]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched.c
2015-06-17 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "predict.h"
30 #include "dominance.h"
31 #include "cfg.h"
32 #include "cfgbuild.h"
33 #include "basic-block.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "params.h"
40 #include "target.h"
41 #include "output.h"
42 #include "sched-int.h"
43 #include "symtab.h"
44 #include "tree.h"
45 #include "langhooks.h"
46 #include "rtlhooks-def.h"
47 #include "emit-rtl.h"
48 #include "ira.h"
49 #include "rtl-iter.h"
50
51 #ifdef INSN_SCHEDULING
52 #include "sel-sched-ir.h"
53 #include "sel-sched-dump.h"
54 #include "sel-sched.h"
55 #include "dbgcnt.h"
56
57 /* Implementation of selective scheduling approach.
58 The below implementation follows the original approach with the following
59 changes:
60
61 o the scheduler works after register allocation (but can be also tuned
62 to work before RA);
63 o some instructions are not copied or register renamed;
64 o conditional jumps are not moved with code duplication;
65 o several jumps in one parallel group are not supported;
66 o when pipelining outer loops, code motion through inner loops
67 is not supported;
68 o control and data speculation are supported;
69 o some improvements for better compile time/performance were made.
70
71 Terminology
72 ===========
73
74 A vinsn, or virtual insn, is an insn with additional data characterizing
75 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
76 Vinsns also act as smart pointers to save memory by reusing them in
77 different expressions. A vinsn is described by vinsn_t type.
78
79 An expression is a vinsn with additional data characterizing its properties
80 at some point in the control flow graph. The data may be its usefulness,
81 priority, speculative status, whether it was renamed/subsituted, etc.
82 An expression is described by expr_t type.
83
84 Availability set (av_set) is a set of expressions at a given control flow
85 point. It is represented as av_set_t. The expressions in av sets are kept
86 sorted in the terms of expr_greater_p function. It allows to truncate
87 the set while leaving the best expressions.
88
89 A fence is a point through which code motion is prohibited. On each step,
90 we gather a parallel group of insns at a fence. It is possible to have
91 multiple fences. A fence is represented via fence_t.
92
93 A boundary is the border between the fence group and the rest of the code.
94 Currently, we never have more than one boundary per fence, as we finalize
95 the fence group when a jump is scheduled. A boundary is represented
96 via bnd_t.
97
98 High-level overview
99 ===================
100
101 The scheduler finds regions to schedule, schedules each one, and finalizes.
102 The regions are formed starting from innermost loops, so that when the inner
103 loop is pipelined, its prologue can be scheduled together with yet unprocessed
104 outer loop. The rest of acyclic regions are found using extend_rgns:
105 the blocks that are not yet allocated to any regions are traversed in top-down
106 order, and a block is added to a region to which all its predecessors belong;
107 otherwise, the block starts its own region.
108
109 The main scheduling loop (sel_sched_region_2) consists of just
110 scheduling on each fence and updating fences. For each fence,
111 we fill a parallel group of insns (fill_insns) until some insns can be added.
112 First, we compute available exprs (av-set) at the boundary of the current
113 group. Second, we choose the best expression from it. If the stall is
114 required to schedule any of the expressions, we advance the current cycle
115 appropriately. So, the final group does not exactly correspond to a VLIW
116 word. Third, we move the chosen expression to the boundary (move_op)
117 and update the intermediate av sets and liveness sets. We quit fill_insns
118 when either no insns left for scheduling or we have scheduled enough insns
119 so we feel like advancing a scheduling point.
120
121 Computing available expressions
122 ===============================
123
124 The computation (compute_av_set) is a bottom-up traversal. At each insn,
125 we're moving the union of its successors' sets through it via
126 moveup_expr_set. The dependent expressions are removed. Local
127 transformations (substitution, speculation) are applied to move more
128 exprs. Then the expr corresponding to the current insn is added.
129 The result is saved on each basic block header.
130
131 When traversing the CFG, we're moving down for no more than max_ws insns.
132 Also, we do not move down to ineligible successors (is_ineligible_successor),
133 which include moving along a back-edge, moving to already scheduled code,
134 and moving to another fence. The first two restrictions are lifted during
135 pipelining, which allows us to move insns along a back-edge. We always have
136 an acyclic region for scheduling because we forbid motion through fences.
137
138 Choosing the best expression
139 ============================
140
141 We sort the final availability set via sel_rank_for_schedule, then we remove
142 expressions which are not yet ready (tick_check_p) or which dest registers
143 cannot be used. For some of them, we choose another register via
144 find_best_reg. To do this, we run find_used_regs to calculate the set of
145 registers which cannot be used. The find_used_regs function performs
146 a traversal of code motion paths for an expr. We consider for renaming
147 only registers which are from the same regclass as the original one and
148 using which does not interfere with any live ranges. Finally, we convert
149 the resulting set to the ready list format and use max_issue and reorder*
150 hooks similarly to the Haifa scheduler.
151
152 Scheduling the best expression
153 ==============================
154
155 We run the move_op routine to perform the same type of code motion paths
156 traversal as in find_used_regs. (These are working via the same driver,
157 code_motion_path_driver.) When moving down the CFG, we look for original
158 instruction that gave birth to a chosen expression. We undo
159 the transformations performed on an expression via the history saved in it.
160 When found, we remove the instruction or leave a reg-reg copy/speculation
161 check if needed. On a way up, we insert bookkeeping copies at each join
162 point. If a copy is not needed, it will be removed later during this
163 traversal. We update the saved av sets and liveness sets on the way up, too.
164
165 Finalizing the schedule
166 =======================
167
168 When pipelining, we reschedule the blocks from which insns were pipelined
169 to get a tighter schedule. On Itanium, we also perform bundling via
170 the same routine from ia64.c.
171
172 Dependence analysis changes
173 ===========================
174
175 We augmented the sched-deps.c with hooks that get called when a particular
176 dependence is found in a particular part of an insn. Using these hooks, we
177 can do several actions such as: determine whether an insn can be moved through
178 another (has_dependence_p, moveup_expr); find out whether an insn can be
179 scheduled on the current cycle (tick_check_p); find out registers that
180 are set/used/clobbered by an insn and find out all the strange stuff that
181 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
182 init_global_and_expr_for_insn).
183
184 Initialization changes
185 ======================
186
187 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
188 reused in all of the schedulers. We have split up the initialization of data
189 of such parts into different functions prefixed with scheduler type and
190 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
191 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
192 The same splitting is done with current_sched_info structure:
193 dependence-related parts are in sched_deps_info, common part is in
194 common_sched_info, and haifa/sel/etc part is in current_sched_info.
195
196 Target contexts
197 ===============
198
199 As we now have multiple-point scheduling, this would not work with backends
200 which save some of the scheduler state to use it in the target hooks.
201 For this purpose, we introduce a concept of target contexts, which
202 encapsulate such information. The backend should implement simple routines
203 of allocating/freeing/setting such a context. The scheduler calls these
204 as target hooks and handles the target context as an opaque pointer (similar
205 to the DFA state type, state_t).
206
207 Various speedups
208 ================
209
210 As the correct data dependence graph is not supported during scheduling (which
211 is to be changed in mid-term), we cache as much of the dependence analysis
212 results as possible to avoid reanalyzing. This includes: bitmap caches on
213 each insn in stream of the region saying yes/no for a query with a pair of
214 UIDs; hashtables with the previously done transformations on each insn in
215 stream; a vector keeping a history of transformations on each expr.
216
217 Also, we try to minimize the dependence context used on each fence to check
218 whether the given expression is ready for scheduling by removing from it
219 insns that are definitely completed the execution. The results of
220 tick_check_p checks are also cached in a vector on each fence.
221
222 We keep a valid liveness set on each insn in a region to avoid the high
223 cost of recomputation on large basic blocks.
224
225 Finally, we try to minimize the number of needed updates to the availability
226 sets. The updates happen in two cases: when fill_insns terminates,
227 we advance all fences and increase the stage number to show that the region
228 has changed and the sets are to be recomputed; and when the next iteration
229 of a loop in fill_insns happens (but this one reuses the saved av sets
230 on bb headers.) Thus, we try to break the fill_insns loop only when
231 "significant" number of insns from the current scheduling window was
232 scheduled. This should be made a target param.
233
234
235 TODO: correctly support the data dependence graph at all stages and get rid
236 of all caches. This should speed up the scheduler.
237 TODO: implement moving cond jumps with bookkeeping copies on both targets.
238 TODO: tune the scheduler before RA so it does not create too much pseudos.
239
240
241 References:
242 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
243 selective scheduling and software pipelining.
244 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
245
246 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
247 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
248 for GCC. In Proceedings of GCC Developers' Summit 2006.
249
250 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
251 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
252 http://rogue.colorado.edu/EPIC7/.
253
254 */
255
256 /* True when pipelining is enabled. */
257 bool pipelining_p;
258
259 /* True if bookkeeping is enabled. */
260 bool bookkeeping_p;
261
262 /* Maximum number of insns that are eligible for renaming. */
263 int max_insns_to_rename;
264 \f
265
266 /* Definitions of local types and macros. */
267
268 /* Represents possible outcomes of moving an expression through an insn. */
269 enum MOVEUP_EXPR_CODE
270 {
271 /* The expression is not changed. */
272 MOVEUP_EXPR_SAME,
273
274 /* Not changed, but requires a new destination register. */
275 MOVEUP_EXPR_AS_RHS,
276
277 /* Cannot be moved. */
278 MOVEUP_EXPR_NULL,
279
280 /* Changed (substituted or speculated). */
281 MOVEUP_EXPR_CHANGED
282 };
283
284 /* The container to be passed into rtx search & replace functions. */
285 struct rtx_search_arg
286 {
287 /* What we are searching for. */
288 rtx x;
289
290 /* The occurrence counter. */
291 int n;
292 };
293
294 typedef struct rtx_search_arg *rtx_search_arg_p;
295
296 /* This struct contains precomputed hard reg sets that are needed when
297 computing registers available for renaming. */
298 struct hard_regs_data
299 {
300 /* For every mode, this stores registers available for use with
301 that mode. */
302 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
303
304 /* True when regs_for_mode[mode] is initialized. */
305 bool regs_for_mode_ok[NUM_MACHINE_MODES];
306
307 /* For every register, it has regs that are ok to rename into it.
308 The register in question is always set. If not, this means
309 that the whole set is not computed yet. */
310 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
311
312 /* For every mode, this stores registers not available due to
313 call clobbering. */
314 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
315
316 /* All registers that are used or call used. */
317 HARD_REG_SET regs_ever_used;
318
319 #ifdef STACK_REGS
320 /* Stack registers. */
321 HARD_REG_SET stack_regs;
322 #endif
323 };
324
325 /* Holds the results of computation of available for renaming and
326 unavailable hard registers. */
327 struct reg_rename
328 {
329 /* These are unavailable due to calls crossing, globalness, etc. */
330 HARD_REG_SET unavailable_hard_regs;
331
332 /* These are *available* for renaming. */
333 HARD_REG_SET available_for_renaming;
334
335 /* Whether this code motion path crosses a call. */
336 bool crosses_call;
337 };
338
339 /* A global structure that contains the needed information about harg
340 regs. */
341 static struct hard_regs_data sel_hrd;
342 \f
343
344 /* This structure holds local data used in code_motion_path_driver hooks on
345 the same or adjacent levels of recursion. Here we keep those parameters
346 that are not used in code_motion_path_driver routine itself, but only in
347 its hooks. Moreover, all parameters that can be modified in hooks are
348 in this structure, so all other parameters passed explicitly to hooks are
349 read-only. */
350 struct cmpd_local_params
351 {
352 /* Local params used in move_op_* functions. */
353
354 /* Edges for bookkeeping generation. */
355 edge e1, e2;
356
357 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
358 expr_t c_expr_merged, c_expr_local;
359
360 /* Local params used in fur_* functions. */
361 /* Copy of the ORIGINAL_INSN list, stores the original insns already
362 found before entering the current level of code_motion_path_driver. */
363 def_list_t old_original_insns;
364
365 /* Local params used in move_op_* functions. */
366 /* True when we have removed last insn in the block which was
367 also a boundary. Do not update anything or create bookkeeping copies. */
368 BOOL_BITFIELD removed_last_insn : 1;
369 };
370
371 /* Stores the static parameters for move_op_* calls. */
372 struct moveop_static_params
373 {
374 /* Destination register. */
375 rtx dest;
376
377 /* Current C_EXPR. */
378 expr_t c_expr;
379
380 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
381 they are to be removed. */
382 int uid;
383
384 #ifdef ENABLE_CHECKING
385 /* This is initialized to the insn on which the driver stopped its traversal. */
386 insn_t failed_insn;
387 #endif
388
389 /* True if we scheduled an insn with different register. */
390 bool was_renamed;
391 };
392
393 /* Stores the static parameters for fur_* calls. */
394 struct fur_static_params
395 {
396 /* Set of registers unavailable on the code motion path. */
397 regset used_regs;
398
399 /* Pointer to the list of original insns definitions. */
400 def_list_t *original_insns;
401
402 /* True if a code motion path contains a CALL insn. */
403 bool crosses_call;
404 };
405
406 typedef struct fur_static_params *fur_static_params_p;
407 typedef struct cmpd_local_params *cmpd_local_params_p;
408 typedef struct moveop_static_params *moveop_static_params_p;
409
410 /* Set of hooks and parameters that determine behaviour specific to
411 move_op or find_used_regs functions. */
412 struct code_motion_path_driver_info_def
413 {
414 /* Called on enter to the basic block. */
415 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
416
417 /* Called when original expr is found. */
418 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
419
420 /* Called while descending current basic block if current insn is not
421 the original EXPR we're searching for. */
422 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
423
424 /* Function to merge C_EXPRes from different successors. */
425 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
426
427 /* Function to finalize merge from different successors and possibly
428 deallocate temporary data structures used for merging. */
429 void (*after_merge_succs) (cmpd_local_params_p, void *);
430
431 /* Called on the backward stage of recursion to do moveup_expr.
432 Used only with move_op_*. */
433 void (*ascend) (insn_t, void *);
434
435 /* Called on the ascending pass, before returning from the current basic
436 block or from the whole traversal. */
437 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
438
439 /* When processing successors in move_op we need only descend into
440 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
441 int succ_flags;
442
443 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
444 const char *routine_name;
445 };
446
447 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
448 FUR_HOOKS. */
449 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
450
451 /* Set of hooks for performing move_op and find_used_regs routines with
452 code_motion_path_driver. */
453 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
454
455 /* True if/when we want to emulate Haifa scheduler in the common code.
456 This is used in sched_rgn_local_init and in various places in
457 sched-deps.c. */
458 int sched_emulate_haifa_p;
459
460 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
461 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
462 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
463 scheduling window. */
464 int global_level;
465
466 /* Current fences. */
467 flist_t fences;
468
469 /* True when separable insns should be scheduled as RHSes. */
470 static bool enable_schedule_as_rhs_p;
471
472 /* Used in verify_target_availability to assert that target reg is reported
473 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
474 we haven't scheduled anything on the previous fence.
475 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
476 have more conservative value than the one returned by the
477 find_used_regs, thus we shouldn't assert that these values are equal. */
478 static bool scheduled_something_on_previous_fence;
479
480 /* All newly emitted insns will have their uids greater than this value. */
481 static int first_emitted_uid;
482
483 /* Set of basic blocks that are forced to start new ebbs. This is a subset
484 of all the ebb heads. */
485 static bitmap_head _forced_ebb_heads;
486 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
487
488 /* Blocks that need to be rescheduled after pipelining. */
489 bitmap blocks_to_reschedule = NULL;
490
491 /* True when the first lv set should be ignored when updating liveness. */
492 static bool ignore_first = false;
493
494 /* Number of insns max_issue has initialized data structures for. */
495 static int max_issue_size = 0;
496
497 /* Whether we can issue more instructions. */
498 static int can_issue_more;
499
500 /* Maximum software lookahead window size, reduced when rescheduling after
501 pipelining. */
502 static int max_ws;
503
504 /* Number of insns scheduled in current region. */
505 static int num_insns_scheduled;
506
507 /* A vector of expressions is used to be able to sort them. */
508 static vec<expr_t> vec_av_set = vNULL;
509
510 /* A vector of vinsns is used to hold temporary lists of vinsns. */
511 typedef vec<vinsn_t> vinsn_vec_t;
512
513 /* This vector has the exprs which may still present in av_sets, but actually
514 can't be moved up due to bookkeeping created during code motion to another
515 fence. See comment near the call to update_and_record_unavailable_insns
516 for the detailed explanations. */
517 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
518
519 /* This vector has vinsns which are scheduled with renaming on the first fence
520 and then seen on the second. For expressions with such vinsns, target
521 availability information may be wrong. */
522 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
523
524 /* Vector to store temporary nops inserted in move_op to prevent removal
525 of empty bbs. */
526 static vec<insn_t> vec_temp_moveop_nops = vNULL;
527
528 /* These bitmaps record original instructions scheduled on the current
529 iteration and bookkeeping copies created by them. */
530 static bitmap current_originators = NULL;
531 static bitmap current_copies = NULL;
532
533 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
534 visit them afterwards. */
535 static bitmap code_motion_visited_blocks = NULL;
536
537 /* Variables to accumulate different statistics. */
538
539 /* The number of bookkeeping copies created. */
540 static int stat_bookkeeping_copies;
541
542 /* The number of insns that required bookkeeiping for their scheduling. */
543 static int stat_insns_needed_bookkeeping;
544
545 /* The number of insns that got renamed. */
546 static int stat_renamed_scheduled;
547
548 /* The number of substitutions made during scheduling. */
549 static int stat_substitutions_total;
550 \f
551
552 /* Forward declarations of static functions. */
553 static bool rtx_ok_for_substitution_p (rtx, rtx);
554 static int sel_rank_for_schedule (const void *, const void *);
555 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
556 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
557
558 static rtx get_dest_from_orig_ops (av_set_t);
559 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
560 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
561 def_list_t *);
562 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
563 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
564 cmpd_local_params_p, void *);
565 static void sel_sched_region_1 (void);
566 static void sel_sched_region_2 (int);
567 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
568
569 static void debug_state (state_t);
570 \f
571
572 /* Functions that work with fences. */
573
574 /* Advance one cycle on FENCE. */
575 static void
576 advance_one_cycle (fence_t fence)
577 {
578 unsigned i;
579 int cycle;
580 rtx_insn *insn;
581
582 advance_state (FENCE_STATE (fence));
583 cycle = ++FENCE_CYCLE (fence);
584 FENCE_ISSUED_INSNS (fence) = 0;
585 FENCE_STARTS_CYCLE_P (fence) = 1;
586 can_issue_more = issue_rate;
587 FENCE_ISSUE_MORE (fence) = can_issue_more;
588
589 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
590 {
591 if (INSN_READY_CYCLE (insn) < cycle)
592 {
593 remove_from_deps (FENCE_DC (fence), insn);
594 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
595 continue;
596 }
597 i++;
598 }
599 if (sched_verbose >= 2)
600 {
601 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
602 debug_state (FENCE_STATE (fence));
603 }
604 }
605
606 /* Returns true when SUCC in a fallthru bb of INSN, possibly
607 skipping empty basic blocks. */
608 static bool
609 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
610 {
611 basic_block bb = BLOCK_FOR_INSN (insn);
612 edge e;
613
614 if (bb == BLOCK_FOR_INSN (succ))
615 return true;
616
617 e = find_fallthru_edge_from (bb);
618 if (e)
619 bb = e->dest;
620 else
621 return false;
622
623 while (sel_bb_empty_p (bb))
624 bb = bb->next_bb;
625
626 return bb == BLOCK_FOR_INSN (succ);
627 }
628
629 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
630 When a successor will continue a ebb, transfer all parameters of a fence
631 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
632 of scheduling helping to distinguish between the old and the new code. */
633 static void
634 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
635 int orig_max_seqno)
636 {
637 bool was_here_p = false;
638 insn_t insn = NULL;
639 insn_t succ;
640 succ_iterator si;
641 ilist_iterator ii;
642 fence_t fence = FLIST_FENCE (old_fences);
643 basic_block bb;
644
645 /* Get the only element of FENCE_BNDS (fence). */
646 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
647 {
648 gcc_assert (!was_here_p);
649 was_here_p = true;
650 }
651 gcc_assert (was_here_p && insn != NULL_RTX);
652
653 /* When in the "middle" of the block, just move this fence
654 to the new list. */
655 bb = BLOCK_FOR_INSN (insn);
656 if (! sel_bb_end_p (insn)
657 || (single_succ_p (bb)
658 && single_pred_p (single_succ (bb))))
659 {
660 insn_t succ;
661
662 succ = (sel_bb_end_p (insn)
663 ? sel_bb_head (single_succ (bb))
664 : NEXT_INSN (insn));
665
666 if (INSN_SEQNO (succ) > 0
667 && INSN_SEQNO (succ) <= orig_max_seqno
668 && INSN_SCHED_TIMES (succ) <= 0)
669 {
670 FENCE_INSN (fence) = succ;
671 move_fence_to_fences (old_fences, new_fences);
672
673 if (sched_verbose >= 1)
674 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
675 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
676 }
677 return;
678 }
679
680 /* Otherwise copy fence's structures to (possibly) multiple successors. */
681 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
682 {
683 int seqno = INSN_SEQNO (succ);
684
685 if (0 < seqno && seqno <= orig_max_seqno
686 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
687 {
688 bool b = (in_same_ebb_p (insn, succ)
689 || in_fallthru_bb_p (insn, succ));
690
691 if (sched_verbose >= 1)
692 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
693 INSN_UID (insn), INSN_UID (succ),
694 BLOCK_NUM (succ), b ? "continue" : "reset");
695
696 if (b)
697 add_dirty_fence_to_fences (new_fences, succ, fence);
698 else
699 {
700 /* Mark block of the SUCC as head of the new ebb. */
701 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
702 add_clean_fence_to_fences (new_fences, succ, fence);
703 }
704 }
705 }
706 }
707 \f
708
709 /* Functions to support substitution. */
710
711 /* Returns whether INSN with dependence status DS is eligible for
712 substitution, i.e. it's a copy operation x := y, and RHS that is
713 moved up through this insn should be substituted. */
714 static bool
715 can_substitute_through_p (insn_t insn, ds_t ds)
716 {
717 /* We can substitute only true dependencies. */
718 if ((ds & DEP_OUTPUT)
719 || (ds & DEP_ANTI)
720 || ! INSN_RHS (insn)
721 || ! INSN_LHS (insn))
722 return false;
723
724 /* Now we just need to make sure the INSN_RHS consists of only one
725 simple REG rtx. */
726 if (REG_P (INSN_LHS (insn))
727 && REG_P (INSN_RHS (insn)))
728 return true;
729 return false;
730 }
731
732 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
733 source (if INSN is eligible for substitution). Returns TRUE if
734 substitution was actually performed, FALSE otherwise. Substitution might
735 be not performed because it's either EXPR' vinsn doesn't contain INSN's
736 destination or the resulting insn is invalid for the target machine.
737 When UNDO is true, perform unsubstitution instead (the difference is in
738 the part of rtx on which validate_replace_rtx is called). */
739 static bool
740 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
741 {
742 rtx *where;
743 bool new_insn_valid;
744 vinsn_t *vi = &EXPR_VINSN (expr);
745 bool has_rhs = VINSN_RHS (*vi) != NULL;
746 rtx old, new_rtx;
747
748 /* Do not try to replace in SET_DEST. Although we'll choose new
749 register for the RHS, we don't want to change RHS' original reg.
750 If the insn is not SET, we may still be able to substitute something
751 in it, and if we're here (don't have deps), it doesn't write INSN's
752 dest. */
753 where = (has_rhs
754 ? &VINSN_RHS (*vi)
755 : &PATTERN (VINSN_INSN_RTX (*vi)));
756 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
757
758 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
759 if (rtx_ok_for_substitution_p (old, *where))
760 {
761 rtx_insn *new_insn;
762 rtx *where_replace;
763
764 /* We should copy these rtxes before substitution. */
765 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
766 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
767
768 /* Where we'll replace.
769 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
770 used instead of SET_SRC. */
771 where_replace = (has_rhs
772 ? &SET_SRC (PATTERN (new_insn))
773 : &PATTERN (new_insn));
774
775 new_insn_valid
776 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
777 new_insn);
778
779 /* ??? Actually, constrain_operands result depends upon choice of
780 destination register. E.g. if we allow single register to be an rhs,
781 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
782 in invalid insn dx=dx, so we'll loose this rhs here.
783 Just can't come up with significant testcase for this, so just
784 leaving it for now. */
785 if (new_insn_valid)
786 {
787 change_vinsn_in_expr (expr,
788 create_vinsn_from_insn_rtx (new_insn, false));
789
790 /* Do not allow clobbering the address register of speculative
791 insns. */
792 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
793 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
794 expr_dest_reg (expr)))
795 EXPR_TARGET_AVAILABLE (expr) = false;
796
797 return true;
798 }
799 else
800 return false;
801 }
802 else
803 return false;
804 }
805
806 /* Return the number of places WHAT appears within WHERE.
807 Bail out when we found a reference occupying several hard registers. */
808 static int
809 count_occurrences_equiv (const_rtx what, const_rtx where)
810 {
811 int count = 0;
812 subrtx_iterator::array_type array;
813 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
814 {
815 const_rtx x = *iter;
816 if (REG_P (x) && REGNO (x) == REGNO (what))
817 {
818 /* Bail out if mode is different or more than one register is
819 used. */
820 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
821 return 0;
822 count += 1;
823 }
824 else if (GET_CODE (x) == SUBREG
825 && (!REG_P (SUBREG_REG (x))
826 || REGNO (SUBREG_REG (x)) == REGNO (what)))
827 /* ??? Do not support substituting regs inside subregs. In that case,
828 simplify_subreg will be called by validate_replace_rtx, and
829 unsubstitution will fail later. */
830 return 0;
831 }
832 return count;
833 }
834
835 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
836 static bool
837 rtx_ok_for_substitution_p (rtx what, rtx where)
838 {
839 return (count_occurrences_equiv (what, where) > 0);
840 }
841 \f
842
843 /* Functions to support register renaming. */
844
845 /* Substitute VI's set source with REGNO. Returns newly created pattern
846 that has REGNO as its source. */
847 static rtx_insn *
848 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
849 {
850 rtx lhs_rtx;
851 rtx pattern;
852 rtx_insn *insn_rtx;
853
854 lhs_rtx = copy_rtx (VINSN_LHS (vi));
855
856 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
857 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
858
859 return insn_rtx;
860 }
861
862 /* Returns whether INSN's src can be replaced with register number
863 NEW_SRC_REG. E.g. the following insn is valid for i386:
864
865 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
866 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
867 (reg:SI 0 ax [orig:770 c1 ] [770]))
868 (const_int 288 [0x120])) [0 str S1 A8])
869 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
870 (nil))
871
872 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
873 because of operand constraints:
874
875 (define_insn "*movqi_1"
876 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
877 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
878 )]
879
880 So do constrain_operands here, before choosing NEW_SRC_REG as best
881 reg for rhs. */
882
883 static bool
884 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
885 {
886 vinsn_t vi = INSN_VINSN (insn);
887 machine_mode mode;
888 rtx dst_loc;
889 bool res;
890
891 gcc_assert (VINSN_SEPARABLE_P (vi));
892
893 get_dest_and_mode (insn, &dst_loc, &mode);
894 gcc_assert (mode == GET_MODE (new_src_reg));
895
896 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
897 return true;
898
899 /* See whether SET_SRC can be replaced with this register. */
900 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
901 res = verify_changes (0);
902 cancel_changes (0);
903
904 return res;
905 }
906
907 /* Returns whether INSN still be valid after replacing it's DEST with
908 register NEW_REG. */
909 static bool
910 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
911 {
912 vinsn_t vi = INSN_VINSN (insn);
913 bool res;
914
915 /* We should deal here only with separable insns. */
916 gcc_assert (VINSN_SEPARABLE_P (vi));
917 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
918
919 /* See whether SET_DEST can be replaced with this register. */
920 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
921 res = verify_changes (0);
922 cancel_changes (0);
923
924 return res;
925 }
926
927 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
928 static rtx_insn *
929 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
930 {
931 rtx rhs_rtx;
932 rtx pattern;
933 rtx_insn *insn_rtx;
934
935 rhs_rtx = copy_rtx (VINSN_RHS (vi));
936
937 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
938 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
939
940 return insn_rtx;
941 }
942
943 /* Substitute lhs in the given expression EXPR for the register with number
944 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
945 static void
946 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
947 {
948 rtx_insn *insn_rtx;
949 vinsn_t vinsn;
950
951 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
952 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
953
954 change_vinsn_in_expr (expr, vinsn);
955 EXPR_WAS_RENAMED (expr) = 1;
956 EXPR_TARGET_AVAILABLE (expr) = 1;
957 }
958
959 /* Returns whether VI writes either one of the USED_REGS registers or,
960 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
961 static bool
962 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
963 HARD_REG_SET unavailable_hard_regs)
964 {
965 unsigned regno;
966 reg_set_iterator rsi;
967
968 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
969 {
970 if (REGNO_REG_SET_P (used_regs, regno))
971 return true;
972 if (HARD_REGISTER_NUM_P (regno)
973 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
974 return true;
975 }
976
977 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
978 {
979 if (REGNO_REG_SET_P (used_regs, regno))
980 return true;
981 if (HARD_REGISTER_NUM_P (regno)
982 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
983 return true;
984 }
985
986 return false;
987 }
988
989 /* Returns register class of the output register in INSN.
