]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched.c
Introduce vNULL to use as a nil initializer for vec<>.
[thirdparty/gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "output.h"
38 #include "sched-int.h"
39 #include "ggc.h"
40 #include "tree.h"
41 #include "vec.h"
42 #include "langhooks.h"
43 #include "rtlhooks-def.h"
44 #include "emit-rtl.h"
45
46 #ifdef INSN_SCHEDULING
47 #include "sel-sched-ir.h"
48 #include "sel-sched-dump.h"
49 #include "sel-sched.h"
50 #include "dbgcnt.h"
51
52 /* Implementation of selective scheduling approach.
53 The below implementation follows the original approach with the following
54 changes:
55
56 o the scheduler works after register allocation (but can be also tuned
57 to work before RA);
58 o some instructions are not copied or register renamed;
59 o conditional jumps are not moved with code duplication;
60 o several jumps in one parallel group are not supported;
61 o when pipelining outer loops, code motion through inner loops
62 is not supported;
63 o control and data speculation are supported;
64 o some improvements for better compile time/performance were made.
65
66 Terminology
67 ===========
68
69 A vinsn, or virtual insn, is an insn with additional data characterizing
70 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
71 Vinsns also act as smart pointers to save memory by reusing them in
72 different expressions. A vinsn is described by vinsn_t type.
73
74 An expression is a vinsn with additional data characterizing its properties
75 at some point in the control flow graph. The data may be its usefulness,
76 priority, speculative status, whether it was renamed/subsituted, etc.
77 An expression is described by expr_t type.
78
79 Availability set (av_set) is a set of expressions at a given control flow
80 point. It is represented as av_set_t. The expressions in av sets are kept
81 sorted in the terms of expr_greater_p function. It allows to truncate
82 the set while leaving the best expressions.
83
84 A fence is a point through which code motion is prohibited. On each step,
85 we gather a parallel group of insns at a fence. It is possible to have
86 multiple fences. A fence is represented via fence_t.
87
88 A boundary is the border between the fence group and the rest of the code.
89 Currently, we never have more than one boundary per fence, as we finalize
90 the fence group when a jump is scheduled. A boundary is represented
91 via bnd_t.
92
93 High-level overview
94 ===================
95
96 The scheduler finds regions to schedule, schedules each one, and finalizes.
97 The regions are formed starting from innermost loops, so that when the inner
98 loop is pipelined, its prologue can be scheduled together with yet unprocessed
99 outer loop. The rest of acyclic regions are found using extend_rgns:
100 the blocks that are not yet allocated to any regions are traversed in top-down
101 order, and a block is added to a region to which all its predecessors belong;
102 otherwise, the block starts its own region.
103
104 The main scheduling loop (sel_sched_region_2) consists of just
105 scheduling on each fence and updating fences. For each fence,
106 we fill a parallel group of insns (fill_insns) until some insns can be added.
107 First, we compute available exprs (av-set) at the boundary of the current
108 group. Second, we choose the best expression from it. If the stall is
109 required to schedule any of the expressions, we advance the current cycle
110 appropriately. So, the final group does not exactly correspond to a VLIW
111 word. Third, we move the chosen expression to the boundary (move_op)
112 and update the intermediate av sets and liveness sets. We quit fill_insns
113 when either no insns left for scheduling or we have scheduled enough insns
114 so we feel like advancing a scheduling point.
115
116 Computing available expressions
117 ===============================
118
119 The computation (compute_av_set) is a bottom-up traversal. At each insn,
120 we're moving the union of its successors' sets through it via
121 moveup_expr_set. The dependent expressions are removed. Local
122 transformations (substitution, speculation) are applied to move more
123 exprs. Then the expr corresponding to the current insn is added.
124 The result is saved on each basic block header.
125
126 When traversing the CFG, we're moving down for no more than max_ws insns.
127 Also, we do not move down to ineligible successors (is_ineligible_successor),
128 which include moving along a back-edge, moving to already scheduled code,
129 and moving to another fence. The first two restrictions are lifted during
130 pipelining, which allows us to move insns along a back-edge. We always have
131 an acyclic region for scheduling because we forbid motion through fences.
132
133 Choosing the best expression
134 ============================
135
136 We sort the final availability set via sel_rank_for_schedule, then we remove
137 expressions which are not yet ready (tick_check_p) or which dest registers
138 cannot be used. For some of them, we choose another register via
139 find_best_reg. To do this, we run find_used_regs to calculate the set of
140 registers which cannot be used. The find_used_regs function performs
141 a traversal of code motion paths for an expr. We consider for renaming
142 only registers which are from the same regclass as the original one and
143 using which does not interfere with any live ranges. Finally, we convert
144 the resulting set to the ready list format and use max_issue and reorder*
145 hooks similarly to the Haifa scheduler.
146
147 Scheduling the best expression
148 ==============================
149
150 We run the move_op routine to perform the same type of code motion paths
151 traversal as in find_used_regs. (These are working via the same driver,
152 code_motion_path_driver.) When moving down the CFG, we look for original
153 instruction that gave birth to a chosen expression. We undo
154 the transformations performed on an expression via the history saved in it.
155 When found, we remove the instruction or leave a reg-reg copy/speculation
156 check if needed. On a way up, we insert bookkeeping copies at each join
157 point. If a copy is not needed, it will be removed later during this
158 traversal. We update the saved av sets and liveness sets on the way up, too.
159
160 Finalizing the schedule
161 =======================
162
163 When pipelining, we reschedule the blocks from which insns were pipelined
164 to get a tighter schedule. On Itanium, we also perform bundling via
165 the same routine from ia64.c.
166
167 Dependence analysis changes
168 ===========================
169
170 We augmented the sched-deps.c with hooks that get called when a particular
171 dependence is found in a particular part of an insn. Using these hooks, we
172 can do several actions such as: determine whether an insn can be moved through
173 another (has_dependence_p, moveup_expr); find out whether an insn can be
174 scheduled on the current cycle (tick_check_p); find out registers that
175 are set/used/clobbered by an insn and find out all the strange stuff that
176 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
177 init_global_and_expr_for_insn).
178
179 Initialization changes
180 ======================
181
182 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
183 reused in all of the schedulers. We have split up the initialization of data
184 of such parts into different functions prefixed with scheduler type and
185 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
186 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
187 The same splitting is done with current_sched_info structure:
188 dependence-related parts are in sched_deps_info, common part is in
189 common_sched_info, and haifa/sel/etc part is in current_sched_info.
190
191 Target contexts
192 ===============
193
194 As we now have multiple-point scheduling, this would not work with backends
195 which save some of the scheduler state to use it in the target hooks.
196 For this purpose, we introduce a concept of target contexts, which
197 encapsulate such information. The backend should implement simple routines
198 of allocating/freeing/setting such a context. The scheduler calls these
199 as target hooks and handles the target context as an opaque pointer (similar
200 to the DFA state type, state_t).
201
202 Various speedups
203 ================
204
205 As the correct data dependence graph is not supported during scheduling (which
206 is to be changed in mid-term), we cache as much of the dependence analysis
207 results as possible to avoid reanalyzing. This includes: bitmap caches on
208 each insn in stream of the region saying yes/no for a query with a pair of
209 UIDs; hashtables with the previously done transformations on each insn in
210 stream; a vector keeping a history of transformations on each expr.
211
212 Also, we try to minimize the dependence context used on each fence to check
213 whether the given expression is ready for scheduling by removing from it
214 insns that are definitely completed the execution. The results of
215 tick_check_p checks are also cached in a vector on each fence.
216
217 We keep a valid liveness set on each insn in a region to avoid the high
218 cost of recomputation on large basic blocks.
219
220 Finally, we try to minimize the number of needed updates to the availability
221 sets. The updates happen in two cases: when fill_insns terminates,
222 we advance all fences and increase the stage number to show that the region
223 has changed and the sets are to be recomputed; and when the next iteration
224 of a loop in fill_insns happens (but this one reuses the saved av sets
225 on bb headers.) Thus, we try to break the fill_insns loop only when
226 "significant" number of insns from the current scheduling window was
227 scheduled. This should be made a target param.
228
229
230 TODO: correctly support the data dependence graph at all stages and get rid
231 of all caches. This should speed up the scheduler.
232 TODO: implement moving cond jumps with bookkeeping copies on both targets.
233 TODO: tune the scheduler before RA so it does not create too much pseudos.
234
235
236 References:
237 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
238 selective scheduling and software pipelining.
239 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
240
241 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
242 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
243 for GCC. In Proceedings of GCC Developers' Summit 2006.
244
245 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
246 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
247 http://rogue.colorado.edu/EPIC7/.
248
249 */
250
251 /* True when pipelining is enabled. */
252 bool pipelining_p;
253
254 /* True if bookkeeping is enabled. */
255 bool bookkeeping_p;
256
257 /* Maximum number of insns that are eligible for renaming. */
258 int max_insns_to_rename;
259 \f
260
261 /* Definitions of local types and macros. */
262
263 /* Represents possible outcomes of moving an expression through an insn. */
264 enum MOVEUP_EXPR_CODE
265 {
266 /* The expression is not changed. */
267 MOVEUP_EXPR_SAME,
268
269 /* Not changed, but requires a new destination register. */
270 MOVEUP_EXPR_AS_RHS,
271
272 /* Cannot be moved. */
273 MOVEUP_EXPR_NULL,
274
275 /* Changed (substituted or speculated). */
276 MOVEUP_EXPR_CHANGED
277 };
278
279 /* The container to be passed into rtx search & replace functions. */
280 struct rtx_search_arg
281 {
282 /* What we are searching for. */
283 rtx x;
284
285 /* The occurrence counter. */
286 int n;
287 };
288
289 typedef struct rtx_search_arg *rtx_search_arg_p;
290
291 /* This struct contains precomputed hard reg sets that are needed when
292 computing registers available for renaming. */
293 struct hard_regs_data
294 {
295 /* For every mode, this stores registers available for use with
296 that mode. */
297 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
298
299 /* True when regs_for_mode[mode] is initialized. */
300 bool regs_for_mode_ok[NUM_MACHINE_MODES];
301
302 /* For every register, it has regs that are ok to rename into it.
303 The register in question is always set. If not, this means
304 that the whole set is not computed yet. */
305 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
306
307 /* For every mode, this stores registers not available due to
308 call clobbering. */
309 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
310
311 /* All registers that are used or call used. */
312 HARD_REG_SET regs_ever_used;
313
314 #ifdef STACK_REGS
315 /* Stack registers. */
316 HARD_REG_SET stack_regs;
317 #endif
318 };
319
320 /* Holds the results of computation of available for renaming and
321 unavailable hard registers. */
322 struct reg_rename
323 {
324 /* These are unavailable due to calls crossing, globalness, etc. */
325 HARD_REG_SET unavailable_hard_regs;
326
327 /* These are *available* for renaming. */
328 HARD_REG_SET available_for_renaming;
329
330 /* Whether this code motion path crosses a call. */
331 bool crosses_call;
332 };
333
334 /* A global structure that contains the needed information about harg
335 regs. */
336 static struct hard_regs_data sel_hrd;
337 \f
338
339 /* This structure holds local data used in code_motion_path_driver hooks on
340 the same or adjacent levels of recursion. Here we keep those parameters
341 that are not used in code_motion_path_driver routine itself, but only in
342 its hooks. Moreover, all parameters that can be modified in hooks are
343 in this structure, so all other parameters passed explicitly to hooks are
344 read-only. */
345 struct cmpd_local_params
346 {
347 /* Local params used in move_op_* functions. */
348
349 /* Edges for bookkeeping generation. */
350 edge e1, e2;
351
352 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
353 expr_t c_expr_merged, c_expr_local;
354
355 /* Local params used in fur_* functions. */
356 /* Copy of the ORIGINAL_INSN list, stores the original insns already
357 found before entering the current level of code_motion_path_driver. */
358 def_list_t old_original_insns;
359
360 /* Local params used in move_op_* functions. */
361 /* True when we have removed last insn in the block which was
362 also a boundary. Do not update anything or create bookkeeping copies. */
363 BOOL_BITFIELD removed_last_insn : 1;
364 };
365
366 /* Stores the static parameters for move_op_* calls. */
367 struct moveop_static_params
368 {
369 /* Destination register. */
370 rtx dest;
371
372 /* Current C_EXPR. */
373 expr_t c_expr;
374
375 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
376 they are to be removed. */
377 int uid;
378
379 #ifdef ENABLE_CHECKING
380 /* This is initialized to the insn on which the driver stopped its traversal. */
381 insn_t failed_insn;
382 #endif
383
384 /* True if we scheduled an insn with different register. */
385 bool was_renamed;
386 };
387
388 /* Stores the static parameters for fur_* calls. */
389 struct fur_static_params
390 {
391 /* Set of registers unavailable on the code motion path. */
392 regset used_regs;
393
394 /* Pointer to the list of original insns definitions. */
395 def_list_t *original_insns;
396
397 /* True if a code motion path contains a CALL insn. */
398 bool crosses_call;
399 };
400
401 typedef struct fur_static_params *fur_static_params_p;
402 typedef struct cmpd_local_params *cmpd_local_params_p;
403 typedef struct moveop_static_params *moveop_static_params_p;
404
405 /* Set of hooks and parameters that determine behaviour specific to
406 move_op or find_used_regs functions. */
407 struct code_motion_path_driver_info_def
408 {
409 /* Called on enter to the basic block. */
410 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
411
412 /* Called when original expr is found. */
413 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
414
415 /* Called while descending current basic block if current insn is not
416 the original EXPR we're searching for. */
417 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
418
419 /* Function to merge C_EXPRes from different successors. */
420 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
421
422 /* Function to finalize merge from different successors and possibly
423 deallocate temporary data structures used for merging. */
424 void (*after_merge_succs) (cmpd_local_params_p, void *);
425
426 /* Called on the backward stage of recursion to do moveup_expr.
427 Used only with move_op_*. */
428 void (*ascend) (insn_t, void *);
429
430 /* Called on the ascending pass, before returning from the current basic
431 block or from the whole traversal. */
432 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
433
434 /* When processing successors in move_op we need only descend into
435 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
436 int succ_flags;
437
438 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
439 const char *routine_name;
440 };
441
442 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
443 FUR_HOOKS. */
444 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
445
446 /* Set of hooks for performing move_op and find_used_regs routines with
447 code_motion_path_driver. */
448 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
449
450 /* True if/when we want to emulate Haifa scheduler in the common code.
451 This is used in sched_rgn_local_init and in various places in
452 sched-deps.c. */
453 int sched_emulate_haifa_p;
454
455 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
456 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
457 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
458 scheduling window. */
459 int global_level;
460
461 /* Current fences. */
462 flist_t fences;
463
464 /* True when separable insns should be scheduled as RHSes. */
465 static bool enable_schedule_as_rhs_p;
466
467 /* Used in verify_target_availability to assert that target reg is reported
468 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
469 we haven't scheduled anything on the previous fence.
