status DS is eligible for
706 substitution, i.e. it's a copy operation x := y, and RHS that is
707 moved up through this insn should be substituted. */
708 static bool
709 can_substitute_through_p (insn_t insn, ds_t ds)
710 {
711 /* We can substitute only true dependencies. */
712 if ((ds & DEP_OUTPUT)
713 || (ds & DEP_ANTI)
714 || ! INSN_RHS (insn)
715 || ! INSN_LHS (insn))
716 return false;
717
718 /* Now we just need to make sure the INSN_RHS consists of only one
719 simple REG rtx. */
720 if (REG_P (INSN_LHS (insn))
721 && REG_P (INSN_RHS (insn)))
722 return true;
723 return false;
724 }
725
726 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
727 source (if INSN is eligible for substitution). Returns TRUE if
728 substitution was actually performed, FALSE otherwise. Substitution might
729 be not performed because it's either EXPR' vinsn doesn't contain INSN's
730 destination or the resulting insn is invalid for the target machine.
731 When UNDO is true, perform unsubstitution instead (the difference is in
732 the part of rtx on which validate_replace_rtx is called). */
733 static bool
734 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
735 {
736 rtx *where;
737 bool new_insn_valid;
738 vinsn_t *vi = &EXPR_VINSN (expr);
739 bool has_rhs = VINSN_RHS (*vi) != NULL;
740 rtx old, new_rtx;
741
742 /* Do not try to replace in SET_DEST. Although we'll choose new
743 register for the RHS, we don't want to change RHS' original reg.
744 If the insn is not SET, we may still be able to substitute something
745 in it, and if we're here (don't have deps), it doesn't write INSN's
746 dest. */
747 where = (has_rhs
748 ? &VINSN_RHS (*vi)
749 : &PATTERN (VINSN_INSN_RTX (*vi)));
750 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
751
752 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
753 if (rtx_ok_for_substitution_p (old, *where))
754 {
755 rtx new_insn;
756 rtx *where_replace;
757
758 /* We should copy these rtxes before substitution. */
759 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
760 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
761
762 /* Where we'll replace.
763 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
764 used instead of SET_SRC. */
765 where_replace = (has_rhs
766 ? &SET_SRC (PATTERN (new_insn))
767 : &PATTERN (new_insn));
768
769 new_insn_valid
770 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
771 new_insn);
772
773 /* ??? Actually, constrain_operands result depends upon choice of
774 destination register. E.g. if we allow single register to be an rhs,
775 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
776 in invalid insn dx=dx, so we'll loose this rhs here.
777 Just can't come up with significant testcase for this, so just
778 leaving it for now. */
779 if (new_insn_valid)
780 {
781 change_vinsn_in_expr (expr,
782 create_vinsn_from_insn_rtx (new_insn, false));
783
784 /* Do not allow clobbering the address register of speculative
785 insns. */
786 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
787 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
788 expr_dest_reg (expr)))
789 EXPR_TARGET_AVAILABLE (expr) = false;
790
791 return true;
792 }
793 else
794 return false;
795 }
796 else
797 return false;
798 }
799
800 /* Helper function for count_occurences_equiv. */
801 static int
802 count_occurrences_1 (rtx *cur_rtx, void *arg)
803 {
804 rtx_search_arg_p p = (rtx_search_arg_p) arg;
805
806 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
807 {
808 /* Bail out if mode is different or more than one register is used. */
809 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
810 || (HARD_REGISTER_P (*cur_rtx)
811 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
812 {
813 p->n = 0;
814 return 1;
815 }
816
817 p->n++;
818
819 /* Do not traverse subexprs. */
820 return -1;
821 }
822
823 if (GET_CODE (*cur_rtx) == SUBREG
824 && (!REG_P (SUBREG_REG (*cur_rtx))
825 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
826 {
827 /* ??? Do not support substituting regs inside subregs. In that case,
828 simplify_subreg will be called by validate_replace_rtx, and
829 unsubstitution will fail later. */
830 p->n = 0;
831 return 1;
832 }
833
834 /* Continue search. */
835 return 0;
836 }
837
838 /* Return the number of places WHAT appears within WHERE.
839 Bail out when we found a reference occupying several hard registers. */
840 static int
841 count_occurrences_equiv (rtx what, rtx where)
842 {
843 struct rtx_search_arg arg;
844
845 gcc_assert (REG_P (what));
846 arg.x = what;
847 arg.n = 0;
848
849 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
850
851 return arg.n;
852 }
853
854 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
855 static bool
856 rtx_ok_for_substitution_p (rtx what, rtx where)
857 {
858 return (count_occurrences_equiv (what, where) > 0);
859 }
860 \f
861
862 /* Functions to support register renaming. */
863
864 /* Substitute VI's set source with REGNO. Returns newly created pattern
865 that has REGNO as its source. */
866 static rtx
867 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
868 {
869 rtx lhs_rtx;
870 rtx pattern;
871 rtx insn_rtx;
872
873 lhs_rtx = copy_rtx (VINSN_LHS (vi));
874
875 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
876 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
877
878 return insn_rtx;
879 }
880
881 /* Returns whether INSN's src can be replaced with register number
882 NEW_SRC_REG. E.g. the following insn is valid for i386:
883
884 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
885 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
886 (reg:SI 0 ax [orig:770 c1 ] [770]))
887 (const_int 288 [0x120])) [0 str S1 A8])
888 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
889 (nil))
890
891 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
892 because of operand constraints:
893
894 (define_insn "*movqi_1"
895 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
896 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
897 )]
898
899 So do constrain_operands here, before choosing NEW_SRC_REG as best
900 reg for rhs. */
901
902 static bool
903 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
904 {
905 vinsn_t vi = INSN_VINSN (insn);
906 enum machine_mode mode;
907 rtx dst_loc;
908 bool res;
909
910 gcc_assert (VINSN_SEPARABLE_P (vi));
911
912 get_dest_and_mode (insn, &dst_loc, &mode);
913 gcc_assert (mode == GET_MODE (new_src_reg));
914
915 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
916 return true;
917
918 /* See whether SET_SRC can be replaced with this register. */
919 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
920 res = verify_changes (0);
921 cancel_changes (0);
922
923 return res;
924 }
925
926 /* Returns whether INSN still be valid after replacing it's DEST with
927 register NEW_REG. */
928 static bool
929 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
930 {
931 vinsn_t vi = INSN_VINSN (insn);
932 bool res;
933
934 /* We should deal here only with separable insns. */
935 gcc_assert (VINSN_SEPARABLE_P (vi));
936 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
937
938 /* See whether SET_DEST can be replaced with this register. */
939 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
940 res = verify_changes (0);
941 cancel_changes (0);
942
943 return res;
944 }
945
946 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
947 static rtx
948 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
949 {
950 rtx rhs_rtx;
951 rtx pattern;
952 rtx insn_rtx;
953
954 rhs_rtx = copy_rtx (VINSN_RHS (vi));
955
956 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
957 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
958
959 return insn_rtx;
960 }
961
962 /* Substitute lhs in the given expression EXPR for the register with number
963 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
964 static void
965 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
966 {
967 rtx insn_rtx;
968 vinsn_t vinsn;
969
970 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
971 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
972
973 change_vinsn_in_expr (expr, vinsn);
974 EXPR_WAS_RENAMED (expr) = 1;
975 EXPR_TARGET_AVAILABLE (expr) = 1;
976 }
977
978 /* Returns whether VI writes either one of the USED_REGS registers or,
979 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
980 static bool
981 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
982 HARD_REG_SET unavailable_hard_regs)
983 {
984 unsigned regno;
985 reg_set_iterator rsi;
986
987 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
988 {
989 if (REGNO_REG_SET_P (used_regs, regno))
990 return true;
991 if (HARD_REGISTER_NUM_P (regno)
992 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
993 return true;
994 }
995
996 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
997 {
998 if (REGNO_REG_SET_P (used_regs, regno))
999 return true;
1000 if (HARD_REGISTER_NUM_P (regno)
1001 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1002 return true;
1003 }
1004
1005 return false;
1006 }
1007
1008 /* Returns register class of the output register in INSN.
1009 Returns NO_REGS for call insns because some targets have constraints on
1010 destination register of a call insn.
1011
1012 Code adopted from regrename.c::build_def_use. */
1013 static enum reg_class
1014 get_reg_class (rtx insn)
1015 {
1016 int alt, i, n_ops;
1017
1018 extract_insn (insn);
1019 if (! constrain_operands (1))
1020 fatal_insn_not_found (insn);
1021 preprocess_constraints ();
1022 alt = which_alternative;
1023 n_ops = recog_data.n_operands;
1024
1025 for (i = 0; i < n_ops; ++i)
1026 {
1027 int matches = recog_op_alt[i][alt].matches;
1028 if (matches >= 0)
1029 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1030 }
1031
1032 if (asm_noperands (PATTERN (insn)) > 0)
1033 {
1034 for (i = 0; i < n_ops; i++)
1035 if (recog_data.operand_type[i] == OP_OUT)
1036 {
1037 rtx *loc = recog_data.operand_loc[i];
1038 rtx op = *loc;
1039 enum reg_class cl = recog_op_alt[i][alt].cl;
1040
1041 if (REG_P (op)
1042 && REGNO (op) == ORIGINAL_REGNO (op))
1043 continue;
1044
1045 return cl;
1046 }
1047 }
1048 else if (!CALL_P (insn))
1049 {
1050 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1051 {
1052 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1053 enum reg_class cl = recog_op_alt[opn][alt].cl;
1054
1055 if (recog_data.operand_type[opn] == OP_OUT ||
1056 recog_data.operand_type[opn] == OP_INOUT)
1057 return cl;
1058 }
1059 }
1060
1061 /* Insns like
1062 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1063 may result in returning NO_REGS, cause flags is written implicitly through
1064 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1065 return NO_REGS;
1066 }
1067
1068 #ifdef HARD_REGNO_RENAME_OK
1069 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1070 static void
1071 init_hard_regno_rename (int regno)
1072 {
1073 int cur_reg;
1074
1075 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1076
1077 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1078 {
1079 /* We are not interested in renaming in other regs. */
1080 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1081 continue;
1082
1083 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1084 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1085 }
1086 }
1087 #endif
1088
1089 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1090 data first. */
1091 static inline bool
1092 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1093 {
1094 #ifdef HARD_REGNO_RENAME_OK
1095 /* Check whether this is all calculated. */
1096 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1097 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1098
1099 init_hard_regno_rename (from);
1100
1101 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1102 #else
1103 return true;
1104 #endif
1105 }
1106
1107 /* Calculate set of registers that are capable of holding MODE. */
1108 static void
1109 init_regs_for_mode (enum machine_mode mode)
1110 {
1111 int cur_reg;
1112
1113 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1114 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1115
1116 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1117 {
1118 int nregs = hard_regno_nregs[cur_reg][mode];
1119 int i;
1120
1121 for (i = nregs - 1; i >= 0; --i)
1122 if (fixed_regs[cur_reg + i]
1123 || global_regs[cur_reg + i]
1124 /* Can't use regs which aren't saved by
1125 the prologue. */
1126 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1127 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1128 it affects aliasing globally and invalidates all AV sets. */
1129 || get_reg_base_value (cur_reg + i)
1130 #ifdef LEAF_REGISTERS
1131 /* We can't use a non-leaf register if we're in a
1132 leaf function. */
1133 || (crtl->is_leaf
1134 && !LEAF_REGISTERS[cur_reg + i])
1135 #endif
1136 )
1137 break;
1138
1139 if (i >= 0)
1140 continue;
1141
1142 /* See whether it accepts all modes that occur in
1143 original insns. */
1144 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1145 continue;
1146
1147 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1148 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1149 cur_reg);
1150
1151 /* If the CUR_REG passed all the checks above,
1152 then it's ok. */
1153 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1154 }
1155
1156 sel_hrd.regs_for_mode_ok[mode] = true;
1157 }
1158
1159 /* Init all register sets gathered in HRD. */
1160 static void
1161 init_hard_regs_data (void)
1162 {
1163 int cur_reg = 0;
1164 int cur_mode = 0;
1165
1166 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1167 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1168 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1169 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1170
1171 /* Initialize registers that are valid based on mode when this is
1172 really needed. */
1173 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1174 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1175
1176 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1177 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1178 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1179
1180 #ifdef STACK_REGS
1181 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1182
1183 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1184 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1185 #endif
1186 }
1187
1188 /* Mark hardware regs in REG_RENAME_P that are not suitable
1189 for renaming rhs in INSN due to hardware restrictions (register class,
1190 modes compatibility etc). This doesn't affect original insn's dest reg,
1191 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1192 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1193 Registers that are in used_regs are always marked in
1194 unavailable_hard_regs as well. */
1195
1196 static void
1197 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1198 regset used_regs ATTRIBUTE_UNUSED)
1199 {
1200 enum machine_mode mode;
1201 enum reg_class cl = NO_REGS;
1202 rtx orig_dest;
1203 unsigned cur_reg, regno;
1204 hard_reg_set_iterator hrsi;
1205
1206 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1207 gcc_assert (reg_rename_p);
1208
1209 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1210
1211 /* We have decided not to rename 'mem = something;' insns, as 'something'
1212 is usually a register. */
1213 if (!REG_P (orig_dest))
1214 return;
1215
1216 regno = REGNO (orig_dest);
1217
1218 /* If before reload, don't try to work with pseudos. */
1219 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1220 return;
1221
1222 if (reload_completed)
1223 cl = get_reg_class (def->orig_insn);
1224
1225 /* Stop if the original register is one of the fixed_regs, global_regs or
1226 frame pointer, or we could not discover its class. */
1227 if (fixed_regs[regno]
1228 || global_regs[regno]
1229 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1230 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1231 #else
1232 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1233 #endif
1234 || (reload_completed && cl == NO_REGS))
1235 {
1236 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1237
1238 /* Give a chance for original register, if it isn't in used_regs. */
1239 if (!def->crosses_call)
1240 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1241
1242 return;
1243 }
1244
1245 /* If something allocated on stack in this function, mark frame pointer
1246 register unavailable, considering also modes.
1247 FIXME: it is enough to do this once per all original defs. */
1248 if (frame_pointer_needed)
1249 {
1250 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1251 Pmode, FRAME_POINTER_REGNUM);
1252
1253 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1254 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1255 Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
1256 }
1257
1258 #ifdef STACK_REGS
1259 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1260 is equivalent to as if all stack regs were in this set.
1261 I.e. no stack register can be renamed, and even if it's an original
1262 register here we make sure it won't be lifted over it's previous def
1263 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1264 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1265 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1266 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1267 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1268 sel_hrd.stack_regs);
1269 #endif
1270
1271 /* If there's a call on this path, make regs from call_used_reg_set
1272 unavailable. */
1273 if (def->crosses_call)
1274 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1275 call_used_reg_set);
1276
1277 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1278 but not register classes. */
1279 if (!reload_completed)
1280 return;
1281
1282 /* Leave regs as 'available' only from the current
1283 register class. */
1284 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1285 reg_class_contents[cl]);
1286
1287 mode = GET_MODE (orig_dest);
1288
1289 /* Leave only registers available for this mode. */
1290 if (!sel_hrd.regs_for_mode_ok[mode])
1291 init_regs_for_mode (mode);
1292 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1293 sel_hrd.regs_for_mode[mode]);
1294
1295 /* Exclude registers that are partially call clobbered. */
1296 if (def->crosses_call
1297 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1298 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1299 sel_hrd.regs_for_call_clobbered[mode]);
1300
1301 /* Leave only those that are ok to rename. */
1302 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1303 0, cur_reg, hrsi)
1304 {
1305 int nregs;
1306 int i;
1307
1308 nregs = hard_regno_nregs[cur_reg][mode];
1309 gcc_assert (nregs > 0);
1310
1311 for (i = nregs - 1; i >= 0; --i)
1312 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1313 break;
1314
1315 if (i >= 0)
1316 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1317 cur_reg);
1318 }
1319
1320 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1321 reg_rename_p->unavailable_hard_regs);
1322
1323 /* Regno is always ok from the renaming part of view, but it really
1324 could be in *unavailable_hard_regs already, so set it here instead
1325 of there. */
1326 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1327 }
1328
1329 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1330 best register more recently than REG2. */
1331 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1332
1333 /* Indicates the number of times renaming happened before the current one. */
1334 static int reg_rename_this_tick;
1335
1336 /* Choose the register among free, that is suitable for storing
1337 the rhs value.
1338
1339 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1340 originally appears. There could be multiple original operations
1341 for single rhs since we moving it up and merging along different
1342 paths.
1343
1344 Some code is adapted from regrename.c (regrename_optimize).
1345 If original register is available, function returns it.
1346 Otherwise it performs the checks, so the new register should
1347 comply with the following:
1348 - it should not violate any live ranges (such registers are in
1349 REG_RENAME_P->available_for_renaming set);
1350 - it should not be in the HARD_REGS_USED regset;
1351 - it should be in the class compatible with original uses;
1352 - it should not be clobbered through reference with different mode;
1353 - if we're in the leaf function, then the new register should
1354 not be in the LEAF_REGISTERS;
1355 - etc.
1356
1357 If several registers meet the conditions, the register with smallest
1358 tick is returned to achieve more even register allocation.
1359
1360 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1361
1362 If no register satisfies the above conditions, NULL_RTX is returned. */
1363 static rtx
1364 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1365 struct reg_rename *reg_rename_p,
1366 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1367 {
1368 int best_new_reg;
1369 unsigned cur_reg;
1370 enum machine_mode mode = VOIDmode;
1371 unsigned regno, i, n;
1372 hard_reg_set_iterator hrsi;
1373 def_list_iterator di;
1374 def_t def;
1375
1376 /* If original register is available, return it. */
1377 *is_orig_reg_p_ptr = true;
1378
1379 FOR_EACH_DEF (def, di, original_insns)
1380 {
1381 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1382
1383 gcc_assert (REG_P (orig_dest));
1384
1385 /* Check that all original operations have the same mode.
1386 This is done for the next loop; if we'd return from this
1387 loop, we'd check only part of them, but in this case
1388 it doesn't matter. */
1389 if (mode == VOIDmode)
1390 mode = GET_MODE (orig_dest);
1391 gcc_assert (mode == GET_MODE (orig_dest));
1392
1393 regno = REGNO (orig_dest);
1394 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1395 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1396 break;
1397
1398 /* All hard registers are available. */
1399 if (i == n)
1400 {
1401 gcc_assert (mode != VOIDmode);
1402
1403 /* Hard registers should not be shared. */
1404 return gen_rtx_REG (mode, regno);
1405 }
1406 }
1407
1408 *is_orig_reg_p_ptr = false;
1409 best_new_reg = -1;
1410
1411 /* Among all available regs choose the register that was
1412 allocated earliest. */
1413 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1414 0, cur_reg, hrsi)
1415 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1416 {
1417 /* Check that all hard regs for mode are available. */
1418 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1419 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1420 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1421 cur_reg + i))
1422 break;
1423
1424 if (i < n)
1425 continue;
1426
1427 /* All hard registers are available. */
1428 if (best_new_reg < 0
1429 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1430 {
1431 best_new_reg = cur_reg;
1432
1433 /* Return immediately when we know there's no better reg. */
1434 if (! reg_rename_tick[best_new_reg])
1435 break;
1436 }
1437 }
1438
1439 if (best_new_reg >= 0)
1440 {
1441 /* Use the check from the above loop. */
1442 gcc_assert (mode != VOIDmode);
1443 return gen_rtx_REG (mode, best_new_reg);
1444 }
1445
1446 return NULL_RTX;
1447 }
1448
1449 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1450 assumptions about available registers in the function. */
1451 static rtx
1452 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1453 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1454 {
1455 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1456 original_insns, is_orig_reg_p_ptr);
1457
1458 /* FIXME loop over hard_regno_nregs here. */
1459 gcc_assert (best_reg == NULL_RTX
1460 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1461
1462 return best_reg;
1463 }
1464
1465 /* Choose the pseudo register for storing rhs value. As this is supposed
1466 to work before reload, we return either the original register or make
1467 the new one. The parameters are the same that in choose_nest_reg_1
1468 functions, except that USED_REGS may contain pseudos.
1469 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1470
1471 TODO: take into account register pressure while doing this. Up to this
1472 moment, this function would never return NULL for pseudos, but we should
1473 not rely on this. */
1474 static rtx
1475 choose_best_pseudo_reg (regset used_regs,
1476 struct reg_rename *reg_rename_p,
1477 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1478 {
1479 def_list_iterator i;
1480 def_t def;
1481 enum machine_mode mode = VOIDmode;
1482 bool bad_hard_regs = false;
1483
1484 /* We should not use this after reload. */
1485 gcc_assert (!reload_completed);
1486
1487 /* If original register is available, return it. */
1488 *is_orig_reg_p_ptr = true;
1489
1490 FOR_EACH_DEF (def, i, original_insns)
1491 {
1492 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1493 int orig_regno;
1494
1495 gcc_assert (REG_P (dest));
1496
1497 /* Check that all original operations have the same mode. */
1498 if (mode == VOIDmode)
1499 mode = GET_MODE (dest);
1500 else
1501 gcc_assert (mode == GET_MODE (dest));
1502 orig_regno = REGNO (dest);
1503
1504 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1505 {
1506 if (orig_regno < FIRST_PSEUDO_REGISTER)
1507 {
1508 gcc_assert (df_regs_ever_live_p (orig_regno));
1509
1510 /* For hard registers, we have to check hardware imposed
1511 limitations (frame/stack registers, calls crossed). */
1512 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1513 orig_regno))
1514 {
1515 /* Don't let register cross a call if it doesn't already
1516 cross one. This condition is written in accordance with
1517 that in sched-deps.c sched_analyze_reg(). */
1518 if (!reg_rename_p->crosses_call
1519 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1520 return gen_rtx_REG (mode, orig_regno);
1521 }
1522
1523 bad_hard_regs = true;
1524 }
1525 else
1526 return dest;
1527 }
1528 }
1529
1530 *is_orig_reg_p_ptr = false;
1531
1532 /* We had some original hard registers that couldn't be used.
1533 Those were likely special. Don't try to create a pseudo. */
1534 if (bad_hard_regs)
1535 return NULL_RTX;
1536
1537 /* We haven't found a register from original operations. Get a new one.
1538 FIXME: control register pressure somehow. */
1539 {
1540 rtx new_reg = gen_reg_rtx (mode);
1541
1542 gcc_assert (mode != VOIDmode);
1543
1544 max_regno = max_reg_num ();
1545 maybe_extend_reg_info_p ();
1546 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1547
1548 return new_reg;
1549 }
1550 }
1551
1552 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1553 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1554 static void
1555 verify_target_availability (expr_t expr, regset used_regs,
1556 struct reg_rename *reg_rename_p)
1557 {
1558 unsigned n, i, regno;
1559 enum machine_mode mode;
1560 bool target_available, live_available, hard_available;
1561
1562 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1563 return;
1564
1565 regno = expr_dest_regno (expr);
1566 mode = GET_MODE (EXPR_LHS (expr));
1567 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1568 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1569
1570 live_available = hard_available = true;
1571 for (i = 0; i < n; i++)
1572 {
1573 if (bitmap_bit_p (used_regs, regno + i))
1574 live_available = false;
1575 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1576 hard_available = false;
1577 }
1578
1579 /* When target is not available, it may be due to hard register
1580 restrictions, e.g. crosses calls, so we check hard_available too. */
1581 if (target_available)
1582 gcc_assert (live_available);
1583 else
1584 /* Check only if we haven't scheduled something on the previous fence,
1585 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1586 and having more than one fence, we may end having targ_un in a block
1587 in which successors target register is actually available.
1588
1589 The last condition handles the case when a dependence from a call insn
1590 was created in sched-deps.c for insns with destination registers that
1591 never crossed a call before, but do cross one after our code motion.
1592
1593 FIXME: in the latter case, we just uselessly called find_used_regs,
1594 because we can't move this expression with any other register
1595 as well. */
1596 gcc_assert (scheduled_something_on_previous_fence || !live_available
1597 || !hard_available
1598 || (!reload_completed && reg_rename_p->crosses_call
1599 && REG_N_CALLS_CROSSED (regno) == 0));
1600 }
1601
1602 /* Collect unavailable registers due to liveness for EXPR from BNDS
1603 into USED_REGS. Save additional information about available
1604 registers and unavailable due to hardware restriction registers
1605 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1606 list. */
1607 static void
1608 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1609 struct reg_rename *reg_rename_p,
1610 def_list_t *original_insns)
1611 {
1612 for (; bnds; bnds = BLIST_NEXT (bnds))
1613 {
1614 bool res;
1615 av_set_t orig_ops = NULL;
1616 bnd_t bnd = BLIST_BND (bnds);
1617
1618 /* If the chosen best expr doesn't belong to current boundary,
1619 skip it. */
1620 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1621 continue;
1622
1623 /* Put in ORIG_OPS all exprs from this boundary that became
1624 RES on top. */
1625 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1626
1627 /* Compute used regs and OR it into the USED_REGS. */
1628 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1629 reg_rename_p, original_insns);
1630
1631 /* FIXME: the assert is true until we'd have several boundaries. */
1632 gcc_assert (res);
1633 av_set_clear (&orig_ops);
1634 }
1635 }
1636
1637 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1638 If BEST_REG is valid, replace LHS of EXPR with it. */
1639 static bool
1640 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1641 {
1642 /* Try whether we'll be able to generate the insn
1643 'dest := best_reg' at the place of the original operation. */
1644 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1645 {
1646 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1647
1648 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1649
1650 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1651 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1652 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1653 return false;
1654 }
1655
1656 /* Make sure that EXPR has the right destination
1657 register. */
1658 if (expr_dest_regno (expr) != REGNO (best_reg))
1659 replace_dest_with_reg_in_expr (expr, best_reg);
1660 else
1661 EXPR_TARGET_AVAILABLE (expr) = 1;
1662
1663 return true;
1664 }
1665
1666 /* Select and assign best register to EXPR searching from BNDS.