990 Returns NO_REGS for call insns because some targets have constraints on
991 destination register of a call insn.
992
993 Code adopted from regrename.c::build_def_use. */
994 static enum reg_class
995 get_reg_class (rtx_insn *insn)
996 {
997 int i, n_ops;
998
999 extract_constrain_insn (insn);
1000 preprocess_constraints (insn);
1001 n_ops = recog_data.n_operands;
1002
1003 const operand_alternative *op_alt = which_op_alt ();
1004 if (asm_noperands (PATTERN (insn)) > 0)
1005 {
1006 for (i = 0; i < n_ops; i++)
1007 if (recog_data.operand_type[i] == OP_OUT)
1008 {
1009 rtx *loc = recog_data.operand_loc[i];
1010 rtx op = *loc;
1011 enum reg_class cl = alternative_class (op_alt, i);
1012
1013 if (REG_P (op)
1014 && REGNO (op) == ORIGINAL_REGNO (op))
1015 continue;
1016
1017 return cl;
1018 }
1019 }
1020 else if (!CALL_P (insn))
1021 {
1022 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1023 {
1024 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1025 enum reg_class cl = alternative_class (op_alt, opn);
1026
1027 if (recog_data.operand_type[opn] == OP_OUT ||
1028 recog_data.operand_type[opn] == OP_INOUT)
1029 return cl;
1030 }
1031 }
1032
1033 /* Insns like
1034 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1035 may result in returning NO_REGS, cause flags is written implicitly through
1036 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1037 return NO_REGS;
1038 }
1039
1040 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1041 static void
1042 init_hard_regno_rename (int regno)
1043 {
1044 int cur_reg;
1045
1046 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1047
1048 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1049 {
1050 /* We are not interested in renaming in other regs. */
1051 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1052 continue;
1053
1054 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1055 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1056 }
1057 }
1058
1059 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1060 data first. */
1061 static inline bool
1062 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1063 {
1064 /* Check whether this is all calculated. */
1065 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1066 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1067
1068 init_hard_regno_rename (from);
1069
1070 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1071 }
1072
1073 /* Calculate set of registers that are capable of holding MODE. */
1074 static void
1075 init_regs_for_mode (machine_mode mode)
1076 {
1077 int cur_reg;
1078
1079 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1080 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1081
1082 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1083 {
1084 int nregs;
1085 int i;
1086
1087 /* See whether it accepts all modes that occur in
1088 original insns. */
1089 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1090 continue;
1091
1092 nregs = hard_regno_nregs[cur_reg][mode];
1093
1094 for (i = nregs - 1; i >= 0; --i)
1095 if (fixed_regs[cur_reg + i]
1096 || global_regs[cur_reg + i]
1097 /* Can't use regs which aren't saved by
1098 the prologue. */
1099 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1100 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1101 it affects aliasing globally and invalidates all AV sets. */
1102 || get_reg_base_value (cur_reg + i)
1103 #ifdef LEAF_REGISTERS
1104 /* We can't use a non-leaf register if we're in a
1105 leaf function. */
1106 || (crtl->is_leaf
1107 && !LEAF_REGISTERS[cur_reg + i])
1108 #endif
1109 )
1110 break;
1111
1112 if (i >= 0)
1113 continue;
1114
1115 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1116 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1117 cur_reg);
1118
1119 /* If the CUR_REG passed all the checks above,
1120 then it's ok. */
1121 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1122 }
1123
1124 sel_hrd.regs_for_mode_ok[mode] = true;
1125 }
1126
1127 /* Init all register sets gathered in HRD. */
1128 static void
1129 init_hard_regs_data (void)
1130 {
1131 int cur_reg = 0;
1132 int cur_mode = 0;
1133
1134 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1135 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1136 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1137 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1138
1139 /* Initialize registers that are valid based on mode when this is
1140 really needed. */
1141 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1142 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1143
1144 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1145 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1146 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1147
1148 #ifdef STACK_REGS
1149 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1150
1151 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1152 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1153 #endif
1154 }
1155
1156 /* Mark hardware regs in REG_RENAME_P that are not suitable
1157 for renaming rhs in INSN due to hardware restrictions (register class,
1158 modes compatibility etc). This doesn't affect original insn's dest reg,
1159 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1160 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1161 Registers that are in used_regs are always marked in
1162 unavailable_hard_regs as well. */
1163
1164 static void
1165 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1166 regset used_regs ATTRIBUTE_UNUSED)
1167 {
1168 machine_mode mode;
1169 enum reg_class cl = NO_REGS;
1170 rtx orig_dest;
1171 unsigned cur_reg, regno;
1172 hard_reg_set_iterator hrsi;
1173
1174 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1175 gcc_assert (reg_rename_p);
1176
1177 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1178
1179 /* We have decided not to rename 'mem = something;' insns, as 'something'
1180 is usually a register. */
1181 if (!REG_P (orig_dest))
1182 return;
1183
1184 regno = REGNO (orig_dest);
1185
1186 /* If before reload, don't try to work with pseudos. */
1187 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1188 return;
1189
1190 if (reload_completed)
1191 cl = get_reg_class (def->orig_insn);
1192
1193 /* Stop if the original register is one of the fixed_regs, global_regs or
1194 frame pointer, or we could not discover its class. */
1195 if (fixed_regs[regno]
1196 || global_regs[regno]
1197 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1198 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1199 #else
1200 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1201 #endif
1202 || (reload_completed && cl == NO_REGS))
1203 {
1204 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1205
1206 /* Give a chance for original register, if it isn't in used_regs. */
1207 if (!def->crosses_call)
1208 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1209
1210 return;
1211 }
1212
1213 /* If something allocated on stack in this function, mark frame pointer
1214 register unavailable, considering also modes.
1215 FIXME: it is enough to do this once per all original defs. */
1216 if (frame_pointer_needed)
1217 {
1218 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1219 Pmode, FRAME_POINTER_REGNUM);
1220
1221 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1222 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1223 Pmode, HARD_FRAME_POINTER_REGNUM);
1224 }
1225
1226 #ifdef STACK_REGS
1227 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1228 is equivalent to as if all stack regs were in this set.
1229 I.e. no stack register can be renamed, and even if it's an original
1230 register here we make sure it won't be lifted over it's previous def
1231 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1232 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1233 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1234 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1235 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1236 sel_hrd.stack_regs);
1237 #endif
1238
1239 /* If there's a call on this path, make regs from call_used_reg_set
1240 unavailable. */
1241 if (def->crosses_call)
1242 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1243 call_used_reg_set);
1244
1245 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1246 but not register classes. */
1247 if (!reload_completed)
1248 return;
1249
1250 /* Leave regs as 'available' only from the current
1251 register class. */
1252 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1253 reg_class_contents[cl]);
1254
1255 mode = GET_MODE (orig_dest);
1256
1257 /* Leave only registers available for this mode. */
1258 if (!sel_hrd.regs_for_mode_ok[mode])
1259 init_regs_for_mode (mode);
1260 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1261 sel_hrd.regs_for_mode[mode]);
1262
1263 /* Exclude registers that are partially call clobbered. */
1264 if (def->crosses_call
1265 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1266 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1267 sel_hrd.regs_for_call_clobbered[mode]);
1268
1269 /* Leave only those that are ok to rename. */
1270 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1271 0, cur_reg, hrsi)
1272 {
1273 int nregs;
1274 int i;
1275
1276 nregs = hard_regno_nregs[cur_reg][mode];
1277 gcc_assert (nregs > 0);
1278
1279 for (i = nregs - 1; i >= 0; --i)
1280 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1281 break;
1282
1283 if (i >= 0)
1284 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1285 cur_reg);
1286 }
1287
1288 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1289 reg_rename_p->unavailable_hard_regs);
1290
1291 /* Regno is always ok from the renaming part of view, but it really
1292 could be in *unavailable_hard_regs already, so set it here instead
1293 of there. */
1294 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1295 }
1296
1297 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1298 best register more recently than REG2. */
1299 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1300
1301 /* Indicates the number of times renaming happened before the current one. */
1302 static int reg_rename_this_tick;
1303
1304 /* Choose the register among free, that is suitable for storing
1305 the rhs value.
1306
1307 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1308 originally appears. There could be multiple original operations
1309 for single rhs since we moving it up and merging along different
1310 paths.
1311
1312 Some code is adapted from regrename.c (regrename_optimize).
1313 If original register is available, function returns it.
1314 Otherwise it performs the checks, so the new register should
1315 comply with the following:
1316 - it should not violate any live ranges (such registers are in
1317 REG_RENAME_P->available_for_renaming set);
1318 - it should not be in the HARD_REGS_USED regset;
1319 - it should be in the class compatible with original uses;
1320 - it should not be clobbered through reference with different mode;
1321 - if we're in the leaf function, then the new register should
1322 not be in the LEAF_REGISTERS;
1323 - etc.
1324
1325 If several registers meet the conditions, the register with smallest
1326 tick is returned to achieve more even register allocation.
1327
1328 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1329
1330 If no register satisfies the above conditions, NULL_RTX is returned. */
1331 static rtx
1332 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1333 struct reg_rename *reg_rename_p,
1334 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1335 {
1336 int best_new_reg;
1337 unsigned cur_reg;
1338 machine_mode mode = VOIDmode;
1339 unsigned regno, i, n;
1340 hard_reg_set_iterator hrsi;
1341 def_list_iterator di;
1342 def_t def;
1343
1344 /* If original register is available, return it. */
1345 *is_orig_reg_p_ptr = true;
1346
1347 FOR_EACH_DEF (def, di, original_insns)
1348 {
1349 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1350
1351 gcc_assert (REG_P (orig_dest));
1352
1353 /* Check that all original operations have the same mode.
1354 This is done for the next loop; if we'd return from this
1355 loop, we'd check only part of them, but in this case
1356 it doesn't matter. */
1357 if (mode == VOIDmode)
1358 mode = GET_MODE (orig_dest);
1359 gcc_assert (mode == GET_MODE (orig_dest));
1360
1361 regno = REGNO (orig_dest);
1362 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1363 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1364 break;
1365
1366 /* All hard registers are available. */
1367 if (i == n)
1368 {
1369 gcc_assert (mode != VOIDmode);
1370
1371 /* Hard registers should not be shared. */
1372 return gen_rtx_REG (mode, regno);
1373 }
1374 }
1375
1376 *is_orig_reg_p_ptr = false;
1377 best_new_reg = -1;
1378
1379 /* Among all available regs choose the register that was
1380 allocated earliest. */
1381 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1382 0, cur_reg, hrsi)
1383 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1384 {
1385 /* Check that all hard regs for mode are available. */
1386 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1387 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1388 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1389 cur_reg + i))
1390 break;
1391
1392 if (i < n)
1393 continue;
1394
1395 /* All hard registers are available. */
1396 if (best_new_reg < 0
1397 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1398 {
1399 best_new_reg = cur_reg;
1400
1401 /* Return immediately when we know there's no better reg. */
1402 if (! reg_rename_tick[best_new_reg])
1403 break;
1404 }
1405 }
1406
1407 if (best_new_reg >= 0)
1408 {
1409 /* Use the check from the above loop. */
1410 gcc_assert (mode != VOIDmode);
1411 return gen_rtx_REG (mode, best_new_reg);
1412 }
1413
1414 return NULL_RTX;
1415 }
1416
1417 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1418 assumptions about available registers in the function. */
1419 static rtx
1420 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1421 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1422 {
1423 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1424 original_insns, is_orig_reg_p_ptr);
1425
1426 /* FIXME loop over hard_regno_nregs here. */
1427 gcc_assert (best_reg == NULL_RTX
1428 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1429
1430 return best_reg;
1431 }
1432
1433 /* Choose the pseudo register for storing rhs value. As this is supposed
1434 to work before reload, we return either the original register or make
1435 the new one. The parameters are the same that in choose_nest_reg_1
1436 functions, except that USED_REGS may contain pseudos.
1437 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1438
1439 TODO: take into account register pressure while doing this. Up to this
1440 moment, this function would never return NULL for pseudos, but we should
1441 not rely on this. */
1442 static rtx
1443 choose_best_pseudo_reg (regset used_regs,
1444 struct reg_rename *reg_rename_p,
1445 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1446 {
1447 def_list_iterator i;
1448 def_t def;
1449 machine_mode mode = VOIDmode;
1450 bool bad_hard_regs = false;
1451
1452 /* We should not use this after reload. */
1453 gcc_assert (!reload_completed);
1454
1455 /* If original register is available, return it. */
1456 *is_orig_reg_p_ptr = true;
1457
1458 FOR_EACH_DEF (def, i, original_insns)
1459 {
1460 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1461 int orig_regno;
1462
1463 gcc_assert (REG_P (dest));
1464
1465 /* Check that all original operations have the same mode. */
1466 if (mode == VOIDmode)
1467 mode = GET_MODE (dest);
1468 else
1469 gcc_assert (mode == GET_MODE (dest));
1470 orig_regno = REGNO (dest);
1471
1472 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1473 {
1474 if (orig_regno < FIRST_PSEUDO_REGISTER)
1475 {
1476 gcc_assert (df_regs_ever_live_p (orig_regno));
1477
1478 /* For hard registers, we have to check hardware imposed
1479 limitations (frame/stack registers, calls crossed). */
1480 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1481 orig_regno))
1482 {
1483 /* Don't let register cross a call if it doesn't already
1484 cross one. This condition is written in accordance with
1485 that in sched-deps.c sched_analyze_reg(). */
1486 if (!reg_rename_p->crosses_call
1487 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1488 return gen_rtx_REG (mode, orig_regno);
1489 }
1490
1491 bad_hard_regs = true;
1492 }
1493 else
1494 return dest;
1495 }
1496 }
1497
1498 *is_orig_reg_p_ptr = false;
1499
1500 /* We had some original hard registers that couldn't be used.
1501 Those were likely special. Don't try to create a pseudo. */
1502 if (bad_hard_regs)
1503 return NULL_RTX;
1504
1505 /* We haven't found a register from original operations. Get a new one.
1506 FIXME: control register pressure somehow. */
1507 {
1508 rtx new_reg = gen_reg_rtx (mode);
1509
1510 gcc_assert (mode != VOIDmode);
1511
1512 max_regno = max_reg_num ();
1513 maybe_extend_reg_info_p ();
1514 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1515
1516 return new_reg;
1517 }
1518 }
1519
1520 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1521 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1522 static void
1523 verify_target_availability (expr_t expr, regset used_regs,
1524 struct reg_rename *reg_rename_p)
1525 {
1526 unsigned n, i, regno;
1527 machine_mode mode;
1528 bool target_available, live_available, hard_available;
1529
1530 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1531 return;
1532
1533 regno = expr_dest_regno (expr);
1534 mode = GET_MODE (EXPR_LHS (expr));
1535 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1536 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1537
1538 live_available = hard_available = true;
1539 for (i = 0; i < n; i++)
1540 {
1541 if (bitmap_bit_p (used_regs, regno + i))
1542 live_available = false;
1543 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1544 hard_available = false;
1545 }
1546
1547 /* When target is not available, it may be due to hard register
1548 restrictions, e.g. crosses calls, so we check hard_available too. */
1549 if (target_available)
1550 gcc_assert (live_available);
1551 else
1552 /* Check only if we haven't scheduled something on the previous fence,
1553 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1554 and having more than one fence, we may end having targ_un in a block
1555 in which successors target register is actually available.
1556
1557 The last condition handles the case when a dependence from a call insn
1558 was created in sched-deps.c for insns with destination registers that
1559 never crossed a call before, but do cross one after our code motion.
1560
1561 FIXME: in the latter case, we just uselessly called find_used_regs,
1562 because we can't move this expression with any other register
1563 as well. */
1564 gcc_assert (scheduled_something_on_previous_fence || !live_available
1565 || !hard_available
1566 || (!reload_completed && reg_rename_p->crosses_call
1567 && REG_N_CALLS_CROSSED (regno) == 0));
1568 }
1569
1570 /* Collect unavailable registers due to liveness for EXPR from BNDS
1571 into USED_REGS. Save additional information about available
1572 registers and unavailable due to hardware restriction registers
1573 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1574 list. */
1575 static void
1576 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1577 struct reg_rename *reg_rename_p,
1578 def_list_t *original_insns)
1579 {
1580 for (; bnds; bnds = BLIST_NEXT (bnds))
1581 {
1582 bool res;
1583 av_set_t orig_ops = NULL;
1584 bnd_t bnd = BLIST_BND (bnds);
1585
1586 /* If the chosen best expr doesn't belong to current boundary,
1587 skip it. */
1588 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1589 continue;
1590
1591 /* Put in ORIG_OPS all exprs from this boundary that became
1592 RES on top. */
1593 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1594
1595 /* Compute used regs and OR it into the USED_REGS. */
1596 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1597 reg_rename_p, original_insns);
1598
1599 /* FIXME: the assert is true until we'd have several boundaries. */
1600 gcc_assert (res);
1601 av_set_clear (&orig_ops);
1602 }
1603 }
1604
1605 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1606 If BEST_REG is valid, replace LHS of EXPR with it. */
1607 static bool
1608 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1609 {
1610 /* Try whether we'll be able to generate the insn
1611 'dest := best_reg' at the place of the original operation. */
1612 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1613 {
1614 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1615
1616 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1617
1618 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1619 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1620 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1621 return false;
1622 }
1623
1624 /* Make sure that EXPR has the right destination
1625 register. */
1626 if (expr_dest_regno (expr) != REGNO (best_reg))
1627 replace_dest_with_reg_in_expr (expr, best_reg);
1628 else
1629 EXPR_TARGET_AVAILABLE (expr) = 1;
1630
1631 return true;
1632 }
1633
1634 /* Select and assign best register to EXPR searching from BNDS.
1635 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1636 Return FALSE if no register can be chosen, which could happen when:
1637 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1638 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1639 that are used on the moving path. */
1640 static bool
1641 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1642 {
1643 static struct reg_rename reg_rename_data;
1644
1645 regset used_regs;
1646 def_list_t original_insns = NULL;
1647 bool reg_ok;
1648
1649 *is_orig_reg_p = false;
1650
1651 /* Don't bother to do anything if this insn doesn't set any registers. */
1652 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1653 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1654 return true;
1655
1656 used_regs = get_clear_regset_from_pool ();
1657 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1658
1659 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1660 &original_insns);
1661
1662 #ifdef ENABLE_CHECKING
1663 /* If after reload, make sure we're working with hard regs here. */
1664 if (reload_completed)
1665 {
1666 reg_set_iterator rsi;
1667 unsigned i;
1668
1669 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1670 gcc_unreachable ();
1671 }
1672 #endif
1673
1674 if (EXPR_SEPARABLE_P (expr))
1675 {
1676 rtx best_reg = NULL_RTX;
1677 /* Check that we have computed availability of a target register
1678 correctly. */
1679 verify_target_availability (expr, used_regs, &reg_rename_data);
1680
1681 /* Turn everything in hard regs after reload. */
1682 if (reload_completed)
1683 {
1684 HARD_REG_SET hard_regs_used;
1685 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1686
1687 /* Join hard registers unavailable due to register class
1688 restrictions and live range intersection. */
1689 IOR_HARD_REG_SET (hard_regs_used,
1690 reg_rename_data.unavailable_hard_regs);
1691
1692 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1693 original_insns, is_orig_reg_p);
1694 }
1695 else
1696 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1697 original_insns, is_orig_reg_p);
1698
1699 if (!best_reg)
1700 reg_ok = false;
1701 else if (*is_orig_reg_p)
1702 {
1703 /* In case of unification BEST_REG may be different from EXPR's LHS
1704 when EXPR's LHS is unavailable, and there is another LHS among
1705 ORIGINAL_INSNS. */
1706 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1707 }
1708 else
1709 {
1710 /* Forbid renaming of low-cost insns. */
1711 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1712 reg_ok = false;
1713 else
1714 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1715 }
1716 }
1717 else
1718 {
1719 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1720 any of the HARD_REGS_USED set. */
1721 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1722 reg_rename_data.unavailable_hard_regs))
1723 {
1724 reg_ok = false;
1725 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1726 }
1727 else
1728 {
1729 reg_ok = true;
1730 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1731 }
1732 }
1733
1734 ilist_clear (&original_insns);
1735 return_regset_to_pool (used_regs);
1736
1737 return reg_ok;
1738 }
1739 \f
1740
1741 /* Return true if dependence described by DS can be overcomed. */
1742 static bool
1743 can_speculate_dep_p (ds_t ds)
1744 {
1745 if (spec_info == NULL)
1746 return false;
1747
1748 /* Leave only speculative data. */
1749 ds &= SPECULATIVE;
1750
1751 if (ds == 0)
1752 return false;
1753
1754 {
1755 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1756 that we can overcome. */
1757 ds_t spec_mask = spec_info->mask;
1758
1759 if ((ds & spec_mask) != ds)
1760 return false;
1761 }
1762
1763 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1764 return false;
1765
1766 return true;
1767 }
1768
1769 /* Get a speculation check instruction.
1770 C_EXPR is a speculative expression,
1771 CHECK_DS describes speculations that should be checked,
1772 ORIG_INSN is the original non-speculative insn in the stream. */
1773 static insn_t
1774 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1775 {
1776 rtx check_pattern;
1777 rtx_insn *insn_rtx;
1778 insn_t insn;
1779 basic_block recovery_block;
1780 rtx_insn *label;
1781
1782 /* Create a recovery block if target is going to emit branchy check, or if
1783 ORIG_INSN was speculative already. */
1784 if (targetm.sched.needs_block_p (check_ds)
1785 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1786 {
1787 recovery_block = sel_create_recovery_block (orig_insn);
1788 label = BB_HEAD (recovery_block);
1789 }
1790 else
1791 {
1792 recovery_block = NULL;
1793 label = NULL;
1794 }
1795
1796 /* Get pattern of the check. */
1797 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1798 check_ds);
1799
1800 gcc_assert (check_pattern != NULL);
1801
1802 /* Emit check. */
1803 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1804
1805 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1806 INSN_SEQNO (orig_insn), orig_insn);
1807
1808 /* Make check to be non-speculative. */
1809 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1810 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1811
1812 /* Decrease priority of check by difference of load/check instruction
1813 latencies. */
1814 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1815 - sel_vinsn_cost (INSN_VINSN (insn)));
1816
1817 /* Emit copy of original insn (though with replaced target register,
1818 if needed) to the recovery block. */
1819 if (recovery_block != NULL)
1820 {
1821 rtx twin_rtx;
1822
1823 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1824 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1825 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1826 INSN_EXPR (orig_insn),
1827 INSN_SEQNO (insn),
1828 bb_note (recovery_block));
1829 }
1830
1831 /* If we've generated a data speculation check, make sure
1832 that all the bookkeeping instruction we'll create during
1833 this move_op () will allocate an ALAT entry so that the
1834 check won't fail.
1835 In case of control speculation we must convert C_EXPR to control
1836 speculative mode, because failing to do so will bring us an exception
1837 thrown by the non-control-speculative load. */
1838 check_ds = ds_get_max_dep_weak (check_ds);
1839 speculate_expr (c_expr, check_ds);
1840
1841 return insn;
1842 }
1843
1844 /* True when INSN is a "regN = regN" copy. */
1845 static bool
1846 identical_copy_p (rtx_insn *insn)
1847 {
1848 rtx lhs, rhs, pat;
1849
1850 pat = PATTERN (insn);
1851
1852 if (GET_CODE (pat) != SET)
1853 return false;
1854
1855 lhs = SET_DEST (pat);
1856 if (!REG_P (lhs))
1857 return false;
1858
1859 rhs = SET_SRC (pat);
1860 if (!REG_P (rhs))
1861 return false;
1862
1863 return REGNO (lhs) == REGNO (rhs);
1864 }
1865
1866 /* Undo all transformations on *AV_PTR that were done when
1867 moving through INSN. */
1868 static void
1869 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1870 {
1871 av_set_iterator av_iter;
1872 expr_t expr;
1873 av_set_t new_set = NULL;
1874
1875 /* First, kill any EXPR that uses registers set by an insn. This is
1876 required for correctness. */
1877 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1878 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1879 && bitmap_intersect_p (INSN_REG_SETS (insn),
1880 VINSN_REG_USES (EXPR_VINSN (expr)))
1881 /* When an insn looks like 'r1 = r1', we could substitute through
1882 it, but the above condition will still hold. This happened with
1883 gcc.c-torture/execute/961125-1.c. */
1884 && !identical_copy_p (insn))
1885 {
1886 if (sched_verbose >= 6)
1887 sel_print ("Expr %d removed due to use/set conflict\n",
1888 INSN_UID (EXPR_INSN_RTX (expr)));
1889 av_set_iter_remove (&av_iter);
1890 }
1891
1892 /* Undo transformations looking at the history vector. */
1893 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1894 {
1895 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1896 insn, EXPR_VINSN (expr), true);
1897
1898 if (index >= 0)
1899 {
1900 expr_history_def *phist;
1901
1902 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1903
1904 switch (phist->type)
1905 {
1906 case TRANS_SPECULATION:
1907 {
1908 ds_t old_ds, new_ds;
1909
1910 /* Compute the difference between old and new speculative
1911 statuses: that's what we need to check.
