]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched.c
Update copyright years.
[thirdparty/gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "cfgbuild.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "params.h"
33 #include "target.h"
34 #include "sched-int.h"
35 #include "rtlhooks-def.h"
36 #include "ira.h"
37 #include "ira-int.h"
38 #include "rtl-iter.h"
39
40 #ifdef INSN_SCHEDULING
41 #include "regset.h"
42 #include "cfgloop.h"
43 #include "sel-sched-ir.h"
44 #include "sel-sched-dump.h"
45 #include "sel-sched.h"
46 #include "dbgcnt.h"
47
48 /* Implementation of selective scheduling approach.
49 The below implementation follows the original approach with the following
50 changes:
51
52 o the scheduler works after register allocation (but can be also tuned
53 to work before RA);
54 o some instructions are not copied or register renamed;
55 o conditional jumps are not moved with code duplication;
56 o several jumps in one parallel group are not supported;
57 o when pipelining outer loops, code motion through inner loops
58 is not supported;
59 o control and data speculation are supported;
60 o some improvements for better compile time/performance were made.
61
62 Terminology
63 ===========
64
65 A vinsn, or virtual insn, is an insn with additional data characterizing
66 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
67 Vinsns also act as smart pointers to save memory by reusing them in
68 different expressions. A vinsn is described by vinsn_t type.
69
70 An expression is a vinsn with additional data characterizing its properties
71 at some point in the control flow graph. The data may be its usefulness,
72 priority, speculative status, whether it was renamed/subsituted, etc.
73 An expression is described by expr_t type.
74
75 Availability set (av_set) is a set of expressions at a given control flow
76 point. It is represented as av_set_t. The expressions in av sets are kept
77 sorted in the terms of expr_greater_p function. It allows to truncate
78 the set while leaving the best expressions.
79
80 A fence is a point through which code motion is prohibited. On each step,
81 we gather a parallel group of insns at a fence. It is possible to have
82 multiple fences. A fence is represented via fence_t.
83
84 A boundary is the border between the fence group and the rest of the code.
85 Currently, we never have more than one boundary per fence, as we finalize
86 the fence group when a jump is scheduled. A boundary is represented
87 via bnd_t.
88
89 High-level overview
90 ===================
91
92 The scheduler finds regions to schedule, schedules each one, and finalizes.
93 The regions are formed starting from innermost loops, so that when the inner
94 loop is pipelined, its prologue can be scheduled together with yet unprocessed
95 outer loop. The rest of acyclic regions are found using extend_rgns:
96 the blocks that are not yet allocated to any regions are traversed in top-down
97 order, and a block is added to a region to which all its predecessors belong;
98 otherwise, the block starts its own region.
99
100 The main scheduling loop (sel_sched_region_2) consists of just
101 scheduling on each fence and updating fences. For each fence,
102 we fill a parallel group of insns (fill_insns) until some insns can be added.
103 First, we compute available exprs (av-set) at the boundary of the current
104 group. Second, we choose the best expression from it. If the stall is
105 required to schedule any of the expressions, we advance the current cycle
106 appropriately. So, the final group does not exactly correspond to a VLIW
107 word. Third, we move the chosen expression to the boundary (move_op)
108 and update the intermediate av sets and liveness sets. We quit fill_insns
109 when either no insns left for scheduling or we have scheduled enough insns
110 so we feel like advancing a scheduling point.
111
112 Computing available expressions
113 ===============================
114
115 The computation (compute_av_set) is a bottom-up traversal. At each insn,
116 we're moving the union of its successors' sets through it via
117 moveup_expr_set. The dependent expressions are removed. Local
118 transformations (substitution, speculation) are applied to move more
119 exprs. Then the expr corresponding to the current insn is added.
120 The result is saved on each basic block header.
121
122 When traversing the CFG, we're moving down for no more than max_ws insns.
123 Also, we do not move down to ineligible successors (is_ineligible_successor),
124 which include moving along a back-edge, moving to already scheduled code,
125 and moving to another fence. The first two restrictions are lifted during
126 pipelining, which allows us to move insns along a back-edge. We always have
127 an acyclic region for scheduling because we forbid motion through fences.
128
129 Choosing the best expression
130 ============================
131
132 We sort the final availability set via sel_rank_for_schedule, then we remove
133 expressions which are not yet ready (tick_check_p) or which dest registers
134 cannot be used. For some of them, we choose another register via
135 find_best_reg. To do this, we run find_used_regs to calculate the set of
136 registers which cannot be used. The find_used_regs function performs
137 a traversal of code motion paths for an expr. We consider for renaming
138 only registers which are from the same regclass as the original one and
139 using which does not interfere with any live ranges. Finally, we convert
140 the resulting set to the ready list format and use max_issue and reorder*
141 hooks similarly to the Haifa scheduler.
142
143 Scheduling the best expression
144 ==============================
145
146 We run the move_op routine to perform the same type of code motion paths
147 traversal as in find_used_regs. (These are working via the same driver,
148 code_motion_path_driver.) When moving down the CFG, we look for original
149 instruction that gave birth to a chosen expression. We undo
150 the transformations performed on an expression via the history saved in it.
151 When found, we remove the instruction or leave a reg-reg copy/speculation
152 check if needed. On a way up, we insert bookkeeping copies at each join
153 point. If a copy is not needed, it will be removed later during this
154 traversal. We update the saved av sets and liveness sets on the way up, too.
155
156 Finalizing the schedule
157 =======================
158
159 When pipelining, we reschedule the blocks from which insns were pipelined
160 to get a tighter schedule. On Itanium, we also perform bundling via
161 the same routine from ia64.c.
162
163 Dependence analysis changes
164 ===========================
165
166 We augmented the sched-deps.c with hooks that get called when a particular
167 dependence is found in a particular part of an insn. Using these hooks, we
168 can do several actions such as: determine whether an insn can be moved through
169 another (has_dependence_p, moveup_expr); find out whether an insn can be
170 scheduled on the current cycle (tick_check_p); find out registers that
171 are set/used/clobbered by an insn and find out all the strange stuff that
172 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
173 init_global_and_expr_for_insn).
174
175 Initialization changes
176 ======================
177
178 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
179 reused in all of the schedulers. We have split up the initialization of data
180 of such parts into different functions prefixed with scheduler type and
181 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
182 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
183 The same splitting is done with current_sched_info structure:
184 dependence-related parts are in sched_deps_info, common part is in
185 common_sched_info, and haifa/sel/etc part is in current_sched_info.
186
187 Target contexts
188 ===============
189
190 As we now have multiple-point scheduling, this would not work with backends
191 which save some of the scheduler state to use it in the target hooks.
192 For this purpose, we introduce a concept of target contexts, which
193 encapsulate such information. The backend should implement simple routines
194 of allocating/freeing/setting such a context. The scheduler calls these
195 as target hooks and handles the target context as an opaque pointer (similar
196 to the DFA state type, state_t).
197
198 Various speedups
199 ================
200
201 As the correct data dependence graph is not supported during scheduling (which
202 is to be changed in mid-term), we cache as much of the dependence analysis
203 results as possible to avoid reanalyzing. This includes: bitmap caches on
204 each insn in stream of the region saying yes/no for a query with a pair of
205 UIDs; hashtables with the previously done transformations on each insn in
206 stream; a vector keeping a history of transformations on each expr.
207
208 Also, we try to minimize the dependence context used on each fence to check
209 whether the given expression is ready for scheduling by removing from it
210 insns that are definitely completed the execution. The results of
211 tick_check_p checks are also cached in a vector on each fence.
212
213 We keep a valid liveness set on each insn in a region to avoid the high
214 cost of recomputation on large basic blocks.
215
216 Finally, we try to minimize the number of needed updates to the availability
217 sets. The updates happen in two cases: when fill_insns terminates,
218 we advance all fences and increase the stage number to show that the region
219 has changed and the sets are to be recomputed; and when the next iteration
220 of a loop in fill_insns happens (but this one reuses the saved av sets
221 on bb headers.) Thus, we try to break the fill_insns loop only when
222 "significant" number of insns from the current scheduling window was
223 scheduled. This should be made a target param.
224
225
226 TODO: correctly support the data dependence graph at all stages and get rid
227 of all caches. This should speed up the scheduler.
228 TODO: implement moving cond jumps with bookkeeping copies on both targets.
229 TODO: tune the scheduler before RA so it does not create too much pseudos.
230
231
232 References:
233 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
234 selective scheduling and software pipelining.
235 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
236
237 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
238 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
239 for GCC. In Proceedings of GCC Developers' Summit 2006.
240
241 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
242 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
243 http://rogue.colorado.edu/EPIC7/.
244
245 */
246
247 /* True when pipelining is enabled. */
248 bool pipelining_p;
249
250 /* True if bookkeeping is enabled. */
251 bool bookkeeping_p;
252
253 /* Maximum number of insns that are eligible for renaming. */
254 int max_insns_to_rename;
255 \f
256
257 /* Definitions of local types and macros. */
258
259 /* Represents possible outcomes of moving an expression through an insn. */
260 enum MOVEUP_EXPR_CODE
261 {
262 /* The expression is not changed. */
263 MOVEUP_EXPR_SAME,
264
265 /* Not changed, but requires a new destination register. */
266 MOVEUP_EXPR_AS_RHS,
267
268 /* Cannot be moved. */
269 MOVEUP_EXPR_NULL,
270
271 /* Changed (substituted or speculated). */
272 MOVEUP_EXPR_CHANGED
273 };
274
275 /* The container to be passed into rtx search & replace functions. */
276 struct rtx_search_arg
277 {
278 /* What we are searching for. */
279 rtx x;
280
281 /* The occurrence counter. */
282 int n;
283 };
284
285 typedef struct rtx_search_arg *rtx_search_arg_p;
286
287 /* This struct contains precomputed hard reg sets that are needed when
288 computing registers available for renaming. */
289 struct hard_regs_data
290 {
291 /* For every mode, this stores registers available for use with
292 that mode. */
293 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
294
295 /* True when regs_for_mode[mode] is initialized. */
296 bool regs_for_mode_ok[NUM_MACHINE_MODES];
297
298 /* For every register, it has regs that are ok to rename into it.
299 The register in question is always set. If not, this means
300 that the whole set is not computed yet. */
301 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
302
303 /* For every mode, this stores registers not available due to
304 call clobbering. */
305 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
306
307 /* All registers that are used or call used. */
308 HARD_REG_SET regs_ever_used;
309
310 #ifdef STACK_REGS
311 /* Stack registers. */
312 HARD_REG_SET stack_regs;
313 #endif
314 };
315
316 /* Holds the results of computation of available for renaming and
317 unavailable hard registers. */
318 struct reg_rename
319 {
320 /* These are unavailable due to calls crossing, globalness, etc. */
321 HARD_REG_SET unavailable_hard_regs;
322
323 /* These are *available* for renaming. */
324 HARD_REG_SET available_for_renaming;
325
326 /* Whether this code motion path crosses a call. */
327 bool crosses_call;
328 };
329
330 /* A global structure that contains the needed information about harg
331 regs. */
332 static struct hard_regs_data sel_hrd;
333 \f
334
335 /* This structure holds local data used in code_motion_path_driver hooks on
336 the same or adjacent levels of recursion. Here we keep those parameters
337 that are not used in code_motion_path_driver routine itself, but only in
338 its hooks. Moreover, all parameters that can be modified in hooks are
339 in this structure, so all other parameters passed explicitly to hooks are
340 read-only. */
341 struct cmpd_local_params
342 {
343 /* Local params used in move_op_* functions. */
344
345 /* Edges for bookkeeping generation. */
346 edge e1, e2;
347
348 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
349 expr_t c_expr_merged, c_expr_local;
350
351 /* Local params used in fur_* functions. */
352 /* Copy of the ORIGINAL_INSN list, stores the original insns already
353 found before entering the current level of code_motion_path_driver. */
354 def_list_t old_original_insns;
355
356 /* Local params used in move_op_* functions. */
357 /* True when we have removed last insn in the block which was
358 also a boundary. Do not update anything or create bookkeeping copies. */
359 BOOL_BITFIELD removed_last_insn : 1;
360 };
361
362 /* Stores the static parameters for move_op_* calls. */
363 struct moveop_static_params
364 {
365 /* Destination register. */
366 rtx dest;
367
368 /* Current C_EXPR. */
369 expr_t c_expr;
370
371 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
372 they are to be removed. */
373 int uid;
374
375 /* This is initialized to the insn on which the driver stopped its traversal. */
376 insn_t failed_insn;
377
378 /* True if we scheduled an insn with different register. */
379 bool was_renamed;
380 };
381
382 /* Stores the static parameters for fur_* calls. */
383 struct fur_static_params
384 {
385 /* Set of registers unavailable on the code motion path. */
386 regset used_regs;
387
388 /* Pointer to the list of original insns definitions. */
389 def_list_t *original_insns;
390
391 /* True if a code motion path contains a CALL insn. */
392 bool crosses_call;
393 };
394
395 typedef struct fur_static_params *fur_static_params_p;
396 typedef struct cmpd_local_params *cmpd_local_params_p;
397 typedef struct moveop_static_params *moveop_static_params_p;
398
399 /* Set of hooks and parameters that determine behaviour specific to
400 move_op or find_used_regs functions. */
401 struct code_motion_path_driver_info_def
402 {
403 /* Called on enter to the basic block. */
404 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
405
406 /* Called when original expr is found. */
407 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
408
409 /* Called while descending current basic block if current insn is not
410 the original EXPR we're searching for. */
411 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
412
413 /* Function to merge C_EXPRes from different successors. */
414 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
415
416 /* Function to finalize merge from different successors and possibly
417 deallocate temporary data structures used for merging. */
418 void (*after_merge_succs) (cmpd_local_params_p, void *);
419
420 /* Called on the backward stage of recursion to do moveup_expr.
421 Used only with move_op_*. */
422 void (*ascend) (insn_t, void *);
423
424 /* Called on the ascending pass, before returning from the current basic
425 block or from the whole traversal. */
426 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
427
428 /* When processing successors in move_op we need only descend into
429 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
430 int succ_flags;
431
432 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
433 const char *routine_name;
434 };
435
436 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
437 FUR_HOOKS. */
438 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
439
440 /* Set of hooks for performing move_op and find_used_regs routines with
441 code_motion_path_driver. */
442 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
443
444 /* True if/when we want to emulate Haifa scheduler in the common code.
445 This is used in sched_rgn_local_init and in various places in
446 sched-deps.c. */
447 int sched_emulate_haifa_p;
448
449 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
450 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
451 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
452 scheduling window. */
453 int global_level;
454
455 /* Current fences. */
456 flist_t fences;
457
458 /* True when separable insns should be scheduled as RHSes. */
459 static bool enable_schedule_as_rhs_p;
460
461 /* Used in verify_target_availability to assert that target reg is reported
462 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
463 we haven't scheduled anything on the previous fence.
464 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
465 have more conservative value than the one returned by the
466 find_used_regs, thus we shouldn't assert that these values are equal. */
467 static bool scheduled_something_on_previous_fence;
468
469 /* All newly emitted insns will have their uids greater than this value. */
470 static int first_emitted_uid;
471
472 /* Set of basic blocks that are forced to start new ebbs. This is a subset
473 of all the ebb heads. */
474 static bitmap_head _forced_ebb_heads;
475 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
476
477 /* Blocks that need to be rescheduled after pipelining. */
478 bitmap blocks_to_reschedule = NULL;
479
480 /* True when the first lv set should be ignored when updating liveness. */
481 static bool ignore_first = false;
482
483 /* Number of insns max_issue has initialized data structures for. */
484 static int max_issue_size = 0;
485
486 /* Whether we can issue more instructions. */
487 static int can_issue_more;
488
489 /* Maximum software lookahead window size, reduced when rescheduling after
490 pipelining. */
491 static int max_ws;
492
493 /* Number of insns scheduled in current region. */
494 static int num_insns_scheduled;
495
496 /* A vector of expressions is used to be able to sort them. */
497 static vec<expr_t> vec_av_set = vNULL;
498
499 /* A vector of vinsns is used to hold temporary lists of vinsns. */
500 typedef vec<vinsn_t> vinsn_vec_t;
501
502 /* This vector has the exprs which may still present in av_sets, but actually
503 can't be moved up due to bookkeeping created during code motion to another
504 fence. See comment near the call to update_and_record_unavailable_insns
505 for the detailed explanations. */
506 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
507
508 /* This vector has vinsns which are scheduled with renaming on the first fence
509 and then seen on the second. For expressions with such vinsns, target
510 availability information may be wrong. */
511 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
512
513 /* Vector to store temporary nops inserted in move_op to prevent removal
514 of empty bbs. */
515 static vec<insn_t> vec_temp_moveop_nops = vNULL;
516
517 /* These bitmaps record original instructions scheduled on the current
518 iteration and bookkeeping copies created by them. */
519 static bitmap current_originators = NULL;
520 static bitmap current_copies = NULL;
521
522 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
523 visit them afterwards. */
524 static bitmap code_motion_visited_blocks = NULL;
525
526 /* Variables to accumulate different statistics. */
527
528 /* The number of bookkeeping copies created. */
529 static int stat_bookkeeping_copies;
530
531 /* The number of insns that required bookkeeiping for their scheduling. */
532 static int stat_insns_needed_bookkeeping;
533
534 /* The number of insns that got renamed. */
535 static int stat_renamed_scheduled;
536
537 /* The number of substitutions made during scheduling. */
538 static int stat_substitutions_total;
539 \f
540
541 /* Forward declarations of static functions. */
542 static bool rtx_ok_for_substitution_p (rtx, rtx);
543 static int sel_rank_for_schedule (const void *, const void *);
544 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
545 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
546
547 static rtx get_dest_from_orig_ops (av_set_t);
548 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
549 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
550 def_list_t *);
551 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
552 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
553 cmpd_local_params_p, void *);
554 static void sel_sched_region_1 (void);
555 static void sel_sched_region_2 (int);
556 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
557
558 static void debug_state (state_t);
559 \f
560
561 /* Functions that work with fences. */
562
563 /* Advance one cycle on FENCE. */
564 static void
565 advance_one_cycle (fence_t fence)
566 {
567 unsigned i;
568 int cycle;
569 rtx_insn *insn;
570
571 advance_state (FENCE_STATE (fence));
572 cycle = ++FENCE_CYCLE (fence);
573 FENCE_ISSUED_INSNS (fence) = 0;
574 FENCE_STARTS_CYCLE_P (fence) = 1;
575 can_issue_more = issue_rate;
576 FENCE_ISSUE_MORE (fence) = can_issue_more;
577
578 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
579 {
580 if (INSN_READY_CYCLE (insn) < cycle)
581 {
582 remove_from_deps (FENCE_DC (fence), insn);
583 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
584 continue;
585 }
586 i++;
587 }
588 if (sched_verbose >= 2)
589 {
590 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
591 debug_state (FENCE_STATE (fence));
592 }
593 }
594
595 /* Returns true when SUCC in a fallthru bb of INSN, possibly
596 skipping empty basic blocks. */
597 static bool
598 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
599 {
600 basic_block bb = BLOCK_FOR_INSN (insn);
601 edge e;
602
603 if (bb == BLOCK_FOR_INSN (succ))
604 return true;
605
606 e = find_fallthru_edge_from (bb);
607 if (e)
608 bb = e->dest;
609 else
610 return false;
611
612 while (sel_bb_empty_p (bb))
613 bb = bb->next_bb;
614
615 return bb == BLOCK_FOR_INSN (succ);
616 }
617
618 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
619 When a successor will continue a ebb, transfer all parameters of a fence
620 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
621 of scheduling helping to distinguish between the old and the new code. */
622 static void
623 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
624 int orig_max_seqno)
625 {
626 bool was_here_p = false;
627 insn_t insn = NULL;
628 insn_t succ;
629 succ_iterator si;
630 ilist_iterator ii;
631 fence_t fence = FLIST_FENCE (old_fences);
632 basic_block bb;
633
634 /* Get the only element of FENCE_BNDS (fence). */
635 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
636 {
637 gcc_assert (!was_here_p);
638 was_here_p = true;
639 }
640 gcc_assert (was_here_p && insn != NULL_RTX);
641
642 /* When in the "middle" of the block, just move this fence
643 to the new list. */
644 bb = BLOCK_FOR_INSN (insn);
645 if (! sel_bb_end_p (insn)
646 || (single_succ_p (bb)
647 && single_pred_p (single_succ (bb))))
648 {
649 insn_t succ;
650
651 succ = (sel_bb_end_p (insn)
652 ? sel_bb_head (single_succ (bb))
653 : NEXT_INSN (insn));
654
655 if (INSN_SEQNO (succ) > 0
656 && INSN_SEQNO (succ) <= orig_max_seqno
657 && INSN_SCHED_TIMES (succ) <= 0)
658 {
659 FENCE_INSN (fence) = succ;
660 move_fence_to_fences (old_fences, new_fences);
661
662 if (sched_verbose >= 1)
663 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
664 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
665 }
666 return;
667 }
668
669 /* Otherwise copy fence's structures to (possibly) multiple successors. */
670 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
671 {
672 int seqno = INSN_SEQNO (succ);
673
674 if (0 < seqno && seqno <= orig_max_seqno
675 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
676 {
677 bool b = (in_same_ebb_p (insn, succ)
678 || in_fallthru_bb_p (insn, succ));
679
680 if (sched_verbose >= 1)
681 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
682 INSN_UID (insn), INSN_UID (succ),
683 BLOCK_NUM (succ), b ? "continue" : "reset");
684
685 if (b)
686 add_dirty_fence_to_fences (new_fences, succ, fence);
687 else
688 {
689 /* Mark block of the SUCC as head of the new ebb. */
690 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
691 add_clean_fence_to_fences (new_fences, succ, fence);
692 }
693 }
694 }
695 }
696 \f
697
698 /* Functions to support substitution. */
699
700 /* Returns whether INSN with dependence status DS is eligible for
701 substitution, i.e. it's a copy operation x := y, and RHS that is
702 moved up through this insn should be substituted. */
703 static bool
704 can_substitute_through_p (insn_t insn, ds_t ds)
705 {
706 /* We can substitute only true dependencies. */
707 if ((ds & DEP_OUTPUT)
708 || (ds & DEP_ANTI)
709 || ! INSN_RHS (insn)
710 || ! INSN_LHS (insn))
711 return false;
712
713 /* Now we just need to make sure the INSN_RHS consists of only one
714 simple REG rtx. */
715 if (REG_P (INSN_LHS (insn))
716 && REG_P (INSN_RHS (insn)))
717 return true;
718 return false;
719 }
720
721 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
722 source (if INSN is eligible for substitution). Returns TRUE if
723 substitution was actually performed, FALSE otherwise. Substitution might
724 be not performed because it's either EXPR' vinsn doesn't contain INSN's
725 destination or the resulting insn is invalid for the target machine.
726 When UNDO is true, perform unsubstitution instead (the difference is in
727 the part of rtx on which validate_replace_rtx is called). */
728 static bool
729 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
730 {
731 rtx *where;
732 bool new_insn_valid;
733 vinsn_t *vi = &EXPR_VINSN (expr);
734 bool has_rhs = VINSN_RHS (*vi) != NULL;
735 rtx old, new_rtx;
736
737 /* Do not try to replace in SET_DEST. Although we'll choose new
738 register for the RHS, we don't want to change RHS' original reg.
739 If the insn is not SET, we may still be able to substitute something
740 in it, and if we're here (don't have deps), it doesn't write INSN's
741 dest. */
742 where = (has_rhs
743 ? &VINSN_RHS (*vi)
744 : &PATTERN (VINSN_INSN_RTX (*vi)));
745 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
746
747 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
748 if (rtx_ok_for_substitution_p (old, *where))
749 {
750 rtx_insn *new_insn;
751 rtx *where_replace;
752
753 /* We should copy these rtxes before substitution. */
754 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
755 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
756
757 /* Where we'll replace.
758 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
759 used instead of SET_SRC. */
760 where_replace = (has_rhs
761 ? &SET_SRC (PATTERN (new_insn))
762 : &PATTERN (new_insn));
763
764 new_insn_valid
765 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
766 new_insn);
767
768 /* ??? Actually, constrain_operands result depends upon choice of
769 destination register. E.g. if we allow single register to be an rhs,
770 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
771 in invalid insn dx=dx, so we'll loose this rhs here.
772 Just can't come up with significant testcase for this, so just
773 leaving it for now. */
774 if (new_insn_valid)
775 {
776 change_vinsn_in_expr (expr,
777 create_vinsn_from_insn_rtx (new_insn, false));
778
779 /* Do not allow clobbering the address register of speculative
780 insns. */
781 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
782 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
783 expr_dest_reg (expr)))
784 EXPR_TARGET_AVAILABLE (expr) = false;
785
786 return true;
787 }
788 else
789 return false;
790 }
791 else
792 return false;
793 }
794
795 /* Return the number of places WHAT appears within WHERE.
796 Bail out when we found a reference occupying several hard registers. */
797 static int
798 count_occurrences_equiv (const_rtx what, const_rtx where)
799 {
800 int count = 0;
801 subrtx_iterator::array_type array;
802 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
803 {
804 const_rtx x = *iter;
805 if (REG_P (x) && REGNO (x) == REGNO (what))
806 {
807 /* Bail out if mode is different or more than one register is
808 used. */
809 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
810 return 0;
811 count += 1;
812 }
813 else if (GET_CODE (x) == SUBREG
814 && (!REG_P (SUBREG_REG (x))
815 || REGNO (SUBREG_REG (x)) == REGNO (what)))
816 /* ??? Do not support substituting regs inside subregs. In that case,
817 simplify_subreg will be called by validate_replace_rtx, and
818 unsubstitution will fail later. */
819 return 0;
820 }
821 return count;
822 }
823
824 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
825 static bool
826 rtx_ok_for_substitution_p (rtx what, rtx where)
827 {
828 return (count_occurrences_equiv (what, where) > 0);
829 }
830 \f
831
832 /* Functions to support register renaming. */
833
834 /* Substitute VI's set source with REGNO. Returns newly created pattern
835 that has REGNO as its source. */
836 static rtx_insn *
837 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
838 {
839 rtx lhs_rtx;
840 rtx pattern;
841 rtx_insn *insn_rtx;
842
843 lhs_rtx = copy_rtx (VINSN_LHS (vi));
844
845 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
846 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
847
848 return insn_rtx;
849 }
850
851 /* Returns whether INSN's src can be replaced with register number
852 NEW_SRC_REG. E.g. the following insn is valid for i386:
853
854 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
855 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
856 (reg:SI 0 ax [orig:770 c1 ] [770]))
857 (const_int 288 [0x120])) [0 str S1 A8])
858 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
859 (nil))
860
861 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
862 because of operand constraints:
863
864 (define_insn "*movqi_1"
865 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
866 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
867 )]
868
869 So do constrain_operands here, before choosing NEW_SRC_REG as best
870 reg for rhs. */
871
872 static bool
873 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
874 {
875 vinsn_t vi = INSN_VINSN (insn);
876 machine_mode mode;
877 rtx dst_loc;
878 bool res;
879
880 gcc_assert (VINSN_SEPARABLE_P (vi));
881
882 get_dest_and_mode (insn, &dst_loc, &mode);
883 gcc_assert (mode == GET_MODE (new_src_reg));
884
885 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
886 return true;
887
888 /* See whether SET_SRC can be replaced with this register. */
889 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
890 res = verify_changes (0);
891 cancel_changes (0);
892
893 return res;
894 }
895
896 /* Returns whether INSN still be valid after replacing it's DEST with
897 register NEW_REG. */
898 static bool
899 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
900 {
901 vinsn_t vi = INSN_VINSN (insn);
902 bool res;
903
904 /* We should deal here only with separable insns. */
905 gcc_assert (VINSN_SEPARABLE_P (vi));
906 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
907
908 /* See whether SET_DEST can be replaced with this register. */
909 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
910 res = verify_changes (0);
911 cancel_changes (0);
912
913 return res;
914 }
915
916 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
917 static rtx_insn *
918 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
919 {
920 rtx rhs_rtx;
921 rtx pattern;
922 rtx_insn *insn_rtx;
923
924 rhs_rtx = copy_rtx (VINSN_RHS (vi));
925
926 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
927 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
928
929 return insn_rtx;
930 }
931
932 /* Substitute lhs in the given expression EXPR for the register with number
933 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
934 static void
935 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
936 {
937 rtx_insn *insn_rtx;
938 vinsn_t vinsn;
939
940 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
941 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
942
943 change_vinsn_in_expr (expr, vinsn);
944 EXPR_WAS_RENAMED (expr) = 1;
945 EXPR_TARGET_AVAILABLE (expr) = 1;
946 }
947
948 /* Returns whether VI writes either one of the USED_REGS registers or,
949 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
950 static bool
951 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
952 HARD_REG_SET unavailable_hard_regs)
953 {
954 unsigned regno;
955 reg_set_iterator rsi;
956
957 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
958 {
959 if (REGNO_REG_SET_P (used_regs, regno))
960 return true;
961 if (HARD_REGISTER_NUM_P (regno)
962 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
963 return true;
964 }
965
966 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
967 {
968 if (REGNO_REG_SET_P (used_regs, regno))
969 return true;
970 if (HARD_REGISTER_NUM_P (regno)
971 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
972 return true;
973 }
974
975 return false;
976 }
977
978 /* Returns register class of the output register in INSN.