1667 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1668 Return FALSE if no register can be chosen, which could happen when:
1669 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1670 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1671 that are used on the moving path. */
1672 static bool
1673 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1674 {
1675 static struct reg_rename reg_rename_data;
1676
1677 regset used_regs;
1678 def_list_t original_insns = NULL;
1679 bool reg_ok;
1680
1681 *is_orig_reg_p = false;
1682
1683 /* Don't bother to do anything if this insn doesn't set any registers. */
1684 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1685 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1686 return true;
1687
1688 used_regs = get_clear_regset_from_pool ();
1689 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1690
1691 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1692 &original_insns);
1693
1694 #ifdef ENABLE_CHECKING
1695 /* If after reload, make sure we're working with hard regs here. */
1696 if (reload_completed)
1697 {
1698 reg_set_iterator rsi;
1699 unsigned i;
1700
1701 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1702 gcc_unreachable ();
1703 }
1704 #endif
1705
1706 if (EXPR_SEPARABLE_P (expr))
1707 {
1708 rtx best_reg = NULL_RTX;
1709 /* Check that we have computed availability of a target register
1710 correctly. */
1711 verify_target_availability (expr, used_regs, &reg_rename_data);
1712
1713 /* Turn everything in hard regs after reload. */
1714 if (reload_completed)
1715 {
1716 HARD_REG_SET hard_regs_used;
1717 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1718
1719 /* Join hard registers unavailable due to register class
1720 restrictions and live range intersection. */
1721 IOR_HARD_REG_SET (hard_regs_used,
1722 reg_rename_data.unavailable_hard_regs);
1723
1724 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1725 original_insns, is_orig_reg_p);
1726 }
1727 else
1728 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1729 original_insns, is_orig_reg_p);
1730
1731 if (!best_reg)
1732 reg_ok = false;
1733 else if (*is_orig_reg_p)
1734 {
1735 /* In case of unification BEST_REG may be different from EXPR's LHS
1736 when EXPR's LHS is unavailable, and there is another LHS among
1737 ORIGINAL_INSNS. */
1738 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1739 }
1740 else
1741 {
1742 /* Forbid renaming of low-cost insns. */
1743 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1744 reg_ok = false;
1745 else
1746 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1747 }
1748 }
1749 else
1750 {
1751 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1752 any of the HARD_REGS_USED set. */
1753 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1754 reg_rename_data.unavailable_hard_regs))
1755 {
1756 reg_ok = false;
1757 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1758 }
1759 else
1760 {
1761 reg_ok = true;
1762 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1763 }
1764 }
1765
1766 ilist_clear (&original_insns);
1767 return_regset_to_pool (used_regs);
1768
1769 return reg_ok;
1770 }
1771 \f
1772
1773 /* Return true if dependence described by DS can be overcomed. */
1774 static bool
1775 can_speculate_dep_p (ds_t ds)
1776 {
1777 if (spec_info == NULL)
1778 return false;
1779
1780 /* Leave only speculative data. */
1781 ds &= SPECULATIVE;
1782
1783 if (ds == 0)
1784 return false;
1785
1786 {
1787 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1788 that we can overcome. */
1789 ds_t spec_mask = spec_info->mask;
1790
1791 if ((ds & spec_mask) != ds)
1792 return false;
1793 }
1794
1795 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1796 return false;
1797
1798 return true;
1799 }
1800
1801 /* Get a speculation check instruction.
1802 C_EXPR is a speculative expression,
1803 CHECK_DS describes speculations that should be checked,
1804 ORIG_INSN is the original non-speculative insn in the stream. */
1805 static insn_t
1806 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1807 {
1808 rtx check_pattern;
1809 rtx insn_rtx;
1810 insn_t insn;
1811 basic_block recovery_block;
1812 rtx label;
1813
1814 /* Create a recovery block if target is going to emit branchy check, or if
1815 ORIG_INSN was speculative already. */
1816 if (targetm.sched.needs_block_p (check_ds)
1817 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1818 {
1819 recovery_block = sel_create_recovery_block (orig_insn);
1820 label = BB_HEAD (recovery_block);
1821 }
1822 else
1823 {
1824 recovery_block = NULL;
1825 label = NULL_RTX;
1826 }
1827
1828 /* Get pattern of the check. */
1829 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1830 check_ds);
1831
1832 gcc_assert (check_pattern != NULL);
1833
1834 /* Emit check. */
1835 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1836
1837 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1838 INSN_SEQNO (orig_insn), orig_insn);
1839
1840 /* Make check to be non-speculative. */
1841 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1842 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1843
1844 /* Decrease priority of check by difference of load/check instruction
1845 latencies. */
1846 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1847 - sel_vinsn_cost (INSN_VINSN (insn)));
1848
1849 /* Emit copy of original insn (though with replaced target register,
1850 if needed) to the recovery block. */
1851 if (recovery_block != NULL)
1852 {
1853 rtx twin_rtx;
1854
1855 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1856 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1857 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1858 INSN_EXPR (orig_insn),
1859 INSN_SEQNO (insn),
1860 bb_note (recovery_block));
1861 }
1862
1863 /* If we've generated a data speculation check, make sure
1864 that all the bookkeeping instruction we'll create during
1865 this move_op () will allocate an ALAT entry so that the
1866 check won't fail.
1867 In case of control speculation we must convert C_EXPR to control
1868 speculative mode, because failing to do so will bring us an exception
1869 thrown by the non-control-speculative load. */
1870 check_ds = ds_get_max_dep_weak (check_ds);
1871 speculate_expr (c_expr, check_ds);
1872
1873 return insn;
1874 }
1875
1876 /* True when INSN is a "regN = regN" copy. */
1877 static bool
1878 identical_copy_p (rtx insn)
1879 {
1880 rtx lhs, rhs, pat;
1881
1882 pat = PATTERN (insn);
1883
1884 if (GET_CODE (pat) != SET)
1885 return false;
1886
1887 lhs = SET_DEST (pat);
1888 if (!REG_P (lhs))
1889 return false;
1890
1891 rhs = SET_SRC (pat);
1892 if (!REG_P (rhs))
1893 return false;
1894
1895 return REGNO (lhs) == REGNO (rhs);
1896 }
1897
1898 /* Undo all transformations on *AV_PTR that were done when
1899 moving through INSN. */
1900 static void
1901 undo_transformations (av_set_t *av_ptr, rtx insn)
1902 {
1903 av_set_iterator av_iter;
1904 expr_t expr;
1905 av_set_t new_set = NULL;
1906
1907 /* First, kill any EXPR that uses registers set by an insn. This is
1908 required for correctness. */
1909 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1910 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1911 && bitmap_intersect_p (INSN_REG_SETS (insn),
1912 VINSN_REG_USES (EXPR_VINSN (expr)))
1913 /* When an insn looks like 'r1 = r1', we could substitute through
1914 it, but the above condition will still hold. This happened with
1915 gcc.c-torture/execute/961125-1.c. */
1916 && !identical_copy_p (insn))
1917 {
1918 if (sched_verbose >= 6)
1919 sel_print ("Expr %d removed due to use/set conflict\n",
1920 INSN_UID (EXPR_INSN_RTX (expr)));
1921 av_set_iter_remove (&av_iter);
1922 }
1923
1924 /* Undo transformations looking at the history vector. */
1925 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1926 {
1927 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1928 insn, EXPR_VINSN (expr), true);
1929
1930 if (index >= 0)
1931 {
1932 expr_history_def *phist;
1933
1934 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1935
1936 switch (phist->type)
1937 {
1938 case TRANS_SPECULATION:
1939 {
1940 ds_t old_ds, new_ds;
1941
1942 /* Compute the difference between old and new speculative
1943 statuses: that's what we need to check.
1944 Earlier we used to assert that the status will really
1945 change. This no longer works because only the probability
1946 bits in the status may have changed during compute_av_set,
1947 and in the case of merging different probabilities of the
1948 same speculative status along different paths we do not
1949 record this in the history vector. */
1950 old_ds = phist->spec_ds;
1951 new_ds = EXPR_SPEC_DONE_DS (expr);
1952
1953 old_ds &= SPECULATIVE;
1954 new_ds &= SPECULATIVE;
1955 new_ds &= ~old_ds;
1956
1957 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1958 break;
1959 }
1960 case TRANS_SUBSTITUTION:
1961 {
1962 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1963 vinsn_t new_vi;
1964 bool add = true;
1965
1966 new_vi = phist->old_expr_vinsn;
1967
1968 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1969 == EXPR_SEPARABLE_P (expr));
1970 copy_expr (tmp_expr, expr);
1971
1972 if (vinsn_equal_p (phist->new_expr_vinsn,
1973 EXPR_VINSN (tmp_expr)))
1974 change_vinsn_in_expr (tmp_expr, new_vi);
1975 else
1976 /* This happens when we're unsubstituting on a bookkeeping
1977 copy, which was in turn substituted. The history is wrong
1978 in this case. Do it the hard way. */
1979 add = substitute_reg_in_expr (tmp_expr, insn, true);
1980 if (add)
1981 av_set_add (&new_set, tmp_expr);
1982 clear_expr (tmp_expr);
1983 break;
1984 }
1985 default:
1986 gcc_unreachable ();
1987 }
1988 }
1989
1990 }
1991
1992 av_set_union_and_clear (av_ptr, &new_set, NULL);
1993 }
1994 \f
1995
1996 /* Moveup_* helpers for code motion and computing av sets. */
1997
1998 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1999 The difference from the below function is that only substitution is
2000 performed. */
2001 static enum MOVEUP_EXPR_CODE
2002 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2003 {
2004 vinsn_t vi = EXPR_VINSN (expr);
2005 ds_t *has_dep_p;
2006 ds_t full_ds;
2007
2008 /* Do this only inside insn group. */
2009 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2010
2011 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2012 if (full_ds == 0)
2013 return MOVEUP_EXPR_SAME;
2014
2015 /* Substitution is the possible choice in this case. */
2016 if (has_dep_p[DEPS_IN_RHS])
2017 {
2018 /* Can't substitute UNIQUE VINSNs. */
2019 gcc_assert (!VINSN_UNIQUE_P (vi));
2020
2021 if (can_substitute_through_p (through_insn,
2022 has_dep_p[DEPS_IN_RHS])
2023 && substitute_reg_in_expr (expr, through_insn, false))
2024 {
2025 EXPR_WAS_SUBSTITUTED (expr) = true;
2026 return MOVEUP_EXPR_CHANGED;
2027 }
2028
2029 /* Don't care about this, as even true dependencies may be allowed
2030 in an insn group. */
2031 return MOVEUP_EXPR_SAME;
2032 }
2033
2034 /* This can catch output dependencies in COND_EXECs. */
2035 if (has_dep_p[DEPS_IN_INSN])
2036 return MOVEUP_EXPR_NULL;
2037
2038 /* This is either an output or an anti dependence, which usually have
2039 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2040 will fix this. */
2041 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2042 return MOVEUP_EXPR_AS_RHS;
2043 }
2044
2045 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2046 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2047 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2048 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2049 && !sel_insn_is_speculation_check (through_insn))
2050
2051 /* True when a conflict on a target register was found during moveup_expr. */
2052 static bool was_target_conflict = false;
2053
2054 /* Return true when moving a debug INSN across THROUGH_INSN will
2055 create a bookkeeping block. We don't want to create such blocks,
2056 for they would cause codegen differences between compilations with
2057 and without debug info. */
2058
2059 static bool
2060 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2061 insn_t through_insn)
2062 {
2063 basic_block bbi, bbt;
2064 edge e1, e2;
2065 edge_iterator ei1, ei2;
2066
2067 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2068 {
2069 if (sched_verbose >= 9)
2070 sel_print ("no bookkeeping required: ");
2071 return FALSE;
2072 }
2073
2074 bbi = BLOCK_FOR_INSN (insn);
2075
2076 if (EDGE_COUNT (bbi->preds) == 1)
2077 {
2078 if (sched_verbose >= 9)
2079 sel_print ("only one pred edge: ");
2080 return TRUE;
2081 }
2082
2083 bbt = BLOCK_FOR_INSN (through_insn);
2084
2085 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2086 {
2087 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2088 {
2089 if (find_block_for_bookkeeping (e1, e2, TRUE))
2090 {
2091 if (sched_verbose >= 9)
2092 sel_print ("found existing block: ");
2093 return FALSE;
2094 }
2095 }
2096 }
2097
2098 if (sched_verbose >= 9)
2099 sel_print ("would create bookkeeping block: ");
2100
2101 return TRUE;
2102 }
2103
2104 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2105 performing necessary transformations. Record the type of transformation
2106 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2107 permit all dependencies except true ones, and try to remove those
2108 too via forward substitution. All cases when a non-eliminable
2109 non-zero cost dependency exists inside an insn group will be fixed
2110 in tick_check_p instead. */
2111 static enum MOVEUP_EXPR_CODE
2112 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2113 enum local_trans_type *ptrans_type)
2114 {
2115 vinsn_t vi = EXPR_VINSN (expr);
2116 insn_t insn = VINSN_INSN_RTX (vi);
2117 bool was_changed = false;
2118 bool as_rhs = false;
2119 ds_t *has_dep_p;
2120 ds_t full_ds;
2121
2122 /* ??? We use dependencies of non-debug insns on debug insns to
2123 indicate that the debug insns need to be reset if the non-debug
2124 insn is pulled ahead of it. It's hard to figure out how to
2125 introduce such a notion in sel-sched, but it already fails to
2126 support debug insns in other ways, so we just go ahead and
2127 let the deug insns go corrupt for now. */
2128 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2129 return MOVEUP_EXPR_SAME;
2130
2131 /* When inside_insn_group, delegate to the helper. */
2132 if (inside_insn_group)
2133 return moveup_expr_inside_insn_group (expr, through_insn);
2134
2135 /* Deal with unique insns and control dependencies. */
2136 if (VINSN_UNIQUE_P (vi))
2137 {
2138 /* We can move jumps without side-effects or jumps that are
2139 mutually exclusive with instruction THROUGH_INSN (all in cases
2140 dependencies allow to do so and jump is not speculative). */
2141 if (control_flow_insn_p (insn))
2142 {
2143 basic_block fallthru_bb;
2144
2145 /* Do not move checks and do not move jumps through other
2146 jumps. */
2147 if (control_flow_insn_p (through_insn)
2148 || sel_insn_is_speculation_check (insn))
2149 return MOVEUP_EXPR_NULL;
2150
2151 /* Don't move jumps through CFG joins. */
2152 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2153 return MOVEUP_EXPR_NULL;
2154
2155 /* The jump should have a clear fallthru block, and
2156 this block should be in the current region. */
2157 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2158 || ! in_current_region_p (fallthru_bb))
2159 return MOVEUP_EXPR_NULL;
2160
2161 /* And it should be mutually exclusive with through_insn. */
2162 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2163 && ! DEBUG_INSN_P (through_insn))
2164 return MOVEUP_EXPR_NULL;
2165 }
2166
2167 /* Don't move what we can't move. */
2168 if (EXPR_CANT_MOVE (expr)
2169 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2170 return MOVEUP_EXPR_NULL;
2171
2172 /* Don't move SCHED_GROUP instruction through anything.
2173 If we don't force this, then it will be possible to start
2174 scheduling a sched_group before all its dependencies are
2175 resolved.
2176 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2177 as late as possible through rank_for_schedule. */
2178 if (SCHED_GROUP_P (insn))
2179 return MOVEUP_EXPR_NULL;
2180 }
2181 else
2182 gcc_assert (!control_flow_insn_p (insn));
2183
2184 /* Don't move debug insns if this would require bookkeeping. */
2185 if (DEBUG_INSN_P (insn)
2186 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2187 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2188 return MOVEUP_EXPR_NULL;
2189
2190 /* Deal with data dependencies. */
2191 was_target_conflict = false;
2192 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2193 if (full_ds == 0)
2194 {
2195 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2196 return MOVEUP_EXPR_SAME;
2197 }
2198 else
2199 {
2200 /* We can move UNIQUE insn up only as a whole and unchanged,
2201 so it shouldn't have any dependencies. */
2202 if (VINSN_UNIQUE_P (vi))
2203 return MOVEUP_EXPR_NULL;
2204 }
2205
2206 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2207 {
2208 int res;
2209
2210 res = speculate_expr (expr, full_ds);
2211 if (res >= 0)
2212 {
2213 /* Speculation was successful. */
2214 full_ds = 0;
2215 was_changed = (res > 0);
2216 if (res == 2)
2217 was_target_conflict = true;
2218 if (ptrans_type)
2219 *ptrans_type = TRANS_SPECULATION;
2220 sel_clear_has_dependence ();
2221 }
2222 }
2223
2224 if (has_dep_p[DEPS_IN_INSN])
2225 /* We have some dependency that cannot be discarded. */
2226 return MOVEUP_EXPR_NULL;
2227
2228 if (has_dep_p[DEPS_IN_LHS])
2229 {
2230 /* Only separable insns can be moved up with the new register.
2231 Anyways, we should mark that the original register is
2232 unavailable. */
2233 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2234 return MOVEUP_EXPR_NULL;
2235
2236 EXPR_TARGET_AVAILABLE (expr) = false;
2237 was_target_conflict = true;
2238 as_rhs = true;
2239 }
2240
2241 /* At this point we have either separable insns, that will be lifted
2242 up only as RHSes, or non-separable insns with no dependency in lhs.
2243 If dependency is in RHS, then try to perform substitution and move up
2244 substituted RHS:
2245
2246 Ex. 1: Ex.2
2247 y = x; y = x;
2248 z = y*2; y = y*2;
2249
2250 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2251 moved above y=x assignment as z=x*2.
2252
2253 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2254 side can be moved because of the output dependency. The operation was
2255 cropped to its rhs above. */
2256 if (has_dep_p[DEPS_IN_RHS])
2257 {
2258 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2259
2260 /* Can't substitute UNIQUE VINSNs. */
2261 gcc_assert (!VINSN_UNIQUE_P (vi));
2262
2263 if (can_speculate_dep_p (*rhs_dsp))
2264 {
2265 int res;
2266
2267 res = speculate_expr (expr, *rhs_dsp);
2268 if (res >= 0)
2269 {
2270 /* Speculation was successful. */
2271 *rhs_dsp = 0;
2272 was_changed = (res > 0);
2273 if (res == 2)
2274 was_target_conflict = true;
2275 if (ptrans_type)
2276 *ptrans_type = TRANS_SPECULATION;
2277 }
2278 else
2279 return MOVEUP_EXPR_NULL;
2280 }
2281 else if (can_substitute_through_p (through_insn,
2282 *rhs_dsp)
2283 && substitute_reg_in_expr (expr, through_insn, false))
2284 {
2285 /* ??? We cannot perform substitution AND speculation on the same
2286 insn. */
2287 gcc_assert (!was_changed);
2288 was_changed = true;
2289 if (ptrans_type)
2290 *ptrans_type = TRANS_SUBSTITUTION;
2291 EXPR_WAS_SUBSTITUTED (expr) = true;
2292 }
2293 else
2294 return MOVEUP_EXPR_NULL;
2295 }
2296
2297 /* Don't move trapping insns through jumps.
2298 This check should be at the end to give a chance to control speculation
2299 to perform its duties. */
2300 if (CANT_MOVE_TRAPPING (expr, through_insn))
2301 return MOVEUP_EXPR_NULL;
2302
2303 return (was_changed
2304 ? MOVEUP_EXPR_CHANGED
2305 : (as_rhs
2306 ? MOVEUP_EXPR_AS_RHS
2307 : MOVEUP_EXPR_SAME));
2308 }
2309
2310 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2311 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2312 that can exist within a parallel group. Write to RES the resulting
2313 code for moveup_expr. */
2314 static bool
2315 try_bitmap_cache (expr_t expr, insn_t insn,
2316 bool inside_insn_group,
2317 enum MOVEUP_EXPR_CODE *res)
2318 {
2319 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2320
2321 /* First check whether we've analyzed this situation already. */
2322 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2323 {
2324 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2325 {
2326 if (sched_verbose >= 6)
2327 sel_print ("removed (cached)\n");
2328 *res = MOVEUP_EXPR_NULL;
2329 return true;
2330 }
2331 else
2332 {
2333 if (sched_verbose >= 6)
2334 sel_print ("unchanged (cached)\n");
2335 *res = MOVEUP_EXPR_SAME;
2336 return true;
2337 }
2338 }
2339 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2340 {
2341 if (inside_insn_group)
2342 {
2343 if (sched_verbose >= 6)
2344 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2345 *res = MOVEUP_EXPR_SAME;
2346 return true;
2347
2348 }
2349 else
2350 EXPR_TARGET_AVAILABLE (expr) = false;
2351
2352 /* This is the only case when propagation result can change over time,
2353 as we can dynamically switch off scheduling as RHS. In this case,
2354 just check the flag to reach the correct decision. */
2355 if (enable_schedule_as_rhs_p)
2356 {
2357 if (sched_verbose >= 6)
2358 sel_print ("unchanged (as RHS, cached)\n");
2359 *res = MOVEUP_EXPR_AS_RHS;
2360 return true;
2361 }
2362 else
2363 {
2364 if (sched_verbose >= 6)
2365 sel_print ("removed (cached as RHS, but renaming"
2366 " is now disabled)\n");
2367 *res = MOVEUP_EXPR_NULL;
2368 return true;
2369 }
2370 }
2371
2372 return false;
2373 }
2374
2375 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2376 if successful. Write to RES the resulting code for moveup_expr. */
2377 static bool
2378 try_transformation_cache (expr_t expr, insn_t insn,
2379 enum MOVEUP_EXPR_CODE *res)
2380 {
2381 struct transformed_insns *pti
2382 = (struct transformed_insns *)
2383 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2384 &EXPR_VINSN (expr),
2385 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2386 if (pti)
2387 {
2388 /* This EXPR was already moved through this insn and was
2389 changed as a result. Fetch the proper data from
2390 the hashtable. */
2391 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2392 INSN_UID (insn), pti->type,
2393 pti->vinsn_old, pti->vinsn_new,
2394 EXPR_SPEC_DONE_DS (expr));
2395
2396 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2397 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2398 change_vinsn_in_expr (expr, pti->vinsn_new);
2399 if (pti->was_target_conflict)
2400 EXPR_TARGET_AVAILABLE (expr) = false;
2401 if (pti->type == TRANS_SPECULATION)
2402 {
2403 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2404 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2405 }
2406
2407 if (sched_verbose >= 6)
2408 {
2409 sel_print ("changed (cached): ");
2410 dump_expr (expr);
2411 sel_print ("\n");
2412 }
2413
2414 *res = MOVEUP_EXPR_CHANGED;
2415 return true;
2416 }
2417
2418 return false;
2419 }
2420
2421 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2422 static void
2423 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2424 enum MOVEUP_EXPR_CODE res)
2425 {
2426 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2427
2428 /* Do not cache result of propagating jumps through an insn group,
2429 as it is always true, which is not useful outside the group. */
2430 if (inside_insn_group)
2431 return;
2432
2433 if (res == MOVEUP_EXPR_NULL)
2434 {
2435 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2436 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2437 }
2438 else if (res == MOVEUP_EXPR_SAME)
2439 {
2440 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2441 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2442 }
2443 else if (res == MOVEUP_EXPR_AS_RHS)
2444 {
2445 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2446 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2447 }
2448 else
2449 gcc_unreachable ();
2450 }
2451
2452 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2453 and transformation type TRANS_TYPE. */
2454 static void
2455 update_transformation_cache (expr_t expr, insn_t insn,
2456 bool inside_insn_group,
2457 enum local_trans_type trans_type,
2458 vinsn_t expr_old_vinsn)
2459 {
2460 struct transformed_insns *pti;
2461
2462 if (inside_insn_group)
2463 return;
2464
2465 pti = XNEW (struct transformed_insns);
2466 pti->vinsn_old = expr_old_vinsn;
2467 pti->vinsn_new = EXPR_VINSN (expr);
2468 pti->type = trans_type;
2469 pti->was_target_conflict = was_target_conflict;
2470 pti->ds = EXPR_SPEC_DONE_DS (expr);
2471 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2472 vinsn_attach (pti->vinsn_old);
2473 vinsn_attach (pti->vinsn_new);
2474 *((struct transformed_insns **)
2475 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2476 pti, VINSN_HASH_RTX (expr_old_vinsn),
2477 INSERT)) = pti;
2478 }
2479
2480 /* Same as moveup_expr, but first looks up the result of
2481 transformation in caches. */
2482 static enum MOVEUP_EXPR_CODE
2483 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2484 {
2485 enum MOVEUP_EXPR_CODE res;
2486 bool got_answer = false;
2487
2488 if (sched_verbose >= 6)
2489 {
2490 sel_print ("Moving ");
2491 dump_expr (expr);
2492 sel_print (" through %d: ", INSN_UID (insn));
2493 }
2494
2495 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2496 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2497 == EXPR_INSN_RTX (expr)))
2498 /* Don't use cached information for debug insns that are heads of
2499 basic blocks. */;
2500 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2501 /* When inside insn group, we do not want remove stores conflicting
2502 with previosly issued loads. */
2503 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2504 else if (try_transformation_cache (expr, insn, &res))
2505 got_answer = true;
2506
2507 if (! got_answer)
2508 {
2509 /* Invoke moveup_expr and record the results. */
2510 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2511 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2512 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2513 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2514 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2515
2516 /* ??? Invent something better than this. We can't allow old_vinsn
2517 to go, we need it for the history vector. */
2518 vinsn_attach (expr_old_vinsn);
2519
2520 res = moveup_expr (expr, insn, inside_insn_group,
2521 &trans_type);
2522 switch (res)
2523 {
2524 case MOVEUP_EXPR_NULL:
2525 update_bitmap_cache (expr, insn, inside_insn_group, res);
2526 if (sched_verbose >= 6)
2527 sel_print ("removed\n");
2528 break;
2529
2530 case MOVEUP_EXPR_SAME:
2531 update_bitmap_cache (expr, insn, inside_insn_group, res);
2532 if (sched_verbose >= 6)
2533 sel_print ("unchanged\n");
2534 break;
2535
2536 case MOVEUP_EXPR_AS_RHS:
2537 gcc_assert (!unique_p || inside_insn_group);
2538 update_bitmap_cache (expr, insn, inside_insn_group, res);
2539 if (sched_verbose >= 6)
2540 sel_print ("unchanged (as RHS)\n");
2541 break;
2542
2543 case MOVEUP_EXPR_CHANGED:
2544 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2545 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2546 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2547 INSN_UID (insn), trans_type,
2548 expr_old_vinsn, EXPR_VINSN (expr),
2549 expr_old_spec_ds);
2550 update_transformation_cache (expr, insn, inside_insn_group,
2551 trans_type, expr_old_vinsn);
2552 if (sched_verbose >= 6)
2553 {
2554 sel_print ("changed: ");
2555 dump_expr (expr);
2556 sel_print ("\n");
2557 }
2558 break;
2559 default:
2560 gcc_unreachable ();
2561 }
2562
2563 vinsn_detach (expr_old_vinsn);
2564 }
2565
2566 return res;
2567 }
2568
2569 /* Moves an av set AVP up through INSN, performing necessary
2570 transformations. */
2571 static void
2572 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2573 {
2574 av_set_iterator i;
2575 expr_t expr;
2576
2577 FOR_EACH_EXPR_1 (expr, i, avp)
2578 {
2579
2580 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2581 {
2582 case MOVEUP_EXPR_SAME:
2583 case MOVEUP_EXPR_AS_RHS:
2584 break;
2585
2586 case MOVEUP_EXPR_NULL:
2587 av_set_iter_remove (&i);
2588 break;
2589
2590 case MOVEUP_EXPR_CHANGED:
2591 expr = merge_with_other_exprs (avp, &i, expr);
2592 break;
2593
2594 default:
2595 gcc_unreachable ();
2596 }
2597 }
2598 }
2599
2600 /* Moves AVP set along PATH. */
2601 static void
2602 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2603 {
2604 int last_cycle;
2605
2606 if (sched_verbose >= 6)
2607 sel_print ("Moving expressions up in the insn group...\n");
2608 if (! path)
2609 return;
2610 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2611 while (path
2612 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2613 {
2614 moveup_set_expr (avp, ILIST_INSN (path), true);
2615 path = ILIST_NEXT (path);
2616 }
2617 }
2618
2619 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2620 static bool
2621 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2622 {
2623 expr_def _tmp, *tmp = &_tmp;
2624 int last_cycle;
2625 bool res = true;
2626
2627 copy_expr_onside (tmp, expr);
2628 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2629 while (path
2630 && res
2631 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2632 {
2633 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2634 != MOVEUP_EXPR_NULL);
2635 path = ILIST_NEXT (path);
2636 }
2637
2638 if (res)
2639 {
2640 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2641 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2642
2643 if (tmp_vinsn != expr_vliw_vinsn)
2644 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2645 }
2646
2647 clear_expr (tmp);
2648 return res;
2649 }
2650 \f
2651
2652 /* Functions that compute av and lv sets. */
2653
2654 /* Returns true if INSN is not a downward continuation of the given path P in
2655 the current stage. */
2656 static bool
2657 is_ineligible_successor (insn_t insn, ilist_t p)
2658 {
2659 insn_t prev_insn;
2660
2661 /* Check if insn is not deleted. */
2662 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2663 gcc_unreachable ();
2664 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2665 gcc_unreachable ();
2666
2667 /* If it's the first insn visited, then the successor is ok. */
2668 if (!p)
2669 return false;
2670
2671 prev_insn = ILIST_INSN (p);
2672
2673 if (/* a backward edge. */
2674 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2675 /* is already visited. */
2676 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2677 && (ilist_is_in_p (p, insn)
2678 /* We can reach another fence here and still seqno of insn
2679 would be equal to seqno of prev_insn. This is possible
2680 when prev_insn is a previously created bookkeeping copy.