1912 Earlier we used to assert that the status will really
1913 change. This no longer works because only the probability
1914 bits in the status may have changed during compute_av_set,
1915 and in the case of merging different probabilities of the
1916 same speculative status along different paths we do not
1917 record this in the history vector. */
1918 old_ds = phist->spec_ds;
1919 new_ds = EXPR_SPEC_DONE_DS (expr);
1920
1921 old_ds &= SPECULATIVE;
1922 new_ds &= SPECULATIVE;
1923 new_ds &= ~old_ds;
1924
1925 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1926 break;
1927 }
1928 case TRANS_SUBSTITUTION:
1929 {
1930 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1931 vinsn_t new_vi;
1932 bool add = true;
1933
1934 new_vi = phist->old_expr_vinsn;
1935
1936 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1937 == EXPR_SEPARABLE_P (expr));
1938 copy_expr (tmp_expr, expr);
1939
1940 if (vinsn_equal_p (phist->new_expr_vinsn,
1941 EXPR_VINSN (tmp_expr)))
1942 change_vinsn_in_expr (tmp_expr, new_vi);
1943 else
1944 /* This happens when we're unsubstituting on a bookkeeping
1945 copy, which was in turn substituted. The history is wrong
1946 in this case. Do it the hard way. */
1947 add = substitute_reg_in_expr (tmp_expr, insn, true);
1948 if (add)
1949 av_set_add (&new_set, tmp_expr);
1950 clear_expr (tmp_expr);
1951 break;
1952 }
1953 default:
1954 gcc_unreachable ();
1955 }
1956 }
1957
1958 }
1959
1960 av_set_union_and_clear (av_ptr, &new_set, NULL);
1961 }
1962 \f
1963
1964 /* Moveup_* helpers for code motion and computing av sets. */
1965
1966 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1967 The difference from the below function is that only substitution is
1968 performed. */
1969 static enum MOVEUP_EXPR_CODE
1970 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1971 {
1972 vinsn_t vi = EXPR_VINSN (expr);
1973 ds_t *has_dep_p;
1974 ds_t full_ds;
1975
1976 /* Do this only inside insn group. */
1977 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1978
1979 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1980 if (full_ds == 0)
1981 return MOVEUP_EXPR_SAME;
1982
1983 /* Substitution is the possible choice in this case. */
1984 if (has_dep_p[DEPS_IN_RHS])
1985 {
1986 /* Can't substitute UNIQUE VINSNs. */
1987 gcc_assert (!VINSN_UNIQUE_P (vi));
1988
1989 if (can_substitute_through_p (through_insn,
1990 has_dep_p[DEPS_IN_RHS])
1991 && substitute_reg_in_expr (expr, through_insn, false))
1992 {
1993 EXPR_WAS_SUBSTITUTED (expr) = true;
1994 return MOVEUP_EXPR_CHANGED;
1995 }
1996
1997 /* Don't care about this, as even true dependencies may be allowed
1998 in an insn group. */
1999 return MOVEUP_EXPR_SAME;
2000 }
2001
2002 /* This can catch output dependencies in COND_EXECs. */
2003 if (has_dep_p[DEPS_IN_INSN])
2004 return MOVEUP_EXPR_NULL;
2005
2006 /* This is either an output or an anti dependence, which usually have
2007 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2008 will fix this. */
2009 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2010 return MOVEUP_EXPR_AS_RHS;
2011 }
2012
2013 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2014 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2015 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2016 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2017 && !sel_insn_is_speculation_check (through_insn))
2018
2019 /* True when a conflict on a target register was found during moveup_expr. */
2020 static bool was_target_conflict = false;
2021
2022 /* Return true when moving a debug INSN across THROUGH_INSN will
2023 create a bookkeeping block. We don't want to create such blocks,
2024 for they would cause codegen differences between compilations with
2025 and without debug info. */
2026
2027 static bool
2028 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2029 insn_t through_insn)
2030 {
2031 basic_block bbi, bbt;
2032 edge e1, e2;
2033 edge_iterator ei1, ei2;
2034
2035 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2036 {
2037 if (sched_verbose >= 9)
2038 sel_print ("no bookkeeping required: ");
2039 return FALSE;
2040 }
2041
2042 bbi = BLOCK_FOR_INSN (insn);
2043
2044 if (EDGE_COUNT (bbi->preds) == 1)
2045 {
2046 if (sched_verbose >= 9)
2047 sel_print ("only one pred edge: ");
2048 return TRUE;
2049 }
2050
2051 bbt = BLOCK_FOR_INSN (through_insn);
2052
2053 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2054 {
2055 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2056 {
2057 if (find_block_for_bookkeeping (e1, e2, TRUE))
2058 {
2059 if (sched_verbose >= 9)
2060 sel_print ("found existing block: ");
2061 return FALSE;
2062 }
2063 }
2064 }
2065
2066 if (sched_verbose >= 9)
2067 sel_print ("would create bookkeeping block: ");
2068
2069 return TRUE;
2070 }
2071
2072 /* Return true when the conflict with newly created implicit clobbers
2073 between EXPR and THROUGH_INSN is found because of renaming. */
2074 static bool
2075 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2076 {
2077 HARD_REG_SET temp;
2078 rtx_insn *insn;
2079 rtx reg, rhs, pat;
2080 hard_reg_set_iterator hrsi;
2081 unsigned regno;
2082 bool valid;
2083
2084 /* Make a new pseudo register. */
2085 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2086 max_regno = max_reg_num ();
2087 maybe_extend_reg_info_p ();
2088
2089 /* Validate a change and bail out early. */
2090 insn = EXPR_INSN_RTX (expr);
2091 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2092 valid = verify_changes (0);
2093 cancel_changes (0);
2094 if (!valid)
2095 {
2096 if (sched_verbose >= 6)
2097 sel_print ("implicit clobbers failed validation, ");
2098 return true;
2099 }
2100
2101 /* Make a new insn with it. */
2102 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2103 pat = gen_rtx_SET (reg, rhs);
2104 start_sequence ();
2105 insn = emit_insn (pat);
2106 end_sequence ();
2107
2108 /* Calculate implicit clobbers. */
2109 extract_insn (insn);
2110 preprocess_constraints (insn);
2111 ira_implicitly_set_insn_hard_regs (&temp);
2112 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2113
2114 /* If any implicit clobber registers intersect with regular ones in
2115 through_insn, we have a dependency and thus bail out. */
2116 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2117 {
2118 vinsn_t vi = INSN_VINSN (through_insn);
2119 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2120 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2121 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2122 return true;
2123 }
2124
2125 return false;
2126 }
2127
2128 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2129 performing necessary transformations. Record the type of transformation
2130 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2131 permit all dependencies except true ones, and try to remove those
2132 too via forward substitution. All cases when a non-eliminable
2133 non-zero cost dependency exists inside an insn group will be fixed
2134 in tick_check_p instead. */
2135 static enum MOVEUP_EXPR_CODE
2136 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2137 enum local_trans_type *ptrans_type)
2138 {
2139 vinsn_t vi = EXPR_VINSN (expr);
2140 insn_t insn = VINSN_INSN_RTX (vi);
2141 bool was_changed = false;
2142 bool as_rhs = false;
2143 ds_t *has_dep_p;
2144 ds_t full_ds;
2145
2146 /* ??? We use dependencies of non-debug insns on debug insns to
2147 indicate that the debug insns need to be reset if the non-debug
2148 insn is pulled ahead of it. It's hard to figure out how to
2149 introduce such a notion in sel-sched, but it already fails to
2150 support debug insns in other ways, so we just go ahead and
2151 let the deug insns go corrupt for now. */
2152 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2153 return MOVEUP_EXPR_SAME;
2154
2155 /* When inside_insn_group, delegate to the helper. */
2156 if (inside_insn_group)
2157 return moveup_expr_inside_insn_group (expr, through_insn);
2158
2159 /* Deal with unique insns and control dependencies. */
2160 if (VINSN_UNIQUE_P (vi))
2161 {
2162 /* We can move jumps without side-effects or jumps that are
2163 mutually exclusive with instruction THROUGH_INSN (all in cases
2164 dependencies allow to do so and jump is not speculative). */
2165 if (control_flow_insn_p (insn))
2166 {
2167 basic_block fallthru_bb;
2168
2169 /* Do not move checks and do not move jumps through other
2170 jumps. */
2171 if (control_flow_insn_p (through_insn)
2172 || sel_insn_is_speculation_check (insn))
2173 return MOVEUP_EXPR_NULL;
2174
2175 /* Don't move jumps through CFG joins. */
2176 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2177 return MOVEUP_EXPR_NULL;
2178
2179 /* The jump should have a clear fallthru block, and
2180 this block should be in the current region. */
2181 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2182 || ! in_current_region_p (fallthru_bb))
2183 return MOVEUP_EXPR_NULL;
2184
2185 /* And it should be mutually exclusive with through_insn. */
2186 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2187 && ! DEBUG_INSN_P (through_insn))
2188 return MOVEUP_EXPR_NULL;
2189 }
2190
2191 /* Don't move what we can't move. */
2192 if (EXPR_CANT_MOVE (expr)
2193 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2194 return MOVEUP_EXPR_NULL;
2195
2196 /* Don't move SCHED_GROUP instruction through anything.
2197 If we don't force this, then it will be possible to start
2198 scheduling a sched_group before all its dependencies are
2199 resolved.
2200 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2201 as late as possible through rank_for_schedule. */
2202 if (SCHED_GROUP_P (insn))
2203 return MOVEUP_EXPR_NULL;
2204 }
2205 else
2206 gcc_assert (!control_flow_insn_p (insn));
2207
2208 /* Don't move debug insns if this would require bookkeeping. */
2209 if (DEBUG_INSN_P (insn)
2210 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2211 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2212 return MOVEUP_EXPR_NULL;
2213
2214 /* Deal with data dependencies. */
2215 was_target_conflict = false;
2216 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2217 if (full_ds == 0)
2218 {
2219 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2220 return MOVEUP_EXPR_SAME;
2221 }
2222 else
2223 {
2224 /* We can move UNIQUE insn up only as a whole and unchanged,
2225 so it shouldn't have any dependencies. */
2226 if (VINSN_UNIQUE_P (vi))
2227 return MOVEUP_EXPR_NULL;
2228 }
2229
2230 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2231 {
2232 int res;
2233
2234 res = speculate_expr (expr, full_ds);
2235 if (res >= 0)
2236 {
2237 /* Speculation was successful. */
2238 full_ds = 0;
2239 was_changed = (res > 0);
2240 if (res == 2)
2241 was_target_conflict = true;
2242 if (ptrans_type)
2243 *ptrans_type = TRANS_SPECULATION;
2244 sel_clear_has_dependence ();
2245 }
2246 }
2247
2248 if (has_dep_p[DEPS_IN_INSN])
2249 /* We have some dependency that cannot be discarded. */
2250 return MOVEUP_EXPR_NULL;
2251
2252 if (has_dep_p[DEPS_IN_LHS])
2253 {
2254 /* Only separable insns can be moved up with the new register.
2255 Anyways, we should mark that the original register is
2256 unavailable. */
2257 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2258 return MOVEUP_EXPR_NULL;
2259
2260 /* When renaming a hard register to a pseudo before reload, extra
2261 dependencies can occur from the implicit clobbers of the insn.
2262 Filter out such cases here. */
2263 if (!reload_completed && REG_P (EXPR_LHS (expr))
2264 && HARD_REGISTER_P (EXPR_LHS (expr))
2265 && implicit_clobber_conflict_p (through_insn, expr))
2266 {
2267 if (sched_verbose >= 6)
2268 sel_print ("implicit clobbers conflict detected, ");
2269 return MOVEUP_EXPR_NULL;
2270 }
2271 EXPR_TARGET_AVAILABLE (expr) = false;
2272 was_target_conflict = true;
2273 as_rhs = true;
2274 }
2275
2276 /* At this point we have either separable insns, that will be lifted
2277 up only as RHSes, or non-separable insns with no dependency in lhs.
2278 If dependency is in RHS, then try to perform substitution and move up
2279 substituted RHS:
2280
2281 Ex. 1: Ex.2
2282 y = x; y = x;
2283 z = y*2; y = y*2;
2284
2285 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2286 moved above y=x assignment as z=x*2.
2287
2288 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2289 side can be moved because of the output dependency. The operation was
2290 cropped to its rhs above. */
2291 if (has_dep_p[DEPS_IN_RHS])
2292 {
2293 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2294
2295 /* Can't substitute UNIQUE VINSNs. */
2296 gcc_assert (!VINSN_UNIQUE_P (vi));
2297
2298 if (can_speculate_dep_p (*rhs_dsp))
2299 {
2300 int res;
2301
2302 res = speculate_expr (expr, *rhs_dsp);
2303 if (res >= 0)
2304 {
2305 /* Speculation was successful. */
2306 *rhs_dsp = 0;
2307 was_changed = (res > 0);
2308 if (res == 2)
2309 was_target_conflict = true;
2310 if (ptrans_type)
2311 *ptrans_type = TRANS_SPECULATION;
2312 }
2313 else
2314 return MOVEUP_EXPR_NULL;
2315 }
2316 else if (can_substitute_through_p (through_insn,
2317 *rhs_dsp)
2318 && substitute_reg_in_expr (expr, through_insn, false))
2319 {
2320 /* ??? We cannot perform substitution AND speculation on the same
2321 insn. */
2322 gcc_assert (!was_changed);
2323 was_changed = true;
2324 if (ptrans_type)
2325 *ptrans_type = TRANS_SUBSTITUTION;
2326 EXPR_WAS_SUBSTITUTED (expr) = true;
2327 }
2328 else
2329 return MOVEUP_EXPR_NULL;
2330 }
2331
2332 /* Don't move trapping insns through jumps.
2333 This check should be at the end to give a chance to control speculation
2334 to perform its duties. */
2335 if (CANT_MOVE_TRAPPING (expr, through_insn))
2336 return MOVEUP_EXPR_NULL;
2337
2338 return (was_changed
2339 ? MOVEUP_EXPR_CHANGED
2340 : (as_rhs
2341 ? MOVEUP_EXPR_AS_RHS
2342 : MOVEUP_EXPR_SAME));
2343 }
2344
2345 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2346 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2347 that can exist within a parallel group. Write to RES the resulting
2348 code for moveup_expr. */
2349 static bool
2350 try_bitmap_cache (expr_t expr, insn_t insn,
2351 bool inside_insn_group,
2352 enum MOVEUP_EXPR_CODE *res)
2353 {
2354 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2355
2356 /* First check whether we've analyzed this situation already. */
2357 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2358 {
2359 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2360 {
2361 if (sched_verbose >= 6)
2362 sel_print ("removed (cached)\n");
2363 *res = MOVEUP_EXPR_NULL;
2364 return true;
2365 }
2366 else
2367 {
2368 if (sched_verbose >= 6)
2369 sel_print ("unchanged (cached)\n");
2370 *res = MOVEUP_EXPR_SAME;
2371 return true;
2372 }
2373 }
2374 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2375 {
2376 if (inside_insn_group)
2377 {
2378 if (sched_verbose >= 6)
2379 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2380 *res = MOVEUP_EXPR_SAME;
2381 return true;
2382
2383 }
2384 else
2385 EXPR_TARGET_AVAILABLE (expr) = false;
2386
2387 /* This is the only case when propagation result can change over time,
2388 as we can dynamically switch off scheduling as RHS. In this case,
2389 just check the flag to reach the correct decision. */
2390 if (enable_schedule_as_rhs_p)
2391 {
2392 if (sched_verbose >= 6)
2393 sel_print ("unchanged (as RHS, cached)\n");
2394 *res = MOVEUP_EXPR_AS_RHS;
2395 return true;
2396 }
2397 else
2398 {
2399 if (sched_verbose >= 6)
2400 sel_print ("removed (cached as RHS, but renaming"
2401 " is now disabled)\n");
2402 *res = MOVEUP_EXPR_NULL;
2403 return true;
2404 }
2405 }
2406
2407 return false;
2408 }
2409
2410 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2411 if successful. Write to RES the resulting code for moveup_expr. */
2412 static bool
2413 try_transformation_cache (expr_t expr, insn_t insn,
2414 enum MOVEUP_EXPR_CODE *res)
2415 {
2416 struct transformed_insns *pti
2417 = (struct transformed_insns *)
2418 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2419 &EXPR_VINSN (expr),
2420 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2421 if (pti)
2422 {
2423 /* This EXPR was already moved through this insn and was
2424 changed as a result. Fetch the proper data from
2425 the hashtable. */
2426 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2427 INSN_UID (insn), pti->type,
2428 pti->vinsn_old, pti->vinsn_new,
2429 EXPR_SPEC_DONE_DS (expr));
2430
2431 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2432 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2433 change_vinsn_in_expr (expr, pti->vinsn_new);
2434 if (pti->was_target_conflict)
2435 EXPR_TARGET_AVAILABLE (expr) = false;
2436 if (pti->type == TRANS_SPECULATION)
2437 {
2438 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2439 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2440 }
2441
2442 if (sched_verbose >= 6)
2443 {
2444 sel_print ("changed (cached): ");
2445 dump_expr (expr);
2446 sel_print ("\n");
2447 }
2448
2449 *res = MOVEUP_EXPR_CHANGED;
2450 return true;
2451 }
2452
2453 return false;
2454 }
2455
2456 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2457 static void
2458 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2459 enum MOVEUP_EXPR_CODE res)
2460 {
2461 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2462
2463 /* Do not cache result of propagating jumps through an insn group,
2464 as it is always true, which is not useful outside the group. */
2465 if (inside_insn_group)
2466 return;
2467
2468 if (res == MOVEUP_EXPR_NULL)
2469 {
2470 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2471 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2472 }
2473 else if (res == MOVEUP_EXPR_SAME)
2474 {
2475 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2476 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2477 }
2478 else if (res == MOVEUP_EXPR_AS_RHS)
2479 {
2480 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2481 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2482 }
2483 else
2484 gcc_unreachable ();
2485 }
2486
2487 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2488 and transformation type TRANS_TYPE. */
2489 static void
2490 update_transformation_cache (expr_t expr, insn_t insn,
2491 bool inside_insn_group,
2492 enum local_trans_type trans_type,
2493 vinsn_t expr_old_vinsn)
2494 {
2495 struct transformed_insns *pti;
2496
2497 if (inside_insn_group)
2498 return;
2499
2500 pti = XNEW (struct transformed_insns);
2501 pti->vinsn_old = expr_old_vinsn;
2502 pti->vinsn_new = EXPR_VINSN (expr);
2503 pti->type = trans_type;
2504 pti->was_target_conflict = was_target_conflict;
2505 pti->ds = EXPR_SPEC_DONE_DS (expr);
2506 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2507 vinsn_attach (pti->vinsn_old);
2508 vinsn_attach (pti->vinsn_new);
2509 *((struct transformed_insns **)
2510 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2511 pti, VINSN_HASH_RTX (expr_old_vinsn),
2512 INSERT)) = pti;
2513 }
2514
2515 /* Same as moveup_expr, but first looks up the result of
2516 transformation in caches. */
2517 static enum MOVEUP_EXPR_CODE
2518 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2519 {
2520 enum MOVEUP_EXPR_CODE res;
2521 bool got_answer = false;
2522
2523 if (sched_verbose >= 6)
2524 {
2525 sel_print ("Moving ");
2526 dump_expr (expr);
2527 sel_print (" through %d: ", INSN_UID (insn));
2528 }
2529
2530 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2531 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2532 == EXPR_INSN_RTX (expr)))
2533 /* Don't use cached information for debug insns that are heads of
2534 basic blocks. */;
2535 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2536 /* When inside insn group, we do not want remove stores conflicting
2537 with previosly issued loads. */
2538 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2539 else if (try_transformation_cache (expr, insn, &res))
2540 got_answer = true;
2541
2542 if (! got_answer)
2543 {
2544 /* Invoke moveup_expr and record the results. */
2545 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2546 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2547 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2548 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2549 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2550
2551 /* ??? Invent something better than this. We can't allow old_vinsn
2552 to go, we need it for the history vector. */
2553 vinsn_attach (expr_old_vinsn);
2554
2555 res = moveup_expr (expr, insn, inside_insn_group,
2556 &trans_type);
2557 switch (res)
2558 {
2559 case MOVEUP_EXPR_NULL:
2560 update_bitmap_cache (expr, insn, inside_insn_group, res);
2561 if (sched_verbose >= 6)
2562 sel_print ("removed\n");
2563 break;
2564
2565 case MOVEUP_EXPR_SAME:
2566 update_bitmap_cache (expr, insn, inside_insn_group, res);
2567 if (sched_verbose >= 6)
2568 sel_print ("unchanged\n");
2569 break;
2570
2571 case MOVEUP_EXPR_AS_RHS:
2572 gcc_assert (!unique_p || inside_insn_group);
2573 update_bitmap_cache (expr, insn, inside_insn_group, res);
2574 if (sched_verbose >= 6)
2575 sel_print ("unchanged (as RHS)\n");
2576 break;
2577
2578 case MOVEUP_EXPR_CHANGED:
2579 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2580 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2581 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2582 INSN_UID (insn), trans_type,
2583 expr_old_vinsn, EXPR_VINSN (expr),
2584 expr_old_spec_ds);
2585 update_transformation_cache (expr, insn, inside_insn_group,
2586 trans_type, expr_old_vinsn);
2587 if (sched_verbose >= 6)
2588 {
2589 sel_print ("changed: ");
2590 dump_expr (expr);
2591 sel_print ("\n");
2592 }
2593 break;
2594 default:
2595 gcc_unreachable ();
2596 }
2597
2598 vinsn_detach (expr_old_vinsn);
2599 }
2600
2601 return res;
2602 }
2603
2604 /* Moves an av set AVP up through INSN, performing necessary
2605 transformations. */
2606 static void
2607 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2608 {
2609 av_set_iterator i;
2610 expr_t expr;
2611
2612 FOR_EACH_EXPR_1 (expr, i, avp)
2613 {
2614
2615 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2616 {
2617 case MOVEUP_EXPR_SAME:
2618 case MOVEUP_EXPR_AS_RHS:
2619 break;
2620
2621 case MOVEUP_EXPR_NULL:
2622 av_set_iter_remove (&i);
2623 break;
2624
2625 case MOVEUP_EXPR_CHANGED:
2626 expr = merge_with_other_exprs (avp, &i, expr);
2627 break;
2628
2629 default:
2630 gcc_unreachable ();
2631 }
2632 }
2633 }
2634
2635 /* Moves AVP set along PATH. */
2636 static void
2637 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2638 {
2639 int last_cycle;
2640
2641 if (sched_verbose >= 6)
2642 sel_print ("Moving expressions up in the insn group...\n");
2643 if (! path)
2644 return;
2645 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2646 while (path
2647 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2648 {
2649 moveup_set_expr (avp, ILIST_INSN (path), true);
2650 path = ILIST_NEXT (path);
2651 }
2652 }
2653
2654 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2655 static bool
2656 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2657 {
2658 expr_def _tmp, *tmp = &_tmp;
2659 int last_cycle;
2660 bool res = true;
2661
2662 copy_expr_onside (tmp, expr);
2663 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2664 while (path
2665 && res
2666 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2667 {
2668 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2669 != MOVEUP_EXPR_NULL);
2670 path = ILIST_NEXT (path);
2671 }
2672
2673 if (res)
2674 {
2675 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2676 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2677
2678 if (tmp_vinsn != expr_vliw_vinsn)
2679 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2680 }
2681
2682 clear_expr (tmp);
2683 return res;
2684 }
2685 \f
2686
2687 /* Functions that compute av and lv sets. */
2688
2689 /* Returns true if INSN is not a downward continuation of the given path P in
2690 the current stage. */
2691 static bool
2692 is_ineligible_successor (insn_t insn, ilist_t p)
2693 {
2694 insn_t prev_insn;
2695
2696 /* Check if insn is not deleted. */
2697 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2698 gcc_unreachable ();
2699 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2700 gcc_unreachable ();
2701
2702 /* If it's the first insn visited, then the successor is ok. */
2703 if (!p)
2704 return false;
2705
2706 prev_insn = ILIST_INSN (p);
2707
2708 if (/* a backward edge. */
2709 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2710 /* is already visited. */
2711 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2712 && (ilist_is_in_p (p, insn)
2713 /* We can reach another fence here and still seqno of insn
2714 would be equal to seqno of prev_insn. This is possible
2715 when prev_insn is a previously created bookkeeping copy.
2716 In that case it'd get a seqno of insn. Thus, check here
2717 whether insn is in current fence too. */
2718 || IN_CURRENT_FENCE_P (insn)))
2719 /* Was already scheduled on this round. */
2720 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2721 && IN_CURRENT_FENCE_P (insn))
2722 /* An insn from another fence could also be
2723 scheduled earlier even if this insn is not in
2724 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2725 || (!pipelining_p
2726 && INSN_SCHED_TIMES (insn) > 0))
2727 return true;
2728 else
2729 return false;
2730 }
2731
2732 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2733 of handling multiple successors and properly merging its av_sets. P is
2734 the current path traversed. WS is the size of lookahead window.
2735 Return the av set computed. */
2736 static av_set_t
2737 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2738 {
2739 struct succs_info *sinfo;
2740 av_set_t expr_in_all_succ_branches = NULL;
2741 int is;
2742 insn_t succ, zero_succ = NULL;
2743 av_set_t av1 = NULL;
2744
2745 gcc_assert (sel_bb_end_p (insn));
2746
2747 /* Find different kind of successors needed for correct computing of
2748 SPEC and TARGET_AVAILABLE attributes. */
2749 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2750
2751 /* Debug output. */
2752 if (sched_verbose >= 6)
2753 {
2754 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2755 dump_insn_vector (sinfo->succs_ok);
2756 sel_print ("\n");
2757 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2758 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2759 }
2760
2761 /* Add insn to the tail of current path. */
2762 ilist_add (&p, insn);
2763
2764 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2765 {
2766 av_set_t succ_set;
2767
2768 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2769 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2770
2771 av_set_split_usefulness (succ_set,
2772 sinfo->probs_ok[is],
2773 sinfo->all_prob);
2774
2775 if (sinfo->all_succs_n > 1)
2776 {
2777 /* Find EXPR'es that came from *all* successors and save them
2778 into expr_in_all_succ_branches. This set will be used later
2779 for calculating speculation attributes of EXPR'es. */
2780 if (is == 0)
2781 {
2782 expr_in_all_succ_branches = av_set_copy (succ_set);
2783
2784 /* Remember the first successor for later. */
2785 zero_succ = succ;
2786 }
2787 else
2788 {
2789 av_set_iterator i;
2790 expr_t expr;
2791
2792 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2793 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2794 av_set_iter_remove (&i);
2795 }
2796 }
2797
2798 /* Union the av_sets. Check liveness restrictions on target registers
2799 in special case of two successors. */
2800 if (sinfo->succs_ok_n == 2 && is == 1)
2801 {
2802 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2803 basic_block bb1 = BLOCK_FOR_INSN (succ);
2804
2805 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2806 av_set_union_and_live (&av1, &succ_set,
2807 BB_LV_SET (bb0),
2808 BB_LV_SET (bb1),
2809 insn);
2810 }
2811 else
2812 av_set_union_and_clear (&av1, &succ_set, insn);
2813 }
2814
2815 /* Check liveness restrictions via hard way when there are more than
2816 two successors. */
2817 if (sinfo->succs_ok_n > 2)
2818 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2819 {
2820 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2821
2822 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2823 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2824 BB_LV_SET (succ_bb));
2825 }
2826
2827 /* Finally, check liveness restrictions on paths leaving the region. */
2828 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2829 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2830 mark_unavailable_targets
2831 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2832
2833 if (sinfo->all_succs_n > 1)
2834 {
2835 av_set_iterator i;
2836 expr_t expr;
2837
2838 /* Increase the spec attribute of all EXPR'es that didn't come
2839 from all successors. */
2840 FOR_EACH_EXPR (expr, i, av1)
2841 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2842 EXPR_SPEC (expr)++;
2843
2844 av_set_clear (&expr_in_all_succ_branches);
2845
2846 /* Do not move conditional branches through other
2847 conditional branches. So, remove all conditional
2848 branches from av_set if current operator is a conditional
2849 branch. */
2850 av_set_substract_cond_branches (&av1);
2851 }
2852
2853 ilist_remove (&p);
2854 free_succs_info (sinfo);
2855
2856 if (sched_verbose >= 6)
2857 {
2858 sel_print ("av_succs (%d): ", INSN_UID (insn));
2859 dump_av_set (av1);
2860 sel_print ("\n");
2861 }
2862
2863 return av1;
2864 }
2865
2866 /* This function computes av_set for the FIRST_INSN by dragging valid
2867 av_set through all basic block insns either from the end of basic block
2868 (computed using compute_av_set_at_bb_end) or from the insn on which
2869 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2870 below the basic block and handling conditional branches.