979 Returns NO_REGS for call insns because some targets have constraints on
980 destination register of a call insn.
981
982 Code adopted from regrename.c::build_def_use. */
983 static enum reg_class
984 get_reg_class (rtx_insn *insn)
985 {
986 int i, n_ops;
987
988 extract_constrain_insn (insn);
989 preprocess_constraints (insn);
990 n_ops = recog_data.n_operands;
991
992 const operand_alternative *op_alt = which_op_alt ();
993 if (asm_noperands (PATTERN (insn)) > 0)
994 {
995 for (i = 0; i < n_ops; i++)
996 if (recog_data.operand_type[i] == OP_OUT)
997 {
998 rtx *loc = recog_data.operand_loc[i];
999 rtx op = *loc;
1000 enum reg_class cl = alternative_class (op_alt, i);
1001
1002 if (REG_P (op)
1003 && REGNO (op) == ORIGINAL_REGNO (op))
1004 continue;
1005
1006 return cl;
1007 }
1008 }
1009 else if (!CALL_P (insn))
1010 {
1011 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1012 {
1013 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1014 enum reg_class cl = alternative_class (op_alt, opn);
1015
1016 if (recog_data.operand_type[opn] == OP_OUT ||
1017 recog_data.operand_type[opn] == OP_INOUT)
1018 return cl;
1019 }
1020 }
1021
1022 /* Insns like
1023 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1024 may result in returning NO_REGS, cause flags is written implicitly through
1025 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1026 return NO_REGS;
1027 }
1028
1029 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1030 static void
1031 init_hard_regno_rename (int regno)
1032 {
1033 int cur_reg;
1034
1035 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1036
1037 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1038 {
1039 /* We are not interested in renaming in other regs. */
1040 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1041 continue;
1042
1043 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1044 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1045 }
1046 }
1047
1048 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1049 data first. */
1050 static inline bool
1051 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1052 {
1053 /* Check whether this is all calculated. */
1054 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1055 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1056
1057 init_hard_regno_rename (from);
1058
1059 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1060 }
1061
1062 /* Calculate set of registers that are capable of holding MODE. */
1063 static void
1064 init_regs_for_mode (machine_mode mode)
1065 {
1066 int cur_reg;
1067
1068 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1069 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1070
1071 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1072 {
1073 int nregs;
1074 int i;
1075
1076 /* See whether it accepts all modes that occur in
1077 original insns. */
1078 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1079 continue;
1080
1081 nregs = hard_regno_nregs[cur_reg][mode];
1082
1083 for (i = nregs - 1; i >= 0; --i)
1084 if (fixed_regs[cur_reg + i]
1085 || global_regs[cur_reg + i]
1086 /* Can't use regs which aren't saved by
1087 the prologue. */
1088 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1089 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1090 it affects aliasing globally and invalidates all AV sets. */
1091 || get_reg_base_value (cur_reg + i)
1092 #ifdef LEAF_REGISTERS
1093 /* We can't use a non-leaf register if we're in a
1094 leaf function. */
1095 || (crtl->is_leaf
1096 && !LEAF_REGISTERS[cur_reg + i])
1097 #endif
1098 )
1099 break;
1100
1101 if (i >= 0)
1102 continue;
1103
1104 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1105 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1106 cur_reg);
1107
1108 /* If the CUR_REG passed all the checks above,
1109 then it's ok. */
1110 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1111 }
1112
1113 sel_hrd.regs_for_mode_ok[mode] = true;
1114 }
1115
1116 /* Init all register sets gathered in HRD. */
1117 static void
1118 init_hard_regs_data (void)
1119 {
1120 int cur_reg = 0;
1121 int cur_mode = 0;
1122
1123 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1124 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1125 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1126 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1127
1128 /* Initialize registers that are valid based on mode when this is
1129 really needed. */
1130 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1131 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1132
1133 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1134 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1135 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1136
1137 #ifdef STACK_REGS
1138 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1139
1140 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1141 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1142 #endif
1143 }
1144
1145 /* Mark hardware regs in REG_RENAME_P that are not suitable
1146 for renaming rhs in INSN due to hardware restrictions (register class,
1147 modes compatibility etc). This doesn't affect original insn's dest reg,
1148 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1149 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1150 Registers that are in used_regs are always marked in
1151 unavailable_hard_regs as well. */
1152
1153 static void
1154 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1155 regset used_regs ATTRIBUTE_UNUSED)
1156 {
1157 machine_mode mode;
1158 enum reg_class cl = NO_REGS;
1159 rtx orig_dest;
1160 unsigned cur_reg, regno;
1161 hard_reg_set_iterator hrsi;
1162
1163 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1164 gcc_assert (reg_rename_p);
1165
1166 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1167
1168 /* We have decided not to rename 'mem = something;' insns, as 'something'
1169 is usually a register. */
1170 if (!REG_P (orig_dest))
1171 return;
1172
1173 regno = REGNO (orig_dest);
1174
1175 /* If before reload, don't try to work with pseudos. */
1176 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1177 return;
1178
1179 if (reload_completed)
1180 cl = get_reg_class (def->orig_insn);
1181
1182 /* Stop if the original register is one of the fixed_regs, global_regs or
1183 frame pointer, or we could not discover its class. */
1184 if (fixed_regs[regno]
1185 || global_regs[regno]
1186 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1187 && regno == HARD_FRAME_POINTER_REGNUM)
1188 || (HARD_FRAME_POINTER_REGNUM && frame_pointer_needed
1189 && regno == FRAME_POINTER_REGNUM)
1190 || (reload_completed && cl == NO_REGS))
1191 {
1192 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1193
1194 /* Give a chance for original register, if it isn't in used_regs. */
1195 if (!def->crosses_call)
1196 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1197
1198 return;
1199 }
1200
1201 /* If something allocated on stack in this function, mark frame pointer
1202 register unavailable, considering also modes.
1203 FIXME: it is enough to do this once per all original defs. */
1204 if (frame_pointer_needed)
1205 {
1206 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1207 Pmode, FRAME_POINTER_REGNUM);
1208
1209 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1210 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1211 Pmode, HARD_FRAME_POINTER_REGNUM);
1212 }
1213
1214 #ifdef STACK_REGS
1215 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1216 is equivalent to as if all stack regs were in this set.
1217 I.e. no stack register can be renamed, and even if it's an original
1218 register here we make sure it won't be lifted over it's previous def
1219 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1220 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1221 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1222 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1223 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1224 sel_hrd.stack_regs);
1225 #endif
1226
1227 /* If there's a call on this path, make regs from call_used_reg_set
1228 unavailable. */
1229 if (def->crosses_call)
1230 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1231 call_used_reg_set);
1232
1233 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1234 but not register classes. */
1235 if (!reload_completed)
1236 return;
1237
1238 /* Leave regs as 'available' only from the current
1239 register class. */
1240 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1241 reg_class_contents[cl]);
1242
1243 mode = GET_MODE (orig_dest);
1244
1245 /* Leave only registers available for this mode. */
1246 if (!sel_hrd.regs_for_mode_ok[mode])
1247 init_regs_for_mode (mode);
1248 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1249 sel_hrd.regs_for_mode[mode]);
1250
1251 /* Exclude registers that are partially call clobbered. */
1252 if (def->crosses_call
1253 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1254 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1255 sel_hrd.regs_for_call_clobbered[mode]);
1256
1257 /* Leave only those that are ok to rename. */
1258 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1259 0, cur_reg, hrsi)
1260 {
1261 int nregs;
1262 int i;
1263
1264 nregs = hard_regno_nregs[cur_reg][mode];
1265 gcc_assert (nregs > 0);
1266
1267 for (i = nregs - 1; i >= 0; --i)
1268 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1269 break;
1270
1271 if (i >= 0)
1272 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1273 cur_reg);
1274 }
1275
1276 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1277 reg_rename_p->unavailable_hard_regs);
1278
1279 /* Regno is always ok from the renaming part of view, but it really
1280 could be in *unavailable_hard_regs already, so set it here instead
1281 of there. */
1282 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1283 }
1284
1285 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1286 best register more recently than REG2. */
1287 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1288
1289 /* Indicates the number of times renaming happened before the current one. */
1290 static int reg_rename_this_tick;
1291
1292 /* Choose the register among free, that is suitable for storing
1293 the rhs value.
1294
1295 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1296 originally appears. There could be multiple original operations
1297 for single rhs since we moving it up and merging along different
1298 paths.
1299
1300 Some code is adapted from regrename.c (regrename_optimize).
1301 If original register is available, function returns it.
1302 Otherwise it performs the checks, so the new register should
1303 comply with the following:
1304 - it should not violate any live ranges (such registers are in
1305 REG_RENAME_P->available_for_renaming set);
1306 - it should not be in the HARD_REGS_USED regset;
1307 - it should be in the class compatible with original uses;
1308 - it should not be clobbered through reference with different mode;
1309 - if we're in the leaf function, then the new register should
1310 not be in the LEAF_REGISTERS;
1311 - etc.
1312
1313 If several registers meet the conditions, the register with smallest
1314 tick is returned to achieve more even register allocation.
1315
1316 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1317
1318 If no register satisfies the above conditions, NULL_RTX is returned. */
1319 static rtx
1320 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1321 struct reg_rename *reg_rename_p,
1322 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1323 {
1324 int best_new_reg;
1325 unsigned cur_reg;
1326 machine_mode mode = VOIDmode;
1327 unsigned regno, i, n;
1328 hard_reg_set_iterator hrsi;
1329 def_list_iterator di;
1330 def_t def;
1331
1332 /* If original register is available, return it. */
1333 *is_orig_reg_p_ptr = true;
1334
1335 FOR_EACH_DEF (def, di, original_insns)
1336 {
1337 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1338
1339 gcc_assert (REG_P (orig_dest));
1340
1341 /* Check that all original operations have the same mode.
1342 This is done for the next loop; if we'd return from this
1343 loop, we'd check only part of them, but in this case
1344 it doesn't matter. */
1345 if (mode == VOIDmode)
1346 mode = GET_MODE (orig_dest);
1347 gcc_assert (mode == GET_MODE (orig_dest));
1348
1349 regno = REGNO (orig_dest);
1350 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1351 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1352 break;
1353
1354 /* All hard registers are available. */
1355 if (i == n)
1356 {
1357 gcc_assert (mode != VOIDmode);
1358
1359 /* Hard registers should not be shared. */
1360 return gen_rtx_REG (mode, regno);
1361 }
1362 }
1363
1364 *is_orig_reg_p_ptr = false;
1365 best_new_reg = -1;
1366
1367 /* Among all available regs choose the register that was
1368 allocated earliest. */
1369 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1370 0, cur_reg, hrsi)
1371 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1372 {
1373 /* Check that all hard regs for mode are available. */
1374 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1375 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1376 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1377 cur_reg + i))
1378 break;
1379
1380 if (i < n)
1381 continue;
1382
1383 /* All hard registers are available. */
1384 if (best_new_reg < 0
1385 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1386 {
1387 best_new_reg = cur_reg;
1388
1389 /* Return immediately when we know there's no better reg. */
1390 if (! reg_rename_tick[best_new_reg])
1391 break;
1392 }
1393 }
1394
1395 if (best_new_reg >= 0)
1396 {
1397 /* Use the check from the above loop. */
1398 gcc_assert (mode != VOIDmode);
1399 return gen_rtx_REG (mode, best_new_reg);
1400 }
1401
1402 return NULL_RTX;
1403 }
1404
1405 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1406 assumptions about available registers in the function. */
1407 static rtx
1408 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1409 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1410 {
1411 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1412 original_insns, is_orig_reg_p_ptr);
1413
1414 /* FIXME loop over hard_regno_nregs here. */
1415 gcc_assert (best_reg == NULL_RTX
1416 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1417
1418 return best_reg;
1419 }
1420
1421 /* Choose the pseudo register for storing rhs value. As this is supposed
1422 to work before reload, we return either the original register or make
1423 the new one. The parameters are the same that in choose_nest_reg_1
1424 functions, except that USED_REGS may contain pseudos.
1425 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1426
1427 TODO: take into account register pressure while doing this. Up to this
1428 moment, this function would never return NULL for pseudos, but we should
1429 not rely on this. */
1430 static rtx
1431 choose_best_pseudo_reg (regset used_regs,
1432 struct reg_rename *reg_rename_p,
1433 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1434 {
1435 def_list_iterator i;
1436 def_t def;
1437 machine_mode mode = VOIDmode;
1438 bool bad_hard_regs = false;
1439
1440 /* We should not use this after reload. */
1441 gcc_assert (!reload_completed);
1442
1443 /* If original register is available, return it. */
1444 *is_orig_reg_p_ptr = true;
1445
1446 FOR_EACH_DEF (def, i, original_insns)
1447 {
1448 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1449 int orig_regno;
1450
1451 gcc_assert (REG_P (dest));
1452
1453 /* Check that all original operations have the same mode. */
1454 if (mode == VOIDmode)
1455 mode = GET_MODE (dest);
1456 else
1457 gcc_assert (mode == GET_MODE (dest));
1458 orig_regno = REGNO (dest);
1459
1460 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1461 {
1462 if (orig_regno < FIRST_PSEUDO_REGISTER)
1463 {
1464 gcc_assert (df_regs_ever_live_p (orig_regno));
1465
1466 /* For hard registers, we have to check hardware imposed
1467 limitations (frame/stack registers, calls crossed). */
1468 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1469 orig_regno))
1470 {
1471 /* Don't let register cross a call if it doesn't already
1472 cross one. This condition is written in accordance with
1473 that in sched-deps.c sched_analyze_reg(). */
1474 if (!reg_rename_p->crosses_call
1475 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1476 return gen_rtx_REG (mode, orig_regno);
1477 }
1478
1479 bad_hard_regs = true;
1480 }
1481 else
1482 return dest;
1483 }
1484 }
1485
1486 *is_orig_reg_p_ptr = false;
1487
1488 /* We had some original hard registers that couldn't be used.
1489 Those were likely special. Don't try to create a pseudo. */
1490 if (bad_hard_regs)
1491 return NULL_RTX;
1492
1493 /* We haven't found a register from original operations. Get a new one.
1494 FIXME: control register pressure somehow. */
1495 {
1496 rtx new_reg = gen_reg_rtx (mode);
1497
1498 gcc_assert (mode != VOIDmode);
1499
1500 max_regno = max_reg_num ();
1501 maybe_extend_reg_info_p ();
1502 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1503
1504 return new_reg;
1505 }
1506 }
1507
1508 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1509 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1510 static void
1511 verify_target_availability (expr_t expr, regset used_regs,
1512 struct reg_rename *reg_rename_p)
1513 {
1514 unsigned n, i, regno;
1515 machine_mode mode;
1516 bool target_available, live_available, hard_available;
1517
1518 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1519 return;
1520
1521 regno = expr_dest_regno (expr);
1522 mode = GET_MODE (EXPR_LHS (expr));
1523 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1524 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1525
1526 live_available = hard_available = true;
1527 for (i = 0; i < n; i++)
1528 {
1529 if (bitmap_bit_p (used_regs, regno + i))
1530 live_available = false;
1531 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1532 hard_available = false;
1533 }
1534
1535 /* When target is not available, it may be due to hard register
1536 restrictions, e.g. crosses calls, so we check hard_available too. */
1537 if (target_available)
1538 gcc_assert (live_available);
1539 else
1540 /* Check only if we haven't scheduled something on the previous fence,
1541 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1542 and having more than one fence, we may end having targ_un in a block
1543 in which successors target register is actually available.
1544
1545 The last condition handles the case when a dependence from a call insn
1546 was created in sched-deps.c for insns with destination registers that
1547 never crossed a call before, but do cross one after our code motion.
1548
1549 FIXME: in the latter case, we just uselessly called find_used_regs,
1550 because we can't move this expression with any other register
1551 as well. */
1552 gcc_assert (scheduled_something_on_previous_fence || !live_available
1553 || !hard_available
1554 || (!reload_completed && reg_rename_p->crosses_call
1555 && REG_N_CALLS_CROSSED (regno) == 0));
1556 }
1557
1558 /* Collect unavailable registers due to liveness for EXPR from BNDS
1559 into USED_REGS. Save additional information about available
1560 registers and unavailable due to hardware restriction registers
1561 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1562 list. */
1563 static void
1564 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1565 struct reg_rename *reg_rename_p,
1566 def_list_t *original_insns)
1567 {
1568 for (; bnds; bnds = BLIST_NEXT (bnds))
1569 {
1570 bool res;
1571 av_set_t orig_ops = NULL;
1572 bnd_t bnd = BLIST_BND (bnds);
1573
1574 /* If the chosen best expr doesn't belong to current boundary,
1575 skip it. */
1576 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1577 continue;
1578
1579 /* Put in ORIG_OPS all exprs from this boundary that became
1580 RES on top. */
1581 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1582
1583 /* Compute used regs and OR it into the USED_REGS. */
1584 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1585 reg_rename_p, original_insns);
1586
1587 /* FIXME: the assert is true until we'd have several boundaries. */
1588 gcc_assert (res);
1589 av_set_clear (&orig_ops);
1590 }
1591 }
1592
1593 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1594 If BEST_REG is valid, replace LHS of EXPR with it. */
1595 static bool
1596 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1597 {
1598 /* Try whether we'll be able to generate the insn
1599 'dest := best_reg' at the place of the original operation. */
1600 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1601 {
1602 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1603
1604 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1605
1606 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1607 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1608 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1609 return false;
1610 }
1611
1612 /* Make sure that EXPR has the right destination
1613 register. */
1614 if (expr_dest_regno (expr) != REGNO (best_reg))
1615 replace_dest_with_reg_in_expr (expr, best_reg);
1616 else
1617 EXPR_TARGET_AVAILABLE (expr) = 1;
1618
1619 return true;
1620 }
1621
1622 /* Select and assign best register to EXPR searching from BNDS.
1623 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1624 Return FALSE if no register can be chosen, which could happen when:
1625 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1626 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1627 that are used on the moving path. */
1628 static bool
1629 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1630 {
1631 static struct reg_rename reg_rename_data;
1632
1633 regset used_regs;
1634 def_list_t original_insns = NULL;
1635 bool reg_ok;
1636
1637 *is_orig_reg_p = false;
1638
1639 /* Don't bother to do anything if this insn doesn't set any registers. */
1640 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1641 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1642 return true;
1643
1644 used_regs = get_clear_regset_from_pool ();
1645 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1646
1647 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1648 &original_insns);
1649
1650 /* If after reload, make sure we're working with hard regs here. */
1651 if (flag_checking && reload_completed)
1652 {
1653 reg_set_iterator rsi;
1654 unsigned i;
1655
1656 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1657 gcc_unreachable ();
1658 }
1659
1660 if (EXPR_SEPARABLE_P (expr))
1661 {
1662 rtx best_reg = NULL_RTX;
1663 /* Check that we have computed availability of a target register
1664 correctly. */
1665 verify_target_availability (expr, used_regs, &reg_rename_data);
1666
1667 /* Turn everything in hard regs after reload. */
1668 if (reload_completed)
1669 {
1670 HARD_REG_SET hard_regs_used;
1671 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1672
1673 /* Join hard registers unavailable due to register class
1674 restrictions and live range intersection. */
1675 IOR_HARD_REG_SET (hard_regs_used,
1676 reg_rename_data.unavailable_hard_regs);
1677
1678 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1679 original_insns, is_orig_reg_p);
1680 }
1681 else
1682 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1683 original_insns, is_orig_reg_p);
1684
1685 if (!best_reg)
1686 reg_ok = false;
1687 else if (*is_orig_reg_p)
1688 {
1689 /* In case of unification BEST_REG may be different from EXPR's LHS
1690 when EXPR's LHS is unavailable, and there is another LHS among
1691 ORIGINAL_INSNS. */
1692 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1693 }
1694 else
1695 {
1696 /* Forbid renaming of low-cost insns. */
1697 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1698 reg_ok = false;
1699 else
1700 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1701 }
1702 }
1703 else
1704 {
1705 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1706 any of the HARD_REGS_USED set. */
1707 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1708 reg_rename_data.unavailable_hard_regs))
1709 {
1710 reg_ok = false;
1711 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1712 }
1713 else
1714 {
1715 reg_ok = true;
1716 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1717 }
1718 }
1719
1720 ilist_clear (&original_insns);
1721 return_regset_to_pool (used_regs);
1722
1723 return reg_ok;
1724 }
1725 \f
1726
1727 /* Return true if dependence described by DS can be overcomed. */
1728 static bool
1729 can_speculate_dep_p (ds_t ds)
1730 {
1731 if (spec_info == NULL)
1732 return false;
1733
1734 /* Leave only speculative data. */
1735 ds &= SPECULATIVE;
1736
1737 if (ds == 0)
1738 return false;
1739
1740 {
1741 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1742 that we can overcome. */
1743 ds_t spec_mask = spec_info->mask;
1744
1745 if ((ds & spec_mask) != ds)
1746 return false;
1747 }
1748
1749 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1750 return false;
1751
1752 return true;
1753 }
1754
1755 /* Get a speculation check instruction.
1756 C_EXPR is a speculative expression,
1757 CHECK_DS describes speculations that should be checked,
1758 ORIG_INSN is the original non-speculative insn in the stream. */
1759 static insn_t
1760 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1761 {
1762 rtx check_pattern;
1763 rtx_insn *insn_rtx;
1764 insn_t insn;
1765 basic_block recovery_block;
1766 rtx_insn *label;
1767
1768 /* Create a recovery block if target is going to emit branchy check, or if
1769 ORIG_INSN was speculative already. */
1770 if (targetm.sched.needs_block_p (check_ds)
1771 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1772 {
1773 recovery_block = sel_create_recovery_block (orig_insn);
1774 label = BB_HEAD (recovery_block);
1775 }
1776 else
1777 {
1778 recovery_block = NULL;
1779 label = NULL;
1780 }
1781
1782 /* Get pattern of the check. */
1783 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1784 check_ds);
1785
1786 gcc_assert (check_pattern != NULL);
1787
1788 /* Emit check. */
1789 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1790
1791 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1792 INSN_SEQNO (orig_insn), orig_insn);
1793
1794 /* Make check to be non-speculative. */
1795 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1796 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1797
1798 /* Decrease priority of check by difference of load/check instruction
1799 latencies. */
1800 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1801 - sel_vinsn_cost (INSN_VINSN (insn)));
1802
1803 /* Emit copy of original insn (though with replaced target register,
1804 if needed) to the recovery block. */
1805 if (recovery_block != NULL)
1806 {
1807 rtx twin_rtx;
1808
1809 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1810 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1811 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1812 INSN_EXPR (orig_insn),
1813 INSN_SEQNO (insn),
1814 bb_note (recovery_block));
1815 }
1816
1817 /* If we've generated a data speculation check, make sure
1818 that all the bookkeeping instruction we'll create during
1819 this move_op () will allocate an ALAT entry so that the
1820 check won't fail.
1821 In case of control speculation we must convert C_EXPR to control
1822 speculative mode, because failing to do so will bring us an exception
1823 thrown by the non-control-speculative load. */
1824 check_ds = ds_get_max_dep_weak (check_ds);
1825 speculate_expr (c_expr, check_ds);
1826
1827 return insn;
1828 }
1829
1830 /* True when INSN is a "regN = regN" copy. */
1831 static bool
1832 identical_copy_p (rtx_insn *insn)
1833 {
1834 rtx lhs, rhs, pat;
1835
1836 pat = PATTERN (insn);
1837
1838 if (GET_CODE (pat) != SET)
1839 return false;
1840
1841 lhs = SET_DEST (pat);
1842 if (!REG_P (lhs))
1843 return false;
1844
1845 rhs = SET_SRC (pat);
1846 if (!REG_P (rhs))
1847 return false;
1848
1849 return REGNO (lhs) == REGNO (rhs);
1850 }
1851
1852 /* Undo all transformations on *AV_PTR that were done when
1853 moving through INSN. */
1854 static void
1855 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1856 {
1857 av_set_iterator av_iter;
1858 expr_t expr;
1859 av_set_t new_set = NULL;
1860
1861 /* First, kill any EXPR that uses registers set by an insn. This is
1862 required for correctness. */
1863 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1864 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1865 && bitmap_intersect_p (INSN_REG_SETS (insn),
1866 VINSN_REG_USES (EXPR_VINSN (expr)))
1867 /* When an insn looks like 'r1 = r1', we could substitute through
1868 it, but the above condition will still hold. This happened with
1869 gcc.c-torture/execute/961125-1.c. */
1870 && !identical_copy_p (insn))
1871 {
1872 if (sched_verbose >= 6)
1873 sel_print ("Expr %d removed due to use/set conflict\n",
1874 INSN_UID (EXPR_INSN_RTX (expr)));
1875 av_set_iter_remove (&av_iter);
1876 }
1877
1878 /* Undo transformations looking at the history vector. */
1879 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1880 {
1881 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1882 insn, EXPR_VINSN (expr), true);
1883
1884 if (index >= 0)
1885 {
1886 expr_history_def *phist;
1887
1888 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1889
1890 switch (phist->type)
1891 {
1892 case TRANS_SPECULATION:
1893 {
1894 ds_t old_ds, new_ds;
1895
1896 /* Compute the difference between old and new speculative
1897 statuses: that's what we need to check.