470 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
471 have more conservative value than the one returned by the
472 find_used_regs, thus we shouldn't assert that these values are equal. */
473 static bool scheduled_something_on_previous_fence;
474
475 /* All newly emitted insns will have their uids greater than this value. */
476 static int first_emitted_uid;
477
478 /* Set of basic blocks that are forced to start new ebbs. This is a subset
479 of all the ebb heads. */
480 static bitmap_head _forced_ebb_heads;
481 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
482
483 /* Blocks that need to be rescheduled after pipelining. */
484 bitmap blocks_to_reschedule = NULL;
485
486 /* True when the first lv set should be ignored when updating liveness. */
487 static bool ignore_first = false;
488
489 /* Number of insns max_issue has initialized data structures for. */
490 static int max_issue_size = 0;
491
492 /* Whether we can issue more instructions. */
493 static int can_issue_more;
494
495 /* Maximum software lookahead window size, reduced when rescheduling after
496 pipelining. */
497 static int max_ws;
498
499 /* Number of insns scheduled in current region. */
500 static int num_insns_scheduled;
501
502 /* A vector of expressions is used to be able to sort them. */
503 static vec<expr_t> vec_av_set = vNULL;
504
505 /* A vector of vinsns is used to hold temporary lists of vinsns. */
506 typedef vec<vinsn_t> vinsn_vec_t;
507
508 /* This vector has the exprs which may still present in av_sets, but actually
509 can't be moved up due to bookkeeping created during code motion to another
510 fence. See comment near the call to update_and_record_unavailable_insns
511 for the detailed explanations. */
512 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t();
513
514 /* This vector has vinsns which are scheduled with renaming on the first fence
515 and then seen on the second. For expressions with such vinsns, target
516 availability information may be wrong. */
517 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t();
518
519 /* Vector to store temporary nops inserted in move_op to prevent removal
520 of empty bbs. */
521 static vec<insn_t> vec_temp_moveop_nops = vNULL;
522
523 /* These bitmaps record original instructions scheduled on the current
524 iteration and bookkeeping copies created by them. */
525 static bitmap current_originators = NULL;
526 static bitmap current_copies = NULL;
527
528 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
529 visit them afterwards. */
530 static bitmap code_motion_visited_blocks = NULL;
531
532 /* Variables to accumulate different statistics. */
533
534 /* The number of bookkeeping copies created. */
535 static int stat_bookkeeping_copies;
536
537 /* The number of insns that required bookkeeiping for their scheduling. */
538 static int stat_insns_needed_bookkeeping;
539
540 /* The number of insns that got renamed. */
541 static int stat_renamed_scheduled;
542
543 /* The number of substitutions made during scheduling. */
544 static int stat_substitutions_total;
545 \f
546
547 /* Forward declarations of static functions. */
548 static bool rtx_ok_for_substitution_p (rtx, rtx);
549 static int sel_rank_for_schedule (const void *, const void *);
550 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
551 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
552
553 static rtx get_dest_from_orig_ops (av_set_t);
554 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
555 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
556 def_list_t *);
557 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
558 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
559 cmpd_local_params_p, void *);
560 static void sel_sched_region_1 (void);
561 static void sel_sched_region_2 (int);
562 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
563
564 static void debug_state (state_t);
565 \f
566
567 /* Functions that work with fences. */
568
569 /* Advance one cycle on FENCE. */
570 static void
571 advance_one_cycle (fence_t fence)
572 {
573 unsigned i;
574 int cycle;
575 rtx insn;
576
577 advance_state (FENCE_STATE (fence));
578 cycle = ++FENCE_CYCLE (fence);
579 FENCE_ISSUED_INSNS (fence) = 0;
580 FENCE_STARTS_CYCLE_P (fence) = 1;
581 can_issue_more = issue_rate;
582 FENCE_ISSUE_MORE (fence) = can_issue_more;
583
584 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
585 {
586 if (INSN_READY_CYCLE (insn) < cycle)
587 {
588 remove_from_deps (FENCE_DC (fence), insn);
589 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
590 continue;
591 }
592 i++;
593 }
594 if (sched_verbose >= 2)
595 {
596 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
597 debug_state (FENCE_STATE (fence));
598 }
599 }
600
601 /* Returns true when SUCC in a fallthru bb of INSN, possibly
602 skipping empty basic blocks. */
603 static bool
604 in_fallthru_bb_p (rtx insn, rtx succ)
605 {
606 basic_block bb = BLOCK_FOR_INSN (insn);
607 edge e;
608
609 if (bb == BLOCK_FOR_INSN (succ))
610 return true;
611
612 e = find_fallthru_edge_from (bb);
613 if (e)
614 bb = e->dest;
615 else
616 return false;
617
618 while (sel_bb_empty_p (bb))
619 bb = bb->next_bb;
620
621 return bb == BLOCK_FOR_INSN (succ);
622 }
623
624 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
625 When a successor will continue a ebb, transfer all parameters of a fence
626 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
627 of scheduling helping to distinguish between the old and the new code. */
628 static void
629 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
630 int orig_max_seqno)
631 {
632 bool was_here_p = false;
633 insn_t insn = NULL_RTX;
634 insn_t succ;
635 succ_iterator si;
636 ilist_iterator ii;
637 fence_t fence = FLIST_FENCE (old_fences);
638 basic_block bb;
639
640 /* Get the only element of FENCE_BNDS (fence). */
641 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
642 {
643 gcc_assert (!was_here_p);
644 was_here_p = true;
645 }
646 gcc_assert (was_here_p && insn != NULL_RTX);
647
648 /* When in the "middle" of the block, just move this fence
649 to the new list. */
650 bb = BLOCK_FOR_INSN (insn);
651 if (! sel_bb_end_p (insn)
652 || (single_succ_p (bb)
653 && single_pred_p (single_succ (bb))))
654 {
655 insn_t succ;
656
657 succ = (sel_bb_end_p (insn)
658 ? sel_bb_head (single_succ (bb))
659 : NEXT_INSN (insn));
660
661 if (INSN_SEQNO (succ) > 0
662 && INSN_SEQNO (succ) <= orig_max_seqno
663 && INSN_SCHED_TIMES (succ) <= 0)
664 {
665 FENCE_INSN (fence) = succ;
666 move_fence_to_fences (old_fences, new_fences);
667
668 if (sched_verbose >= 1)
669 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
670 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
671 }
672 return;
673 }
674
675 /* Otherwise copy fence's structures to (possibly) multiple successors. */
676 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
677 {
678 int seqno = INSN_SEQNO (succ);
679
680 if (0 < seqno && seqno <= orig_max_seqno
681 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
682 {
683 bool b = (in_same_ebb_p (insn, succ)
684 || in_fallthru_bb_p (insn, succ));
685
686 if (sched_verbose >= 1)
687 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
688 INSN_UID (insn), INSN_UID (succ),
689 BLOCK_NUM (succ), b ? "continue" : "reset");
690
691 if (b)
692 add_dirty_fence_to_fences (new_fences, succ, fence);
693 else
694 {
695 /* Mark block of the SUCC as head of the new ebb. */
696 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
697 add_clean_fence_to_fences (new_fences, succ, fence);
698 }
699 }
700 }
701 }
702 \f
703
704 /* Functions to support substitution. */
705
706 /* Returns whether INSN with dependence status DS is eligible for
707 substitution, i.e. it's a copy operation x := y, and RHS that is
708 moved up through this insn should be substituted. */
709 static bool
710 can_substitute_through_p (insn_t insn, ds_t ds)
711 {
712 /* We can substitute only true dependencies. */
713 if ((ds & DEP_OUTPUT)
714 || (ds & DEP_ANTI)
715 || ! INSN_RHS (insn)
716 || ! INSN_LHS (insn))
717 return false;
718
719 /* Now we just need to make sure the INSN_RHS consists of only one
720 simple REG rtx. */
721 if (REG_P (INSN_LHS (insn))
722 && REG_P (INSN_RHS (insn)))
723 return true;
724 return false;
725 }
726
727 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
728 source (if INSN is eligible for substitution). Returns TRUE if
729 substitution was actually performed, FALSE otherwise. Substitution might
730 be not performed because it's either EXPR' vinsn doesn't contain INSN's
731 destination or the resulting insn is invalid for the target machine.
732 When UNDO is true, perform unsubstitution instead (the difference is in
733 the part of rtx on which validate_replace_rtx is called). */
734 static bool
735 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
736 {
737 rtx *where;
738 bool new_insn_valid;
739 vinsn_t *vi = &EXPR_VINSN (expr);
740 bool has_rhs = VINSN_RHS (*vi) != NULL;
741 rtx old, new_rtx;
742
743 /* Do not try to replace in SET_DEST. Although we'll choose new
744 register for the RHS, we don't want to change RHS' original reg.
745 If the insn is not SET, we may still be able to substitute something
746 in it, and if we're here (don't have deps), it doesn't write INSN's
747 dest. */
748 where = (has_rhs
749 ? &VINSN_RHS (*vi)
750 : &PATTERN (VINSN_INSN_RTX (*vi)));
751 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
752
753 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
754 if (rtx_ok_for_substitution_p (old, *where))
755 {
756 rtx new_insn;
757 rtx *where_replace;
758
759 /* We should copy these rtxes before substitution. */
760 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
761 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
762
763 /* Where we'll replace.
764 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
765 used instead of SET_SRC. */
766 where_replace = (has_rhs
767 ? &SET_SRC (PATTERN (new_insn))
768 : &PATTERN (new_insn));
769
770 new_insn_valid
771 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
772 new_insn);
773
774 /* ??? Actually, constrain_operands result depends upon choice of
775 destination register. E.g. if we allow single register to be an rhs,
776 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
777 in invalid insn dx=dx, so we'll loose this rhs here.
778 Just can't come up with significant testcase for this, so just
779 leaving it for now. */
780 if (new_insn_valid)
781 {
782 change_vinsn_in_expr (expr,
783 create_vinsn_from_insn_rtx (new_insn, false));
784
785 /* Do not allow clobbering the address register of speculative
786 insns. */
787 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
788 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
789 expr_dest_reg (expr)))
790 EXPR_TARGET_AVAILABLE (expr) = false;
791
792 return true;
793 }
794 else
795 return false;
796 }
797 else
798 return false;
799 }
800
801 /* Helper function for count_occurences_equiv. */
802 static int
803 count_occurrences_1 (rtx *cur_rtx, void *arg)
804 {
805 rtx_search_arg_p p = (rtx_search_arg_p) arg;
806
807 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
808 {
809 /* Bail out if mode is different or more than one register is used. */
810 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
811 || (HARD_REGISTER_P (*cur_rtx)
812 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
813 {
814 p->n = 0;
815 return 1;
816 }
817
818 p->n++;
819
820 /* Do not traverse subexprs. */
821 return -1;
822 }
823
824 if (GET_CODE (*cur_rtx) == SUBREG
825 && (!REG_P (SUBREG_REG (*cur_rtx))
826 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
827 {
828 /* ??? Do not support substituting regs inside subregs. In that case,
829 simplify_subreg will be called by validate_replace_rtx, and
830 unsubstitution will fail later. */
831 p->n = 0;
832 return 1;
833 }
834
835 /* Continue search. */
836 return 0;
837 }
838
839 /* Return the number of places WHAT appears within WHERE.
840 Bail out when we found a reference occupying several hard registers. */
841 static int
842 count_occurrences_equiv (rtx what, rtx where)
843 {
844 struct rtx_search_arg arg;
845
846 gcc_assert (REG_P (what));
847 arg.x = what;
848 arg.n = 0;
849
850 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
851
852 return arg.n;
853 }
854
855 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
856 static bool
857 rtx_ok_for_substitution_p (rtx what, rtx where)
858 {
859 return (count_occurrences_equiv (what, where) > 0);
860 }
861 \f
862
863 /* Functions to support register renaming. */
864
865 /* Substitute VI's set source with REGNO. Returns newly created pattern
866 that has REGNO as its source. */
867 static rtx
868 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
869 {
870 rtx lhs_rtx;
871 rtx pattern;
872 rtx insn_rtx;
873
874 lhs_rtx = copy_rtx (VINSN_LHS (vi));
875
876 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
877 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
878
879 return insn_rtx;
880 }
881
882 /* Returns whether INSN's src can be replaced with register number
883 NEW_SRC_REG. E.g. the following insn is valid for i386:
884
885 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
886 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
887 (reg:SI 0 ax [orig:770 c1 ] [770]))
888 (const_int 288 [0x120])) [0 str S1 A8])
889 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
890 (nil))
891
892 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
893 because of operand constraints:
894
895 (define_insn "*movqi_1"
896 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
897 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
898 )]
899
900 So do constrain_operands here, before choosing NEW_SRC_REG as best
901 reg for rhs. */
902
903 static bool
904 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
905 {
906 vinsn_t vi = INSN_VINSN (insn);
907 enum machine_mode mode;
908 rtx dst_loc;
909 bool res;
910
911 gcc_assert (VINSN_SEPARABLE_P (vi));
912
913 get_dest_and_mode (insn, &dst_loc, &mode);
914 gcc_assert (mode == GET_MODE (new_src_reg));
915
916 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
917 return true;
918
919 /* See whether SET_SRC can be replaced with this register. */
920 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
921 res = verify_changes (0);
922 cancel_changes (0);
923
924 return res;
925 }
926
927 /* Returns whether INSN still be valid after replacing it's DEST with
928 register NEW_REG. */
929 static bool
930 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
931 {
932 vinsn_t vi = INSN_VINSN (insn);
933 bool res;
934
935 /* We should deal here only with separable insns. */
936 gcc_assert (VINSN_SEPARABLE_P (vi));
937 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
938
939 /* See whether SET_DEST can be replaced with this register. */
940 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
941 res = verify_changes (0);
942 cancel_changes (0);
943
944 return res;
945 }
946
947 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
948 static rtx
949 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
950 {
951 rtx rhs_rtx;
952 rtx pattern;
953 rtx insn_rtx;
954
955 rhs_rtx = copy_rtx (VINSN_RHS (vi));
956
957 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
958 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
959
960 return insn_rtx;
961 }
962
963 /* Substitute lhs in the given expression EXPR for the register with number
964 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
965 static void
966 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
967 {
968 rtx insn_rtx;
969 vinsn_t vinsn;
970
971 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
972 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
973
974 change_vinsn_in_expr (expr, vinsn);
975 EXPR_WAS_RENAMED (expr) = 1;
976 EXPR_TARGET_AVAILABLE (expr) = 1;
977 }
978
979 /* Returns whether VI writes either one of the USED_REGS registers or,
980 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
981 static bool
982 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
983 HARD_REG_SET unavailable_hard_regs)
984 {
985 unsigned regno;
986 reg_set_iterator rsi;
987
988 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
989 {
990 if (REGNO_REG_SET_P (used_regs, regno))
991 return true;
992 if (HARD_REGISTER_NUM_P (regno)
993 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
994 return true;
995 }
996
997 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
998 {
999 if (REGNO_REG_SET_P (used_regs, regno))
1000 return true;
1001 if (HARD_REGISTER_NUM_P (regno)
1002 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1003 return true;
1004 }
1005
1006 return false;
1007 }
1008
1009 /* Returns register class of the output register in INSN.
1010 Returns NO_REGS for call insns because some targets have constraints on
1011 destination register of a call insn.