2871 FIRST_INSN - the basic block head, P - path consisting of the insns
2872 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2873 and bb ends are added to the path), WS - current window size,
2874 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2875 static av_set_t
2876 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2877 bool need_copy_p)
2878 {
2879 insn_t cur_insn;
2880 int end_ws = ws;
2881 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2882 insn_t after_bb_end = NEXT_INSN (bb_end);
2883 insn_t last_insn;
2884 av_set_t av = NULL;
2885 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2886
2887 /* Return NULL if insn is not on the legitimate downward path. */
2888 if (is_ineligible_successor (first_insn, p))
2889 {
2890 if (sched_verbose >= 6)
2891 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2892
2893 return NULL;
2894 }
2895
2896 /* If insn already has valid av(insn) computed, just return it. */
2897 if (AV_SET_VALID_P (first_insn))
2898 {
2899 av_set_t av_set;
2900
2901 if (sel_bb_head_p (first_insn))
2902 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2903 else
2904 av_set = NULL;
2905
2906 if (sched_verbose >= 6)
2907 {
2908 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2909 dump_av_set (av_set);
2910 sel_print ("\n");
2911 }
2912
2913 return need_copy_p ? av_set_copy (av_set) : av_set;
2914 }
2915
2916 ilist_add (&p, first_insn);
2917
2918 /* As the result after this loop have completed, in LAST_INSN we'll
2919 have the insn which has valid av_set to start backward computation
2920 from: it either will be NULL because on it the window size was exceeded
2921 or other valid av_set as returned by compute_av_set for the last insn
2922 of the basic block. */
2923 for (last_insn = first_insn; last_insn != after_bb_end;
2924 last_insn = NEXT_INSN (last_insn))
2925 {
2926 /* We may encounter valid av_set not only on bb_head, but also on
2927 those insns on which previously MAX_WS was exceeded. */
2928 if (AV_SET_VALID_P (last_insn))
2929 {
2930 if (sched_verbose >= 6)
2931 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2932 break;
2933 }
2934
2935 /* The special case: the last insn of the BB may be an
2936 ineligible_successor due to its SEQ_NO that was set on
2937 it as a bookkeeping. */
2938 if (last_insn != first_insn
2939 && is_ineligible_successor (last_insn, p))
2940 {
2941 if (sched_verbose >= 6)
2942 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2943 break;
2944 }
2945
2946 if (DEBUG_INSN_P (last_insn))
2947 continue;
2948
2949 if (end_ws > max_ws)
2950 {
2951 /* We can reach max lookahead size at bb_header, so clean av_set
2952 first. */
2953 INSN_WS_LEVEL (last_insn) = global_level;
2954
2955 if (sched_verbose >= 6)
2956 sel_print ("Insn %d is beyond the software lookahead window size\n",
2957 INSN_UID (last_insn));
2958 break;
2959 }
2960
2961 end_ws++;
2962 }
2963
2964 /* Get the valid av_set into AV above the LAST_INSN to start backward
2965 computation from. It either will be empty av_set or av_set computed from
2966 the successors on the last insn of the current bb. */
2967 if (last_insn != after_bb_end)
2968 {
2969 av = NULL;
2970
2971 /* This is needed only to obtain av_sets that are identical to
2972 those computed by the old compute_av_set version. */
2973 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2974 av_set_add (&av, INSN_EXPR (last_insn));
2975 }
2976 else
2977 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2978 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2979
2980 /* Compute av_set in AV starting from below the LAST_INSN up to
2981 location above the FIRST_INSN. */
2982 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2983 cur_insn = PREV_INSN (cur_insn))
2984 if (!INSN_NOP_P (cur_insn))
2985 {
2986 expr_t expr;
2987
2988 moveup_set_expr (&av, cur_insn, false);
2989
2990 /* If the expression for CUR_INSN is already in the set,
2991 replace it by the new one. */
2992 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2993 if (expr != NULL)
2994 {
2995 clear_expr (expr);
2996 copy_expr (expr, INSN_EXPR (cur_insn));
2997 }
2998 else
2999 av_set_add (&av, INSN_EXPR (cur_insn));
3000 }
3001
3002 /* Clear stale bb_av_set. */
3003 if (sel_bb_head_p (first_insn))
3004 {
3005 av_set_clear (&BB_AV_SET (cur_bb));
3006 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3007 BB_AV_LEVEL (cur_bb) = global_level;
3008 }
3009
3010 if (sched_verbose >= 6)
3011 {
3012 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3013 dump_av_set (av);
3014 sel_print ("\n");
3015 }
3016
3017 ilist_remove (&p);
3018 return av;
3019 }
3020
3021 /* Compute av set before INSN.
3022 INSN - the current operation (actual rtx INSN)
3023 P - the current path, which is list of insns visited so far
3024 WS - software lookahead window size.
3025 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3026 if we want to save computed av_set in s_i_d, we should make a copy of it.
3027
3028 In the resulting set we will have only expressions that don't have delay
3029 stalls and nonsubstitutable dependences. */
3030 static av_set_t
3031 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3032 {
3033 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3034 }
3035
3036 /* Propagate a liveness set LV through INSN. */
3037 static void
3038 propagate_lv_set (regset lv, insn_t insn)
3039 {
3040 gcc_assert (INSN_P (insn));
3041
3042 if (INSN_NOP_P (insn))
3043 return;
3044
3045 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3046 }
3047
3048 /* Return livness set at the end of BB. */
3049 static regset
3050 compute_live_after_bb (basic_block bb)
3051 {
3052 edge e;
3053 edge_iterator ei;
3054 regset lv = get_clear_regset_from_pool ();
3055
3056 gcc_assert (!ignore_first);
3057
3058 FOR_EACH_EDGE (e, ei, bb->succs)
3059 if (sel_bb_empty_p (e->dest))
3060 {
3061 if (! BB_LV_SET_VALID_P (e->dest))
3062 {
3063 gcc_unreachable ();
3064 gcc_assert (BB_LV_SET (e->dest) == NULL);
3065 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3066 BB_LV_SET_VALID_P (e->dest) = true;
3067 }
3068 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3069 }
3070 else
3071 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3072
3073 return lv;
3074 }
3075
3076 /* Compute the set of all live registers at the point before INSN and save
3077 it at INSN if INSN is bb header. */
3078 regset
3079 compute_live (insn_t insn)
3080 {
3081 basic_block bb = BLOCK_FOR_INSN (insn);
3082 insn_t final, temp;
3083 regset lv;
3084
3085 /* Return the valid set if we're already on it. */
3086 if (!ignore_first)
3087 {
3088 regset src = NULL;
3089
3090 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3091 src = BB_LV_SET (bb);
3092 else
3093 {
3094 gcc_assert (in_current_region_p (bb));
3095 if (INSN_LIVE_VALID_P (insn))
3096 src = INSN_LIVE (insn);
3097 }
3098
3099 if (src)
3100 {
3101 lv = get_regset_from_pool ();
3102 COPY_REG_SET (lv, src);
3103
3104 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3105 {
3106 COPY_REG_SET (BB_LV_SET (bb), lv);
3107 BB_LV_SET_VALID_P (bb) = true;
3108 }
3109
3110 return_regset_to_pool (lv);
3111 return lv;
3112 }
3113 }
3114
3115 /* We've skipped the wrong lv_set. Don't skip the right one. */
3116 ignore_first = false;
3117 gcc_assert (in_current_region_p (bb));
3118
3119 /* Find a valid LV set in this block or below, if needed.
3120 Start searching from the next insn: either ignore_first is true, or
3121 INSN doesn't have a correct live set. */
3122 temp = NEXT_INSN (insn);
3123 final = NEXT_INSN (BB_END (bb));
3124 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3125 temp = NEXT_INSN (temp);
3126 if (temp == final)
3127 {
3128 lv = compute_live_after_bb (bb);
3129 temp = PREV_INSN (temp);
3130 }
3131 else
3132 {
3133 lv = get_regset_from_pool ();
3134 COPY_REG_SET (lv, INSN_LIVE (temp));
3135 }
3136
3137 /* Put correct lv sets on the insns which have bad sets. */
3138 final = PREV_INSN (insn);
3139 while (temp != final)
3140 {
3141 propagate_lv_set (lv, temp);
3142 COPY_REG_SET (INSN_LIVE (temp), lv);
3143 INSN_LIVE_VALID_P (temp) = true;
3144 temp = PREV_INSN (temp);
3145 }
3146
3147 /* Also put it in a BB. */
3148 if (sel_bb_head_p (insn))
3149 {
3150 basic_block bb = BLOCK_FOR_INSN (insn);
3151
3152 COPY_REG_SET (BB_LV_SET (bb), lv);
3153 BB_LV_SET_VALID_P (bb) = true;
3154 }
3155
3156 /* We return LV to the pool, but will not clear it there. Thus we can
3157 legimatelly use LV till the next use of regset_pool_get (). */
3158 return_regset_to_pool (lv);
3159 return lv;
3160 }
3161
3162 /* Update liveness sets for INSN. */
3163 static inline void
3164 update_liveness_on_insn (rtx_insn *insn)
3165 {
3166 ignore_first = true;
3167 compute_live (insn);
3168 }
3169
3170 /* Compute liveness below INSN and write it into REGS. */
3171 static inline void
3172 compute_live_below_insn (rtx_insn *insn, regset regs)
3173 {
3174 rtx_insn *succ;
3175 succ_iterator si;
3176
3177 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3178 IOR_REG_SET (regs, compute_live (succ));
3179 }
3180
3181 /* Update the data gathered in av and lv sets starting from INSN. */
3182 static void
3183 update_data_sets (rtx_insn *insn)
3184 {
3185 update_liveness_on_insn (insn);
3186 if (sel_bb_head_p (insn))
3187 {
3188 gcc_assert (AV_LEVEL (insn) != 0);
3189 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3190 compute_av_set (insn, NULL, 0, 0);
3191 }
3192 }
3193 \f
3194
3195 /* Helper for move_op () and find_used_regs ().
3196 Return speculation type for which a check should be created on the place
3197 of INSN. EXPR is one of the original ops we are searching for. */
3198 static ds_t
3199 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3200 {
3201 ds_t to_check_ds;
3202 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3203
3204 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3205
3206 if (targetm.sched.get_insn_checked_ds)
3207 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3208
3209 if (spec_info != NULL
3210 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3211 already_checked_ds |= BEGIN_CONTROL;
3212
3213 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3214
3215 to_check_ds &= ~already_checked_ds;
3216
3217 return to_check_ds;
3218 }
3219
3220 /* Find the set of registers that are unavailable for storing expres
3221 while moving ORIG_OPS up on the path starting from INSN due to
3222 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3223
3224 All the original operations found during the traversal are saved in the
3225 ORIGINAL_INSNS list.
3226
3227 REG_RENAME_P denotes the set of hardware registers that
3228 can not be used with renaming due to the register class restrictions,
3229 mode restrictions and other (the register we'll choose should be
3230 compatible class with the original uses, shouldn't be in call_used_regs,
3231 should be HARD_REGNO_RENAME_OK etc).
3232
3233 Returns TRUE if we've found all original insns, FALSE otherwise.
3234
3235 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3236 to traverse the code motion paths. This helper function finds registers
3237 that are not available for storing expres while moving ORIG_OPS up on the
3238 path starting from INSN. A register considered as used on the moving path,
3239 if one of the following conditions is not satisfied:
3240
3241 (1) a register not set or read on any path from xi to an instance of
3242 the original operation,
3243 (2) not among the live registers of the point immediately following the
3244 first original operation on a given downward path, except for the
3245 original target register of the operation,
3246 (3) not live on the other path of any conditional branch that is passed
3247 by the operation, in case original operations are not present on
3248 both paths of the conditional branch.
3249
3250 All the original operations found during the traversal are saved in the
3251 ORIGINAL_INSNS list.
3252
3253 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3254 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3255 to unavailable hard regs at the point original operation is found. */
3256
3257 static bool
3258 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3259 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3260 {
3261 def_list_iterator i;
3262 def_t def;
3263 int res;
3264 bool needs_spec_check_p = false;
3265 expr_t expr;
3266 av_set_iterator expr_iter;
3267 struct fur_static_params sparams;
3268 struct cmpd_local_params lparams;
3269
3270 /* We haven't visited any blocks yet. */
3271 bitmap_clear (code_motion_visited_blocks);
3272
3273 /* Init parameters for code_motion_path_driver. */
3274 sparams.crosses_call = false;
3275 sparams.original_insns = original_insns;
3276 sparams.used_regs = used_regs;
3277
3278 /* Set the appropriate hooks and data. */
3279 code_motion_path_driver_info = &fur_hooks;
3280
3281 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3282
3283 reg_rename_p->crosses_call |= sparams.crosses_call;
3284
3285 gcc_assert (res == 1);
3286 gcc_assert (original_insns && *original_insns);
3287
3288 /* ??? We calculate whether an expression needs a check when computing
3289 av sets. This information is not as precise as it could be due to
3290 merging this bit in merge_expr. We can do better in find_used_regs,
3291 but we want to avoid multiple traversals of the same code motion
3292 paths. */
3293 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3294 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3295
3296 /* Mark hardware regs in REG_RENAME_P that are not suitable
3297 for renaming expr in INSN due to hardware restrictions (register class,
3298 modes compatibility etc). */
3299 FOR_EACH_DEF (def, i, *original_insns)
3300 {
3301 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3302
3303 if (VINSN_SEPARABLE_P (vinsn))
3304 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3305
3306 /* Do not allow clobbering of ld.[sa] address in case some of the
3307 original operations need a check. */
3308 if (needs_spec_check_p)
3309 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3310 }
3311
3312 return true;
3313 }
3314 \f
3315
3316 /* Functions to choose the best insn from available ones. */
3317
3318 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3319 static int
3320 sel_target_adjust_priority (expr_t expr)
3321 {
3322 int priority = EXPR_PRIORITY (expr);
3323 int new_priority;
3324
3325 if (targetm.sched.adjust_priority)
3326 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3327 else
3328 new_priority = priority;
3329
3330 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3331 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3332
3333 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3334
3335 if (sched_verbose >= 4)
3336 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3337 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3338 EXPR_PRIORITY_ADJ (expr), new_priority);
3339
3340 return new_priority;
3341 }
3342
3343 /* Rank two available exprs for schedule. Never return 0 here. */
3344 static int
3345 sel_rank_for_schedule (const void *x, const void *y)
3346 {
3347 expr_t tmp = *(const expr_t *) y;
3348 expr_t tmp2 = *(const expr_t *) x;
3349 insn_t tmp_insn, tmp2_insn;
3350 vinsn_t tmp_vinsn, tmp2_vinsn;
3351 int val;
3352
3353 tmp_vinsn = EXPR_VINSN (tmp);
3354 tmp2_vinsn = EXPR_VINSN (tmp2);
3355 tmp_insn = EXPR_INSN_RTX (tmp);
3356 tmp2_insn = EXPR_INSN_RTX (tmp2);
3357
3358 /* Schedule debug insns as early as possible. */
3359 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3360 return -1;
3361 else if (DEBUG_INSN_P (tmp2_insn))
3362 return 1;
3363
3364 /* Prefer SCHED_GROUP_P insns to any others. */
3365 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3366 {
3367 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3368 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3369
3370 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3371 cannot be cloned. */
3372 if (VINSN_UNIQUE_P (tmp2_vinsn))
3373 return 1;
3374 return -1;
3375 }
3376
3377 /* Discourage scheduling of speculative checks. */
3378 val = (sel_insn_is_speculation_check (tmp_insn)
3379 - sel_insn_is_speculation_check (tmp2_insn));
3380 if (val)
3381 return val;
3382
3383 /* Prefer not scheduled insn over scheduled one. */
3384 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3385 {
3386 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3387 if (val)
3388 return val;
3389 }
3390
3391 /* Prefer jump over non-jump instruction. */
3392 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3393 return -1;
3394 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3395 return 1;
3396
3397 /* Prefer an expr with greater priority. */
3398 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3399 {
3400 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3401 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3402
3403 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3404 }
3405 else
3406 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3407 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3408 if (val)
3409 return val;
3410
3411 if (spec_info != NULL && spec_info->mask != 0)
3412 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3413 {
3414 ds_t ds1, ds2;
3415 dw_t dw1, dw2;
3416 int dw;
3417
3418 ds1 = EXPR_SPEC_DONE_DS (tmp);
3419 if (ds1)
3420 dw1 = ds_weak (ds1);
3421 else
3422 dw1 = NO_DEP_WEAK;
3423
3424 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3425 if (ds2)
3426 dw2 = ds_weak (ds2);
3427 else
3428 dw2 = NO_DEP_WEAK;
3429
3430 dw = dw2 - dw1;
3431 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3432 return dw;
3433 }
3434
3435 /* Prefer an old insn to a bookkeeping insn. */
3436 if (INSN_UID (tmp_insn) < first_emitted_uid
3437 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3438 return -1;
3439 if (INSN_UID (tmp_insn) >= first_emitted_uid
3440 && INSN_UID (tmp2_insn) < first_emitted_uid)
3441 return 1;
3442
3443 /* Prefer an insn with smaller UID, as a last resort.
3444 We can't safely use INSN_LUID as it is defined only for those insns
3445 that are in the stream. */
3446 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3447 }
3448
3449 /* Filter out expressions from av set pointed to by AV_PTR
3450 that are pipelined too many times. */
3451 static void
3452 process_pipelined_exprs (av_set_t *av_ptr)
3453 {
3454 expr_t expr;
3455 av_set_iterator si;
3456
3457 /* Don't pipeline already pipelined code as that would increase
3458 number of unnecessary register moves. */
3459 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3460 {
3461 if (EXPR_SCHED_TIMES (expr)
3462 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3463 av_set_iter_remove (&si);
3464 }
3465 }
3466
3467 /* Filter speculative insns from AV_PTR if we don't want them. */
3468 static void
3469 process_spec_exprs (av_set_t *av_ptr)
3470 {
3471 expr_t expr;
3472 av_set_iterator si;
3473
3474 if (spec_info == NULL)
3475 return;
3476
3477 /* Scan *AV_PTR to find out if we want to consider speculative
3478 instructions for scheduling. */
3479 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3480 {
3481 ds_t ds;
3482
3483 ds = EXPR_SPEC_DONE_DS (expr);
3484
3485 /* The probability of a success is too low - don't speculate. */
3486 if ((ds & SPECULATIVE)
3487 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3488 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3489 || (pipelining_p && false
3490 && (ds & DATA_SPEC)
3491 && (ds & CONTROL_SPEC))))
3492 {
3493 av_set_iter_remove (&si);
3494 continue;
3495 }
3496 }
3497 }
3498
3499 /* Search for any use-like insns in AV_PTR and decide on scheduling
3500 them. Return one when found, and NULL otherwise.
3501 Note that we check here whether a USE could be scheduled to avoid
3502 an infinite loop later. */
3503 static expr_t
3504 process_use_exprs (av_set_t *av_ptr)
3505 {
3506 expr_t expr;
3507 av_set_iterator si;
3508 bool uses_present_p = false;
3509 bool try_uses_p = true;
3510
3511 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3512 {
3513 /* This will also initialize INSN_CODE for later use. */
3514 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3515 {
3516 /* If we have a USE in *AV_PTR that was not scheduled yet,
3517 do so because it will do good only. */
3518 if (EXPR_SCHED_TIMES (expr) <= 0)
3519 {
3520 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3521 return expr;
3522
3523 av_set_iter_remove (&si);
3524 }
3525 else
3526 {
3527 gcc_assert (pipelining_p);
3528
3529 uses_present_p = true;
3530 }
3531 }
3532 else
3533 try_uses_p = false;
3534 }
3535
3536 if (uses_present_p)
3537 {
3538 /* If we don't want to schedule any USEs right now and we have some
3539 in *AV_PTR, remove them, else just return the first one found. */
3540 if (!try_uses_p)
3541 {
3542 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3543 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3544 av_set_iter_remove (&si);
3545 }
3546 else
3547 {
3548 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3549 {
3550 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3551
3552 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3553 return expr;
3554
3555 av_set_iter_remove (&si);
3556 }
3557 }
3558 }
3559
3560 return NULL;
3561 }
3562
3563 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3564 EXPR's history of changes. */
3565 static bool
3566 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3567 {
3568 vinsn_t vinsn, expr_vinsn;
3569 int n;
3570 unsigned i;
3571
3572 /* Start with checking expr itself and then proceed with all the old forms
3573 of expr taken from its history vector. */
3574 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3575 expr_vinsn;
3576 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3577 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3578 : NULL))
3579 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3580 if (VINSN_SEPARABLE_P (vinsn))
3581 {
3582 if (vinsn_equal_p (vinsn, expr_vinsn))
3583 return true;
3584 }
3585 else
3586 {
3587 /* For non-separable instructions, the blocking insn can have
3588 another pattern due to substitution, and we can't choose
3589 different register as in the above case. Check all registers
3590 being written instead. */
3591 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3592 VINSN_REG_SETS (expr_vinsn)))
3593 return true;
3594 }
3595
3596 return false;
3597 }
3598
3599 #ifdef ENABLE_CHECKING
3600 /* Return true if either of expressions from ORIG_OPS can be blocked
3601 by previously created bookkeeping code. STATIC_PARAMS points to static
3602 parameters of move_op. */
3603 static bool
3604 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3605 {
3606 expr_t expr;
3607 av_set_iterator iter;
3608 moveop_static_params_p sparams;
3609
3610 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3611 created while scheduling on another fence. */
3612 FOR_EACH_EXPR (expr, iter, orig_ops)
3613 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3614 return true;
3615
3616 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3617 sparams = (moveop_static_params_p) static_params;
3618
3619 /* Expressions can be also blocked by bookkeeping created during current
3620 move_op. */
3621 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3622 FOR_EACH_EXPR (expr, iter, orig_ops)
3623 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3624 return true;
3625
3626 /* Expressions in ORIG_OPS may have wrong destination register due to
3627 renaming. Check with the right register instead. */
3628 if (sparams->dest && REG_P (sparams->dest))
3629 {
3630 rtx reg = sparams->dest;
3631 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3632
3633 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3634 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3635 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3636 return true;
3637 }
3638
3639 return false;
3640 }
3641 #endif
3642
3643 /* Clear VINSN_VEC and detach vinsns. */
3644 static void
3645 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3646 {
3647 unsigned len = vinsn_vec->length ();
3648 if (len > 0)
3649 {
3650 vinsn_t vinsn;
3651 int n;
3652
3653 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3654 vinsn_detach (vinsn);
3655 vinsn_vec->block_remove (0, len);
3656 }
3657 }
3658
3659 /* Add the vinsn of EXPR to the VINSN_VEC. */
3660 static void
3661 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3662 {
3663 vinsn_attach (EXPR_VINSN (expr));
3664 vinsn_vec->safe_push (EXPR_VINSN (expr));
3665 }
3666
3667 /* Free the vector representing blocked expressions. */
3668 static void
3669 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3670 {
3671 vinsn_vec.release ();
3672 }
3673
3674 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3675
3676 void sel_add_to_insn_priority (rtx insn, int amount)
3677 {
3678 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3679
3680 if (sched_verbose >= 2)
3681 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3682 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3683 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3684 }
3685
3686 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3687 true if there is something to schedule. BNDS and FENCE are current
3688 boundaries and fence, respectively. If we need to stall for some cycles
3689 before an expr from AV would become available, write this number to
3690 *PNEED_STALL. */
3691 static bool
3692 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3693 int *pneed_stall)
3694 {
3695 av_set_iterator si;
3696 expr_t expr;
3697 int sched_next_worked = 0, stalled, n;
3698 static int av_max_prio, est_ticks_till_branch;
3699 int min_need_stall = -1;
3700 deps_t dc = BND_DC (BLIST_BND (bnds));
3701
3702 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3703 already scheduled. */
3704 if (av == NULL)
3705 return false;
3706
3707 /* Empty vector from the previous stuff. */
3708 if (vec_av_set.length () > 0)
3709 vec_av_set.block_remove (0, vec_av_set.length ());
3710
3711 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3712 for each insn. */
3713 gcc_assert (vec_av_set.is_empty ());
3714 FOR_EACH_EXPR (expr, si, av)
3715 {
3716 vec_av_set.safe_push (expr);
3717
3718 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3719
3720 /* Adjust priority using target backend hook. */
3721 sel_target_adjust_priority (expr);
3722 }
3723
3724 /* Sort the vector. */
3725 vec_av_set.qsort (sel_rank_for_schedule);
3726
3727 /* We record maximal priority of insns in av set for current instruction
3728 group. */
3729 if (FENCE_STARTS_CYCLE_P (fence))
3730 av_max_prio = est_ticks_till_branch = INT_MIN;
3731
3732 /* Filter out inappropriate expressions. Loop's direction is reversed to
3733 visit "best" instructions first. We assume that vec::unordered_remove
3734 moves last element in place of one being deleted. */
3735 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3736 {
3737 expr_t expr = vec_av_set[n];
3738 insn_t insn = EXPR_INSN_RTX (expr);
3739 signed char target_available;
3740 bool is_orig_reg_p = true;
3741 int need_cycles, new_prio;
3742 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3743
3744 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3745 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3746 {
3747 vec_av_set.unordered_remove (n);
3748 continue;
3749 }
3750
3751 /* Set number of sched_next insns (just in case there
3752 could be several). */
3753 if (FENCE_SCHED_NEXT (fence))
3754 sched_next_worked++;
3755
3756 /* Check all liveness requirements and try renaming.
3757 FIXME: try to minimize calls to this. */
3758 target_available = EXPR_TARGET_AVAILABLE (expr);
3759
3760 /* If insn was already scheduled on the current fence,
3761 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3762 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3763 && !fence_insn_p)
3764 target_available = -1;
3765
3766 /* If the availability of the EXPR is invalidated by the insertion of
3767 bookkeeping earlier, make sure that we won't choose this expr for
3768 scheduling if it's not separable, and if it is separable, then
3769 we have to recompute the set of available registers for it. */
3770 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3771 {
3772 vec_av_set.unordered_remove (n);
3773 if (sched_verbose >= 4)
3774 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3775 INSN_UID (insn));
3776 continue;
3777 }
3778
3779 if (target_available == true)
3780 {
3781 /* Do nothing -- we can use an existing register. */
3782 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3783 }
3784 else if (/* Non-separable instruction will never
3785 get another register. */
3786 (target_available == false
3787 && !EXPR_SEPARABLE_P (expr))
3788 /* Don't try to find a register for low-priority expression. */
3789 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3790 /* ??? FIXME: Don't try to rename data speculation. */
3791 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3792 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3793 {
3794 vec_av_set.unordered_remove (n);
3795 if (sched_verbose >= 4)
3796 sel_print ("Expr %d has no suitable target register\n",
3797 INSN_UID (insn));
3798
3799 /* A fence insn should not get here. */
3800 gcc_assert (!fence_insn_p);
3801 continue;
3802 }
3803
3804 /* At this point a fence insn should always be available. */
3805 gcc_assert (!fence_insn_p
3806 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3807
3808 /* Filter expressions that need to be renamed or speculated when
3809 pipelining, because compensating register copies or speculation
3810 checks are likely to be placed near the beginning of the loop,
3811 causing a stall. */
3812 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3813 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3814 {
3815 /* Estimation of number of cycles until loop branch for
3816 renaming/speculation to be successful. */
3817 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3818
3819 if ((int) current_loop_nest->ninsns < 9)
3820 {
3821 vec_av_set.unordered_remove (n);
3822 if (sched_verbose >= 4)
3823 sel_print ("Pipelining expr %d will likely cause stall\n",
3824 INSN_UID (insn));
3825 continue;
3826 }
3827
3828 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3829 < need_n_ticks_till_branch * issue_rate / 2
3830 && est_ticks_till_branch < need_n_ticks_till_branch)
3831 {
3832 vec_av_set.unordered_remove (n);
3833 if (sched_verbose >= 4)
3834 sel_print ("Pipelining expr %d will likely cause stall\n",
3835 INSN_UID (insn));
3836 continue;
3837 }
3838 }
3839
3840 /* We want to schedule speculation checks as late as possible. Discard
3841 them from av set if there are instructions with higher priority. */
3842 if (sel_insn_is_speculation_check (insn)
3843 && EXPR_PRIORITY (expr) < av_max_prio)
3844 {
3845 stalled++;
3846 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3847 vec_av_set.unordered_remove (n);
3848 if (sched_verbose >= 4)
3849 sel_print ("Delaying speculation check %d until its first use\n",
3850 INSN_UID (insn));
3851 continue;
3852 }
3853
3854 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3855 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3856 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3857
3858 /* Don't allow any insns whose data is not yet ready.