1898 Earlier we used to assert that the status will really
1899 change. This no longer works because only the probability
1900 bits in the status may have changed during compute_av_set,
1901 and in the case of merging different probabilities of the
1902 same speculative status along different paths we do not
1903 record this in the history vector. */
1904 old_ds = phist->spec_ds;
1905 new_ds = EXPR_SPEC_DONE_DS (expr);
1906
1907 old_ds &= SPECULATIVE;
1908 new_ds &= SPECULATIVE;
1909 new_ds &= ~old_ds;
1910
1911 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1912 break;
1913 }
1914 case TRANS_SUBSTITUTION:
1915 {
1916 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1917 vinsn_t new_vi;
1918 bool add = true;
1919
1920 new_vi = phist->old_expr_vinsn;
1921
1922 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1923 == EXPR_SEPARABLE_P (expr));
1924 copy_expr (tmp_expr, expr);
1925
1926 if (vinsn_equal_p (phist->new_expr_vinsn,
1927 EXPR_VINSN (tmp_expr)))
1928 change_vinsn_in_expr (tmp_expr, new_vi);
1929 else
1930 /* This happens when we're unsubstituting on a bookkeeping
1931 copy, which was in turn substituted. The history is wrong
1932 in this case. Do it the hard way. */
1933 add = substitute_reg_in_expr (tmp_expr, insn, true);
1934 if (add)
1935 av_set_add (&new_set, tmp_expr);
1936 clear_expr (tmp_expr);
1937 break;
1938 }
1939 default:
1940 gcc_unreachable ();
1941 }
1942 }
1943
1944 }
1945
1946 av_set_union_and_clear (av_ptr, &new_set, NULL);
1947 }
1948 \f
1949
1950 /* Moveup_* helpers for code motion and computing av sets. */
1951
1952 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1953 The difference from the below function is that only substitution is
1954 performed. */
1955 static enum MOVEUP_EXPR_CODE
1956 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1957 {
1958 vinsn_t vi = EXPR_VINSN (expr);
1959 ds_t *has_dep_p;
1960 ds_t full_ds;
1961
1962 /* Do this only inside insn group. */
1963 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1964
1965 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1966 if (full_ds == 0)
1967 return MOVEUP_EXPR_SAME;
1968
1969 /* Substitution is the possible choice in this case. */
1970 if (has_dep_p[DEPS_IN_RHS])
1971 {
1972 /* Can't substitute UNIQUE VINSNs. */
1973 gcc_assert (!VINSN_UNIQUE_P (vi));
1974
1975 if (can_substitute_through_p (through_insn,
1976 has_dep_p[DEPS_IN_RHS])
1977 && substitute_reg_in_expr (expr, through_insn, false))
1978 {
1979 EXPR_WAS_SUBSTITUTED (expr) = true;
1980 return MOVEUP_EXPR_CHANGED;
1981 }
1982
1983 /* Don't care about this, as even true dependencies may be allowed
1984 in an insn group. */
1985 return MOVEUP_EXPR_SAME;
1986 }
1987
1988 /* This can catch output dependencies in COND_EXECs. */
1989 if (has_dep_p[DEPS_IN_INSN])
1990 return MOVEUP_EXPR_NULL;
1991
1992 /* This is either an output or an anti dependence, which usually have
1993 a zero latency. Allow this here, if we'd be wrong, tick_check_p
1994 will fix this. */
1995 gcc_assert (has_dep_p[DEPS_IN_LHS]);
1996 return MOVEUP_EXPR_AS_RHS;
1997 }
1998
1999 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2000 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2001 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2002 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2003 && !sel_insn_is_speculation_check (through_insn))
2004
2005 /* True when a conflict on a target register was found during moveup_expr. */
2006 static bool was_target_conflict = false;
2007
2008 /* Return true when moving a debug INSN across THROUGH_INSN will
2009 create a bookkeeping block. We don't want to create such blocks,
2010 for they would cause codegen differences between compilations with
2011 and without debug info. */
2012
2013 static bool
2014 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2015 insn_t through_insn)
2016 {
2017 basic_block bbi, bbt;
2018 edge e1, e2;
2019 edge_iterator ei1, ei2;
2020
2021 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2022 {
2023 if (sched_verbose >= 9)
2024 sel_print ("no bookkeeping required: ");
2025 return FALSE;
2026 }
2027
2028 bbi = BLOCK_FOR_INSN (insn);
2029
2030 if (EDGE_COUNT (bbi->preds) == 1)
2031 {
2032 if (sched_verbose >= 9)
2033 sel_print ("only one pred edge: ");
2034 return TRUE;
2035 }
2036
2037 bbt = BLOCK_FOR_INSN (through_insn);
2038
2039 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2040 {
2041 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2042 {
2043 if (find_block_for_bookkeeping (e1, e2, TRUE))
2044 {
2045 if (sched_verbose >= 9)
2046 sel_print ("found existing block: ");
2047 return FALSE;
2048 }
2049 }
2050 }
2051
2052 if (sched_verbose >= 9)
2053 sel_print ("would create bookkeeping block: ");
2054
2055 return TRUE;
2056 }
2057
2058 /* Return true when the conflict with newly created implicit clobbers
2059 between EXPR and THROUGH_INSN is found because of renaming. */
2060 static bool
2061 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2062 {
2063 HARD_REG_SET temp;
2064 rtx_insn *insn;
2065 rtx reg, rhs, pat;
2066 hard_reg_set_iterator hrsi;
2067 unsigned regno;
2068 bool valid;
2069
2070 /* Make a new pseudo register. */
2071 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2072 max_regno = max_reg_num ();
2073 maybe_extend_reg_info_p ();
2074
2075 /* Validate a change and bail out early. */
2076 insn = EXPR_INSN_RTX (expr);
2077 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2078 valid = verify_changes (0);
2079 cancel_changes (0);
2080 if (!valid)
2081 {
2082 if (sched_verbose >= 6)
2083 sel_print ("implicit clobbers failed validation, ");
2084 return true;
2085 }
2086
2087 /* Make a new insn with it. */
2088 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2089 pat = gen_rtx_SET (reg, rhs);
2090 start_sequence ();
2091 insn = emit_insn (pat);
2092 end_sequence ();
2093
2094 /* Calculate implicit clobbers. */
2095 extract_insn (insn);
2096 preprocess_constraints (insn);
2097 alternative_mask prefrred = get_preferred_alternatives (insn);
2098 ira_implicitly_set_insn_hard_regs (&temp, prefrred);
2099 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2100
2101 /* If any implicit clobber registers intersect with regular ones in
2102 through_insn, we have a dependency and thus bail out. */
2103 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2104 {
2105 vinsn_t vi = INSN_VINSN (through_insn);
2106 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2107 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2108 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2109 return true;
2110 }
2111
2112 return false;
2113 }
2114
2115 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2116 performing necessary transformations. Record the type of transformation
2117 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2118 permit all dependencies except true ones, and try to remove those
2119 too via forward substitution. All cases when a non-eliminable
2120 non-zero cost dependency exists inside an insn group will be fixed
2121 in tick_check_p instead. */
2122 static enum MOVEUP_EXPR_CODE
2123 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2124 enum local_trans_type *ptrans_type)
2125 {
2126 vinsn_t vi = EXPR_VINSN (expr);
2127 insn_t insn = VINSN_INSN_RTX (vi);
2128 bool was_changed = false;
2129 bool as_rhs = false;
2130 ds_t *has_dep_p;
2131 ds_t full_ds;
2132
2133 /* ??? We use dependencies of non-debug insns on debug insns to
2134 indicate that the debug insns need to be reset if the non-debug
2135 insn is pulled ahead of it. It's hard to figure out how to
2136 introduce such a notion in sel-sched, but it already fails to
2137 support debug insns in other ways, so we just go ahead and
2138 let the deug insns go corrupt for now. */
2139 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2140 return MOVEUP_EXPR_SAME;
2141
2142 /* When inside_insn_group, delegate to the helper. */
2143 if (inside_insn_group)
2144 return moveup_expr_inside_insn_group (expr, through_insn);
2145
2146 /* Deal with unique insns and control dependencies. */
2147 if (VINSN_UNIQUE_P (vi))
2148 {
2149 /* We can move jumps without side-effects or jumps that are
2150 mutually exclusive with instruction THROUGH_INSN (all in cases
2151 dependencies allow to do so and jump is not speculative). */
2152 if (control_flow_insn_p (insn))
2153 {
2154 basic_block fallthru_bb;
2155
2156 /* Do not move checks and do not move jumps through other
2157 jumps. */
2158 if (control_flow_insn_p (through_insn)
2159 || sel_insn_is_speculation_check (insn))
2160 return MOVEUP_EXPR_NULL;
2161
2162 /* Don't move jumps through CFG joins. */
2163 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2164 return MOVEUP_EXPR_NULL;
2165
2166 /* The jump should have a clear fallthru block, and
2167 this block should be in the current region. */
2168 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2169 || ! in_current_region_p (fallthru_bb))
2170 return MOVEUP_EXPR_NULL;
2171
2172 /* And it should be mutually exclusive with through_insn. */
2173 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2174 && ! DEBUG_INSN_P (through_insn))
2175 return MOVEUP_EXPR_NULL;
2176 }
2177
2178 /* Don't move what we can't move. */
2179 if (EXPR_CANT_MOVE (expr)
2180 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2181 return MOVEUP_EXPR_NULL;
2182
2183 /* Don't move SCHED_GROUP instruction through anything.
2184 If we don't force this, then it will be possible to start
2185 scheduling a sched_group before all its dependencies are
2186 resolved.
2187 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2188 as late as possible through rank_for_schedule. */
2189 if (SCHED_GROUP_P (insn))
2190 return MOVEUP_EXPR_NULL;
2191 }
2192 else
2193 gcc_assert (!control_flow_insn_p (insn));
2194
2195 /* Don't move debug insns if this would require bookkeeping. */
2196 if (DEBUG_INSN_P (insn)
2197 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2198 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2199 return MOVEUP_EXPR_NULL;
2200
2201 /* Deal with data dependencies. */
2202 was_target_conflict = false;
2203 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2204 if (full_ds == 0)
2205 {
2206 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2207 return MOVEUP_EXPR_SAME;
2208 }
2209 else
2210 {
2211 /* We can move UNIQUE insn up only as a whole and unchanged,
2212 so it shouldn't have any dependencies. */
2213 if (VINSN_UNIQUE_P (vi))
2214 return MOVEUP_EXPR_NULL;
2215 }
2216
2217 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2218 {
2219 int res;
2220
2221 res = speculate_expr (expr, full_ds);
2222 if (res >= 0)
2223 {
2224 /* Speculation was successful. */
2225 full_ds = 0;
2226 was_changed = (res > 0);
2227 if (res == 2)
2228 was_target_conflict = true;
2229 if (ptrans_type)
2230 *ptrans_type = TRANS_SPECULATION;
2231 sel_clear_has_dependence ();
2232 }
2233 }
2234
2235 if (has_dep_p[DEPS_IN_INSN])
2236 /* We have some dependency that cannot be discarded. */
2237 return MOVEUP_EXPR_NULL;
2238
2239 if (has_dep_p[DEPS_IN_LHS])
2240 {
2241 /* Only separable insns can be moved up with the new register.
2242 Anyways, we should mark that the original register is
2243 unavailable. */
2244 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2245 return MOVEUP_EXPR_NULL;
2246
2247 /* When renaming a hard register to a pseudo before reload, extra
2248 dependencies can occur from the implicit clobbers of the insn.
2249 Filter out such cases here. */
2250 if (!reload_completed && REG_P (EXPR_LHS (expr))
2251 && HARD_REGISTER_P (EXPR_LHS (expr))
2252 && implicit_clobber_conflict_p (through_insn, expr))
2253 {
2254 if (sched_verbose >= 6)
2255 sel_print ("implicit clobbers conflict detected, ");
2256 return MOVEUP_EXPR_NULL;
2257 }
2258 EXPR_TARGET_AVAILABLE (expr) = false;
2259 was_target_conflict = true;
2260 as_rhs = true;
2261 }
2262
2263 /* At this point we have either separable insns, that will be lifted
2264 up only as RHSes, or non-separable insns with no dependency in lhs.
2265 If dependency is in RHS, then try to perform substitution and move up
2266 substituted RHS:
2267
2268 Ex. 1: Ex.2
2269 y = x; y = x;
2270 z = y*2; y = y*2;
2271
2272 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2273 moved above y=x assignment as z=x*2.
2274
2275 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2276 side can be moved because of the output dependency. The operation was
2277 cropped to its rhs above. */
2278 if (has_dep_p[DEPS_IN_RHS])
2279 {
2280 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2281
2282 /* Can't substitute UNIQUE VINSNs. */
2283 gcc_assert (!VINSN_UNIQUE_P (vi));
2284
2285 if (can_speculate_dep_p (*rhs_dsp))
2286 {
2287 int res;
2288
2289 res = speculate_expr (expr, *rhs_dsp);
2290 if (res >= 0)
2291 {
2292 /* Speculation was successful. */
2293 *rhs_dsp = 0;
2294 was_changed = (res > 0);
2295 if (res == 2)
2296 was_target_conflict = true;
2297 if (ptrans_type)
2298 *ptrans_type = TRANS_SPECULATION;
2299 }
2300 else
2301 return MOVEUP_EXPR_NULL;
2302 }
2303 else if (can_substitute_through_p (through_insn,
2304 *rhs_dsp)
2305 && substitute_reg_in_expr (expr, through_insn, false))
2306 {
2307 /* ??? We cannot perform substitution AND speculation on the same
2308 insn. */
2309 gcc_assert (!was_changed);
2310 was_changed = true;
2311 if (ptrans_type)
2312 *ptrans_type = TRANS_SUBSTITUTION;
2313 EXPR_WAS_SUBSTITUTED (expr) = true;
2314 }
2315 else
2316 return MOVEUP_EXPR_NULL;
2317 }
2318
2319 /* Don't move trapping insns through jumps.
2320 This check should be at the end to give a chance to control speculation
2321 to perform its duties. */
2322 if (CANT_MOVE_TRAPPING (expr, through_insn))
2323 return MOVEUP_EXPR_NULL;
2324
2325 return (was_changed
2326 ? MOVEUP_EXPR_CHANGED
2327 : (as_rhs
2328 ? MOVEUP_EXPR_AS_RHS
2329 : MOVEUP_EXPR_SAME));
2330 }
2331
2332 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2333 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2334 that can exist within a parallel group. Write to RES the resulting
2335 code for moveup_expr. */
2336 static bool
2337 try_bitmap_cache (expr_t expr, insn_t insn,
2338 bool inside_insn_group,
2339 enum MOVEUP_EXPR_CODE *res)
2340 {
2341 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2342
2343 /* First check whether we've analyzed this situation already. */
2344 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2345 {
2346 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2347 {
2348 if (sched_verbose >= 6)
2349 sel_print ("removed (cached)\n");
2350 *res = MOVEUP_EXPR_NULL;
2351 return true;
2352 }
2353 else
2354 {
2355 if (sched_verbose >= 6)
2356 sel_print ("unchanged (cached)\n");
2357 *res = MOVEUP_EXPR_SAME;
2358 return true;
2359 }
2360 }
2361 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2362 {
2363 if (inside_insn_group)
2364 {
2365 if (sched_verbose >= 6)
2366 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2367 *res = MOVEUP_EXPR_SAME;
2368 return true;
2369
2370 }
2371 else
2372 EXPR_TARGET_AVAILABLE (expr) = false;
2373
2374 /* This is the only case when propagation result can change over time,
2375 as we can dynamically switch off scheduling as RHS. In this case,
2376 just check the flag to reach the correct decision. */
2377 if (enable_schedule_as_rhs_p)
2378 {
2379 if (sched_verbose >= 6)
2380 sel_print ("unchanged (as RHS, cached)\n");
2381 *res = MOVEUP_EXPR_AS_RHS;
2382 return true;
2383 }
2384 else
2385 {
2386 if (sched_verbose >= 6)
2387 sel_print ("removed (cached as RHS, but renaming"
2388 " is now disabled)\n");
2389 *res = MOVEUP_EXPR_NULL;
2390 return true;
2391 }
2392 }
2393
2394 return false;
2395 }
2396
2397 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2398 if successful. Write to RES the resulting code for moveup_expr. */
2399 static bool
2400 try_transformation_cache (expr_t expr, insn_t insn,
2401 enum MOVEUP_EXPR_CODE *res)
2402 {
2403 struct transformed_insns *pti
2404 = (struct transformed_insns *)
2405 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2406 &EXPR_VINSN (expr),
2407 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2408 if (pti)
2409 {
2410 /* This EXPR was already moved through this insn and was
2411 changed as a result. Fetch the proper data from
2412 the hashtable. */
2413 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2414 INSN_UID (insn), pti->type,
2415 pti->vinsn_old, pti->vinsn_new,
2416 EXPR_SPEC_DONE_DS (expr));
2417
2418 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2419 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2420 change_vinsn_in_expr (expr, pti->vinsn_new);
2421 if (pti->was_target_conflict)
2422 EXPR_TARGET_AVAILABLE (expr) = false;
2423 if (pti->type == TRANS_SPECULATION)
2424 {
2425 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2426 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2427 }
2428
2429 if (sched_verbose >= 6)
2430 {
2431 sel_print ("changed (cached): ");
2432 dump_expr (expr);
2433 sel_print ("\n");
2434 }
2435
2436 *res = MOVEUP_EXPR_CHANGED;
2437 return true;
2438 }
2439
2440 return false;
2441 }
2442
2443 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2444 static void
2445 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2446 enum MOVEUP_EXPR_CODE res)
2447 {
2448 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2449
2450 /* Do not cache result of propagating jumps through an insn group,
2451 as it is always true, which is not useful outside the group. */
2452 if (inside_insn_group)
2453 return;
2454
2455 if (res == MOVEUP_EXPR_NULL)
2456 {
2457 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2458 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2459 }
2460 else if (res == MOVEUP_EXPR_SAME)
2461 {
2462 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2463 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2464 }
2465 else if (res == MOVEUP_EXPR_AS_RHS)
2466 {
2467 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2468 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2469 }
2470 else
2471 gcc_unreachable ();
2472 }
2473
2474 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2475 and transformation type TRANS_TYPE. */
2476 static void
2477 update_transformation_cache (expr_t expr, insn_t insn,
2478 bool inside_insn_group,
2479 enum local_trans_type trans_type,
2480 vinsn_t expr_old_vinsn)
2481 {
2482 struct transformed_insns *pti;
2483
2484 if (inside_insn_group)
2485 return;
2486
2487 pti = XNEW (struct transformed_insns);
2488 pti->vinsn_old = expr_old_vinsn;
2489 pti->vinsn_new = EXPR_VINSN (expr);
2490 pti->type = trans_type;
2491 pti->was_target_conflict = was_target_conflict;
2492 pti->ds = EXPR_SPEC_DONE_DS (expr);
2493 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2494 vinsn_attach (pti->vinsn_old);
2495 vinsn_attach (pti->vinsn_new);
2496 *((struct transformed_insns **)
2497 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2498 pti, VINSN_HASH_RTX (expr_old_vinsn),
2499 INSERT)) = pti;
2500 }
2501
2502 /* Same as moveup_expr, but first looks up the result of
2503 transformation in caches. */
2504 static enum MOVEUP_EXPR_CODE
2505 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2506 {
2507 enum MOVEUP_EXPR_CODE res;
2508 bool got_answer = false;
2509
2510 if (sched_verbose >= 6)
2511 {
2512 sel_print ("Moving ");
2513 dump_expr (expr);
2514 sel_print (" through %d: ", INSN_UID (insn));
2515 }
2516
2517 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2518 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2519 == EXPR_INSN_RTX (expr)))
2520 /* Don't use cached information for debug insns that are heads of
2521 basic blocks. */;
2522 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2523 /* When inside insn group, we do not want remove stores conflicting
2524 with previosly issued loads. */
2525 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2526 else if (try_transformation_cache (expr, insn, &res))
2527 got_answer = true;
2528
2529 if (! got_answer)
2530 {
2531 /* Invoke moveup_expr and record the results. */
2532 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2533 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2534 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2535 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2536 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2537
2538 /* ??? Invent something better than this. We can't allow old_vinsn
2539 to go, we need it for the history vector. */
2540 vinsn_attach (expr_old_vinsn);
2541
2542 res = moveup_expr (expr, insn, inside_insn_group,
2543 &trans_type);
2544 switch (res)
2545 {
2546 case MOVEUP_EXPR_NULL:
2547 update_bitmap_cache (expr, insn, inside_insn_group, res);
2548 if (sched_verbose >= 6)
2549 sel_print ("removed\n");
2550 break;
2551
2552 case MOVEUP_EXPR_SAME:
2553 update_bitmap_cache (expr, insn, inside_insn_group, res);
2554 if (sched_verbose >= 6)
2555 sel_print ("unchanged\n");
2556 break;
2557
2558 case MOVEUP_EXPR_AS_RHS:
2559 gcc_assert (!unique_p || inside_insn_group);
2560 update_bitmap_cache (expr, insn, inside_insn_group, res);
2561 if (sched_verbose >= 6)
2562 sel_print ("unchanged (as RHS)\n");
2563 break;
2564
2565 case MOVEUP_EXPR_CHANGED:
2566 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2567 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2568 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2569 INSN_UID (insn), trans_type,
2570 expr_old_vinsn, EXPR_VINSN (expr),
2571 expr_old_spec_ds);
2572 update_transformation_cache (expr, insn, inside_insn_group,
2573 trans_type, expr_old_vinsn);
2574 if (sched_verbose >= 6)
2575 {
2576 sel_print ("changed: ");
2577 dump_expr (expr);
2578 sel_print ("\n");
2579 }
2580 break;
2581 default:
2582 gcc_unreachable ();
2583 }
2584
2585 vinsn_detach (expr_old_vinsn);
2586 }
2587
2588 return res;
2589 }
2590
2591 /* Moves an av set AVP up through INSN, performing necessary
2592 transformations. */
2593 static void
2594 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2595 {
2596 av_set_iterator i;
2597 expr_t expr;
2598
2599 FOR_EACH_EXPR_1 (expr, i, avp)
2600 {
2601
2602 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2603 {
2604 case MOVEUP_EXPR_SAME:
2605 case MOVEUP_EXPR_AS_RHS:
2606 break;
2607
2608 case MOVEUP_EXPR_NULL:
2609 av_set_iter_remove (&i);
2610 break;
2611
2612 case MOVEUP_EXPR_CHANGED:
2613 expr = merge_with_other_exprs (avp, &i, expr);
2614 break;
2615
2616 default:
2617 gcc_unreachable ();
2618 }
2619 }
2620 }
2621
2622 /* Moves AVP set along PATH. */
2623 static void
2624 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2625 {
2626 int last_cycle;
2627
2628 if (sched_verbose >= 6)
2629 sel_print ("Moving expressions up in the insn group...\n");
2630 if (! path)
2631 return;
2632 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2633 while (path
2634 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2635 {
2636 moveup_set_expr (avp, ILIST_INSN (path), true);
2637 path = ILIST_NEXT (path);
2638 }
2639 }
2640
2641 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2642 static bool
2643 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2644 {
2645 expr_def _tmp, *tmp = &_tmp;
2646 int last_cycle;
2647 bool res = true;
2648
2649 copy_expr_onside (tmp, expr);
2650 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2651 while (path
2652 && res
2653 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2654 {
2655 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2656 != MOVEUP_EXPR_NULL);
2657 path = ILIST_NEXT (path);
2658 }
2659
2660 if (res)
2661 {
2662 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2663 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2664
2665 if (tmp_vinsn != expr_vliw_vinsn)
2666 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2667 }
2668
2669 clear_expr (tmp);
2670 return res;
2671 }
2672 \f
2673
2674 /* Functions that compute av and lv sets. */
2675
2676 /* Returns true if INSN is not a downward continuation of the given path P in
2677 the current stage. */
2678 static bool
2679 is_ineligible_successor (insn_t insn, ilist_t p)
2680 {
2681 insn_t prev_insn;
2682
2683 /* Check if insn is not deleted. */
2684 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2685 gcc_unreachable ();
2686 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2687 gcc_unreachable ();
2688
2689 /* If it's the first insn visited, then the successor is ok. */
2690 if (!p)
2691 return false;
2692
2693 prev_insn = ILIST_INSN (p);
2694
2695 if (/* a backward edge. */
2696 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2697 /* is already visited. */
2698 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2699 && (ilist_is_in_p (p, insn)
2700 /* We can reach another fence here and still seqno of insn
2701 would be equal to seqno of prev_insn. This is possible
2702 when prev_insn is a previously created bookkeeping copy.
2703 In that case it'd get a seqno of insn. Thus, check here
2704 whether insn is in current fence too. */
2705 || IN_CURRENT_FENCE_P (insn)))
2706 /* Was already scheduled on this round. */
2707 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2708 && IN_CURRENT_FENCE_P (insn))
2709 /* An insn from another fence could also be
2710 scheduled earlier even if this insn is not in
2711 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2712 || (!pipelining_p
2713 && INSN_SCHED_TIMES (insn) > 0))
2714 return true;
2715 else
2716 return false;
2717 }
2718
2719 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2720 of handling multiple successors and properly merging its av_sets. P is
2721 the current path traversed. WS is the size of lookahead window.
2722 Return the av set computed. */
2723 static av_set_t
2724 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2725 {
2726 struct succs_info *sinfo;
2727 av_set_t expr_in_all_succ_branches = NULL;
2728 int is;
2729 insn_t succ, zero_succ = NULL;
2730 av_set_t av1 = NULL;
2731
2732 gcc_assert (sel_bb_end_p (insn));
2733
2734 /* Find different kind of successors needed for correct computing of
2735 SPEC and TARGET_AVAILABLE attributes. */
2736 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2737
2738 /* Debug output. */
2739 if (sched_verbose >= 6)
2740 {
2741 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2742 dump_insn_vector (sinfo->succs_ok);
2743 sel_print ("\n");
2744 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2745 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2746 }
2747
2748 /* Add insn to the tail of current path. */
2749 ilist_add (&p, insn);
2750
2751 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2752 {
2753 av_set_t succ_set;
2754
2755 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2756 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2757
2758 av_set_split_usefulness (succ_set,
2759 sinfo->probs_ok[is],
2760 sinfo->all_prob);
2761
2762 if (sinfo->all_succs_n > 1)
2763 {
2764 /* Find EXPR'es that came from *all* successors and save them
2765 into expr_in_all_succ_branches. This set will be used later
2766 for calculating speculation attributes of EXPR'es. */
2767 if (is == 0)
2768 {
2769 expr_in_all_succ_branches = av_set_copy (succ_set);
2770
2771 /* Remember the first successor for later. */
2772 zero_succ = succ;
2773 }
2774 else
2775 {
2776 av_set_iterator i;
2777 expr_t expr;
2778
2779 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2780 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2781 av_set_iter_remove (&i);
2782 }
2783 }
2784
2785 /* Union the av_sets. Check liveness restrictions on target registers
2786 in special case of two successors. */
2787 if (sinfo->succs_ok_n == 2 && is == 1)
2788 {
2789 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2790 basic_block bb1 = BLOCK_FOR_INSN (succ);
2791
2792 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2793 av_set_union_and_live (&av1, &succ_set,
2794 BB_LV_SET (bb0),
2795 BB_LV_SET (bb1),
2796 insn);
2797 }
2798 else
2799 av_set_union_and_clear (&av1, &succ_set, insn);
2800 }
2801
2802 /* Check liveness restrictions via hard way when there are more than
2803 two successors. */
2804 if (sinfo->succs_ok_n > 2)
2805 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2806 {
2807 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2808
2809 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2810 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2811 BB_LV_SET (succ_bb));
2812 }
2813
2814 /* Finally, check liveness restrictions on paths leaving the region. */
2815 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2816 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2817 mark_unavailable_targets
2818 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2819
2820 if (sinfo->all_succs_n > 1)
2821 {
2822 av_set_iterator i;
2823 expr_t expr;
2824
2825 /* Increase the spec attribute of all EXPR'es that didn't come
2826 from all successors. */
2827 FOR_EACH_EXPR (expr, i, av1)
2828 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2829 EXPR_SPEC (expr)++;
2830
2831 av_set_clear (&expr_in_all_succ_branches);
2832
2833 /* Do not move conditional branches through other
2834 conditional branches. So, remove all conditional
2835 branches from av_set if current operator is a conditional
2836 branch. */
2837 av_set_substract_cond_branches (&av1);
2838 }
2839
2840 ilist_remove (&p);
2841 free_succs_info (sinfo);
2842
2843 if (sched_verbose >= 6)
2844 {
2845 sel_print ("av_succs (%d): ", INSN_UID (insn));
2846 dump_av_set (av1);
2847 sel_print ("\n");
2848 }
2849
2850 return av1;
2851 }
2852
2853 /* This function computes av_set for the FIRST_INSN by dragging valid
2854 av_set through all basic block insns either from the end of basic block
2855 (computed using compute_av_set_at_bb_end) or from the insn on which
2856 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2857 below the basic block and handling conditional branches.