2681 In that case it'd get a seqno of insn. Thus, check here
2682 whether insn is in current fence too. */
2683 || IN_CURRENT_FENCE_P (insn)))
2684 /* Was already scheduled on this round. */
2685 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2686 && IN_CURRENT_FENCE_P (insn))
2687 /* An insn from another fence could also be
2688 scheduled earlier even if this insn is not in
2689 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2690 || (!pipelining_p
2691 && INSN_SCHED_TIMES (insn) > 0))
2692 return true;
2693 else
2694 return false;
2695 }
2696
2697 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2698 of handling multiple successors and properly merging its av_sets. P is
2699 the current path traversed. WS is the size of lookahead window.
2700 Return the av set computed. */
2701 static av_set_t
2702 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2703 {
2704 struct succs_info *sinfo;
2705 av_set_t expr_in_all_succ_branches = NULL;
2706 int is;
2707 insn_t succ, zero_succ = NULL;
2708 av_set_t av1 = NULL;
2709
2710 gcc_assert (sel_bb_end_p (insn));
2711
2712 /* Find different kind of successors needed for correct computing of
2713 SPEC and TARGET_AVAILABLE attributes. */
2714 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2715
2716 /* Debug output. */
2717 if (sched_verbose >= 6)
2718 {
2719 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2720 dump_insn_vector (sinfo->succs_ok);
2721 sel_print ("\n");
2722 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2723 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2724 }
2725
2726 /* Add insn to the tail of current path. */
2727 ilist_add (&p, insn);
2728
2729 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2730 {
2731 av_set_t succ_set;
2732
2733 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2734 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2735
2736 av_set_split_usefulness (succ_set,
2737 sinfo->probs_ok[is],
2738 sinfo->all_prob);
2739
2740 if (sinfo->all_succs_n > 1)
2741 {
2742 /* Find EXPR'es that came from *all* successors and save them
2743 into expr_in_all_succ_branches. This set will be used later
2744 for calculating speculation attributes of EXPR'es. */
2745 if (is == 0)
2746 {
2747 expr_in_all_succ_branches = av_set_copy (succ_set);
2748
2749 /* Remember the first successor for later. */
2750 zero_succ = succ;
2751 }
2752 else
2753 {
2754 av_set_iterator i;
2755 expr_t expr;
2756
2757 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2758 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2759 av_set_iter_remove (&i);
2760 }
2761 }
2762
2763 /* Union the av_sets. Check liveness restrictions on target registers
2764 in special case of two successors. */
2765 if (sinfo->succs_ok_n == 2 && is == 1)
2766 {
2767 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2768 basic_block bb1 = BLOCK_FOR_INSN (succ);
2769
2770 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2771 av_set_union_and_live (&av1, &succ_set,
2772 BB_LV_SET (bb0),
2773 BB_LV_SET (bb1),
2774 insn);
2775 }
2776 else
2777 av_set_union_and_clear (&av1, &succ_set, insn);
2778 }
2779
2780 /* Check liveness restrictions via hard way when there are more than
2781 two successors. */
2782 if (sinfo->succs_ok_n > 2)
2783 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2784 {
2785 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2786
2787 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2788 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2789 BB_LV_SET (succ_bb));
2790 }
2791
2792 /* Finally, check liveness restrictions on paths leaving the region. */
2793 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2794 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2795 mark_unavailable_targets
2796 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2797
2798 if (sinfo->all_succs_n > 1)
2799 {
2800 av_set_iterator i;
2801 expr_t expr;
2802
2803 /* Increase the spec attribute of all EXPR'es that didn't come
2804 from all successors. */
2805 FOR_EACH_EXPR (expr, i, av1)
2806 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2807 EXPR_SPEC (expr)++;
2808
2809 av_set_clear (&expr_in_all_succ_branches);
2810
2811 /* Do not move conditional branches through other
2812 conditional branches. So, remove all conditional
2813 branches from av_set if current operator is a conditional
2814 branch. */
2815 av_set_substract_cond_branches (&av1);
2816 }
2817
2818 ilist_remove (&p);
2819 free_succs_info (sinfo);
2820
2821 if (sched_verbose >= 6)
2822 {
2823 sel_print ("av_succs (%d): ", INSN_UID (insn));
2824 dump_av_set (av1);
2825 sel_print ("\n");
2826 }
2827
2828 return av1;
2829 }
2830
2831 /* This function computes av_set for the FIRST_INSN by dragging valid
2832 av_set through all basic block insns either from the end of basic block
2833 (computed using compute_av_set_at_bb_end) or from the insn on which
2834 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2835 below the basic block and handling conditional branches.
2836 FIRST_INSN - the basic block head, P - path consisting of the insns
2837 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2838 and bb ends are added to the path), WS - current window size,
2839 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2840 static av_set_t
2841 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2842 bool need_copy_p)
2843 {
2844 insn_t cur_insn;
2845 int end_ws = ws;
2846 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2847 insn_t after_bb_end = NEXT_INSN (bb_end);
2848 insn_t last_insn;
2849 av_set_t av = NULL;
2850 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2851
2852 /* Return NULL if insn is not on the legitimate downward path. */
2853 if (is_ineligible_successor (first_insn, p))
2854 {
2855 if (sched_verbose >= 6)
2856 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2857
2858 return NULL;
2859 }
2860
2861 /* If insn already has valid av(insn) computed, just return it. */
2862 if (AV_SET_VALID_P (first_insn))
2863 {
2864 av_set_t av_set;
2865
2866 if (sel_bb_head_p (first_insn))
2867 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2868 else
2869 av_set = NULL;
2870
2871 if (sched_verbose >= 6)
2872 {
2873 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2874 dump_av_set (av_set);
2875 sel_print ("\n");
2876 }
2877
2878 return need_copy_p ? av_set_copy (av_set) : av_set;
2879 }
2880
2881 ilist_add (&p, first_insn);
2882
2883 /* As the result after this loop have completed, in LAST_INSN we'll
2884 have the insn which has valid av_set to start backward computation
2885 from: it either will be NULL because on it the window size was exceeded
2886 or other valid av_set as returned by compute_av_set for the last insn
2887 of the basic block. */
2888 for (last_insn = first_insn; last_insn != after_bb_end;
2889 last_insn = NEXT_INSN (last_insn))
2890 {
2891 /* We may encounter valid av_set not only on bb_head, but also on
2892 those insns on which previously MAX_WS was exceeded. */
2893 if (AV_SET_VALID_P (last_insn))
2894 {
2895 if (sched_verbose >= 6)
2896 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2897 break;
2898 }
2899
2900 /* The special case: the last insn of the BB may be an
2901 ineligible_successor due to its SEQ_NO that was set on
2902 it as a bookkeeping. */
2903 if (last_insn != first_insn
2904 && is_ineligible_successor (last_insn, p))
2905 {
2906 if (sched_verbose >= 6)
2907 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2908 break;
2909 }
2910
2911 if (DEBUG_INSN_P (last_insn))
2912 continue;
2913
2914 if (end_ws > max_ws)
2915 {
2916 /* We can reach max lookahead size at bb_header, so clean av_set
2917 first. */
2918 INSN_WS_LEVEL (last_insn) = global_level;
2919
2920 if (sched_verbose >= 6)
2921 sel_print ("Insn %d is beyond the software lookahead window size\n",
2922 INSN_UID (last_insn));
2923 break;
2924 }
2925
2926 end_ws++;
2927 }
2928
2929 /* Get the valid av_set into AV above the LAST_INSN to start backward
2930 computation from. It either will be empty av_set or av_set computed from
2931 the successors on the last insn of the current bb. */
2932 if (last_insn != after_bb_end)
2933 {
2934 av = NULL;
2935
2936 /* This is needed only to obtain av_sets that are identical to
2937 those computed by the old compute_av_set version. */
2938 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2939 av_set_add (&av, INSN_EXPR (last_insn));
2940 }
2941 else
2942 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2943 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2944
2945 /* Compute av_set in AV starting from below the LAST_INSN up to
2946 location above the FIRST_INSN. */
2947 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2948 cur_insn = PREV_INSN (cur_insn))
2949 if (!INSN_NOP_P (cur_insn))
2950 {
2951 expr_t expr;
2952
2953 moveup_set_expr (&av, cur_insn, false);
2954
2955 /* If the expression for CUR_INSN is already in the set,
2956 replace it by the new one. */
2957 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2958 if (expr != NULL)
2959 {
2960 clear_expr (expr);
2961 copy_expr (expr, INSN_EXPR (cur_insn));
2962 }
2963 else
2964 av_set_add (&av, INSN_EXPR (cur_insn));
2965 }
2966
2967 /* Clear stale bb_av_set. */
2968 if (sel_bb_head_p (first_insn))
2969 {
2970 av_set_clear (&BB_AV_SET (cur_bb));
2971 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2972 BB_AV_LEVEL (cur_bb) = global_level;
2973 }
2974
2975 if (sched_verbose >= 6)
2976 {
2977 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2978 dump_av_set (av);
2979 sel_print ("\n");
2980 }
2981
2982 ilist_remove (&p);
2983 return av;
2984 }
2985
2986 /* Compute av set before INSN.
2987 INSN - the current operation (actual rtx INSN)
2988 P - the current path, which is list of insns visited so far
2989 WS - software lookahead window size.
2990 UNIQUE_P - TRUE, if returned av_set will be changed, hence
2991 if we want to save computed av_set in s_i_d, we should make a copy of it.
2992
2993 In the resulting set we will have only expressions that don't have delay
2994 stalls and nonsubstitutable dependences. */
2995 static av_set_t
2996 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
2997 {
2998 return compute_av_set_inside_bb (insn, p, ws, unique_p);
2999 }
3000
3001 /* Propagate a liveness set LV through INSN. */
3002 static void
3003 propagate_lv_set (regset lv, insn_t insn)
3004 {
3005 gcc_assert (INSN_P (insn));
3006
3007 if (INSN_NOP_P (insn))
3008 return;
3009
3010 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3011 }
3012
3013 /* Return livness set at the end of BB. */
3014 static regset
3015 compute_live_after_bb (basic_block bb)
3016 {
3017 edge e;
3018 edge_iterator ei;
3019 regset lv = get_clear_regset_from_pool ();
3020
3021 gcc_assert (!ignore_first);
3022
3023 FOR_EACH_EDGE (e, ei, bb->succs)
3024 if (sel_bb_empty_p (e->dest))
3025 {
3026 if (! BB_LV_SET_VALID_P (e->dest))
3027 {
3028 gcc_unreachable ();
3029 gcc_assert (BB_LV_SET (e->dest) == NULL);
3030 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3031 BB_LV_SET_VALID_P (e->dest) = true;
3032 }
3033 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3034 }
3035 else
3036 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3037
3038 return lv;
3039 }
3040
3041 /* Compute the set of all live registers at the point before INSN and save
3042 it at INSN if INSN is bb header. */
3043 regset
3044 compute_live (insn_t insn)
3045 {
3046 basic_block bb = BLOCK_FOR_INSN (insn);
3047 insn_t final, temp;
3048 regset lv;
3049
3050 /* Return the valid set if we're already on it. */
3051 if (!ignore_first)
3052 {
3053 regset src = NULL;
3054
3055 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3056 src = BB_LV_SET (bb);
3057 else
3058 {
3059 gcc_assert (in_current_region_p (bb));
3060 if (INSN_LIVE_VALID_P (insn))
3061 src = INSN_LIVE (insn);
3062 }
3063
3064 if (src)
3065 {
3066 lv = get_regset_from_pool ();
3067 COPY_REG_SET (lv, src);
3068
3069 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3070 {
3071 COPY_REG_SET (BB_LV_SET (bb), lv);
3072 BB_LV_SET_VALID_P (bb) = true;
3073 }
3074
3075 return_regset_to_pool (lv);
3076 return lv;
3077 }
3078 }
3079
3080 /* We've skipped the wrong lv_set. Don't skip the right one. */
3081 ignore_first = false;
3082 gcc_assert (in_current_region_p (bb));
3083
3084 /* Find a valid LV set in this block or below, if needed.
3085 Start searching from the next insn: either ignore_first is true, or
3086 INSN doesn't have a correct live set. */
3087 temp = NEXT_INSN (insn);
3088 final = NEXT_INSN (BB_END (bb));
3089 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3090 temp = NEXT_INSN (temp);
3091 if (temp == final)
3092 {
3093 lv = compute_live_after_bb (bb);
3094 temp = PREV_INSN (temp);
3095 }
3096 else
3097 {
3098 lv = get_regset_from_pool ();
3099 COPY_REG_SET (lv, INSN_LIVE (temp));
3100 }
3101
3102 /* Put correct lv sets on the insns which have bad sets. */
3103 final = PREV_INSN (insn);
3104 while (temp != final)
3105 {
3106 propagate_lv_set (lv, temp);
3107 COPY_REG_SET (INSN_LIVE (temp), lv);
3108 INSN_LIVE_VALID_P (temp) = true;
3109 temp = PREV_INSN (temp);
3110 }
3111
3112 /* Also put it in a BB. */
3113 if (sel_bb_head_p (insn))
3114 {
3115 basic_block bb = BLOCK_FOR_INSN (insn);
3116
3117 COPY_REG_SET (BB_LV_SET (bb), lv);
3118 BB_LV_SET_VALID_P (bb) = true;
3119 }
3120
3121 /* We return LV to the pool, but will not clear it there. Thus we can
3122 legimatelly use LV till the next use of regset_pool_get (). */
3123 return_regset_to_pool (lv);
3124 return lv;
3125 }
3126
3127 /* Update liveness sets for INSN. */
3128 static inline void
3129 update_liveness_on_insn (rtx insn)
3130 {
3131 ignore_first = true;
3132 compute_live (insn);
3133 }
3134
3135 /* Compute liveness below INSN and write it into REGS. */
3136 static inline void
3137 compute_live_below_insn (rtx insn, regset regs)
3138 {
3139 rtx succ;
3140 succ_iterator si;
3141
3142 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3143 IOR_REG_SET (regs, compute_live (succ));
3144 }
3145
3146 /* Update the data gathered in av and lv sets starting from INSN. */
3147 static void
3148 update_data_sets (rtx insn)
3149 {
3150 update_liveness_on_insn (insn);
3151 if (sel_bb_head_p (insn))
3152 {
3153 gcc_assert (AV_LEVEL (insn) != 0);
3154 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3155 compute_av_set (insn, NULL, 0, 0);
3156 }
3157 }
3158 \f
3159
3160 /* Helper for move_op () and find_used_regs ().
3161 Return speculation type for which a check should be created on the place
3162 of INSN. EXPR is one of the original ops we are searching for. */
3163 static ds_t
3164 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3165 {
3166 ds_t to_check_ds;
3167 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3168
3169 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3170
3171 if (targetm.sched.get_insn_checked_ds)
3172 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3173
3174 if (spec_info != NULL
3175 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3176 already_checked_ds |= BEGIN_CONTROL;
3177
3178 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3179
3180 to_check_ds &= ~already_checked_ds;
3181
3182 return to_check_ds;
3183 }
3184
3185 /* Find the set of registers that are unavailable for storing expres
3186 while moving ORIG_OPS up on the path starting from INSN due to
3187 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3188
3189 All the original operations found during the traversal are saved in the
3190 ORIGINAL_INSNS list.
3191
3192 REG_RENAME_P denotes the set of hardware registers that
3193 can not be used with renaming due to the register class restrictions,
3194 mode restrictions and other (the register we'll choose should be
3195 compatible class with the original uses, shouldn't be in call_used_regs,
3196 should be HARD_REGNO_RENAME_OK etc).
3197
3198 Returns TRUE if we've found all original insns, FALSE otherwise.
3199
3200 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3201 to traverse the code motion paths. This helper function finds registers
3202 that are not available for storing expres while moving ORIG_OPS up on the
3203 path starting from INSN. A register considered as used on the moving path,
3204 if one of the following conditions is not satisfied:
3205
3206 (1) a register not set or read on any path from xi to an instance of
3207 the original operation,
3208 (2) not among the live registers of the point immediately following the
3209 first original operation on a given downward path, except for the
3210 original target register of the operation,
3211 (3) not live on the other path of any conditional branch that is passed
3212 by the operation, in case original operations are not present on
3213 both paths of the conditional branch.
3214
3215 All the original operations found during the traversal are saved in the
3216 ORIGINAL_INSNS list.
3217
3218 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3219 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3220 to unavailable hard regs at the point original operation is found. */
3221
3222 static bool
3223 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3224 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3225 {
3226 def_list_iterator i;
3227 def_t def;
3228 int res;
3229 bool needs_spec_check_p = false;
3230 expr_t expr;
3231 av_set_iterator expr_iter;
3232 struct fur_static_params sparams;
3233 struct cmpd_local_params lparams;
3234
3235 /* We haven't visited any blocks yet. */
3236 bitmap_clear (code_motion_visited_blocks);
3237
3238 /* Init parameters for code_motion_path_driver. */
3239 sparams.crosses_call = false;
3240 sparams.original_insns = original_insns;
3241 sparams.used_regs = used_regs;
3242
3243 /* Set the appropriate hooks and data. */
3244 code_motion_path_driver_info = &fur_hooks;
3245
3246 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3247
3248 reg_rename_p->crosses_call |= sparams.crosses_call;
3249
3250 gcc_assert (res == 1);
3251 gcc_assert (original_insns && *original_insns);
3252
3253 /* ??? We calculate whether an expression needs a check when computing
3254 av sets. This information is not as precise as it could be due to
3255 merging this bit in merge_expr. We can do better in find_used_regs,
3256 but we want to avoid multiple traversals of the same code motion
3257 paths. */
3258 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3259 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3260
3261 /* Mark hardware regs in REG_RENAME_P that are not suitable
3262 for renaming expr in INSN due to hardware restrictions (register class,
3263 modes compatibility etc). */
3264 FOR_EACH_DEF (def, i, *original_insns)
3265 {
3266 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3267
3268 if (VINSN_SEPARABLE_P (vinsn))
3269 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3270
3271 /* Do not allow clobbering of ld.[sa] address in case some of the
3272 original operations need a check. */
3273 if (needs_spec_check_p)
3274 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3275 }
3276
3277 return true;
3278 }
3279 \f
3280
3281 /* Functions to choose the best insn from available ones. */
3282
3283 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3284 static int
3285 sel_target_adjust_priority (expr_t expr)
3286 {
3287 int priority = EXPR_PRIORITY (expr);
3288 int new_priority;
3289
3290 if (targetm.sched.adjust_priority)
3291 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3292 else
3293 new_priority = priority;
3294
3295 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3296 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3297
3298 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3299
3300 if (sched_verbose >= 4)
3301 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3302 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3303 EXPR_PRIORITY_ADJ (expr), new_priority);
3304
3305 return new_priority;
3306 }
3307
3308 /* Rank two available exprs for schedule. Never return 0 here. */
3309 static int
3310 sel_rank_for_schedule (const void *x, const void *y)
3311 {
3312 expr_t tmp = *(const expr_t *) y;
3313 expr_t tmp2 = *(const expr_t *) x;
3314 insn_t tmp_insn, tmp2_insn;
3315 vinsn_t tmp_vinsn, tmp2_vinsn;
3316 int val;
3317
3318 tmp_vinsn = EXPR_VINSN (tmp);
3319 tmp2_vinsn = EXPR_VINSN (tmp2);
3320 tmp_insn = EXPR_INSN_RTX (tmp);
3321 tmp2_insn = EXPR_INSN_RTX (tmp2);
3322
3323 /* Schedule debug insns as early as possible. */
3324 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3325 return -1;
3326 else if (DEBUG_INSN_P (tmp2_insn))
3327 return 1;
3328
3329 /* Prefer SCHED_GROUP_P insns to any others. */
3330 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3331 {
3332 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3333 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3334
3335 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3336 cannot be cloned. */
3337 if (VINSN_UNIQUE_P (tmp2_vinsn))
3338 return 1;
3339 return -1;
3340 }
3341
3342 /* Discourage scheduling of speculative checks. */
3343 val = (sel_insn_is_speculation_check (tmp_insn)
3344 - sel_insn_is_speculation_check (tmp2_insn));
3345 if (val)
3346 return val;
3347
3348 /* Prefer not scheduled insn over scheduled one. */
3349 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3350 {
3351 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3352 if (val)
3353 return val;
3354 }
3355
3356 /* Prefer jump over non-jump instruction. */
3357 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3358 return -1;
3359 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3360 return 1;
3361
3362 /* Prefer an expr with greater priority. */
3363 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3364 {
3365 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3366 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3367
3368 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3369 }
3370 else
3371 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3372 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3373 if (val)
3374 return val;
3375
3376 if (spec_info != NULL && spec_info->mask != 0)
3377 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3378 {
3379 ds_t ds1, ds2;
3380 dw_t dw1, dw2;
3381 int dw;
3382
3383 ds1 = EXPR_SPEC_DONE_DS (tmp);
3384 if (ds1)
3385 dw1 = ds_weak (ds1);
3386 else
3387 dw1 = NO_DEP_WEAK;
3388
3389 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3390 if (ds2)
3391 dw2 = ds_weak (ds2);
3392 else
3393 dw2 = NO_DEP_WEAK;
3394
3395 dw = dw2 - dw1;
3396 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3397 return dw;
3398 }
3399
3400 /* Prefer an old insn to a bookkeeping insn. */
3401 if (INSN_UID (tmp_insn) < first_emitted_uid
3402 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3403 return -1;
3404 if (INSN_UID (tmp_insn) >= first_emitted_uid
3405 && INSN_UID (tmp2_insn) < first_emitted_uid)
3406 return 1;
3407
3408 /* Prefer an insn with smaller UID, as a last resort.