1012
1013 Code adopted from regrename.c::build_def_use. */
1014 static enum reg_class
1015 get_reg_class (rtx insn)
1016 {
1017 int alt, i, n_ops;
1018
1019 extract_insn (insn);
1020 if (! constrain_operands (1))
1021 fatal_insn_not_found (insn);
1022 preprocess_constraints ();
1023 alt = which_alternative;
1024 n_ops = recog_data.n_operands;
1025
1026 for (i = 0; i < n_ops; ++i)
1027 {
1028 int matches = recog_op_alt[i][alt].matches;
1029 if (matches >= 0)
1030 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1031 }
1032
1033 if (asm_noperands (PATTERN (insn)) > 0)
1034 {
1035 for (i = 0; i < n_ops; i++)
1036 if (recog_data.operand_type[i] == OP_OUT)
1037 {
1038 rtx *loc = recog_data.operand_loc[i];
1039 rtx op = *loc;
1040 enum reg_class cl = recog_op_alt[i][alt].cl;
1041
1042 if (REG_P (op)
1043 && REGNO (op) == ORIGINAL_REGNO (op))
1044 continue;
1045
1046 return cl;
1047 }
1048 }
1049 else if (!CALL_P (insn))
1050 {
1051 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1052 {
1053 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1054 enum reg_class cl = recog_op_alt[opn][alt].cl;
1055
1056 if (recog_data.operand_type[opn] == OP_OUT ||
1057 recog_data.operand_type[opn] == OP_INOUT)
1058 return cl;
1059 }
1060 }
1061
1062 /* Insns like
1063 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1064 may result in returning NO_REGS, cause flags is written implicitly through
1065 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1066 return NO_REGS;
1067 }
1068
1069 #ifdef HARD_REGNO_RENAME_OK
1070 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1071 static void
1072 init_hard_regno_rename (int regno)
1073 {
1074 int cur_reg;
1075
1076 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1077
1078 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1079 {
1080 /* We are not interested in renaming in other regs. */
1081 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1082 continue;
1083
1084 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1085 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1086 }
1087 }
1088 #endif
1089
1090 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1091 data first. */
1092 static inline bool
1093 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1094 {
1095 #ifdef HARD_REGNO_RENAME_OK
1096 /* Check whether this is all calculated. */
1097 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1098 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1099
1100 init_hard_regno_rename (from);
1101
1102 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1103 #else
1104 return true;
1105 #endif
1106 }
1107
1108 /* Calculate set of registers that are capable of holding MODE. */
1109 static void
1110 init_regs_for_mode (enum machine_mode mode)
1111 {
1112 int cur_reg;
1113
1114 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1115 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1116
1117 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1118 {
1119 int nregs = hard_regno_nregs[cur_reg][mode];
1120 int i;
1121
1122 for (i = nregs - 1; i >= 0; --i)
1123 if (fixed_regs[cur_reg + i]
1124 || global_regs[cur_reg + i]
1125 /* Can't use regs which aren't saved by
1126 the prologue. */
1127 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1128 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1129 it affects aliasing globally and invalidates all AV sets. */
1130 || get_reg_base_value (cur_reg + i)
1131 #ifdef LEAF_REGISTERS
1132 /* We can't use a non-leaf register if we're in a
1133 leaf function. */
1134 || (crtl->is_leaf
1135 && !LEAF_REGISTERS[cur_reg + i])
1136 #endif
1137 )
1138 break;
1139
1140 if (i >= 0)
1141 continue;
1142
1143 /* See whether it accepts all modes that occur in
1144 original insns. */
1145 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1146 continue;
1147
1148 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1149 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1150 cur_reg);
1151
1152 /* If the CUR_REG passed all the checks above,
1153 then it's ok. */
1154 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1155 }
1156
1157 sel_hrd.regs_for_mode_ok[mode] = true;
1158 }
1159
1160 /* Init all register sets gathered in HRD. */
1161 static void
1162 init_hard_regs_data (void)
1163 {
1164 int cur_reg = 0;
1165 int cur_mode = 0;
1166
1167 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1168 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1169 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1170 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1171
1172 /* Initialize registers that are valid based on mode when this is
1173 really needed. */
1174 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1175 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1176
1177 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1178 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1179 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1180
1181 #ifdef STACK_REGS
1182 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1183
1184 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1185 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1186 #endif
1187 }
1188
1189 /* Mark hardware regs in REG_RENAME_P that are not suitable
1190 for renaming rhs in INSN due to hardware restrictions (register class,
1191 modes compatibility etc). This doesn't affect original insn's dest reg,
1192 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1193 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1194 Registers that are in used_regs are always marked in
1195 unavailable_hard_regs as well. */
1196
1197 static void
1198 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1199 regset used_regs ATTRIBUTE_UNUSED)
1200 {
1201 enum machine_mode mode;
1202 enum reg_class cl = NO_REGS;
1203 rtx orig_dest;
1204 unsigned cur_reg, regno;
1205 hard_reg_set_iterator hrsi;
1206
1207 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1208 gcc_assert (reg_rename_p);
1209
1210 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1211
1212 /* We have decided not to rename 'mem = something;' insns, as 'something'
1213 is usually a register. */
1214 if (!REG_P (orig_dest))
1215 return;
1216
1217 regno = REGNO (orig_dest);
1218
1219 /* If before reload, don't try to work with pseudos. */
1220 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1221 return;
1222
1223 if (reload_completed)
1224 cl = get_reg_class (def->orig_insn);
1225
1226 /* Stop if the original register is one of the fixed_regs, global_regs or
1227 frame pointer, or we could not discover its class. */
1228 if (fixed_regs[regno]
1229 || global_regs[regno]
1230 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1231 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1232 #else
1233 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1234 #endif
1235 || (reload_completed && cl == NO_REGS))
1236 {
1237 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1238
1239 /* Give a chance for original register, if it isn't in used_regs. */
1240 if (!def->crosses_call)
1241 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1242
1243 return;
1244 }
1245
1246 /* If something allocated on stack in this function, mark frame pointer
1247 register unavailable, considering also modes.
1248 FIXME: it is enough to do this once per all original defs. */
1249 if (frame_pointer_needed)
1250 {
1251 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1252 Pmode, FRAME_POINTER_REGNUM);
1253
1254 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1255 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1256 Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
1257 }
1258
1259 #ifdef STACK_REGS
1260 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1261 is equivalent to as if all stack regs were in this set.
1262 I.e. no stack register can be renamed, and even if it's an original
1263 register here we make sure it won't be lifted over it's previous def
1264 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1265 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1266 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1267 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1268 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1269 sel_hrd.stack_regs);
1270 #endif
1271
1272 /* If there's a call on this path, make regs from call_used_reg_set
1273 unavailable. */
1274 if (def->crosses_call)
1275 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1276 call_used_reg_set);
1277
1278 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1279 but not register classes. */
1280 if (!reload_completed)
1281 return;
1282
1283 /* Leave regs as 'available' only from the current
1284 register class. */
1285 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1286 reg_class_contents[cl]);
1287
1288 mode = GET_MODE (orig_dest);
1289
1290 /* Leave only registers available for this mode. */
1291 if (!sel_hrd.regs_for_mode_ok[mode])
1292 init_regs_for_mode (mode);
1293 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1294 sel_hrd.regs_for_mode[mode]);
1295
1296 /* Exclude registers that are partially call clobbered. */
1297 if (def->crosses_call
1298 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1299 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1300 sel_hrd.regs_for_call_clobbered[mode]);
1301
1302 /* Leave only those that are ok to rename. */
1303 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1304 0, cur_reg, hrsi)
1305 {
1306 int nregs;
1307 int i;
1308
1309 nregs = hard_regno_nregs[cur_reg][mode];
1310 gcc_assert (nregs > 0);
1311
1312 for (i = nregs - 1; i >= 0; --i)
1313 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1314 break;
1315
1316 if (i >= 0)
1317 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1318 cur_reg);
1319 }
1320
1321 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1322 reg_rename_p->unavailable_hard_regs);
1323
1324 /* Regno is always ok from the renaming part of view, but it really
1325 could be in *unavailable_hard_regs already, so set it here instead
1326 of there. */
1327 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1328 }
1329
1330 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1331 best register more recently than REG2. */
1332 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1333
1334 /* Indicates the number of times renaming happened before the current one. */
1335 static int reg_rename_this_tick;
1336
1337 /* Choose the register among free, that is suitable for storing
1338 the rhs value.
1339
1340 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1341 originally appears. There could be multiple original operations
1342 for single rhs since we moving it up and merging along different
1343 paths.
1344
1345 Some code is adapted from regrename.c (regrename_optimize).
1346 If original register is available, function returns it.
1347 Otherwise it performs the checks, so the new register should
1348 comply with the following:
1349 - it should not violate any live ranges (such registers are in
1350 REG_RENAME_P->available_for_renaming set);
1351 - it should not be in the HARD_REGS_USED regset;
1352 - it should be in the class compatible with original uses;
1353 - it should not be clobbered through reference with different mode;
1354 - if we're in the leaf function, then the new register should
1355 not be in the LEAF_REGISTERS;
1356 - etc.
1357
1358 If several registers meet the conditions, the register with smallest
1359 tick is returned to achieve more even register allocation.
1360
1361 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1362
1363 If no register satisfies the above conditions, NULL_RTX is returned. */
1364 static rtx
1365 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1366 struct reg_rename *reg_rename_p,
1367 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1368 {
1369 int best_new_reg;
1370 unsigned cur_reg;
1371 enum machine_mode mode = VOIDmode;
1372 unsigned regno, i, n;
1373 hard_reg_set_iterator hrsi;
1374 def_list_iterator di;
1375 def_t def;
1376
1377 /* If original register is available, return it. */
1378 *is_orig_reg_p_ptr = true;
1379
1380 FOR_EACH_DEF (def, di, original_insns)
1381 {
1382 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1383
1384 gcc_assert (REG_P (orig_dest));
1385
1386 /* Check that all original operations have the same mode.
1387 This is done for the next loop; if we'd return from this
1388 loop, we'd check only part of them, but in this case
1389 it doesn't matter. */
1390 if (mode == VOIDmode)
1391 mode = GET_MODE (orig_dest);
1392 gcc_assert (mode == GET_MODE (orig_dest));
1393
1394 regno = REGNO (orig_dest);
1395 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1396 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1397 break;
1398
1399 /* All hard registers are available. */
1400 if (i == n)
1401 {
1402 gcc_assert (mode != VOIDmode);
1403
1404 /* Hard registers should not be shared. */
1405 return gen_rtx_REG (mode, regno);
1406 }
1407 }
1408
1409 *is_orig_reg_p_ptr = false;
1410 best_new_reg = -1;
1411
1412 /* Among all available regs choose the register that was
1413 allocated earliest. */
1414 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1415 0, cur_reg, hrsi)
1416 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1417 {
1418 /* Check that all hard regs for mode are available. */
1419 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1420 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1421 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1422 cur_reg + i))
1423 break;
1424
1425 if (i < n)
1426 continue;
1427
1428 /* All hard registers are available. */
1429 if (best_new_reg < 0
1430 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1431 {
1432 best_new_reg = cur_reg;
1433
1434 /* Return immediately when we know there's no better reg. */
1435 if (! reg_rename_tick[best_new_reg])
1436 break;
1437 }
1438 }
1439
1440 if (best_new_reg >= 0)
1441 {
1442 /* Use the check from the above loop. */
1443 gcc_assert (mode != VOIDmode);
1444 return gen_rtx_REG (mode, best_new_reg);
1445 }
1446
1447 return NULL_RTX;
1448 }
1449
1450 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1451 assumptions about available registers in the function. */
1452 static rtx
1453 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1454 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1455 {
1456 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1457 original_insns, is_orig_reg_p_ptr);
1458
1459 /* FIXME loop over hard_regno_nregs here. */
1460 gcc_assert (best_reg == NULL_RTX
1461 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1462
1463 return best_reg;
1464 }
1465
1466 /* Choose the pseudo register for storing rhs value. As this is supposed
1467 to work before reload, we return either the original register or make
1468 the new one. The parameters are the same that in choose_nest_reg_1
1469 functions, except that USED_REGS may contain pseudos.
1470 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1471
1472 TODO: take into account register pressure while doing this. Up to this
1473 moment, this function would never return NULL for pseudos, but we should
1474 not rely on this. */
1475 static rtx
1476 choose_best_pseudo_reg (regset used_regs,
1477 struct reg_rename *reg_rename_p,
1478 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1479 {
1480 def_list_iterator i;
1481 def_t def;
1482 enum machine_mode mode = VOIDmode;
1483 bool bad_hard_regs = false;
1484
1485 /* We should not use this after reload. */
1486 gcc_assert (!reload_completed);
1487
1488 /* If original register is available, return it. */
1489 *is_orig_reg_p_ptr = true;
1490
1491 FOR_EACH_DEF (def, i, original_insns)
1492 {
1493 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1494 int orig_regno;
1495
1496 gcc_assert (REG_P (dest));
1497
1498 /* Check that all original operations have the same mode. */
1499 if (mode == VOIDmode)
1500 mode = GET_MODE (dest);
1501 else
1502 gcc_assert (mode == GET_MODE (dest));
1503 orig_regno = REGNO (dest);
1504
1505 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1506 {
1507 if (orig_regno < FIRST_PSEUDO_REGISTER)
1508 {
1509 gcc_assert (df_regs_ever_live_p (orig_regno));
1510
1511 /* For hard registers, we have to check hardware imposed
1512 limitations (frame/stack registers, calls crossed). */
1513 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1514 orig_regno))
1515 {
1516 /* Don't let register cross a call if it doesn't already
1517 cross one. This condition is written in accordance with
1518 that in sched-deps.c sched_analyze_reg(). */
1519 if (!reg_rename_p->crosses_call
1520 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1521 return gen_rtx_REG (mode, orig_regno);
1522 }
1523
1524 bad_hard_regs = true;
1525 }
1526 else
1527 return dest;
1528 }
1529 }
1530
1531 *is_orig_reg_p_ptr = false;
1532
1533 /* We had some original hard registers that couldn't be used.
1534 Those were likely special. Don't try to create a pseudo. */
1535 if (bad_hard_regs)
1536 return NULL_RTX;
1537
1538 /* We haven't found a register from original operations. Get a new one.
1539 FIXME: control register pressure somehow. */
1540 {
1541 rtx new_reg = gen_reg_rtx (mode);
1542
1543 gcc_assert (mode != VOIDmode);
1544
1545 max_regno = max_reg_num ();
1546 maybe_extend_reg_info_p ();
1547 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1548
1549 return new_reg;
1550 }
1551 }
1552
1553 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1554 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1555 static void
1556 verify_target_availability (expr_t expr, regset used_regs,
1557 struct reg_rename *reg_rename_p)
1558 {
1559 unsigned n, i, regno;
1560 enum machine_mode mode;
1561 bool target_available, live_available, hard_available;
1562
1563 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1564 return;
1565
1566 regno = expr_dest_regno (expr);
1567 mode = GET_MODE (EXPR_LHS (expr));
1568 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1569 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1570
1571 live_available = hard_available = true;
1572 for (i = 0; i < n; i++)
1573 {
1574 if (bitmap_bit_p (used_regs, regno + i))
1575 live_available = false;
1576 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1577 hard_available = false;
1578 }
1579
1580 /* When target is not available, it may be due to hard register
1581 restrictions, e.g. crosses calls, so we check hard_available too. */
1582 if (target_available)
1583 gcc_assert (live_available);
1584 else
1585 /* Check only if we haven't scheduled something on the previous fence,
1586 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1587 and having more than one fence, we may end having targ_un in a block
1588 in which successors target register is actually available.