2858 FIRST_INSN - the basic block head, P - path consisting of the insns
2859 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2860 and bb ends are added to the path), WS - current window size,
2861 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2862 static av_set_t
2863 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2864 bool need_copy_p)
2865 {
2866 insn_t cur_insn;
2867 int end_ws = ws;
2868 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2869 insn_t after_bb_end = NEXT_INSN (bb_end);
2870 insn_t last_insn;
2871 av_set_t av = NULL;
2872 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2873
2874 /* Return NULL if insn is not on the legitimate downward path. */
2875 if (is_ineligible_successor (first_insn, p))
2876 {
2877 if (sched_verbose >= 6)
2878 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2879
2880 return NULL;
2881 }
2882
2883 /* If insn already has valid av(insn) computed, just return it. */
2884 if (AV_SET_VALID_P (first_insn))
2885 {
2886 av_set_t av_set;
2887
2888 if (sel_bb_head_p (first_insn))
2889 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2890 else
2891 av_set = NULL;
2892
2893 if (sched_verbose >= 6)
2894 {
2895 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2896 dump_av_set (av_set);
2897 sel_print ("\n");
2898 }
2899
2900 return need_copy_p ? av_set_copy (av_set) : av_set;
2901 }
2902
2903 ilist_add (&p, first_insn);
2904
2905 /* As the result after this loop have completed, in LAST_INSN we'll
2906 have the insn which has valid av_set to start backward computation
2907 from: it either will be NULL because on it the window size was exceeded
2908 or other valid av_set as returned by compute_av_set for the last insn
2909 of the basic block. */
2910 for (last_insn = first_insn; last_insn != after_bb_end;
2911 last_insn = NEXT_INSN (last_insn))
2912 {
2913 /* We may encounter valid av_set not only on bb_head, but also on
2914 those insns on which previously MAX_WS was exceeded. */
2915 if (AV_SET_VALID_P (last_insn))
2916 {
2917 if (sched_verbose >= 6)
2918 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2919 break;
2920 }
2921
2922 /* The special case: the last insn of the BB may be an
2923 ineligible_successor due to its SEQ_NO that was set on
2924 it as a bookkeeping. */
2925 if (last_insn != first_insn
2926 && is_ineligible_successor (last_insn, p))
2927 {
2928 if (sched_verbose >= 6)
2929 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2930 break;
2931 }
2932
2933 if (DEBUG_INSN_P (last_insn))
2934 continue;
2935
2936 if (end_ws > max_ws)
2937 {
2938 /* We can reach max lookahead size at bb_header, so clean av_set
2939 first. */
2940 INSN_WS_LEVEL (last_insn) = global_level;
2941
2942 if (sched_verbose >= 6)
2943 sel_print ("Insn %d is beyond the software lookahead window size\n",
2944 INSN_UID (last_insn));
2945 break;
2946 }
2947
2948 end_ws++;
2949 }
2950
2951 /* Get the valid av_set into AV above the LAST_INSN to start backward
2952 computation from. It either will be empty av_set or av_set computed from
2953 the successors on the last insn of the current bb. */
2954 if (last_insn != after_bb_end)
2955 {
2956 av = NULL;
2957
2958 /* This is needed only to obtain av_sets that are identical to
2959 those computed by the old compute_av_set version. */
2960 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2961 av_set_add (&av, INSN_EXPR (last_insn));
2962 }
2963 else
2964 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2965 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2966
2967 /* Compute av_set in AV starting from below the LAST_INSN up to
2968 location above the FIRST_INSN. */
2969 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2970 cur_insn = PREV_INSN (cur_insn))
2971 if (!INSN_NOP_P (cur_insn))
2972 {
2973 expr_t expr;
2974
2975 moveup_set_expr (&av, cur_insn, false);
2976
2977 /* If the expression for CUR_INSN is already in the set,
2978 replace it by the new one. */
2979 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2980 if (expr != NULL)
2981 {
2982 clear_expr (expr);
2983 copy_expr (expr, INSN_EXPR (cur_insn));
2984 }
2985 else
2986 av_set_add (&av, INSN_EXPR (cur_insn));
2987 }
2988
2989 /* Clear stale bb_av_set. */
2990 if (sel_bb_head_p (first_insn))
2991 {
2992 av_set_clear (&BB_AV_SET (cur_bb));
2993 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2994 BB_AV_LEVEL (cur_bb) = global_level;
2995 }
2996
2997 if (sched_verbose >= 6)
2998 {
2999 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3000 dump_av_set (av);
3001 sel_print ("\n");
3002 }
3003
3004 ilist_remove (&p);
3005 return av;
3006 }
3007
3008 /* Compute av set before INSN.
3009 INSN - the current operation (actual rtx INSN)
3010 P - the current path, which is list of insns visited so far
3011 WS - software lookahead window size.
3012 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3013 if we want to save computed av_set in s_i_d, we should make a copy of it.
3014
3015 In the resulting set we will have only expressions that don't have delay
3016 stalls and nonsubstitutable dependences. */
3017 static av_set_t
3018 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3019 {
3020 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3021 }
3022
3023 /* Propagate a liveness set LV through INSN. */
3024 static void
3025 propagate_lv_set (regset lv, insn_t insn)
3026 {
3027 gcc_assert (INSN_P (insn));
3028
3029 if (INSN_NOP_P (insn))
3030 return;
3031
3032 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3033 }
3034
3035 /* Return livness set at the end of BB. */
3036 static regset
3037 compute_live_after_bb (basic_block bb)
3038 {
3039 edge e;
3040 edge_iterator ei;
3041 regset lv = get_clear_regset_from_pool ();
3042
3043 gcc_assert (!ignore_first);
3044
3045 FOR_EACH_EDGE (e, ei, bb->succs)
3046 if (sel_bb_empty_p (e->dest))
3047 {
3048 if (! BB_LV_SET_VALID_P (e->dest))
3049 {
3050 gcc_unreachable ();
3051 gcc_assert (BB_LV_SET (e->dest) == NULL);
3052 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3053 BB_LV_SET_VALID_P (e->dest) = true;
3054 }
3055 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3056 }
3057 else
3058 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3059
3060 return lv;
3061 }
3062
3063 /* Compute the set of all live registers at the point before INSN and save
3064 it at INSN if INSN is bb header. */
3065 regset
3066 compute_live (insn_t insn)
3067 {
3068 basic_block bb = BLOCK_FOR_INSN (insn);
3069 insn_t final, temp;
3070 regset lv;
3071
3072 /* Return the valid set if we're already on it. */
3073 if (!ignore_first)
3074 {
3075 regset src = NULL;
3076
3077 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3078 src = BB_LV_SET (bb);
3079 else
3080 {
3081 gcc_assert (in_current_region_p (bb));
3082 if (INSN_LIVE_VALID_P (insn))
3083 src = INSN_LIVE (insn);
3084 }
3085
3086 if (src)
3087 {
3088 lv = get_regset_from_pool ();
3089 COPY_REG_SET (lv, src);
3090
3091 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3092 {
3093 COPY_REG_SET (BB_LV_SET (bb), lv);
3094 BB_LV_SET_VALID_P (bb) = true;
3095 }
3096
3097 return_regset_to_pool (lv);
3098 return lv;
3099 }
3100 }
3101
3102 /* We've skipped the wrong lv_set. Don't skip the right one. */
3103 ignore_first = false;
3104 gcc_assert (in_current_region_p (bb));
3105
3106 /* Find a valid LV set in this block or below, if needed.
3107 Start searching from the next insn: either ignore_first is true, or
3108 INSN doesn't have a correct live set. */
3109 temp = NEXT_INSN (insn);
3110 final = NEXT_INSN (BB_END (bb));
3111 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3112 temp = NEXT_INSN (temp);
3113 if (temp == final)
3114 {
3115 lv = compute_live_after_bb (bb);
3116 temp = PREV_INSN (temp);
3117 }
3118 else
3119 {
3120 lv = get_regset_from_pool ();
3121 COPY_REG_SET (lv, INSN_LIVE (temp));
3122 }
3123
3124 /* Put correct lv sets on the insns which have bad sets. */
3125 final = PREV_INSN (insn);
3126 while (temp != final)
3127 {
3128 propagate_lv_set (lv, temp);
3129 COPY_REG_SET (INSN_LIVE (temp), lv);
3130 INSN_LIVE_VALID_P (temp) = true;
3131 temp = PREV_INSN (temp);
3132 }
3133
3134 /* Also put it in a BB. */
3135 if (sel_bb_head_p (insn))
3136 {
3137 basic_block bb = BLOCK_FOR_INSN (insn);
3138
3139 COPY_REG_SET (BB_LV_SET (bb), lv);
3140 BB_LV_SET_VALID_P (bb) = true;
3141 }
3142
3143 /* We return LV to the pool, but will not clear it there. Thus we can
3144 legimatelly use LV till the next use of regset_pool_get (). */
3145 return_regset_to_pool (lv);
3146 return lv;
3147 }
3148
3149 /* Update liveness sets for INSN. */
3150 static inline void
3151 update_liveness_on_insn (rtx_insn *insn)
3152 {
3153 ignore_first = true;
3154 compute_live (insn);
3155 }
3156
3157 /* Compute liveness below INSN and write it into REGS. */
3158 static inline void
3159 compute_live_below_insn (rtx_insn *insn, regset regs)
3160 {
3161 rtx_insn *succ;
3162 succ_iterator si;
3163
3164 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3165 IOR_REG_SET (regs, compute_live (succ));
3166 }
3167
3168 /* Update the data gathered in av and lv sets starting from INSN. */
3169 static void
3170 update_data_sets (rtx_insn *insn)
3171 {
3172 update_liveness_on_insn (insn);
3173 if (sel_bb_head_p (insn))
3174 {
3175 gcc_assert (AV_LEVEL (insn) != 0);
3176 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3177 compute_av_set (insn, NULL, 0, 0);
3178 }
3179 }
3180 \f
3181
3182 /* Helper for move_op () and find_used_regs ().
3183 Return speculation type for which a check should be created on the place
3184 of INSN. EXPR is one of the original ops we are searching for. */
3185 static ds_t
3186 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3187 {
3188 ds_t to_check_ds;
3189 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3190
3191 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3192
3193 if (targetm.sched.get_insn_checked_ds)
3194 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3195
3196 if (spec_info != NULL
3197 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3198 already_checked_ds |= BEGIN_CONTROL;
3199
3200 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3201
3202 to_check_ds &= ~already_checked_ds;
3203
3204 return to_check_ds;
3205 }
3206
3207 /* Find the set of registers that are unavailable for storing expres
3208 while moving ORIG_OPS up on the path starting from INSN due to
3209 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3210
3211 All the original operations found during the traversal are saved in the
3212 ORIGINAL_INSNS list.
3213
3214 REG_RENAME_P denotes the set of hardware registers that
3215 can not be used with renaming due to the register class restrictions,
3216 mode restrictions and other (the register we'll choose should be
3217 compatible class with the original uses, shouldn't be in call_used_regs,
3218 should be HARD_REGNO_RENAME_OK etc).
3219
3220 Returns TRUE if we've found all original insns, FALSE otherwise.
3221
3222 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3223 to traverse the code motion paths. This helper function finds registers
3224 that are not available for storing expres while moving ORIG_OPS up on the
3225 path starting from INSN. A register considered as used on the moving path,
3226 if one of the following conditions is not satisfied:
3227
3228 (1) a register not set or read on any path from xi to an instance of
3229 the original operation,
3230 (2) not among the live registers of the point immediately following the
3231 first original operation on a given downward path, except for the
3232 original target register of the operation,
3233 (3) not live on the other path of any conditional branch that is passed
3234 by the operation, in case original operations are not present on
3235 both paths of the conditional branch.
3236
3237 All the original operations found during the traversal are saved in the
3238 ORIGINAL_INSNS list.
3239
3240 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3241 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3242 to unavailable hard regs at the point original operation is found. */
3243
3244 static bool
3245 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3246 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3247 {
3248 def_list_iterator i;
3249 def_t def;
3250 int res;
3251 bool needs_spec_check_p = false;
3252 expr_t expr;
3253 av_set_iterator expr_iter;
3254 struct fur_static_params sparams;
3255 struct cmpd_local_params lparams;
3256
3257 /* We haven't visited any blocks yet. */
3258 bitmap_clear (code_motion_visited_blocks);
3259
3260 /* Init parameters for code_motion_path_driver. */
3261 sparams.crosses_call = false;
3262 sparams.original_insns = original_insns;
3263 sparams.used_regs = used_regs;
3264
3265 /* Set the appropriate hooks and data. */
3266 code_motion_path_driver_info = &fur_hooks;
3267
3268 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3269
3270 reg_rename_p->crosses_call |= sparams.crosses_call;
3271
3272 gcc_assert (res == 1);
3273 gcc_assert (original_insns && *original_insns);
3274
3275 /* ??? We calculate whether an expression needs a check when computing
3276 av sets. This information is not as precise as it could be due to
3277 merging this bit in merge_expr. We can do better in find_used_regs,
3278 but we want to avoid multiple traversals of the same code motion
3279 paths. */
3280 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3281 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3282
3283 /* Mark hardware regs in REG_RENAME_P that are not suitable
3284 for renaming expr in INSN due to hardware restrictions (register class,
3285 modes compatibility etc). */
3286 FOR_EACH_DEF (def, i, *original_insns)
3287 {
3288 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3289
3290 if (VINSN_SEPARABLE_P (vinsn))
3291 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3292
3293 /* Do not allow clobbering of ld.[sa] address in case some of the
3294 original operations need a check. */
3295 if (needs_spec_check_p)
3296 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3297 }
3298
3299 return true;
3300 }
3301 \f
3302
3303 /* Functions to choose the best insn from available ones. */
3304
3305 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3306 static int
3307 sel_target_adjust_priority (expr_t expr)
3308 {
3309 int priority = EXPR_PRIORITY (expr);
3310 int new_priority;
3311
3312 if (targetm.sched.adjust_priority)
3313 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3314 else
3315 new_priority = priority;
3316
3317 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3318 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3319
3320 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3321
3322 if (sched_verbose >= 4)
3323 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3324 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3325 EXPR_PRIORITY_ADJ (expr), new_priority);
3326
3327 return new_priority;
3328 }
3329
3330 /* Rank two available exprs for schedule. Never return 0 here. */
3331 static int
3332 sel_rank_for_schedule (const void *x, const void *y)
3333 {
3334 expr_t tmp = *(const expr_t *) y;
3335 expr_t tmp2 = *(const expr_t *) x;
3336 insn_t tmp_insn, tmp2_insn;
3337 vinsn_t tmp_vinsn, tmp2_vinsn;
3338 int val;
3339
3340 tmp_vinsn = EXPR_VINSN (tmp);
3341 tmp2_vinsn = EXPR_VINSN (tmp2);
3342 tmp_insn = EXPR_INSN_RTX (tmp);
3343 tmp2_insn = EXPR_INSN_RTX (tmp2);
3344
3345 /* Schedule debug insns as early as possible. */
3346 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3347 return -1;
3348 else if (DEBUG_INSN_P (tmp2_insn))
3349 return 1;
3350
3351 /* Prefer SCHED_GROUP_P insns to any others. */
3352 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3353 {
3354 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3355 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3356
3357 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3358 cannot be cloned. */
3359 if (VINSN_UNIQUE_P (tmp2_vinsn))
3360 return 1;
3361 return -1;
3362 }
3363
3364 /* Discourage scheduling of speculative checks. */
3365 val = (sel_insn_is_speculation_check (tmp_insn)
3366 - sel_insn_is_speculation_check (tmp2_insn));
3367 if (val)
3368 return val;
3369
3370 /* Prefer not scheduled insn over scheduled one. */
3371 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3372 {
3373 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3374 if (val)
3375 return val;
3376 }
3377
3378 /* Prefer jump over non-jump instruction. */
3379 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3380 return -1;
3381 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3382 return 1;
3383
3384 /* Prefer an expr with greater priority. */
3385 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3386 {
3387 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3388 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3389
3390 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3391 }
3392 else
3393 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3394 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3395 if (val)
3396 return val;
3397
3398 if (spec_info != NULL && spec_info->mask != 0)
3399 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3400 {
3401 ds_t ds1, ds2;
3402 dw_t dw1, dw2;
3403 int dw;
3404
3405 ds1 = EXPR_SPEC_DONE_DS (tmp);
3406 if (ds1)
3407 dw1 = ds_weak (ds1);
3408 else
3409 dw1 = NO_DEP_WEAK;
3410
3411 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3412 if (ds2)
3413 dw2 = ds_weak (ds2);
3414 else
3415 dw2 = NO_DEP_WEAK;
3416
3417 dw = dw2 - dw1;
3418 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3419 return dw;
3420 }
3421
3422 /* Prefer an old insn to a bookkeeping insn. */
3423 if (INSN_UID (tmp_insn) < first_emitted_uid
3424 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3425 return -1;
3426 if (INSN_UID (tmp_insn) >= first_emitted_uid
3427 && INSN_UID (tmp2_insn) < first_emitted_uid)
3428 return 1;
3429
3430 /* Prefer an insn with smaller UID, as a last resort.
3431 We can't safely use INSN_LUID as it is defined only for those insns
3432 that are in the stream. */
3433 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3434 }
3435
3436 /* Filter out expressions from av set pointed to by AV_PTR
3437 that are pipelined too many times. */
3438 static void
3439 process_pipelined_exprs (av_set_t *av_ptr)
3440 {
3441 expr_t expr;
3442 av_set_iterator si;
3443
3444 /* Don't pipeline already pipelined code as that would increase
3445 number of unnecessary register moves. */
3446 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3447 {
3448 if (EXPR_SCHED_TIMES (expr)
3449 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3450 av_set_iter_remove (&si);
3451 }
3452 }
3453
3454 /* Filter speculative insns from AV_PTR if we don't want them. */
3455 static void
3456 process_spec_exprs (av_set_t *av_ptr)
3457 {
3458 expr_t expr;
3459 av_set_iterator si;
3460
3461 if (spec_info == NULL)
3462 return;
3463
3464 /* Scan *AV_PTR to find out if we want to consider speculative
3465 instructions for scheduling. */
3466 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3467 {
3468 ds_t ds;
3469
3470 ds = EXPR_SPEC_DONE_DS (expr);
3471
3472 /* The probability of a success is too low - don't speculate. */
3473 if ((ds & SPECULATIVE)
3474 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3475 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3476 || (pipelining_p && false
3477 && (ds & DATA_SPEC)
3478 && (ds & CONTROL_SPEC))))
3479 {
3480 av_set_iter_remove (&si);
3481 continue;
3482 }
3483 }
3484 }
3485
3486 /* Search for any use-like insns in AV_PTR and decide on scheduling
3487 them. Return one when found, and NULL otherwise.
3488 Note that we check here whether a USE could be scheduled to avoid
3489 an infinite loop later. */
3490 static expr_t
3491 process_use_exprs (av_set_t *av_ptr)
3492 {
3493 expr_t expr;
3494 av_set_iterator si;
3495 bool uses_present_p = false;
3496 bool try_uses_p = true;
3497
3498 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3499 {
3500 /* This will also initialize INSN_CODE for later use. */
3501 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3502 {
3503 /* If we have a USE in *AV_PTR that was not scheduled yet,
3504 do so because it will do good only. */
3505 if (EXPR_SCHED_TIMES (expr) <= 0)
3506 {
3507 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3508 return expr;
3509
3510 av_set_iter_remove (&si);
3511 }
3512 else
3513 {
3514 gcc_assert (pipelining_p);
3515
3516 uses_present_p = true;
3517 }
3518 }
3519 else
3520 try_uses_p = false;
3521 }
3522
3523 if (uses_present_p)
3524 {
3525 /* If we don't want to schedule any USEs right now and we have some
3526 in *AV_PTR, remove them, else just return the first one found. */
3527 if (!try_uses_p)
3528 {
3529 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3530 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3531 av_set_iter_remove (&si);
3532 }
3533 else
3534 {
3535 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3536 {
3537 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3538
3539 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3540 return expr;
3541
3542 av_set_iter_remove (&si);
3543 }
3544 }
3545 }
3546
3547 return NULL;
3548 }
3549
3550 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3551 EXPR's history of changes. */
3552 static bool
3553 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3554 {
3555 vinsn_t vinsn, expr_vinsn;
3556 int n;
3557 unsigned i;
3558
3559 /* Start with checking expr itself and then proceed with all the old forms
3560 of expr taken from its history vector. */
3561 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3562 expr_vinsn;
3563 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3564 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3565 : NULL))
3566 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3567 if (VINSN_SEPARABLE_P (vinsn))
3568 {
3569 if (vinsn_equal_p (vinsn, expr_vinsn))
3570 return true;
3571 }
3572 else
3573 {
3574 /* For non-separable instructions, the blocking insn can have
3575 another pattern due to substitution, and we can't choose
3576 different register as in the above case. Check all registers
3577 being written instead. */
3578 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3579 VINSN_REG_SETS (expr_vinsn)))
3580 return true;
3581 }
3582
3583 return false;
3584 }
3585
3586 /* Return true if either of expressions from ORIG_OPS can be blocked
3587 by previously created bookkeeping code. STATIC_PARAMS points to static
3588 parameters of move_op. */
3589 static bool
3590 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3591 {
3592 expr_t expr;
3593 av_set_iterator iter;
3594 moveop_static_params_p sparams;
3595
3596 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3597 created while scheduling on another fence. */
3598 FOR_EACH_EXPR (expr, iter, orig_ops)
3599 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3600 return true;
3601
3602 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3603 sparams = (moveop_static_params_p) static_params;
3604
3605 /* Expressions can be also blocked by bookkeeping created during current
3606 move_op. */
3607 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3608 FOR_EACH_EXPR (expr, iter, orig_ops)
3609 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3610 return true;
3611
3612 /* Expressions in ORIG_OPS may have wrong destination register due to
3613 renaming. Check with the right register instead. */
3614 if (sparams->dest && REG_P (sparams->dest))
3615 {
3616 rtx reg = sparams->dest;
3617 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3618
3619 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3620 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3621 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3622 return true;
3623 }
3624
3625 return false;
3626 }
3627
3628 /* Clear VINSN_VEC and detach vinsns. */
3629 static void
3630 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3631 {
3632 unsigned len = vinsn_vec->length ();
3633 if (len > 0)
3634 {
3635 vinsn_t vinsn;
3636 int n;
3637
3638 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3639 vinsn_detach (vinsn);
3640 vinsn_vec->block_remove (0, len);
3641 }
3642 }
3643
3644 /* Add the vinsn of EXPR to the VINSN_VEC. */
3645 static void
3646 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3647 {
3648 vinsn_attach (EXPR_VINSN (expr));
3649 vinsn_vec->safe_push (EXPR_VINSN (expr));
3650 }
3651
3652 /* Free the vector representing blocked expressions. */
3653 static void
3654 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3655 {
3656 vinsn_vec.release ();
3657 }
3658
3659 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3660
3661 void sel_add_to_insn_priority (rtx insn, int amount)
3662 {
3663 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3664
3665 if (sched_verbose >= 2)
3666 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3667 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3668 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3669 }
3670
3671 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3672 true if there is something to schedule. BNDS and FENCE are current
3673 boundaries and fence, respectively. If we need to stall for some cycles
3674 before an expr from AV would become available, write this number to
3675 *PNEED_STALL. */
3676 static bool
3677 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3678 int *pneed_stall)
3679 {
3680 av_set_iterator si;
3681 expr_t expr;
3682 int sched_next_worked = 0, stalled, n;
3683 static int av_max_prio, est_ticks_till_branch;
3684 int min_need_stall = -1;
3685 deps_t dc = BND_DC (BLIST_BND (bnds));
3686
3687 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3688 already scheduled. */
3689 if (av == NULL)
3690 return false;
3691
3692 /* Empty vector from the previous stuff. */
3693 if (vec_av_set.length () > 0)
3694 vec_av_set.block_remove (0, vec_av_set.length ());
3695
3696 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3697 for each insn. */
3698 gcc_assert (vec_av_set.is_empty ());
3699 FOR_EACH_EXPR (expr, si, av)
3700 {
3701 vec_av_set.safe_push (expr);
3702
3703 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3704
3705 /* Adjust priority using target backend hook. */
3706 sel_target_adjust_priority (expr);
3707 }
3708
3709 /* Sort the vector. */
3710 vec_av_set.qsort (sel_rank_for_schedule);
3711
3712 /* We record maximal priority of insns in av set for current instruction
3713 group. */
3714 if (FENCE_STARTS_CYCLE_P (fence))
3715 av_max_prio = est_ticks_till_branch = INT_MIN;
3716
3717 /* Filter out inappropriate expressions. Loop's direction is reversed to
3718 visit "best" instructions first. We assume that vec::unordered_remove
3719 moves last element in place of one being deleted. */
3720 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3721 {
3722 expr_t expr = vec_av_set[n];
3723 insn_t insn = EXPR_INSN_RTX (expr);
3724 signed char target_available;
3725 bool is_orig_reg_p = true;
3726 int need_cycles, new_prio;
3727 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3728
3729 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3730 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3731 {
3732 vec_av_set.unordered_remove (n);
3733 continue;
3734 }
3735
3736 /* Set number of sched_next insns (just in case there
3737 could be several). */
3738 if (FENCE_SCHED_NEXT (fence))
3739 sched_next_worked++;
3740
3741 /* Check all liveness requirements and try renaming.
3742 FIXME: try to minimize calls to this. */
3743 target_available = EXPR_TARGET_AVAILABLE (expr);
3744
3745 /* If insn was already scheduled on the current fence,
3746 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3747 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3748 && !fence_insn_p)
3749 target_available = -1;
3750
3751 /* If the availability of the EXPR is invalidated by the insertion of
3752 bookkeeping earlier, make sure that we won't choose this expr for
3753 scheduling if it's not separable, and if it is separable, then
3754 we have to recompute the set of available registers for it. */
3755 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3756 {
3757 vec_av_set.unordered_remove (n);
3758 if (sched_verbose >= 4)
3759 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3760 INSN_UID (insn));
3761 continue;
3762 }
3763
3764 if (target_available == true)
3765 {
3766 /* Do nothing -- we can use an existing register. */
3767 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3768 }
3769 else if (/* Non-separable instruction will never
3770 get another register. */
3771 (target_available == false
3772 && !EXPR_SEPARABLE_P (expr))
3773 /* Don't try to find a register for low-priority expression. */
3774 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3775 /* ??? FIXME: Don't try to rename data speculation. */
3776 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3777 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3778 {
3779 vec_av_set.unordered_remove (n);
3780 if (sched_verbose >= 4)
3781 sel_print ("Expr %d has no suitable target register\n",
3782 INSN_UID (insn));
3783
3784 /* A fence insn should not get here. */
3785 gcc_assert (!fence_insn_p);
3786 continue;
3787 }
3788
3789 /* At this point a fence insn should always be available. */
3790 gcc_assert (!fence_insn_p
3791 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3792
3793 /* Filter expressions that need to be renamed or speculated when
3794 pipelining, because compensating register copies or speculation
3795 checks are likely to be placed near the beginning of the loop,
3796 causing a stall. */
3797 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3798 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3799 {
3800 /* Estimation of number of cycles until loop branch for
3801 renaming/speculation to be successful. */
3802 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3803
3804 if ((int) current_loop_nest->ninsns < 9)
3805 {
3806 vec_av_set.unordered_remove (n);
3807 if (sched_verbose >= 4)
3808 sel_print ("Pipelining expr %d will likely cause stall\n",
3809 INSN_UID (insn));
3810 continue;
3811 }
3812
3813 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3814 < need_n_ticks_till_branch * issue_rate / 2
3815 && est_ticks_till_branch < need_n_ticks_till_branch)
3816 {
3817 vec_av_set.unordered_remove (n);
3818 if (sched_verbose >= 4)
3819 sel_print ("Pipelining expr %d will likely cause stall\n",
3820 INSN_UID (insn));
3821 continue;
3822 }
3823 }
3824
3825 /* We want to schedule speculation checks as late as possible. Discard
3826 them from av set if there are instructions with higher priority. */
3827 if (sel_insn_is_speculation_check (insn)
3828 && EXPR_PRIORITY (expr) < av_max_prio)
3829 {
3830 stalled++;
3831 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3832 vec_av_set.unordered_remove (n);
3833 if (sched_verbose >= 4)
3834 sel_print ("Delaying speculation check %d until its first use\n",
3835 INSN_UID (insn));
3836 continue;
3837 }
3838
3839 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3840 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3841 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3842
3843 /* Don't allow any insns whose data is not yet ready.