3409 We can't safely use INSN_LUID as it is defined only for those insns
3410 that are in the stream. */
3411 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3412 }
3413
3414 /* Filter out expressions from av set pointed to by AV_PTR
3415 that are pipelined too many times. */
3416 static void
3417 process_pipelined_exprs (av_set_t *av_ptr)
3418 {
3419 expr_t expr;
3420 av_set_iterator si;
3421
3422 /* Don't pipeline already pipelined code as that would increase
3423 number of unnecessary register moves. */
3424 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3425 {
3426 if (EXPR_SCHED_TIMES (expr)
3427 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3428 av_set_iter_remove (&si);
3429 }
3430 }
3431
3432 /* Filter speculative insns from AV_PTR if we don't want them. */
3433 static void
3434 process_spec_exprs (av_set_t *av_ptr)
3435 {
3436 bool try_data_p = true;
3437 bool try_control_p = true;
3438 expr_t expr;
3439 av_set_iterator si;
3440
3441 if (spec_info == NULL)
3442 return;
3443
3444 /* Scan *AV_PTR to find out if we want to consider speculative
3445 instructions for scheduling. */
3446 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3447 {
3448 ds_t ds;
3449
3450 ds = EXPR_SPEC_DONE_DS (expr);
3451
3452 /* The probability of a success is too low - don't speculate. */
3453 if ((ds & SPECULATIVE)
3454 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3455 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3456 || (pipelining_p && false
3457 && (ds & DATA_SPEC)
3458 && (ds & CONTROL_SPEC))))
3459 {
3460 av_set_iter_remove (&si);
3461 continue;
3462 }
3463
3464 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3465 && !(ds & BEGIN_DATA))
3466 try_data_p = false;
3467
3468 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3469 && !(ds & BEGIN_CONTROL))
3470 try_control_p = false;
3471 }
3472
3473 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3474 {
3475 ds_t ds;
3476
3477 ds = EXPR_SPEC_DONE_DS (expr);
3478
3479 if (ds & SPECULATIVE)
3480 {
3481 if ((ds & BEGIN_DATA) && !try_data_p)
3482 /* We don't want any data speculative instructions right
3483 now. */
3484 av_set_iter_remove (&si);
3485
3486 if ((ds & BEGIN_CONTROL) && !try_control_p)
3487 /* We don't want any control speculative instructions right
3488 now. */
3489 av_set_iter_remove (&si);
3490 }
3491 }
3492 }
3493
3494 /* Search for any use-like insns in AV_PTR and decide on scheduling
3495 them. Return one when found, and NULL otherwise.
3496 Note that we check here whether a USE could be scheduled to avoid
3497 an infinite loop later. */
3498 static expr_t
3499 process_use_exprs (av_set_t *av_ptr)
3500 {
3501 expr_t expr;
3502 av_set_iterator si;
3503 bool uses_present_p = false;
3504 bool try_uses_p = true;
3505
3506 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3507 {
3508 /* This will also initialize INSN_CODE for later use. */
3509 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3510 {
3511 /* If we have a USE in *AV_PTR that was not scheduled yet,
3512 do so because it will do good only. */
3513 if (EXPR_SCHED_TIMES (expr) <= 0)
3514 {
3515 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3516 return expr;
3517
3518 av_set_iter_remove (&si);
3519 }
3520 else
3521 {
3522 gcc_assert (pipelining_p);
3523
3524 uses_present_p = true;
3525 }
3526 }
3527 else
3528 try_uses_p = false;
3529 }
3530
3531 if (uses_present_p)
3532 {
3533 /* If we don't want to schedule any USEs right now and we have some
3534 in *AV_PTR, remove them, else just return the first one found. */
3535 if (!try_uses_p)
3536 {
3537 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3538 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3539 av_set_iter_remove (&si);
3540 }
3541 else
3542 {
3543 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3544 {
3545 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3546
3547 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3548 return expr;
3549
3550 av_set_iter_remove (&si);
3551 }
3552 }
3553 }
3554
3555 return NULL;
3556 }
3557
3558 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3559 EXPR's history of changes. */
3560 static bool
3561 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3562 {
3563 vinsn_t vinsn, expr_vinsn;
3564 int n;
3565 unsigned i;
3566
3567 /* Start with checking expr itself and then proceed with all the old forms
3568 of expr taken from its history vector. */
3569 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3570 expr_vinsn;
3571 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3572 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3573 : NULL))
3574 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3575 if (VINSN_SEPARABLE_P (vinsn))
3576 {
3577 if (vinsn_equal_p (vinsn, expr_vinsn))
3578 return true;
3579 }
3580 else
3581 {
3582 /* For non-separable instructions, the blocking insn can have
3583 another pattern due to substitution, and we can't choose
3584 different register as in the above case. Check all registers
3585 being written instead. */
3586 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3587 VINSN_REG_SETS (expr_vinsn)))
3588 return true;
3589 }
3590
3591 return false;
3592 }
3593
3594 #ifdef ENABLE_CHECKING
3595 /* Return true if either of expressions from ORIG_OPS can be blocked
3596 by previously created bookkeeping code. STATIC_PARAMS points to static
3597 parameters of move_op. */
3598 static bool
3599 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3600 {
3601 expr_t expr;
3602 av_set_iterator iter;
3603 moveop_static_params_p sparams;
3604
3605 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3606 created while scheduling on another fence. */
3607 FOR_EACH_EXPR (expr, iter, orig_ops)
3608 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3609 return true;
3610
3611 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3612 sparams = (moveop_static_params_p) static_params;
3613
3614 /* Expressions can be also blocked by bookkeeping created during current
3615 move_op. */
3616 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3617 FOR_EACH_EXPR (expr, iter, orig_ops)
3618 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3619 return true;
3620
3621 /* Expressions in ORIG_OPS may have wrong destination register due to
3622 renaming. Check with the right register instead. */
3623 if (sparams->dest && REG_P (sparams->dest))
3624 {
3625 rtx reg = sparams->dest;
3626 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3627
3628 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3629 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3630 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3631 return true;
3632 }
3633
3634 return false;
3635 }
3636 #endif
3637
3638 /* Clear VINSN_VEC and detach vinsns. */
3639 static void
3640 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3641 {
3642 unsigned len = vinsn_vec->length ();
3643 if (len > 0)
3644 {
3645 vinsn_t vinsn;
3646 int n;
3647
3648 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3649 vinsn_detach (vinsn);
3650 vinsn_vec->block_remove (0, len);
3651 }
3652 }
3653
3654 /* Add the vinsn of EXPR to the VINSN_VEC. */
3655 static void
3656 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3657 {
3658 vinsn_attach (EXPR_VINSN (expr));
3659 vinsn_vec->safe_push (EXPR_VINSN (expr));
3660 }
3661
3662 /* Free the vector representing blocked expressions. */
3663 static void
3664 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3665 {
3666 vinsn_vec.release ();
3667 }
3668
3669 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3670
3671 void sel_add_to_insn_priority (rtx insn, int amount)
3672 {
3673 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3674
3675 if (sched_verbose >= 2)
3676 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3677 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3678 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3679 }
3680
3681 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3682 true if there is something to schedule. BNDS and FENCE are current
3683 boundaries and fence, respectively. If we need to stall for some cycles
3684 before an expr from AV would become available, write this number to
3685 *PNEED_STALL. */
3686 static bool
3687 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3688 int *pneed_stall)
3689 {
3690 av_set_iterator si;
3691 expr_t expr;
3692 int sched_next_worked = 0, stalled, n;
3693 static int av_max_prio, est_ticks_till_branch;
3694 int min_need_stall = -1;
3695 deps_t dc = BND_DC (BLIST_BND (bnds));
3696
3697 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3698 already scheduled. */
3699 if (av == NULL)
3700 return false;
3701
3702 /* Empty vector from the previous stuff. */
3703 if (vec_av_set.length () > 0)
3704 vec_av_set.block_remove (0, vec_av_set.length ());
3705
3706 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3707 for each insn. */
3708 gcc_assert (vec_av_set.is_empty ());
3709 FOR_EACH_EXPR (expr, si, av)
3710 {
3711 vec_av_set.safe_push (expr);
3712
3713 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3714
3715 /* Adjust priority using target backend hook. */
3716 sel_target_adjust_priority (expr);
3717 }
3718
3719 /* Sort the vector. */
3720 vec_av_set.qsort (sel_rank_for_schedule);
3721
3722 /* We record maximal priority of insns in av set for current instruction
3723 group. */
3724 if (FENCE_STARTS_CYCLE_P (fence))
3725 av_max_prio = est_ticks_till_branch = INT_MIN;
3726
3727 /* Filter out inappropriate expressions. Loop's direction is reversed to
3728 visit "best" instructions first. We assume that vec::unordered_remove
3729 moves last element in place of one being deleted. */
3730 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3731 {
3732 expr_t expr = vec_av_set[n];
3733 insn_t insn = EXPR_INSN_RTX (expr);
3734 signed char target_available;
3735 bool is_orig_reg_p = true;
3736 int need_cycles, new_prio;
3737
3738 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3739 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3740 {
3741 vec_av_set.unordered_remove (n);
3742 continue;
3743 }
3744
3745 /* Set number of sched_next insns (just in case there
3746 could be several). */
3747 if (FENCE_SCHED_NEXT (fence))
3748 sched_next_worked++;
3749
3750 /* Check all liveness requirements and try renaming.
3751 FIXME: try to minimize calls to this. */
3752 target_available = EXPR_TARGET_AVAILABLE (expr);
3753
3754 /* If insn was already scheduled on the current fence,
3755 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3756 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3757 target_available = -1;
3758
3759 /* If the availability of the EXPR is invalidated by the insertion of
3760 bookkeeping earlier, make sure that we won't choose this expr for
3761 scheduling if it's not separable, and if it is separable, then
3762 we have to recompute the set of available registers for it. */
3763 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3764 {
3765 vec_av_set.unordered_remove (n);
3766 if (sched_verbose >= 4)
3767 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3768 INSN_UID (insn));
3769 continue;
3770 }
3771
3772 if (target_available == true)
3773 {
3774 /* Do nothing -- we can use an existing register. */
3775 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3776 }
3777 else if (/* Non-separable instruction will never
3778 get another register. */
3779 (target_available == false
3780 && !EXPR_SEPARABLE_P (expr))
3781 /* Don't try to find a register for low-priority expression. */
3782 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3783 /* ??? FIXME: Don't try to rename data speculation. */
3784 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3785 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3786 {
3787 vec_av_set.unordered_remove (n);
3788 if (sched_verbose >= 4)
3789 sel_print ("Expr %d has no suitable target register\n",
3790 INSN_UID (insn));
3791 continue;
3792 }
3793
3794 /* Filter expressions that need to be renamed or speculated when
3795 pipelining, because compensating register copies or speculation
3796 checks are likely to be placed near the beginning of the loop,
3797 causing a stall. */
3798 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3799 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3800 {
3801 /* Estimation of number of cycles until loop branch for
3802 renaming/speculation to be successful. */
3803 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3804
3805 if ((int) current_loop_nest->ninsns < 9)
3806 {
3807 vec_av_set.unordered_remove (n);
3808 if (sched_verbose >= 4)
3809 sel_print ("Pipelining expr %d will likely cause stall\n",
3810 INSN_UID (insn));
3811 continue;
3812 }
3813
3814 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3815 < need_n_ticks_till_branch * issue_rate / 2
3816 && est_ticks_till_branch < need_n_ticks_till_branch)
3817 {
3818 vec_av_set.unordered_remove (n);
3819 if (sched_verbose >= 4)
3820 sel_print ("Pipelining expr %d will likely cause stall\n",
3821 INSN_UID (insn));
3822 continue;
3823 }
3824 }
3825
3826 /* We want to schedule speculation checks as late as possible. Discard
3827 them from av set if there are instructions with higher priority. */
3828 if (sel_insn_is_speculation_check (insn)
3829 && EXPR_PRIORITY (expr) < av_max_prio)
3830 {
3831 stalled++;
3832 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3833 vec_av_set.unordered_remove (n);
3834 if (sched_verbose >= 4)
3835 sel_print ("Delaying speculation check %d until its first use\n",
3836 INSN_UID (insn));
3837 continue;
3838 }
3839
3840 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3841 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3842 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3843
3844 /* Don't allow any insns whose data is not yet ready.
3845 Check first whether we've already tried them and failed. */
3846 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3847 {
3848 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3849 - FENCE_CYCLE (fence));
3850 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3851 est_ticks_till_branch = MAX (est_ticks_till_branch,
3852 EXPR_PRIORITY (expr) + need_cycles);
3853
3854 if (need_cycles > 0)
3855 {
3856 stalled++;
3857 min_need_stall = (min_need_stall < 0
3858 ? need_cycles
3859 : MIN (min_need_stall, need_cycles));
3860 vec_av_set.unordered_remove (n);
3861
3862 if (sched_verbose >= 4)
3863 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3864 INSN_UID (insn),
3865 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3866 continue;
3867 }
3868 }
3869
3870 /* Now resort to dependence analysis to find whether EXPR might be
3871 stalled due to dependencies from FENCE's context. */
3872 need_cycles = tick_check_p (expr, dc, fence);
3873 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3874
3875 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3876 est_ticks_till_branch = MAX (est_ticks_till_branch,
3877 new_prio);
3878
3879 if (need_cycles > 0)
3880 {
3881 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3882 {
3883 int new_size = INSN_UID (insn) * 3 / 2;
3884
3885 FENCE_READY_TICKS (fence)
3886 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3887 new_size, FENCE_READY_TICKS_SIZE (fence),
3888 sizeof (int));
3889 }
3890 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3891 = FENCE_CYCLE (fence) + need_cycles;
3892
3893 stalled++;
3894 min_need_stall = (min_need_stall < 0
3895 ? need_cycles
3896 : MIN (min_need_stall, need_cycles));
3897
3898 vec_av_set.unordered_remove (n);
3899
3900 if (sched_verbose >= 4)
3901 sel_print ("Expr %d is not ready yet until cycle %d\n",
3902 INSN_UID (insn),
3903 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3904 continue;
3905 }
3906
3907 if (sched_verbose >= 4)
3908 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3909 min_need_stall = 0;
3910 }
3911
3912 /* Clear SCHED_NEXT. */
3913 if (FENCE_SCHED_NEXT (fence))
3914 {
3915 gcc_assert (sched_next_worked == 1);
3916 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3917 }
3918
3919 /* No need to stall if this variable was not initialized. */
3920 if (min_need_stall < 0)
3921 min_need_stall = 0;
3922
3923 if (vec_av_set.is_empty ())
3924 {
3925 /* We need to set *pneed_stall here, because later we skip this code
3926 when ready list is empty. */
3927 *pneed_stall = min_need_stall;
3928 return false;
3929 }
3930 else
3931 gcc_assert (min_need_stall == 0);
3932
3933 /* Sort the vector. */
3934 vec_av_set.qsort (sel_rank_for_schedule);
3935
3936 if (sched_verbose >= 4)
3937 {
3938 sel_print ("Total ready exprs: %d, stalled: %d\n",
3939 vec_av_set.length (), stalled);
3940 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3941 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3942 dump_expr (expr);
3943 sel_print ("\n");
3944 }
3945
3946 *pneed_stall = 0;
3947 return true;
3948 }
3949
3950 /* Convert a vectored and sorted av set to the ready list that
3951 the rest of the backend wants to see. */
3952 static void
3953 convert_vec_av_set_to_ready (void)
3954 {
3955 int n;
3956 expr_t expr;
3957
3958 /* Allocate and fill the ready list from the sorted vector. */
3959 ready.n_ready = vec_av_set.length ();
3960 ready.first = ready.n_ready - 1;
3961
3962 gcc_assert (ready.n_ready > 0);
3963
3964 if (ready.n_ready > max_issue_size)
3965 {
3966 max_issue_size = ready.n_ready;
3967 sched_extend_ready_list (ready.n_ready);
3968 }
3969
3970 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3971 {
3972 vinsn_t vi = EXPR_VINSN (expr);
3973 insn_t insn = VINSN_INSN_RTX (vi);
3974
3975 ready_try[n] = 0;
3976 ready.vec[n] = insn;
3977 }
3978 }
3979
3980 /* Initialize ready list from *AV_PTR for the max_issue () call.
3981 If any unrecognizable insn found in *AV_PTR, return it (and skip
3982 max_issue). BND and FENCE are current boundary and fence,
3983 respectively. If we need to stall for some cycles before an expr
3984 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3985 static expr_t
3986 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3987 int *pneed_stall)
3988 {
3989 expr_t expr;
3990
3991 /* We do not support multiple boundaries per fence. */
3992 gcc_assert (BLIST_NEXT (bnds) == NULL);
3993
3994 /* Process expressions required special handling, i.e. pipelined,
3995 speculative and recog() < 0 expressions first. */
3996 process_pipelined_exprs (av_ptr);
3997 process_spec_exprs (av_ptr);
3998
3999 /* A USE could be scheduled immediately. */
4000 expr = process_use_exprs (av_ptr);
4001 if (expr)
4002 {
4003 *pneed_stall = 0;
4004 return expr;
4005 }
4006
4007 /* Turn the av set to a vector for sorting. */
4008 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4009 {
4010 ready.n_ready = 0;
4011 return NULL;
4012 }
4013
4014 /* Build the final ready list. */
4015 convert_vec_av_set_to_ready ();
4016 return NULL;
4017 }
4018
4019 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4020 static bool
4021 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4022 {
4023 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4024 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4025 : FENCE_CYCLE (fence) - 1;
4026 bool res = false;
4027 int sort_p = 0;
4028
4029 if (!targetm.sched.dfa_new_cycle)
4030 return false;
4031
4032 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4033
4034 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4035 insn, last_scheduled_cycle,
4036 FENCE_CYCLE (fence), &sort_p))
4037 {
4038 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4039 advance_one_cycle (fence);
4040 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4041 res = true;
4042 }
4043
4044 return res;
4045 }
4046
4047 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4048 we can issue. FENCE is the current fence. */
4049 static int
4050 invoke_reorder_hooks (fence_t fence)
4051 {
4052 int issue_more;
4053 bool ran_hook = false;
4054
4055 /* Call the reorder hook at the beginning of the cycle, and call
4056 the reorder2 hook in the middle of the cycle. */
4057 if (FENCE_ISSUED_INSNS (fence) == 0)
4058 {
4059 if (targetm.sched.reorder
4060 && !SCHED_GROUP_P (ready_element (&ready, 0))
4061 && ready.n_ready > 1)
4062 {
4063 /* Don't give reorder the most prioritized insn as it can break
4064 pipelining. */
4065 if (pipelining_p)
4066 --ready.n_ready;
4067
4068 issue_more
4069 = targetm.sched.reorder (sched_dump, sched_verbose,
4070 ready_lastpos (&ready),
4071 &ready.n_ready, FENCE_CYCLE (fence));
4072
4073 if (pipelining_p)
4074 ++ready.n_ready;
4075
4076 ran_hook = true;
4077 }
4078 else
4079 /* Initialize can_issue_more for variable_issue. */
4080 issue_more = issue_rate;
4081 }
4082 else if (targetm.sched.reorder2
4083 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4084 {
4085 if (ready.n_ready == 1)
4086 issue_more =
4087 targetm.sched.reorder2 (sched_dump, sched_verbose,
4088 ready_lastpos (&ready),
4089 &ready.n_ready, FENCE_CYCLE (fence));
4090 else
4091 {
4092 if (pipelining_p)
4093 --ready.n_ready;
4094
4095 issue_more =
4096 targetm.sched.reorder2 (sched_dump, sched_verbose,
4097 ready.n_ready
4098 ? ready_lastpos (&ready) : NULL,
4099 &ready.n_ready, FENCE_CYCLE (fence));
4100
4101 if (pipelining_p)
4102 ++ready.n_ready;
4103 }
4104
4105 ran_hook = true;
4106 }
4107 else
4108 issue_more = FENCE_ISSUE_MORE (fence);
4109
4110 /* Ensure that ready list and vec_av_set are in line with each other,
4111 i.e. vec_av_set[i] == ready_element (&ready, i). */
4112 if (issue_more && ran_hook)
4113 {
4114 int i, j, n;
4115 rtx *arr = ready.vec;
4116 expr_t *vec = vec_av_set.address ();
4117
4118 for (i = 0, n = ready.n_ready; i < n; i++)
4119 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4120 {
4121 expr_t tmp;
4122
4123 for (j = i; j < n; j++)
4124 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4125 break;
4126 gcc_assert (j < n);
4127
4128 tmp = vec[i];
4129 vec[i] = vec[j];
4130 vec[j] = tmp;
4131 }
4132 }
4133
4134 return issue_more;
4135 }
4136
4137 /* Return an EXPR corresponding to INDEX element of ready list, if
4138 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4139 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4140 ready.vec otherwise. */
4141 static inline expr_t
4142 find_expr_for_ready (int index, bool follow_ready_element)
4143 {
4144 expr_t expr;
4145 int real_index;
4146
4147 real_index = follow_ready_element ? ready.first - index : index;
4148
4149 expr = vec_av_set[real_index];
4150 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4151
4152 return expr;
4153 }
4154
4155 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4156 of such insns found. */
4157 static int
4158 invoke_dfa_lookahead_guard (void)
4159 {
4160 int i, n;
4161 bool have_hook
4162 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4163
4164 if (sched_verbose >= 2)
4165 sel_print ("ready after reorder: ");
4166
4167 for (i = 0, n = 0; i < ready.n_ready; i++)
4168 {
4169 expr_t expr;
4170 insn_t insn;
4171 int r;
4172
4173 /* In this loop insn is Ith element of the ready list given by
4174 ready_element, not Ith element of ready.vec. */
4175 insn = ready_element (&ready, i);
4176
4177 if (! have_hook || i == 0)
4178 r = 0;
4179 else
4180 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4181
4182 gcc_assert (INSN_CODE (insn) >= 0);
4183
4184 /* Only insns with ready_try = 0 can get here
4185 from fill_ready_list. */
4186 gcc_assert (ready_try [i] == 0);
4187 ready_try[i] = r;
4188 if (!r)
4189 n++;
4190
4191 expr = find_expr_for_ready (i, true);
4192
4193 if (sched_verbose >= 2)
4194 {
4195 dump_vinsn (EXPR_VINSN (expr));
4196 sel_print (":%d; ", ready_try[i]);
4197 }
4198 }
4199
4200 if (sched_verbose >= 2)
4201 sel_print ("\n");
4202 return n;
4203 }
4204
4205 /* Calculate the number of privileged insns and return it. */
4206 static int
4207 calculate_privileged_insns (void)
4208 {
4209 expr_t cur_expr, min_spec_expr = NULL;
4210 int privileged_n = 0, i;
4211
4212 for (i = 0; i < ready.n_ready; i++)
4213 {
4214 if (ready_try[i])
4215 continue;
4216
4217 if (! min_spec_expr)
4218 min_spec_expr = find_expr_for_ready (i, true);
4219
4220 cur_expr = find_expr_for_ready (i, true);
4221
4222 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4223 break;
4224
4225 ++privileged_n;
4226 }
4227
4228 if (i == ready.n_ready)
4229 privileged_n = 0;
4230
4231 if (sched_verbose >= 2)
4232 sel_print ("privileged_n: %d insns with SPEC %d\n",
4233 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4234 return privileged_n;
4235 }
4236
4237 /* Call the rest of the hooks after the choice was made. Return
4238 the number of insns that still can be issued given that the current
4239 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4240 and the insn chosen for scheduling, respectively. */
4241 static int
4242 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4243 {
4244 gcc_assert (INSN_P (best_insn));
4245
4246 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4247 sel_dfa_new_cycle (best_insn, fence);
4248
4249 if (targetm.sched.variable_issue)
4250 {
4251 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4252 issue_more =
4253 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4254 issue_more);
4255 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4256 }
4257 else if (GET_CODE (PATTERN (best_insn)) != USE
4258 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4259 issue_more--;
4260
4261 return issue_more;
4262 }
4263
4264 /* Estimate the cost of issuing INSN on DFA state STATE. */
4265 static int
4266 estimate_insn_cost (rtx insn, state_t state)
4267 {
4268 static state_t temp = NULL;
4269 int cost;
4270
4271 if (!temp)
4272 temp = xmalloc (dfa_state_size);
4273
4274 memcpy (temp, state, dfa_state_size);
4275 cost = state_transition (temp, insn);
4276
4277 if (cost < 0)
4278 return 0;
4279 else if (cost == 0)
4280 return 1;
4281 return cost;
4282 }
4283
4284 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4285 This function properly handles ASMs, USEs etc. */
4286 static int
4287 get_expr_cost (expr_t expr, fence_t fence)
4288 {
4289 rtx insn = EXPR_INSN_RTX (expr);
4290
4291 if (recog_memoized (insn) < 0)
4292 {
4293 if (!FENCE_STARTS_CYCLE_P (fence)
4294 && INSN_ASM_P (insn))
4295 /* This is asm insn which is tryed to be issued on the
4296 cycle not first. Issue it on the next cycle. */
4297 return 1;
4298 else
4299 /* A USE insn, or something else we don't need to
4300 understand. We can't pass these directly to
4301 state_transition because it will trigger a
4302 fatal error for unrecognizable insns. */
4303 return 0;
4304 }
4305 else
4306 return estimate_insn_cost (insn, FENCE_STATE (fence));
4307 }
4308
4309 /* Find the best insn for scheduling, either via max_issue or just take
4310 the most prioritized available. */
4311 static int
4312 choose_best_insn (fence_t fence, int privileged_n, int *index)
4313 {
4314 int can_issue = 0;
4315
4316 if (dfa_lookahead > 0)
4317 {
4318 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4319 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4320 can_issue = max_issue (&ready, privileged_n,
4321 FENCE_STATE (fence), true, index);
4322 if (sched_verbose >= 2)
4323 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4324 can_issue, FENCE_ISSUED_INSNS (fence));
4325 }
4326 else
4327 {
4328 /* We can't use max_issue; just return the first available element. */
4329 int i;
4330
4331 for (i = 0; i < ready.n_ready; i++)
4332 {
4333 expr_t expr = find_expr_for_ready (i, true);
4334
4335 if (get_expr_cost (expr, fence) < 1)
4336 {
4337 can_issue = can_issue_more;
4338 *index = i;
4339
4340 if (sched_verbose >= 2)
4341 sel_print ("using %dth insn from the ready list\n", i + 1);
4342
4343 break;
4344 }
4345 }
4346
4347 if (i == ready.n_ready)
4348 {
4349 can_issue = 0;
4350 *index = -1;
4351 }
4352 }
4353
4354 return can_issue;
4355 }
4356
4357 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4358 BNDS and FENCE are current boundaries and scheduling fence respectively.