3859 Check first whether we've already tried them and failed. */
3860 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3861 {
3862 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3863 - FENCE_CYCLE (fence));
3864 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3865 est_ticks_till_branch = MAX (est_ticks_till_branch,
3866 EXPR_PRIORITY (expr) + need_cycles);
3867
3868 if (need_cycles > 0)
3869 {
3870 stalled++;
3871 min_need_stall = (min_need_stall < 0
3872 ? need_cycles
3873 : MIN (min_need_stall, need_cycles));
3874 vec_av_set.unordered_remove (n);
3875
3876 if (sched_verbose >= 4)
3877 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3878 INSN_UID (insn),
3879 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3880 continue;
3881 }
3882 }
3883
3884 /* Now resort to dependence analysis to find whether EXPR might be
3885 stalled due to dependencies from FENCE's context. */
3886 need_cycles = tick_check_p (expr, dc, fence);
3887 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3888
3889 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3890 est_ticks_till_branch = MAX (est_ticks_till_branch,
3891 new_prio);
3892
3893 if (need_cycles > 0)
3894 {
3895 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3896 {
3897 int new_size = INSN_UID (insn) * 3 / 2;
3898
3899 FENCE_READY_TICKS (fence)
3900 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3901 new_size, FENCE_READY_TICKS_SIZE (fence),
3902 sizeof (int));
3903 }
3904 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3905 = FENCE_CYCLE (fence) + need_cycles;
3906
3907 stalled++;
3908 min_need_stall = (min_need_stall < 0
3909 ? need_cycles
3910 : MIN (min_need_stall, need_cycles));
3911
3912 vec_av_set.unordered_remove (n);
3913
3914 if (sched_verbose >= 4)
3915 sel_print ("Expr %d is not ready yet until cycle %d\n",
3916 INSN_UID (insn),
3917 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3918 continue;
3919 }
3920
3921 if (sched_verbose >= 4)
3922 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3923 min_need_stall = 0;
3924 }
3925
3926 /* Clear SCHED_NEXT. */
3927 if (FENCE_SCHED_NEXT (fence))
3928 {
3929 gcc_assert (sched_next_worked == 1);
3930 FENCE_SCHED_NEXT (fence) = NULL;
3931 }
3932
3933 /* No need to stall if this variable was not initialized. */
3934 if (min_need_stall < 0)
3935 min_need_stall = 0;
3936
3937 if (vec_av_set.is_empty ())
3938 {
3939 /* We need to set *pneed_stall here, because later we skip this code
3940 when ready list is empty. */
3941 *pneed_stall = min_need_stall;
3942 return false;
3943 }
3944 else
3945 gcc_assert (min_need_stall == 0);
3946
3947 /* Sort the vector. */
3948 vec_av_set.qsort (sel_rank_for_schedule);
3949
3950 if (sched_verbose >= 4)
3951 {
3952 sel_print ("Total ready exprs: %d, stalled: %d\n",
3953 vec_av_set.length (), stalled);
3954 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3955 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3956 dump_expr (expr);
3957 sel_print ("\n");
3958 }
3959
3960 *pneed_stall = 0;
3961 return true;
3962 }
3963
3964 /* Convert a vectored and sorted av set to the ready list that
3965 the rest of the backend wants to see. */
3966 static void
3967 convert_vec_av_set_to_ready (void)
3968 {
3969 int n;
3970 expr_t expr;
3971
3972 /* Allocate and fill the ready list from the sorted vector. */
3973 ready.n_ready = vec_av_set.length ();
3974 ready.first = ready.n_ready - 1;
3975
3976 gcc_assert (ready.n_ready > 0);
3977
3978 if (ready.n_ready > max_issue_size)
3979 {
3980 max_issue_size = ready.n_ready;
3981 sched_extend_ready_list (ready.n_ready);
3982 }
3983
3984 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3985 {
3986 vinsn_t vi = EXPR_VINSN (expr);
3987 insn_t insn = VINSN_INSN_RTX (vi);
3988
3989 ready_try[n] = 0;
3990 ready.vec[n] = insn;
3991 }
3992 }
3993
3994 /* Initialize ready list from *AV_PTR for the max_issue () call.
3995 If any unrecognizable insn found in *AV_PTR, return it (and skip
3996 max_issue). BND and FENCE are current boundary and fence,
3997 respectively. If we need to stall for some cycles before an expr
3998 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3999 static expr_t
4000 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4001 int *pneed_stall)
4002 {
4003 expr_t expr;
4004
4005 /* We do not support multiple boundaries per fence. */
4006 gcc_assert (BLIST_NEXT (bnds) == NULL);
4007
4008 /* Process expressions required special handling, i.e. pipelined,
4009 speculative and recog() < 0 expressions first. */
4010 process_pipelined_exprs (av_ptr);
4011 process_spec_exprs (av_ptr);
4012
4013 /* A USE could be scheduled immediately. */
4014 expr = process_use_exprs (av_ptr);
4015 if (expr)
4016 {
4017 *pneed_stall = 0;
4018 return expr;
4019 }
4020
4021 /* Turn the av set to a vector for sorting. */
4022 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4023 {
4024 ready.n_ready = 0;
4025 return NULL;
4026 }
4027
4028 /* Build the final ready list. */
4029 convert_vec_av_set_to_ready ();
4030 return NULL;
4031 }
4032
4033 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4034 static bool
4035 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4036 {
4037 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4038 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4039 : FENCE_CYCLE (fence) - 1;
4040 bool res = false;
4041 int sort_p = 0;
4042
4043 if (!targetm.sched.dfa_new_cycle)
4044 return false;
4045
4046 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4047
4048 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4049 insn, last_scheduled_cycle,
4050 FENCE_CYCLE (fence), &sort_p))
4051 {
4052 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4053 advance_one_cycle (fence);
4054 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4055 res = true;
4056 }
4057
4058 return res;
4059 }
4060
4061 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4062 we can issue. FENCE is the current fence. */
4063 static int
4064 invoke_reorder_hooks (fence_t fence)
4065 {
4066 int issue_more;
4067 bool ran_hook = false;
4068
4069 /* Call the reorder hook at the beginning of the cycle, and call
4070 the reorder2 hook in the middle of the cycle. */
4071 if (FENCE_ISSUED_INSNS (fence) == 0)
4072 {
4073 if (targetm.sched.reorder
4074 && !SCHED_GROUP_P (ready_element (&ready, 0))
4075 && ready.n_ready > 1)
4076 {
4077 /* Don't give reorder the most prioritized insn as it can break
4078 pipelining. */
4079 if (pipelining_p)
4080 --ready.n_ready;
4081
4082 issue_more
4083 = targetm.sched.reorder (sched_dump, sched_verbose,
4084 ready_lastpos (&ready),
4085 &ready.n_ready, FENCE_CYCLE (fence));
4086
4087 if (pipelining_p)
4088 ++ready.n_ready;
4089
4090 ran_hook = true;
4091 }
4092 else
4093 /* Initialize can_issue_more for variable_issue. */
4094 issue_more = issue_rate;
4095 }
4096 else if (targetm.sched.reorder2
4097 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4098 {
4099 if (ready.n_ready == 1)
4100 issue_more =
4101 targetm.sched.reorder2 (sched_dump, sched_verbose,
4102 ready_lastpos (&ready),
4103 &ready.n_ready, FENCE_CYCLE (fence));
4104 else
4105 {
4106 if (pipelining_p)
4107 --ready.n_ready;
4108
4109 issue_more =
4110 targetm.sched.reorder2 (sched_dump, sched_verbose,
4111 ready.n_ready
4112 ? ready_lastpos (&ready) : NULL,
4113 &ready.n_ready, FENCE_CYCLE (fence));
4114
4115 if (pipelining_p)
4116 ++ready.n_ready;
4117 }
4118
4119 ran_hook = true;
4120 }
4121 else
4122 issue_more = FENCE_ISSUE_MORE (fence);
4123
4124 /* Ensure that ready list and vec_av_set are in line with each other,
4125 i.e. vec_av_set[i] == ready_element (&ready, i). */
4126 if (issue_more && ran_hook)
4127 {
4128 int i, j, n;
4129 rtx_insn **arr = ready.vec;
4130 expr_t *vec = vec_av_set.address ();
4131
4132 for (i = 0, n = ready.n_ready; i < n; i++)
4133 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4134 {
4135 for (j = i; j < n; j++)
4136 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4137 break;
4138 gcc_assert (j < n);
4139
4140 std::swap (vec[i], vec[j]);
4141 }
4142 }
4143
4144 return issue_more;
4145 }
4146
4147 /* Return an EXPR corresponding to INDEX element of ready list, if
4148 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4149 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4150 ready.vec otherwise. */
4151 static inline expr_t
4152 find_expr_for_ready (int index, bool follow_ready_element)
4153 {
4154 expr_t expr;
4155 int real_index;
4156
4157 real_index = follow_ready_element ? ready.first - index : index;
4158
4159 expr = vec_av_set[real_index];
4160 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4161
4162 return expr;
4163 }
4164
4165 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4166 of such insns found. */
4167 static int
4168 invoke_dfa_lookahead_guard (void)
4169 {
4170 int i, n;
4171 bool have_hook
4172 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4173
4174 if (sched_verbose >= 2)
4175 sel_print ("ready after reorder: ");
4176
4177 for (i = 0, n = 0; i < ready.n_ready; i++)
4178 {
4179 expr_t expr;
4180 insn_t insn;
4181 int r;
4182
4183 /* In this loop insn is Ith element of the ready list given by
4184 ready_element, not Ith element of ready.vec. */
4185 insn = ready_element (&ready, i);
4186
4187 if (! have_hook || i == 0)
4188 r = 0;
4189 else
4190 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4191
4192 gcc_assert (INSN_CODE (insn) >= 0);
4193
4194 /* Only insns with ready_try = 0 can get here
4195 from fill_ready_list. */
4196 gcc_assert (ready_try [i] == 0);
4197 ready_try[i] = r;
4198 if (!r)
4199 n++;
4200
4201 expr = find_expr_for_ready (i, true);
4202
4203 if (sched_verbose >= 2)
4204 {
4205 dump_vinsn (EXPR_VINSN (expr));
4206 sel_print (":%d; ", ready_try[i]);
4207 }
4208 }
4209
4210 if (sched_verbose >= 2)
4211 sel_print ("\n");
4212 return n;
4213 }
4214
4215 /* Calculate the number of privileged insns and return it. */
4216 static int
4217 calculate_privileged_insns (void)
4218 {
4219 expr_t cur_expr, min_spec_expr = NULL;
4220 int privileged_n = 0, i;
4221
4222 for (i = 0; i < ready.n_ready; i++)
4223 {
4224 if (ready_try[i])
4225 continue;
4226
4227 if (! min_spec_expr)
4228 min_spec_expr = find_expr_for_ready (i, true);
4229
4230 cur_expr = find_expr_for_ready (i, true);
4231
4232 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4233 break;
4234
4235 ++privileged_n;
4236 }
4237
4238 if (i == ready.n_ready)
4239 privileged_n = 0;
4240
4241 if (sched_verbose >= 2)
4242 sel_print ("privileged_n: %d insns with SPEC %d\n",
4243 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4244 return privileged_n;
4245 }
4246
4247 /* Call the rest of the hooks after the choice was made. Return
4248 the number of insns that still can be issued given that the current
4249 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4250 and the insn chosen for scheduling, respectively. */
4251 static int
4252 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4253 {
4254 gcc_assert (INSN_P (best_insn));
4255
4256 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4257 sel_dfa_new_cycle (best_insn, fence);
4258
4259 if (targetm.sched.variable_issue)
4260 {
4261 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4262 issue_more =
4263 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4264 issue_more);
4265 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4266 }
4267 else if (GET_CODE (PATTERN (best_insn)) != USE
4268 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4269 issue_more--;
4270
4271 return issue_more;
4272 }
4273
4274 /* Estimate the cost of issuing INSN on DFA state STATE. */
4275 static int
4276 estimate_insn_cost (rtx_insn *insn, state_t state)
4277 {
4278 static state_t temp = NULL;
4279 int cost;
4280
4281 if (!temp)
4282 temp = xmalloc (dfa_state_size);
4283
4284 memcpy (temp, state, dfa_state_size);
4285 cost = state_transition (temp, insn);
4286
4287 if (cost < 0)
4288 return 0;
4289 else if (cost == 0)
4290 return 1;
4291 return cost;
4292 }
4293
4294 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4295 This function properly handles ASMs, USEs etc. */
4296 static int
4297 get_expr_cost (expr_t expr, fence_t fence)
4298 {
4299 rtx_insn *insn = EXPR_INSN_RTX (expr);
4300
4301 if (recog_memoized (insn) < 0)
4302 {
4303 if (!FENCE_STARTS_CYCLE_P (fence)
4304 && INSN_ASM_P (insn))
4305 /* This is asm insn which is tryed to be issued on the
4306 cycle not first. Issue it on the next cycle. */
4307 return 1;
4308 else
4309 /* A USE insn, or something else we don't need to
4310 understand. We can't pass these directly to
4311 state_transition because it will trigger a
4312 fatal error for unrecognizable insns. */
4313 return 0;
4314 }
4315 else
4316 return estimate_insn_cost (insn, FENCE_STATE (fence));
4317 }
4318
4319 /* Find the best insn for scheduling, either via max_issue or just take
4320 the most prioritized available. */
4321 static int
4322 choose_best_insn (fence_t fence, int privileged_n, int *index)
4323 {
4324 int can_issue = 0;
4325
4326 if (dfa_lookahead > 0)
4327 {
4328 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4329 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4330 can_issue = max_issue (&ready, privileged_n,
4331 FENCE_STATE (fence), true, index);
4332 if (sched_verbose >= 2)
4333 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4334 can_issue, FENCE_ISSUED_INSNS (fence));
4335 }
4336 else
4337 {
4338 /* We can't use max_issue; just return the first available element. */
4339 int i;
4340
4341 for (i = 0; i < ready.n_ready; i++)
4342 {
4343 expr_t expr = find_expr_for_ready (i, true);
4344
4345 if (get_expr_cost (expr, fence) < 1)
4346 {
4347 can_issue = can_issue_more;
4348 *index = i;
4349
4350 if (sched_verbose >= 2)
4351 sel_print ("using %dth insn from the ready list\n", i + 1);
4352
4353 break;
4354 }
4355 }
4356
4357 if (i == ready.n_ready)
4358 {
4359 can_issue = 0;
4360 *index = -1;
4361 }
4362 }
4363
4364 return can_issue;
4365 }
4366
4367 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4368 BNDS and FENCE are current boundaries and scheduling fence respectively.
4369 Return the expr found and NULL if nothing can be issued atm.
4370 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4371 static expr_t
4372 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4373 int *pneed_stall)
4374 {
4375 expr_t best;
4376
4377 /* Choose the best insn for scheduling via:
4378 1) sorting the ready list based on priority;
4379 2) calling the reorder hook;
4380 3) calling max_issue. */
4381 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4382 if (best == NULL && ready.n_ready > 0)
4383 {
4384 int privileged_n, index;
4385
4386 can_issue_more = invoke_reorder_hooks (fence);
4387 if (can_issue_more > 0)
4388 {
4389 /* Try choosing the best insn until we find one that is could be
4390 scheduled due to liveness restrictions on its destination register.
4391 In the future, we'd like to choose once and then just probe insns
4392 in the order of their priority. */
4393 invoke_dfa_lookahead_guard ();
4394 privileged_n = calculate_privileged_insns ();
4395 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4396 if (can_issue_more)
4397 best = find_expr_for_ready (index, true);
4398 }
4399 /* We had some available insns, so if we can't issue them,
4400 we have a stall. */
4401 if (can_issue_more == 0)
4402 {
4403 best = NULL;
4404 *pneed_stall = 1;
4405 }
4406 }
4407
4408 if (best != NULL)
4409 {
4410 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4411 can_issue_more);
4412 if (targetm.sched.variable_issue
4413 && can_issue_more == 0)
4414 *pneed_stall = 1;
4415 }
4416
4417 if (sched_verbose >= 2)
4418 {
4419 if (best != NULL)
4420 {
4421 sel_print ("Best expression (vliw form): ");
4422 dump_expr (best);
4423 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4424 }
4425 else
4426 sel_print ("No best expr found!\n");
4427 }
4428
4429 return best;
4430 }
4431 \f
4432
4433 /* Functions that implement the core of the scheduler. */
4434
4435
4436 /* Emit an instruction from EXPR with SEQNO and VINSN after
4437 PLACE_TO_INSERT. */
4438 static insn_t
4439 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4440 insn_t place_to_insert)
4441 {
4442 /* This assert fails when we have identical instructions
4443 one of which dominates the other. In this case move_op ()
4444 finds the first instruction and doesn't search for second one.
4445 The solution would be to compute av_set after the first found
4446 insn and, if insn present in that set, continue searching.
4447 For now we workaround this issue in move_op. */
4448 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4449
4450 if (EXPR_WAS_RENAMED (expr))
4451 {
4452 unsigned regno = expr_dest_regno (expr);
4453
4454 if (HARD_REGISTER_NUM_P (regno))
4455 {
4456 df_set_regs_ever_live (regno, true);
4457 reg_rename_tick[regno] = ++reg_rename_this_tick;
4458 }
4459 }
4460
4461 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4462 place_to_insert);
4463 }
4464
4465 /* Return TRUE if BB can hold bookkeeping code. */
4466 static bool
4467 block_valid_for_bookkeeping_p (basic_block bb)
4468 {
4469 insn_t bb_end = BB_END (bb);
4470
4471 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4472 return false;
4473
4474 if (INSN_P (bb_end))
4475 {
4476 if (INSN_SCHED_TIMES (bb_end) > 0)
4477 return false;
4478 }
4479 else
4480 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4481
4482 return true;
4483 }
4484
4485 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4486 into E2->dest, except from E1->src (there may be a sequence of empty basic
4487 blocks between E1->src and E2->dest). Return found block, or NULL if new
4488 one must be created. If LAX holds, don't assume there is a simple path
4489 from E1->src to E2->dest. */
4490 static basic_block
4491 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4492 {
4493 basic_block candidate_block = NULL;
4494 edge e;
4495
4496 /* Loop over edges from E1 to E2, inclusive. */
4497 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4498 EDGE_SUCC (e->dest, 0))
4499 {
4500 if (EDGE_COUNT (e->dest->preds) == 2)
4501 {
4502 if (candidate_block == NULL)
4503 candidate_block = (EDGE_PRED (e->dest, 0) == e
4504 ? EDGE_PRED (e->dest, 1)->src
4505 : EDGE_PRED (e->dest, 0)->src);
4506 else
4507 /* Found additional edge leading to path from e1 to e2
4508 from aside. */
4509 return NULL;
4510 }
4511 else if (EDGE_COUNT (e->dest->preds) > 2)
4512 /* Several edges leading to path from e1 to e2 from aside. */
4513 return NULL;
4514
4515 if (e == e2)
4516 return ((!lax || candidate_block)
4517 && block_valid_for_bookkeeping_p (candidate_block)
4518 ? candidate_block
4519 : NULL);
4520
4521 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4522 return NULL;
4523 }
4524
4525 if (lax)
4526 return NULL;
4527
4528 gcc_unreachable ();
4529 }
4530
4531 /* Create new basic block for bookkeeping code for path(s) incoming into
4532 E2->dest, except from E1->src. Return created block. */
4533 static basic_block
4534 create_block_for_bookkeeping (edge e1, edge e2)
4535 {
4536 basic_block new_bb, bb = e2->dest;
4537
4538 /* Check that we don't spoil the loop structure. */
4539 if (current_loop_nest)
4540 {
4541 basic_block latch = current_loop_nest->latch;
4542
4543 /* We do not split header. */
4544 gcc_assert (e2->dest != current_loop_nest->header);
4545
4546 /* We do not redirect the only edge to the latch block. */
4547 gcc_assert (e1->dest != latch
4548 || !single_pred_p (latch)
4549 || e1 != single_pred_edge (latch));
4550 }
4551
4552 /* Split BB to insert BOOK_INSN there. */
4553 new_bb = sched_split_block (bb, NULL);
4554
4555 /* Move note_list from the upper bb. */
4556 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4557 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4558 BB_NOTE_LIST (bb) = NULL;
4559
4560 gcc_assert (e2->dest == bb);
4561
4562 /* Skip block for bookkeeping copy when leaving E1->src. */
4563 if (e1->flags & EDGE_FALLTHRU)
4564 sel_redirect_edge_and_branch_force (e1, new_bb);
4565 else
4566 sel_redirect_edge_and_branch (e1, new_bb);
4567
4568 gcc_assert (e1->dest == new_bb);
4569 gcc_assert (sel_bb_empty_p (bb));
4570
4571 /* To keep basic block numbers in sync between debug and non-debug
4572 compilations, we have to rotate blocks here. Consider that we
4573 started from (a,b)->d, (c,d)->e, and d contained only debug
4574 insns. It would have been removed before if the debug insns
4575 weren't there, so we'd have split e rather than d. So what we do
4576 now is to swap the block numbers of new_bb and
4577 single_succ(new_bb) == e, so that the insns that were in e before
4578 get the new block number. */
4579
4580 if (MAY_HAVE_DEBUG_INSNS)
4581 {
4582 basic_block succ;
4583 insn_t insn = sel_bb_head (new_bb);
4584 insn_t last;
4585
4586 if (DEBUG_INSN_P (insn)
4587 && single_succ_p (new_bb)
4588 && (succ = single_succ (new_bb))
4589 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4590 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4591 {
4592 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4593 insn = NEXT_INSN (insn);
4594
4595 if (insn == last)
4596 {
4597 sel_global_bb_info_def gbi;
4598 sel_region_bb_info_def rbi;
4599
4600 if (sched_verbose >= 2)
4601 sel_print ("Swapping block ids %i and %i\n",
4602 new_bb->index, succ->index);
4603
4604 std::swap (new_bb->index, succ->index);
4605
4606 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4607 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4608
4609 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4610 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4611 sizeof (gbi));
4612 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4613
4614 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4615 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4616 sizeof (rbi));
4617 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4618
4619 std::swap (BLOCK_TO_BB (new_bb->index),
4620 BLOCK_TO_BB (succ->index));
4621
4622 std::swap (CONTAINING_RGN (new_bb->index),
4623 CONTAINING_RGN (succ->index));
4624
4625 for (int i = 0; i < current_nr_blocks; i++)
4626 if (BB_TO_BLOCK (i) == succ->index)
4627 BB_TO_BLOCK (i) = new_bb->index;
4628 else if (BB_TO_BLOCK (i) == new_bb->index)
4629 BB_TO_BLOCK (i) = succ->index;
4630
4631 FOR_BB_INSNS (new_bb, insn)
4632 if (INSN_P (insn))
4633 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4634
4635 FOR_BB_INSNS (succ, insn)
4636 if (INSN_P (insn))
4637 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4638
4639 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4640 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4641
4642 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4643 && LABEL_P (BB_HEAD (succ)));
4644
4645 if (sched_verbose >= 4)
4646 sel_print ("Swapping code labels %i and %i\n",
4647 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4648 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4649
4650 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4651 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4652 }
4653 }
4654 }
4655
4656 return bb;
4657 }
4658
4659 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4660 into E2->dest, except from E1->src. If the returned insn immediately
4661 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4662 static insn_t
4663 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4664 {
4665 insn_t place_to_insert;
4666 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4667 create new basic block, but insert bookkeeping there. */
4668 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4669
4670 if (book_block)
4671 {
4672 place_to_insert = BB_END (book_block);
4673
4674 /* Don't use a block containing only debug insns for
4675 bookkeeping, this causes scheduling differences between debug
4676 and non-debug compilations, for the block would have been
4677 removed already. */
4678 if (DEBUG_INSN_P (place_to_insert))
4679 {
4680 rtx_insn *insn = sel_bb_head (book_block);
4681
4682 while (insn != place_to_insert &&
4683 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4684 insn = NEXT_INSN (insn);
4685
4686 if (insn == place_to_insert)
4687 book_block = NULL;
4688 }
4689 }
4690
4691 if (!book_block)
4692 {
4693 book_block = create_block_for_bookkeeping (e1, e2);
4694 place_to_insert = BB_END (book_block);
4695 if (sched_verbose >= 9)
4696 sel_print ("New block is %i, split from bookkeeping block %i\n",
4697 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4698 }
4699 else
4700 {
4701 if (sched_verbose >= 9)
4702 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4703 }
4704
4705 *fence_to_rewind = NULL;
4706 /* If basic block ends with a jump, insert bookkeeping code right before it.
4707 Notice if we are crossing a fence when taking PREV_INSN. */
4708 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4709 {
4710 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4711 place_to_insert = PREV_INSN (place_to_insert);
4712 }
4713
4714 return place_to_insert;
4715 }
4716
4717 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4718 for JOIN_POINT. */
4719 static int
4720 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4721 {
4722 int seqno;
4723
4724 /* Check if we are about to insert bookkeeping copy before a jump, and use
4725 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4726 rtx_insn *next = NEXT_INSN (place_to_insert);
4727 if (INSN_P (next)
4728 && JUMP_P (next)
4729 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4730 {
4731 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4732 seqno = INSN_SEQNO (next);
4733 }
4734 else if (INSN_SEQNO (join_point) > 0)
4735 seqno = INSN_SEQNO (join_point);
4736 else
4737 {
4738 seqno = get_seqno_by_preds (place_to_insert);
4739
4740 /* Sometimes the fences can move in such a way that there will be
4741 no instructions with positive seqno around this bookkeeping.
4742 This means that there will be no way to get to it by a regular
4743 fence movement. Never mind because we pick up such pieces for
4744 rescheduling anyways, so any positive value will do for now. */
4745 if (seqno < 0)
4746 {
4747 gcc_assert (pipelining_p);
4748 seqno = 1;
4749 }
4750 }
4751
4752 gcc_assert (seqno > 0);
4753 return seqno;
4754 }
4755
4756 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4757 NEW_SEQNO to it. Return created insn. */
4758 static insn_t
4759 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4760 {
4761 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4762
4763 vinsn_t new_vinsn
4764 = create_vinsn_from_insn_rtx (new_insn_rtx,
4765 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4766
4767 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4768 place_to_insert);
4769
4770 INSN_SCHED_TIMES (new_insn) = 0;
4771 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4772
4773 return new_insn;
4774 }
4775
4776 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4777 E2->dest, except from E1->src (there may be a sequence of empty blocks
4778 between E1->src and E2->dest). Return block containing the copy.
4779 All scheduler data is initialized for the newly created insn. */
4780 static basic_block
4781 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4782 {
4783 insn_t join_point, place_to_insert, new_insn;
4784 int new_seqno;
4785 bool need_to_exchange_data_sets;
4786 fence_t fence_to_rewind;
4787
4788 if (sched_verbose >= 4)
4789 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4790 e2->dest->index);
4791
4792 join_point = sel_bb_head (e2->dest);
4793 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4794 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4795 need_to_exchange_data_sets
4796 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4797
4798 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4799
4800 if (fence_to_rewind)
4801 FENCE_INSN (fence_to_rewind) = new_insn;
4802
4803 /* When inserting bookkeeping insn in new block, av sets should be
4804 following: old basic block (that now holds bookkeeping) data sets are
4805 the same as was before generation of bookkeeping, and new basic block
4806 (that now hold all other insns of old basic block) data sets are
4807 invalid. So exchange data sets for these basic blocks as sel_split_block
4808 mistakenly exchanges them in this case. Cannot do it earlier because
4809 when single instruction is added to new basic block it should hold NULL
4810 lv_set. */
4811 if (need_to_exchange_data_sets)
4812 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4813 BLOCK_FOR_INSN (join_point));
4814
4815 stat_bookkeeping_copies++;
4816 return BLOCK_FOR_INSN (new_insn);
4817 }
4818
4819 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4820 on FENCE, but we are unable to copy them. */
4821 static void
4822 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4823 {
4824 expr_t expr;
4825 av_set_iterator i;
4826
4827 /* An expression does not need bookkeeping if it is available on all paths
4828 from current block to original block and current block dominates
4829 original block. We check availability on all paths by examining
4830 EXPR_SPEC; this is not equivalent, because it may be positive even
4831 if expr is available on all paths (but if expr is not available on
4832 any path, EXPR_SPEC will be positive). */
4833
4834 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4835 {
4836 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4837 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4838 && (EXPR_SPEC (expr)
4839 || !EXPR_ORIG_BB_INDEX (expr)
4840 || !dominated_by_p (CDI_DOMINATORS,
4841 BASIC_BLOCK_FOR_FN (cfun,
4842 EXPR_ORIG_BB_INDEX (expr)),
4843 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4844 {
4845 if (sched_verbose >= 4)
4846 sel_print ("Expr %d removed because it would need bookkeeping, which "
4847 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4848 av_set_iter_remove (&i);
4849 }
4850 }
4851 }
4852
4853 /* Moving conditional jump through some instructions.
4854
4855 Consider example:
4856
4857 ... <- current scheduling point
4858 NOTE BASIC BLOCK: <- bb header
4859 (p8) add r14=r14+0x9;;
4860 (p8) mov [r14]=r23
4861 (!p8) jump L1;;
4862 NOTE BASIC BLOCK:
4863 ...
4864
4865 We can schedule jump one cycle earlier, than mov, because they cannot be
4866 executed together as their predicates are mutually exclusive.
4867
4868 This is done in this way: first, new fallthrough basic block is created
4869 after jump (it is always can be done, because there already should be a
4870 fallthrough block, where control flow goes in case of predicate being true -
4871 in our example; otherwise there should be a dependence between those
4872 instructions and jump and we cannot schedule jump right now);
4873 next, all instructions between jump and current scheduling point are moved
4874 to this new block. And the result is this:
4875
4876 NOTE BASIC BLOCK:
4877 (!p8) jump L1 <- current scheduling point
4878 NOTE BASIC BLOCK: <- bb header
4879 (p8) add r14=r14+0x9;;
4880 (p8) mov [r14]=r23
4881 NOTE BASIC BLOCK:
4882 ...