3844 Check first whether we've already tried them and failed. */
3845 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3846 {
3847 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3848 - FENCE_CYCLE (fence));
3849 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3850 est_ticks_till_branch = MAX (est_ticks_till_branch,
3851 EXPR_PRIORITY (expr) + need_cycles);
3852
3853 if (need_cycles > 0)
3854 {
3855 stalled++;
3856 min_need_stall = (min_need_stall < 0
3857 ? need_cycles
3858 : MIN (min_need_stall, need_cycles));
3859 vec_av_set.unordered_remove (n);
3860
3861 if (sched_verbose >= 4)
3862 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3863 INSN_UID (insn),
3864 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3865 continue;
3866 }
3867 }
3868
3869 /* Now resort to dependence analysis to find whether EXPR might be
3870 stalled due to dependencies from FENCE's context. */
3871 need_cycles = tick_check_p (expr, dc, fence);
3872 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3873
3874 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3875 est_ticks_till_branch = MAX (est_ticks_till_branch,
3876 new_prio);
3877
3878 if (need_cycles > 0)
3879 {
3880 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3881 {
3882 int new_size = INSN_UID (insn) * 3 / 2;
3883
3884 FENCE_READY_TICKS (fence)
3885 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3886 new_size, FENCE_READY_TICKS_SIZE (fence),
3887 sizeof (int));
3888 }
3889 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3890 = FENCE_CYCLE (fence) + need_cycles;
3891
3892 stalled++;
3893 min_need_stall = (min_need_stall < 0
3894 ? need_cycles
3895 : MIN (min_need_stall, need_cycles));
3896
3897 vec_av_set.unordered_remove (n);
3898
3899 if (sched_verbose >= 4)
3900 sel_print ("Expr %d is not ready yet until cycle %d\n",
3901 INSN_UID (insn),
3902 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3903 continue;
3904 }
3905
3906 if (sched_verbose >= 4)
3907 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3908 min_need_stall = 0;
3909 }
3910
3911 /* Clear SCHED_NEXT. */
3912 if (FENCE_SCHED_NEXT (fence))
3913 {
3914 gcc_assert (sched_next_worked == 1);
3915 FENCE_SCHED_NEXT (fence) = NULL;
3916 }
3917
3918 /* No need to stall if this variable was not initialized. */
3919 if (min_need_stall < 0)
3920 min_need_stall = 0;
3921
3922 if (vec_av_set.is_empty ())
3923 {
3924 /* We need to set *pneed_stall here, because later we skip this code
3925 when ready list is empty. */
3926 *pneed_stall = min_need_stall;
3927 return false;
3928 }
3929 else
3930 gcc_assert (min_need_stall == 0);
3931
3932 /* Sort the vector. */
3933 vec_av_set.qsort (sel_rank_for_schedule);
3934
3935 if (sched_verbose >= 4)
3936 {
3937 sel_print ("Total ready exprs: %d, stalled: %d\n",
3938 vec_av_set.length (), stalled);
3939 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3940 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3941 dump_expr (expr);
3942 sel_print ("\n");
3943 }
3944
3945 *pneed_stall = 0;
3946 return true;
3947 }
3948
3949 /* Convert a vectored and sorted av set to the ready list that
3950 the rest of the backend wants to see. */
3951 static void
3952 convert_vec_av_set_to_ready (void)
3953 {
3954 int n;
3955 expr_t expr;
3956
3957 /* Allocate and fill the ready list from the sorted vector. */
3958 ready.n_ready = vec_av_set.length ();
3959 ready.first = ready.n_ready - 1;
3960
3961 gcc_assert (ready.n_ready > 0);
3962
3963 if (ready.n_ready > max_issue_size)
3964 {
3965 max_issue_size = ready.n_ready;
3966 sched_extend_ready_list (ready.n_ready);
3967 }
3968
3969 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3970 {
3971 vinsn_t vi = EXPR_VINSN (expr);
3972 insn_t insn = VINSN_INSN_RTX (vi);
3973
3974 ready_try[n] = 0;
3975 ready.vec[n] = insn;
3976 }
3977 }
3978
3979 /* Initialize ready list from *AV_PTR for the max_issue () call.
3980 If any unrecognizable insn found in *AV_PTR, return it (and skip
3981 max_issue). BND and FENCE are current boundary and fence,
3982 respectively. If we need to stall for some cycles before an expr
3983 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3984 static expr_t
3985 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3986 int *pneed_stall)
3987 {
3988 expr_t expr;
3989
3990 /* We do not support multiple boundaries per fence. */
3991 gcc_assert (BLIST_NEXT (bnds) == NULL);
3992
3993 /* Process expressions required special handling, i.e. pipelined,
3994 speculative and recog() < 0 expressions first. */
3995 process_pipelined_exprs (av_ptr);
3996 process_spec_exprs (av_ptr);
3997
3998 /* A USE could be scheduled immediately. */
3999 expr = process_use_exprs (av_ptr);
4000 if (expr)
4001 {
4002 *pneed_stall = 0;
4003 return expr;
4004 }
4005
4006 /* Turn the av set to a vector for sorting. */
4007 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4008 {
4009 ready.n_ready = 0;
4010 return NULL;
4011 }
4012
4013 /* Build the final ready list. */
4014 convert_vec_av_set_to_ready ();
4015 return NULL;
4016 }
4017
4018 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4019 static bool
4020 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4021 {
4022 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4023 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4024 : FENCE_CYCLE (fence) - 1;
4025 bool res = false;
4026 int sort_p = 0;
4027
4028 if (!targetm.sched.dfa_new_cycle)
4029 return false;
4030
4031 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4032
4033 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4034 insn, last_scheduled_cycle,
4035 FENCE_CYCLE (fence), &sort_p))
4036 {
4037 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4038 advance_one_cycle (fence);
4039 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4040 res = true;
4041 }
4042
4043 return res;
4044 }
4045
4046 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4047 we can issue. FENCE is the current fence. */
4048 static int
4049 invoke_reorder_hooks (fence_t fence)
4050 {
4051 int issue_more;
4052 bool ran_hook = false;
4053
4054 /* Call the reorder hook at the beginning of the cycle, and call
4055 the reorder2 hook in the middle of the cycle. */
4056 if (FENCE_ISSUED_INSNS (fence) == 0)
4057 {
4058 if (targetm.sched.reorder
4059 && !SCHED_GROUP_P (ready_element (&ready, 0))
4060 && ready.n_ready > 1)
4061 {
4062 /* Don't give reorder the most prioritized insn as it can break
4063 pipelining. */
4064 if (pipelining_p)
4065 --ready.n_ready;
4066
4067 issue_more
4068 = targetm.sched.reorder (sched_dump, sched_verbose,
4069 ready_lastpos (&ready),
4070 &ready.n_ready, FENCE_CYCLE (fence));
4071
4072 if (pipelining_p)
4073 ++ready.n_ready;
4074
4075 ran_hook = true;
4076 }
4077 else
4078 /* Initialize can_issue_more for variable_issue. */
4079 issue_more = issue_rate;
4080 }
4081 else if (targetm.sched.reorder2
4082 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4083 {
4084 if (ready.n_ready == 1)
4085 issue_more =
4086 targetm.sched.reorder2 (sched_dump, sched_verbose,
4087 ready_lastpos (&ready),
4088 &ready.n_ready, FENCE_CYCLE (fence));
4089 else
4090 {
4091 if (pipelining_p)
4092 --ready.n_ready;
4093
4094 issue_more =
4095 targetm.sched.reorder2 (sched_dump, sched_verbose,
4096 ready.n_ready
4097 ? ready_lastpos (&ready) : NULL,
4098 &ready.n_ready, FENCE_CYCLE (fence));
4099
4100 if (pipelining_p)
4101 ++ready.n_ready;
4102 }
4103
4104 ran_hook = true;
4105 }
4106 else
4107 issue_more = FENCE_ISSUE_MORE (fence);
4108
4109 /* Ensure that ready list and vec_av_set are in line with each other,
4110 i.e. vec_av_set[i] == ready_element (&ready, i). */
4111 if (issue_more && ran_hook)
4112 {
4113 int i, j, n;
4114 rtx_insn **arr = ready.vec;
4115 expr_t *vec = vec_av_set.address ();
4116
4117 for (i = 0, n = ready.n_ready; i < n; i++)
4118 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4119 {
4120 for (j = i; j < n; j++)
4121 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4122 break;
4123 gcc_assert (j < n);
4124
4125 std::swap (vec[i], vec[j]);
4126 }
4127 }
4128
4129 return issue_more;
4130 }
4131
4132 /* Return an EXPR corresponding to INDEX element of ready list, if
4133 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4134 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4135 ready.vec otherwise. */
4136 static inline expr_t
4137 find_expr_for_ready (int index, bool follow_ready_element)
4138 {
4139 expr_t expr;
4140 int real_index;
4141
4142 real_index = follow_ready_element ? ready.first - index : index;
4143
4144 expr = vec_av_set[real_index];
4145 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4146
4147 return expr;
4148 }
4149
4150 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4151 of such insns found. */
4152 static int
4153 invoke_dfa_lookahead_guard (void)
4154 {
4155 int i, n;
4156 bool have_hook
4157 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4158
4159 if (sched_verbose >= 2)
4160 sel_print ("ready after reorder: ");
4161
4162 for (i = 0, n = 0; i < ready.n_ready; i++)
4163 {
4164 expr_t expr;
4165 insn_t insn;
4166 int r;
4167
4168 /* In this loop insn is Ith element of the ready list given by
4169 ready_element, not Ith element of ready.vec. */
4170 insn = ready_element (&ready, i);
4171
4172 if (! have_hook || i == 0)
4173 r = 0;
4174 else
4175 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4176
4177 gcc_assert (INSN_CODE (insn) >= 0);
4178
4179 /* Only insns with ready_try = 0 can get here
4180 from fill_ready_list. */
4181 gcc_assert (ready_try [i] == 0);
4182 ready_try[i] = r;
4183 if (!r)
4184 n++;
4185
4186 expr = find_expr_for_ready (i, true);
4187
4188 if (sched_verbose >= 2)
4189 {
4190 dump_vinsn (EXPR_VINSN (expr));
4191 sel_print (":%d; ", ready_try[i]);
4192 }
4193 }
4194
4195 if (sched_verbose >= 2)
4196 sel_print ("\n");
4197 return n;
4198 }
4199
4200 /* Calculate the number of privileged insns and return it. */
4201 static int
4202 calculate_privileged_insns (void)
4203 {
4204 expr_t cur_expr, min_spec_expr = NULL;
4205 int privileged_n = 0, i;
4206
4207 for (i = 0; i < ready.n_ready; i++)
4208 {
4209 if (ready_try[i])
4210 continue;
4211
4212 if (! min_spec_expr)
4213 min_spec_expr = find_expr_for_ready (i, true);
4214
4215 cur_expr = find_expr_for_ready (i, true);
4216
4217 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4218 break;
4219
4220 ++privileged_n;
4221 }
4222
4223 if (i == ready.n_ready)
4224 privileged_n = 0;
4225
4226 if (sched_verbose >= 2)
4227 sel_print ("privileged_n: %d insns with SPEC %d\n",
4228 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4229 return privileged_n;
4230 }
4231
4232 /* Call the rest of the hooks after the choice was made. Return
4233 the number of insns that still can be issued given that the current
4234 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4235 and the insn chosen for scheduling, respectively. */
4236 static int
4237 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4238 {
4239 gcc_assert (INSN_P (best_insn));
4240
4241 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4242 sel_dfa_new_cycle (best_insn, fence);
4243
4244 if (targetm.sched.variable_issue)
4245 {
4246 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4247 issue_more =
4248 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4249 issue_more);
4250 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4251 }
4252 else if (GET_CODE (PATTERN (best_insn)) != USE
4253 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4254 issue_more--;
4255
4256 return issue_more;
4257 }
4258
4259 /* Estimate the cost of issuing INSN on DFA state STATE. */
4260 static int
4261 estimate_insn_cost (rtx_insn *insn, state_t state)
4262 {
4263 static state_t temp = NULL;
4264 int cost;
4265
4266 if (!temp)
4267 temp = xmalloc (dfa_state_size);
4268
4269 memcpy (temp, state, dfa_state_size);
4270 cost = state_transition (temp, insn);
4271
4272 if (cost < 0)
4273 return 0;
4274 else if (cost == 0)
4275 return 1;
4276 return cost;
4277 }
4278
4279 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4280 This function properly handles ASMs, USEs etc. */
4281 static int
4282 get_expr_cost (expr_t expr, fence_t fence)
4283 {
4284 rtx_insn *insn = EXPR_INSN_RTX (expr);
4285
4286 if (recog_memoized (insn) < 0)
4287 {
4288 if (!FENCE_STARTS_CYCLE_P (fence)
4289 && INSN_ASM_P (insn))
4290 /* This is asm insn which is tryed to be issued on the
4291 cycle not first. Issue it on the next cycle. */
4292 return 1;
4293 else
4294 /* A USE insn, or something else we don't need to
4295 understand. We can't pass these directly to
4296 state_transition because it will trigger a
4297 fatal error for unrecognizable insns. */
4298 return 0;
4299 }
4300 else
4301 return estimate_insn_cost (insn, FENCE_STATE (fence));
4302 }
4303
4304 /* Find the best insn for scheduling, either via max_issue or just take
4305 the most prioritized available. */
4306 static int
4307 choose_best_insn (fence_t fence, int privileged_n, int *index)
4308 {
4309 int can_issue = 0;
4310
4311 if (dfa_lookahead > 0)
4312 {
4313 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4314 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4315 can_issue = max_issue (&ready, privileged_n,
4316 FENCE_STATE (fence), true, index);
4317 if (sched_verbose >= 2)
4318 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4319 can_issue, FENCE_ISSUED_INSNS (fence));
4320 }
4321 else
4322 {
4323 /* We can't use max_issue; just return the first available element. */
4324 int i;
4325
4326 for (i = 0; i < ready.n_ready; i++)
4327 {
4328 expr_t expr = find_expr_for_ready (i, true);
4329
4330 if (get_expr_cost (expr, fence) < 1)
4331 {
4332 can_issue = can_issue_more;
4333 *index = i;
4334
4335 if (sched_verbose >= 2)
4336 sel_print ("using %dth insn from the ready list\n", i + 1);
4337
4338 break;
4339 }
4340 }
4341
4342 if (i == ready.n_ready)
4343 {
4344 can_issue = 0;
4345 *index = -1;
4346 }
4347 }
4348
4349 return can_issue;
4350 }
4351
4352 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4353 BNDS and FENCE are current boundaries and scheduling fence respectively.
4354 Return the expr found and NULL if nothing can be issued atm.
4355 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4356 static expr_t
4357 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4358 int *pneed_stall)
4359 {
4360 expr_t best;
4361
4362 /* Choose the best insn for scheduling via:
4363 1) sorting the ready list based on priority;
4364 2) calling the reorder hook;
4365 3) calling max_issue. */
4366 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4367 if (best == NULL && ready.n_ready > 0)
4368 {
4369 int privileged_n, index;
4370
4371 can_issue_more = invoke_reorder_hooks (fence);
4372 if (can_issue_more > 0)
4373 {
4374 /* Try choosing the best insn until we find one that is could be
4375 scheduled due to liveness restrictions on its destination register.
4376 In the future, we'd like to choose once and then just probe insns
4377 in the order of their priority. */
4378 invoke_dfa_lookahead_guard ();
4379 privileged_n = calculate_privileged_insns ();
4380 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4381 if (can_issue_more)
4382 best = find_expr_for_ready (index, true);
4383 }
4384 /* We had some available insns, so if we can't issue them,
4385 we have a stall. */
4386 if (can_issue_more == 0)
4387 {
4388 best = NULL;
4389 *pneed_stall = 1;
4390 }
4391 }
4392
4393 if (best != NULL)
4394 {
4395 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4396 can_issue_more);
4397 if (targetm.sched.variable_issue
4398 && can_issue_more == 0)
4399 *pneed_stall = 1;
4400 }
4401
4402 if (sched_verbose >= 2)
4403 {
4404 if (best != NULL)
4405 {
4406 sel_print ("Best expression (vliw form): ");
4407 dump_expr (best);
4408 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4409 }
4410 else
4411 sel_print ("No best expr found!\n");
4412 }
4413
4414 return best;
4415 }
4416 \f
4417
4418 /* Functions that implement the core of the scheduler. */
4419
4420
4421 /* Emit an instruction from EXPR with SEQNO and VINSN after
4422 PLACE_TO_INSERT. */
4423 static insn_t
4424 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4425 insn_t place_to_insert)
4426 {
4427 /* This assert fails when we have identical instructions
4428 one of which dominates the other. In this case move_op ()
4429 finds the first instruction and doesn't search for second one.
4430 The solution would be to compute av_set after the first found
4431 insn and, if insn present in that set, continue searching.
4432 For now we workaround this issue in move_op. */
4433 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4434
4435 if (EXPR_WAS_RENAMED (expr))
4436 {
4437 unsigned regno = expr_dest_regno (expr);
4438
4439 if (HARD_REGISTER_NUM_P (regno))
4440 {
4441 df_set_regs_ever_live (regno, true);
4442 reg_rename_tick[regno] = ++reg_rename_this_tick;
4443 }
4444 }
4445
4446 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4447 place_to_insert);
4448 }
4449
4450 /* Return TRUE if BB can hold bookkeeping code. */
4451 static bool
4452 block_valid_for_bookkeeping_p (basic_block bb)
4453 {
4454 insn_t bb_end = BB_END (bb);
4455
4456 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4457 return false;
4458
4459 if (INSN_P (bb_end))
4460 {
4461 if (INSN_SCHED_TIMES (bb_end) > 0)
4462 return false;
4463 }
4464 else
4465 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4466
4467 return true;
4468 }
4469
4470 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4471 into E2->dest, except from E1->src (there may be a sequence of empty basic
4472 blocks between E1->src and E2->dest). Return found block, or NULL if new
4473 one must be created. If LAX holds, don't assume there is a simple path
4474 from E1->src to E2->dest. */
4475 static basic_block
4476 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4477 {
4478 basic_block candidate_block = NULL;
4479 edge e;
4480
4481 /* Loop over edges from E1 to E2, inclusive. */
4482 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4483 EDGE_SUCC (e->dest, 0))
4484 {
4485 if (EDGE_COUNT (e->dest->preds) == 2)
4486 {
4487 if (candidate_block == NULL)
4488 candidate_block = (EDGE_PRED (e->dest, 0) == e
4489 ? EDGE_PRED (e->dest, 1)->src
4490 : EDGE_PRED (e->dest, 0)->src);
4491 else
4492 /* Found additional edge leading to path from e1 to e2
4493 from aside. */
4494 return NULL;
4495 }
4496 else if (EDGE_COUNT (e->dest->preds) > 2)
4497 /* Several edges leading to path from e1 to e2 from aside. */
4498 return NULL;
4499
4500 if (e == e2)
4501 return ((!lax || candidate_block)
4502 && block_valid_for_bookkeeping_p (candidate_block)
4503 ? candidate_block
4504 : NULL);
4505
4506 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4507 return NULL;
4508 }
4509
4510 if (lax)
4511 return NULL;
4512
4513 gcc_unreachable ();
4514 }
4515
4516 /* Create new basic block for bookkeeping code for path(s) incoming into
4517 E2->dest, except from E1->src. Return created block. */
4518 static basic_block
4519 create_block_for_bookkeeping (edge e1, edge e2)
4520 {
4521 basic_block new_bb, bb = e2->dest;
4522
4523 /* Check that we don't spoil the loop structure. */
4524 if (current_loop_nest)
4525 {
4526 basic_block latch = current_loop_nest->latch;
4527
4528 /* We do not split header. */
4529 gcc_assert (e2->dest != current_loop_nest->header);
4530
4531 /* We do not redirect the only edge to the latch block. */
4532 gcc_assert (e1->dest != latch
4533 || !single_pred_p (latch)
4534 || e1 != single_pred_edge (latch));
4535 }
4536
4537 /* Split BB to insert BOOK_INSN there. */
4538 new_bb = sched_split_block (bb, NULL);
4539
4540 /* Move note_list from the upper bb. */
4541 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4542 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4543 BB_NOTE_LIST (bb) = NULL;
4544
4545 gcc_assert (e2->dest == bb);
4546
4547 /* Skip block for bookkeeping copy when leaving E1->src. */
4548 if (e1->flags & EDGE_FALLTHRU)
4549 sel_redirect_edge_and_branch_force (e1, new_bb);
4550 else
4551 sel_redirect_edge_and_branch (e1, new_bb);
4552
4553 gcc_assert (e1->dest == new_bb);
4554 gcc_assert (sel_bb_empty_p (bb));
4555
4556 /* To keep basic block numbers in sync between debug and non-debug
4557 compilations, we have to rotate blocks here. Consider that we
4558 started from (a,b)->d, (c,d)->e, and d contained only debug
4559 insns. It would have been removed before if the debug insns
4560 weren't there, so we'd have split e rather than d. So what we do
4561 now is to swap the block numbers of new_bb and
4562 single_succ(new_bb) == e, so that the insns that were in e before
4563 get the new block number. */
4564
4565 if (MAY_HAVE_DEBUG_INSNS)
4566 {
4567 basic_block succ;
4568 insn_t insn = sel_bb_head (new_bb);
4569 insn_t last;
4570
4571 if (DEBUG_INSN_P (insn)
4572 && single_succ_p (new_bb)
4573 && (succ = single_succ (new_bb))
4574 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4575 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4576 {
4577 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4578 insn = NEXT_INSN (insn);
4579
4580 if (insn == last)
4581 {
4582 sel_global_bb_info_def gbi;
4583 sel_region_bb_info_def rbi;
4584
4585 if (sched_verbose >= 2)
4586 sel_print ("Swapping block ids %i and %i\n",
4587 new_bb->index, succ->index);
4588
4589 std::swap (new_bb->index, succ->index);
4590
4591 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4592 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4593
4594 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4595 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4596 sizeof (gbi));
4597 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4598
4599 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4600 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4601 sizeof (rbi));
4602 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4603
4604 std::swap (BLOCK_TO_BB (new_bb->index),
4605 BLOCK_TO_BB (succ->index));
4606
4607 std::swap (CONTAINING_RGN (new_bb->index),
4608 CONTAINING_RGN (succ->index));
4609
4610 for (int i = 0; i < current_nr_blocks; i++)
4611 if (BB_TO_BLOCK (i) == succ->index)
4612 BB_TO_BLOCK (i) = new_bb->index;
4613 else if (BB_TO_BLOCK (i) == new_bb->index)
4614 BB_TO_BLOCK (i) = succ->index;
4615
4616 FOR_BB_INSNS (new_bb, insn)
4617 if (INSN_P (insn))
4618 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4619
4620 FOR_BB_INSNS (succ, insn)
4621 if (INSN_P (insn))
4622 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4623
4624 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4625 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4626
4627 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4628 && LABEL_P (BB_HEAD (succ)));
4629
4630 if (sched_verbose >= 4)
4631 sel_print ("Swapping code labels %i and %i\n",
4632 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4633 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4634
4635 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4636 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4637 }
4638 }
4639 }
4640
4641 return bb;
4642 }
4643
4644 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4645 into E2->dest, except from E1->src. If the returned insn immediately
4646 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4647 static insn_t
4648 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4649 {
4650 insn_t place_to_insert;
4651 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4652 create new basic block, but insert bookkeeping there. */
4653 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4654
4655 if (book_block)
4656 {
4657 place_to_insert = BB_END (book_block);
4658
4659 /* Don't use a block containing only debug insns for
4660 bookkeeping, this causes scheduling differences between debug
4661 and non-debug compilations, for the block would have been
4662 removed already. */
4663 if (DEBUG_INSN_P (place_to_insert))
4664 {
4665 rtx_insn *insn = sel_bb_head (book_block);
4666
4667 while (insn != place_to_insert &&
4668 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4669 insn = NEXT_INSN (insn);
4670
4671 if (insn == place_to_insert)
4672 book_block = NULL;
4673 }
4674 }
4675
4676 if (!book_block)
4677 {
4678 book_block = create_block_for_bookkeeping (e1, e2);
4679 place_to_insert = BB_END (book_block);
4680 if (sched_verbose >= 9)
4681 sel_print ("New block is %i, split from bookkeeping block %i\n",
4682 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4683 }
4684 else
4685 {
4686 if (sched_verbose >= 9)
4687 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4688 }
4689
4690 *fence_to_rewind = NULL;
4691 /* If basic block ends with a jump, insert bookkeeping code right before it.
4692 Notice if we are crossing a fence when taking PREV_INSN. */
4693 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4694 {
4695 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4696 place_to_insert = PREV_INSN (place_to_insert);
4697 }
4698
4699 return place_to_insert;
4700 }
4701
4702 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4703 for JOIN_POINT. */
4704 static int
4705 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4706 {
4707 int seqno;
4708
4709 /* Check if we are about to insert bookkeeping copy before a jump, and use
4710 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4711 rtx_insn *next = NEXT_INSN (place_to_insert);
4712 if (INSN_P (next)
4713 && JUMP_P (next)
4714 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4715 {
4716 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4717 seqno = INSN_SEQNO (next);
4718 }
4719 else if (INSN_SEQNO (join_point) > 0)
4720 seqno = INSN_SEQNO (join_point);
4721 else
4722 {
4723 seqno = get_seqno_by_preds (place_to_insert);
4724
4725 /* Sometimes the fences can move in such a way that there will be
4726 no instructions with positive seqno around this bookkeeping.
4727 This means that there will be no way to get to it by a regular
4728 fence movement. Never mind because we pick up such pieces for
4729 rescheduling anyways, so any positive value will do for now. */
4730 if (seqno < 0)
4731 {
4732 gcc_assert (pipelining_p);
4733 seqno = 1;
4734 }
4735 }
4736
4737 gcc_assert (seqno > 0);
4738 return seqno;
4739 }
4740
4741 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4742 NEW_SEQNO to it. Return created insn. */
4743 static insn_t
4744 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4745 {
4746 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4747
4748 vinsn_t new_vinsn
4749 = create_vinsn_from_insn_rtx (new_insn_rtx,
4750 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4751
4752 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4753 place_to_insert);
4754
4755 INSN_SCHED_TIMES (new_insn) = 0;
4756 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4757
4758 return new_insn;
4759 }
4760
4761 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4762 E2->dest, except from E1->src (there may be a sequence of empty blocks
4763 between E1->src and E2->dest). Return block containing the copy.
4764 All scheduler data is initialized for the newly created insn. */
4765 static basic_block
4766 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4767 {
4768 insn_t join_point, place_to_insert, new_insn;
4769 int new_seqno;
4770 bool need_to_exchange_data_sets;
4771 fence_t fence_to_rewind;
4772
4773 if (sched_verbose >= 4)
4774 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4775 e2->dest->index);
4776
4777 join_point = sel_bb_head (e2->dest);
4778 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4779 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4780 need_to_exchange_data_sets
4781 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4782
4783 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4784
4785 if (fence_to_rewind)
4786 FENCE_INSN (fence_to_rewind) = new_insn;
4787
4788 /* When inserting bookkeeping insn in new block, av sets should be
4789 following: old basic block (that now holds bookkeeping) data sets are
4790 the same as was before generation of bookkeeping, and new basic block
4791 (that now hold all other insns of old basic block) data sets are
4792 invalid. So exchange data sets for these basic blocks as sel_split_block
4793 mistakenly exchanges them in this case. Cannot do it earlier because
4794 when single instruction is added to new basic block it should hold NULL
4795 lv_set. */
4796 if (need_to_exchange_data_sets)
4797 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4798 BLOCK_FOR_INSN (join_point));
4799
4800 stat_bookkeeping_copies++;
4801 return BLOCK_FOR_INSN (new_insn);
4802 }
4803
4804 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4805 on FENCE, but we are unable to copy them. */
4806 static void
4807 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4808 {
4809 expr_t expr;
4810 av_set_iterator i;
4811
4812 /* An expression does not need bookkeeping if it is available on all paths
4813 from current block to original block and current block dominates
4814 original block. We check availability on all paths by examining
4815 EXPR_SPEC; this is not equivalent, because it may be positive even
4816 if expr is available on all paths (but if expr is not available on
4817 any path, EXPR_SPEC will be positive). */
4818
4819 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4820 {
4821 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4822 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4823 && (EXPR_SPEC (expr)
4824 || !EXPR_ORIG_BB_INDEX (expr)
4825 || !dominated_by_p (CDI_DOMINATORS,
4826 BASIC_BLOCK_FOR_FN (cfun,
4827 EXPR_ORIG_BB_INDEX (expr)),
4828 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4829 {
4830 if (sched_verbose >= 4)
4831 sel_print ("Expr %d removed because it would need bookkeeping, which "
4832 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4833 av_set_iter_remove (&i);
4834 }
4835 }
4836 }
4837
4838 /* Moving conditional jump through some instructions.
4839
4840 Consider example:
4841
4842 ... <- current scheduling point
4843 NOTE BASIC BLOCK: <- bb header
4844 (p8) add r14=r14+0x9;;
4845 (p8) mov [r14]=r23
4846 (!p8) jump L1;;
4847 NOTE BASIC BLOCK:
4848 ...
4849
4850 We can schedule jump one cycle earlier, than mov, because they cannot be
4851 executed together as their predicates are mutually exclusive.
4852
4853 This is done in this way: first, new fallthrough basic block is created
4854 after jump (it is always can be done, because there already should be a
4855 fallthrough block, where control flow goes in case of predicate being true -
4856 in our example; otherwise there should be a dependence between those
4857 instructions and jump and we cannot schedule jump right now);
4858 next, all instructions between jump and current scheduling point are moved
4859 to this new block. And the result is this:
4860
4861 NOTE BASIC BLOCK:
4862 (!p8) jump L1 <- current scheduling point
4863 NOTE BASIC BLOCK: <- bb header
4864 (p8) add r14=r14+0x9;;
4865 (p8) mov [r14]=r23
4866 NOTE BASIC BLOCK:
4867 ...