4359 Return the expr found and NULL if nothing can be issued atm.
4360 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4361 static expr_t
4362 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4363 int *pneed_stall)
4364 {
4365 expr_t best;
4366
4367 /* Choose the best insn for scheduling via:
4368 1) sorting the ready list based on priority;
4369 2) calling the reorder hook;
4370 3) calling max_issue. */
4371 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4372 if (best == NULL && ready.n_ready > 0)
4373 {
4374 int privileged_n, index;
4375
4376 can_issue_more = invoke_reorder_hooks (fence);
4377 if (can_issue_more > 0)
4378 {
4379 /* Try choosing the best insn until we find one that is could be
4380 scheduled due to liveness restrictions on its destination register.
4381 In the future, we'd like to choose once and then just probe insns
4382 in the order of their priority. */
4383 invoke_dfa_lookahead_guard ();
4384 privileged_n = calculate_privileged_insns ();
4385 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4386 if (can_issue_more)
4387 best = find_expr_for_ready (index, true);
4388 }
4389 /* We had some available insns, so if we can't issue them,
4390 we have a stall. */
4391 if (can_issue_more == 0)
4392 {
4393 best = NULL;
4394 *pneed_stall = 1;
4395 }
4396 }
4397
4398 if (best != NULL)
4399 {
4400 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4401 can_issue_more);
4402 if (targetm.sched.variable_issue
4403 && can_issue_more == 0)
4404 *pneed_stall = 1;
4405 }
4406
4407 if (sched_verbose >= 2)
4408 {
4409 if (best != NULL)
4410 {
4411 sel_print ("Best expression (vliw form): ");
4412 dump_expr (best);
4413 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4414 }
4415 else
4416 sel_print ("No best expr found!\n");
4417 }
4418
4419 return best;
4420 }
4421 \f
4422
4423 /* Functions that implement the core of the scheduler. */
4424
4425
4426 /* Emit an instruction from EXPR with SEQNO and VINSN after
4427 PLACE_TO_INSERT. */
4428 static insn_t
4429 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4430 insn_t place_to_insert)
4431 {
4432 /* This assert fails when we have identical instructions
4433 one of which dominates the other. In this case move_op ()
4434 finds the first instruction and doesn't search for second one.
4435 The solution would be to compute av_set after the first found
4436 insn and, if insn present in that set, continue searching.
4437 For now we workaround this issue in move_op. */
4438 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4439
4440 if (EXPR_WAS_RENAMED (expr))
4441 {
4442 unsigned regno = expr_dest_regno (expr);
4443
4444 if (HARD_REGISTER_NUM_P (regno))
4445 {
4446 df_set_regs_ever_live (regno, true);
4447 reg_rename_tick[regno] = ++reg_rename_this_tick;
4448 }
4449 }
4450
4451 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4452 place_to_insert);
4453 }
4454
4455 /* Return TRUE if BB can hold bookkeeping code. */
4456 static bool
4457 block_valid_for_bookkeeping_p (basic_block bb)
4458 {
4459 insn_t bb_end = BB_END (bb);
4460
4461 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4462 return false;
4463
4464 if (INSN_P (bb_end))
4465 {
4466 if (INSN_SCHED_TIMES (bb_end) > 0)
4467 return false;
4468 }
4469 else
4470 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4471
4472 return true;
4473 }
4474
4475 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4476 into E2->dest, except from E1->src (there may be a sequence of empty basic
4477 blocks between E1->src and E2->dest). Return found block, or NULL if new
4478 one must be created. If LAX holds, don't assume there is a simple path
4479 from E1->src to E2->dest. */
4480 static basic_block
4481 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4482 {
4483 basic_block candidate_block = NULL;
4484 edge e;
4485
4486 /* Loop over edges from E1 to E2, inclusive. */
4487 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4488 {
4489 if (EDGE_COUNT (e->dest->preds) == 2)
4490 {
4491 if (candidate_block == NULL)
4492 candidate_block = (EDGE_PRED (e->dest, 0) == e
4493 ? EDGE_PRED (e->dest, 1)->src
4494 : EDGE_PRED (e->dest, 0)->src);
4495 else
4496 /* Found additional edge leading to path from e1 to e2
4497 from aside. */
4498 return NULL;
4499 }
4500 else if (EDGE_COUNT (e->dest->preds) > 2)
4501 /* Several edges leading to path from e1 to e2 from aside. */
4502 return NULL;
4503
4504 if (e == e2)
4505 return ((!lax || candidate_block)
4506 && block_valid_for_bookkeeping_p (candidate_block)
4507 ? candidate_block
4508 : NULL);
4509
4510 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4511 return NULL;
4512 }
4513
4514 if (lax)
4515 return NULL;
4516
4517 gcc_unreachable ();
4518 }
4519
4520 /* Create new basic block for bookkeeping code for path(s) incoming into
4521 E2->dest, except from E1->src. Return created block. */
4522 static basic_block
4523 create_block_for_bookkeeping (edge e1, edge e2)
4524 {
4525 basic_block new_bb, bb = e2->dest;
4526
4527 /* Check that we don't spoil the loop structure. */
4528 if (current_loop_nest)
4529 {
4530 basic_block latch = current_loop_nest->latch;
4531
4532 /* We do not split header. */
4533 gcc_assert (e2->dest != current_loop_nest->header);
4534
4535 /* We do not redirect the only edge to the latch block. */
4536 gcc_assert (e1->dest != latch
4537 || !single_pred_p (latch)
4538 || e1 != single_pred_edge (latch));
4539 }
4540
4541 /* Split BB to insert BOOK_INSN there. */
4542 new_bb = sched_split_block (bb, NULL);
4543
4544 /* Move note_list from the upper bb. */
4545 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4546 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4547 BB_NOTE_LIST (bb) = NULL_RTX;
4548
4549 gcc_assert (e2->dest == bb);
4550
4551 /* Skip block for bookkeeping copy when leaving E1->src. */
4552 if (e1->flags & EDGE_FALLTHRU)
4553 sel_redirect_edge_and_branch_force (e1, new_bb);
4554 else
4555 sel_redirect_edge_and_branch (e1, new_bb);
4556
4557 gcc_assert (e1->dest == new_bb);
4558 gcc_assert (sel_bb_empty_p (bb));
4559
4560 /* To keep basic block numbers in sync between debug and non-debug
4561 compilations, we have to rotate blocks here. Consider that we
4562 started from (a,b)->d, (c,d)->e, and d contained only debug
4563 insns. It would have been removed before if the debug insns
4564 weren't there, so we'd have split e rather than d. So what we do
4565 now is to swap the block numbers of new_bb and
4566 single_succ(new_bb) == e, so that the insns that were in e before
4567 get the new block number. */
4568
4569 if (MAY_HAVE_DEBUG_INSNS)
4570 {
4571 basic_block succ;
4572 insn_t insn = sel_bb_head (new_bb);
4573 insn_t last;
4574
4575 if (DEBUG_INSN_P (insn)
4576 && single_succ_p (new_bb)
4577 && (succ = single_succ (new_bb))
4578 && succ != EXIT_BLOCK_PTR
4579 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4580 {
4581 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4582 insn = NEXT_INSN (insn);
4583
4584 if (insn == last)
4585 {
4586 sel_global_bb_info_def gbi;
4587 sel_region_bb_info_def rbi;
4588 int i;
4589
4590 if (sched_verbose >= 2)
4591 sel_print ("Swapping block ids %i and %i\n",
4592 new_bb->index, succ->index);
4593
4594 i = new_bb->index;
4595 new_bb->index = succ->index;
4596 succ->index = i;
4597
4598 SET_BASIC_BLOCK (new_bb->index, new_bb);
4599 SET_BASIC_BLOCK (succ->index, succ);
4600
4601 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4602 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4603 sizeof (gbi));
4604 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4605
4606 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4607 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4608 sizeof (rbi));
4609 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4610
4611 i = BLOCK_TO_BB (new_bb->index);
4612 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4613 BLOCK_TO_BB (succ->index) = i;
4614
4615 i = CONTAINING_RGN (new_bb->index);
4616 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4617 CONTAINING_RGN (succ->index) = i;
4618
4619 for (i = 0; i < current_nr_blocks; i++)
4620 if (BB_TO_BLOCK (i) == succ->index)
4621 BB_TO_BLOCK (i) = new_bb->index;
4622 else if (BB_TO_BLOCK (i) == new_bb->index)
4623 BB_TO_BLOCK (i) = succ->index;
4624
4625 FOR_BB_INSNS (new_bb, insn)
4626 if (INSN_P (insn))
4627 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4628
4629 FOR_BB_INSNS (succ, insn)
4630 if (INSN_P (insn))
4631 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4632
4633 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4634 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4635
4636 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4637 && LABEL_P (BB_HEAD (succ)));
4638
4639 if (sched_verbose >= 4)
4640 sel_print ("Swapping code labels %i and %i\n",
4641 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4642 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4643
4644 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4645 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4646 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4647 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4648 }
4649 }
4650 }
4651
4652 return bb;
4653 }
4654
4655 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4656 into E2->dest, except from E1->src. If the returned insn immediately
4657 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4658 static insn_t
4659 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4660 {
4661 insn_t place_to_insert;
4662 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4663 create new basic block, but insert bookkeeping there. */
4664 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4665
4666 if (book_block)
4667 {
4668 place_to_insert = BB_END (book_block);
4669
4670 /* Don't use a block containing only debug insns for
4671 bookkeeping, this causes scheduling differences between debug
4672 and non-debug compilations, for the block would have been
4673 removed already. */
4674 if (DEBUG_INSN_P (place_to_insert))
4675 {
4676 rtx insn = sel_bb_head (book_block);
4677
4678 while (insn != place_to_insert &&
4679 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4680 insn = NEXT_INSN (insn);
4681
4682 if (insn == place_to_insert)
4683 book_block = NULL;
4684 }
4685 }
4686
4687 if (!book_block)
4688 {
4689 book_block = create_block_for_bookkeeping (e1, e2);
4690 place_to_insert = BB_END (book_block);
4691 if (sched_verbose >= 9)
4692 sel_print ("New block is %i, split from bookkeeping block %i\n",
4693 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4694 }
4695 else
4696 {
4697 if (sched_verbose >= 9)
4698 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4699 }
4700
4701 *fence_to_rewind = NULL;
4702 /* If basic block ends with a jump, insert bookkeeping code right before it.
4703 Notice if we are crossing a fence when taking PREV_INSN. */
4704 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4705 {
4706 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4707 place_to_insert = PREV_INSN (place_to_insert);
4708 }
4709
4710 return place_to_insert;
4711 }
4712
4713 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4714 for JOIN_POINT. */
4715 static int
4716 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4717 {
4718 int seqno;
4719 rtx next;
4720
4721 /* Check if we are about to insert bookkeeping copy before a jump, and use
4722 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4723 next = NEXT_INSN (place_to_insert);
4724 if (INSN_P (next)
4725 && JUMP_P (next)
4726 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4727 {
4728 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4729 seqno = INSN_SEQNO (next);
4730 }
4731 else if (INSN_SEQNO (join_point) > 0)
4732 seqno = INSN_SEQNO (join_point);
4733 else
4734 {
4735 seqno = get_seqno_by_preds (place_to_insert);
4736
4737 /* Sometimes the fences can move in such a way that there will be
4738 no instructions with positive seqno around this bookkeeping.
4739 This means that there will be no way to get to it by a regular
4740 fence movement. Never mind because we pick up such pieces for
4741 rescheduling anyways, so any positive value will do for now. */
4742 if (seqno < 0)
4743 {
4744 gcc_assert (pipelining_p);
4745 seqno = 1;
4746 }
4747 }
4748
4749 gcc_assert (seqno > 0);
4750 return seqno;
4751 }
4752
4753 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4754 NEW_SEQNO to it. Return created insn. */
4755 static insn_t
4756 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4757 {
4758 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4759
4760 vinsn_t new_vinsn
4761 = create_vinsn_from_insn_rtx (new_insn_rtx,
4762 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4763
4764 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4765 place_to_insert);
4766
4767 INSN_SCHED_TIMES (new_insn) = 0;
4768 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4769
4770 return new_insn;
4771 }
4772
4773 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4774 E2->dest, except from E1->src (there may be a sequence of empty blocks
4775 between E1->src and E2->dest). Return block containing the copy.
4776 All scheduler data is initialized for the newly created insn. */
4777 static basic_block
4778 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4779 {
4780 insn_t join_point, place_to_insert, new_insn;
4781 int new_seqno;
4782 bool need_to_exchange_data_sets;
4783 fence_t fence_to_rewind;
4784
4785 if (sched_verbose >= 4)
4786 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4787 e2->dest->index);
4788
4789 join_point = sel_bb_head (e2->dest);
4790 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4791 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4792 need_to_exchange_data_sets
4793 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4794
4795 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4796
4797 if (fence_to_rewind)
4798 FENCE_INSN (fence_to_rewind) = new_insn;
4799
4800 /* When inserting bookkeeping insn in new block, av sets should be
4801 following: old basic block (that now holds bookkeeping) data sets are
4802 the same as was before generation of bookkeeping, and new basic block
4803 (that now hold all other insns of old basic block) data sets are
4804 invalid. So exchange data sets for these basic blocks as sel_split_block
4805 mistakenly exchanges them in this case. Cannot do it earlier because
4806 when single instruction is added to new basic block it should hold NULL
4807 lv_set. */
4808 if (need_to_exchange_data_sets)
4809 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4810 BLOCK_FOR_INSN (join_point));
4811
4812 stat_bookkeeping_copies++;
4813 return BLOCK_FOR_INSN (new_insn);
4814 }
4815
4816 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4817 on FENCE, but we are unable to copy them. */
4818 static void
4819 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4820 {
4821 expr_t expr;
4822 av_set_iterator i;
4823
4824 /* An expression does not need bookkeeping if it is available on all paths
4825 from current block to original block and current block dominates
4826 original block. We check availability on all paths by examining
4827 EXPR_SPEC; this is not equivalent, because it may be positive even
4828 if expr is available on all paths (but if expr is not available on
4829 any path, EXPR_SPEC will be positive). */
4830
4831 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4832 {
4833 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4834 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4835 && (EXPR_SPEC (expr)
4836 || !EXPR_ORIG_BB_INDEX (expr)
4837 || !dominated_by_p (CDI_DOMINATORS,
4838 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4839 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4840 {
4841 if (sched_verbose >= 4)
4842 sel_print ("Expr %d removed because it would need bookkeeping, which "
4843 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4844 av_set_iter_remove (&i);
4845 }
4846 }
4847 }
4848
4849 /* Moving conditional jump through some instructions.
4850
4851 Consider example:
4852
4853 ... <- current scheduling point
4854 NOTE BASIC BLOCK: <- bb header
4855 (p8) add r14=r14+0x9;;
4856 (p8) mov [r14]=r23
4857 (!p8) jump L1;;
4858 NOTE BASIC BLOCK:
4859 ...
4860
4861 We can schedule jump one cycle earlier, than mov, because they cannot be
4862 executed together as their predicates are mutually exclusive.
4863
4864 This is done in this way: first, new fallthrough basic block is created
4865 after jump (it is always can be done, because there already should be a
4866 fallthrough block, where control flow goes in case of predicate being true -
4867 in our example; otherwise there should be a dependence between those
4868 instructions and jump and we cannot schedule jump right now);
4869 next, all instructions between jump and current scheduling point are moved
4870 to this new block. And the result is this:
4871
4872 NOTE BASIC BLOCK:
4873 (!p8) jump L1 <- current scheduling point
4874 NOTE BASIC BLOCK: <- bb header
4875 (p8) add r14=r14+0x9;;
4876 (p8) mov [r14]=r23
4877 NOTE BASIC BLOCK:
4878 ...
4879 */
4880 static void
4881 move_cond_jump (rtx insn, bnd_t bnd)
4882 {
4883 edge ft_edge;
4884 basic_block block_from, block_next, block_new, block_bnd, bb;
4885 rtx next, prev, link, head;
4886
4887 block_from = BLOCK_FOR_INSN (insn);
4888 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4889 prev = BND_TO (bnd);
4890
4891 #ifdef ENABLE_CHECKING
4892 /* Moving of jump should not cross any other jumps or beginnings of new
4893 basic blocks. The only exception is when we move a jump through
4894 mutually exclusive insns along fallthru edges. */
4895 if (block_from != block_bnd)
4896 {
4897 bb = block_from;
4898 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4899 link = PREV_INSN (link))
4900 {
4901 if (INSN_P (link))
4902 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4903 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4904 {
4905 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4906 bb = BLOCK_FOR_INSN (link);
4907 }
4908 }
4909 }
4910 #endif
4911
4912 /* Jump is moved to the boundary. */
4913 next = PREV_INSN (insn);
4914 BND_TO (bnd) = insn;
4915
4916 ft_edge = find_fallthru_edge_from (block_from);
4917 block_next = ft_edge->dest;
4918 /* There must be a fallthrough block (or where should go
4919 control flow in case of false jump predicate otherwise?). */
4920 gcc_assert (block_next);
4921
4922 /* Create new empty basic block after source block. */
4923 block_new = sel_split_edge (ft_edge);
4924 gcc_assert (block_new->next_bb == block_next
4925 && block_from->next_bb == block_new);
4926
4927 /* Move all instructions except INSN to BLOCK_NEW. */
4928 bb = block_bnd;
4929 head = BB_HEAD (block_new);
4930 while (bb != block_from->next_bb)
4931 {
4932 rtx from, to;
4933 from = bb == block_bnd ? prev : sel_bb_head (bb);
4934 to = bb == block_from ? next : sel_bb_end (bb);
4935
4936 /* The jump being moved can be the first insn in the block.