1589
1590 The last condition handles the case when a dependence from a call insn
1591 was created in sched-deps.c for insns with destination registers that
1592 never crossed a call before, but do cross one after our code motion.
1593
1594 FIXME: in the latter case, we just uselessly called find_used_regs,
1595 because we can't move this expression with any other register
1596 as well. */
1597 gcc_assert (scheduled_something_on_previous_fence || !live_available
1598 || !hard_available
1599 || (!reload_completed && reg_rename_p->crosses_call
1600 && REG_N_CALLS_CROSSED (regno) == 0));
1601 }
1602
1603 /* Collect unavailable registers due to liveness for EXPR from BNDS
1604 into USED_REGS. Save additional information about available
1605 registers and unavailable due to hardware restriction registers
1606 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1607 list. */
1608 static void
1609 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1610 struct reg_rename *reg_rename_p,
1611 def_list_t *original_insns)
1612 {
1613 for (; bnds; bnds = BLIST_NEXT (bnds))
1614 {
1615 bool res;
1616 av_set_t orig_ops = NULL;
1617 bnd_t bnd = BLIST_BND (bnds);
1618
1619 /* If the chosen best expr doesn't belong to current boundary,
1620 skip it. */
1621 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1622 continue;
1623
1624 /* Put in ORIG_OPS all exprs from this boundary that became
1625 RES on top. */
1626 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1627
1628 /* Compute used regs and OR it into the USED_REGS. */
1629 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1630 reg_rename_p, original_insns);
1631
1632 /* FIXME: the assert is true until we'd have several boundaries. */
1633 gcc_assert (res);
1634 av_set_clear (&orig_ops);
1635 }
1636 }
1637
1638 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1639 If BEST_REG is valid, replace LHS of EXPR with it. */
1640 static bool
1641 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1642 {
1643 /* Try whether we'll be able to generate the insn
1644 'dest := best_reg' at the place of the original operation. */
1645 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1646 {
1647 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1648
1649 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1650
1651 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1652 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1653 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1654 return false;
1655 }
1656
1657 /* Make sure that EXPR has the right destination
1658 register. */
1659 if (expr_dest_regno (expr) != REGNO (best_reg))
1660 replace_dest_with_reg_in_expr (expr, best_reg);
1661 else
1662 EXPR_TARGET_AVAILABLE (expr) = 1;
1663
1664 return true;
1665 }
1666
1667 /* Select and assign best register to EXPR searching from BNDS.
1668 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1669 Return FALSE if no register can be chosen, which could happen when:
1670 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1671 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1672 that are used on the moving path. */
1673 static bool
1674 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1675 {
1676 static struct reg_rename reg_rename_data;
1677
1678 regset used_regs;
1679 def_list_t original_insns = NULL;
1680 bool reg_ok;
1681
1682 *is_orig_reg_p = false;
1683
1684 /* Don't bother to do anything if this insn doesn't set any registers. */
1685 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1686 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1687 return true;
1688
1689 used_regs = get_clear_regset_from_pool ();
1690 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1691
1692 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1693 &original_insns);
1694
1695 #ifdef ENABLE_CHECKING
1696 /* If after reload, make sure we're working with hard regs here. */
1697 if (reload_completed)
1698 {
1699 reg_set_iterator rsi;
1700 unsigned i;
1701
1702 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1703 gcc_unreachable ();
1704 }
1705 #endif
1706
1707 if (EXPR_SEPARABLE_P (expr))
1708 {
1709 rtx best_reg = NULL_RTX;
1710 /* Check that we have computed availability of a target register
1711 correctly. */
1712 verify_target_availability (expr, used_regs, &reg_rename_data);
1713
1714 /* Turn everything in hard regs after reload. */
1715 if (reload_completed)
1716 {
1717 HARD_REG_SET hard_regs_used;
1718 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1719
1720 /* Join hard registers unavailable due to register class
1721 restrictions and live range intersection. */
1722 IOR_HARD_REG_SET (hard_regs_used,
1723 reg_rename_data.unavailable_hard_regs);
1724
1725 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1726 original_insns, is_orig_reg_p);
1727 }
1728 else
1729 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1730 original_insns, is_orig_reg_p);
1731
1732 if (!best_reg)
1733 reg_ok = false;
1734 else if (*is_orig_reg_p)
1735 {
1736 /* In case of unification BEST_REG may be different from EXPR's LHS
1737 when EXPR's LHS is unavailable, and there is another LHS among
1738 ORIGINAL_INSNS. */
1739 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1740 }
1741 else
1742 {
1743 /* Forbid renaming of low-cost insns. */
1744 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1745 reg_ok = false;
1746 else
1747 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1748 }
1749 }
1750 else
1751 {
1752 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1753 any of the HARD_REGS_USED set. */
1754 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1755 reg_rename_data.unavailable_hard_regs))
1756 {
1757 reg_ok = false;
1758 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1759 }
1760 else
1761 {
1762 reg_ok = true;
1763 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1764 }
1765 }
1766
1767 ilist_clear (&original_insns);
1768 return_regset_to_pool (used_regs);
1769
1770 return reg_ok;
1771 }
1772 \f
1773
1774 /* Return true if dependence described by DS can be overcomed. */
1775 static bool
1776 can_speculate_dep_p (ds_t ds)
1777 {
1778 if (spec_info == NULL)
1779 return false;
1780
1781 /* Leave only speculative data. */
1782 ds &= SPECULATIVE;
1783
1784 if (ds == 0)
1785 return false;
1786
1787 {
1788 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1789 that we can overcome. */
1790 ds_t spec_mask = spec_info->mask;
1791
1792 if ((ds & spec_mask) != ds)
1793 return false;
1794 }
1795
1796 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1797 return false;
1798
1799 return true;
1800 }
1801
1802 /* Get a speculation check instruction.
1803 C_EXPR is a speculative expression,
1804 CHECK_DS describes speculations that should be checked,
1805 ORIG_INSN is the original non-speculative insn in the stream. */
1806 static insn_t
1807 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1808 {
1809 rtx check_pattern;
1810 rtx insn_rtx;
1811 insn_t insn;
1812 basic_block recovery_block;
1813 rtx label;
1814
1815 /* Create a recovery block if target is going to emit branchy check, or if
1816 ORIG_INSN was speculative already. */
1817 if (targetm.sched.needs_block_p (check_ds)
1818 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1819 {
1820 recovery_block = sel_create_recovery_block (orig_insn);
1821 label = BB_HEAD (recovery_block);
1822 }
1823 else
1824 {
1825 recovery_block = NULL;
1826 label = NULL_RTX;
1827 }
1828
1829 /* Get pattern of the check. */
1830 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1831 check_ds);
1832
1833 gcc_assert (check_pattern != NULL);
1834
1835 /* Emit check. */
1836 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1837
1838 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1839 INSN_SEQNO (orig_insn), orig_insn);
1840
1841 /* Make check to be non-speculative. */
1842 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1843 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1844
1845 /* Decrease priority of check by difference of load/check instruction
1846 latencies. */
1847 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1848 - sel_vinsn_cost (INSN_VINSN (insn)));
1849
1850 /* Emit copy of original insn (though with replaced target register,
1851 if needed) to the recovery block. */
1852 if (recovery_block != NULL)
1853 {
1854 rtx twin_rtx;
1855
1856 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1857 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1858 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1859 INSN_EXPR (orig_insn),
1860 INSN_SEQNO (insn),
1861 bb_note (recovery_block));
1862 }
1863
1864 /* If we've generated a data speculation check, make sure
1865 that all the bookkeeping instruction we'll create during
1866 this move_op () will allocate an ALAT entry so that the
1867 check won't fail.
1868 In case of control speculation we must convert C_EXPR to control
1869 speculative mode, because failing to do so will bring us an exception
1870 thrown by the non-control-speculative load. */
1871 check_ds = ds_get_max_dep_weak (check_ds);
1872 speculate_expr (c_expr, check_ds);
1873
1874 return insn;
1875 }
1876
1877 /* True when INSN is a "regN = regN" copy. */
1878 static bool
1879 identical_copy_p (rtx insn)
1880 {
1881 rtx lhs, rhs, pat;
1882
1883 pat = PATTERN (insn);
1884
1885 if (GET_CODE (pat) != SET)
1886 return false;
1887
1888 lhs = SET_DEST (pat);
1889 if (!REG_P (lhs))
1890 return false;
1891
1892 rhs = SET_SRC (pat);
1893 if (!REG_P (rhs))
1894 return false;
1895
1896 return REGNO (lhs) == REGNO (rhs);
1897 }
1898
1899 /* Undo all transformations on *AV_PTR that were done when
1900 moving through INSN. */
1901 static void
1902 undo_transformations (av_set_t *av_ptr, rtx insn)
1903 {
1904 av_set_iterator av_iter;
1905 expr_t expr;
1906 av_set_t new_set = NULL;
1907
1908 /* First, kill any EXPR that uses registers set by an insn. This is
1909 required for correctness. */
1910 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1911 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1912 && bitmap_intersect_p (INSN_REG_SETS (insn),
1913 VINSN_REG_USES (EXPR_VINSN (expr)))
1914 /* When an insn looks like 'r1 = r1', we could substitute through
1915 it, but the above condition will still hold. This happened with
1916 gcc.c-torture/execute/961125-1.c. */
1917 && !identical_copy_p (insn))
1918 {
1919 if (sched_verbose >= 6)
1920 sel_print ("Expr %d removed due to use/set conflict\n",
1921 INSN_UID (EXPR_INSN_RTX (expr)));
1922 av_set_iter_remove (&av_iter);
1923 }
1924
1925 /* Undo transformations looking at the history vector. */
1926 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1927 {
1928 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1929 insn, EXPR_VINSN (expr), true);
1930
1931 if (index >= 0)
1932 {
1933 expr_history_def *phist;
1934
1935 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1936
1937 switch (phist->type)
1938 {
1939 case TRANS_SPECULATION:
1940 {
1941 ds_t old_ds, new_ds;
1942
1943 /* Compute the difference between old and new speculative
1944 statuses: that's what we need to check.
1945 Earlier we used to assert that the status will really
1946 change. This no longer works because only the probability
1947 bits in the status may have changed during compute_av_set,
1948 and in the case of merging different probabilities of the
1949 same speculative status along different paths we do not
1950 record this in the history vector. */
1951 old_ds = phist->spec_ds;
1952 new_ds = EXPR_SPEC_DONE_DS (expr);
1953
1954 old_ds &= SPECULATIVE;
1955 new_ds &= SPECULATIVE;
1956 new_ds &= ~old_ds;
1957
1958 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1959 break;
1960 }
1961 case TRANS_SUBSTITUTION:
1962 {
1963 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1964 vinsn_t new_vi;
1965 bool add = true;
1966
1967 new_vi = phist->old_expr_vinsn;
1968
1969 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1970 == EXPR_SEPARABLE_P (expr));
1971 copy_expr (tmp_expr, expr);
1972
1973 if (vinsn_equal_p (phist->new_expr_vinsn,
1974 EXPR_VINSN (tmp_expr)))
1975 change_vinsn_in_expr (tmp_expr, new_vi);
1976 else
1977 /* This happens when we're unsubstituting on a bookkeeping
1978 copy, which was in turn substituted. The history is wrong
1979 in this case. Do it the hard way. */
1980 add = substitute_reg_in_expr (tmp_expr, insn, true);
1981 if (add)
1982 av_set_add (&new_set, tmp_expr);
1983 clear_expr (tmp_expr);
1984 break;
1985 }
1986 default:
1987 gcc_unreachable ();
1988 }
1989 }
1990
1991 }
1992
1993 av_set_union_and_clear (av_ptr, &new_set, NULL);
1994 }
1995 \f
1996
1997 /* Moveup_* helpers for code motion and computing av sets. */
1998
1999 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2000 The difference from the below function is that only substitution is
2001 performed. */
2002 static enum MOVEUP_EXPR_CODE
2003 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2004 {
2005 vinsn_t vi = EXPR_VINSN (expr);
2006 ds_t *has_dep_p;
2007 ds_t full_ds;
2008
2009 /* Do this only inside insn group. */
2010 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2011
2012 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2013 if (full_ds == 0)
2014 return MOVEUP_EXPR_SAME;
2015
2016 /* Substitution is the possible choice in this case. */
2017 if (has_dep_p[DEPS_IN_RHS])
2018 {
2019 /* Can't substitute UNIQUE VINSNs. */
2020 gcc_assert (!VINSN_UNIQUE_P (vi));
2021
2022 if (can_substitute_through_p (through_insn,
2023 has_dep_p[DEPS_IN_RHS])
2024 && substitute_reg_in_expr (expr, through_insn, false))
2025 {
2026 EXPR_WAS_SUBSTITUTED (expr) = true;
2027 return MOVEUP_EXPR_CHANGED;
2028 }
2029
2030 /* Don't care about this, as even true dependencies may be allowed
2031 in an insn group. */
2032 return MOVEUP_EXPR_SAME;
2033 }
2034
2035 /* This can catch output dependencies in COND_EXECs. */
2036 if (has_dep_p[DEPS_IN_INSN])
2037 return MOVEUP_EXPR_NULL;
2038
2039 /* This is either an output or an anti dependence, which usually have
2040 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2041 will fix this. */
2042 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2043 return MOVEUP_EXPR_AS_RHS;
2044 }
2045
2046 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2047 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2048 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2049 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2050 && !sel_insn_is_speculation_check (through_insn))
2051
2052 /* True when a conflict on a target register was found during moveup_expr. */
2053 static bool was_target_conflict = false;
2054
2055 /* Return true when moving a debug INSN across THROUGH_INSN will
2056 create a bookkeeping block. We don't want to create such blocks,
2057 for they would cause codegen differences between compilations with
2058 and without debug info. */
2059
2060 static bool
2061 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2062 insn_t through_insn)
2063 {
2064 basic_block bbi, bbt;
2065 edge e1, e2;
2066 edge_iterator ei1, ei2;
2067
2068 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2069 {
2070 if (sched_verbose >= 9)
2071 sel_print ("no bookkeeping required: ");
2072 return FALSE;
2073 }
2074
2075 bbi = BLOCK_FOR_INSN (insn);
2076
2077 if (EDGE_COUNT (bbi->preds) == 1)
2078 {
2079 if (sched_verbose >= 9)
2080 sel_print ("only one pred edge: ");
2081 return TRUE;
2082 }
2083
2084 bbt = BLOCK_FOR_INSN (through_insn);
2085
2086 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2087 {
2088 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2089 {
2090 if (find_block_for_bookkeeping (e1, e2, TRUE))
2091 {
2092 if (sched_verbose >= 9)
2093 sel_print ("found existing block: ");
2094 return FALSE;
2095 }
2096 }
2097 }
2098
2099 if (sched_verbose >= 9)
2100 sel_print ("would create bookkeeping block: ");
2101
2102 return TRUE;
2103 }
2104
2105 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2106 performing necessary transformations. Record the type of transformation
2107 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2108 permit all dependencies except true ones, and try to remove those
2109 too via forward substitution. All cases when a non-eliminable
2110 non-zero cost dependency exists inside an insn group will be fixed
2111 in tick_check_p instead. */
2112 static enum MOVEUP_EXPR_CODE
2113 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2114 enum local_trans_type *ptrans_type)
2115 {
2116 vinsn_t vi = EXPR_VINSN (expr);
2117 insn_t insn = VINSN_INSN_RTX (vi);
2118 bool was_changed = false;
2119 bool as_rhs = false;
2120 ds_t *has_dep_p;
2121 ds_t full_ds;
2122
2123 /* ??? We use dependencies of non-debug insns on debug insns to
2124 indicate that the debug insns need to be reset if the non-debug
2125 insn is pulled ahead of it. It's hard to figure out how to
2126 introduce such a notion in sel-sched, but it already fails to
2127 support debug insns in other ways, so we just go ahead and
2128 let the deug insns go corrupt for now. */
2129 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2130 return MOVEUP_EXPR_SAME;
2131
2132 /* When inside_insn_group, delegate to the helper. */
2133 if (inside_insn_group)
2134 return moveup_expr_inside_insn_group (expr, through_insn);
2135
2136 /* Deal with unique insns and control dependencies. */
2137 if (VINSN_UNIQUE_P (vi))
2138 {
2139 /* We can move jumps without side-effects or jumps that are
2140 mutually exclusive with instruction THROUGH_INSN (all in cases
2141 dependencies allow to do so and jump is not speculative). */
2142 if (control_flow_insn_p (insn))
2143 {
2144 basic_block fallthru_bb;
2145
2146 /* Do not move checks and do not move jumps through other
2147 jumps. */
2148 if (control_flow_insn_p (through_insn)
2149 || sel_insn_is_speculation_check (insn))
2150 return MOVEUP_EXPR_NULL;
2151
2152 /* Don't move jumps through CFG joins. */
2153 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2154 return MOVEUP_EXPR_NULL;
2155
2156 /* The jump should have a clear fallthru block, and
2157 this block should be in the current region. */
2158 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2159 || ! in_current_region_p (fallthru_bb))
2160 return MOVEUP_EXPR_NULL;
2161
2162 /* And it should be mutually exclusive with through_insn. */
2163 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2164 && ! DEBUG_INSN_P (through_insn))
2165 return MOVEUP_EXPR_NULL;
2166 }
2167
2168 /* Don't move what we can't move. */
2169 if (EXPR_CANT_MOVE (expr)
2170 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2171 return MOVEUP_EXPR_NULL;
2172
2173 /* Don't move SCHED_GROUP instruction through anything.