4883 */
4884 static void
4885 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4886 {
4887 edge ft_edge;
4888 basic_block block_from, block_next, block_new, block_bnd, bb;
4889 rtx_insn *next, *prev, *link, *head;
4890
4891 block_from = BLOCK_FOR_INSN (insn);
4892 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4893 prev = BND_TO (bnd);
4894
4895 #ifdef ENABLE_CHECKING
4896 /* Moving of jump should not cross any other jumps or beginnings of new
4897 basic blocks. The only exception is when we move a jump through
4898 mutually exclusive insns along fallthru edges. */
4899 if (block_from != block_bnd)
4900 {
4901 bb = block_from;
4902 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4903 link = PREV_INSN (link))
4904 {
4905 if (INSN_P (link))
4906 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4907 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4908 {
4909 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4910 bb = BLOCK_FOR_INSN (link);
4911 }
4912 }
4913 }
4914 #endif
4915
4916 /* Jump is moved to the boundary. */
4917 next = PREV_INSN (insn);
4918 BND_TO (bnd) = insn;
4919
4920 ft_edge = find_fallthru_edge_from (block_from);
4921 block_next = ft_edge->dest;
4922 /* There must be a fallthrough block (or where should go
4923 control flow in case of false jump predicate otherwise?). */
4924 gcc_assert (block_next);
4925
4926 /* Create new empty basic block after source block. */
4927 block_new = sel_split_edge (ft_edge);
4928 gcc_assert (block_new->next_bb == block_next
4929 && block_from->next_bb == block_new);
4930
4931 /* Move all instructions except INSN to BLOCK_NEW. */
4932 bb = block_bnd;
4933 head = BB_HEAD (block_new);
4934 while (bb != block_from->next_bb)
4935 {
4936 rtx_insn *from, *to;
4937 from = bb == block_bnd ? prev : sel_bb_head (bb);
4938 to = bb == block_from ? next : sel_bb_end (bb);
4939
4940 /* The jump being moved can be the first insn in the block.
4941 In this case we don't have to move anything in this block. */
4942 if (NEXT_INSN (to) != from)
4943 {
4944 reorder_insns (from, to, head);
4945
4946 for (link = to; link != head; link = PREV_INSN (link))
4947 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4948 head = to;
4949 }
4950
4951 /* Cleanup possibly empty blocks left. */
4952 block_next = bb->next_bb;
4953 if (bb != block_from)
4954 tidy_control_flow (bb, false);
4955 bb = block_next;
4956 }
4957
4958 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4959 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4960
4961 gcc_assert (!sel_bb_empty_p (block_from)
4962 && !sel_bb_empty_p (block_new));
4963
4964 /* Update data sets for BLOCK_NEW to represent that INSN and
4965 instructions from the other branch of INSN is no longer
4966 available at BLOCK_NEW. */
4967 BB_AV_LEVEL (block_new) = global_level;
4968 gcc_assert (BB_LV_SET (block_new) == NULL);
4969 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4970 update_data_sets (sel_bb_head (block_new));
4971
4972 /* INSN is a new basic block header - so prepare its data
4973 structures and update availability and liveness sets. */
4974 update_data_sets (insn);
4975
4976 if (sched_verbose >= 4)
4977 sel_print ("Moving jump %d\n", INSN_UID (insn));
4978 }
4979
4980 /* Remove nops generated during move_op for preventing removal of empty
4981 basic blocks. */
4982 static void
4983 remove_temp_moveop_nops (bool full_tidying)
4984 {
4985 int i;
4986 insn_t insn;
4987
4988 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4989 {
4990 gcc_assert (INSN_NOP_P (insn));
4991 return_nop_to_pool (insn, full_tidying);
4992 }
4993
4994 /* Empty the vector. */
4995 if (vec_temp_moveop_nops.length () > 0)
4996 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
4997 }
4998
4999 /* Records the maximal UID before moving up an instruction. Used for
5000 distinguishing between bookkeeping copies and original insns. */
5001 static int max_uid_before_move_op = 0;
5002
5003 /* Remove from AV_VLIW_P all instructions but next when debug counter
5004 tells us so. Next instruction is fetched from BNDS. */
5005 static void
5006 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5007 {
5008 if (! dbg_cnt (sel_sched_insn_cnt))
5009 /* Leave only the next insn in av_vliw. */
5010 {
5011 av_set_iterator av_it;
5012 expr_t expr;
5013 bnd_t bnd = BLIST_BND (bnds);
5014 insn_t next = BND_TO (bnd);
5015
5016 gcc_assert (BLIST_NEXT (bnds) == NULL);
5017
5018 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5019 if (EXPR_INSN_RTX (expr) != next)
5020 av_set_iter_remove (&av_it);
5021 }
5022 }
5023
5024 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5025 the computed set to *AV_VLIW_P. */
5026 static void
5027 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5028 {
5029 if (sched_verbose >= 2)
5030 {
5031 sel_print ("Boundaries: ");
5032 dump_blist (bnds);
5033 sel_print ("\n");
5034 }
5035
5036 for (; bnds; bnds = BLIST_NEXT (bnds))
5037 {
5038 bnd_t bnd = BLIST_BND (bnds);
5039 av_set_t av1_copy;
5040 insn_t bnd_to = BND_TO (bnd);
5041
5042 /* Rewind BND->TO to the basic block header in case some bookkeeping
5043 instructions were inserted before BND->TO and it needs to be
5044 adjusted. */
5045 if (sel_bb_head_p (bnd_to))
5046 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5047 else
5048 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5049 {
5050 bnd_to = PREV_INSN (bnd_to);
5051 if (sel_bb_head_p (bnd_to))
5052 break;
5053 }
5054
5055 if (BND_TO (bnd) != bnd_to)
5056 {
5057 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5058 FENCE_INSN (fence) = bnd_to;
5059 BND_TO (bnd) = bnd_to;
5060 }
5061
5062 av_set_clear (&BND_AV (bnd));
5063 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5064
5065 av_set_clear (&BND_AV1 (bnd));
5066 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5067
5068 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5069
5070 av1_copy = av_set_copy (BND_AV1 (bnd));
5071 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5072 }
5073
5074 if (sched_verbose >= 2)
5075 {
5076 sel_print ("Available exprs (vliw form): ");
5077 dump_av_set (*av_vliw_p);
5078 sel_print ("\n");
5079 }
5080 }
5081
5082 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5083 expression. When FOR_MOVEOP is true, also replace the register of
5084 expressions found with the register from EXPR_VLIW. */
5085 static av_set_t
5086 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5087 {
5088 av_set_t expr_seq = NULL;
5089 expr_t expr;
5090 av_set_iterator i;
5091
5092 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5093 {
5094 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5095 {
5096 if (for_moveop)
5097 {
5098 /* The sequential expression has the right form to pass
5099 to move_op except when renaming happened. Put the
5100 correct register in EXPR then. */
5101 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5102 {
5103 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5104 {
5105 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5106 stat_renamed_scheduled++;
5107 }
5108 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5109 This is needed when renaming came up with original
5110 register. */
5111 else if (EXPR_TARGET_AVAILABLE (expr)
5112 != EXPR_TARGET_AVAILABLE (expr_vliw))
5113 {
5114 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5115 EXPR_TARGET_AVAILABLE (expr) = 1;
5116 }
5117 }
5118 if (EXPR_WAS_SUBSTITUTED (expr))
5119 stat_substitutions_total++;
5120 }
5121
5122 av_set_add (&expr_seq, expr);
5123
5124 /* With substitution inside insn group, it is possible
5125 that more than one expression in expr_seq will correspond
5126 to expr_vliw. In this case, choose one as the attempt to
5127 move both leads to miscompiles. */
5128 break;
5129 }
5130 }
5131
5132 if (for_moveop && sched_verbose >= 2)
5133 {
5134 sel_print ("Best expression(s) (sequential form): ");
5135 dump_av_set (expr_seq);
5136 sel_print ("\n");
5137 }
5138
5139 return expr_seq;
5140 }
5141
5142
5143 /* Move nop to previous block. */
5144 static void ATTRIBUTE_UNUSED
5145 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5146 {
5147 insn_t prev_insn, next_insn;
5148
5149 gcc_assert (sel_bb_head_p (nop)
5150 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5151 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
5152 prev_insn = sel_bb_end (prev_bb);
5153 next_insn = NEXT_INSN (nop);
5154 gcc_assert (prev_insn != NULL_RTX
5155 && PREV_INSN (note) == prev_insn);
5156
5157 SET_NEXT_INSN (prev_insn) = nop;
5158 SET_PREV_INSN (nop) = prev_insn;
5159
5160 SET_PREV_INSN (note) = nop;
5161 SET_NEXT_INSN (note) = next_insn;
5162
5163 SET_NEXT_INSN (nop) = note;
5164 SET_PREV_INSN (next_insn) = note;
5165
5166 BB_END (prev_bb) = nop;
5167 BLOCK_FOR_INSN (nop) = prev_bb;
5168 }
5169
5170 /* Prepare a place to insert the chosen expression on BND. */
5171 static insn_t
5172 prepare_place_to_insert (bnd_t bnd)
5173 {
5174 insn_t place_to_insert;
5175
5176 /* Init place_to_insert before calling move_op, as the later
5177 can possibly remove BND_TO (bnd). */
5178 if (/* If this is not the first insn scheduled. */
5179 BND_PTR (bnd))
5180 {
5181 /* Add it after last scheduled. */
5182 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5183 if (DEBUG_INSN_P (place_to_insert))
5184 {
5185 ilist_t l = BND_PTR (bnd);
5186 while ((l = ILIST_NEXT (l)) &&
5187 DEBUG_INSN_P (ILIST_INSN (l)))
5188 ;
5189 if (!l)
5190 place_to_insert = NULL;
5191 }
5192 }
5193 else
5194 place_to_insert = NULL;
5195
5196 if (!place_to_insert)
5197 {
5198 /* Add it before BND_TO. The difference is in the
5199 basic block, where INSN will be added. */
5200 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5201 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5202 == BLOCK_FOR_INSN (BND_TO (bnd)));
5203 }
5204
5205 return place_to_insert;
5206 }
5207
5208 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5209 Return the expression to emit in C_EXPR. */
5210 static bool
5211 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5212 av_set_t expr_seq, expr_t c_expr)
5213 {
5214 bool b, should_move;
5215 unsigned book_uid;
5216 bitmap_iterator bi;
5217 int n_bookkeeping_copies_before_moveop;
5218
5219 /* Make a move. This call will remove the original operation,
5220 insert all necessary bookkeeping instructions and update the
5221 data sets. After that all we have to do is add the operation
5222 at before BND_TO (BND). */
5223 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5224 max_uid_before_move_op = get_max_uid ();
5225 bitmap_clear (current_copies);
5226 bitmap_clear (current_originators);
5227
5228 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5229 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5230
5231 /* We should be able to find the expression we've chosen for
5232 scheduling. */
5233 gcc_assert (b);
5234
5235 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5236 stat_insns_needed_bookkeeping++;
5237
5238 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5239 {
5240 unsigned uid;
5241 bitmap_iterator bi;
5242
5243 /* We allocate these bitmaps lazily. */
5244 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5245 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5246
5247 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5248 current_originators);
5249
5250 /* Transitively add all originators' originators. */
5251 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5252 if (INSN_ORIGINATORS_BY_UID (uid))
5253 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5254 INSN_ORIGINATORS_BY_UID (uid));
5255 }
5256
5257 return should_move;
5258 }
5259
5260
5261 /* Debug a DFA state as an array of bytes. */
5262 static void
5263 debug_state (state_t state)
5264 {
5265 unsigned char *p;
5266 unsigned int i, size = dfa_state_size;
5267
5268 sel_print ("state (%u):", size);
5269 for (i = 0, p = (unsigned char *) state; i < size; i++)
5270 sel_print (" %d", p[i]);
5271 sel_print ("\n");
5272 }
5273
5274 /* Advance state on FENCE with INSN. Return true if INSN is
5275 an ASM, and we should advance state once more. */
5276 static bool
5277 advance_state_on_fence (fence_t fence, insn_t insn)
5278 {
5279 bool asm_p;
5280
5281 if (recog_memoized (insn) >= 0)
5282 {
5283 int res;
5284 state_t temp_state = alloca (dfa_state_size);
5285
5286 gcc_assert (!INSN_ASM_P (insn));
5287 asm_p = false;
5288
5289 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5290 res = state_transition (FENCE_STATE (fence), insn);
5291 gcc_assert (res < 0);
5292
5293 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5294 {
5295 FENCE_ISSUED_INSNS (fence)++;
5296
5297 /* We should never issue more than issue_rate insns. */
5298 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5299 gcc_unreachable ();
5300 }
5301 }
5302 else
5303 {
5304 /* This could be an ASM insn which we'd like to schedule
5305 on the next cycle. */
5306 asm_p = INSN_ASM_P (insn);
5307 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5308 advance_one_cycle (fence);
5309 }
5310
5311 if (sched_verbose >= 2)
5312 debug_state (FENCE_STATE (fence));
5313 if (!DEBUG_INSN_P (insn))
5314 FENCE_STARTS_CYCLE_P (fence) = 0;
5315 FENCE_ISSUE_MORE (fence) = can_issue_more;
5316 return asm_p;
5317 }
5318
5319 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5320 is nonzero if we need to stall after issuing INSN. */
5321 static void
5322 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5323 {
5324 bool asm_p;
5325
5326 /* First, reflect that something is scheduled on this fence. */
5327 asm_p = advance_state_on_fence (fence, insn);
5328 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5329 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5330 if (SCHED_GROUP_P (insn))
5331 {
5332 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5333 SCHED_GROUP_P (insn) = 0;
5334 }
5335 else
5336 FENCE_SCHED_NEXT (fence) = NULL;
5337 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5338 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5339
5340 /* Set instruction scheduling info. This will be used in bundling,
5341 pipelining, tick computations etc. */
5342 ++INSN_SCHED_TIMES (insn);
5343 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5344 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5345 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5346 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5347
5348 /* This does not account for adjust_cost hooks, just add the biggest
5349 constant the hook may add to the latency. TODO: make this
5350 a target dependent constant. */
5351 INSN_READY_CYCLE (insn)
5352 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5353 ? 1
5354 : maximal_insn_latency (insn) + 1);
5355
5356 /* Change these fields last, as they're used above. */
5357 FENCE_AFTER_STALL_P (fence) = 0;
5358 if (asm_p || need_stall)
5359 advance_one_cycle (fence);
5360
5361 /* Indicate that we've scheduled something on this fence. */
5362 FENCE_SCHEDULED_P (fence) = true;
5363 scheduled_something_on_previous_fence = true;
5364
5365 /* Print debug information when insn's fields are updated. */
5366 if (sched_verbose >= 2)
5367 {
5368 sel_print ("Scheduling insn: ");
5369 dump_insn_1 (insn, 1);
5370 sel_print ("\n");
5371 }
5372 }
5373
5374 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5375 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5376 return it. */
5377 static blist_t *
5378 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5379 blist_t *bnds_tailp)
5380 {
5381 succ_iterator si;
5382 insn_t succ;
5383
5384 advance_deps_context (BND_DC (bnd), insn);
5385 FOR_EACH_SUCC_1 (succ, si, insn,
5386 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5387 {
5388 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5389
5390 ilist_add (&ptr, insn);
5391
5392 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5393 && is_ineligible_successor (succ, ptr))
5394 {
5395 ilist_clear (&ptr);
5396 continue;
5397 }
5398
5399 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5400 {
5401 if (sched_verbose >= 9)
5402 sel_print ("Updating fence insn from %i to %i\n",
5403 INSN_UID (insn), INSN_UID (succ));
5404 FENCE_INSN (fence) = succ;
5405 }
5406 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5407 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5408 }
5409
5410 blist_remove (bndsp);
5411 return bnds_tailp;
5412 }
5413
5414 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5415 static insn_t
5416 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5417 {
5418 av_set_t expr_seq;
5419 expr_t c_expr = XALLOCA (expr_def);
5420 insn_t place_to_insert;
5421 insn_t insn;
5422 bool should_move;
5423
5424 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5425
5426 /* In case of scheduling a jump skipping some other instructions,
5427 prepare CFG. After this, jump is at the boundary and can be
5428 scheduled as usual insn by MOVE_OP. */
5429 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5430 {
5431 insn = EXPR_INSN_RTX (expr_vliw);
5432
5433 /* Speculative jumps are not handled. */
5434 if (insn != BND_TO (bnd)
5435 && !sel_insn_is_speculation_check (insn))
5436 move_cond_jump (insn, bnd);
5437 }
5438
5439 /* Find a place for C_EXPR to schedule. */
5440 place_to_insert = prepare_place_to_insert (bnd);
5441 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5442 clear_expr (c_expr);
5443
5444 /* Add the instruction. The corner case to care about is when
5445 the expr_seq set has more than one expr, and we chose the one that
5446 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5447 we can't use it. Generate the new vinsn. */
5448 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5449 {
5450 vinsn_t vinsn_new;
5451
5452 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5453 change_vinsn_in_expr (expr_vliw, vinsn_new);
5454 should_move = false;
5455 }
5456 if (should_move)
5457 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5458 else
5459 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5460 place_to_insert);
5461
5462 /* Return the nops generated for preserving of data sets back
5463 into pool. */
5464 if (INSN_NOP_P (place_to_insert))
5465 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5466 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5467
5468 av_set_clear (&expr_seq);
5469
5470 /* Save the expression scheduled so to reset target availability if we'll
5471 meet it later on the same fence. */
5472 if (EXPR_WAS_RENAMED (expr_vliw))
5473 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5474
5475 /* Check that the recent movement didn't destroyed loop
5476 structure. */
5477 gcc_assert (!pipelining_p
5478 || current_loop_nest == NULL
5479 || loop_latch_edge (current_loop_nest));
5480 return insn;
5481 }
5482
5483 /* Stall for N cycles on FENCE. */
5484 static void
5485 stall_for_cycles (fence_t fence, int n)
5486 {
5487 int could_more;
5488
5489 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5490 while (n--)
5491 advance_one_cycle (fence);
5492 if (could_more)
5493 FENCE_AFTER_STALL_P (fence) = 1;
5494 }
5495
5496 /* Gather a parallel group of insns at FENCE and assign their seqno
5497 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5498 list for later recalculation of seqnos. */
5499 static void
5500 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5501 {
5502 blist_t bnds = NULL, *bnds_tailp;
5503 av_set_t av_vliw = NULL;
5504 insn_t insn = FENCE_INSN (fence);
5505
5506 if (sched_verbose >= 2)
5507 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5508 INSN_UID (insn), FENCE_CYCLE (fence));
5509
5510 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5511 bnds_tailp = &BLIST_NEXT (bnds);
5512 set_target_context (FENCE_TC (fence));
5513 can_issue_more = FENCE_ISSUE_MORE (fence);
5514 target_bb = INSN_BB (insn);
5515
5516 /* Do while we can add any operation to the current group. */
5517 do
5518 {
5519 blist_t *bnds_tailp1, *bndsp;
5520 expr_t expr_vliw;
5521 int need_stall = false;
5522 int was_stall = 0, scheduled_insns = 0;
5523 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5524 int max_stall = pipelining_p ? 1 : 3;
5525 bool last_insn_was_debug = false;
5526 bool was_debug_bb_end_p = false;
5527
5528 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5529 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5530 remove_insns_for_debug (bnds, &av_vliw);
5531
5532 /* Return early if we have nothing to schedule. */
5533 if (av_vliw == NULL)
5534 break;
5535
5536 /* Choose the best expression and, if needed, destination register
5537 for it. */
5538 do
5539 {
5540 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5541 if (! expr_vliw && need_stall)
5542 {
5543 /* All expressions required a stall. Do not recompute av sets
5544 as we'll get the same answer (modulo the insns between
5545 the fence and its boundary, which will not be available for
5546 pipelining).
5547 If we are going to stall for too long, break to recompute av
5548 sets and bring more insns for pipelining. */
5549 was_stall++;
5550 if (need_stall <= 3)
5551 stall_for_cycles (fence, need_stall);
5552 else
5553 {
5554 stall_for_cycles (fence, 1);
5555 break;
5556 }
5557 }
5558 }
5559 while (! expr_vliw && need_stall);
5560
5561 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5562 if (!expr_vliw)
5563 {
5564 av_set_clear (&av_vliw);
5565 break;
5566 }
5567
5568 bndsp = &bnds;
5569 bnds_tailp1 = bnds_tailp;
5570
5571 do
5572 /* This code will be executed only once until we'd have several
5573 boundaries per fence. */
5574 {
5575 bnd_t bnd = BLIST_BND (*bndsp);
5576
5577 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5578 {
5579 bndsp = &BLIST_NEXT (*bndsp);
5580 continue;
5581 }
5582
5583 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5584 last_insn_was_debug = DEBUG_INSN_P (insn);
5585 if (last_insn_was_debug)
5586 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5587 update_fence_and_insn (fence, insn, need_stall);
5588 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5589
5590 /* Add insn to the list of scheduled on this cycle instructions. */
5591 ilist_add (*scheduled_insns_tailpp, insn);
5592 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5593 }
5594 while (*bndsp != *bnds_tailp1);
5595
5596 av_set_clear (&av_vliw);
5597 if (!last_insn_was_debug)
5598 scheduled_insns++;
5599
5600 /* We currently support information about candidate blocks only for
5601 one 'target_bb' block. Hence we can't schedule after jump insn,
5602 as this will bring two boundaries and, hence, necessity to handle
5603 information for two or more blocks concurrently. */
5604 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5605 || (was_stall
5606 && (was_stall >= max_stall
5607 || scheduled_insns >= max_insns)))
5608 break;
5609 }
5610 while (bnds);
5611
5612 gcc_assert (!FENCE_BNDS (fence));
5613
5614 /* Update boundaries of the FENCE. */
5615 while (bnds)
5616 {
5617 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5618
5619 if (ptr)
5620 {
5621 insn = ILIST_INSN (ptr);
5622
5623 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5624 ilist_add (&FENCE_BNDS (fence), insn);
5625 }
5626
5627 blist_remove (&bnds);
5628 }
5629
5630 /* Update target context on the fence. */
5631 reset_target_context (FENCE_TC (fence), false);
5632 }
5633
5634 /* All exprs in ORIG_OPS must have the same destination register or memory.
5635 Return that destination. */
5636 static rtx
5637 get_dest_from_orig_ops (av_set_t orig_ops)
5638 {
5639 rtx dest = NULL_RTX;
5640 av_set_iterator av_it;
5641 expr_t expr;
5642 bool first_p = true;
5643
5644 FOR_EACH_EXPR (expr, av_it, orig_ops)
5645 {
5646 rtx x = EXPR_LHS (expr);
5647
5648 if (first_p)
5649 {
5650 first_p = false;
5651 dest = x;
5652 }
5653 else
5654 gcc_assert (dest == x
5655 || (dest != NULL_RTX && x != NULL_RTX
5656 && rtx_equal_p (dest, x)));
5657 }
5658
5659 return dest;
5660 }
5661
5662 /* Update data sets for the bookkeeping block and record those expressions
5663 which become no longer available after inserting this bookkeeping. */
5664 static void
5665 update_and_record_unavailable_insns (basic_block book_block)
5666 {
5667 av_set_iterator i;
5668 av_set_t old_av_set = NULL;
5669 expr_t cur_expr;
5670 rtx_insn *bb_end = sel_bb_end (book_block);
5671
5672 /* First, get correct liveness in the bookkeeping block. The problem is
5673 the range between the bookeeping insn and the end of block. */
5674 update_liveness_on_insn (bb_end);
5675 if (control_flow_insn_p (bb_end))
5676 update_liveness_on_insn (PREV_INSN (bb_end));
5677
5678 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5679 fence above, where we may choose to schedule an insn which is
5680 actually blocked from moving up with the bookkeeping we create here. */
5681 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5682 {
5683 old_av_set = av_set_copy (BB_AV_SET (book_block));
5684 update_data_sets (sel_bb_head (book_block));
5685
5686 /* Traverse all the expressions in the old av_set and check whether
5687 CUR_EXPR is in new AV_SET. */
5688 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5689 {
5690 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5691 EXPR_VINSN (cur_expr));
5692
5693 if (! new_expr
5694 /* In this case, we can just turn off the E_T_A bit, but we can't
5695 represent this information with the current vector. */
5696 || EXPR_TARGET_AVAILABLE (new_expr)
5697 != EXPR_TARGET_AVAILABLE (cur_expr))
5698 /* Unfortunately, the below code could be also fired up on
5699 separable insns, e.g. when moving insns through the new
5700 speculation check as in PR 53701. */
5701 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5702 }
5703
5704 av_set_clear (&old_av_set);
5705 }
5706 }
5707
5708 /* The main effect of this function is that sparams->c_expr is merged
5709 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5710 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5711 lparams->c_expr_merged is copied back to sparams->c_expr after all
5712 successors has been traversed. lparams->c_expr_local is an expr allocated
5713 on stack in the caller function, and is used if there is more than one
5714 successor.
5715
5716 SUCC is one of the SUCCS_NORMAL successors of INSN,
5717 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5718 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5719 static void
5720 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5721 insn_t succ ATTRIBUTE_UNUSED,
5722 int moveop_drv_call_res,
5723 cmpd_local_params_p lparams, void *static_params)
5724 {
5725 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5726
5727 /* Nothing to do, if original expr wasn't found below. */
5728 if (moveop_drv_call_res != 1)
5729 return;
5730
5731 /* If this is a first successor. */
5732 if (!lparams->c_expr_merged)
5733 {
5734 lparams->c_expr_merged = sparams->c_expr;
5735 sparams->c_expr = lparams->c_expr_local;
5736 }
5737 else
5738 {
5739 /* We must merge all found expressions to get reasonable
5740 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5741 do so then we can first find the expr with epsilon
5742 speculation success probability and only then with the
5743 good probability. As a result the insn will get epsilon
5744 probability and will never be scheduled because of
5745 weakness_cutoff in find_best_expr.
5746
5747 We call merge_expr_data here instead of merge_expr
5748 because due to speculation C_EXPR and X may have the
5749 same insns with different speculation types. And as of
5750 now such insns are considered non-equal.
5751
5752 However, EXPR_SCHED_TIMES is different -- we must get
5753 SCHED_TIMES from a real insn, not a bookkeeping copy.
5754 We force this here. Instead, we may consider merging
5755 SCHED_TIMES to the maximum instead of minimum in the
5756 below function. */
5757 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5758
5759 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5760 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5761 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5762
5763 clear_expr (sparams->c_expr);
5764 }
5765 }
5766
5767 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5768
5769 SUCC is one of the SUCCS_NORMAL successors of INSN,
5770 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5771 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5772 STATIC_PARAMS contain USED_REGS set. */
5773 static void
5774 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5775 int moveop_drv_call_res,
5776 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5777 void *static_params)
5778 {
5779 regset succ_live;
5780 fur_static_params_p sparams = (fur_static_params_p) static_params;
5781
5782 /* Here we compute live regsets only for branches that do not lie
5783 on the code motion paths. These branches correspond to value
5784 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5785 for such branches code_motion_path_driver is not called. */
5786 if (moveop_drv_call_res != 0)
5787 return;
5788
5789 /* Mark all registers that do not meet the following condition:
5790 (3) not live on the other path of any conditional branch
5791 that is passed by the operation, in case original
5792 operations are not present on both paths of the
5793 conditional branch. */
5794 succ_live = compute_live (succ);
5795 IOR_REG_SET (sparams->used_regs, succ_live);
5796 }
5797
5798 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5799 into SP->CEXPR. */
5800 static void
5801 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5802 {
5803 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5804
5805 sp->c_expr = lp->c_expr_merged;
5806 }
5807
5808 /* Track bookkeeping copies created, insns scheduled, and blocks for
5809 rescheduling when INSN is found by move_op. */
5810 static void
5811 track_scheduled_insns_and_blocks (rtx_insn *insn)
5812 {
5813 /* Even if this insn can be a copy that will be removed during current move_op,
5814 we still need to count it as an originator. */
5815 bitmap_set_bit (current_originators, INSN_UID (insn));
5816
5817 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5818 {
5819 /* Note that original block needs to be rescheduled, as we pulled an
5820 instruction out of it. */
5821 if (INSN_SCHED_TIMES (insn) > 0)
5822 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5823 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5824 num_insns_scheduled++;
5825 }
5826
5827 /* For instructions we must immediately remove insn from the
5828 stream, so subsequent update_data_sets () won't include this
5829 insn into av_set.