4937 In this case we don't have to move anything in this block. */
4938 if (NEXT_INSN (to) != from)
4939 {
4940 reorder_insns (from, to, head);
4941
4942 for (link = to; link != head; link = PREV_INSN (link))
4943 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4944 head = to;
4945 }
4946
4947 /* Cleanup possibly empty blocks left. */
4948 block_next = bb->next_bb;
4949 if (bb != block_from)
4950 tidy_control_flow (bb, false);
4951 bb = block_next;
4952 }
4953
4954 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4955 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4956
4957 gcc_assert (!sel_bb_empty_p (block_from)
4958 && !sel_bb_empty_p (block_new));
4959
4960 /* Update data sets for BLOCK_NEW to represent that INSN and
4961 instructions from the other branch of INSN is no longer
4962 available at BLOCK_NEW. */
4963 BB_AV_LEVEL (block_new) = global_level;
4964 gcc_assert (BB_LV_SET (block_new) == NULL);
4965 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4966 update_data_sets (sel_bb_head (block_new));
4967
4968 /* INSN is a new basic block header - so prepare its data
4969 structures and update availability and liveness sets. */
4970 update_data_sets (insn);
4971
4972 if (sched_verbose >= 4)
4973 sel_print ("Moving jump %d\n", INSN_UID (insn));
4974 }
4975
4976 /* Remove nops generated during move_op for preventing removal of empty
4977 basic blocks. */
4978 static void
4979 remove_temp_moveop_nops (bool full_tidying)
4980 {
4981 int i;
4982 insn_t insn;
4983
4984 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4985 {
4986 gcc_assert (INSN_NOP_P (insn));
4987 return_nop_to_pool (insn, full_tidying);
4988 }
4989
4990 /* Empty the vector. */
4991 if (vec_temp_moveop_nops.length () > 0)
4992 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
4993 }
4994
4995 /* Records the maximal UID before moving up an instruction. Used for
4996 distinguishing between bookkeeping copies and original insns. */
4997 static int max_uid_before_move_op = 0;
4998
4999 /* Remove from AV_VLIW_P all instructions but next when debug counter
5000 tells us so. Next instruction is fetched from BNDS. */
5001 static void
5002 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5003 {
5004 if (! dbg_cnt (sel_sched_insn_cnt))
5005 /* Leave only the next insn in av_vliw. */
5006 {
5007 av_set_iterator av_it;
5008 expr_t expr;
5009 bnd_t bnd = BLIST_BND (bnds);
5010 insn_t next = BND_TO (bnd);
5011
5012 gcc_assert (BLIST_NEXT (bnds) == NULL);
5013
5014 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5015 if (EXPR_INSN_RTX (expr) != next)
5016 av_set_iter_remove (&av_it);
5017 }
5018 }
5019
5020 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5021 the computed set to *AV_VLIW_P. */
5022 static void
5023 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5024 {
5025 if (sched_verbose >= 2)
5026 {
5027 sel_print ("Boundaries: ");
5028 dump_blist (bnds);
5029 sel_print ("\n");
5030 }
5031
5032 for (; bnds; bnds = BLIST_NEXT (bnds))
5033 {
5034 bnd_t bnd = BLIST_BND (bnds);
5035 av_set_t av1_copy;
5036 insn_t bnd_to = BND_TO (bnd);
5037
5038 /* Rewind BND->TO to the basic block header in case some bookkeeping
5039 instructions were inserted before BND->TO and it needs to be
5040 adjusted. */
5041 if (sel_bb_head_p (bnd_to))
5042 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5043 else
5044 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5045 {
5046 bnd_to = PREV_INSN (bnd_to);
5047 if (sel_bb_head_p (bnd_to))
5048 break;
5049 }
5050
5051 if (BND_TO (bnd) != bnd_to)
5052 {
5053 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5054 FENCE_INSN (fence) = bnd_to;
5055 BND_TO (bnd) = bnd_to;
5056 }
5057
5058 av_set_clear (&BND_AV (bnd));
5059 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5060
5061 av_set_clear (&BND_AV1 (bnd));
5062 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5063
5064 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5065
5066 av1_copy = av_set_copy (BND_AV1 (bnd));
5067 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5068 }
5069
5070 if (sched_verbose >= 2)
5071 {
5072 sel_print ("Available exprs (vliw form): ");
5073 dump_av_set (*av_vliw_p);
5074 sel_print ("\n");
5075 }
5076 }
5077
5078 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5079 expression. When FOR_MOVEOP is true, also replace the register of
5080 expressions found with the register from EXPR_VLIW. */
5081 static av_set_t
5082 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5083 {
5084 av_set_t expr_seq = NULL;
5085 expr_t expr;
5086 av_set_iterator i;
5087
5088 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5089 {
5090 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5091 {
5092 if (for_moveop)
5093 {
5094 /* The sequential expression has the right form to pass
5095 to move_op except when renaming happened. Put the
5096 correct register in EXPR then. */
5097 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5098 {
5099 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5100 {
5101 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5102 stat_renamed_scheduled++;
5103 }
5104 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5105 This is needed when renaming came up with original
5106 register. */
5107 else if (EXPR_TARGET_AVAILABLE (expr)
5108 != EXPR_TARGET_AVAILABLE (expr_vliw))
5109 {
5110 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5111 EXPR_TARGET_AVAILABLE (expr) = 1;
5112 }
5113 }
5114 if (EXPR_WAS_SUBSTITUTED (expr))
5115 stat_substitutions_total++;
5116 }
5117
5118 av_set_add (&expr_seq, expr);
5119
5120 /* With substitution inside insn group, it is possible
5121 that more than one expression in expr_seq will correspond
5122 to expr_vliw. In this case, choose one as the attempt to
5123 move both leads to miscompiles. */
5124 break;
5125 }
5126 }
5127
5128 if (for_moveop && sched_verbose >= 2)
5129 {
5130 sel_print ("Best expression(s) (sequential form): ");
5131 dump_av_set (expr_seq);
5132 sel_print ("\n");
5133 }
5134
5135 return expr_seq;
5136 }
5137
5138
5139 /* Move nop to previous block. */
5140 static void ATTRIBUTE_UNUSED
5141 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5142 {
5143 insn_t prev_insn, next_insn, note;
5144
5145 gcc_assert (sel_bb_head_p (nop)
5146 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5147 note = bb_note (BLOCK_FOR_INSN (nop));
5148 prev_insn = sel_bb_end (prev_bb);
5149 next_insn = NEXT_INSN (nop);
5150 gcc_assert (prev_insn != NULL_RTX
5151 && PREV_INSN (note) == prev_insn);
5152
5153 NEXT_INSN (prev_insn) = nop;
5154 PREV_INSN (nop) = prev_insn;
5155
5156 PREV_INSN (note) = nop;
5157 NEXT_INSN (note) = next_insn;
5158
5159 NEXT_INSN (nop) = note;
5160 PREV_INSN (next_insn) = note;
5161
5162 BB_END (prev_bb) = nop;
5163 BLOCK_FOR_INSN (nop) = prev_bb;
5164 }
5165
5166 /* Prepare a place to insert the chosen expression on BND. */
5167 static insn_t
5168 prepare_place_to_insert (bnd_t bnd)
5169 {
5170 insn_t place_to_insert;
5171
5172 /* Init place_to_insert before calling move_op, as the later
5173 can possibly remove BND_TO (bnd). */
5174 if (/* If this is not the first insn scheduled. */
5175 BND_PTR (bnd))
5176 {
5177 /* Add it after last scheduled. */
5178 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5179 if (DEBUG_INSN_P (place_to_insert))
5180 {
5181 ilist_t l = BND_PTR (bnd);
5182 while ((l = ILIST_NEXT (l)) &&
5183 DEBUG_INSN_P (ILIST_INSN (l)))
5184 ;
5185 if (!l)
5186 place_to_insert = NULL;
5187 }
5188 }
5189 else
5190 place_to_insert = NULL;
5191
5192 if (!place_to_insert)
5193 {
5194 /* Add it before BND_TO. The difference is in the
5195 basic block, where INSN will be added. */
5196 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5197 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5198 == BLOCK_FOR_INSN (BND_TO (bnd)));
5199 }
5200
5201 return place_to_insert;
5202 }
5203
5204 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5205 Return the expression to emit in C_EXPR. */
5206 static bool
5207 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5208 av_set_t expr_seq, expr_t c_expr)
5209 {
5210 bool b, should_move;
5211 unsigned book_uid;
5212 bitmap_iterator bi;
5213 int n_bookkeeping_copies_before_moveop;
5214
5215 /* Make a move. This call will remove the original operation,
5216 insert all necessary bookkeeping instructions and update the
5217 data sets. After that all we have to do is add the operation
5218 at before BND_TO (BND). */
5219 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5220 max_uid_before_move_op = get_max_uid ();
5221 bitmap_clear (current_copies);
5222 bitmap_clear (current_originators);
5223
5224 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5225 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5226
5227 /* We should be able to find the expression we've chosen for
5228 scheduling. */
5229 gcc_assert (b);
5230
5231 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5232 stat_insns_needed_bookkeeping++;
5233
5234 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5235 {
5236 unsigned uid;
5237 bitmap_iterator bi;
5238
5239 /* We allocate these bitmaps lazily. */
5240 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5241 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5242
5243 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5244 current_originators);
5245
5246 /* Transitively add all originators' originators. */
5247 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5248 if (INSN_ORIGINATORS_BY_UID (uid))
5249 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5250 INSN_ORIGINATORS_BY_UID (uid));
5251 }
5252
5253 return should_move;
5254 }
5255
5256
5257 /* Debug a DFA state as an array of bytes. */
5258 static void
5259 debug_state (state_t state)
5260 {
5261 unsigned char *p;
5262 unsigned int i, size = dfa_state_size;
5263
5264 sel_print ("state (%u):", size);
5265 for (i = 0, p = (unsigned char *) state; i < size; i++)
5266 sel_print (" %d", p[i]);
5267 sel_print ("\n");
5268 }
5269
5270 /* Advance state on FENCE with INSN. Return true if INSN is
5271 an ASM, and we should advance state once more. */
5272 static bool
5273 advance_state_on_fence (fence_t fence, insn_t insn)
5274 {
5275 bool asm_p;
5276
5277 if (recog_memoized (insn) >= 0)
5278 {
5279 int res;
5280 state_t temp_state = alloca (dfa_state_size);
5281
5282 gcc_assert (!INSN_ASM_P (insn));
5283 asm_p = false;
5284
5285 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5286 res = state_transition (FENCE_STATE (fence), insn);
5287 gcc_assert (res < 0);
5288
5289 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5290 {
5291 FENCE_ISSUED_INSNS (fence)++;
5292
5293 /* We should never issue more than issue_rate insns. */
5294 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5295 gcc_unreachable ();
5296 }
5297 }
5298 else
5299 {
5300 /* This could be an ASM insn which we'd like to schedule
5301 on the next cycle. */
5302 asm_p = INSN_ASM_P (insn);
5303 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5304 advance_one_cycle (fence);
5305 }
5306
5307 if (sched_verbose >= 2)
5308 debug_state (FENCE_STATE (fence));
5309 if (!DEBUG_INSN_P (insn))
5310 FENCE_STARTS_CYCLE_P (fence) = 0;
5311 FENCE_ISSUE_MORE (fence) = can_issue_more;
5312 return asm_p;
5313 }
5314
5315 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5316 is nonzero if we need to stall after issuing INSN. */
5317 static void
5318 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5319 {
5320 bool asm_p;
5321
5322 /* First, reflect that something is scheduled on this fence. */
5323 asm_p = advance_state_on_fence (fence, insn);
5324 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5325 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5326 if (SCHED_GROUP_P (insn))
5327 {
5328 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5329 SCHED_GROUP_P (insn) = 0;
5330 }
5331 else
5332 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5333 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5334 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5335
5336 /* Set instruction scheduling info. This will be used in bundling,
5337 pipelining, tick computations etc. */
5338 ++INSN_SCHED_TIMES (insn);
5339 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5340 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5341 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5342 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5343
5344 /* This does not account for adjust_cost hooks, just add the biggest
5345 constant the hook may add to the latency. TODO: make this
5346 a target dependent constant. */
5347 INSN_READY_CYCLE (insn)
5348 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5349 ? 1
5350 : maximal_insn_latency (insn) + 1);
5351
5352 /* Change these fields last, as they're used above. */
5353 FENCE_AFTER_STALL_P (fence) = 0;
5354 if (asm_p || need_stall)
5355 advance_one_cycle (fence);
5356
5357 /* Indicate that we've scheduled something on this fence. */
5358 FENCE_SCHEDULED_P (fence) = true;
5359 scheduled_something_on_previous_fence = true;
5360
5361 /* Print debug information when insn's fields are updated. */
5362 if (sched_verbose >= 2)
5363 {
5364 sel_print ("Scheduling insn: ");
5365 dump_insn_1 (insn, 1);
5366 sel_print ("\n");
5367 }
5368 }
5369
5370 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5371 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5372 return it. */
5373 static blist_t *
5374 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5375 blist_t *bnds_tailp)
5376 {
5377 succ_iterator si;
5378 insn_t succ;
5379
5380 advance_deps_context (BND_DC (bnd), insn);
5381 FOR_EACH_SUCC_1 (succ, si, insn,
5382 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5383 {
5384 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5385
5386 ilist_add (&ptr, insn);
5387
5388 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5389 && is_ineligible_successor (succ, ptr))
5390 {
5391 ilist_clear (&ptr);
5392 continue;
5393 }
5394
5395 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5396 {
5397 if (sched_verbose >= 9)
5398 sel_print ("Updating fence insn from %i to %i\n",
5399 INSN_UID (insn), INSN_UID (succ));
5400 FENCE_INSN (fence) = succ;
5401 }
5402 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5403 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5404 }
5405
5406 blist_remove (bndsp);
5407 return bnds_tailp;
5408 }
5409
5410 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5411 static insn_t
5412 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5413 {
5414 av_set_t expr_seq;
5415 expr_t c_expr = XALLOCA (expr_def);
5416 insn_t place_to_insert;
5417 insn_t insn;
5418 bool should_move;
5419
5420 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5421
5422 /* In case of scheduling a jump skipping some other instructions,
5423 prepare CFG. After this, jump is at the boundary and can be
5424 scheduled as usual insn by MOVE_OP. */
5425 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5426 {
5427 insn = EXPR_INSN_RTX (expr_vliw);
5428
5429 /* Speculative jumps are not handled. */
5430 if (insn != BND_TO (bnd)
5431 && !sel_insn_is_speculation_check (insn))
5432 move_cond_jump (insn, bnd);
5433 }
5434
5435 /* Find a place for C_EXPR to schedule. */
5436 place_to_insert = prepare_place_to_insert (bnd);
5437 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5438 clear_expr (c_expr);
5439
5440 /* Add the instruction. The corner case to care about is when
5441 the expr_seq set has more than one expr, and we chose the one that
5442 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5443 we can't use it. Generate the new vinsn. */
5444 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5445 {
5446 vinsn_t vinsn_new;
5447
5448 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5449 change_vinsn_in_expr (expr_vliw, vinsn_new);
5450 should_move = false;
5451 }
5452 if (should_move)
5453 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5454 else
5455 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5456 place_to_insert);
5457
5458 /* Return the nops generated for preserving of data sets back
5459 into pool. */
5460 if (INSN_NOP_P (place_to_insert))
5461 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5462 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5463
5464 av_set_clear (&expr_seq);
5465
5466 /* Save the expression scheduled so to reset target availability if we'll
5467 meet it later on the same fence. */
5468 if (EXPR_WAS_RENAMED (expr_vliw))
5469 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5470
5471 /* Check that the recent movement didn't destroyed loop
5472 structure. */
5473 gcc_assert (!pipelining_p
5474 || current_loop_nest == NULL
5475 || loop_latch_edge (current_loop_nest));
5476 return insn;
5477 }
5478
5479 /* Stall for N cycles on FENCE. */
5480 static void
5481 stall_for_cycles (fence_t fence, int n)
5482 {
5483 int could_more;
5484
5485 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5486 while (n--)
5487 advance_one_cycle (fence);
5488 if (could_more)
5489 FENCE_AFTER_STALL_P (fence) = 1;
5490 }
5491
5492 /* Gather a parallel group of insns at FENCE and assign their seqno
5493 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5494 list for later recalculation of seqnos. */
5495 static void
5496 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5497 {
5498 blist_t bnds = NULL, *bnds_tailp;
5499 av_set_t av_vliw = NULL;
5500 insn_t insn = FENCE_INSN (fence);
5501
5502 if (sched_verbose >= 2)
5503 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5504 INSN_UID (insn), FENCE_CYCLE (fence));
5505
5506 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5507 bnds_tailp = &BLIST_NEXT (bnds);
5508 set_target_context (FENCE_TC (fence));
5509 can_issue_more = FENCE_ISSUE_MORE (fence);
5510 target_bb = INSN_BB (insn);
5511
5512 /* Do while we can add any operation to the current group. */
5513 do
5514 {
5515 blist_t *bnds_tailp1, *bndsp;
5516 expr_t expr_vliw;
5517 int need_stall = false;
5518 int was_stall = 0, scheduled_insns = 0;
5519 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5520 int max_stall = pipelining_p ? 1 : 3;
5521 bool last_insn_was_debug = false;
5522 bool was_debug_bb_end_p = false;
5523
5524 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5525 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5526 remove_insns_for_debug (bnds, &av_vliw);
5527
5528 /* Return early if we have nothing to schedule. */
5529 if (av_vliw == NULL)
5530 break;
5531
5532 /* Choose the best expression and, if needed, destination register
5533 for it. */
5534 do
5535 {
5536 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5537 if (! expr_vliw && need_stall)
5538 {
5539 /* All expressions required a stall. Do not recompute av sets
5540 as we'll get the same answer (modulo the insns between
5541 the fence and its boundary, which will not be available for
5542 pipelining).
5543 If we are going to stall for too long, break to recompute av
5544 sets and bring more insns for pipelining. */
5545 was_stall++;
5546 if (need_stall <= 3)
5547 stall_for_cycles (fence, need_stall);
5548 else
5549 {
5550 stall_for_cycles (fence, 1);
5551 break;
5552 }
5553 }
5554 }
5555 while (! expr_vliw && need_stall);
5556
5557 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5558 if (!expr_vliw)
5559 {
5560 av_set_clear (&av_vliw);
5561 break;
5562 }
5563
5564 bndsp = &bnds;
5565 bnds_tailp1 = bnds_tailp;
5566
5567 do
5568 /* This code will be executed only once until we'd have several
5569 boundaries per fence. */
5570 {
5571 bnd_t bnd = BLIST_BND (*bndsp);
5572
5573 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5574 {
5575 bndsp = &BLIST_NEXT (*bndsp);
5576 continue;
5577 }
5578
5579 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5580 last_insn_was_debug = DEBUG_INSN_P (insn);
5581 if (last_insn_was_debug)
5582 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5583 update_fence_and_insn (fence, insn, need_stall);
5584 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5585
5586 /* Add insn to the list of scheduled on this cycle instructions. */
5587 ilist_add (*scheduled_insns_tailpp, insn);
5588 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5589 }
5590 while (*bndsp != *bnds_tailp1);
5591
5592 av_set_clear (&av_vliw);
5593 if (!last_insn_was_debug)
5594 scheduled_insns++;
5595
5596 /* We currently support information about candidate blocks only for
5597 one 'target_bb' block. Hence we can't schedule after jump insn,
5598 as this will bring two boundaries and, hence, necessity to handle
5599 information for two or more blocks concurrently. */
5600 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5601 || (was_stall
5602 && (was_stall >= max_stall
5603 || scheduled_insns >= max_insns)))
5604 break;
5605 }
5606 while (bnds);
5607
5608 gcc_assert (!FENCE_BNDS (fence));
5609
5610 /* Update boundaries of the FENCE. */
5611 while (bnds)
5612 {
5613 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5614
5615 if (ptr)
5616 {
5617 insn = ILIST_INSN (ptr);
5618
5619 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5620 ilist_add (&FENCE_BNDS (fence), insn);
5621 }
5622
5623 blist_remove (&bnds);
5624 }
5625
5626 /* Update target context on the fence. */
5627 reset_target_context (FENCE_TC (fence), false);
5628 }
5629
5630 /* All exprs in ORIG_OPS must have the same destination register or memory.
5631 Return that destination. */
5632 static rtx
5633 get_dest_from_orig_ops (av_set_t orig_ops)
5634 {
5635 rtx dest = NULL_RTX;
5636 av_set_iterator av_it;
5637 expr_t expr;
5638 bool first_p = true;
5639
5640 FOR_EACH_EXPR (expr, av_it, orig_ops)
5641 {
5642 rtx x = EXPR_LHS (expr);
5643
5644 if (first_p)
5645 {
5646 first_p = false;
5647 dest = x;
5648 }
5649 else
5650 gcc_assert (dest == x
5651 || (dest != NULL_RTX && x != NULL_RTX
5652 && rtx_equal_p (dest, x)));
5653 }
5654
5655 return dest;
5656 }
5657
5658 /* Update data sets for the bookkeeping block and record those expressions
5659 which become no longer available after inserting this bookkeeping. */
5660 static void
5661 update_and_record_unavailable_insns (basic_block book_block)
5662 {
5663 av_set_iterator i;
5664 av_set_t old_av_set = NULL;
5665 expr_t cur_expr;
5666 rtx bb_end = sel_bb_end (book_block);
5667
5668 /* First, get correct liveness in the bookkeeping block. The problem is
5669 the range between the bookeeping insn and the end of block. */
5670 update_liveness_on_insn (bb_end);
5671 if (control_flow_insn_p (bb_end))
5672 update_liveness_on_insn (PREV_INSN (bb_end));
5673
5674 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5675 fence above, where we may choose to schedule an insn which is
5676 actually blocked from moving up with the bookkeeping we create here. */
5677 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5678 {
5679 old_av_set = av_set_copy (BB_AV_SET (book_block));
5680 update_data_sets (sel_bb_head (book_block));
5681
5682 /* Traverse all the expressions in the old av_set and check whether
5683 CUR_EXPR is in new AV_SET. */
5684 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5685 {
5686 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5687 EXPR_VINSN (cur_expr));
5688
5689 if (! new_expr
5690 /* In this case, we can just turn off the E_T_A bit, but we can't
5691 represent this information with the current vector. */
5692 || EXPR_TARGET_AVAILABLE (new_expr)
5693 != EXPR_TARGET_AVAILABLE (cur_expr))
5694 /* Unfortunately, the below code could be also fired up on
5695 separable insns, e.g. when moving insns through the new
5696 speculation check as in PR 53701. */
5697 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5698 }
5699
5700 av_set_clear (&old_av_set);
5701 }
5702 }
5703
5704 /* The main effect of this function is that sparams->c_expr is merged
5705 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5706 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5707 lparams->c_expr_merged is copied back to sparams->c_expr after all
5708 successors has been traversed. lparams->c_expr_local is an expr allocated
5709 on stack in the caller function, and is used if there is more than one
5710 successor.
5711
5712 SUCC is one of the SUCCS_NORMAL successors of INSN,
5713 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5714 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5715 static void
5716 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5717 insn_t succ ATTRIBUTE_UNUSED,
5718 int moveop_drv_call_res,
5719 cmpd_local_params_p lparams, void *static_params)
5720 {
5721 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5722
5723 /* Nothing to do, if original expr wasn't found below. */
5724 if (moveop_drv_call_res != 1)
5725 return;
5726
5727 /* If this is a first successor. */
5728 if (!lparams->c_expr_merged)
5729 {
5730 lparams->c_expr_merged = sparams->c_expr;
5731 sparams->c_expr = lparams->c_expr_local;
5732 }
5733 else
5734 {
5735 /* We must merge all found expressions to get reasonable
5736 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5737 do so then we can first find the expr with epsilon
5738 speculation success probability and only then with the
5739 good probability. As a result the insn will get epsilon
5740 probability and will never be scheduled because of
5741 weakness_cutoff in find_best_expr.
5742
5743 We call merge_expr_data here instead of merge_expr
5744 because due to speculation C_EXPR and X may have the
5745 same insns with different speculation types. And as of
5746 now such insns are considered non-equal.
5747
5748 However, EXPR_SCHED_TIMES is different -- we must get
5749 SCHED_TIMES from a real insn, not a bookkeeping copy.
5750 We force this here. Instead, we may consider merging
5751 SCHED_TIMES to the maximum instead of minimum in the
5752 below function. */
5753 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5754
5755 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5756 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5757 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5758
5759 clear_expr (sparams->c_expr);
5760 }
5761 }
5762
5763 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5764
5765 SUCC is one of the SUCCS_NORMAL successors of INSN,
5766 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5767 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5768 STATIC_PARAMS contain USED_REGS set. */
5769 static void
5770 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5771 int moveop_drv_call_res,
5772 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5773 void *static_params)
5774 {
5775 regset succ_live;
5776 fur_static_params_p sparams = (fur_static_params_p) static_params;
5777
5778 /* Here we compute live regsets only for branches that do not lie
5779 on the code motion paths. These branches correspond to value
5780 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5781 for such branches code_motion_path_driver is not called. */
5782 if (moveop_drv_call_res != 0)
5783 return;
5784
5785 /* Mark all registers that do not meet the following condition:
5786 (3) not live on the other path of any conditional branch
5787 that is passed by the operation, in case original
5788 operations are not present on both paths of the
5789 conditional branch. */
5790 succ_live = compute_live (succ);
5791 IOR_REG_SET (sparams->used_regs, succ_live);
5792 }
5793
5794 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5795 into SP->CEXPR. */
5796 static void
5797 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5798 {
5799 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5800
5801 sp->c_expr = lp->c_expr_merged;
5802 }
5803
5804 /* Track bookkeeping copies created, insns scheduled, and blocks for
5805 rescheduling when INSN is found by move_op. */
5806 static void
5807 track_scheduled_insns_and_blocks (rtx insn)
5808 {
5809 /* Even if this insn can be a copy that will be removed during current move_op,
5810 we still need to count it as an originator. */
5811 bitmap_set_bit (current_originators, INSN_UID (insn));
5812
5813 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5814 {
5815 /* Note that original block needs to be rescheduled, as we pulled an
5816 instruction out of it. */
5817 if (INSN_SCHED_TIMES (insn) > 0)
5818 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5819 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5820 num_insns_scheduled++;
5821 }
5822
5823 /* For instructions we must immediately remove insn from the
5824 stream, so subsequent update_data_sets () won't include this
5825 insn into av_set.
5826 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5827 if (INSN_UID (insn) > max_uid_before_move_op)
5828 stat_bookkeeping_copies--;
5829 }
5830
5831 /* Emit a register-register copy for INSN if needed. Return true if
5832 emitted one. PARAMS is the move_op static parameters. */
5833 static bool
5834 maybe_emit_renaming_copy (rtx insn,
5835 moveop_static_params_p params)
5836 {
5837 bool insn_emitted = false;
5838 rtx cur_reg;
5839
5840 /* Bail out early when expression can not be renamed at all. */
5841 if (!EXPR_SEPARABLE_P (params->c_expr))
5842 return false;
5843
5844 cur_reg = expr_dest_reg (params->c_expr);
5845 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5846
5847 /* If original operation has expr and the register chosen for
5848 that expr is not original operation's dest reg, substitute
5849 operation's right hand side with the register chosen. */
5850 if (REGNO (params->dest) != REGNO (cur_reg))
5851 {
5852 insn_t reg_move_insn, reg_move_insn_rtx;
5853
5854 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5855 params->dest);
5856 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5857 INSN_EXPR (insn),
5858 INSN_SEQNO (insn),
5859 insn);
5860 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5861 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5862
5863 insn_emitted = true;
5864 params->was_renamed = true;
5865 }
5866
5867 return insn_emitted;
5868 }
5869
5870 /* Emit a speculative check for INSN speculated as EXPR if needed.
5871 Return true if we've emitted one. PARAMS is the move_op static
5872 parameters. */
5873 static bool
5874 maybe_emit_speculative_check (rtx insn, expr_t expr,
5875 moveop_static_params_p params)
5876 {
5877 bool insn_emitted = false;
5878 insn_t x;
5879 ds_t check_ds;
5880
5881 check_ds = get_spec_check_type_for_insn (insn, expr);
5882 if (check_ds != 0)
5883 {
5884 /* A speculation check should be inserted. */
5885 x = create_speculation_check (params->c_expr, check_ds, insn);
5886 insn_emitted = true;
5887 }
5888 else
5889 {
5890 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5891 x = insn;
5892 }
5893
5894 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5895 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5896 return insn_emitted;
5897 }
5898
5899 /* Handle transformations that leave an insn in place of original
5900 insn such as renaming/speculation. Return true if one of such
5901 transformations actually happened, and we have emitted this insn. */
5902 static bool
5903 handle_emitting_transformations (rtx insn, expr_t expr,
5904 moveop_static_params_p params)
5905 {
5906 bool insn_emitted = false;
5907
5908 insn_emitted = maybe_emit_renaming_copy (insn, params);
5909 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5910
5911 return insn_emitted;
5912 }
5913
5914 /* If INSN is the only insn in the basic block (not counting JUMP,
5915 which may be a jump to next insn, and DEBUG_INSNs), we want to
5916 leave a NOP there till the return to fill_insns. */
5917
5918 static bool
5919 need_nop_to_preserve_insn_bb (rtx insn)
5920 {
5921 insn_t bb_head, bb_end, bb_next, in_next;
5922 basic_block bb = BLOCK_FOR_INSN (insn);
5923
5924 bb_head = sel_bb_head (bb);
5925 bb_end = sel_bb_end (bb);
5926
5927 if (bb_head == bb_end)
5928 return true;
5929
5930 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5931 bb_head = NEXT_INSN (bb_head);
5932
5933 if (bb_head == bb_end)
5934 return true;
5935
5936 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5937 bb_end = PREV_INSN (bb_end);
5938
5939 if (bb_head == bb_end)
5940 return true;
5941
5942 bb_next = NEXT_INSN (bb_head);
5943 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5944 bb_next = NEXT_INSN (bb_next);
5945
5946 if (bb_next == bb_end && JUMP_P (bb_end))
5947 return true;
5948
5949 in_next = NEXT_INSN (insn);
5950 while (DEBUG_INSN_P (in_next))
5951 in_next = NEXT_INSN (in_next);
5952
5953 if (IN_CURRENT_FENCE_P (in_next))
5954 return true;
5955
5956 return false;
5957 }
5958
5959 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5960 is not removed but reused when INSN is re-emitted. */
5961 static void
5962 remove_insn_from_stream (rtx insn, bool only_disconnect)
5963 {
5964 /* If there's only one insn in the BB, make sure that a nop is
5965 inserted into it, so the basic block won't disappear when we'll
5966 delete INSN below with sel_remove_insn. It should also survive
5967 till the return to fill_insns. */
5968 if (need_nop_to_preserve_insn_bb (insn))
5969 {
5970 insn_t nop = get_nop_from_pool (insn);
5971 gcc_assert (INSN_NOP_P (nop));
5972 vec_temp_moveop_nops.safe_push (nop);
5973 }
5974
5975 sel_remove_insn (insn, only_disconnect, false);
5976 }
5977
5978 /* This function is called when original expr is found.
5979 INSN - current insn traversed, EXPR - the corresponding expr found.
5980 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5981 is static parameters of move_op. */
5982 static void
5983 move_op_orig_expr_found (insn_t insn, expr_t expr,
5984 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5985 void *static_params)
5986 {
5987 bool only_disconnect, insn_emitted;
5988 moveop_static_params_p params = (moveop_static_params_p) static_params;
5989
5990 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5991 track_scheduled_insns_and_blocks (insn);
5992 insn_emitted = handle_emitting_transformations (insn, expr, params);
5993 only_disconnect = (params->uid == INSN_UID (insn)
5994 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5995
5996 /* Mark that we've disconnected an insn. */
5997 if (only_disconnect)
5998 params->uid = -1;
5999 remove_insn_from_stream (insn, only_disconnect);
6000 }
6001
6002 /* The function is called when original expr is found.