2174 If we don't force this, then it will be possible to start
2175 scheduling a sched_group before all its dependencies are
2176 resolved.
2177 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2178 as late as possible through rank_for_schedule. */
2179 if (SCHED_GROUP_P (insn))
2180 return MOVEUP_EXPR_NULL;
2181 }
2182 else
2183 gcc_assert (!control_flow_insn_p (insn));
2184
2185 /* Don't move debug insns if this would require bookkeeping. */
2186 if (DEBUG_INSN_P (insn)
2187 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2188 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2189 return MOVEUP_EXPR_NULL;
2190
2191 /* Deal with data dependencies. */
2192 was_target_conflict = false;
2193 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2194 if (full_ds == 0)
2195 {
2196 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2197 return MOVEUP_EXPR_SAME;
2198 }
2199 else
2200 {
2201 /* We can move UNIQUE insn up only as a whole and unchanged,
2202 so it shouldn't have any dependencies. */
2203 if (VINSN_UNIQUE_P (vi))
2204 return MOVEUP_EXPR_NULL;
2205 }
2206
2207 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2208 {
2209 int res;
2210
2211 res = speculate_expr (expr, full_ds);
2212 if (res >= 0)
2213 {
2214 /* Speculation was successful. */
2215 full_ds = 0;
2216 was_changed = (res > 0);
2217 if (res == 2)
2218 was_target_conflict = true;
2219 if (ptrans_type)
2220 *ptrans_type = TRANS_SPECULATION;
2221 sel_clear_has_dependence ();
2222 }
2223 }
2224
2225 if (has_dep_p[DEPS_IN_INSN])
2226 /* We have some dependency that cannot be discarded. */
2227 return MOVEUP_EXPR_NULL;
2228
2229 if (has_dep_p[DEPS_IN_LHS])
2230 {
2231 /* Only separable insns can be moved up with the new register.
2232 Anyways, we should mark that the original register is
2233 unavailable. */
2234 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2235 return MOVEUP_EXPR_NULL;
2236
2237 EXPR_TARGET_AVAILABLE (expr) = false;
2238 was_target_conflict = true;
2239 as_rhs = true;
2240 }
2241
2242 /* At this point we have either separable insns, that will be lifted
2243 up only as RHSes, or non-separable insns with no dependency in lhs.
2244 If dependency is in RHS, then try to perform substitution and move up
2245 substituted RHS:
2246
2247 Ex. 1: Ex.2
2248 y = x; y = x;
2249 z = y*2; y = y*2;
2250
2251 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2252 moved above y=x assignment as z=x*2.
2253
2254 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2255 side can be moved because of the output dependency. The operation was
2256 cropped to its rhs above. */
2257 if (has_dep_p[DEPS_IN_RHS])
2258 {
2259 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2260
2261 /* Can't substitute UNIQUE VINSNs. */
2262 gcc_assert (!VINSN_UNIQUE_P (vi));
2263
2264 if (can_speculate_dep_p (*rhs_dsp))
2265 {
2266 int res;
2267
2268 res = speculate_expr (expr, *rhs_dsp);
2269 if (res >= 0)
2270 {
2271 /* Speculation was successful. */
2272 *rhs_dsp = 0;
2273 was_changed = (res > 0);
2274 if (res == 2)
2275 was_target_conflict = true;
2276 if (ptrans_type)
2277 *ptrans_type = TRANS_SPECULATION;
2278 }
2279 else
2280 return MOVEUP_EXPR_NULL;
2281 }
2282 else if (can_substitute_through_p (through_insn,
2283 *rhs_dsp)
2284 && substitute_reg_in_expr (expr, through_insn, false))
2285 {
2286 /* ??? We cannot perform substitution AND speculation on the same
2287 insn. */
2288 gcc_assert (!was_changed);
2289 was_changed = true;
2290 if (ptrans_type)
2291 *ptrans_type = TRANS_SUBSTITUTION;
2292 EXPR_WAS_SUBSTITUTED (expr) = true;
2293 }
2294 else
2295 return MOVEUP_EXPR_NULL;
2296 }
2297
2298 /* Don't move trapping insns through jumps.
2299 This check should be at the end to give a chance to control speculation
2300 to perform its duties. */
2301 if (CANT_MOVE_TRAPPING (expr, through_insn))
2302 return MOVEUP_EXPR_NULL;
2303
2304 return (was_changed
2305 ? MOVEUP_EXPR_CHANGED
2306 : (as_rhs
2307 ? MOVEUP_EXPR_AS_RHS
2308 : MOVEUP_EXPR_SAME));
2309 }
2310
2311 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2312 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2313 that can exist within a parallel group. Write to RES the resulting
2314 code for moveup_expr. */
2315 static bool
2316 try_bitmap_cache (expr_t expr, insn_t insn,
2317 bool inside_insn_group,
2318 enum MOVEUP_EXPR_CODE *res)
2319 {
2320 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2321
2322 /* First check whether we've analyzed this situation already. */
2323 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2324 {
2325 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2326 {
2327 if (sched_verbose >= 6)
2328 sel_print ("removed (cached)\n");
2329 *res = MOVEUP_EXPR_NULL;
2330 return true;
2331 }
2332 else
2333 {
2334 if (sched_verbose >= 6)
2335 sel_print ("unchanged (cached)\n");
2336 *res = MOVEUP_EXPR_SAME;
2337 return true;
2338 }
2339 }
2340 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2341 {
2342 if (inside_insn_group)
2343 {
2344 if (sched_verbose >= 6)
2345 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2346 *res = MOVEUP_EXPR_SAME;
2347 return true;
2348
2349 }
2350 else
2351 EXPR_TARGET_AVAILABLE (expr) = false;
2352
2353 /* This is the only case when propagation result can change over time,
2354 as we can dynamically switch off scheduling as RHS. In this case,
2355 just check the flag to reach the correct decision. */
2356 if (enable_schedule_as_rhs_p)
2357 {
2358 if (sched_verbose >= 6)
2359 sel_print ("unchanged (as RHS, cached)\n");
2360 *res = MOVEUP_EXPR_AS_RHS;
2361 return true;
2362 }
2363 else
2364 {
2365 if (sched_verbose >= 6)
2366 sel_print ("removed (cached as RHS, but renaming"
2367 " is now disabled)\n");
2368 *res = MOVEUP_EXPR_NULL;
2369 return true;
2370 }
2371 }
2372
2373 return false;
2374 }
2375
2376 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2377 if successful. Write to RES the resulting code for moveup_expr. */
2378 static bool
2379 try_transformation_cache (expr_t expr, insn_t insn,
2380 enum MOVEUP_EXPR_CODE *res)
2381 {
2382 struct transformed_insns *pti
2383 = (struct transformed_insns *)
2384 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2385 &EXPR_VINSN (expr),
2386 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2387 if (pti)
2388 {
2389 /* This EXPR was already moved through this insn and was
2390 changed as a result. Fetch the proper data from
2391 the hashtable. */
2392 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2393 INSN_UID (insn), pti->type,
2394 pti->vinsn_old, pti->vinsn_new,
2395 EXPR_SPEC_DONE_DS (expr));
2396
2397 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2398 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2399 change_vinsn_in_expr (expr, pti->vinsn_new);
2400 if (pti->was_target_conflict)
2401 EXPR_TARGET_AVAILABLE (expr) = false;
2402 if (pti->type == TRANS_SPECULATION)
2403 {
2404 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2405 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2406 }
2407
2408 if (sched_verbose >= 6)
2409 {
2410 sel_print ("changed (cached): ");
2411 dump_expr (expr);
2412 sel_print ("\n");
2413 }
2414
2415 *res = MOVEUP_EXPR_CHANGED;
2416 return true;
2417 }
2418
2419 return false;
2420 }
2421
2422 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2423 static void
2424 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2425 enum MOVEUP_EXPR_CODE res)
2426 {
2427 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2428
2429 /* Do not cache result of propagating jumps through an insn group,
2430 as it is always true, which is not useful outside the group. */
2431 if (inside_insn_group)
2432 return;
2433
2434 if (res == MOVEUP_EXPR_NULL)
2435 {
2436 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2437 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2438 }
2439 else if (res == MOVEUP_EXPR_SAME)
2440 {
2441 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2442 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2443 }
2444 else if (res == MOVEUP_EXPR_AS_RHS)
2445 {
2446 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2447 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2448 }
2449 else
2450 gcc_unreachable ();
2451 }
2452
2453 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2454 and transformation type TRANS_TYPE. */
2455 static void
2456 update_transformation_cache (expr_t expr, insn_t insn,
2457 bool inside_insn_group,
2458 enum local_trans_type trans_type,
2459 vinsn_t expr_old_vinsn)
2460 {
2461 struct transformed_insns *pti;
2462
2463 if (inside_insn_group)
2464 return;
2465
2466 pti = XNEW (struct transformed_insns);
2467 pti->vinsn_old = expr_old_vinsn;
2468 pti->vinsn_new = EXPR_VINSN (expr);
2469 pti->type = trans_type;
2470 pti->was_target_conflict = was_target_conflict;
2471 pti->ds = EXPR_SPEC_DONE_DS (expr);
2472 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2473 vinsn_attach (pti->vinsn_old);
2474 vinsn_attach (pti->vinsn_new);
2475 *((struct transformed_insns **)
2476 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2477 pti, VINSN_HASH_RTX (expr_old_vinsn),
2478 INSERT)) = pti;
2479 }
2480
2481 /* Same as moveup_expr, but first looks up the result of
2482 transformation in caches. */
2483 static enum MOVEUP_EXPR_CODE
2484 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2485 {
2486 enum MOVEUP_EXPR_CODE res;
2487 bool got_answer = false;
2488
2489 if (sched_verbose >= 6)
2490 {
2491 sel_print ("Moving ");
2492 dump_expr (expr);
2493 sel_print (" through %d: ", INSN_UID (insn));
2494 }
2495
2496 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2497 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2498 == EXPR_INSN_RTX (expr)))
2499 /* Don't use cached information for debug insns that are heads of
2500 basic blocks. */;
2501 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2502 /* When inside insn group, we do not want remove stores conflicting
2503 with previosly issued loads. */
2504 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2505 else if (try_transformation_cache (expr, insn, &res))
2506 got_answer = true;
2507
2508 if (! got_answer)
2509 {
2510 /* Invoke moveup_expr and record the results. */
2511 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2512 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2513 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2514 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2515 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2516
2517 /* ??? Invent something better than this. We can't allow old_vinsn
2518 to go, we need it for the history vector. */
2519 vinsn_attach (expr_old_vinsn);
2520
2521 res = moveup_expr (expr, insn, inside_insn_group,
2522 &trans_type);
2523 switch (res)
2524 {
2525 case MOVEUP_EXPR_NULL:
2526 update_bitmap_cache (expr, insn, inside_insn_group, res);
2527 if (sched_verbose >= 6)
2528 sel_print ("removed\n");
2529 break;
2530
2531 case MOVEUP_EXPR_SAME:
2532 update_bitmap_cache (expr, insn, inside_insn_group, res);
2533 if (sched_verbose >= 6)
2534 sel_print ("unchanged\n");
2535 break;
2536
2537 case MOVEUP_EXPR_AS_RHS:
2538 gcc_assert (!unique_p || inside_insn_group);
2539 update_bitmap_cache (expr, insn, inside_insn_group, res);
2540 if (sched_verbose >= 6)
2541 sel_print ("unchanged (as RHS)\n");
2542 break;
2543
2544 case MOVEUP_EXPR_CHANGED:
2545 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2546 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2547 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2548 INSN_UID (insn), trans_type,
2549 expr_old_vinsn, EXPR_VINSN (expr),
2550 expr_old_spec_ds);
2551 update_transformation_cache (expr, insn, inside_insn_group,
2552 trans_type, expr_old_vinsn);
2553 if (sched_verbose >= 6)
2554 {
2555 sel_print ("changed: ");
2556 dump_expr (expr);
2557 sel_print ("\n");
2558 }
2559 break;
2560 default:
2561 gcc_unreachable ();
2562 }
2563
2564 vinsn_detach (expr_old_vinsn);
2565 }
2566
2567 return res;
2568 }
2569
2570 /* Moves an av set AVP up through INSN, performing necessary
2571 transformations. */
2572 static void
2573 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2574 {
2575 av_set_iterator i;
2576 expr_t expr;
2577
2578 FOR_EACH_EXPR_1 (expr, i, avp)
2579 {
2580
2581 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2582 {
2583 case MOVEUP_EXPR_SAME:
2584 case MOVEUP_EXPR_AS_RHS:
2585 break;
2586
2587 case MOVEUP_EXPR_NULL:
2588 av_set_iter_remove (&i);
2589 break;
2590
2591 case MOVEUP_EXPR_CHANGED:
2592 expr = merge_with_other_exprs (avp, &i, expr);
2593 break;
2594
2595 default:
2596 gcc_unreachable ();
2597 }
2598 }
2599 }
2600
2601 /* Moves AVP set along PATH. */
2602 static void
2603 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2604 {
2605 int last_cycle;
2606
2607 if (sched_verbose >= 6)
2608 sel_print ("Moving expressions up in the insn group...\n");
2609 if (! path)
2610 return;
2611 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2612 while (path
2613 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2614 {
2615 moveup_set_expr (avp, ILIST_INSN (path), true);
2616 path = ILIST_NEXT (path);
2617 }
2618 }
2619
2620 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2621 static bool
2622 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2623 {
2624 expr_def _tmp, *tmp = &_tmp;
2625 int last_cycle;
2626 bool res = true;
2627
2628 copy_expr_onside (tmp, expr);
2629 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2630 while (path
2631 && res
2632 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2633 {
2634 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2635 != MOVEUP_EXPR_NULL);
2636 path = ILIST_NEXT (path);
2637 }
2638
2639 if (res)
2640 {
2641 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2642 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2643
2644 if (tmp_vinsn != expr_vliw_vinsn)
2645 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2646 }
2647
2648 clear_expr (tmp);
2649 return res;
2650 }
2651 \f
2652
2653 /* Functions that compute av and lv sets. */
2654
2655 /* Returns true if INSN is not a downward continuation of the given path P in
2656 the current stage. */
2657 static bool
2658 is_ineligible_successor (insn_t insn, ilist_t p)
2659 {
2660 insn_t prev_insn;
2661
2662 /* Check if insn is not deleted. */
2663 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2664 gcc_unreachable ();
2665 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2666 gcc_unreachable ();
2667
2668 /* If it's the first insn visited, then the successor is ok. */
2669 if (!p)
2670 return false;
2671
2672 prev_insn = ILIST_INSN (p);
2673
2674 if (/* a backward edge. */
2675 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2676 /* is already visited. */
2677 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2678 && (ilist_is_in_p (p, insn)
2679 /* We can reach another fence here and still seqno of insn
2680 would be equal to seqno of prev_insn. This is possible
2681 when prev_insn is a previously created bookkeeping copy.