4868 */
4869 static void
4870 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4871 {
4872 edge ft_edge;
4873 basic_block block_from, block_next, block_new, block_bnd, bb;
4874 rtx_insn *next, *prev, *link, *head;
4875
4876 block_from = BLOCK_FOR_INSN (insn);
4877 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4878 prev = BND_TO (bnd);
4879
4880 /* Moving of jump should not cross any other jumps or beginnings of new
4881 basic blocks. The only exception is when we move a jump through
4882 mutually exclusive insns along fallthru edges. */
4883 if (flag_checking && block_from != block_bnd)
4884 {
4885 bb = block_from;
4886 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4887 link = PREV_INSN (link))
4888 {
4889 if (INSN_P (link))
4890 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4891 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4892 {
4893 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4894 bb = BLOCK_FOR_INSN (link);
4895 }
4896 }
4897 }
4898
4899 /* Jump is moved to the boundary. */
4900 next = PREV_INSN (insn);
4901 BND_TO (bnd) = insn;
4902
4903 ft_edge = find_fallthru_edge_from (block_from);
4904 block_next = ft_edge->dest;
4905 /* There must be a fallthrough block (or where should go
4906 control flow in case of false jump predicate otherwise?). */
4907 gcc_assert (block_next);
4908
4909 /* Create new empty basic block after source block. */
4910 block_new = sel_split_edge (ft_edge);
4911 gcc_assert (block_new->next_bb == block_next
4912 && block_from->next_bb == block_new);
4913
4914 /* Move all instructions except INSN to BLOCK_NEW. */
4915 bb = block_bnd;
4916 head = BB_HEAD (block_new);
4917 while (bb != block_from->next_bb)
4918 {
4919 rtx_insn *from, *to;
4920 from = bb == block_bnd ? prev : sel_bb_head (bb);
4921 to = bb == block_from ? next : sel_bb_end (bb);
4922
4923 /* The jump being moved can be the first insn in the block.
4924 In this case we don't have to move anything in this block. */
4925 if (NEXT_INSN (to) != from)
4926 {
4927 reorder_insns (from, to, head);
4928
4929 for (link = to; link != head; link = PREV_INSN (link))
4930 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4931 head = to;
4932 }
4933
4934 /* Cleanup possibly empty blocks left. */
4935 block_next = bb->next_bb;
4936 if (bb != block_from)
4937 tidy_control_flow (bb, false);
4938 bb = block_next;
4939 }
4940
4941 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4942 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4943
4944 gcc_assert (!sel_bb_empty_p (block_from)
4945 && !sel_bb_empty_p (block_new));
4946
4947 /* Update data sets for BLOCK_NEW to represent that INSN and
4948 instructions from the other branch of INSN is no longer
4949 available at BLOCK_NEW. */
4950 BB_AV_LEVEL (block_new) = global_level;
4951 gcc_assert (BB_LV_SET (block_new) == NULL);
4952 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4953 update_data_sets (sel_bb_head (block_new));
4954
4955 /* INSN is a new basic block header - so prepare its data
4956 structures and update availability and liveness sets. */
4957 update_data_sets (insn);
4958
4959 if (sched_verbose >= 4)
4960 sel_print ("Moving jump %d\n", INSN_UID (insn));
4961 }
4962
4963 /* Remove nops generated during move_op for preventing removal of empty
4964 basic blocks. */
4965 static void
4966 remove_temp_moveop_nops (bool full_tidying)
4967 {
4968 int i;
4969 insn_t insn;
4970
4971 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4972 {
4973 gcc_assert (INSN_NOP_P (insn));
4974 return_nop_to_pool (insn, full_tidying);
4975 }
4976
4977 /* Empty the vector. */
4978 if (vec_temp_moveop_nops.length () > 0)
4979 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
4980 }
4981
4982 /* Records the maximal UID before moving up an instruction. Used for
4983 distinguishing between bookkeeping copies and original insns. */
4984 static int max_uid_before_move_op = 0;
4985
4986 /* Remove from AV_VLIW_P all instructions but next when debug counter
4987 tells us so. Next instruction is fetched from BNDS. */
4988 static void
4989 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
4990 {
4991 if (! dbg_cnt (sel_sched_insn_cnt))
4992 /* Leave only the next insn in av_vliw. */
4993 {
4994 av_set_iterator av_it;
4995 expr_t expr;
4996 bnd_t bnd = BLIST_BND (bnds);
4997 insn_t next = BND_TO (bnd);
4998
4999 gcc_assert (BLIST_NEXT (bnds) == NULL);
5000
5001 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5002 if (EXPR_INSN_RTX (expr) != next)
5003 av_set_iter_remove (&av_it);
5004 }
5005 }
5006
5007 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5008 the computed set to *AV_VLIW_P. */
5009 static void
5010 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5011 {
5012 if (sched_verbose >= 2)
5013 {
5014 sel_print ("Boundaries: ");
5015 dump_blist (bnds);
5016 sel_print ("\n");
5017 }
5018
5019 for (; bnds; bnds = BLIST_NEXT (bnds))
5020 {
5021 bnd_t bnd = BLIST_BND (bnds);
5022 av_set_t av1_copy;
5023 insn_t bnd_to = BND_TO (bnd);
5024
5025 /* Rewind BND->TO to the basic block header in case some bookkeeping
5026 instructions were inserted before BND->TO and it needs to be
5027 adjusted. */
5028 if (sel_bb_head_p (bnd_to))
5029 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5030 else
5031 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5032 {
5033 bnd_to = PREV_INSN (bnd_to);
5034 if (sel_bb_head_p (bnd_to))
5035 break;
5036 }
5037
5038 if (BND_TO (bnd) != bnd_to)
5039 {
5040 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5041 FENCE_INSN (fence) = bnd_to;
5042 BND_TO (bnd) = bnd_to;
5043 }
5044
5045 av_set_clear (&BND_AV (bnd));
5046 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5047
5048 av_set_clear (&BND_AV1 (bnd));
5049 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5050
5051 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5052
5053 av1_copy = av_set_copy (BND_AV1 (bnd));
5054 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5055 }
5056
5057 if (sched_verbose >= 2)
5058 {
5059 sel_print ("Available exprs (vliw form): ");
5060 dump_av_set (*av_vliw_p);
5061 sel_print ("\n");
5062 }
5063 }
5064
5065 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5066 expression. When FOR_MOVEOP is true, also replace the register of
5067 expressions found with the register from EXPR_VLIW. */
5068 static av_set_t
5069 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5070 {
5071 av_set_t expr_seq = NULL;
5072 expr_t expr;
5073 av_set_iterator i;
5074
5075 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5076 {
5077 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5078 {
5079 if (for_moveop)
5080 {
5081 /* The sequential expression has the right form to pass
5082 to move_op except when renaming happened. Put the
5083 correct register in EXPR then. */
5084 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5085 {
5086 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5087 {
5088 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5089 stat_renamed_scheduled++;
5090 }
5091 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5092 This is needed when renaming came up with original
5093 register. */
5094 else if (EXPR_TARGET_AVAILABLE (expr)
5095 != EXPR_TARGET_AVAILABLE (expr_vliw))
5096 {
5097 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5098 EXPR_TARGET_AVAILABLE (expr) = 1;
5099 }
5100 }
5101 if (EXPR_WAS_SUBSTITUTED (expr))
5102 stat_substitutions_total++;
5103 }
5104
5105 av_set_add (&expr_seq, expr);
5106
5107 /* With substitution inside insn group, it is possible
5108 that more than one expression in expr_seq will correspond
5109 to expr_vliw. In this case, choose one as the attempt to
5110 move both leads to miscompiles. */
5111 break;
5112 }
5113 }
5114
5115 if (for_moveop && sched_verbose >= 2)
5116 {
5117 sel_print ("Best expression(s) (sequential form): ");
5118 dump_av_set (expr_seq);
5119 sel_print ("\n");
5120 }
5121
5122 return expr_seq;
5123 }
5124
5125
5126 /* Move nop to previous block. */
5127 static void ATTRIBUTE_UNUSED
5128 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5129 {
5130 insn_t prev_insn, next_insn;
5131
5132 gcc_assert (sel_bb_head_p (nop)
5133 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5134 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
5135 prev_insn = sel_bb_end (prev_bb);
5136 next_insn = NEXT_INSN (nop);
5137 gcc_assert (prev_insn != NULL_RTX
5138 && PREV_INSN (note) == prev_insn);
5139
5140 SET_NEXT_INSN (prev_insn) = nop;
5141 SET_PREV_INSN (nop) = prev_insn;
5142
5143 SET_PREV_INSN (note) = nop;
5144 SET_NEXT_INSN (note) = next_insn;
5145
5146 SET_NEXT_INSN (nop) = note;
5147 SET_PREV_INSN (next_insn) = note;
5148
5149 BB_END (prev_bb) = nop;
5150 BLOCK_FOR_INSN (nop) = prev_bb;
5151 }
5152
5153 /* Prepare a place to insert the chosen expression on BND. */
5154 static insn_t
5155 prepare_place_to_insert (bnd_t bnd)
5156 {
5157 insn_t place_to_insert;
5158
5159 /* Init place_to_insert before calling move_op, as the later
5160 can possibly remove BND_TO (bnd). */
5161 if (/* If this is not the first insn scheduled. */
5162 BND_PTR (bnd))
5163 {
5164 /* Add it after last scheduled. */
5165 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5166 if (DEBUG_INSN_P (place_to_insert))
5167 {
5168 ilist_t l = BND_PTR (bnd);
5169 while ((l = ILIST_NEXT (l)) &&
5170 DEBUG_INSN_P (ILIST_INSN (l)))
5171 ;
5172 if (!l)
5173 place_to_insert = NULL;
5174 }
5175 }
5176 else
5177 place_to_insert = NULL;
5178
5179 if (!place_to_insert)
5180 {
5181 /* Add it before BND_TO. The difference is in the
5182 basic block, where INSN will be added. */
5183 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5184 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5185 == BLOCK_FOR_INSN (BND_TO (bnd)));
5186 }
5187
5188 return place_to_insert;
5189 }
5190
5191 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5192 Return the expression to emit in C_EXPR. */
5193 static bool
5194 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5195 av_set_t expr_seq, expr_t c_expr)
5196 {
5197 bool b, should_move;
5198 unsigned book_uid;
5199 bitmap_iterator bi;
5200 int n_bookkeeping_copies_before_moveop;
5201
5202 /* Make a move. This call will remove the original operation,
5203 insert all necessary bookkeeping instructions and update the
5204 data sets. After that all we have to do is add the operation
5205 at before BND_TO (BND). */
5206 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5207 max_uid_before_move_op = get_max_uid ();
5208 bitmap_clear (current_copies);
5209 bitmap_clear (current_originators);
5210
5211 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5212 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5213
5214 /* We should be able to find the expression we've chosen for
5215 scheduling. */
5216 gcc_assert (b);
5217
5218 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5219 stat_insns_needed_bookkeeping++;
5220
5221 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5222 {
5223 unsigned uid;
5224 bitmap_iterator bi;
5225
5226 /* We allocate these bitmaps lazily. */
5227 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5228 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5229
5230 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5231 current_originators);
5232
5233 /* Transitively add all originators' originators. */
5234 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5235 if (INSN_ORIGINATORS_BY_UID (uid))
5236 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5237 INSN_ORIGINATORS_BY_UID (uid));
5238 }
5239
5240 return should_move;
5241 }
5242
5243
5244 /* Debug a DFA state as an array of bytes. */
5245 static void
5246 debug_state (state_t state)
5247 {
5248 unsigned char *p;
5249 unsigned int i, size = dfa_state_size;
5250
5251 sel_print ("state (%u):", size);
5252 for (i = 0, p = (unsigned char *) state; i < size; i++)
5253 sel_print (" %d", p[i]);
5254 sel_print ("\n");
5255 }
5256
5257 /* Advance state on FENCE with INSN. Return true if INSN is
5258 an ASM, and we should advance state once more. */
5259 static bool
5260 advance_state_on_fence (fence_t fence, insn_t insn)
5261 {
5262 bool asm_p;
5263
5264 if (recog_memoized (insn) >= 0)
5265 {
5266 int res;
5267 state_t temp_state = alloca (dfa_state_size);
5268
5269 gcc_assert (!INSN_ASM_P (insn));
5270 asm_p = false;
5271
5272 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5273 res = state_transition (FENCE_STATE (fence), insn);
5274 gcc_assert (res < 0);
5275
5276 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5277 {
5278 FENCE_ISSUED_INSNS (fence)++;
5279
5280 /* We should never issue more than issue_rate insns. */
5281 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5282 gcc_unreachable ();
5283 }
5284 }
5285 else
5286 {
5287 /* This could be an ASM insn which we'd like to schedule
5288 on the next cycle. */
5289 asm_p = INSN_ASM_P (insn);
5290 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5291 advance_one_cycle (fence);
5292 }
5293
5294 if (sched_verbose >= 2)
5295 debug_state (FENCE_STATE (fence));
5296 if (!DEBUG_INSN_P (insn))
5297 FENCE_STARTS_CYCLE_P (fence) = 0;
5298 FENCE_ISSUE_MORE (fence) = can_issue_more;
5299 return asm_p;
5300 }
5301
5302 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5303 is nonzero if we need to stall after issuing INSN. */
5304 static void
5305 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5306 {
5307 bool asm_p;
5308
5309 /* First, reflect that something is scheduled on this fence. */
5310 asm_p = advance_state_on_fence (fence, insn);
5311 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5312 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5313 if (SCHED_GROUP_P (insn))
5314 {
5315 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5316 SCHED_GROUP_P (insn) = 0;
5317 }
5318 else
5319 FENCE_SCHED_NEXT (fence) = NULL;
5320 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5321 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5322
5323 /* Set instruction scheduling info. This will be used in bundling,
5324 pipelining, tick computations etc. */
5325 ++INSN_SCHED_TIMES (insn);
5326 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5327 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5328 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5329 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5330
5331 /* This does not account for adjust_cost hooks, just add the biggest
5332 constant the hook may add to the latency. TODO: make this
5333 a target dependent constant. */
5334 INSN_READY_CYCLE (insn)
5335 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5336 ? 1
5337 : maximal_insn_latency (insn) + 1);
5338
5339 /* Change these fields last, as they're used above. */
5340 FENCE_AFTER_STALL_P (fence) = 0;
5341 if (asm_p || need_stall)
5342 advance_one_cycle (fence);
5343
5344 /* Indicate that we've scheduled something on this fence. */
5345 FENCE_SCHEDULED_P (fence) = true;
5346 scheduled_something_on_previous_fence = true;
5347
5348 /* Print debug information when insn's fields are updated. */
5349 if (sched_verbose >= 2)
5350 {
5351 sel_print ("Scheduling insn: ");
5352 dump_insn_1 (insn, 1);
5353 sel_print ("\n");
5354 }
5355 }
5356
5357 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5358 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5359 return it. */
5360 static blist_t *
5361 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5362 blist_t *bnds_tailp)
5363 {
5364 succ_iterator si;
5365 insn_t succ;
5366
5367 advance_deps_context (BND_DC (bnd), insn);
5368 FOR_EACH_SUCC_1 (succ, si, insn,
5369 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5370 {
5371 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5372
5373 ilist_add (&ptr, insn);
5374
5375 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5376 && is_ineligible_successor (succ, ptr))
5377 {
5378 ilist_clear (&ptr);
5379 continue;
5380 }
5381
5382 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5383 {
5384 if (sched_verbose >= 9)
5385 sel_print ("Updating fence insn from %i to %i\n",
5386 INSN_UID (insn), INSN_UID (succ));
5387 FENCE_INSN (fence) = succ;
5388 }
5389 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5390 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5391 }
5392
5393 blist_remove (bndsp);
5394 return bnds_tailp;
5395 }
5396
5397 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5398 static insn_t
5399 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5400 {
5401 av_set_t expr_seq;
5402 expr_t c_expr = XALLOCA (expr_def);
5403 insn_t place_to_insert;
5404 insn_t insn;
5405 bool should_move;
5406
5407 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5408
5409 /* In case of scheduling a jump skipping some other instructions,
5410 prepare CFG. After this, jump is at the boundary and can be
5411 scheduled as usual insn by MOVE_OP. */
5412 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5413 {
5414 insn = EXPR_INSN_RTX (expr_vliw);
5415
5416 /* Speculative jumps are not handled. */
5417 if (insn != BND_TO (bnd)
5418 && !sel_insn_is_speculation_check (insn))
5419 move_cond_jump (insn, bnd);
5420 }
5421
5422 /* Find a place for C_EXPR to schedule. */
5423 place_to_insert = prepare_place_to_insert (bnd);
5424 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5425 clear_expr (c_expr);
5426
5427 /* Add the instruction. The corner case to care about is when
5428 the expr_seq set has more than one expr, and we chose the one that
5429 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5430 we can't use it. Generate the new vinsn. */
5431 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5432 {
5433 vinsn_t vinsn_new;
5434
5435 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5436 change_vinsn_in_expr (expr_vliw, vinsn_new);
5437 should_move = false;
5438 }
5439 if (should_move)
5440 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5441 else
5442 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5443 place_to_insert);
5444
5445 /* Return the nops generated for preserving of data sets back
5446 into pool. */
5447 if (INSN_NOP_P (place_to_insert))
5448 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5449 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5450
5451 av_set_clear (&expr_seq);
5452
5453 /* Save the expression scheduled so to reset target availability if we'll
5454 meet it later on the same fence. */
5455 if (EXPR_WAS_RENAMED (expr_vliw))
5456 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5457
5458 /* Check that the recent movement didn't destroyed loop
5459 structure. */
5460 gcc_assert (!pipelining_p
5461 || current_loop_nest == NULL
5462 || loop_latch_edge (current_loop_nest));
5463 return insn;
5464 }
5465
5466 /* Stall for N cycles on FENCE. */
5467 static void
5468 stall_for_cycles (fence_t fence, int n)
5469 {
5470 int could_more;
5471
5472 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5473 while (n--)
5474 advance_one_cycle (fence);
5475 if (could_more)
5476 FENCE_AFTER_STALL_P (fence) = 1;
5477 }
5478
5479 /* Gather a parallel group of insns at FENCE and assign their seqno
5480 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5481 list for later recalculation of seqnos. */
5482 static void
5483 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5484 {
5485 blist_t bnds = NULL, *bnds_tailp;
5486 av_set_t av_vliw = NULL;
5487 insn_t insn = FENCE_INSN (fence);
5488
5489 if (sched_verbose >= 2)
5490 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5491 INSN_UID (insn), FENCE_CYCLE (fence));
5492
5493 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5494 bnds_tailp = &BLIST_NEXT (bnds);
5495 set_target_context (FENCE_TC (fence));
5496 can_issue_more = FENCE_ISSUE_MORE (fence);
5497 target_bb = INSN_BB (insn);
5498
5499 /* Do while we can add any operation to the current group. */
5500 do
5501 {
5502 blist_t *bnds_tailp1, *bndsp;
5503 expr_t expr_vliw;
5504 int need_stall = false;
5505 int was_stall = 0, scheduled_insns = 0;
5506 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5507 int max_stall = pipelining_p ? 1 : 3;
5508 bool last_insn_was_debug = false;
5509 bool was_debug_bb_end_p = false;
5510
5511 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5512 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5513 remove_insns_for_debug (bnds, &av_vliw);
5514
5515 /* Return early if we have nothing to schedule. */
5516 if (av_vliw == NULL)
5517 break;
5518
5519 /* Choose the best expression and, if needed, destination register
5520 for it. */
5521 do
5522 {
5523 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5524 if (! expr_vliw && need_stall)
5525 {
5526 /* All expressions required a stall. Do not recompute av sets
5527 as we'll get the same answer (modulo the insns between
5528 the fence and its boundary, which will not be available for
5529 pipelining).
5530 If we are going to stall for too long, break to recompute av
5531 sets and bring more insns for pipelining. */
5532 was_stall++;
5533 if (need_stall <= 3)
5534 stall_for_cycles (fence, need_stall);
5535 else
5536 {
5537 stall_for_cycles (fence, 1);
5538 break;
5539 }
5540 }
5541 }
5542 while (! expr_vliw && need_stall);
5543
5544 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5545 if (!expr_vliw)
5546 {
5547 av_set_clear (&av_vliw);
5548 break;
5549 }
5550
5551 bndsp = &bnds;
5552 bnds_tailp1 = bnds_tailp;
5553
5554 do
5555 /* This code will be executed only once until we'd have several
5556 boundaries per fence. */
5557 {
5558 bnd_t bnd = BLIST_BND (*bndsp);
5559
5560 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5561 {
5562 bndsp = &BLIST_NEXT (*bndsp);
5563 continue;
5564 }
5565
5566 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5567 last_insn_was_debug = DEBUG_INSN_P (insn);
5568 if (last_insn_was_debug)
5569 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5570 update_fence_and_insn (fence, insn, need_stall);
5571 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5572
5573 /* Add insn to the list of scheduled on this cycle instructions. */
5574 ilist_add (*scheduled_insns_tailpp, insn);
5575 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5576 }
5577 while (*bndsp != *bnds_tailp1);
5578
5579 av_set_clear (&av_vliw);
5580 if (!last_insn_was_debug)
5581 scheduled_insns++;
5582
5583 /* We currently support information about candidate blocks only for
5584 one 'target_bb' block. Hence we can't schedule after jump insn,
5585 as this will bring two boundaries and, hence, necessity to handle
5586 information for two or more blocks concurrently. */
5587 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5588 || (was_stall
5589 && (was_stall >= max_stall
5590 || scheduled_insns >= max_insns)))
5591 break;
5592 }
5593 while (bnds);
5594
5595 gcc_assert (!FENCE_BNDS (fence));
5596
5597 /* Update boundaries of the FENCE. */
5598 while (bnds)
5599 {
5600 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5601
5602 if (ptr)
5603 {
5604 insn = ILIST_INSN (ptr);
5605
5606 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5607 ilist_add (&FENCE_BNDS (fence), insn);
5608 }
5609
5610 blist_remove (&bnds);
5611 }
5612
5613 /* Update target context on the fence. */
5614 reset_target_context (FENCE_TC (fence), false);
5615 }
5616
5617 /* All exprs in ORIG_OPS must have the same destination register or memory.
5618 Return that destination. */
5619 static rtx
5620 get_dest_from_orig_ops (av_set_t orig_ops)
5621 {
5622 rtx dest = NULL_RTX;
5623 av_set_iterator av_it;
5624 expr_t expr;
5625 bool first_p = true;
5626
5627 FOR_EACH_EXPR (expr, av_it, orig_ops)
5628 {
5629 rtx x = EXPR_LHS (expr);
5630
5631 if (first_p)
5632 {
5633 first_p = false;
5634 dest = x;
5635 }
5636 else
5637 gcc_assert (dest == x
5638 || (dest != NULL_RTX && x != NULL_RTX
5639 && rtx_equal_p (dest, x)));
5640 }
5641
5642 return dest;
5643 }
5644
5645 /* Update data sets for the bookkeeping block and record those expressions
5646 which become no longer available after inserting this bookkeeping. */
5647 static void
5648 update_and_record_unavailable_insns (basic_block book_block)
5649 {
5650 av_set_iterator i;
5651 av_set_t old_av_set = NULL;
5652 expr_t cur_expr;
5653 rtx_insn *bb_end = sel_bb_end (book_block);
5654
5655 /* First, get correct liveness in the bookkeeping block. The problem is
5656 the range between the bookeeping insn and the end of block. */
5657 update_liveness_on_insn (bb_end);
5658 if (control_flow_insn_p (bb_end))
5659 update_liveness_on_insn (PREV_INSN (bb_end));
5660
5661 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5662 fence above, where we may choose to schedule an insn which is
5663 actually blocked from moving up with the bookkeeping we create here. */
5664 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5665 {
5666 old_av_set = av_set_copy (BB_AV_SET (book_block));
5667 update_data_sets (sel_bb_head (book_block));
5668
5669 /* Traverse all the expressions in the old av_set and check whether
5670 CUR_EXPR is in new AV_SET. */
5671 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5672 {
5673 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5674 EXPR_VINSN (cur_expr));
5675
5676 if (! new_expr
5677 /* In this case, we can just turn off the E_T_A bit, but we can't
5678 represent this information with the current vector. */
5679 || EXPR_TARGET_AVAILABLE (new_expr)
5680 != EXPR_TARGET_AVAILABLE (cur_expr))
5681 /* Unfortunately, the below code could be also fired up on
5682 separable insns, e.g. when moving insns through the new
5683 speculation check as in PR 53701. */
5684 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5685 }
5686
5687 av_set_clear (&old_av_set);
5688 }
5689 }
5690
5691 /* The main effect of this function is that sparams->c_expr is merged
5692 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5693 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5694 lparams->c_expr_merged is copied back to sparams->c_expr after all
5695 successors has been traversed. lparams->c_expr_local is an expr allocated
5696 on stack in the caller function, and is used if there is more than one
5697 successor.
5698
5699 SUCC is one of the SUCCS_NORMAL successors of INSN,
5700 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5701 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5702 static void
5703 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5704 insn_t succ ATTRIBUTE_UNUSED,
5705 int moveop_drv_call_res,
5706 cmpd_local_params_p lparams, void *static_params)
5707 {
5708 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5709
5710 /* Nothing to do, if original expr wasn't found below. */
5711 if (moveop_drv_call_res != 1)
5712 return;
5713
5714 /* If this is a first successor. */
5715 if (!lparams->c_expr_merged)
5716 {
5717 lparams->c_expr_merged = sparams->c_expr;
5718 sparams->c_expr = lparams->c_expr_local;
5719 }
5720 else
5721 {
5722 /* We must merge all found expressions to get reasonable
5723 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5724 do so then we can first find the expr with epsilon
5725 speculation success probability and only then with the
5726 good probability. As a result the insn will get epsilon
5727 probability and will never be scheduled because of
5728 weakness_cutoff in find_best_expr.
5729
5730 We call merge_expr_data here instead of merge_expr
5731 because due to speculation C_EXPR and X may have the
5732 same insns with different speculation types. And as of
5733 now such insns are considered non-equal.
5734
5735 However, EXPR_SCHED_TIMES is different -- we must get
5736 SCHED_TIMES from a real insn, not a bookkeeping copy.
5737 We force this here. Instead, we may consider merging
5738 SCHED_TIMES to the maximum instead of minimum in the
5739 below function. */
5740 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5741
5742 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5743 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5744 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5745
5746 clear_expr (sparams->c_expr);
5747 }
5748 }
5749
5750 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5751
5752 SUCC is one of the SUCCS_NORMAL successors of INSN,
5753 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5754 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5755 STATIC_PARAMS contain USED_REGS set. */
5756 static void
5757 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5758 int moveop_drv_call_res,
5759 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5760 void *static_params)
5761 {
5762 regset succ_live;
5763 fur_static_params_p sparams = (fur_static_params_p) static_params;
5764
5765 /* Here we compute live regsets only for branches that do not lie
5766 on the code motion paths. These branches correspond to value
5767 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5768 for such branches code_motion_path_driver is not called. */
5769 if (moveop_drv_call_res != 0)
5770 return;
5771
5772 /* Mark all registers that do not meet the following condition:
5773 (3) not live on the other path of any conditional branch
5774 that is passed by the operation, in case original
5775 operations are not present on both paths of the
5776 conditional branch. */
5777 succ_live = compute_live (succ);
5778 IOR_REG_SET (sparams->used_regs, succ_live);
5779 }
5780
5781 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5782 into SP->CEXPR. */
5783 static void
5784 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5785 {
5786 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5787
5788 sp->c_expr = lp->c_expr_merged;
5789 }
5790
5791 /* Track bookkeeping copies created, insns scheduled, and blocks for
5792 rescheduling when INSN is found by move_op. */
5793 static void
5794 track_scheduled_insns_and_blocks (rtx_insn *insn)
5795 {
5796 /* Even if this insn can be a copy that will be removed during current move_op,
5797 we still need to count it as an originator. */
5798 bitmap_set_bit (current_originators, INSN_UID (insn));
5799
5800 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5801 {
5802 /* Note that original block needs to be rescheduled, as we pulled an
5803 instruction out of it. */
5804 if (INSN_SCHED_TIMES (insn) > 0)
5805 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5806 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5807 num_insns_scheduled++;
5808 }
5809
5810 /* For instructions we must immediately remove insn from the
5811 stream, so subsequent update_data_sets () won't include this
5812 insn into av_set.