6003 INSN - current insn traversed, EXPR - the corresponding expr found,
6004 crosses_call and original_insns in STATIC_PARAMS are updated. */
6005 static void
6006 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6007 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6008 void *static_params)
6009 {
6010 fur_static_params_p params = (fur_static_params_p) static_params;
6011 regset tmp;
6012
6013 if (CALL_P (insn))
6014 params->crosses_call = true;
6015
6016 def_list_add (params->original_insns, insn, params->crosses_call);
6017
6018 /* Mark the registers that do not meet the following condition:
6019 (2) not among the live registers of the point
6020 immediately following the first original operation on
6021 a given downward path, except for the original target
6022 register of the operation. */
6023 tmp = get_clear_regset_from_pool ();
6024 compute_live_below_insn (insn, tmp);
6025 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6026 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6027 IOR_REG_SET (params->used_regs, tmp);
6028 return_regset_to_pool (tmp);
6029
6030 /* (*1) We need to add to USED_REGS registers that are read by
6031 INSN's lhs. This may lead to choosing wrong src register.
6032 E.g. (scheduling const expr enabled):
6033
6034 429: ax=0x0 <- Can't use AX for this expr (0x0)
6035 433: dx=[bp-0x18]
6036 427: [ax+dx+0x1]=ax
6037 REG_DEAD: ax
6038 168: di=dx
6039 REG_DEAD: dx
6040 */
6041 /* FIXME: see comment above and enable MEM_P
6042 in vinsn_separable_p. */
6043 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6044 || !MEM_P (INSN_LHS (insn)));
6045 }
6046
6047 /* This function is called on the ascending pass, before returning from
6048 current basic block. */
6049 static void
6050 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6051 void *static_params)
6052 {
6053 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6054 basic_block book_block = NULL;
6055
6056 /* When we have removed the boundary insn for scheduling, which also
6057 happened to be the end insn in its bb, we don't need to update sets. */
6058 if (!lparams->removed_last_insn
6059 && lparams->e1
6060 && sel_bb_head_p (insn))
6061 {
6062 /* We should generate bookkeeping code only if we are not at the
6063 top level of the move_op. */
6064 if (sel_num_cfg_preds_gt_1 (insn))
6065 book_block = generate_bookkeeping_insn (sparams->c_expr,
6066 lparams->e1, lparams->e2);
6067 /* Update data sets for the current insn. */
6068 update_data_sets (insn);
6069 }
6070
6071 /* If bookkeeping code was inserted, we need to update av sets of basic
6072 block that received bookkeeping. After generation of bookkeeping insn,
6073 bookkeeping block does not contain valid av set because we are not following
6074 the original algorithm in every detail with regards to e.g. renaming
6075 simple reg-reg copies. Consider example:
6076
6077 bookkeeping block scheduling fence
6078 \ /
6079 \ join /
6080 ----------
6081 | |
6082 ----------
6083 / \
6084 / \
6085 r1 := r2 r1 := r3
6086
6087 We try to schedule insn "r1 := r3" on the current
6088 scheduling fence. Also, note that av set of bookkeeping block
6089 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6090 been scheduled, the CFG is as follows:
6091
6092 r1 := r3 r1 := r3
6093 bookkeeping block scheduling fence
6094 \ /
6095 \ join /
6096 ----------
6097 | |
6098 ----------
6099 / \
6100 / \
6101 r1 := r2
6102
6103 Here, insn "r1 := r3" was scheduled at the current scheduling point
6104 and bookkeeping code was generated at the bookeeping block. This
6105 way insn "r1 := r2" is no longer available as a whole instruction
6106 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6107 This situation is handled by calling update_data_sets.
6108
6109 Since update_data_sets is called only on the bookkeeping block, and
6110 it also may have predecessors with av_sets, containing instructions that
6111 are no longer available, we save all such expressions that become
6112 unavailable during data sets update on the bookkeeping block in
6113 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6114 expressions for scheduling. This allows us to avoid recomputation of
6115 av_sets outside the code motion path. */
6116
6117 if (book_block)
6118 update_and_record_unavailable_insns (book_block);
6119
6120 /* If INSN was previously marked for deletion, it's time to do it. */
6121 if (lparams->removed_last_insn)
6122 insn = PREV_INSN (insn);
6123
6124 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6125 kill a block with a single nop in which the insn should be emitted. */
6126 if (lparams->e1)
6127 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6128 }
6129
6130 /* This function is called on the ascending pass, before returning from the
6131 current basic block. */
6132 static void
6133 fur_at_first_insn (insn_t insn,
6134 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6135 void *static_params ATTRIBUTE_UNUSED)
6136 {
6137 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6138 || AV_LEVEL (insn) == -1);
6139 }
6140
6141 /* Called on the backward stage of recursion to call moveup_expr for insn
6142 and sparams->c_expr. */
6143 static void
6144 move_op_ascend (insn_t insn, void *static_params)
6145 {
6146 enum MOVEUP_EXPR_CODE res;
6147 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6148
6149 if (! INSN_NOP_P (insn))
6150 {
6151 res = moveup_expr_cached (sparams->c_expr, insn, false);
6152 gcc_assert (res != MOVEUP_EXPR_NULL);
6153 }
6154
6155 /* Update liveness for this insn as it was invalidated. */
6156 update_liveness_on_insn (insn);
6157 }
6158
6159 /* This function is called on enter to the basic block.
6160 Returns TRUE if this block already have been visited and
6161 code_motion_path_driver should return 1, FALSE otherwise. */
6162 static int
6163 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6164 void *static_params, bool visited_p)
6165 {
6166 fur_static_params_p sparams = (fur_static_params_p) static_params;
6167
6168 if (visited_p)
6169 {
6170 /* If we have found something below this block, there should be at
6171 least one insn in ORIGINAL_INSNS. */
6172 gcc_assert (*sparams->original_insns);
6173
6174 /* Adjust CROSSES_CALL, since we may have come to this block along
6175 different path. */
6176 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6177 |= sparams->crosses_call;
6178 }
6179 else
6180 local_params->old_original_insns = *sparams->original_insns;
6181
6182 return 1;
6183 }
6184
6185 /* Same as above but for move_op. */
6186 static int
6187 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6188 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6189 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6190 {
6191 if (visited_p)
6192 return -1;
6193 return 1;
6194 }
6195
6196 /* This function is called while descending current basic block if current
6197 insn is not the original EXPR we're searching for.
6198
6199 Return value: FALSE, if code_motion_path_driver should perform a local
6200 cleanup and return 0 itself;
6201 TRUE, if code_motion_path_driver should continue. */
6202 static bool
6203 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6204 void *static_params)
6205 {
6206 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6207
6208 #ifdef ENABLE_CHECKING
6209 sparams->failed_insn = insn;
6210 #endif
6211
6212 /* If we're scheduling separate expr, in order to generate correct code
6213 we need to stop the search at bookkeeping code generated with the
6214 same destination register or memory. */
6215 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6216 return false;
6217 return true;
6218 }
6219
6220 /* This function is called while descending current basic block if current
6221 insn is not the original EXPR we're searching for.
6222
6223 Return value: TRUE (code_motion_path_driver should continue). */
6224 static bool
6225 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6226 {
6227 bool mutexed;
6228 expr_t r;
6229 av_set_iterator avi;
6230 fur_static_params_p sparams = (fur_static_params_p) static_params;
6231
6232 if (CALL_P (insn))
6233 sparams->crosses_call = true;
6234 else if (DEBUG_INSN_P (insn))
6235 return true;
6236
6237 /* If current insn we are looking at cannot be executed together
6238 with original insn, then we can skip it safely.
6239
6240 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6241 INSN = (!p6) r14 = r14 + 1;
6242
6243 Here we can schedule ORIG_OP with lhs = r14, though only
6244 looking at the set of used and set registers of INSN we must
6245 forbid it. So, add set/used in INSN registers to the
6246 untouchable set only if there is an insn in ORIG_OPS that can
6247 affect INSN. */
6248 mutexed = true;
6249 FOR_EACH_EXPR (r, avi, orig_ops)
6250 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6251 {
6252 mutexed = false;
6253 break;
6254 }
6255
6256 /* Mark all registers that do not meet the following condition:
6257 (1) Not set or read on any path from xi to an instance of the
6258 original operation. */
6259 if (!mutexed)
6260 {
6261 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6262 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6263 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6264 }
6265
6266 return true;
6267 }
6268
6269 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6270 struct code_motion_path_driver_info_def move_op_hooks = {
6271 move_op_on_enter,
6272 move_op_orig_expr_found,
6273 move_op_orig_expr_not_found,
6274 move_op_merge_succs,
6275 move_op_after_merge_succs,
6276 move_op_ascend,
6277 move_op_at_first_insn,
6278 SUCCS_NORMAL,
6279 "move_op"
6280 };
6281
6282 /* Hooks and data to perform find_used_regs operations
6283 with code_motion_path_driver. */
6284 struct code_motion_path_driver_info_def fur_hooks = {
6285 fur_on_enter,
6286 fur_orig_expr_found,
6287 fur_orig_expr_not_found,
6288 fur_merge_succs,
6289 NULL, /* fur_after_merge_succs */
6290 NULL, /* fur_ascend */
6291 fur_at_first_insn,
6292 SUCCS_ALL,
6293 "find_used_regs"
6294 };
6295
6296 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6297 code_motion_path_driver is called recursively. Original operation
6298 was found at least on one path that is starting with one of INSN's
6299 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6300 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6301 of either move_op or find_used_regs depending on the caller.
6302
6303 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6304 know for sure at this point. */
6305 static int
6306 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6307 ilist_t path, void *static_params)
6308 {
6309 int res = 0;
6310 succ_iterator succ_i;
6311 rtx succ;
6312 basic_block bb;
6313 int old_index;
6314 unsigned old_succs;
6315
6316 struct cmpd_local_params lparams;
6317 expr_def _x;
6318
6319 lparams.c_expr_local = &_x;
6320 lparams.c_expr_merged = NULL;
6321
6322 /* We need to process only NORMAL succs for move_op, and collect live
6323 registers from ALL branches (including those leading out of the
6324 region) for find_used_regs.
6325
6326 In move_op, there can be a case when insn's bb number has changed
6327 due to created bookkeeping. This happens very rare, as we need to
6328 move expression from the beginning to the end of the same block.
6329 Rescan successors in this case. */
6330
6331 rescan:
6332 bb = BLOCK_FOR_INSN (insn);
6333 old_index = bb->index;
6334 old_succs = EDGE_COUNT (bb->succs);
6335
6336 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6337 {
6338 int b;
6339
6340 lparams.e1 = succ_i.e1;
6341 lparams.e2 = succ_i.e2;
6342
6343 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6344 current region). */
6345 if (succ_i.current_flags == SUCCS_NORMAL)
6346 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6347 static_params);
6348 else
6349 b = 0;
6350
6351 /* Merge c_expres found or unify live register sets from different
6352 successors. */
6353 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6354 static_params);
6355 if (b == 1)
6356 res = b;
6357 else if (b == -1 && res != 1)
6358 res = b;
6359
6360 /* We have simplified the control flow below this point. In this case,
6361 the iterator becomes invalid. We need to try again. */
6362 if (BLOCK_FOR_INSN (insn)->index != old_index
6363 || EDGE_COUNT (bb->succs) != old_succs)
6364 {
6365 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6366 goto rescan;
6367 }
6368 }
6369
6370 #ifdef ENABLE_CHECKING
6371 /* Here, RES==1 if original expr was found at least for one of the
6372 successors. After the loop, RES may happen to have zero value
6373 only if at some point the expr searched is present in av_set, but is
6374 not found below. In most cases, this situation is an error.
6375 The exception is when the original operation is blocked by
6376 bookkeeping generated for another fence or for another path in current
6377 move_op. */
6378 gcc_assert (res == 1
6379 || (res == 0
6380 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6381 static_params))
6382 || res == -1);
6383 #endif
6384
6385 /* Merge data, clean up, etc. */
6386 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6387 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6388
6389 return res;
6390 }
6391
6392
6393 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6394 is the pointer to the av set with expressions we were looking for,
6395 PATH_P is the pointer to the traversed path. */
6396 static inline void
6397 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6398 {
6399 ilist_remove (path_p);
6400 av_set_clear (orig_ops_p);
6401 }
6402
6403 /* The driver function that implements move_op or find_used_regs
6404 functionality dependent whether code_motion_path_driver_INFO is set to
6405 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6406 of code (CFG traversal etc) that are shared among both functions. INSN
6407 is the insn we're starting the search from, ORIG_OPS are the expressions
6408 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6409 parameters of the driver, and STATIC_PARAMS are static parameters of
6410 the caller.
6411
6412 Returns whether original instructions were found. Note that top-level
6413 code_motion_path_driver always returns true. */
6414 static int
6415 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6416 cmpd_local_params_p local_params_in,
6417 void *static_params)
6418 {
6419 expr_t expr = NULL;
6420 basic_block bb = BLOCK_FOR_INSN (insn);
6421 insn_t first_insn, bb_tail, before_first;
6422 bool removed_last_insn = false;
6423
6424 if (sched_verbose >= 6)
6425 {
6426 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6427 dump_insn (insn);
6428 sel_print (",");
6429 dump_av_set (orig_ops);
6430 sel_print (")\n");
6431 }
6432
6433 gcc_assert (orig_ops);
6434
6435 /* If no original operations exist below this insn, return immediately. */
6436 if (is_ineligible_successor (insn, path))
6437 {
6438 if (sched_verbose >= 6)
6439 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6440 return false;
6441 }
6442
6443 /* The block can have invalid av set, in which case it was created earlier
6444 during move_op. Return immediately. */
6445 if (sel_bb_head_p (insn))
6446 {
6447 if (! AV_SET_VALID_P (insn))
6448 {
6449 if (sched_verbose >= 6)
6450 sel_print ("Returned from block %d as it had invalid av set\n",
6451 bb->index);
6452 return false;
6453 }
6454
6455 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6456 {
6457 /* We have already found an original operation on this branch, do not
6458 go any further and just return TRUE here. If we don't stop here,
6459 function can have exponential behaviour even on the small code
6460 with many different paths (e.g. with data speculation and
6461 recovery blocks). */
6462 if (sched_verbose >= 6)
6463 sel_print ("Block %d already visited in this traversal\n", bb->index);
6464 if (code_motion_path_driver_info->on_enter)
6465 return code_motion_path_driver_info->on_enter (insn,
6466 local_params_in,
6467 static_params,
6468 true);
6469 }
6470 }
6471
6472 if (code_motion_path_driver_info->on_enter)
6473 code_motion_path_driver_info->on_enter (insn, local_params_in,
6474 static_params, false);
6475 orig_ops = av_set_copy (orig_ops);
6476
6477 /* Filter the orig_ops set. */
6478 if (AV_SET_VALID_P (insn))
6479 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6480
6481 /* If no more original ops, return immediately. */
6482 if (!orig_ops)
6483 {
6484 if (sched_verbose >= 6)
6485 sel_print ("No intersection with av set of block %d\n", bb->index);
6486 return false;
6487 }
6488
6489 /* For non-speculative insns we have to leave only one form of the
6490 original operation, because if we don't, we may end up with
6491 different C_EXPRes and, consequently, with bookkeepings for different
6492 expression forms along the same code motion path. That may lead to
6493 generation of incorrect code. So for each code motion we stick to
6494 the single form of the instruction, except for speculative insns
6495 which we need to keep in different forms with all speculation
6496 types. */
6497 av_set_leave_one_nonspec (&orig_ops);
6498
6499 /* It is not possible that all ORIG_OPS are filtered out. */
6500 gcc_assert (orig_ops);
6501
6502 /* It is enough to place only heads and tails of visited basic blocks into
6503 the PATH. */
6504 ilist_add (&path, insn);
6505 first_insn = insn;
6506 bb_tail = sel_bb_end (bb);
6507
6508 /* Descend the basic block in search of the original expr; this part
6509 corresponds to the part of the original move_op procedure executed
6510 before the recursive call. */
6511 for (;;)
6512 {
6513 /* Look at the insn and decide if it could be an ancestor of currently
6514 scheduling operation. If it is so, then the insn "dest = op" could
6515 either be replaced with "dest = reg", because REG now holds the result
6516 of OP, or just removed, if we've scheduled the insn as a whole.
6517
6518 If this insn doesn't contain currently scheduling OP, then proceed
6519 with searching and look at its successors. Operations we're searching
6520 for could have changed when moving up through this insn via
6521 substituting. In this case, perform unsubstitution on them first.
6522
6523 When traversing the DAG below this insn is finished, insert
6524 bookkeeping code, if the insn is a joint point, and remove
6525 leftovers. */
6526
6527 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6528 if (expr)
6529 {
6530 insn_t last_insn = PREV_INSN (insn);
6531
6532 /* We have found the original operation. */
6533 if (sched_verbose >= 6)
6534 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6535
6536 code_motion_path_driver_info->orig_expr_found
6537 (insn, expr, local_params_in, static_params);
6538
6539 /* Step back, so on the way back we'll start traversing from the
6540 previous insn (or we'll see that it's bb_note and skip that
6541 loop). */
6542 if (insn == first_insn)
6543 {
6544 first_insn = NEXT_INSN (last_insn);
6545 removed_last_insn = sel_bb_end_p (last_insn);
6546 }
6547 insn = last_insn;
6548 break;
6549 }
6550 else
6551 {
6552 /* We haven't found the original expr, continue descending the basic
6553 block. */
6554 if (code_motion_path_driver_info->orig_expr_not_found
6555 (insn, orig_ops, static_params))
6556 {
6557 /* Av set ops could have been changed when moving through this
6558 insn. To find them below it, we have to un-substitute them. */
6559 undo_transformations (&orig_ops, insn);
6560 }
6561 else
6562 {
6563 /* Clean up and return, if the hook tells us to do so. It may
6564 happen if we've encountered the previously created
6565 bookkeeping. */
6566 code_motion_path_driver_cleanup (&orig_ops, &path);
6567 return -1;
6568 }
6569
6570 gcc_assert (orig_ops);
6571 }
6572
6573 /* Stop at insn if we got to the end of BB. */
6574 if (insn == bb_tail)
6575 break;
6576
6577 insn = NEXT_INSN (insn);
6578 }
6579
6580 /* Here INSN either points to the insn before the original insn (may be
6581 bb_note, if original insn was a bb_head) or to the bb_end. */
6582 if (!expr)
6583 {
6584 int res;
6585 rtx last_insn = PREV_INSN (insn);
6586 bool added_to_path;
6587
6588 gcc_assert (insn == sel_bb_end (bb));
6589
6590 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6591 it's already in PATH then). */
6592 if (insn != first_insn)
6593 {
6594 ilist_add (&path, insn);
6595 added_to_path = true;
6596 }
6597 else
6598 added_to_path = false;
6599
6600 /* Process_successors should be able to find at least one
6601 successor for which code_motion_path_driver returns TRUE. */
6602 res = code_motion_process_successors (insn, orig_ops,
6603 path, static_params);
6604
6605 /* Jump in the end of basic block could have been removed or replaced
6606 during code_motion_process_successors, so recompute insn as the
6607 last insn in bb. */
6608 if (NEXT_INSN (last_insn) != insn)
6609 {
6610 insn = sel_bb_end (bb);
6611 first_insn = sel_bb_head (bb);
6612 }
6613
6614 /* Remove bb tail from path. */
6615 if (added_to_path)
6616 ilist_remove (&path);
6617
6618 if (res != 1)
6619 {
6620 /* This is the case when one of the original expr is no longer available
6621 due to bookkeeping created on this branch with the same register.
6622 In the original algorithm, which doesn't have update_data_sets call
6623 on a bookkeeping block, it would simply result in returning
6624 FALSE when we've encountered a previously generated bookkeeping
6625 insn in moveop_orig_expr_not_found. */
6626 code_motion_path_driver_cleanup (&orig_ops, &path);
6627 return res;
6628 }
6629 }
6630
6631 /* Don't need it any more. */
6632 av_set_clear (&orig_ops);
6633
6634 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6635 the beginning of the basic block. */
6636 before_first = PREV_INSN (first_insn);
6637 while (insn != before_first)
6638 {
6639 if (code_motion_path_driver_info->ascend)
6640 code_motion_path_driver_info->ascend (insn, static_params);
6641
6642 insn = PREV_INSN (insn);
6643 }
6644
6645 /* Now we're at the bb head. */
6646 insn = first_insn;
6647 ilist_remove (&path);
6648 local_params_in->removed_last_insn = removed_last_insn;
6649 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6650
6651 /* This should be the very last operation as at bb head we could change
6652 the numbering by creating bookkeeping blocks. */
6653 if (removed_last_insn)
6654 insn = PREV_INSN (insn);
6655 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6656 return true;
6657 }
6658
6659 /* Move up the operations from ORIG_OPS set traversing the dag starting
6660 from INSN. PATH represents the edges traversed so far.
6661 DEST is the register chosen for scheduling the current expr. Insert
6662 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6663 C_EXPR is how it looks like at the given cfg point.
6664 Set *SHOULD_MOVE to indicate whether we have only disconnected
6665 one of the insns found.
6666
6667 Returns whether original instructions were found, which is asserted
6668 to be true in the caller. */
6669 static bool
6670 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6671 rtx dest, expr_t c_expr, bool *should_move)
6672 {
6673 struct moveop_static_params sparams;
6674 struct cmpd_local_params lparams;
6675 int res;
6676
6677 /* Init params for code_motion_path_driver. */
6678 sparams.dest = dest;
6679 sparams.c_expr = c_expr;
6680 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6681 #ifdef ENABLE_CHECKING
6682 sparams.failed_insn = NULL;
6683 #endif
6684 sparams.was_renamed = false;
6685 lparams.e1 = NULL;
6686
6687 /* We haven't visited any blocks yet. */
6688 bitmap_clear (code_motion_visited_blocks);
6689
6690 /* Set appropriate hooks and data. */
6691 code_motion_path_driver_info = &move_op_hooks;
6692 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6693
6694 gcc_assert (res != -1);
6695
6696 if (sparams.was_renamed)
6697 EXPR_WAS_RENAMED (expr_vliw) = true;
6698
6699 *should_move = (sparams.uid == -1);
6700
6701 return res;
6702 }
6703 \f
6704
6705 /* Functions that work with regions. */
6706
6707 /* Current number of seqno used in init_seqno and init_seqno_1. */
6708 static int cur_seqno;
6709
6710 /* A helper for init_seqno. Traverse the region starting from BB and
6711 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6712 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6713 static void
6714 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6715 {
6716 int bbi = BLOCK_TO_BB (bb->index);
6717 insn_t insn, note = bb_note (bb);
6718 insn_t succ_insn;
6719 succ_iterator si;
6720
6721 bitmap_set_bit (visited_bbs, bbi);
6722 if (blocks_to_reschedule)
6723 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6724
6725 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6726 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6727 {
6728 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6729 int succ_bbi = BLOCK_TO_BB (succ->index);
6730
6731 gcc_assert (in_current_region_p (succ));
6732
6733 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6734 {
6735 gcc_assert (succ_bbi > bbi);
6736
6737 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6738 }
6739 else if (blocks_to_reschedule)
6740 bitmap_set_bit (forced_ebb_heads, succ->index);
6741 }
6742
6743 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6744 INSN_SEQNO (insn) = cur_seqno--;
6745 }
6746
6747 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6748 blocks on which we're rescheduling when pipelining, FROM is the block where
6749 traversing region begins (it may not be the head of the region when
6750 pipelining, but the head of the loop instead).