2682 In that case it'd get a seqno of insn. Thus, check here
2683 whether insn is in current fence too. */
2684 || IN_CURRENT_FENCE_P (insn)))
2685 /* Was already scheduled on this round. */
2686 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2687 && IN_CURRENT_FENCE_P (insn))
2688 /* An insn from another fence could also be
2689 scheduled earlier even if this insn is not in
2690 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2691 || (!pipelining_p
2692 && INSN_SCHED_TIMES (insn) > 0))
2693 return true;
2694 else
2695 return false;
2696 }
2697
2698 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2699 of handling multiple successors and properly merging its av_sets. P is
2700 the current path traversed. WS is the size of lookahead window.
2701 Return the av set computed. */
2702 static av_set_t
2703 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2704 {
2705 struct succs_info *sinfo;
2706 av_set_t expr_in_all_succ_branches = NULL;
2707 int is;
2708 insn_t succ, zero_succ = NULL;
2709 av_set_t av1 = NULL;
2710
2711 gcc_assert (sel_bb_end_p (insn));
2712
2713 /* Find different kind of successors needed for correct computing of
2714 SPEC and TARGET_AVAILABLE attributes. */
2715 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2716
2717 /* Debug output. */
2718 if (sched_verbose >= 6)
2719 {
2720 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2721 dump_insn_vector (sinfo->succs_ok);
2722 sel_print ("\n");
2723 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2724 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2725 }
2726
2727 /* Add insn to the tail of current path. */
2728 ilist_add (&p, insn);
2729
2730 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2731 {
2732 av_set_t succ_set;
2733
2734 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2735 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2736
2737 av_set_split_usefulness (succ_set,
2738 sinfo->probs_ok[is],
2739 sinfo->all_prob);
2740
2741 if (sinfo->all_succs_n > 1)
2742 {
2743 /* Find EXPR'es that came from *all* successors and save them
2744 into expr_in_all_succ_branches. This set will be used later
2745 for calculating speculation attributes of EXPR'es. */
2746 if (is == 0)
2747 {
2748 expr_in_all_succ_branches = av_set_copy (succ_set);
2749
2750 /* Remember the first successor for later. */
2751 zero_succ = succ;
2752 }
2753 else
2754 {
2755 av_set_iterator i;
2756 expr_t expr;
2757
2758 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2759 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2760 av_set_iter_remove (&i);
2761 }
2762 }
2763
2764 /* Union the av_sets. Check liveness restrictions on target registers
2765 in special case of two successors. */
2766 if (sinfo->succs_ok_n == 2 && is == 1)
2767 {
2768 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2769 basic_block bb1 = BLOCK_FOR_INSN (succ);
2770
2771 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2772 av_set_union_and_live (&av1, &succ_set,
2773 BB_LV_SET (bb0),
2774 BB_LV_SET (bb1),
2775 insn);
2776 }
2777 else
2778 av_set_union_and_clear (&av1, &succ_set, insn);
2779 }
2780
2781 /* Check liveness restrictions via hard way when there are more than
2782 two successors. */
2783 if (sinfo->succs_ok_n > 2)
2784 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2785 {
2786 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2787
2788 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2789 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2790 BB_LV_SET (succ_bb));
2791 }
2792
2793 /* Finally, check liveness restrictions on paths leaving the region. */
2794 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2795 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2796 mark_unavailable_targets
2797 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2798
2799 if (sinfo->all_succs_n > 1)
2800 {
2801 av_set_iterator i;
2802 expr_t expr;
2803
2804 /* Increase the spec attribute of all EXPR'es that didn't come
2805 from all successors. */
2806 FOR_EACH_EXPR (expr, i, av1)
2807 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2808 EXPR_SPEC (expr)++;
2809
2810 av_set_clear (&expr_in_all_succ_branches);
2811
2812 /* Do not move conditional branches through other
2813 conditional branches. So, remove all conditional
2814 branches from av_set if current operator is a conditional
2815 branch. */
2816 av_set_substract_cond_branches (&av1);
2817 }
2818
2819 ilist_remove (&p);
2820 free_succs_info (sinfo);
2821
2822 if (sched_verbose >= 6)
2823 {
2824 sel_print ("av_succs (%d): ", INSN_UID (insn));
2825 dump_av_set (av1);
2826 sel_print ("\n");
2827 }
2828
2829 return av1;
2830 }
2831
2832 /* This function computes av_set for the FIRST_INSN by dragging valid
2833 av_set through all basic block insns either from the end of basic block
2834 (computed using compute_av_set_at_bb_end) or from the insn on which
2835 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2836 below the basic block and handling conditional branches.
2837 FIRST_INSN - the basic block head, P - path consisting of the insns
2838 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2839 and bb ends are added to the path), WS - current window size,
2840 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2841 static av_set_t
2842 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2843 bool need_copy_p)
2844 {
2845 insn_t cur_insn;
2846 int end_ws = ws;
2847 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2848 insn_t after_bb_end = NEXT_INSN (bb_end);
2849 insn_t last_insn;
2850 av_set_t av = NULL;
2851 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2852
2853 /* Return NULL if insn is not on the legitimate downward path. */
2854 if (is_ineligible_successor (first_insn, p))
2855 {
2856 if (sched_verbose >= 6)
2857 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2858
2859 return NULL;
2860 }
2861
2862 /* If insn already has valid av(insn) computed, just return it. */
2863 if (AV_SET_VALID_P (first_insn))
2864 {
2865 av_set_t av_set;
2866
2867 if (sel_bb_head_p (first_insn))
2868 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2869 else
2870 av_set = NULL;
2871
2872 if (sched_verbose >= 6)
2873 {
2874 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2875 dump_av_set (av_set);
2876 sel_print ("\n");
2877 }
2878
2879 return need_copy_p ? av_set_copy (av_set) : av_set;
2880 }
2881
2882 ilist_add (&p, first_insn);
2883
2884 /* As the result after this loop have completed, in LAST_INSN we'll
2885 have the insn which has valid av_set to start backward computation
2886 from: it either will be NULL because on it the window size was exceeded
2887 or other valid av_set as returned by compute_av_set for the last insn
2888 of the basic block. */
2889 for (last_insn = first_insn; last_insn != after_bb_end;
2890 last_insn = NEXT_INSN (last_insn))
2891 {
2892 /* We may encounter valid av_set not only on bb_head, but also on
2893 those insns on which previously MAX_WS was exceeded. */
2894 if (AV_SET_VALID_P (last_insn))
2895 {
2896 if (sched_verbose >= 6)
2897 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2898 break;
2899 }
2900
2901 /* The special case: the last insn of the BB may be an
2902 ineligible_successor due to its SEQ_NO that was set on
2903 it as a bookkeeping. */
2904 if (last_insn != first_insn
2905 && is_ineligible_successor (last_insn, p))
2906 {
2907 if (sched_verbose >= 6)
2908 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2909 break;
2910 }
2911
2912 if (DEBUG_INSN_P (last_insn))
2913 continue;
2914
2915 if (end_ws > max_ws)
2916 {
2917 /* We can reach max lookahead size at bb_header, so clean av_set
2918 first. */
2919 INSN_WS_LEVEL (last_insn) = global_level;
2920
2921 if (sched_verbose >= 6)
2922 sel_print ("Insn %d is beyond the software lookahead window size\n",
2923 INSN_UID (last_insn));
2924 break;
2925 }
2926
2927 end_ws++;
2928 }
2929
2930 /* Get the valid av_set into AV above the LAST_INSN to start backward
2931 computation from. It either will be empty av_set or av_set computed from
2932 the successors on the last insn of the current bb. */
2933 if (last_insn != after_bb_end)
2934 {
2935 av = NULL;
2936
2937 /* This is needed only to obtain av_sets that are identical to
2938 those computed by the old compute_av_set version. */
2939 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2940 av_set_add (&av, INSN_EXPR (last_insn));
2941 }
2942 else
2943 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2944 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2945
2946 /* Compute av_set in AV starting from below the LAST_INSN up to
2947 location above the FIRST_INSN. */
2948 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2949 cur_insn = PREV_INSN (cur_insn))
2950 if (!INSN_NOP_P (cur_insn))
2951 {
2952 expr_t expr;
2953
2954 moveup_set_expr (&av, cur_insn, false);
2955
2956 /* If the expression for CUR_INSN is already in the set,
2957 replace it by the new one. */
2958 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2959 if (expr != NULL)
2960 {
2961 clear_expr (expr);
2962 copy_expr (expr, INSN_EXPR (cur_insn));
2963 }
2964 else
2965 av_set_add (&av, INSN_EXPR (cur_insn));
2966 }
2967
2968 /* Clear stale bb_av_set. */
2969 if (sel_bb_head_p (first_insn))
2970 {
2971 av_set_clear (&BB_AV_SET (cur_bb));
2972 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2973 BB_AV_LEVEL (cur_bb) = global_level;
2974 }
2975
2976 if (sched_verbose >= 6)
2977 {
2978 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2979 dump_av_set (av);
2980 sel_print ("\n");
2981 }
2982
2983 ilist_remove (&p);
2984 return av;
2985 }
2986
2987 /* Compute av set before INSN.
2988 INSN - the current operation (actual rtx INSN)
2989 P - the current path, which is list of insns visited so far
2990 WS - software lookahead window size.
2991 UNIQUE_P - TRUE, if returned av_set will be changed, hence
2992 if we want to save computed av_set in s_i_d, we should make a copy of it.
2993
2994 In the resulting set we will have only expressions that don't have delay
2995 stalls and nonsubstitutable dependences. */
2996 static av_set_t
2997 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
2998 {
2999 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3000 }
3001
3002 /* Propagate a liveness set LV through INSN. */
3003 static void
3004 propagate_lv_set (regset lv, insn_t insn)
3005 {
3006 gcc_assert (INSN_P (insn));
3007
3008 if (INSN_NOP_P (insn))
3009 return;
3010
3011 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3012 }
3013
3014 /* Return livness set at the end of BB. */
3015 static regset
3016 compute_live_after_bb (basic_block bb)
3017 {
3018 edge e;
3019 edge_iterator ei;
3020 regset lv = get_clear_regset_from_pool ();
3021
3022 gcc_assert (!ignore_first);
3023
3024 FOR_EACH_EDGE (e, ei, bb->succs)
3025 if (sel_bb_empty_p (e->dest))
3026 {
3027 if (! BB_LV_SET_VALID_P (e->dest))
3028 {
3029 gcc_unreachable ();
3030 gcc_assert (BB_LV_SET (e->dest) == NULL);
3031 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3032 BB_LV_SET_VALID_P (e->dest) = true;
3033 }
3034 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3035 }
3036 else
3037 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3038
3039 return lv;
3040 }
3041
3042 /* Compute the set of all live registers at the point before INSN and save
3043 it at INSN if INSN is bb header. */
3044 regset
3045 compute_live (insn_t insn)
3046 {
3047 basic_block bb = BLOCK_FOR_INSN (insn);
3048 insn_t final, temp;
3049 regset lv;
3050
3051 /* Return the valid set if we're already on it. */
3052 if (!ignore_first)
3053 {
3054 regset src = NULL;
3055
3056 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3057 src = BB_LV_SET (bb);
3058 else
3059 {
3060 gcc_assert (in_current_region_p (bb));
3061 if (INSN_LIVE_VALID_P (insn))
3062 src = INSN_LIVE (insn);
3063 }
3064
3065 if (src)
3066 {
3067 lv = get_regset_from_pool ();
3068 COPY_REG_SET (lv, src);
3069
3070 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3071 {
3072 COPY_REG_SET (BB_LV_SET (bb), lv);
3073 BB_LV_SET_VALID_P (bb) = true;
3074 }
3075
3076 return_regset_to_pool (lv);
3077 return lv;
3078 }
3079 }
3080
3081 /* We've skipped the wrong lv_set. Don't skip the right one. */
3082 ignore_first = false;
3083 gcc_assert (in_current_region_p (bb));
3084
3085 /* Find a valid LV set in this block or below, if needed.
3086 Start searching from the next insn: either ignore_first is true, or
3087 INSN doesn't have a correct live set. */
3088 temp = NEXT_INSN (insn);
3089 final = NEXT_INSN (BB_END (bb));
3090 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3091 temp = NEXT_INSN (temp);
3092 if (temp == final)
3093 {
3094 lv = compute_live_after_bb (bb);
3095 temp = PREV_INSN (temp);
3096 }
3097 else
3098 {
3099 lv = get_regset_from_pool ();
3100 COPY_REG_SET (lv, INSN_LIVE (temp));
3101 }
3102
3103 /* Put correct lv sets on the insns which have bad sets. */
3104 final = PREV_INSN (insn);
3105 while (temp != final)
3106 {
3107 propagate_lv_set (lv, temp);
3108 COPY_REG_SET (INSN_LIVE (temp), lv);
3109 INSN_LIVE_VALID_P (temp) = true;
3110 temp = PREV_INSN (temp);
3111 }
3112
3113 /* Also put it in a BB. */
3114 if (sel_bb_head_p (insn))
3115 {
3116 basic_block bb = BLOCK_FOR_INSN (insn);
3117
3118 COPY_REG_SET (BB_LV_SET (bb), lv);
3119 BB_LV_SET_VALID_P (bb) = true;
3120 }
3121
3122 /* We return LV to the pool, but will not clear it there. Thus we can
3123 legimatelly use LV till the next use of regset_pool_get (). */
3124 return_regset_to_pool (lv);
3125 return lv;
3126 }
3127
3128 /* Update liveness sets for INSN. */
3129 static inline void
3130 update_liveness_on_insn (rtx insn)
3131 {
3132 ignore_first = true;
3133 compute_live (insn);
3134 }
3135
3136 /* Compute liveness below INSN and write it into REGS. */
3137 static inline void
3138 compute_live_below_insn (rtx insn, regset regs)
3139 {
3140 rtx succ;
3141 succ_iterator si;
3142
3143 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3144 IOR_REG_SET (regs, compute_live (succ));
3145 }
3146
3147 /* Update the data gathered in av and lv sets starting from INSN. */
3148 static void
3149 update_data_sets (rtx insn)
3150 {
3151 update_liveness_on_insn (insn);
3152 if (sel_bb_head_p (insn))
3153 {
3154 gcc_assert (AV_LEVEL (insn) != 0);
3155 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3156 compute_av_set (insn, NULL, 0, 0);
3157 }
3158 }
3159 \f
3160
3161 /* Helper for move_op () and find_used_regs ().