5830 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5831 if (INSN_UID (insn) > max_uid_before_move_op)
5832 stat_bookkeeping_copies--;
5833 }
5834
5835 /* Emit a register-register copy for INSN if needed. Return true if
5836 emitted one. PARAMS is the move_op static parameters. */
5837 static bool
5838 maybe_emit_renaming_copy (rtx_insn *insn,
5839 moveop_static_params_p params)
5840 {
5841 bool insn_emitted = false;
5842 rtx cur_reg;
5843
5844 /* Bail out early when expression can not be renamed at all. */
5845 if (!EXPR_SEPARABLE_P (params->c_expr))
5846 return false;
5847
5848 cur_reg = expr_dest_reg (params->c_expr);
5849 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5850
5851 /* If original operation has expr and the register chosen for
5852 that expr is not original operation's dest reg, substitute
5853 operation's right hand side with the register chosen. */
5854 if (REGNO (params->dest) != REGNO (cur_reg))
5855 {
5856 insn_t reg_move_insn, reg_move_insn_rtx;
5857
5858 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5859 params->dest);
5860 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5861 INSN_EXPR (insn),
5862 INSN_SEQNO (insn),
5863 insn);
5864 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5865 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5866
5867 insn_emitted = true;
5868 params->was_renamed = true;
5869 }
5870
5871 return insn_emitted;
5872 }
5873
5874 /* Emit a speculative check for INSN speculated as EXPR if needed.
5875 Return true if we've emitted one. PARAMS is the move_op static
5876 parameters. */
5877 static bool
5878 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5879 moveop_static_params_p params)
5880 {
5881 bool insn_emitted = false;
5882 insn_t x;
5883 ds_t check_ds;
5884
5885 check_ds = get_spec_check_type_for_insn (insn, expr);
5886 if (check_ds != 0)
5887 {
5888 /* A speculation check should be inserted. */
5889 x = create_speculation_check (params->c_expr, check_ds, insn);
5890 insn_emitted = true;
5891 }
5892 else
5893 {
5894 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5895 x = insn;
5896 }
5897
5898 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5899 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5900 return insn_emitted;
5901 }
5902
5903 /* Handle transformations that leave an insn in place of original
5904 insn such as renaming/speculation. Return true if one of such
5905 transformations actually happened, and we have emitted this insn. */
5906 static bool
5907 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5908 moveop_static_params_p params)
5909 {
5910 bool insn_emitted = false;
5911
5912 insn_emitted = maybe_emit_renaming_copy (insn, params);
5913 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5914
5915 return insn_emitted;
5916 }
5917
5918 /* If INSN is the only insn in the basic block (not counting JUMP,
5919 which may be a jump to next insn, and DEBUG_INSNs), we want to
5920 leave a NOP there till the return to fill_insns. */
5921
5922 static bool
5923 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5924 {
5925 insn_t bb_head, bb_end, bb_next, in_next;
5926 basic_block bb = BLOCK_FOR_INSN (insn);
5927
5928 bb_head = sel_bb_head (bb);
5929 bb_end = sel_bb_end (bb);
5930
5931 if (bb_head == bb_end)
5932 return true;
5933
5934 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5935 bb_head = NEXT_INSN (bb_head);
5936
5937 if (bb_head == bb_end)
5938 return true;
5939
5940 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5941 bb_end = PREV_INSN (bb_end);
5942
5943 if (bb_head == bb_end)
5944 return true;
5945
5946 bb_next = NEXT_INSN (bb_head);
5947 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5948 bb_next = NEXT_INSN (bb_next);
5949
5950 if (bb_next == bb_end && JUMP_P (bb_end))
5951 return true;
5952
5953 in_next = NEXT_INSN (insn);
5954 while (DEBUG_INSN_P (in_next))
5955 in_next = NEXT_INSN (in_next);
5956
5957 if (IN_CURRENT_FENCE_P (in_next))
5958 return true;
5959
5960 return false;
5961 }
5962
5963 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5964 is not removed but reused when INSN is re-emitted. */
5965 static void
5966 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5967 {
5968 /* If there's only one insn in the BB, make sure that a nop is
5969 inserted into it, so the basic block won't disappear when we'll
5970 delete INSN below with sel_remove_insn. It should also survive
5971 till the return to fill_insns. */
5972 if (need_nop_to_preserve_insn_bb (insn))
5973 {
5974 insn_t nop = get_nop_from_pool (insn);
5975 gcc_assert (INSN_NOP_P (nop));
5976 vec_temp_moveop_nops.safe_push (nop);
5977 }
5978
5979 sel_remove_insn (insn, only_disconnect, false);
5980 }
5981
5982 /* This function is called when original expr is found.
5983 INSN - current insn traversed, EXPR - the corresponding expr found.
5984 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5985 is static parameters of move_op. */
5986 static void
5987 move_op_orig_expr_found (insn_t insn, expr_t expr,
5988 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5989 void *static_params)
5990 {
5991 bool only_disconnect;
5992 moveop_static_params_p params = (moveop_static_params_p) static_params;
5993
5994 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5995 track_scheduled_insns_and_blocks (insn);
5996 handle_emitting_transformations (insn, expr, params);
5997 only_disconnect = params->uid == INSN_UID (insn);
5998
5999 /* Mark that we've disconnected an insn. */
6000 if (only_disconnect)
6001 params->uid = -1;
6002 remove_insn_from_stream (insn, only_disconnect);
6003 }
6004
6005 /* The function is called when original expr is found.
6006 INSN - current insn traversed, EXPR - the corresponding expr found,
6007 crosses_call and original_insns in STATIC_PARAMS are updated. */
6008 static void
6009 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6010 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6011 void *static_params)
6012 {
6013 fur_static_params_p params = (fur_static_params_p) static_params;
6014 regset tmp;
6015
6016 if (CALL_P (insn))
6017 params->crosses_call = true;
6018
6019 def_list_add (params->original_insns, insn, params->crosses_call);
6020
6021 /* Mark the registers that do not meet the following condition:
6022 (2) not among the live registers of the point
6023 immediately following the first original operation on
6024 a given downward path, except for the original target
6025 register of the operation. */
6026 tmp = get_clear_regset_from_pool ();
6027 compute_live_below_insn (insn, tmp);
6028 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6029 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6030 IOR_REG_SET (params->used_regs, tmp);
6031 return_regset_to_pool (tmp);
6032
6033 /* (*1) We need to add to USED_REGS registers that are read by
6034 INSN's lhs. This may lead to choosing wrong src register.
6035 E.g. (scheduling const expr enabled):
6036
6037 429: ax=0x0 <- Can't use AX for this expr (0x0)
6038 433: dx=[bp-0x18]
6039 427: [ax+dx+0x1]=ax
6040 REG_DEAD: ax
6041 168: di=dx
6042 REG_DEAD: dx
6043 */
6044 /* FIXME: see comment above and enable MEM_P
6045 in vinsn_separable_p. */
6046 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6047 || !MEM_P (INSN_LHS (insn)));
6048 }
6049
6050 /* This function is called on the ascending pass, before returning from
6051 current basic block. */
6052 static void
6053 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6054 void *static_params)
6055 {
6056 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6057 basic_block book_block = NULL;
6058
6059 /* When we have removed the boundary insn for scheduling, which also
6060 happened to be the end insn in its bb, we don't need to update sets. */
6061 if (!lparams->removed_last_insn
6062 && lparams->e1
6063 && sel_bb_head_p (insn))
6064 {
6065 /* We should generate bookkeeping code only if we are not at the
6066 top level of the move_op. */
6067 if (sel_num_cfg_preds_gt_1 (insn))
6068 book_block = generate_bookkeeping_insn (sparams->c_expr,
6069 lparams->e1, lparams->e2);
6070 /* Update data sets for the current insn. */
6071 update_data_sets (insn);
6072 }
6073
6074 /* If bookkeeping code was inserted, we need to update av sets of basic
6075 block that received bookkeeping. After generation of bookkeeping insn,
6076 bookkeeping block does not contain valid av set because we are not following
6077 the original algorithm in every detail with regards to e.g. renaming
6078 simple reg-reg copies. Consider example:
6079
6080 bookkeeping block scheduling fence
6081 \ /
6082 \ join /
6083 ----------
6084 | |
6085 ----------
6086 / \
6087 / \
6088 r1 := r2 r1 := r3
6089
6090 We try to schedule insn "r1 := r3" on the current
6091 scheduling fence. Also, note that av set of bookkeeping block
6092 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6093 been scheduled, the CFG is as follows:
6094
6095 r1 := r3 r1 := r3
6096 bookkeeping block scheduling fence
6097 \ /
6098 \ join /
6099 ----------
6100 | |
6101 ----------
6102 / \
6103 / \
6104 r1 := r2
6105
6106 Here, insn "r1 := r3" was scheduled at the current scheduling point
6107 and bookkeeping code was generated at the bookeeping block. This
6108 way insn "r1 := r2" is no longer available as a whole instruction
6109 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6110 This situation is handled by calling update_data_sets.
6111
6112 Since update_data_sets is called only on the bookkeeping block, and
6113 it also may have predecessors with av_sets, containing instructions that
6114 are no longer available, we save all such expressions that become
6115 unavailable during data sets update on the bookkeeping block in
6116 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6117 expressions for scheduling. This allows us to avoid recomputation of
6118 av_sets outside the code motion path. */
6119
6120 if (book_block)
6121 update_and_record_unavailable_insns (book_block);
6122
6123 /* If INSN was previously marked for deletion, it's time to do it. */
6124 if (lparams->removed_last_insn)
6125 insn = PREV_INSN (insn);
6126
6127 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6128 kill a block with a single nop in which the insn should be emitted. */
6129 if (lparams->e1)
6130 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6131 }
6132
6133 /* This function is called on the ascending pass, before returning from the
6134 current basic block. */
6135 static void
6136 fur_at_first_insn (insn_t insn,
6137 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6138 void *static_params ATTRIBUTE_UNUSED)
6139 {
6140 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6141 || AV_LEVEL (insn) == -1);
6142 }
6143
6144 /* Called on the backward stage of recursion to call moveup_expr for insn
6145 and sparams->c_expr. */
6146 static void
6147 move_op_ascend (insn_t insn, void *static_params)
6148 {
6149 enum MOVEUP_EXPR_CODE res;
6150 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6151
6152 if (! INSN_NOP_P (insn))
6153 {
6154 res = moveup_expr_cached (sparams->c_expr, insn, false);
6155 gcc_assert (res != MOVEUP_EXPR_NULL);
6156 }
6157
6158 /* Update liveness for this insn as it was invalidated. */
6159 update_liveness_on_insn (insn);
6160 }
6161
6162 /* This function is called on enter to the basic block.
6163 Returns TRUE if this block already have been visited and
6164 code_motion_path_driver should return 1, FALSE otherwise. */
6165 static int
6166 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6167 void *static_params, bool visited_p)
6168 {
6169 fur_static_params_p sparams = (fur_static_params_p) static_params;
6170
6171 if (visited_p)
6172 {
6173 /* If we have found something below this block, there should be at
6174 least one insn in ORIGINAL_INSNS. */
6175 gcc_assert (*sparams->original_insns);
6176
6177 /* Adjust CROSSES_CALL, since we may have come to this block along
6178 different path. */
6179 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6180 |= sparams->crosses_call;
6181 }
6182 else
6183 local_params->old_original_insns = *sparams->original_insns;
6184
6185 return 1;
6186 }
6187
6188 /* Same as above but for move_op. */
6189 static int
6190 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6191 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6192 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6193 {
6194 if (visited_p)
6195 return -1;
6196 return 1;
6197 }
6198
6199 /* This function is called while descending current basic block if current
6200 insn is not the original EXPR we're searching for.
6201
6202 Return value: FALSE, if code_motion_path_driver should perform a local
6203 cleanup and return 0 itself;
6204 TRUE, if code_motion_path_driver should continue. */
6205 static bool
6206 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6207 void *static_params)
6208 {
6209 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6210
6211 #ifdef ENABLE_CHECKING
6212 sparams->failed_insn = insn;
6213 #endif
6214
6215 /* If we're scheduling separate expr, in order to generate correct code
6216 we need to stop the search at bookkeeping code generated with the
6217 same destination register or memory. */
6218 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6219 return false;
6220 return true;
6221 }
6222
6223 /* This function is called while descending current basic block if current
6224 insn is not the original EXPR we're searching for.
6225
6226 Return value: TRUE (code_motion_path_driver should continue). */
6227 static bool
6228 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6229 {
6230 bool mutexed;
6231 expr_t r;
6232 av_set_iterator avi;
6233 fur_static_params_p sparams = (fur_static_params_p) static_params;
6234
6235 if (CALL_P (insn))
6236 sparams->crosses_call = true;
6237 else if (DEBUG_INSN_P (insn))
6238 return true;
6239
6240 /* If current insn we are looking at cannot be executed together
6241 with original insn, then we can skip it safely.
6242
6243 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6244 INSN = (!p6) r14 = r14 + 1;
6245
6246 Here we can schedule ORIG_OP with lhs = r14, though only
6247 looking at the set of used and set registers of INSN we must
6248 forbid it. So, add set/used in INSN registers to the
6249 untouchable set only if there is an insn in ORIG_OPS that can
6250 affect INSN. */
6251 mutexed = true;
6252 FOR_EACH_EXPR (r, avi, orig_ops)
6253 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6254 {
6255 mutexed = false;
6256 break;
6257 }
6258
6259 /* Mark all registers that do not meet the following condition:
6260 (1) Not set or read on any path from xi to an instance of the
6261 original operation. */
6262 if (!mutexed)
6263 {
6264 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6265 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6266 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6267 }
6268
6269 return true;
6270 }
6271
6272 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6273 struct code_motion_path_driver_info_def move_op_hooks = {
6274 move_op_on_enter,
6275 move_op_orig_expr_found,
6276 move_op_orig_expr_not_found,
6277 move_op_merge_succs,
6278 move_op_after_merge_succs,
6279 move_op_ascend,
6280 move_op_at_first_insn,
6281 SUCCS_NORMAL,
6282 "move_op"
6283 };
6284
6285 /* Hooks and data to perform find_used_regs operations
6286 with code_motion_path_driver. */
6287 struct code_motion_path_driver_info_def fur_hooks = {
6288 fur_on_enter,
6289 fur_orig_expr_found,
6290 fur_orig_expr_not_found,
6291 fur_merge_succs,
6292 NULL, /* fur_after_merge_succs */
6293 NULL, /* fur_ascend */
6294 fur_at_first_insn,
6295 SUCCS_ALL,
6296 "find_used_regs"
6297 };
6298
6299 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6300 code_motion_path_driver is called recursively. Original operation
6301 was found at least on one path that is starting with one of INSN's
6302 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6303 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6304 of either move_op or find_used_regs depending on the caller.
6305
6306 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6307 know for sure at this point. */
6308 static int
6309 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6310 ilist_t path, void *static_params)
6311 {
6312 int res = 0;
6313 succ_iterator succ_i;
6314 insn_t succ;
6315 basic_block bb;
6316 int old_index;
6317 unsigned old_succs;
6318
6319 struct cmpd_local_params lparams;
6320 expr_def _x;
6321
6322 lparams.c_expr_local = &_x;
6323 lparams.c_expr_merged = NULL;
6324
6325 /* We need to process only NORMAL succs for move_op, and collect live
6326 registers from ALL branches (including those leading out of the
6327 region) for find_used_regs.
6328
6329 In move_op, there can be a case when insn's bb number has changed
6330 due to created bookkeeping. This happens very rare, as we need to
6331 move expression from the beginning to the end of the same block.
6332 Rescan successors in this case. */
6333
6334 rescan:
6335 bb = BLOCK_FOR_INSN (insn);
6336 old_index = bb->index;
6337 old_succs = EDGE_COUNT (bb->succs);
6338
6339 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6340 {
6341 int b;
6342
6343 lparams.e1 = succ_i.e1;
6344 lparams.e2 = succ_i.e2;
6345
6346 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6347 current region). */
6348 if (succ_i.current_flags == SUCCS_NORMAL)
6349 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6350 static_params);
6351 else
6352 b = 0;
6353
6354 /* Merge c_expres found or unify live register sets from different
6355 successors. */
6356 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6357 static_params);
6358 if (b == 1)
6359 res = b;
6360 else if (b == -1 && res != 1)
6361 res = b;
6362
6363 /* We have simplified the control flow below this point. In this case,
6364 the iterator becomes invalid. We need to try again.
6365 If we have removed the insn itself, it could be only an
6366 unconditional jump. Thus, do not rescan but break immediately --
6367 we have already visited the only successor block. */
6368 if (!BLOCK_FOR_INSN (insn))
6369 {
6370 if (sched_verbose >= 6)
6371 sel_print ("Not doing rescan: already visited the only successor"
6372 " of block %d\n", old_index);
6373 break;
6374 }
6375 if (BLOCK_FOR_INSN (insn)->index != old_index
6376 || EDGE_COUNT (bb->succs) != old_succs)
6377 {
6378 if (sched_verbose >= 6)
6379 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6380 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6381 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6382 goto rescan;
6383 }
6384 }
6385
6386 #ifdef ENABLE_CHECKING
6387 /* Here, RES==1 if original expr was found at least for one of the
6388 successors. After the loop, RES may happen to have zero value
6389 only if at some point the expr searched is present in av_set, but is
6390 not found below. In most cases, this situation is an error.
6391 The exception is when the original operation is blocked by
6392 bookkeeping generated for another fence or for another path in current
6393 move_op. */
6394 gcc_assert (res == 1
6395 || (res == 0
6396 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6397 static_params))
6398 || res == -1);
6399 #endif
6400
6401 /* Merge data, clean up, etc. */
6402 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6403 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6404
6405 return res;
6406 }
6407
6408
6409 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6410 is the pointer to the av set with expressions we were looking for,
6411 PATH_P is the pointer to the traversed path. */
6412 static inline void
6413 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6414 {
6415 ilist_remove (path_p);
6416 av_set_clear (orig_ops_p);
6417 }
6418
6419 /* The driver function that implements move_op or find_used_regs
6420 functionality dependent whether code_motion_path_driver_INFO is set to
6421 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6422 of code (CFG traversal etc) that are shared among both functions. INSN
6423 is the insn we're starting the search from, ORIG_OPS are the expressions
6424 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6425 parameters of the driver, and STATIC_PARAMS are static parameters of
6426 the caller.
6427
6428 Returns whether original instructions were found. Note that top-level
6429 code_motion_path_driver always returns true. */
6430 static int
6431 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6432 cmpd_local_params_p local_params_in,
6433 void *static_params)
6434 {
6435 expr_t expr = NULL;
6436 basic_block bb = BLOCK_FOR_INSN (insn);
6437 insn_t first_insn, bb_tail, before_first;
6438 bool removed_last_insn = false;
6439
6440 if (sched_verbose >= 6)
6441 {
6442 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6443 dump_insn (insn);
6444 sel_print (",");
6445 dump_av_set (orig_ops);
6446 sel_print (")\n");
6447 }
6448
6449 gcc_assert (orig_ops);
6450
6451 /* If no original operations exist below this insn, return immediately. */
6452 if (is_ineligible_successor (insn, path))
6453 {
6454 if (sched_verbose >= 6)
6455 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6456 return false;
6457 }
6458
6459 /* The block can have invalid av set, in which case it was created earlier
6460 during move_op. Return immediately. */
6461 if (sel_bb_head_p (insn))
6462 {
6463 if (! AV_SET_VALID_P (insn))
6464 {
6465 if (sched_verbose >= 6)
6466 sel_print ("Returned from block %d as it had invalid av set\n",
6467 bb->index);
6468 return false;
6469 }
6470
6471 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6472 {
6473 /* We have already found an original operation on this branch, do not
6474 go any further and just return TRUE here. If we don't stop here,
6475 function can have exponential behaviour even on the small code
6476 with many different paths (e.g. with data speculation and
6477 recovery blocks). */
6478 if (sched_verbose >= 6)
6479 sel_print ("Block %d already visited in this traversal\n", bb->index);
6480 if (code_motion_path_driver_info->on_enter)
6481 return code_motion_path_driver_info->on_enter (insn,
6482 local_params_in,
6483 static_params,
6484 true);
6485 }
6486 }
6487
6488 if (code_motion_path_driver_info->on_enter)
6489 code_motion_path_driver_info->on_enter (insn, local_params_in,
6490 static_params, false);
6491 orig_ops = av_set_copy (orig_ops);
6492
6493 /* Filter the orig_ops set. */
6494 if (AV_SET_VALID_P (insn))
6495 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6496
6497 /* If no more original ops, return immediately. */
6498 if (!orig_ops)
6499 {
6500 if (sched_verbose >= 6)
6501 sel_print ("No intersection with av set of block %d\n", bb->index);
6502 return false;
6503 }
6504
6505 /* For non-speculative insns we have to leave only one form of the
6506 original operation, because if we don't, we may end up with
6507 different C_EXPRes and, consequently, with bookkeepings for different
6508 expression forms along the same code motion path. That may lead to
6509 generation of incorrect code. So for each code motion we stick to
6510 the single form of the instruction, except for speculative insns
6511 which we need to keep in different forms with all speculation
6512 types. */
6513 av_set_leave_one_nonspec (&orig_ops);
6514
6515 /* It is not possible that all ORIG_OPS are filtered out. */
6516 gcc_assert (orig_ops);
6517
6518 /* It is enough to place only heads and tails of visited basic blocks into
6519 the PATH. */
6520 ilist_add (&path, insn);
6521 first_insn = insn;
6522 bb_tail = sel_bb_end (bb);
6523
6524 /* Descend the basic block in search of the original expr; this part
6525 corresponds to the part of the original move_op procedure executed
6526 before the recursive call. */
6527 for (;;)
6528 {
6529 /* Look at the insn and decide if it could be an ancestor of currently
6530 scheduling operation. If it is so, then the insn "dest = op" could
6531 either be replaced with "dest = reg", because REG now holds the result
6532 of OP, or just removed, if we've scheduled the insn as a whole.
6533
6534 If this insn doesn't contain currently scheduling OP, then proceed
6535 with searching and look at its successors. Operations we're searching
6536 for could have changed when moving up through this insn via
6537 substituting. In this case, perform unsubstitution on them first.
6538
6539 When traversing the DAG below this insn is finished, insert
6540 bookkeeping code, if the insn is a joint point, and remove
6541 leftovers. */
6542
6543 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6544 if (expr)
6545 {
6546 insn_t last_insn = PREV_INSN (insn);
6547
6548 /* We have found the original operation. */
6549 if (sched_verbose >= 6)
6550 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6551
6552 code_motion_path_driver_info->orig_expr_found
6553 (insn, expr, local_params_in, static_params);
6554
6555 /* Step back, so on the way back we'll start traversing from the
6556 previous insn (or we'll see that it's bb_note and skip that
6557 loop). */
6558 if (insn == first_insn)
6559 {
6560 first_insn = NEXT_INSN (last_insn);
6561 removed_last_insn = sel_bb_end_p (last_insn);
6562 }
6563 insn = last_insn;
6564 break;
6565 }
6566 else
6567 {
6568 /* We haven't found the original expr, continue descending the basic
6569 block. */
6570 if (code_motion_path_driver_info->orig_expr_not_found
6571 (insn, orig_ops, static_params))
6572 {
6573 /* Av set ops could have been changed when moving through this
6574 insn. To find them below it, we have to un-substitute them. */
6575 undo_transformations (&orig_ops, insn);
6576 }
6577 else
6578 {
6579 /* Clean up and return, if the hook tells us to do so. It may
6580 happen if we've encountered the previously created
6581 bookkeeping. */
6582 code_motion_path_driver_cleanup (&orig_ops, &path);
6583 return -1;
6584 }
6585
6586 gcc_assert (orig_ops);
6587 }
6588
6589 /* Stop at insn if we got to the end of BB. */
6590 if (insn == bb_tail)
6591 break;
6592
6593 insn = NEXT_INSN (insn);
6594 }
6595
6596 /* Here INSN either points to the insn before the original insn (may be
6597 bb_note, if original insn was a bb_head) or to the bb_end. */
6598 if (!expr)
6599 {
6600 int res;
6601 rtx_insn *last_insn = PREV_INSN (insn);
6602 bool added_to_path;
6603
6604 gcc_assert (insn == sel_bb_end (bb));
6605
6606 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6607 it's already in PATH then). */
6608 if (insn != first_insn)
6609 {
6610 ilist_add (&path, insn);
6611 added_to_path = true;
6612 }
6613 else
6614 added_to_path = false;
6615
6616 /* Process_successors should be able to find at least one
6617 successor for which code_motion_path_driver returns TRUE. */
6618 res = code_motion_process_successors (insn, orig_ops,
6619 path, static_params);
6620
6621 /* Jump in the end of basic block could have been removed or replaced
6622 during code_motion_process_successors, so recompute insn as the
6623 last insn in bb. */
6624 if (NEXT_INSN (last_insn) != insn)
6625 {
6626 insn = sel_bb_end (bb);
6627 first_insn = sel_bb_head (bb);
6628 }
6629
6630 /* Remove bb tail from path. */
6631 if (added_to_path)
6632 ilist_remove (&path);
6633
6634 if (res != 1)
6635 {
6636 /* This is the case when one of the original expr is no longer available
6637 due to bookkeeping created on this branch with the same register.
6638 In the original algorithm, which doesn't have update_data_sets call
6639 on a bookkeeping block, it would simply result in returning
6640 FALSE when we've encountered a previously generated bookkeeping
6641 insn in moveop_orig_expr_not_found. */
6642 code_motion_path_driver_cleanup (&orig_ops, &path);
6643 return res;
6644 }
6645 }
6646
6647 /* Don't need it any more. */
6648 av_set_clear (&orig_ops);
6649
6650 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6651 the beginning of the basic block. */
6652 before_first = PREV_INSN (first_insn);
6653 while (insn != before_first)
6654 {
6655 if (code_motion_path_driver_info->ascend)
6656 code_motion_path_driver_info->ascend (insn, static_params);
6657
6658 insn = PREV_INSN (insn);
6659 }
6660
6661 /* Now we're at the bb head. */
6662 insn = first_insn;
6663 ilist_remove (&path);
6664 local_params_in->removed_last_insn = removed_last_insn;
6665 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6666
6667 /* This should be the very last operation as at bb head we could change
6668 the numbering by creating bookkeeping blocks. */
6669 if (removed_last_insn)
6670 insn = PREV_INSN (insn);
6671
6672 /* If we have simplified the control flow and removed the first jump insn,
6673 there's no point in marking this block in the visited blocks bitmap. */
6674 if (BLOCK_FOR_INSN (insn))
6675 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6676 return true;
6677 }
6678
6679 /* Move up the operations from ORIG_OPS set traversing the dag starting
6680 from INSN. PATH represents the edges traversed so far.
6681 DEST is the register chosen for scheduling the current expr. Insert
6682 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6683 C_EXPR is how it looks like at the given cfg point.
6684 Set *SHOULD_MOVE to indicate whether we have only disconnected
6685 one of the insns found.
6686
6687 Returns whether original instructions were found, which is asserted
6688 to be true in the caller. */
6689 static bool
6690 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6691 rtx dest, expr_t c_expr, bool *should_move)
6692 {
6693 struct moveop_static_params sparams;
6694 struct cmpd_local_params lparams;
6695 int res;
6696
6697 /* Init params for code_motion_path_driver. */
6698 sparams.dest = dest;
6699 sparams.c_expr = c_expr;
6700 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6701 #ifdef ENABLE_CHECKING
6702 sparams.failed_insn = NULL;
6703 #endif
6704 sparams.was_renamed = false;
6705 lparams.e1 = NULL;
6706
6707 /* We haven't visited any blocks yet. */
6708 bitmap_clear (code_motion_visited_blocks);
6709
6710 /* Set appropriate hooks and data. */
6711 code_motion_path_driver_info = &move_op_hooks;
6712 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6713
6714 gcc_assert (res != -1);
6715
6716 if (sparams.was_renamed)
6717 EXPR_WAS_RENAMED (expr_vliw) = true;
6718
6719 *should_move = (sparams.uid == -1);
6720
6721 return res;
6722 }
6723 \f
6724
6725 /* Functions that work with regions. */
6726
6727 /* Current number of seqno used in init_seqno and init_seqno_1. */
6728 static int cur_seqno;
6729
6730 /* A helper for init_seqno. Traverse the region starting from BB and
6731 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6732 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6733 static void
6734 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6735 {
6736 int bbi = BLOCK_TO_BB (bb->index);
6737 insn_t insn;
6738 insn_t succ_insn;
6739 succ_iterator si;
6740
6741 rtx_note *note = bb_note (bb);
6742 bitmap_set_bit (visited_bbs, bbi);
6743 if (blocks_to_reschedule)
6744 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6745
6746 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6748 {
6749 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6750 int succ_bbi = BLOCK_TO_BB (succ->index);
6751
6752 gcc_assert (in_current_region_p (succ));
6753
6754 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6755 {
6756 gcc_assert (succ_bbi > bbi);
6757
6758 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6759 }
6760 else if (blocks_to_reschedule)
6761 bitmap_set_bit (forced_ebb_heads, succ->index);
6762 }
6763
6764 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6765 INSN_SEQNO (insn) = cur_seqno--;
6766 }
6767
6768 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6769 blocks on which we're rescheduling when pipelining, FROM is the block where
6770 traversing region begins (it may not be the head of the region when
6771 pipelining, but the head of the loop instead).