5813 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5814 if (INSN_UID (insn) > max_uid_before_move_op)
5815 stat_bookkeeping_copies--;
5816 }
5817
5818 /* Emit a register-register copy for INSN if needed. Return true if
5819 emitted one. PARAMS is the move_op static parameters. */
5820 static bool
5821 maybe_emit_renaming_copy (rtx_insn *insn,
5822 moveop_static_params_p params)
5823 {
5824 bool insn_emitted = false;
5825 rtx cur_reg;
5826
5827 /* Bail out early when expression can not be renamed at all. */
5828 if (!EXPR_SEPARABLE_P (params->c_expr))
5829 return false;
5830
5831 cur_reg = expr_dest_reg (params->c_expr);
5832 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5833
5834 /* If original operation has expr and the register chosen for
5835 that expr is not original operation's dest reg, substitute
5836 operation's right hand side with the register chosen. */
5837 if (REGNO (params->dest) != REGNO (cur_reg))
5838 {
5839 insn_t reg_move_insn, reg_move_insn_rtx;
5840
5841 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5842 params->dest);
5843 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5844 INSN_EXPR (insn),
5845 INSN_SEQNO (insn),
5846 insn);
5847 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5848 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5849
5850 insn_emitted = true;
5851 params->was_renamed = true;
5852 }
5853
5854 return insn_emitted;
5855 }
5856
5857 /* Emit a speculative check for INSN speculated as EXPR if needed.
5858 Return true if we've emitted one. PARAMS is the move_op static
5859 parameters. */
5860 static bool
5861 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5862 moveop_static_params_p params)
5863 {
5864 bool insn_emitted = false;
5865 insn_t x;
5866 ds_t check_ds;
5867
5868 check_ds = get_spec_check_type_for_insn (insn, expr);
5869 if (check_ds != 0)
5870 {
5871 /* A speculation check should be inserted. */
5872 x = create_speculation_check (params->c_expr, check_ds, insn);
5873 insn_emitted = true;
5874 }
5875 else
5876 {
5877 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5878 x = insn;
5879 }
5880
5881 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5882 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5883 return insn_emitted;
5884 }
5885
5886 /* Handle transformations that leave an insn in place of original
5887 insn such as renaming/speculation. Return true if one of such
5888 transformations actually happened, and we have emitted this insn. */
5889 static bool
5890 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5891 moveop_static_params_p params)
5892 {
5893 bool insn_emitted = false;
5894
5895 insn_emitted = maybe_emit_renaming_copy (insn, params);
5896 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5897
5898 return insn_emitted;
5899 }
5900
5901 /* If INSN is the only insn in the basic block (not counting JUMP,
5902 which may be a jump to next insn, and DEBUG_INSNs), we want to
5903 leave a NOP there till the return to fill_insns. */
5904
5905 static bool
5906 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5907 {
5908 insn_t bb_head, bb_end, bb_next, in_next;
5909 basic_block bb = BLOCK_FOR_INSN (insn);
5910
5911 bb_head = sel_bb_head (bb);
5912 bb_end = sel_bb_end (bb);
5913
5914 if (bb_head == bb_end)
5915 return true;
5916
5917 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5918 bb_head = NEXT_INSN (bb_head);
5919
5920 if (bb_head == bb_end)
5921 return true;
5922
5923 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5924 bb_end = PREV_INSN (bb_end);
5925
5926 if (bb_head == bb_end)
5927 return true;
5928
5929 bb_next = NEXT_INSN (bb_head);
5930 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5931 bb_next = NEXT_INSN (bb_next);
5932
5933 if (bb_next == bb_end && JUMP_P (bb_end))
5934 return true;
5935
5936 in_next = NEXT_INSN (insn);
5937 while (DEBUG_INSN_P (in_next))
5938 in_next = NEXT_INSN (in_next);
5939
5940 if (IN_CURRENT_FENCE_P (in_next))
5941 return true;
5942
5943 return false;
5944 }
5945
5946 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5947 is not removed but reused when INSN is re-emitted. */
5948 static void
5949 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5950 {
5951 /* If there's only one insn in the BB, make sure that a nop is
5952 inserted into it, so the basic block won't disappear when we'll
5953 delete INSN below with sel_remove_insn. It should also survive
5954 till the return to fill_insns. */
5955 if (need_nop_to_preserve_insn_bb (insn))
5956 {
5957 insn_t nop = get_nop_from_pool (insn);
5958 gcc_assert (INSN_NOP_P (nop));
5959 vec_temp_moveop_nops.safe_push (nop);
5960 }
5961
5962 sel_remove_insn (insn, only_disconnect, false);
5963 }
5964
5965 /* This function is called when original expr is found.
5966 INSN - current insn traversed, EXPR - the corresponding expr found.
5967 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5968 is static parameters of move_op. */
5969 static void
5970 move_op_orig_expr_found (insn_t insn, expr_t expr,
5971 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5972 void *static_params)
5973 {
5974 bool only_disconnect;
5975 moveop_static_params_p params = (moveop_static_params_p) static_params;
5976
5977 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5978 track_scheduled_insns_and_blocks (insn);
5979 handle_emitting_transformations (insn, expr, params);
5980 only_disconnect = params->uid == INSN_UID (insn);
5981
5982 /* Mark that we've disconnected an insn. */
5983 if (only_disconnect)
5984 params->uid = -1;
5985 remove_insn_from_stream (insn, only_disconnect);
5986 }
5987
5988 /* The function is called when original expr is found.
5989 INSN - current insn traversed, EXPR - the corresponding expr found,
5990 crosses_call and original_insns in STATIC_PARAMS are updated. */
5991 static void
5992 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
5993 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5994 void *static_params)
5995 {
5996 fur_static_params_p params = (fur_static_params_p) static_params;
5997 regset tmp;
5998
5999 if (CALL_P (insn))
6000 params->crosses_call = true;
6001
6002 def_list_add (params->original_insns, insn, params->crosses_call);
6003
6004 /* Mark the registers that do not meet the following condition:
6005 (2) not among the live registers of the point
6006 immediately following the first original operation on
6007 a given downward path, except for the original target
6008 register of the operation. */
6009 tmp = get_clear_regset_from_pool ();
6010 compute_live_below_insn (insn, tmp);
6011 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6012 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6013 IOR_REG_SET (params->used_regs, tmp);
6014 return_regset_to_pool (tmp);
6015
6016 /* (*1) We need to add to USED_REGS registers that are read by
6017 INSN's lhs. This may lead to choosing wrong src register.
6018 E.g. (scheduling const expr enabled):
6019
6020 429: ax=0x0 <- Can't use AX for this expr (0x0)
6021 433: dx=[bp-0x18]
6022 427: [ax+dx+0x1]=ax
6023 REG_DEAD: ax
6024 168: di=dx
6025 REG_DEAD: dx
6026 */
6027 /* FIXME: see comment above and enable MEM_P
6028 in vinsn_separable_p. */
6029 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6030 || !MEM_P (INSN_LHS (insn)));
6031 }
6032
6033 /* This function is called on the ascending pass, before returning from
6034 current basic block. */
6035 static void
6036 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6037 void *static_params)
6038 {
6039 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6040 basic_block book_block = NULL;
6041
6042 /* When we have removed the boundary insn for scheduling, which also
6043 happened to be the end insn in its bb, we don't need to update sets. */
6044 if (!lparams->removed_last_insn
6045 && lparams->e1
6046 && sel_bb_head_p (insn))
6047 {
6048 /* We should generate bookkeeping code only if we are not at the
6049 top level of the move_op. */
6050 if (sel_num_cfg_preds_gt_1 (insn))
6051 book_block = generate_bookkeeping_insn (sparams->c_expr,
6052 lparams->e1, lparams->e2);
6053 /* Update data sets for the current insn. */
6054 update_data_sets (insn);
6055 }
6056
6057 /* If bookkeeping code was inserted, we need to update av sets of basic
6058 block that received bookkeeping. After generation of bookkeeping insn,
6059 bookkeeping block does not contain valid av set because we are not following
6060 the original algorithm in every detail with regards to e.g. renaming
6061 simple reg-reg copies. Consider example:
6062
6063 bookkeeping block scheduling fence
6064 \ /
6065 \ join /
6066 ----------
6067 | |
6068 ----------
6069 / \
6070 / \
6071 r1 := r2 r1 := r3
6072
6073 We try to schedule insn "r1 := r3" on the current
6074 scheduling fence. Also, note that av set of bookkeeping block
6075 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6076 been scheduled, the CFG is as follows:
6077
6078 r1 := r3 r1 := r3
6079 bookkeeping block scheduling fence
6080 \ /
6081 \ join /
6082 ----------
6083 | |
6084 ----------
6085 / \
6086 / \
6087 r1 := r2
6088
6089 Here, insn "r1 := r3" was scheduled at the current scheduling point
6090 and bookkeeping code was generated at the bookeeping block. This
6091 way insn "r1 := r2" is no longer available as a whole instruction
6092 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6093 This situation is handled by calling update_data_sets.
6094
6095 Since update_data_sets is called only on the bookkeeping block, and
6096 it also may have predecessors with av_sets, containing instructions that
6097 are no longer available, we save all such expressions that become
6098 unavailable during data sets update on the bookkeeping block in
6099 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6100 expressions for scheduling. This allows us to avoid recomputation of
6101 av_sets outside the code motion path. */
6102
6103 if (book_block)
6104 update_and_record_unavailable_insns (book_block);
6105
6106 /* If INSN was previously marked for deletion, it's time to do it. */
6107 if (lparams->removed_last_insn)
6108 insn = PREV_INSN (insn);
6109
6110 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6111 kill a block with a single nop in which the insn should be emitted. */
6112 if (lparams->e1)
6113 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6114 }
6115
6116 /* This function is called on the ascending pass, before returning from the
6117 current basic block. */
6118 static void
6119 fur_at_first_insn (insn_t insn,
6120 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6121 void *static_params ATTRIBUTE_UNUSED)
6122 {
6123 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6124 || AV_LEVEL (insn) == -1);
6125 }
6126
6127 /* Called on the backward stage of recursion to call moveup_expr for insn
6128 and sparams->c_expr. */
6129 static void
6130 move_op_ascend (insn_t insn, void *static_params)
6131 {
6132 enum MOVEUP_EXPR_CODE res;
6133 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6134
6135 if (! INSN_NOP_P (insn))
6136 {
6137 res = moveup_expr_cached (sparams->c_expr, insn, false);
6138 gcc_assert (res != MOVEUP_EXPR_NULL);
6139 }
6140
6141 /* Update liveness for this insn as it was invalidated. */
6142 update_liveness_on_insn (insn);
6143 }
6144
6145 /* This function is called on enter to the basic block.
6146 Returns TRUE if this block already have been visited and
6147 code_motion_path_driver should return 1, FALSE otherwise. */
6148 static int
6149 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6150 void *static_params, bool visited_p)
6151 {
6152 fur_static_params_p sparams = (fur_static_params_p) static_params;
6153
6154 if (visited_p)
6155 {
6156 /* If we have found something below this block, there should be at
6157 least one insn in ORIGINAL_INSNS. */
6158 gcc_assert (*sparams->original_insns);
6159
6160 /* Adjust CROSSES_CALL, since we may have come to this block along
6161 different path. */
6162 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6163 |= sparams->crosses_call;
6164 }
6165 else
6166 local_params->old_original_insns = *sparams->original_insns;
6167
6168 return 1;
6169 }
6170
6171 /* Same as above but for move_op. */
6172 static int
6173 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6174 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6175 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6176 {
6177 if (visited_p)
6178 return -1;
6179 return 1;
6180 }
6181
6182 /* This function is called while descending current basic block if current
6183 insn is not the original EXPR we're searching for.
6184
6185 Return value: FALSE, if code_motion_path_driver should perform a local
6186 cleanup and return 0 itself;
6187 TRUE, if code_motion_path_driver should continue. */
6188 static bool
6189 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6190 void *static_params)
6191 {
6192 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6193
6194 sparams->failed_insn = insn;
6195
6196 /* If we're scheduling separate expr, in order to generate correct code
6197 we need to stop the search at bookkeeping code generated with the
6198 same destination register or memory. */
6199 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6200 return false;
6201 return true;
6202 }
6203
6204 /* This function is called while descending current basic block if current
6205 insn is not the original EXPR we're searching for.
6206
6207 Return value: TRUE (code_motion_path_driver should continue). */
6208 static bool
6209 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6210 {
6211 bool mutexed;
6212 expr_t r;
6213 av_set_iterator avi;
6214 fur_static_params_p sparams = (fur_static_params_p) static_params;
6215
6216 if (CALL_P (insn))
6217 sparams->crosses_call = true;
6218 else if (DEBUG_INSN_P (insn))
6219 return true;
6220
6221 /* If current insn we are looking at cannot be executed together
6222 with original insn, then we can skip it safely.
6223
6224 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6225 INSN = (!p6) r14 = r14 + 1;
6226
6227 Here we can schedule ORIG_OP with lhs = r14, though only
6228 looking at the set of used and set registers of INSN we must
6229 forbid it. So, add set/used in INSN registers to the
6230 untouchable set only if there is an insn in ORIG_OPS that can
6231 affect INSN. */
6232 mutexed = true;
6233 FOR_EACH_EXPR (r, avi, orig_ops)
6234 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6235 {
6236 mutexed = false;
6237 break;
6238 }
6239
6240 /* Mark all registers that do not meet the following condition:
6241 (1) Not set or read on any path from xi to an instance of the
6242 original operation. */
6243 if (!mutexed)
6244 {
6245 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6246 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6247 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6248 }
6249
6250 return true;
6251 }
6252
6253 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6254 struct code_motion_path_driver_info_def move_op_hooks = {
6255 move_op_on_enter,
6256 move_op_orig_expr_found,
6257 move_op_orig_expr_not_found,
6258 move_op_merge_succs,
6259 move_op_after_merge_succs,
6260 move_op_ascend,
6261 move_op_at_first_insn,
6262 SUCCS_NORMAL,
6263 "move_op"
6264 };
6265
6266 /* Hooks and data to perform find_used_regs operations
6267 with code_motion_path_driver. */
6268 struct code_motion_path_driver_info_def fur_hooks = {
6269 fur_on_enter,
6270 fur_orig_expr_found,
6271 fur_orig_expr_not_found,
6272 fur_merge_succs,
6273 NULL, /* fur_after_merge_succs */
6274 NULL, /* fur_ascend */
6275 fur_at_first_insn,
6276 SUCCS_ALL,
6277 "find_used_regs"
6278 };
6279
6280 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6281 code_motion_path_driver is called recursively. Original operation
6282 was found at least on one path that is starting with one of INSN's
6283 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6284 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6285 of either move_op or find_used_regs depending on the caller.
6286
6287 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6288 know for sure at this point. */
6289 static int
6290 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6291 ilist_t path, void *static_params)
6292 {
6293 int res = 0;
6294 succ_iterator succ_i;
6295 insn_t succ;
6296 basic_block bb;
6297 int old_index;
6298 unsigned old_succs;
6299
6300 struct cmpd_local_params lparams;
6301 expr_def _x;
6302
6303 lparams.c_expr_local = &_x;
6304 lparams.c_expr_merged = NULL;
6305
6306 /* We need to process only NORMAL succs for move_op, and collect live
6307 registers from ALL branches (including those leading out of the
6308 region) for find_used_regs.
6309
6310 In move_op, there can be a case when insn's bb number has changed
6311 due to created bookkeeping. This happens very rare, as we need to
6312 move expression from the beginning to the end of the same block.
6313 Rescan successors in this case. */
6314
6315 rescan:
6316 bb = BLOCK_FOR_INSN (insn);
6317 old_index = bb->index;
6318 old_succs = EDGE_COUNT (bb->succs);
6319
6320 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6321 {
6322 int b;
6323
6324 lparams.e1 = succ_i.e1;
6325 lparams.e2 = succ_i.e2;
6326
6327 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6328 current region). */
6329 if (succ_i.current_flags == SUCCS_NORMAL)
6330 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6331 static_params);
6332 else
6333 b = 0;
6334
6335 /* Merge c_expres found or unify live register sets from different
6336 successors. */
6337 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6338 static_params);
6339 if (b == 1)
6340 res = b;
6341 else if (b == -1 && res != 1)
6342 res = b;
6343
6344 /* We have simplified the control flow below this point. In this case,
6345 the iterator becomes invalid. We need to try again.
6346 If we have removed the insn itself, it could be only an
6347 unconditional jump. Thus, do not rescan but break immediately --
6348 we have already visited the only successor block. */
6349 if (!BLOCK_FOR_INSN (insn))
6350 {
6351 if (sched_verbose >= 6)
6352 sel_print ("Not doing rescan: already visited the only successor"
6353 " of block %d\n", old_index);
6354 break;
6355 }
6356 if (BLOCK_FOR_INSN (insn)->index != old_index
6357 || EDGE_COUNT (bb->succs) != old_succs)
6358 {
6359 if (sched_verbose >= 6)
6360 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6361 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6362 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6363 goto rescan;
6364 }
6365 }
6366
6367 /* Here, RES==1 if original expr was found at least for one of the
6368 successors. After the loop, RES may happen to have zero value
6369 only if at some point the expr searched is present in av_set, but is
6370 not found below. In most cases, this situation is an error.
6371 The exception is when the original operation is blocked by
6372 bookkeeping generated for another fence or for another path in current
6373 move_op. */
6374 gcc_checking_assert (res == 1
6375 || (res == 0
6376 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
6377 || res == -1);
6378
6379 /* Merge data, clean up, etc. */
6380 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6381 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6382
6383 return res;
6384 }
6385
6386
6387 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6388 is the pointer to the av set with expressions we were looking for,
6389 PATH_P is the pointer to the traversed path. */
6390 static inline void
6391 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6392 {
6393 ilist_remove (path_p);
6394 av_set_clear (orig_ops_p);
6395 }
6396
6397 /* The driver function that implements move_op or find_used_regs
6398 functionality dependent whether code_motion_path_driver_INFO is set to
6399 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6400 of code (CFG traversal etc) that are shared among both functions. INSN
6401 is the insn we're starting the search from, ORIG_OPS are the expressions
6402 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6403 parameters of the driver, and STATIC_PARAMS are static parameters of
6404 the caller.
6405
6406 Returns whether original instructions were found. Note that top-level
6407 code_motion_path_driver always returns true. */
6408 static int
6409 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6410 cmpd_local_params_p local_params_in,
6411 void *static_params)
6412 {
6413 expr_t expr = NULL;
6414 basic_block bb = BLOCK_FOR_INSN (insn);
6415 insn_t first_insn, bb_tail, before_first;
6416 bool removed_last_insn = false;
6417
6418 if (sched_verbose >= 6)
6419 {
6420 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6421 dump_insn (insn);
6422 sel_print (",");
6423 dump_av_set (orig_ops);
6424 sel_print (")\n");
6425 }
6426
6427 gcc_assert (orig_ops);
6428
6429 /* If no original operations exist below this insn, return immediately. */
6430 if (is_ineligible_successor (insn, path))
6431 {
6432 if (sched_verbose >= 6)
6433 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6434 return false;
6435 }
6436
6437 /* The block can have invalid av set, in which case it was created earlier
6438 during move_op. Return immediately. */
6439 if (sel_bb_head_p (insn))
6440 {
6441 if (! AV_SET_VALID_P (insn))
6442 {
6443 if (sched_verbose >= 6)
6444 sel_print ("Returned from block %d as it had invalid av set\n",
6445 bb->index);
6446 return false;
6447 }
6448
6449 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6450 {
6451 /* We have already found an original operation on this branch, do not
6452 go any further and just return TRUE here. If we don't stop here,
6453 function can have exponential behaviour even on the small code
6454 with many different paths (e.g. with data speculation and
6455 recovery blocks). */
6456 if (sched_verbose >= 6)
6457 sel_print ("Block %d already visited in this traversal\n", bb->index);
6458 if (code_motion_path_driver_info->on_enter)
6459 return code_motion_path_driver_info->on_enter (insn,
6460 local_params_in,
6461 static_params,
6462 true);
6463 }
6464 }
6465
6466 if (code_motion_path_driver_info->on_enter)
6467 code_motion_path_driver_info->on_enter (insn, local_params_in,
6468 static_params, false);
6469 orig_ops = av_set_copy (orig_ops);
6470
6471 /* Filter the orig_ops set. */
6472 if (AV_SET_VALID_P (insn))
6473 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6474
6475 /* If no more original ops, return immediately. */
6476 if (!orig_ops)
6477 {
6478 if (sched_verbose >= 6)
6479 sel_print ("No intersection with av set of block %d\n", bb->index);
6480 return false;
6481 }
6482
6483 /* For non-speculative insns we have to leave only one form of the
6484 original operation, because if we don't, we may end up with
6485 different C_EXPRes and, consequently, with bookkeepings for different
6486 expression forms along the same code motion path. That may lead to
6487 generation of incorrect code. So for each code motion we stick to
6488 the single form of the instruction, except for speculative insns
6489 which we need to keep in different forms with all speculation
6490 types. */
6491 av_set_leave_one_nonspec (&orig_ops);
6492
6493 /* It is not possible that all ORIG_OPS are filtered out. */
6494 gcc_assert (orig_ops);
6495
6496 /* It is enough to place only heads and tails of visited basic blocks into
6497 the PATH. */
6498 ilist_add (&path, insn);
6499 first_insn = insn;
6500 bb_tail = sel_bb_end (bb);
6501
6502 /* Descend the basic block in search of the original expr; this part
6503 corresponds to the part of the original move_op procedure executed
6504 before the recursive call. */
6505 for (;;)
6506 {
6507 /* Look at the insn and decide if it could be an ancestor of currently
6508 scheduling operation. If it is so, then the insn "dest = op" could
6509 either be replaced with "dest = reg", because REG now holds the result
6510 of OP, or just removed, if we've scheduled the insn as a whole.
6511
6512 If this insn doesn't contain currently scheduling OP, then proceed
6513 with searching and look at its successors. Operations we're searching
6514 for could have changed when moving up through this insn via
6515 substituting. In this case, perform unsubstitution on them first.
6516
6517 When traversing the DAG below this insn is finished, insert
6518 bookkeeping code, if the insn is a joint point, and remove
6519 leftovers. */
6520
6521 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6522 if (expr)
6523 {
6524 insn_t last_insn = PREV_INSN (insn);
6525
6526 /* We have found the original operation. */
6527 if (sched_verbose >= 6)
6528 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6529
6530 code_motion_path_driver_info->orig_expr_found
6531 (insn, expr, local_params_in, static_params);
6532
6533 /* Step back, so on the way back we'll start traversing from the
6534 previous insn (or we'll see that it's bb_note and skip that
6535 loop). */
6536 if (insn == first_insn)
6537 {
6538 first_insn = NEXT_INSN (last_insn);
6539 removed_last_insn = sel_bb_end_p (last_insn);
6540 }
6541 insn = last_insn;
6542 break;
6543 }
6544 else
6545 {
6546 /* We haven't found the original expr, continue descending the basic
6547 block. */
6548 if (code_motion_path_driver_info->orig_expr_not_found
6549 (insn, orig_ops, static_params))
6550 {
6551 /* Av set ops could have been changed when moving through this
6552 insn. To find them below it, we have to un-substitute them. */
6553 undo_transformations (&orig_ops, insn);
6554 }
6555 else
6556 {
6557 /* Clean up and return, if the hook tells us to do so. It may
6558 happen if we've encountered the previously created
6559 bookkeeping. */
6560 code_motion_path_driver_cleanup (&orig_ops, &path);
6561 return -1;
6562 }
6563
6564 gcc_assert (orig_ops);
6565 }
6566
6567 /* Stop at insn if we got to the end of BB. */
6568 if (insn == bb_tail)
6569 break;
6570
6571 insn = NEXT_INSN (insn);
6572 }
6573
6574 /* Here INSN either points to the insn before the original insn (may be
6575 bb_note, if original insn was a bb_head) or to the bb_end. */
6576 if (!expr)
6577 {
6578 int res;
6579 rtx_insn *last_insn = PREV_INSN (insn);
6580 bool added_to_path;
6581
6582 gcc_assert (insn == sel_bb_end (bb));
6583
6584 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6585 it's already in PATH then). */
6586 if (insn != first_insn)
6587 {
6588 ilist_add (&path, insn);
6589 added_to_path = true;
6590 }
6591 else
6592 added_to_path = false;
6593
6594 /* Process_successors should be able to find at least one
6595 successor for which code_motion_path_driver returns TRUE. */
6596 res = code_motion_process_successors (insn, orig_ops,
6597 path, static_params);
6598
6599 /* Jump in the end of basic block could have been removed or replaced
6600 during code_motion_process_successors, so recompute insn as the
6601 last insn in bb. */
6602 if (NEXT_INSN (last_insn) != insn)
6603 {
6604 insn = sel_bb_end (bb);
6605 first_insn = sel_bb_head (bb);
6606 }
6607
6608 /* Remove bb tail from path. */
6609 if (added_to_path)
6610 ilist_remove (&path);
6611
6612 if (res != 1)
6613 {
6614 /* This is the case when one of the original expr is no longer available
6615 due to bookkeeping created on this branch with the same register.
6616 In the original algorithm, which doesn't have update_data_sets call
6617 on a bookkeeping block, it would simply result in returning
6618 FALSE when we've encountered a previously generated bookkeeping
6619 insn in moveop_orig_expr_not_found. */
6620 code_motion_path_driver_cleanup (&orig_ops, &path);
6621 return res;
6622 }
6623 }
6624
6625 /* Don't need it any more. */
6626 av_set_clear (&orig_ops);
6627
6628 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6629 the beginning of the basic block. */
6630 before_first = PREV_INSN (first_insn);
6631 while (insn != before_first)
6632 {
6633 if (code_motion_path_driver_info->ascend)
6634 code_motion_path_driver_info->ascend (insn, static_params);
6635
6636 insn = PREV_INSN (insn);
6637 }
6638
6639 /* Now we're at the bb head. */
6640 insn = first_insn;
6641 ilist_remove (&path);
6642 local_params_in->removed_last_insn = removed_last_insn;
6643 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6644
6645 /* This should be the very last operation as at bb head we could change
6646 the numbering by creating bookkeeping blocks. */
6647 if (removed_last_insn)
6648 insn = PREV_INSN (insn);
6649
6650 /* If we have simplified the control flow and removed the first jump insn,
6651 there's no point in marking this block in the visited blocks bitmap. */
6652 if (BLOCK_FOR_INSN (insn))
6653 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6654 return true;
6655 }
6656
6657 /* Move up the operations from ORIG_OPS set traversing the dag starting
6658 from INSN. PATH represents the edges traversed so far.
6659 DEST is the register chosen for scheduling the current expr. Insert
6660 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6661 C_EXPR is how it looks like at the given cfg point.
6662 Set *SHOULD_MOVE to indicate whether we have only disconnected
6663 one of the insns found.
6664
6665 Returns whether original instructions were found, which is asserted
6666 to be true in the caller. */
6667 static bool
6668 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6669 rtx dest, expr_t c_expr, bool *should_move)
6670 {
6671 struct moveop_static_params sparams;
6672 struct cmpd_local_params lparams;
6673 int res;
6674
6675 /* Init params for code_motion_path_driver. */
6676 sparams.dest = dest;
6677 sparams.c_expr = c_expr;
6678 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6679 sparams.failed_insn = NULL;
6680 sparams.was_renamed = false;
6681 lparams.e1 = NULL;
6682
6683 /* We haven't visited any blocks yet. */
6684 bitmap_clear (code_motion_visited_blocks);
6685
6686 /* Set appropriate hooks and data. */
6687 code_motion_path_driver_info = &move_op_hooks;
6688 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6689
6690 gcc_assert (res != -1);
6691
6692 if (sparams.was_renamed)
6693 EXPR_WAS_RENAMED (expr_vliw) = true;
6694
6695 *should_move = (sparams.uid == -1);
6696
6697 return res;
6698 }
6699 \f
6700
6701 /* Functions that work with regions. */
6702
6703 /* Current number of seqno used in init_seqno and init_seqno_1. */
6704 static int cur_seqno;
6705
6706 /* A helper for init_seqno. Traverse the region starting from BB and
6707 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6708 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6709 static void
6710 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6711 {
6712 int bbi = BLOCK_TO_BB (bb->index);
6713 insn_t insn;
6714 insn_t succ_insn;
6715 succ_iterator si;
6716
6717 rtx_note *note = bb_note (bb);
6718 bitmap_set_bit (visited_bbs, bbi);
6719 if (blocks_to_reschedule)
6720 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6721
6722 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6723 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6724 {
6725 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6726 int succ_bbi = BLOCK_TO_BB (succ->index);
6727
6728 gcc_assert (in_current_region_p (succ));
6729
6730 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6731 {
6732 gcc_assert (succ_bbi > bbi);
6733
6734 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6735 }
6736 else if (blocks_to_reschedule)
6737 bitmap_set_bit (forced_ebb_heads, succ->index);
6738 }
6739
6740 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6741 INSN_SEQNO (insn) = cur_seqno--;
6742 }
6743
6744 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6745 blocks on which we're rescheduling when pipelining, FROM is the block where
6746 traversing region begins (it may not be the head of the region when
6747 pipelining, but the head of the loop instead).