6751
6752 Returns the maximal seqno found. */
6753 static int
6754 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6755 {
6756 sbitmap visited_bbs;
6757 bitmap_iterator bi;
6758 unsigned bbi;
6759
6760 visited_bbs = sbitmap_alloc (current_nr_blocks);
6761
6762 if (blocks_to_reschedule)
6763 {
6764 bitmap_ones (visited_bbs);
6765 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6766 {
6767 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6768 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6769 }
6770 }
6771 else
6772 {
6773 bitmap_clear (visited_bbs);
6774 from = EBB_FIRST_BB (0);
6775 }
6776
6777 cur_seqno = sched_max_luid - 1;
6778 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6779
6780 /* cur_seqno may be positive if the number of instructions is less than
6781 sched_max_luid - 1 (when rescheduling or if some instructions have been
6782 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6783 gcc_assert (cur_seqno >= 0);
6784
6785 sbitmap_free (visited_bbs);
6786 return sched_max_luid - 1;
6787 }
6788
6789 /* Initialize scheduling parameters for current region. */
6790 static void
6791 sel_setup_region_sched_flags (void)
6792 {
6793 enable_schedule_as_rhs_p = 1;
6794 bookkeeping_p = 1;
6795 pipelining_p = (bookkeeping_p
6796 && (flag_sel_sched_pipelining != 0)
6797 && current_loop_nest != NULL
6798 && loop_has_exit_edges (current_loop_nest));
6799 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6800 max_ws = MAX_WS;
6801 }
6802
6803 /* Return true if all basic blocks of current region are empty. */
6804 static bool
6805 current_region_empty_p (void)
6806 {
6807 int i;
6808 for (i = 0; i < current_nr_blocks; i++)
6809 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6810 return false;
6811
6812 return true;
6813 }
6814
6815 /* Prepare and verify loop nest for pipelining. */
6816 static void
6817 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6818 {
6819 current_loop_nest = get_loop_nest_for_rgn (rgn);
6820
6821 if (!current_loop_nest)
6822 return;
6823
6824 /* If this loop has any saved loop preheaders from nested loops,
6825 add these basic blocks to the current region. */
6826 sel_add_loop_preheaders (bbs);
6827
6828 /* Check that we're starting with a valid information. */
6829 gcc_assert (loop_latch_edge (current_loop_nest));
6830 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6831 }
6832
6833 /* Compute instruction priorities for current region. */
6834 static void
6835 sel_compute_priorities (int rgn)
6836 {
6837 sched_rgn_compute_dependencies (rgn);
6838
6839 /* Compute insn priorities in haifa style. Then free haifa style
6840 dependencies that we've calculated for this. */
6841 compute_priorities ();
6842
6843 if (sched_verbose >= 5)
6844 debug_rgn_dependencies (0);
6845
6846 free_rgn_deps ();
6847 }
6848
6849 /* Init scheduling data for RGN. Returns true when this region should not
6850 be scheduled. */
6851 static bool
6852 sel_region_init (int rgn)
6853 {
6854 int i;
6855 bb_vec_t bbs;
6856
6857 rgn_setup_region (rgn);
6858
6859 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6860 do region initialization here so the region can be bundled correctly,
6861 but we'll skip the scheduling in sel_sched_region (). */
6862 if (current_region_empty_p ())
6863 return true;
6864
6865 bbs.create (current_nr_blocks);
6866
6867 for (i = 0; i < current_nr_blocks; i++)
6868 bbs.quick_push (BASIC_BLOCK (BB_TO_BLOCK (i)));
6869
6870 sel_init_bbs (bbs);
6871
6872 if (flag_sel_sched_pipelining)
6873 setup_current_loop_nest (rgn, &bbs);
6874
6875 sel_setup_region_sched_flags ();
6876
6877 /* Initialize luids and dependence analysis which both sel-sched and haifa
6878 need. */
6879 sched_init_luids (bbs);
6880 sched_deps_init (false);
6881
6882 /* Initialize haifa data. */
6883 rgn_setup_sched_infos ();
6884 sel_set_sched_flags ();
6885 haifa_init_h_i_d (bbs);
6886
6887 sel_compute_priorities (rgn);
6888 init_deps_global ();
6889
6890 /* Main initialization. */
6891 sel_setup_sched_infos ();
6892 sel_init_global_and_expr (bbs);
6893
6894 bbs.release ();
6895
6896 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6897
6898 /* Init correct liveness sets on each instruction of a single-block loop.
6899 This is the only situation when we can't update liveness when calling
6900 compute_live for the first insn of the loop. */
6901 if (current_loop_nest)
6902 {
6903 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6904 ? 1
6905 : 0);
6906
6907 if (current_nr_blocks == header + 1)
6908 update_liveness_on_insn
6909 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6910 }
6911
6912 /* Set hooks so that no newly generated insn will go out unnoticed. */
6913 sel_register_cfg_hooks ();
6914
6915 /* !!! We call target.sched.init () for the whole region, but we invoke
6916 targetm.sched.finish () for every ebb. */
6917 if (targetm.sched.init)
6918 /* None of the arguments are actually used in any target. */
6919 targetm.sched.init (sched_dump, sched_verbose, -1);
6920
6921 first_emitted_uid = get_max_uid () + 1;
6922 preheader_removed = false;
6923
6924 /* Reset register allocation ticks array. */
6925 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6926 reg_rename_this_tick = 0;
6927
6928 bitmap_initialize (forced_ebb_heads, 0);
6929 bitmap_clear (forced_ebb_heads);
6930
6931 setup_nop_vinsn ();
6932 current_copies = BITMAP_ALLOC (NULL);
6933 current_originators = BITMAP_ALLOC (NULL);
6934 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6935
6936 return false;
6937 }
6938
6939 /* Simplify insns after the scheduling. */
6940 static void
6941 simplify_changed_insns (void)
6942 {
6943 int i;
6944
6945 for (i = 0; i < current_nr_blocks; i++)
6946 {
6947 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6948 rtx insn;
6949
6950 FOR_BB_INSNS (bb, insn)
6951 if (INSN_P (insn))
6952 {
6953 expr_t expr = INSN_EXPR (insn);
6954
6955 if (EXPR_WAS_SUBSTITUTED (expr))
6956 validate_simplify_insn (insn);
6957 }
6958 }
6959 }
6960
6961 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6962 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6963 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6964 static void
6965 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6966 {
6967 insn_t head, tail;
6968 basic_block bb1 = bb;
6969 if (sched_verbose >= 2)
6970 sel_print ("Finishing schedule in bbs: ");
6971
6972 do
6973 {
6974 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6975
6976 if (sched_verbose >= 2)
6977 sel_print ("%d; ", bb1->index);
6978 }
6979 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6980
6981 if (sched_verbose >= 2)
6982 sel_print ("\n");
6983
6984 get_ebb_head_tail (bb, bb1, &head, &tail);
6985
6986 current_sched_info->head = head;
6987 current_sched_info->tail = tail;
6988 current_sched_info->prev_head = PREV_INSN (head);
6989 current_sched_info->next_tail = NEXT_INSN (tail);
6990 }
6991
6992 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6993 static void
6994 reset_sched_cycles_in_current_ebb (void)
6995 {
6996 int last_clock = 0;
6997 int haifa_last_clock = -1;
6998 int haifa_clock = 0;
6999 int issued_insns = 0;
7000 insn_t insn;
7001
7002 if (targetm.sched.init)
7003 {
7004 /* None of the arguments are actually used in any target.
7005 NB: We should have md_reset () hook for cases like this. */
7006 targetm.sched.init (sched_dump, sched_verbose, -1);
7007 }
7008
7009 state_reset (curr_state);
7010 advance_state (curr_state);
7011
7012 for (insn = current_sched_info->head;
7013 insn != current_sched_info->next_tail;
7014 insn = NEXT_INSN (insn))
7015 {
7016 int cost, haifa_cost;
7017 int sort_p;
7018 bool asm_p, real_insn, after_stall, all_issued;
7019 int clock;
7020
7021 if (!INSN_P (insn))
7022 continue;
7023
7024 asm_p = false;
7025 real_insn = recog_memoized (insn) >= 0;
7026 clock = INSN_SCHED_CYCLE (insn);
7027
7028 cost = clock - last_clock;
7029
7030 /* Initialize HAIFA_COST. */
7031 if (! real_insn)
7032 {
7033 asm_p = INSN_ASM_P (insn);
7034
7035 if (asm_p)
7036 /* This is asm insn which *had* to be scheduled first
7037 on the cycle. */
7038 haifa_cost = 1;
7039 else
7040 /* This is a use/clobber insn. It should not change
7041 cost. */
7042 haifa_cost = 0;
7043 }
7044 else
7045 haifa_cost = estimate_insn_cost (insn, curr_state);
7046
7047 /* Stall for whatever cycles we've stalled before. */
7048 after_stall = 0;
7049 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7050 {
7051 haifa_cost = cost;
7052 after_stall = 1;
7053 }
7054 all_issued = issued_insns == issue_rate;
7055 if (haifa_cost == 0 && all_issued)
7056 haifa_cost = 1;
7057 if (haifa_cost > 0)
7058 {
7059 int i = 0;
7060
7061 while (haifa_cost--)
7062 {
7063 advance_state (curr_state);
7064 issued_insns = 0;
7065 i++;
7066
7067 if (sched_verbose >= 2)
7068 {
7069 sel_print ("advance_state (state_transition)\n");
7070 debug_state (curr_state);
7071 }
7072
7073 /* The DFA may report that e.g. insn requires 2 cycles to be
7074 issued, but on the next cycle it says that insn is ready
7075 to go. Check this here. */
7076 if (!after_stall
7077 && real_insn
7078 && haifa_cost > 0
7079 && estimate_insn_cost (insn, curr_state) == 0)
7080 break;
7081
7082 /* When the data dependency stall is longer than the DFA stall,
7083 and when we have issued exactly issue_rate insns and stalled,
7084 it could be that after this longer stall the insn will again
7085 become unavailable to the DFA restrictions. Looks strange
7086 but happens e.g. on x86-64. So recheck DFA on the last
7087 iteration. */
7088 if ((after_stall || all_issued)
7089 && real_insn
7090 && haifa_cost == 0)
7091 haifa_cost = estimate_insn_cost (insn, curr_state);
7092 }
7093
7094 haifa_clock += i;
7095 if (sched_verbose >= 2)
7096 sel_print ("haifa clock: %d\n", haifa_clock);
7097 }
7098 else
7099 gcc_assert (haifa_cost == 0);
7100
7101 if (sched_verbose >= 2)
7102 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7103
7104 if (targetm.sched.dfa_new_cycle)
7105 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7106 haifa_last_clock, haifa_clock,
7107 &sort_p))
7108 {
7109 advance_state (curr_state);
7110 issued_insns = 0;
7111 haifa_clock++;
7112 if (sched_verbose >= 2)
7113 {
7114 sel_print ("advance_state (dfa_new_cycle)\n");
7115 debug_state (curr_state);
7116 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7117 }
7118 }
7119
7120 if (real_insn)
7121 {
7122 static state_t temp = NULL;
7123
7124 if (!temp)
7125 temp = xmalloc (dfa_state_size);
7126 memcpy (temp, curr_state, dfa_state_size);
7127
7128 cost = state_transition (curr_state, insn);
7129 if (memcmp (temp, curr_state, dfa_state_size))
7130 issued_insns++;
7131
7132 if (sched_verbose >= 2)
7133 {
7134 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7135 haifa_clock + 1);
7136 debug_state (curr_state);
7137 }
7138 gcc_assert (cost < 0);
7139 }
7140
7141 if (targetm.sched.variable_issue)
7142 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7143
7144 INSN_SCHED_CYCLE (insn) = haifa_clock;
7145
7146 last_clock = clock;
7147 haifa_last_clock = haifa_clock;
7148 }
7149 }
7150
7151 /* Put TImode markers on insns starting a new issue group. */
7152 static void
7153 put_TImodes (void)
7154 {
7155 int last_clock = -1;
7156 insn_t insn;
7157
7158 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7159 insn = NEXT_INSN (insn))
7160 {
7161 int cost, clock;
7162
7163 if (!INSN_P (insn))
7164 continue;
7165
7166 clock = INSN_SCHED_CYCLE (insn);
7167 cost = (last_clock == -1) ? 1 : clock - last_clock;
7168
7169 gcc_assert (cost >= 0);
7170
7171 if (issue_rate > 1
7172 && GET_CODE (PATTERN (insn)) != USE
7173 && GET_CODE (PATTERN (insn)) != CLOBBER)
7174 {
7175 if (reload_completed && cost > 0)
7176 PUT_MODE (insn, TImode);
7177
7178 last_clock = clock;
7179 }
7180
7181 if (sched_verbose >= 2)
7182 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7183 }
7184 }
7185
7186 /* Perform MD_FINISH on EBBs comprising current region. When
7187 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7188 to produce correct sched cycles on insns. */
7189 static void
7190 sel_region_target_finish (bool reset_sched_cycles_p)
7191 {
7192 int i;
7193 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7194
7195 for (i = 0; i < current_nr_blocks; i++)
7196 {
7197 if (bitmap_bit_p (scheduled_blocks, i))
7198 continue;
7199
7200 /* While pipelining outer loops, skip bundling for loop
7201 preheaders. Those will be rescheduled in the outer loop. */
7202 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7203 continue;
7204
7205 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7206
7207 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7208 continue;
7209
7210 if (reset_sched_cycles_p)
7211 reset_sched_cycles_in_current_ebb ();
7212
7213 if (targetm.sched.init)
7214 targetm.sched.init (sched_dump, sched_verbose, -1);
7215
7216 put_TImodes ();
7217
7218 if (targetm.sched.finish)
7219 {
7220 targetm.sched.finish (sched_dump, sched_verbose);
7221
7222 /* Extend luids so that insns generated by the target will
7223 get zero luid. */
7224 sched_extend_luids ();
7225 }
7226 }
7227
7228 BITMAP_FREE (scheduled_blocks);
7229 }
7230
7231 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7232 is true, make an additional pass emulating scheduler to get correct insn
7233 cycles for md_finish calls. */
7234 static void
7235 sel_region_finish (bool reset_sched_cycles_p)
7236 {
7237 simplify_changed_insns ();
7238 sched_finish_ready_list ();
7239 free_nop_pool ();
7240
7241 /* Free the vectors. */
7242 vec_av_set.release ();
7243 BITMAP_FREE (current_copies);
7244 BITMAP_FREE (current_originators);
7245 BITMAP_FREE (code_motion_visited_blocks);
7246 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7247 vinsn_vec_free (vec_target_unavailable_vinsns);
7248
7249 /* If LV_SET of the region head should be updated, do it now because
7250 there will be no other chance. */
7251 {
7252 succ_iterator si;
7253 insn_t insn;
7254
7255 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7256 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7257 {
7258 basic_block bb = BLOCK_FOR_INSN (insn);
7259
7260 if (!BB_LV_SET_VALID_P (bb))
7261 compute_live (insn);
7262 }
7263 }
7264
7265 /* Emulate the Haifa scheduler for bundling. */
7266 if (reload_completed)
7267 sel_region_target_finish (reset_sched_cycles_p);
7268
7269 sel_finish_global_and_expr ();
7270
7271 bitmap_clear (forced_ebb_heads);
7272
7273 free_nop_vinsn ();
7274
7275 finish_deps_global ();
7276 sched_finish_luids ();
7277 h_d_i_d.release ();
7278
7279 sel_finish_bbs ();
7280 BITMAP_FREE (blocks_to_reschedule);
7281
7282 sel_unregister_cfg_hooks ();
7283
7284 max_issue_size = 0;
7285 }
7286 \f
7287
7288 /* Functions that implement the scheduler driver. */
7289
7290 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7291 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7292 of insns scheduled -- these would be postprocessed later. */
7293 static void
7294 schedule_on_fences (flist_t fences, int max_seqno,
7295 ilist_t **scheduled_insns_tailpp)
7296 {
7297 flist_t old_fences = fences;
7298
7299 if (sched_verbose >= 1)
7300 {
7301 sel_print ("\nScheduling on fences: ");
7302 dump_flist (fences);
7303 sel_print ("\n");
7304 }
7305
7306 scheduled_something_on_previous_fence = false;
7307 for (; fences; fences = FLIST_NEXT (fences))
7308 {
7309 fence_t fence = NULL;
7310 int seqno = 0;
7311 flist_t fences2;
7312 bool first_p = true;
7313
7314 /* Choose the next fence group to schedule.
7315 The fact that insn can be scheduled only once
7316 on the cycle is guaranteed by two properties:
7317 1. seqnos of parallel groups decrease with each iteration.
7318 2. If is_ineligible_successor () sees the larger seqno, it
7319 checks if candidate insn is_in_current_fence_p (). */
7320 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7321 {
7322 fence_t f = FLIST_FENCE (fences2);
7323
7324 if (!FENCE_PROCESSED_P (f))
7325 {
7326 int i = INSN_SEQNO (FENCE_INSN (f));
7327
7328 if (first_p || i > seqno)
7329 {
7330 seqno = i;
7331 fence = f;
7332 first_p = false;
7333 }
7334 else
7335 /* ??? Seqnos of different groups should be different. */
7336 gcc_assert (1 || i != seqno);
7337 }
7338 }
7339
7340 gcc_assert (fence);
7341
7342 /* As FENCE is nonnull, SEQNO is initialized. */
7343 seqno -= max_seqno + 1;
7344 fill_insns (fence, seqno, scheduled_insns_tailpp);
7345 FENCE_PROCESSED_P (fence) = true;
7346 }
7347
7348 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7349 don't need to keep bookkeeping-invalidated and target-unavailable
7350 vinsns any more. */
7351 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7352 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7353 }
7354
7355 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7356 static void
7357 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7358 {
7359 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7360
7361 /* The first element is already processed. */
7362 while ((fences = FLIST_NEXT (fences)))
7363 {
7364 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7365
7366 if (*min_seqno > seqno)
7367 *min_seqno = seqno;
7368 else if (*max_seqno < seqno)
7369 *max_seqno = seqno;
7370 }
7371 }
7372
7373 /* Calculate new fences from FENCES. */
7374 static flist_t
7375 calculate_new_fences (flist_t fences, int orig_max_seqno)
7376 {
7377 flist_t old_fences = fences;
7378 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7379
7380 flist_tail_init (new_fences);
7381 for (; fences; fences = FLIST_NEXT (fences))
7382 {
7383 fence_t fence = FLIST_FENCE (fences);
7384 insn_t insn;
7385
7386 if (!FENCE_BNDS (fence))
7387 {
7388 /* This fence doesn't have any successors. */
7389 if (!FENCE_SCHEDULED_P (fence))
7390 {
7391 /* Nothing was scheduled on this fence. */
7392 int seqno;
7393
7394 insn = FENCE_INSN (fence);
7395 seqno = INSN_SEQNO (insn);
7396 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7397
7398 if (sched_verbose >= 1)
7399 sel_print ("Fence %d[%d] has not changed\n",
7400 INSN_UID (insn),
7401 BLOCK_NUM (insn));
7402 move_fence_to_fences (fences, new_fences);
7403 }
7404 }
7405 else
7406 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7407 }
7408
7409 flist_clear (&old_fences);
7410 return FLIST_TAIL_HEAD (new_fences);
7411 }
7412
7413 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7414 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7415 the highest seqno used in a region. Return the updated highest seqno. */
7416 static int
7417 update_seqnos_and_stage (int min_seqno, int max_seqno,
7418 int highest_seqno_in_use,
7419 ilist_t *pscheduled_insns)
7420 {
7421 int new_hs;
7422 ilist_iterator ii;
7423 insn_t insn;
7424
7425 /* Actually, new_hs is the seqno of the instruction, that was
7426 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7427 if (*pscheduled_insns)
7428 {
7429 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7430 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7431 gcc_assert (new_hs > highest_seqno_in_use);
7432 }
7433 else
7434 new_hs = highest_seqno_in_use;
7435
7436 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7437 {
7438 gcc_assert (INSN_SEQNO (insn) < 0);
7439 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7440 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7441
7442 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7443 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7444 require > 1GB of memory e.g. on limit-fnargs.c. */
7445 if (! pipelining_p)
7446 free_data_for_scheduled_insn (insn);
7447 }
7448
7449 ilist_clear (pscheduled_insns);
7450 global_level++;
7451
7452 return new_hs;
7453 }
7454
7455 /* The main driver for scheduling a region. This function is responsible
7456 for correct propagation of fences (i.e. scheduling points) and creating
7457 a group of parallel insns at each of them. It also supports
7458 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7459 of scheduling. */
7460 static void
7461 sel_sched_region_2 (int orig_max_seqno)
7462 {
7463 int highest_seqno_in_use = orig_max_seqno;
7464
7465 stat_bookkeeping_copies = 0;
7466 stat_insns_needed_bookkeeping = 0;
7467 stat_renamed_scheduled = 0;
7468 stat_substitutions_total = 0;
7469 num_insns_scheduled = 0;
7470
7471 while (fences)
7472 {
7473 int min_seqno, max_seqno;
7474 ilist_t scheduled_insns = NULL;
7475 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7476
7477 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7478 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7479 fences = calculate_new_fences (fences, orig_max_seqno);
7480 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7481 highest_seqno_in_use,
7482 &scheduled_insns);
7483 }
7484
7485 if (sched_verbose >= 1)
7486 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7487 "bookkeeping, %d insns renamed, %d insns substituted\n",
7488 stat_bookkeeping_copies,
7489 stat_insns_needed_bookkeeping,
7490 stat_renamed_scheduled,
7491 stat_substitutions_total);
7492 }
7493
7494 /* Schedule a region. When pipelining, search for possibly never scheduled
7495 bookkeeping code and schedule it. Reschedule pipelined code without
7496 pipelining after. */
7497 static void
7498 sel_sched_region_1 (void)
7499 {
7500 int orig_max_seqno;
7501
7502 /* Remove empty blocks that might be in the region from the beginning. */
7503 purge_empty_blocks ();
7504
7505 orig_max_seqno = init_seqno (NULL, NULL);
7506 gcc_assert (orig_max_seqno >= 1);
7507
7508 /* When pipelining outer loops, create fences on the loop header,
7509 not preheader. */
7510 fences = NULL;
7511 if (current_loop_nest)
7512 init_fences (BB_END (EBB_FIRST_BB (0)));
7513 else
7514 init_fences (bb_note (EBB_FIRST_BB (0)));
7515 global_level = 1;
7516
7517 sel_sched_region_2 (orig_max_seqno);
7518
7519 gcc_assert (fences == NULL);
7520
7521 if (pipelining_p)
7522 {
7523 int i;
7524 basic_block bb;
7525 struct flist_tail_def _new_fences;
7526 flist_tail_t new_fences = &_new_fences;
7527 bool do_p = true;
7528
7529 pipelining_p = false;
7530 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7531 bookkeeping_p = false;
7532 enable_schedule_as_rhs_p = false;
7533
7534 /* Schedule newly created code, that has not been scheduled yet. */
7535 do_p = true;
7536
7537 while (do_p)
7538 {
7539 do_p = false;
7540
7541 for (i = 0; i < current_nr_blocks; i++)
7542 {
7543 basic_block bb = EBB_FIRST_BB (i);
7544
7545 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7546 {
7547 if (! bb_ends_ebb_p (bb))
7548 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7549 if (sel_bb_empty_p (bb))
7550 {
7551 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7552 continue;
7553 }
7554 clear_outdated_rtx_info (bb);
7555 if (sel_insn_is_speculation_check (BB_END (bb))
7556 && JUMP_P (BB_END (bb)))
7557 bitmap_set_bit (blocks_to_reschedule,
7558 BRANCH_EDGE (bb)->dest->index);
7559 }
7560 else if (! sel_bb_empty_p (bb)
7561 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7562 bitmap_set_bit (blocks_to_reschedule, bb->index);
7563 }
7564
7565 for (i = 0; i < current_nr_blocks; i++)
7566 {
7567 bb = EBB_FIRST_BB (i);
7568
7569 /* While pipelining outer loops, skip bundling for loop
7570 preheaders. Those will be rescheduled in the outer
7571 loop. */
7572 if (sel_is_loop_preheader_p (bb))
7573 {
7574 clear_outdated_rtx_info (bb);
7575 continue;
7576 }
7577
7578 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7579 {
7580 flist_tail_init (new_fences);
7581
7582 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7583
7584 /* Mark BB as head of the new ebb. */
7585 bitmap_set_bit (forced_ebb_heads, bb->index);
7586
7587 gcc_assert (fences == NULL);
7588
7589 init_fences (bb_note (bb));
7590
7591 sel_sched_region_2 (orig_max_seqno);
7592
7593 do_p = true;
7594 break;
7595 }
7596 }
7597 }
7598 }
7599 }
7600
7601 /* Schedule the RGN region. */
7602 void
7603 sel_sched_region (int rgn)
7604 {
7605 bool schedule_p;
7606 bool reset_sched_cycles_p;
7607
7608 if (sel_region_init (rgn))
7609 return;
7610
7611 if (sched_verbose >= 1)
7612 sel_print ("Scheduling region %d\n", rgn);
7613
7614 schedule_p = (!sched_is_disabled_for_current_region_p ()
7615 && dbg_cnt (sel_sched_region_cnt));
7616 reset_sched_cycles_p = pipelining_p;
7617 if (schedule_p)
7618 sel_sched_region_1 ();
7619 else
7620 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7621 reset_sched_cycles_p = true;
7622
7623 sel_region_finish (reset_sched_cycles_p);
7624 }
7625
7626 /* Perform global init for the scheduler. */
7627 static void
7628 sel_global_init (void)
7629 {
7630 calculate_dominance_info (CDI_DOMINATORS);
7631 alloc_sched_pools ();
7632
7633 /* Setup the infos for sched_init. */
7634 sel_setup_sched_infos ();
7635 setup_sched_dump ();
7636
7637 sched_rgn_init (false);
7638 sched_init ();
7639
7640 sched_init_bbs ();
7641 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7642 after_recovery = 0;
7643 can_issue_more = issue_rate;
7644
7645 sched_extend_target ();
7646 sched_deps_init (true);
7647 setup_nop_and_exit_insns ();
7648 sel_extend_global_bb_info ();
7649 init_lv_sets ();
7650 init_hard_regs_data ();
7651 }
7652
7653 /* Free the global data of the scheduler. */
7654 static void
7655 sel_global_finish (void)
7656 {
7657 free_bb_note_pool ();
7658 free_lv_sets ();
7659 sel_finish_global_bb_info ();
7660
7661 free_regset_pool ();
7662 free_nop_and_exit_insns ();
7663
7664 sched_rgn_finish ();
7665 sched_deps_finish ();
7666 sched_finish ();
7667
7668 if (current_loops)
7669 sel_finish_pipelining ();
7670
7671 free_sched_pools ();
7672 free_dominance_info (CDI_DOMINATORS);
7673 }
7674
7675 /* Return true when we need to skip selective scheduling. Used for debugging. */
7676 bool
7677 maybe_skip_selective_scheduling (void)
7678 {
7679 return ! dbg_cnt (sel_sched_cnt);
7680 }
7681
7682 /* The entry point. */
7683 void
7684 run_selective_scheduling (void)
7685 {
7686 int rgn;
7687
7688 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7689 return;
7690
7691 sel_global_init ();
7692
7693 for (rgn = 0; rgn < nr_regions; rgn++)
7694 sel_sched_region (rgn);
7695
7696 sel_global_finish ();
7697 }
7698
7699 #endif