3162 Return speculation type for which a check should be created on the place
3163 of INSN. EXPR is one of the original ops we are searching for. */
3164 static ds_t
3165 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3166 {
3167 ds_t to_check_ds;
3168 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3169
3170 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3171
3172 if (targetm.sched.get_insn_checked_ds)
3173 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3174
3175 if (spec_info != NULL
3176 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3177 already_checked_ds |= BEGIN_CONTROL;
3178
3179 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3180
3181 to_check_ds &= ~already_checked_ds;
3182
3183 return to_check_ds;
3184 }
3185
3186 /* Find the set of registers that are unavailable for storing expres
3187 while moving ORIG_OPS up on the path starting from INSN due to
3188 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3189
3190 All the original operations found during the traversal are saved in the
3191 ORIGINAL_INSNS list.
3192
3193 REG_RENAME_P denotes the set of hardware registers that
3194 can not be used with renaming due to the register class restrictions,
3195 mode restrictions and other (the register we'll choose should be
3196 compatible class with the original uses, shouldn't be in call_used_regs,
3197 should be HARD_REGNO_RENAME_OK etc).
3198
3199 Returns TRUE if we've found all original insns, FALSE otherwise.
3200
3201 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3202 to traverse the code motion paths. This helper function finds registers
3203 that are not available for storing expres while moving ORIG_OPS up on the
3204 path starting from INSN. A register considered as used on the moving path,
3205 if one of the following conditions is not satisfied:
3206
3207 (1) a register not set or read on any path from xi to an instance of
3208 the original operation,
3209 (2) not among the live registers of the point immediately following the
3210 first original operation on a given downward path, except for the
3211 original target register of the operation,
3212 (3) not live on the other path of any conditional branch that is passed
3213 by the operation, in case original operations are not present on
3214 both paths of the conditional branch.
3215
3216 All the original operations found during the traversal are saved in the
3217 ORIGINAL_INSNS list.
3218
3219 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3220 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3221 to unavailable hard regs at the point original operation is found. */
3222
3223 static bool
3224 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3225 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3226 {
3227 def_list_iterator i;
3228 def_t def;
3229 int res;
3230 bool needs_spec_check_p = false;
3231 expr_t expr;
3232 av_set_iterator expr_iter;
3233 struct fur_static_params sparams;
3234 struct cmpd_local_params lparams;
3235
3236 /* We haven't visited any blocks yet. */
3237 bitmap_clear (code_motion_visited_blocks);
3238
3239 /* Init parameters for code_motion_path_driver. */
3240 sparams.crosses_call = false;
3241 sparams.original_insns = original_insns;
3242 sparams.used_regs = used_regs;
3243
3244 /* Set the appropriate hooks and data. */
3245 code_motion_path_driver_info = &fur_hooks;
3246
3247 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3248
3249 reg_rename_p->crosses_call |= sparams.crosses_call;
3250
3251 gcc_assert (res == 1);
3252 gcc_assert (original_insns && *original_insns);
3253
3254 /* ??? We calculate whether an expression needs a check when computing
3255 av sets. This information is not as precise as it could be due to
3256 merging this bit in merge_expr. We can do better in find_used_regs,
3257 but we want to avoid multiple traversals of the same code motion
3258 paths. */
3259 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3260 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3261
3262 /* Mark hardware regs in REG_RENAME_P that are not suitable
3263 for renaming expr in INSN due to hardware restrictions (register class,
3264 modes compatibility etc). */
3265 FOR_EACH_DEF (def, i, *original_insns)
3266 {
3267 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3268
3269 if (VINSN_SEPARABLE_P (vinsn))
3270 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3271
3272 /* Do not allow clobbering of ld.[sa] address in case some of the
3273 original operations need a check. */
3274 if (needs_spec_check_p)
3275 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3276 }
3277
3278 return true;
3279 }
3280 \f
3281
3282 /* Functions to choose the best insn from available ones. */
3283
3284 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3285 static int
3286 sel_target_adjust_priority (expr_t expr)
3287 {
3288 int priority = EXPR_PRIORITY (expr);
3289 int new_priority;
3290
3291 if (targetm.sched.adjust_priority)
3292 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3293 else
3294 new_priority = priority;
3295
3296 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3297 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3298
3299 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3300
3301 if (sched_verbose >= 4)
3302 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3303 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3304 EXPR_PRIORITY_ADJ (expr), new_priority);
3305
3306 return new_priority;
3307 }
3308
3309 /* Rank two available exprs for schedule. Never return 0 here. */
3310 static int
3311 sel_rank_for_schedule (const void *x, const void *y)
3312 {
3313 expr_t tmp = *(const expr_t *) y;
3314 expr_t tmp2 = *(const expr_t *) x;
3315 insn_t tmp_insn, tmp2_insn;
3316 vinsn_t tmp_vinsn, tmp2_vinsn;
3317 int val;
3318
3319 tmp_vinsn = EXPR_VINSN (tmp);
3320 tmp2_vinsn = EXPR_VINSN (tmp2);
3321 tmp_insn = EXPR_INSN_RTX (tmp);
3322 tmp2_insn = EXPR_INSN_RTX (tmp2);
3323
3324 /* Schedule debug insns as early as possible. */
3325 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3326 return -1;
3327 else if (DEBUG_INSN_P (tmp2_insn))
3328 return 1;
3329
3330 /* Prefer SCHED_GROUP_P insns to any others. */
3331 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3332 {
3333 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3334 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3335
3336 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3337 cannot be cloned. */
3338 if (VINSN_UNIQUE_P (tmp2_vinsn))
3339 return 1;
3340 return -1;
3341 }
3342
3343 /* Discourage scheduling of speculative checks. */
3344 val = (sel_insn_is_speculation_check (tmp_insn)
3345 - sel_insn_is_speculation_check (tmp2_insn));
3346 if (val)
3347 return val;
3348
3349 /* Prefer not scheduled insn over scheduled one. */
3350 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3351 {
3352 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3353 if (val)
3354 return val;
3355 }
3356
3357 /* Prefer jump over non-jump instruction. */
3358 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3359 return -1;
3360 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3361 return 1;
3362
3363 /* Prefer an expr with greater priority. */
3364 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3365 {
3366 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3367 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3368
3369 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3370 }
3371 else
3372 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3373 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3374 if (val)
3375 return val;
3376
3377 if (spec_info != NULL && spec_info->mask != 0)
3378 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3379 {
3380 ds_t ds1, ds2;
3381 dw_t dw1, dw2;
3382 int dw;
3383
3384 ds1 = EXPR_SPEC_DONE_DS (tmp);
3385 if (ds1)
3386 dw1 = ds_weak (ds1);
3387 else
3388 dw1 = NO_DEP_WEAK;
3389
3390 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3391 if (ds2)
3392 dw2 = ds_weak (ds2);
3393 else
3394 dw2 = NO_DEP_WEAK;
3395
3396 dw = dw2 - dw1;
3397 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3398 return dw;
3399 }
3400
3401 /* Prefer an old insn to a bookkeeping insn. */
3402 if (INSN_UID (tmp_insn) < first_emitted_uid
3403 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3404 return -1;
3405 if (INSN_UID (tmp_insn) >= first_emitted_uid
3406 && INSN_UID (tmp2_insn) < first_emitted_uid)
3407 return 1;
3408
3409 /* Prefer an insn with smaller UID, as a last resort.
3410 We can't safely use INSN_LUID as it is defined only for those insns
3411 that are in the stream. */
3412 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3413 }
3414
3415 /* Filter out expressions from av set pointed to by AV_PTR
3416 that are pipelined too many times. */
3417 static void
3418 process_pipelined_exprs (av_set_t *av_ptr)
3419 {
3420 expr_t expr;
3421 av_set_iterator si;
3422
3423 /* Don't pipeline already pipelined code as that would increase
3424 number of unnecessary register moves. */
3425 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3426 {
3427 if (EXPR_SCHED_TIMES (expr)
3428 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3429 av_set_iter_remove (&si);
3430 }
3431 }
3432
3433 /* Filter speculative insns from AV_PTR if we don't want them. */
3434 static void
3435 process_spec_exprs (av_set_t *av_ptr)
3436 {
3437 bool try_data_p = true;
3438 bool try_control_p = true;
3439 expr_t expr;
3440 av_set_iterator si;
3441
3442 if (spec_info == NULL)
3443 return;
3444
3445 /* Scan *AV_PTR to find out if we want to consider speculative
3446 instructions for scheduling. */
3447 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3448 {
3449 ds_t ds;
3450
3451 ds = EXPR_SPEC_DONE_DS (expr);
3452
3453 /* The probability of a success is too low - don't speculate. */
3454 if ((ds & SPECULATIVE)
3455 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3456 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3457 || (pipelining_p && false
3458 && (ds & DATA_SPEC)
3459 && (ds & CONTROL_SPEC))))
3460 {
3461 av_set_iter_remove (&si);
3462 continue;
3463 }
3464
3465 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3466 && !(ds & BEGIN_DATA))
3467 try_data_p = false;
3468
3469 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3470 && !(ds & BEGIN_CONTROL))
3471 try_control_p = false;
3472 }
3473
3474 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3475 {
3476 ds_t ds;
3477
3478 ds = EXPR_SPEC_DONE_DS (expr);
3479
3480 if (ds & SPECULATIVE)
3481 {
3482 if ((ds & BEGIN_DATA) && !try_data_p)
3483 /* We don't want any data speculative instructions right
3484 now. */
3485 av_set_iter_remove (&si);
3486
3487 if ((ds & BEGIN_CONTROL) && !try_control_p)
3488 /* We don't want any control speculative instructions right
3489 now. */
3490 av_set_iter_remove (&si);
3491 }
3492 }
3493 }
3494
3495 /* Search for any use-like insns in AV_PTR and decide on scheduling
3496 them. Return one when found, and NULL otherwise.
3497 Note that we check here whether a USE could be scheduled to avoid
3498 an infinite loop later. */
3499 static expr_t
3500 process_use_exprs (av_set_t *av_ptr)
3501 {
3502 expr_t expr;
3503 av_set_iterator si;
3504 bool uses_present_p = false;
3505 bool try_uses_p = true;
3506
3507 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3508 {
3509 /* This will also initialize INSN_CODE for later use. */
3510 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3511 {
3512 /* If we have a USE in *AV_PTR that was not scheduled yet,
3513 do so because it will do good only. */
3514 if (EXPR_SCHED_TIMES (expr) <= 0)
3515 {
3516 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3517 return expr;
3518
3519 av_set_iter_remove (&si);
3520 }
3521 else
3522 {
3523 gcc_assert (pipelining_p);
3524
3525 uses_present_p = true;
3526 }
3527 }
3528 else
3529 try_uses_p = false;
3530 }
3531
3532 if (uses_present_p)
3533 {
3534 /* If we don't want to schedule any USEs right now and we have some
3535 in *AV_PTR, remove them, else just return the first one found. */
3536 if (!try_uses_p)
3537 {
3538 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3539 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3540 av_set_iter_remove (&si);
3541 }
3542 else
3543 {
3544 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3545 {
3546 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3547
3548 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3549 return expr;
3550
3551 av_set_iter_remove (&si);
3552 }
3553 }
3554 }
3555
3556 return NULL;
3557 }
3558
3559 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3560 EXPR's history of changes. */
3561 static bool
3562 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3563 {
3564 vinsn_t vinsn, expr_vinsn;
3565 int n;
3566 unsigned i;
3567
3568 /* Start with checking expr itself and then proceed with all the old forms
3569 of expr taken from its history vector. */
3570 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3571 expr_vinsn;
3572 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3573 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3574 : NULL))
3575 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3576 if (VINSN_SEPARABLE_P (vinsn))
3577 {
3578 if (vinsn_equal_p (vinsn, expr_vinsn))
3579 return true;
3580 }
3581 else
3582 {
3583 /* For non-separable instructions, the blocking insn can have
3584 another pattern due to substitution, and we can't choose
3585 different register as in the above case. Check all registers
3586 being written instead. */
3587 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3588 VINSN_REG_SETS (expr_vinsn)))
3589 return true;
3590 }
3591
3592 return false;
3593 }
3594
3595 #ifdef ENABLE_CHECKING
3596 /* Return true if either of expressions from ORIG_OPS can be blocked
3597 by previously created bookkeeping code. STATIC_PARAMS points to static
3598 parameters of move_op. */
3599 static bool
3600 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3601 {
3602 expr_t expr;
3603 av_set_iterator iter;
3604 moveop_static_params_p sparams;
3605
3606 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3607 created while scheduling on another fence. */
3608 FOR_EACH_EXPR (expr, iter, orig_ops)
3609 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3610 return true;
3611
3612 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3613 sparams = (moveop_static_params_p) static_params;
3614
3615 /* Expressions can be also blocked by bookkeeping created during current
3616 move_op. */
3617 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3618 FOR_EACH_EXPR (expr, iter, orig_ops)
3619 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3620 return true;
3621
3622 /* Expressions in ORIG_OPS may have wrong destination register due to
3623 renaming. Check with the right register instead. */
3624 if (sparams->dest && REG_P (sparams->dest))
3625 {
3626 rtx reg = sparams->dest;
3627 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3628
3629 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3630 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3631 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3632 return true;
3633 }
3634
3635 return false;
3636 }
3637 #endif
3638
3639 /* Clear VINSN_VEC and detach vinsns. */
3640 static void
3641 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3642 {
3643 unsigned len = vinsn_vec->length ();
3644 if (len > 0)
3645 {
3646 vinsn_t vinsn;
3647 int n;
3648
3649 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3650 vinsn_detach (vinsn);
3651 vinsn_vec->block_remove (0, len);
3652 }
3653 }
3654
3655 /* Add the vinsn of EXPR to the VINSN_VEC. */
3656 static void
3657 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3658 {
3659 vinsn_attach (EXPR_VINSN (expr));
3660 vinsn_vec->safe_push (EXPR_VINSN (expr));
3661 }
3662
3663 /* Free the vector representing blocked expressions. */
3664 static void
3665 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3666 {
3667 vinsn_vec.release ();
3668 }
3669
3670 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3671
3672 void sel_add_to_insn_priority (rtx insn, int amount)
3673 {
3674 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3675
3676 if (sched_verbose >= 2)
3677 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3678 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3679 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3680 }
3681
3682 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3683 true if there is something to schedule. BNDS and FENCE are current
3684 boundaries and fence, respectively. If we need to stall for some cycles
3685 before an expr from AV would become available, write this number to
3686 *PNEED_STALL. */
3687 static bool
3688 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3689 int *pneed_stall)
3690 {
3691 av_set_iterator si;
3692 expr_t expr;
3693 int sched_next_worked = 0, stalled, n;
3694 static int av_max_prio, est_ticks_till_branch;
3695 int min_need_stall = -1;
3696 deps_t dc = BND_DC (BLIST_BND (bnds));
3697
3698 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3699 already scheduled. */
3700 if (av == NULL)
3701 return false;
3702
3703 /* Empty vector from the previous stuff. */
3704 if (vec_av_set.length () > 0)
3705 vec_av_set.block_remove (0, vec_av_set.length ());
3706
3707 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3708 for each insn. */
3709 gcc_assert (vec_av_set.is_empty ());
3710 FOR_EACH_EXPR (expr, si, av)
3711 {
3712 vec_av_set.safe_push (expr);
3713
3714 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3715
3716 /* Adjust priority using target backend hook. */
3717 sel_target_adjust_priority (expr);
3718 }
3719
3720 /* Sort the vector. */
3721 vec_av_set.qsort (sel_rank_for_schedule);
3722
3723 /* We record maximal priority of insns in av set for current instruction
3724 group. */
3725 if (FENCE_STARTS_CYCLE_P (fence))
3726 av_max_prio = est_ticks_till_branch = INT_MIN;
3727
3728 /* Filter out inappropriate expressions. Loop's direction is reversed to
3729 visit "best" instructions first. We assume that vec::unordered_remove
3730 moves last element in place of one being deleted. */
3731 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3732 {
3733 expr_t expr = vec_av_set[n];
3734 insn_t insn = EXPR_INSN_RTX (expr);
3735 signed char target_available;
3736 bool is_orig_reg_p = true;
3737 int need_cycles, new_prio;
3738
3739 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3740 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3741 {
3742 vec_av_set.unordered_remove (n);
3743 continue;
3744 }
3745
3746 /* Set number of sched_next insns (just in case there
3747 could be several). */
3748 if (FENCE_SCHED_NEXT (fence))
3749 sched_next_worked++;
3750
3751 /* Check all liveness requirements and try renaming.