6772
6773 Returns the maximal seqno found. */
6774 static int
6775 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6776 {
6777 sbitmap visited_bbs;
6778 bitmap_iterator bi;
6779 unsigned bbi;
6780
6781 visited_bbs = sbitmap_alloc (current_nr_blocks);
6782
6783 if (blocks_to_reschedule)
6784 {
6785 bitmap_ones (visited_bbs);
6786 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6787 {
6788 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6789 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6790 }
6791 }
6792 else
6793 {
6794 bitmap_clear (visited_bbs);
6795 from = EBB_FIRST_BB (0);
6796 }
6797
6798 cur_seqno = sched_max_luid - 1;
6799 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6800
6801 /* cur_seqno may be positive if the number of instructions is less than
6802 sched_max_luid - 1 (when rescheduling or if some instructions have been
6803 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6804 gcc_assert (cur_seqno >= 0);
6805
6806 sbitmap_free (visited_bbs);
6807 return sched_max_luid - 1;
6808 }
6809
6810 /* Initialize scheduling parameters for current region. */
6811 static void
6812 sel_setup_region_sched_flags (void)
6813 {
6814 enable_schedule_as_rhs_p = 1;
6815 bookkeeping_p = 1;
6816 pipelining_p = (bookkeeping_p
6817 && (flag_sel_sched_pipelining != 0)
6818 && current_loop_nest != NULL
6819 && loop_has_exit_edges (current_loop_nest));
6820 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6821 max_ws = MAX_WS;
6822 }
6823
6824 /* Return true if all basic blocks of current region are empty. */
6825 static bool
6826 current_region_empty_p (void)
6827 {
6828 int i;
6829 for (i = 0; i < current_nr_blocks; i++)
6830 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6831 return false;
6832
6833 return true;
6834 }
6835
6836 /* Prepare and verify loop nest for pipelining. */
6837 static void
6838 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6839 {
6840 current_loop_nest = get_loop_nest_for_rgn (rgn);
6841
6842 if (!current_loop_nest)
6843 return;
6844
6845 /* If this loop has any saved loop preheaders from nested loops,
6846 add these basic blocks to the current region. */
6847 sel_add_loop_preheaders (bbs);
6848
6849 /* Check that we're starting with a valid information. */
6850 gcc_assert (loop_latch_edge (current_loop_nest));
6851 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6852 }
6853
6854 /* Compute instruction priorities for current region. */
6855 static void
6856 sel_compute_priorities (int rgn)
6857 {
6858 sched_rgn_compute_dependencies (rgn);
6859
6860 /* Compute insn priorities in haifa style. Then free haifa style
6861 dependencies that we've calculated for this. */
6862 compute_priorities ();
6863
6864 if (sched_verbose >= 5)
6865 debug_rgn_dependencies (0);
6866
6867 free_rgn_deps ();
6868 }
6869
6870 /* Init scheduling data for RGN. Returns true when this region should not
6871 be scheduled. */
6872 static bool
6873 sel_region_init (int rgn)
6874 {
6875 int i;
6876 bb_vec_t bbs;
6877
6878 rgn_setup_region (rgn);
6879
6880 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6881 do region initialization here so the region can be bundled correctly,
6882 but we'll skip the scheduling in sel_sched_region (). */
6883 if (current_region_empty_p ())
6884 return true;
6885
6886 bbs.create (current_nr_blocks);
6887
6888 for (i = 0; i < current_nr_blocks; i++)
6889 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6890
6891 sel_init_bbs (bbs);
6892
6893 if (flag_sel_sched_pipelining)
6894 setup_current_loop_nest (rgn, &bbs);
6895
6896 sel_setup_region_sched_flags ();
6897
6898 /* Initialize luids and dependence analysis which both sel-sched and haifa
6899 need. */
6900 sched_init_luids (bbs);
6901 sched_deps_init (false);
6902
6903 /* Initialize haifa data. */
6904 rgn_setup_sched_infos ();
6905 sel_set_sched_flags ();
6906 haifa_init_h_i_d (bbs);
6907
6908 sel_compute_priorities (rgn);
6909 init_deps_global ();
6910
6911 /* Main initialization. */
6912 sel_setup_sched_infos ();
6913 sel_init_global_and_expr (bbs);
6914
6915 bbs.release ();
6916
6917 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6918
6919 /* Init correct liveness sets on each instruction of a single-block loop.
6920 This is the only situation when we can't update liveness when calling
6921 compute_live for the first insn of the loop. */
6922 if (current_loop_nest)
6923 {
6924 int header =
6925 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6926 ? 1
6927 : 0);
6928
6929 if (current_nr_blocks == header + 1)
6930 update_liveness_on_insn
6931 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6932 }
6933
6934 /* Set hooks so that no newly generated insn will go out unnoticed. */
6935 sel_register_cfg_hooks ();
6936
6937 /* !!! We call target.sched.init () for the whole region, but we invoke
6938 targetm.sched.finish () for every ebb. */
6939 if (targetm.sched.init)
6940 /* None of the arguments are actually used in any target. */
6941 targetm.sched.init (sched_dump, sched_verbose, -1);
6942
6943 first_emitted_uid = get_max_uid () + 1;
6944 preheader_removed = false;
6945
6946 /* Reset register allocation ticks array. */
6947 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6948 reg_rename_this_tick = 0;
6949
6950 bitmap_initialize (forced_ebb_heads, 0);
6951 bitmap_clear (forced_ebb_heads);
6952
6953 setup_nop_vinsn ();
6954 current_copies = BITMAP_ALLOC (NULL);
6955 current_originators = BITMAP_ALLOC (NULL);
6956 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6957
6958 return false;
6959 }
6960
6961 /* Simplify insns after the scheduling. */
6962 static void
6963 simplify_changed_insns (void)
6964 {
6965 int i;
6966
6967 for (i = 0; i < current_nr_blocks; i++)
6968 {
6969 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6970 rtx_insn *insn;
6971
6972 FOR_BB_INSNS (bb, insn)
6973 if (INSN_P (insn))
6974 {
6975 expr_t expr = INSN_EXPR (insn);
6976
6977 if (EXPR_WAS_SUBSTITUTED (expr))
6978 validate_simplify_insn (insn);
6979 }
6980 }
6981 }
6982
6983 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6984 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6985 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6986 static void
6987 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6988 {
6989 rtx_insn *head, *tail;
6990 basic_block bb1 = bb;
6991 if (sched_verbose >= 2)
6992 sel_print ("Finishing schedule in bbs: ");
6993
6994 do
6995 {
6996 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6997
6998 if (sched_verbose >= 2)
6999 sel_print ("%d; ", bb1->index);
7000 }
7001 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7002
7003 if (sched_verbose >= 2)
7004 sel_print ("\n");
7005
7006 get_ebb_head_tail (bb, bb1, &head, &tail);
7007
7008 current_sched_info->head = head;
7009 current_sched_info->tail = tail;
7010 current_sched_info->prev_head = PREV_INSN (head);
7011 current_sched_info->next_tail = NEXT_INSN (tail);
7012 }
7013
7014 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7015 static void
7016 reset_sched_cycles_in_current_ebb (void)
7017 {
7018 int last_clock = 0;
7019 int haifa_last_clock = -1;
7020 int haifa_clock = 0;
7021 int issued_insns = 0;
7022 insn_t insn;
7023
7024 if (targetm.sched.init)
7025 {
7026 /* None of the arguments are actually used in any target.
7027 NB: We should have md_reset () hook for cases like this. */
7028 targetm.sched.init (sched_dump, sched_verbose, -1);
7029 }
7030
7031 state_reset (curr_state);
7032 advance_state (curr_state);
7033
7034 for (insn = current_sched_info->head;
7035 insn != current_sched_info->next_tail;
7036 insn = NEXT_INSN (insn))
7037 {
7038 int cost, haifa_cost;
7039 int sort_p;
7040 bool asm_p, real_insn, after_stall, all_issued;
7041 int clock;
7042
7043 if (!INSN_P (insn))
7044 continue;
7045
7046 asm_p = false;
7047 real_insn = recog_memoized (insn) >= 0;
7048 clock = INSN_SCHED_CYCLE (insn);
7049
7050 cost = clock - last_clock;
7051
7052 /* Initialize HAIFA_COST. */
7053 if (! real_insn)
7054 {
7055 asm_p = INSN_ASM_P (insn);
7056
7057 if (asm_p)
7058 /* This is asm insn which *had* to be scheduled first
7059 on the cycle. */
7060 haifa_cost = 1;
7061 else
7062 /* This is a use/clobber insn. It should not change
7063 cost. */
7064 haifa_cost = 0;
7065 }
7066 else
7067 haifa_cost = estimate_insn_cost (insn, curr_state);
7068
7069 /* Stall for whatever cycles we've stalled before. */
7070 after_stall = 0;
7071 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7072 {
7073 haifa_cost = cost;
7074 after_stall = 1;
7075 }
7076 all_issued = issued_insns == issue_rate;
7077 if (haifa_cost == 0 && all_issued)
7078 haifa_cost = 1;
7079 if (haifa_cost > 0)
7080 {
7081 int i = 0;
7082
7083 while (haifa_cost--)
7084 {
7085 advance_state (curr_state);
7086 issued_insns = 0;
7087 i++;
7088
7089 if (sched_verbose >= 2)
7090 {
7091 sel_print ("advance_state (state_transition)\n");
7092 debug_state (curr_state);
7093 }
7094
7095 /* The DFA may report that e.g. insn requires 2 cycles to be
7096 issued, but on the next cycle it says that insn is ready
7097 to go. Check this here. */
7098 if (!after_stall
7099 && real_insn
7100 && haifa_cost > 0
7101 && estimate_insn_cost (insn, curr_state) == 0)
7102 break;
7103
7104 /* When the data dependency stall is longer than the DFA stall,
7105 and when we have issued exactly issue_rate insns and stalled,
7106 it could be that after this longer stall the insn will again
7107 become unavailable to the DFA restrictions. Looks strange
7108 but happens e.g. on x86-64. So recheck DFA on the last
7109 iteration. */
7110 if ((after_stall || all_issued)
7111 && real_insn
7112 && haifa_cost == 0)
7113 haifa_cost = estimate_insn_cost (insn, curr_state);
7114 }
7115
7116 haifa_clock += i;
7117 if (sched_verbose >= 2)
7118 sel_print ("haifa clock: %d\n", haifa_clock);
7119 }
7120 else
7121 gcc_assert (haifa_cost == 0);
7122
7123 if (sched_verbose >= 2)
7124 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7125
7126 if (targetm.sched.dfa_new_cycle)
7127 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7128 haifa_last_clock, haifa_clock,
7129 &sort_p))
7130 {
7131 advance_state (curr_state);
7132 issued_insns = 0;
7133 haifa_clock++;
7134 if (sched_verbose >= 2)
7135 {
7136 sel_print ("advance_state (dfa_new_cycle)\n");
7137 debug_state (curr_state);
7138 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7139 }
7140 }
7141
7142 if (real_insn)
7143 {
7144 static state_t temp = NULL;
7145
7146 if (!temp)
7147 temp = xmalloc (dfa_state_size);
7148 memcpy (temp, curr_state, dfa_state_size);
7149
7150 cost = state_transition (curr_state, insn);
7151 if (memcmp (temp, curr_state, dfa_state_size))
7152 issued_insns++;
7153
7154 if (sched_verbose >= 2)
7155 {
7156 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7157 haifa_clock + 1);
7158 debug_state (curr_state);
7159 }
7160 gcc_assert (cost < 0);
7161 }
7162
7163 if (targetm.sched.variable_issue)
7164 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7165
7166 INSN_SCHED_CYCLE (insn) = haifa_clock;
7167
7168 last_clock = clock;
7169 haifa_last_clock = haifa_clock;
7170 }
7171 }
7172
7173 /* Put TImode markers on insns starting a new issue group. */
7174 static void
7175 put_TImodes (void)
7176 {
7177 int last_clock = -1;
7178 insn_t insn;
7179
7180 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7181 insn = NEXT_INSN (insn))
7182 {
7183 int cost, clock;
7184
7185 if (!INSN_P (insn))
7186 continue;
7187
7188 clock = INSN_SCHED_CYCLE (insn);
7189 cost = (last_clock == -1) ? 1 : clock - last_clock;
7190
7191 gcc_assert (cost >= 0);
7192
7193 if (issue_rate > 1
7194 && GET_CODE (PATTERN (insn)) != USE
7195 && GET_CODE (PATTERN (insn)) != CLOBBER)
7196 {
7197 if (reload_completed && cost > 0)
7198 PUT_MODE (insn, TImode);
7199
7200 last_clock = clock;
7201 }
7202
7203 if (sched_verbose >= 2)
7204 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7205 }
7206 }
7207
7208 /* Perform MD_FINISH on EBBs comprising current region. When
7209 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7210 to produce correct sched cycles on insns. */
7211 static void
7212 sel_region_target_finish (bool reset_sched_cycles_p)
7213 {
7214 int i;
7215 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7216
7217 for (i = 0; i < current_nr_blocks; i++)
7218 {
7219 if (bitmap_bit_p (scheduled_blocks, i))
7220 continue;
7221
7222 /* While pipelining outer loops, skip bundling for loop
7223 preheaders. Those will be rescheduled in the outer loop. */
7224 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7225 continue;
7226
7227 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7228
7229 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7230 continue;
7231
7232 if (reset_sched_cycles_p)
7233 reset_sched_cycles_in_current_ebb ();
7234
7235 if (targetm.sched.init)
7236 targetm.sched.init (sched_dump, sched_verbose, -1);
7237
7238 put_TImodes ();
7239
7240 if (targetm.sched.finish)
7241 {
7242 targetm.sched.finish (sched_dump, sched_verbose);
7243
7244 /* Extend luids so that insns generated by the target will
7245 get zero luid. */
7246 sched_extend_luids ();
7247 }
7248 }
7249
7250 BITMAP_FREE (scheduled_blocks);
7251 }
7252
7253 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7254 is true, make an additional pass emulating scheduler to get correct insn
7255 cycles for md_finish calls. */
7256 static void
7257 sel_region_finish (bool reset_sched_cycles_p)
7258 {
7259 simplify_changed_insns ();
7260 sched_finish_ready_list ();
7261 free_nop_pool ();
7262
7263 /* Free the vectors. */
7264 vec_av_set.release ();
7265 BITMAP_FREE (current_copies);
7266 BITMAP_FREE (current_originators);
7267 BITMAP_FREE (code_motion_visited_blocks);
7268 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7269 vinsn_vec_free (vec_target_unavailable_vinsns);
7270
7271 /* If LV_SET of the region head should be updated, do it now because
7272 there will be no other chance. */
7273 {
7274 succ_iterator si;
7275 insn_t insn;
7276
7277 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7278 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7279 {
7280 basic_block bb = BLOCK_FOR_INSN (insn);
7281
7282 if (!BB_LV_SET_VALID_P (bb))
7283 compute_live (insn);
7284 }
7285 }
7286
7287 /* Emulate the Haifa scheduler for bundling. */
7288 if (reload_completed)
7289 sel_region_target_finish (reset_sched_cycles_p);
7290
7291 sel_finish_global_and_expr ();
7292
7293 bitmap_clear (forced_ebb_heads);
7294
7295 free_nop_vinsn ();
7296
7297 finish_deps_global ();
7298 sched_finish_luids ();
7299 h_d_i_d.release ();
7300
7301 sel_finish_bbs ();
7302 BITMAP_FREE (blocks_to_reschedule);
7303
7304 sel_unregister_cfg_hooks ();
7305
7306 max_issue_size = 0;
7307 }
7308 \f
7309
7310 /* Functions that implement the scheduler driver. */
7311
7312 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7313 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7314 of insns scheduled -- these would be postprocessed later. */
7315 static void
7316 schedule_on_fences (flist_t fences, int max_seqno,
7317 ilist_t **scheduled_insns_tailpp)
7318 {
7319 flist_t old_fences = fences;
7320
7321 if (sched_verbose >= 1)
7322 {
7323 sel_print ("\nScheduling on fences: ");
7324 dump_flist (fences);
7325 sel_print ("\n");
7326 }
7327
7328 scheduled_something_on_previous_fence = false;
7329 for (; fences; fences = FLIST_NEXT (fences))
7330 {
7331 fence_t fence = NULL;
7332 int seqno = 0;
7333 flist_t fences2;
7334 bool first_p = true;
7335
7336 /* Choose the next fence group to schedule.
7337 The fact that insn can be scheduled only once
7338 on the cycle is guaranteed by two properties:
7339 1. seqnos of parallel groups decrease with each iteration.
7340 2. If is_ineligible_successor () sees the larger seqno, it
7341 checks if candidate insn is_in_current_fence_p (). */
7342 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7343 {
7344 fence_t f = FLIST_FENCE (fences2);
7345
7346 if (!FENCE_PROCESSED_P (f))
7347 {
7348 int i = INSN_SEQNO (FENCE_INSN (f));
7349
7350 if (first_p || i > seqno)
7351 {
7352 seqno = i;
7353 fence = f;
7354 first_p = false;
7355 }
7356 else
7357 /* ??? Seqnos of different groups should be different. */
7358 gcc_assert (1 || i != seqno);
7359 }
7360 }
7361
7362 gcc_assert (fence);
7363
7364 /* As FENCE is nonnull, SEQNO is initialized. */
7365 seqno -= max_seqno + 1;
7366 fill_insns (fence, seqno, scheduled_insns_tailpp);
7367 FENCE_PROCESSED_P (fence) = true;
7368 }
7369
7370 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7371 don't need to keep bookkeeping-invalidated and target-unavailable
7372 vinsns any more. */
7373 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7374 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7375 }
7376
7377 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7378 static void
7379 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7380 {
7381 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7382
7383 /* The first element is already processed. */
7384 while ((fences = FLIST_NEXT (fences)))
7385 {
7386 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7387
7388 if (*min_seqno > seqno)
7389 *min_seqno = seqno;
7390 else if (*max_seqno < seqno)
7391 *max_seqno = seqno;
7392 }
7393 }
7394
7395 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7396 static flist_t
7397 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7398 {
7399 flist_t old_fences = fences;
7400 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7401 int max_time = 0;
7402
7403 flist_tail_init (new_fences);
7404 for (; fences; fences = FLIST_NEXT (fences))
7405 {
7406 fence_t fence = FLIST_FENCE (fences);
7407 insn_t insn;
7408
7409 if (!FENCE_BNDS (fence))
7410 {
7411 /* This fence doesn't have any successors. */
7412 if (!FENCE_SCHEDULED_P (fence))
7413 {
7414 /* Nothing was scheduled on this fence. */
7415 int seqno;
7416
7417 insn = FENCE_INSN (fence);
7418 seqno = INSN_SEQNO (insn);
7419 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7420
7421 if (sched_verbose >= 1)
7422 sel_print ("Fence %d[%d] has not changed\n",
7423 INSN_UID (insn),
7424 BLOCK_NUM (insn));
7425 move_fence_to_fences (fences, new_fences);
7426 }
7427 }
7428 else
7429 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7430 max_time = MAX (max_time, FENCE_CYCLE (fence));
7431 }
7432
7433 flist_clear (&old_fences);
7434 *ptime = max_time;
7435 return FLIST_TAIL_HEAD (new_fences);
7436 }
7437
7438 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7439 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7440 the highest seqno used in a region. Return the updated highest seqno. */
7441 static int
7442 update_seqnos_and_stage (int min_seqno, int max_seqno,
7443 int highest_seqno_in_use,
7444 ilist_t *pscheduled_insns)
7445 {
7446 int new_hs;
7447 ilist_iterator ii;
7448 insn_t insn;
7449
7450 /* Actually, new_hs is the seqno of the instruction, that was
7451 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7452 if (*pscheduled_insns)
7453 {
7454 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7455 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7456 gcc_assert (new_hs > highest_seqno_in_use);
7457 }
7458 else
7459 new_hs = highest_seqno_in_use;
7460
7461 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7462 {
7463 gcc_assert (INSN_SEQNO (insn) < 0);
7464 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7465 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7466
7467 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7468 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7469 require > 1GB of memory e.g. on limit-fnargs.c. */
7470 if (! pipelining_p)
7471 free_data_for_scheduled_insn (insn);
7472 }
7473
7474 ilist_clear (pscheduled_insns);
7475 global_level++;
7476
7477 return new_hs;
7478 }
7479
7480 /* The main driver for scheduling a region. This function is responsible
7481 for correct propagation of fences (i.e. scheduling points) and creating
7482 a group of parallel insns at each of them. It also supports
7483 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7484 of scheduling. */
7485 static void
7486 sel_sched_region_2 (int orig_max_seqno)
7487 {
7488 int highest_seqno_in_use = orig_max_seqno;
7489 int max_time = 0;
7490
7491 stat_bookkeeping_copies = 0;
7492 stat_insns_needed_bookkeeping = 0;
7493 stat_renamed_scheduled = 0;
7494 stat_substitutions_total = 0;
7495 num_insns_scheduled = 0;
7496
7497 while (fences)
7498 {
7499 int min_seqno, max_seqno;
7500 ilist_t scheduled_insns = NULL;
7501 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7502
7503 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7504 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7505 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7506 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7507 highest_seqno_in_use,
7508 &scheduled_insns);
7509 }
7510
7511 if (sched_verbose >= 1)
7512 {
7513 sel_print ("Total scheduling time: %d cycles\n", max_time);
7514 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7515 "bookkeeping, %d insns renamed, %d insns substituted\n",
7516 stat_bookkeeping_copies,
7517 stat_insns_needed_bookkeeping,
7518 stat_renamed_scheduled,
7519 stat_substitutions_total);
7520 }
7521 }
7522
7523 /* Schedule a region. When pipelining, search for possibly never scheduled
7524 bookkeeping code and schedule it. Reschedule pipelined code without
7525 pipelining after. */
7526 static void
7527 sel_sched_region_1 (void)
7528 {
7529 int orig_max_seqno;
7530
7531 /* Remove empty blocks that might be in the region from the beginning. */
7532 purge_empty_blocks ();
7533
7534 orig_max_seqno = init_seqno (NULL, NULL);
7535 gcc_assert (orig_max_seqno >= 1);
7536
7537 /* When pipelining outer loops, create fences on the loop header,
7538 not preheader. */
7539 fences = NULL;
7540 if (current_loop_nest)
7541 init_fences (BB_END (EBB_FIRST_BB (0)));
7542 else
7543 init_fences (bb_note (EBB_FIRST_BB (0)));
7544 global_level = 1;
7545
7546 sel_sched_region_2 (orig_max_seqno);
7547
7548 gcc_assert (fences == NULL);
7549
7550 if (pipelining_p)
7551 {
7552 int i;
7553 basic_block bb;
7554 struct flist_tail_def _new_fences;
7555 flist_tail_t new_fences = &_new_fences;
7556 bool do_p = true;
7557
7558 pipelining_p = false;
7559 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7560 bookkeeping_p = false;
7561 enable_schedule_as_rhs_p = false;
7562
7563 /* Schedule newly created code, that has not been scheduled yet. */
7564 do_p = true;
7565
7566 while (do_p)
7567 {
7568 do_p = false;
7569
7570 for (i = 0; i < current_nr_blocks; i++)
7571 {
7572 basic_block bb = EBB_FIRST_BB (i);
7573
7574 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7575 {
7576 if (! bb_ends_ebb_p (bb))
7577 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7578 if (sel_bb_empty_p (bb))
7579 {
7580 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7581 continue;
7582 }
7583 clear_outdated_rtx_info (bb);
7584 if (sel_insn_is_speculation_check (BB_END (bb))
7585 && JUMP_P (BB_END (bb)))
7586 bitmap_set_bit (blocks_to_reschedule,
7587 BRANCH_EDGE (bb)->dest->index);
7588 }
7589 else if (! sel_bb_empty_p (bb)
7590 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7591 bitmap_set_bit (blocks_to_reschedule, bb->index);
7592 }
7593
7594 for (i = 0; i < current_nr_blocks; i++)
7595 {
7596 bb = EBB_FIRST_BB (i);
7597
7598 /* While pipelining outer loops, skip bundling for loop
7599 preheaders. Those will be rescheduled in the outer
7600 loop. */
7601 if (sel_is_loop_preheader_p (bb))
7602 {
7603 clear_outdated_rtx_info (bb);
7604 continue;
7605 }
7606
7607 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7608 {
7609 flist_tail_init (new_fences);
7610
7611 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7612
7613 /* Mark BB as head of the new ebb. */
7614 bitmap_set_bit (forced_ebb_heads, bb->index);
7615
7616 gcc_assert (fences == NULL);
7617
7618 init_fences (bb_note (bb));
7619
7620 sel_sched_region_2 (orig_max_seqno);
7621
7622 do_p = true;
7623 break;
7624 }
7625 }
7626 }
7627 }
7628 }
7629
7630 /* Schedule the RGN region. */
7631 void
7632 sel_sched_region (int rgn)
7633 {
7634 bool schedule_p;
7635 bool reset_sched_cycles_p;
7636
7637 if (sel_region_init (rgn))
7638 return;
7639
7640 if (sched_verbose >= 1)
7641 sel_print ("Scheduling region %d\n", rgn);
7642
7643 schedule_p = (!sched_is_disabled_for_current_region_p ()
7644 && dbg_cnt (sel_sched_region_cnt));
7645 reset_sched_cycles_p = pipelining_p;
7646 if (schedule_p)
7647 sel_sched_region_1 ();
7648 else
7649 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7650 reset_sched_cycles_p = true;
7651
7652 sel_region_finish (reset_sched_cycles_p);
7653 }
7654
7655 /* Perform global init for the scheduler. */
7656 static void
7657 sel_global_init (void)
7658 {
7659 calculate_dominance_info (CDI_DOMINATORS);
7660 alloc_sched_pools ();
7661
7662 /* Setup the infos for sched_init. */
7663 sel_setup_sched_infos ();
7664 setup_sched_dump ();
7665
7666 sched_rgn_init (false);
7667 sched_init ();
7668
7669 sched_init_bbs ();
7670 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7671 after_recovery = 0;
7672 can_issue_more = issue_rate;
7673
7674 sched_extend_target ();
7675 sched_deps_init (true);
7676 setup_nop_and_exit_insns ();
7677 sel_extend_global_bb_info ();
7678 init_lv_sets ();
7679 init_hard_regs_data ();
7680 }
7681
7682 /* Free the global data of the scheduler. */
7683 static void
7684 sel_global_finish (void)
7685 {
7686 free_bb_note_pool ();
7687 free_lv_sets ();
7688 sel_finish_global_bb_info ();
7689
7690 free_regset_pool ();
7691 free_nop_and_exit_insns ();
7692
7693 sched_rgn_finish ();
7694 sched_deps_finish ();
7695 sched_finish ();
7696
7697 if (current_loops)
7698 sel_finish_pipelining ();
7699
7700 free_sched_pools ();
7701 free_dominance_info (CDI_DOMINATORS);
7702 }
7703
7704 /* Return true when we need to skip selective scheduling. Used for debugging. */
7705 bool
7706 maybe_skip_selective_scheduling (void)
7707 {
7708 return ! dbg_cnt (sel_sched_cnt);
7709 }
7710
7711 /* The entry point. */
7712 void
7713 run_selective_scheduling (void)
7714 {
7715 int rgn;
7716
7717 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7718 return;
7719
7720 sel_global_init ();
7721
7722 for (rgn = 0; rgn < nr_regions; rgn++)
7723 sel_sched_region (rgn);
7724
7725 sel_global_finish ();
7726 }
7727
7728 #endif