6748
6749 Returns the maximal seqno found. */
6750 static int
6751 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6752 {
6753 sbitmap visited_bbs;
6754 bitmap_iterator bi;
6755 unsigned bbi;
6756
6757 visited_bbs = sbitmap_alloc (current_nr_blocks);
6758
6759 if (blocks_to_reschedule)
6760 {
6761 bitmap_ones (visited_bbs);
6762 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6763 {
6764 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6765 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6766 }
6767 }
6768 else
6769 {
6770 bitmap_clear (visited_bbs);
6771 from = EBB_FIRST_BB (0);
6772 }
6773
6774 cur_seqno = sched_max_luid - 1;
6775 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6776
6777 /* cur_seqno may be positive if the number of instructions is less than
6778 sched_max_luid - 1 (when rescheduling or if some instructions have been
6779 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6780 gcc_assert (cur_seqno >= 0);
6781
6782 sbitmap_free (visited_bbs);
6783 return sched_max_luid - 1;
6784 }
6785
6786 /* Initialize scheduling parameters for current region. */
6787 static void
6788 sel_setup_region_sched_flags (void)
6789 {
6790 enable_schedule_as_rhs_p = 1;
6791 bookkeeping_p = 1;
6792 pipelining_p = (bookkeeping_p
6793 && (flag_sel_sched_pipelining != 0)
6794 && current_loop_nest != NULL
6795 && loop_has_exit_edges (current_loop_nest));
6796 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6797 max_ws = MAX_WS;
6798 }
6799
6800 /* Return true if all basic blocks of current region are empty. */
6801 static bool
6802 current_region_empty_p (void)
6803 {
6804 int i;
6805 for (i = 0; i < current_nr_blocks; i++)
6806 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6807 return false;
6808
6809 return true;
6810 }
6811
6812 /* Prepare and verify loop nest for pipelining. */
6813 static void
6814 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6815 {
6816 current_loop_nest = get_loop_nest_for_rgn (rgn);
6817
6818 if (!current_loop_nest)
6819 return;
6820
6821 /* If this loop has any saved loop preheaders from nested loops,
6822 add these basic blocks to the current region. */
6823 sel_add_loop_preheaders (bbs);
6824
6825 /* Check that we're starting with a valid information. */
6826 gcc_assert (loop_latch_edge (current_loop_nest));
6827 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6828 }
6829
6830 /* Compute instruction priorities for current region. */
6831 static void
6832 sel_compute_priorities (int rgn)
6833 {
6834 sched_rgn_compute_dependencies (rgn);
6835
6836 /* Compute insn priorities in haifa style. Then free haifa style
6837 dependencies that we've calculated for this. */
6838 compute_priorities ();
6839
6840 if (sched_verbose >= 5)
6841 debug_rgn_dependencies (0);
6842
6843 free_rgn_deps ();
6844 }
6845
6846 /* Init scheduling data for RGN. Returns true when this region should not
6847 be scheduled. */
6848 static bool
6849 sel_region_init (int rgn)
6850 {
6851 int i;
6852 bb_vec_t bbs;
6853
6854 rgn_setup_region (rgn);
6855
6856 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6857 do region initialization here so the region can be bundled correctly,
6858 but we'll skip the scheduling in sel_sched_region (). */
6859 if (current_region_empty_p ())
6860 return true;
6861
6862 bbs.create (current_nr_blocks);
6863
6864 for (i = 0; i < current_nr_blocks; i++)
6865 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6866
6867 sel_init_bbs (bbs);
6868
6869 if (flag_sel_sched_pipelining)
6870 setup_current_loop_nest (rgn, &bbs);
6871
6872 sel_setup_region_sched_flags ();
6873
6874 /* Initialize luids and dependence analysis which both sel-sched and haifa
6875 need. */
6876 sched_init_luids (bbs);
6877 sched_deps_init (false);
6878
6879 /* Initialize haifa data. */
6880 rgn_setup_sched_infos ();
6881 sel_set_sched_flags ();
6882 haifa_init_h_i_d (bbs);
6883
6884 sel_compute_priorities (rgn);
6885 init_deps_global ();
6886
6887 /* Main initialization. */
6888 sel_setup_sched_infos ();
6889 sel_init_global_and_expr (bbs);
6890
6891 bbs.release ();
6892
6893 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6894
6895 /* Init correct liveness sets on each instruction of a single-block loop.
6896 This is the only situation when we can't update liveness when calling
6897 compute_live for the first insn of the loop. */
6898 if (current_loop_nest)
6899 {
6900 int header =
6901 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6902 ? 1
6903 : 0);
6904
6905 if (current_nr_blocks == header + 1)
6906 update_liveness_on_insn
6907 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6908 }
6909
6910 /* Set hooks so that no newly generated insn will go out unnoticed. */
6911 sel_register_cfg_hooks ();
6912
6913 /* !!! We call target.sched.init () for the whole region, but we invoke
6914 targetm.sched.finish () for every ebb. */
6915 if (targetm.sched.init)
6916 /* None of the arguments are actually used in any target. */
6917 targetm.sched.init (sched_dump, sched_verbose, -1);
6918
6919 first_emitted_uid = get_max_uid () + 1;
6920 preheader_removed = false;
6921
6922 /* Reset register allocation ticks array. */
6923 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6924 reg_rename_this_tick = 0;
6925
6926 bitmap_initialize (forced_ebb_heads, 0);
6927 bitmap_clear (forced_ebb_heads);
6928
6929 setup_nop_vinsn ();
6930 current_copies = BITMAP_ALLOC (NULL);
6931 current_originators = BITMAP_ALLOC (NULL);
6932 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6933
6934 return false;
6935 }
6936
6937 /* Simplify insns after the scheduling. */
6938 static void
6939 simplify_changed_insns (void)
6940 {
6941 int i;
6942
6943 for (i = 0; i < current_nr_blocks; i++)
6944 {
6945 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6946 rtx_insn *insn;
6947
6948 FOR_BB_INSNS (bb, insn)
6949 if (INSN_P (insn))
6950 {
6951 expr_t expr = INSN_EXPR (insn);
6952
6953 if (EXPR_WAS_SUBSTITUTED (expr))
6954 validate_simplify_insn (insn);
6955 }
6956 }
6957 }
6958
6959 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6960 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6961 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6962 static void
6963 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6964 {
6965 rtx_insn *head, *tail;
6966 basic_block bb1 = bb;
6967 if (sched_verbose >= 2)
6968 sel_print ("Finishing schedule in bbs: ");
6969
6970 do
6971 {
6972 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6973
6974 if (sched_verbose >= 2)
6975 sel_print ("%d; ", bb1->index);
6976 }
6977 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6978
6979 if (sched_verbose >= 2)
6980 sel_print ("\n");
6981
6982 get_ebb_head_tail (bb, bb1, &head, &tail);
6983
6984 current_sched_info->head = head;
6985 current_sched_info->tail = tail;
6986 current_sched_info->prev_head = PREV_INSN (head);
6987 current_sched_info->next_tail = NEXT_INSN (tail);
6988 }
6989
6990 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6991 static void
6992 reset_sched_cycles_in_current_ebb (void)
6993 {
6994 int last_clock = 0;
6995 int haifa_last_clock = -1;
6996 int haifa_clock = 0;
6997 int issued_insns = 0;
6998 insn_t insn;
6999
7000 if (targetm.sched.init)
7001 {
7002 /* None of the arguments are actually used in any target.
7003 NB: We should have md_reset () hook for cases like this. */
7004 targetm.sched.init (sched_dump, sched_verbose, -1);
7005 }
7006
7007 state_reset (curr_state);
7008 advance_state (curr_state);
7009
7010 for (insn = current_sched_info->head;
7011 insn != current_sched_info->next_tail;
7012 insn = NEXT_INSN (insn))
7013 {
7014 int cost, haifa_cost;
7015 int sort_p;
7016 bool asm_p, real_insn, after_stall, all_issued;
7017 int clock;
7018
7019 if (!INSN_P (insn))
7020 continue;
7021
7022 asm_p = false;
7023 real_insn = recog_memoized (insn) >= 0;
7024 clock = INSN_SCHED_CYCLE (insn);
7025
7026 cost = clock - last_clock;
7027
7028 /* Initialize HAIFA_COST. */
7029 if (! real_insn)
7030 {
7031 asm_p = INSN_ASM_P (insn);
7032
7033 if (asm_p)
7034 /* This is asm insn which *had* to be scheduled first
7035 on the cycle. */
7036 haifa_cost = 1;
7037 else
7038 /* This is a use/clobber insn. It should not change
7039 cost. */
7040 haifa_cost = 0;
7041 }
7042 else
7043 haifa_cost = estimate_insn_cost (insn, curr_state);
7044
7045 /* Stall for whatever cycles we've stalled before. */
7046 after_stall = 0;
7047 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7048 {
7049 haifa_cost = cost;
7050 after_stall = 1;
7051 }
7052 all_issued = issued_insns == issue_rate;
7053 if (haifa_cost == 0 && all_issued)
7054 haifa_cost = 1;
7055 if (haifa_cost > 0)
7056 {
7057 int i = 0;
7058
7059 while (haifa_cost--)
7060 {
7061 advance_state (curr_state);
7062 issued_insns = 0;
7063 i++;
7064
7065 if (sched_verbose >= 2)
7066 {
7067 sel_print ("advance_state (state_transition)\n");
7068 debug_state (curr_state);
7069 }
7070
7071 /* The DFA may report that e.g. insn requires 2 cycles to be
7072 issued, but on the next cycle it says that insn is ready
7073 to go. Check this here. */
7074 if (!after_stall
7075 && real_insn
7076 && haifa_cost > 0
7077 && estimate_insn_cost (insn, curr_state) == 0)
7078 break;
7079
7080 /* When the data dependency stall is longer than the DFA stall,
7081 and when we have issued exactly issue_rate insns and stalled,
7082 it could be that after this longer stall the insn will again
7083 become unavailable to the DFA restrictions. Looks strange
7084 but happens e.g. on x86-64. So recheck DFA on the last
7085 iteration. */
7086 if ((after_stall || all_issued)
7087 && real_insn
7088 && haifa_cost == 0)
7089 haifa_cost = estimate_insn_cost (insn, curr_state);
7090 }
7091
7092 haifa_clock += i;
7093 if (sched_verbose >= 2)
7094 sel_print ("haifa clock: %d\n", haifa_clock);
7095 }
7096 else
7097 gcc_assert (haifa_cost == 0);
7098
7099 if (sched_verbose >= 2)
7100 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7101
7102 if (targetm.sched.dfa_new_cycle)
7103 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7104 haifa_last_clock, haifa_clock,
7105 &sort_p))
7106 {
7107 advance_state (curr_state);
7108 issued_insns = 0;
7109 haifa_clock++;
7110 if (sched_verbose >= 2)
7111 {
7112 sel_print ("advance_state (dfa_new_cycle)\n");
7113 debug_state (curr_state);
7114 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7115 }
7116 }
7117
7118 if (real_insn)
7119 {
7120 static state_t temp = NULL;
7121
7122 if (!temp)
7123 temp = xmalloc (dfa_state_size);
7124 memcpy (temp, curr_state, dfa_state_size);
7125
7126 cost = state_transition (curr_state, insn);
7127 if (memcmp (temp, curr_state, dfa_state_size))
7128 issued_insns++;
7129
7130 if (sched_verbose >= 2)
7131 {
7132 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7133 haifa_clock + 1);
7134 debug_state (curr_state);
7135 }
7136 gcc_assert (cost < 0);
7137 }
7138
7139 if (targetm.sched.variable_issue)
7140 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7141
7142 INSN_SCHED_CYCLE (insn) = haifa_clock;
7143
7144 last_clock = clock;
7145 haifa_last_clock = haifa_clock;
7146 }
7147 }
7148
7149 /* Put TImode markers on insns starting a new issue group. */
7150 static void
7151 put_TImodes (void)
7152 {
7153 int last_clock = -1;
7154 insn_t insn;
7155
7156 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7157 insn = NEXT_INSN (insn))
7158 {
7159 int cost, clock;
7160
7161 if (!INSN_P (insn))
7162 continue;
7163
7164 clock = INSN_SCHED_CYCLE (insn);
7165 cost = (last_clock == -1) ? 1 : clock - last_clock;
7166
7167 gcc_assert (cost >= 0);
7168
7169 if (issue_rate > 1
7170 && GET_CODE (PATTERN (insn)) != USE
7171 && GET_CODE (PATTERN (insn)) != CLOBBER)
7172 {
7173 if (reload_completed && cost > 0)
7174 PUT_MODE (insn, TImode);
7175
7176 last_clock = clock;
7177 }
7178
7179 if (sched_verbose >= 2)
7180 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7181 }
7182 }
7183
7184 /* Perform MD_FINISH on EBBs comprising current region. When
7185 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7186 to produce correct sched cycles on insns. */
7187 static void
7188 sel_region_target_finish (bool reset_sched_cycles_p)
7189 {
7190 int i;
7191 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7192
7193 for (i = 0; i < current_nr_blocks; i++)
7194 {
7195 if (bitmap_bit_p (scheduled_blocks, i))
7196 continue;
7197
7198 /* While pipelining outer loops, skip bundling for loop
7199 preheaders. Those will be rescheduled in the outer loop. */
7200 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7201 continue;
7202
7203 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7204
7205 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7206 continue;
7207
7208 if (reset_sched_cycles_p)
7209 reset_sched_cycles_in_current_ebb ();
7210
7211 if (targetm.sched.init)
7212 targetm.sched.init (sched_dump, sched_verbose, -1);
7213
7214 put_TImodes ();
7215
7216 if (targetm.sched.finish)
7217 {
7218 targetm.sched.finish (sched_dump, sched_verbose);
7219
7220 /* Extend luids so that insns generated by the target will
7221 get zero luid. */
7222 sched_extend_luids ();
7223 }
7224 }
7225
7226 BITMAP_FREE (scheduled_blocks);
7227 }
7228
7229 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7230 is true, make an additional pass emulating scheduler to get correct insn
7231 cycles for md_finish calls. */
7232 static void
7233 sel_region_finish (bool reset_sched_cycles_p)
7234 {
7235 simplify_changed_insns ();
7236 sched_finish_ready_list ();
7237 free_nop_pool ();
7238
7239 /* Free the vectors. */
7240 vec_av_set.release ();
7241 BITMAP_FREE (current_copies);
7242 BITMAP_FREE (current_originators);
7243 BITMAP_FREE (code_motion_visited_blocks);
7244 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7245 vinsn_vec_free (vec_target_unavailable_vinsns);
7246
7247 /* If LV_SET of the region head should be updated, do it now because
7248 there will be no other chance. */
7249 {
7250 succ_iterator si;
7251 insn_t insn;
7252
7253 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7254 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7255 {
7256 basic_block bb = BLOCK_FOR_INSN (insn);
7257
7258 if (!BB_LV_SET_VALID_P (bb))
7259 compute_live (insn);
7260 }
7261 }
7262
7263 /* Emulate the Haifa scheduler for bundling. */
7264 if (reload_completed)
7265 sel_region_target_finish (reset_sched_cycles_p);
7266
7267 sel_finish_global_and_expr ();
7268
7269 bitmap_clear (forced_ebb_heads);
7270
7271 free_nop_vinsn ();
7272
7273 finish_deps_global ();
7274 sched_finish_luids ();
7275 h_d_i_d.release ();
7276
7277 sel_finish_bbs ();
7278 BITMAP_FREE (blocks_to_reschedule);
7279
7280 sel_unregister_cfg_hooks ();
7281
7282 max_issue_size = 0;
7283 }
7284 \f
7285
7286 /* Functions that implement the scheduler driver. */
7287
7288 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7289 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7290 of insns scheduled -- these would be postprocessed later. */
7291 static void
7292 schedule_on_fences (flist_t fences, int max_seqno,
7293 ilist_t **scheduled_insns_tailpp)
7294 {
7295 flist_t old_fences = fences;
7296
7297 if (sched_verbose >= 1)
7298 {
7299 sel_print ("\nScheduling on fences: ");
7300 dump_flist (fences);
7301 sel_print ("\n");
7302 }
7303
7304 scheduled_something_on_previous_fence = false;
7305 for (; fences; fences = FLIST_NEXT (fences))
7306 {
7307 fence_t fence = NULL;
7308 int seqno = 0;
7309 flist_t fences2;
7310 bool first_p = true;
7311
7312 /* Choose the next fence group to schedule.
7313 The fact that insn can be scheduled only once
7314 on the cycle is guaranteed by two properties:
7315 1. seqnos of parallel groups decrease with each iteration.
7316 2. If is_ineligible_successor () sees the larger seqno, it
7317 checks if candidate insn is_in_current_fence_p (). */
7318 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7319 {
7320 fence_t f = FLIST_FENCE (fences2);
7321
7322 if (!FENCE_PROCESSED_P (f))
7323 {
7324 int i = INSN_SEQNO (FENCE_INSN (f));
7325
7326 if (first_p || i > seqno)
7327 {
7328 seqno = i;
7329 fence = f;
7330 first_p = false;
7331 }
7332 else
7333 /* ??? Seqnos of different groups should be different. */
7334 gcc_assert (1 || i != seqno);
7335 }
7336 }
7337
7338 gcc_assert (fence);
7339
7340 /* As FENCE is nonnull, SEQNO is initialized. */
7341 seqno -= max_seqno + 1;
7342 fill_insns (fence, seqno, scheduled_insns_tailpp);
7343 FENCE_PROCESSED_P (fence) = true;
7344 }
7345
7346 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7347 don't need to keep bookkeeping-invalidated and target-unavailable
7348 vinsns any more. */
7349 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7350 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7351 }
7352
7353 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7354 static void
7355 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7356 {
7357 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7358
7359 /* The first element is already processed. */
7360 while ((fences = FLIST_NEXT (fences)))
7361 {
7362 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7363
7364 if (*min_seqno > seqno)
7365 *min_seqno = seqno;
7366 else if (*max_seqno < seqno)
7367 *max_seqno = seqno;
7368 }
7369 }
7370
7371 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7372 static flist_t
7373 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7374 {
7375 flist_t old_fences = fences;
7376 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7377 int max_time = 0;
7378
7379 flist_tail_init (new_fences);
7380 for (; fences; fences = FLIST_NEXT (fences))
7381 {
7382 fence_t fence = FLIST_FENCE (fences);
7383 insn_t insn;
7384
7385 if (!FENCE_BNDS (fence))
7386 {
7387 /* This fence doesn't have any successors. */
7388 if (!FENCE_SCHEDULED_P (fence))
7389 {
7390 /* Nothing was scheduled on this fence. */
7391 int seqno;
7392
7393 insn = FENCE_INSN (fence);
7394 seqno = INSN_SEQNO (insn);
7395 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7396
7397 if (sched_verbose >= 1)
7398 sel_print ("Fence %d[%d] has not changed\n",
7399 INSN_UID (insn),
7400 BLOCK_NUM (insn));
7401 move_fence_to_fences (fences, new_fences);
7402 }
7403 }
7404 else
7405 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7406 max_time = MAX (max_time, FENCE_CYCLE (fence));
7407 }
7408
7409 flist_clear (&old_fences);
7410 *ptime = max_time;
7411 return FLIST_TAIL_HEAD (new_fences);
7412 }
7413
7414 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7415 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7416 the highest seqno used in a region. Return the updated highest seqno. */
7417 static int
7418 update_seqnos_and_stage (int min_seqno, int max_seqno,
7419 int highest_seqno_in_use,
7420 ilist_t *pscheduled_insns)
7421 {
7422 int new_hs;
7423 ilist_iterator ii;
7424 insn_t insn;
7425
7426 /* Actually, new_hs is the seqno of the instruction, that was
7427 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7428 if (*pscheduled_insns)
7429 {
7430 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7431 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7432 gcc_assert (new_hs > highest_seqno_in_use);
7433 }
7434 else
7435 new_hs = highest_seqno_in_use;
7436
7437 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7438 {
7439 gcc_assert (INSN_SEQNO (insn) < 0);
7440 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7441 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7442
7443 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7444 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7445 require > 1GB of memory e.g. on limit-fnargs.c. */
7446 if (! pipelining_p)
7447 free_data_for_scheduled_insn (insn);
7448 }
7449
7450 ilist_clear (pscheduled_insns);
7451 global_level++;
7452
7453 return new_hs;
7454 }
7455
7456 /* The main driver for scheduling a region. This function is responsible
7457 for correct propagation of fences (i.e. scheduling points) and creating
7458 a group of parallel insns at each of them. It also supports
7459 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7460 of scheduling. */
7461 static void
7462 sel_sched_region_2 (int orig_max_seqno)
7463 {
7464 int highest_seqno_in_use = orig_max_seqno;
7465 int max_time = 0;
7466
7467 stat_bookkeeping_copies = 0;
7468 stat_insns_needed_bookkeeping = 0;
7469 stat_renamed_scheduled = 0;
7470 stat_substitutions_total = 0;
7471 num_insns_scheduled = 0;
7472
7473 while (fences)
7474 {
7475 int min_seqno, max_seqno;
7476 ilist_t scheduled_insns = NULL;
7477 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7478
7479 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7480 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7481 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7482 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7483 highest_seqno_in_use,
7484 &scheduled_insns);
7485 }
7486
7487 if (sched_verbose >= 1)
7488 {
7489 sel_print ("Total scheduling time: %d cycles\n", max_time);
7490 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7491 "bookkeeping, %d insns renamed, %d insns substituted\n",
7492 stat_bookkeeping_copies,
7493 stat_insns_needed_bookkeeping,
7494 stat_renamed_scheduled,
7495 stat_substitutions_total);
7496 }
7497 }
7498
7499 /* Schedule a region. When pipelining, search for possibly never scheduled
7500 bookkeeping code and schedule it. Reschedule pipelined code without
7501 pipelining after. */
7502 static void
7503 sel_sched_region_1 (void)
7504 {
7505 int orig_max_seqno;
7506
7507 /* Remove empty blocks that might be in the region from the beginning. */
7508 purge_empty_blocks ();
7509
7510 orig_max_seqno = init_seqno (NULL, NULL);
7511 gcc_assert (orig_max_seqno >= 1);
7512
7513 /* When pipelining outer loops, create fences on the loop header,
7514 not preheader. */
7515 fences = NULL;
7516 if (current_loop_nest)
7517 init_fences (BB_END (EBB_FIRST_BB (0)));
7518 else
7519 init_fences (bb_note (EBB_FIRST_BB (0)));
7520 global_level = 1;
7521
7522 sel_sched_region_2 (orig_max_seqno);
7523
7524 gcc_assert (fences == NULL);
7525
7526 if (pipelining_p)
7527 {
7528 int i;
7529 basic_block bb;
7530 struct flist_tail_def _new_fences;
7531 flist_tail_t new_fences = &_new_fences;
7532 bool do_p = true;
7533
7534 pipelining_p = false;
7535 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7536 bookkeeping_p = false;
7537 enable_schedule_as_rhs_p = false;
7538
7539 /* Schedule newly created code, that has not been scheduled yet. */
7540 do_p = true;
7541
7542 while (do_p)
7543 {
7544 do_p = false;
7545
7546 for (i = 0; i < current_nr_blocks; i++)
7547 {
7548 basic_block bb = EBB_FIRST_BB (i);
7549
7550 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7551 {
7552 if (! bb_ends_ebb_p (bb))
7553 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7554 if (sel_bb_empty_p (bb))
7555 {
7556 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7557 continue;
7558 }
7559 clear_outdated_rtx_info (bb);
7560 if (sel_insn_is_speculation_check (BB_END (bb))
7561 && JUMP_P (BB_END (bb)))
7562 bitmap_set_bit (blocks_to_reschedule,
7563 BRANCH_EDGE (bb)->dest->index);
7564 }
7565 else if (! sel_bb_empty_p (bb)
7566 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7567 bitmap_set_bit (blocks_to_reschedule, bb->index);
7568 }
7569
7570 for (i = 0; i < current_nr_blocks; i++)
7571 {
7572 bb = EBB_FIRST_BB (i);
7573
7574 /* While pipelining outer loops, skip bundling for loop
7575 preheaders. Those will be rescheduled in the outer
7576 loop. */
7577 if (sel_is_loop_preheader_p (bb))
7578 {
7579 clear_outdated_rtx_info (bb);
7580 continue;
7581 }
7582
7583 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7584 {
7585 flist_tail_init (new_fences);
7586
7587 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7588
7589 /* Mark BB as head of the new ebb. */
7590 bitmap_set_bit (forced_ebb_heads, bb->index);
7591
7592 gcc_assert (fences == NULL);
7593
7594 init_fences (bb_note (bb));
7595
7596 sel_sched_region_2 (orig_max_seqno);
7597
7598 do_p = true;
7599 break;
7600 }
7601 }
7602 }
7603 }
7604 }
7605
7606 /* Schedule the RGN region. */
7607 void
7608 sel_sched_region (int rgn)
7609 {
7610 bool schedule_p;
7611 bool reset_sched_cycles_p;
7612
7613 if (sel_region_init (rgn))
7614 return;
7615
7616 if (sched_verbose >= 1)
7617 sel_print ("Scheduling region %d\n", rgn);
7618
7619 schedule_p = (!sched_is_disabled_for_current_region_p ()
7620 && dbg_cnt (sel_sched_region_cnt));
7621 reset_sched_cycles_p = pipelining_p;
7622 if (schedule_p)
7623 sel_sched_region_1 ();
7624 else
7625 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7626 reset_sched_cycles_p = true;
7627
7628 sel_region_finish (reset_sched_cycles_p);
7629 }
7630
7631 /* Perform global init for the scheduler. */
7632 static void
7633 sel_global_init (void)
7634 {
7635 calculate_dominance_info (CDI_DOMINATORS);
7636 alloc_sched_pools ();
7637
7638 /* Setup the infos for sched_init. */
7639 sel_setup_sched_infos ();
7640 setup_sched_dump ();
7641
7642 sched_rgn_init (false);
7643 sched_init ();
7644
7645 sched_init_bbs ();
7646 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7647 after_recovery = 0;
7648 can_issue_more = issue_rate;
7649
7650 sched_extend_target ();
7651 sched_deps_init (true);
7652 setup_nop_and_exit_insns ();
7653 sel_extend_global_bb_info ();
7654 init_lv_sets ();
7655 init_hard_regs_data ();
7656 }
7657
7658 /* Free the global data of the scheduler. */
7659 static void
7660 sel_global_finish (void)
7661 {
7662 free_bb_note_pool ();
7663 free_lv_sets ();
7664 sel_finish_global_bb_info ();
7665
7666 free_regset_pool ();
7667 free_nop_and_exit_insns ();
7668
7669 sched_rgn_finish ();
7670 sched_deps_finish ();
7671 sched_finish ();
7672
7673 if (current_loops)
7674 sel_finish_pipelining ();
7675
7676 free_sched_pools ();
7677 free_dominance_info (CDI_DOMINATORS);
7678 }
7679
7680 /* Return true when we need to skip selective scheduling. Used for debugging. */
7681 bool
7682 maybe_skip_selective_scheduling (void)
7683 {
7684 return ! dbg_cnt (sel_sched_cnt);
7685 }
7686
7687 /* The entry point. */
7688 void
7689 run_selective_scheduling (void)
7690 {
7691 int rgn;
7692
7693 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7694 return;
7695
7696 sel_global_init ();
7697
7698 for (rgn = 0; rgn < nr_regions; rgn++)
7699 sel_sched_region (rgn);
7700
7701 sel_global_finish ();
7702 }
7703
7704 #endif