3752 FIXME: try to minimize calls to this. */
3753 target_available = EXPR_TARGET_AVAILABLE (expr);
3754
3755 /* If insn was already scheduled on the current fence,
3756 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3757 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3758 target_available = -1;
3759
3760 /* If the availability of the EXPR is invalidated by the insertion of
3761 bookkeeping earlier, make sure that we won't choose this expr for
3762 scheduling if it's not separable, and if it is separable, then
3763 we have to recompute the set of available registers for it. */
3764 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3765 {
3766 vec_av_set.unordered_remove (n);
3767 if (sched_verbose >= 4)
3768 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3769 INSN_UID (insn));
3770 continue;
3771 }
3772
3773 if (target_available == true)
3774 {
3775 /* Do nothing -- we can use an existing register. */
3776 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3777 }
3778 else if (/* Non-separable instruction will never
3779 get another register. */
3780 (target_available == false
3781 && !EXPR_SEPARABLE_P (expr))
3782 /* Don't try to find a register for low-priority expression. */
3783 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3784 /* ??? FIXME: Don't try to rename data speculation. */
3785 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3786 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3787 {
3788 vec_av_set.unordered_remove (n);
3789 if (sched_verbose >= 4)
3790 sel_print ("Expr %d has no suitable target register\n",
3791 INSN_UID (insn));
3792 continue;
3793 }
3794
3795 /* Filter expressions that need to be renamed or speculated when
3796 pipelining, because compensating register copies or speculation
3797 checks are likely to be placed near the beginning of the loop,
3798 causing a stall. */
3799 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3800 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3801 {
3802 /* Estimation of number of cycles until loop branch for
3803 renaming/speculation to be successful. */
3804 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3805
3806 if ((int) current_loop_nest->ninsns < 9)
3807 {
3808 vec_av_set.unordered_remove (n);
3809 if (sched_verbose >= 4)
3810 sel_print ("Pipelining expr %d will likely cause stall\n",
3811 INSN_UID (insn));
3812 continue;
3813 }
3814
3815 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3816 < need_n_ticks_till_branch * issue_rate / 2
3817 && est_ticks_till_branch < need_n_ticks_till_branch)
3818 {
3819 vec_av_set.unordered_remove (n);
3820 if (sched_verbose >= 4)
3821 sel_print ("Pipelining expr %d will likely cause stall\n",
3822 INSN_UID (insn));
3823 continue;
3824 }
3825 }
3826
3827 /* We want to schedule speculation checks as late as possible. Discard
3828 them from av set if there are instructions with higher priority. */
3829 if (sel_insn_is_speculation_check (insn)
3830 && EXPR_PRIORITY (expr) < av_max_prio)
3831 {
3832 stalled++;
3833 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3834 vec_av_set.unordered_remove (n);
3835 if (sched_verbose >= 4)
3836 sel_print ("Delaying speculation check %d until its first use\n",
3837 INSN_UID (insn));
3838 continue;
3839 }
3840
3841 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3842 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3843 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3844
3845 /* Don't allow any insns whose data is not yet ready.
3846 Check first whether we've already tried them and failed. */
3847 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3848 {
3849 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3850 - FENCE_CYCLE (fence));
3851 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3852 est_ticks_till_branch = MAX (est_ticks_till_branch,
3853 EXPR_PRIORITY (expr) + need_cycles);
3854
3855 if (need_cycles > 0)
3856 {
3857 stalled++;
3858 min_need_stall = (min_need_stall < 0
3859 ? need_cycles
3860 : MIN (min_need_stall, need_cycles));
3861 vec_av_set.unordered_remove (n);
3862
3863 if (sched_verbose >= 4)
3864 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3865 INSN_UID (insn),
3866 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3867 continue;
3868 }
3869 }
3870
3871 /* Now resort to dependence analysis to find whether EXPR might be
3872 stalled due to dependencies from FENCE's context. */
3873 need_cycles = tick_check_p (expr, dc, fence);
3874 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3875
3876 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3877 est_ticks_till_branch = MAX (est_ticks_till_branch,
3878 new_prio);
3879
3880 if (need_cycles > 0)
3881 {
3882 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3883 {
3884 int new_size = INSN_UID (insn) * 3 / 2;
3885
3886 FENCE_READY_TICKS (fence)
3887 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3888 new_size, FENCE_READY_TICKS_SIZE (fence),
3889 sizeof (int));
3890 }
3891 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3892 = FENCE_CYCLE (fence) + need_cycles;
3893
3894 stalled++;
3895 min_need_stall = (min_need_stall < 0
3896 ? need_cycles
3897 : MIN (min_need_stall, need_cycles));
3898
3899 vec_av_set.unordered_remove (n);
3900
3901 if (sched_verbose >= 4)
3902 sel_print ("Expr %d is not ready yet until cycle %d\n",
3903 INSN_UID (insn),
3904 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3905 continue;
3906 }
3907
3908 if (sched_verbose >= 4)
3909 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3910 min_need_stall = 0;
3911 }
3912
3913 /* Clear SCHED_NEXT. */
3914 if (FENCE_SCHED_NEXT (fence))
3915 {
3916 gcc_assert (sched_next_worked == 1);
3917 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3918 }
3919
3920 /* No need to stall if this variable was not initialized. */
3921 if (min_need_stall < 0)
3922 min_need_stall = 0;
3923
3924 if (vec_av_set.is_empty ())
3925 {
3926 /* We need to set *pneed_stall here, because later we skip this code
3927 when ready list is empty. */
3928 *pneed_stall = min_need_stall;
3929 return false;
3930 }
3931 else
3932 gcc_assert (min_need_stall == 0);
3933
3934 /* Sort the vector. */
3935 vec_av_set.qsort (sel_rank_for_schedule);
3936
3937 if (sched_verbose >= 4)
3938 {
3939 sel_print ("Total ready exprs: %d, stalled: %d\n",
3940 vec_av_set.length (), stalled);
3941 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3942 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3943 dump_expr (expr);
3944 sel_print ("\n");
3945 }
3946
3947 *pneed_stall = 0;
3948 return true;
3949 }
3950
3951 /* Convert a vectored and sorted av set to the ready list that
3952 the rest of the backend wants to see. */
3953 static void
3954 convert_vec_av_set_to_ready (void)
3955 {
3956 int n;
3957 expr_t expr;
3958
3959 /* Allocate and fill the ready list from the sorted vector. */
3960 ready.n_ready = vec_av_set.length ();
3961 ready.first = ready.n_ready - 1;
3962
3963 gcc_assert (ready.n_ready > 0);
3964
3965 if (ready.n_ready > max_issue_size)
3966 {
3967 max_issue_size = ready.n_ready;
3968 sched_extend_ready_list (ready.n_ready);
3969 }
3970
3971 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3972 {
3973 vinsn_t vi = EXPR_VINSN (expr);
3974 insn_t insn = VINSN_INSN_RTX (vi);
3975
3976 ready_try[n] = 0;
3977 ready.vec[n] = insn;
3978 }
3979 }
3980
3981 /* Initialize ready list from *AV_PTR for the max_issue () call.
3982 If any unrecognizable insn found in *AV_PTR, return it (and skip
3983 max_issue). BND and FENCE are current boundary and fence,
3984 respectively. If we need to stall for some cycles before an expr
3985 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3986 static expr_t
3987 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3988 int *pneed_stall)
3989 {
3990 expr_t expr;
3991
3992 /* We do not support multiple boundaries per fence. */
3993 gcc_assert (BLIST_NEXT (bnds) == NULL);
3994
3995 /* Process expressions required special handling, i.e. pipelined,
3996 speculative and recog() < 0 expressions first. */
3997 process_pipelined_exprs (av_ptr);
3998 process_spec_exprs (av_ptr);
3999
4000 /* A USE could be scheduled immediately. */
4001 expr = process_use_exprs (av_ptr);
4002 if (expr)
4003 {
4004 *pneed_stall = 0;
4005 return expr;
4006 }
4007
4008 /* Turn the av set to a vector for sorting. */
4009 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4010 {
4011 ready.n_ready = 0;
4012 return NULL;
4013 }
4014
4015 /* Build the final ready list. */
4016 convert_vec_av_set_to_ready ();
4017 return NULL;
4018 }
4019
4020 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4021 static bool
4022 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4023 {
4024 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4025 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4026 : FENCE_CYCLE (fence) - 1;
4027 bool res = false;
4028 int sort_p = 0;
4029
4030 if (!targetm.sched.dfa_new_cycle)
4031 return false;
4032
4033 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4034
4035 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4036 insn, last_scheduled_cycle,
4037 FENCE_CYCLE (fence), &sort_p))
4038 {
4039 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4040 advance_one_cycle (fence);
4041 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4042 res = true;
4043 }
4044
4045 return res;
4046 }
4047
4048 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4049 we can issue. FENCE is the current fence. */
4050 static int
4051 invoke_reorder_hooks (fence_t fence)
4052 {
4053 int issue_more;
4054 bool ran_hook = false;
4055
4056 /* Call the reorder hook at the beginning of the cycle, and call
4057 the reorder2 hook in the middle of the cycle. */
4058 if (FENCE_ISSUED_INSNS (fence) == 0)
4059 {
4060 if (targetm.sched.reorder
4061 && !SCHED_GROUP_P (ready_element (&ready, 0))
4062 && ready.n_ready > 1)
4063 {
4064 /* Don't give reorder the most prioritized insn as it can break
4065 pipelining. */
4066 if (pipelining_p)
4067 --ready.n_ready;
4068
4069 issue_more
4070 = targetm.sched.reorder (sched_dump, sched_verbose,
4071 ready_lastpos (&ready),
4072 &ready.n_ready, FENCE_CYCLE (fence));
4073
4074 if (pipelining_p)
4075 ++ready.n_ready;
4076
4077 ran_hook = true;
4078 }
4079 else
4080 /* Initialize can_issue_more for variable_issue. */
4081 issue_more = issue_rate;
4082 }
4083 else if (targetm.sched.reorder2
4084 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4085 {
4086 if (ready.n_ready == 1)
4087 issue_more =
4088 targetm.sched.reorder2 (sched_dump, sched_verbose,
4089 ready_lastpos (&ready),
4090 &ready.n_ready, FENCE_CYCLE (fence));
4091 else
4092 {
4093 if (pipelining_p)
4094 --ready.n_ready;
4095
4096 issue_more =
4097 targetm.sched.reorder2 (sched_dump, sched_verbose,
4098 ready.n_ready
4099 ? ready_lastpos (&ready) : NULL,
4100 &ready.n_ready, FENCE_CYCLE (fence));
4101
4102 if (pipelining_p)
4103 ++ready.n_ready;
4104 }
4105
4106 ran_hook = true;
4107 }
4108 else
4109 issue_more = FENCE_ISSUE_MORE (fence);
4110
4111 /* Ensure that ready list and vec_av_set are in line with each other,
4112 i.e. vec_av_set[i] == ready_element (&ready, i). */
4113 if (issue_more && ran_hook)
4114 {
4115 int i, j, n;
4116 rtx *arr = ready.vec;
4117 expr_t *vec = vec_av_set.address ();
4118
4119 for (i = 0, n = ready.n_ready; i < n; i++)
4120 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4121 {
4122 expr_t tmp;
4123
4124 for (j = i; j < n; j++)
4125 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4126 break;
4127 gcc_assert (j < n);
4128
4129 tmp = vec[i];
4130 vec[i] = vec[j];
4131 vec[j] = tmp;
4132 }
4133 }
4134
4135 return issue_more;
4136 }
4137
4138 /* Return an EXPR corresponding to INDEX element of ready list, if
4139 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4140 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4141 ready.vec otherwise. */
4142 static inline expr_t
4143 find_expr_for_ready (int index, bool follow_ready_element)
4144 {
4145 expr_t expr;
4146 int real_index;
4147
4148 real_index = follow_ready_element ? ready.first - index : index;
4149
4150 expr = vec_av_set[real_index];
4151 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4152
4153 return expr;
4154 }
4155
4156 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4157 of such insns found. */
4158 static int
4159 invoke_dfa_lookahead_guard (void)
4160 {
4161 int i, n;
4162 bool have_hook
4163 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4164
4165 if (sched_verbose >= 2)
4166 sel_print ("ready after reorder: ");
4167
4168 for (i = 0, n = 0; i < ready.n_ready; i++)
4169 {
4170 expr_t expr;
4171 insn_t insn;
4172 int r;
4173
4174 /* In this loop insn is Ith element of the ready list given by
4175 ready_element, not Ith element of ready.vec. */
4176 insn = ready_element (&ready, i);
4177
4178 if (! have_hook || i == 0)
4179 r = 0;
4180 else
4181 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4182
4183 gcc_assert (INSN_CODE (insn) >= 0);
4184
4185 /* Only insns with ready_try = 0 can get here
4186 from fill_ready_list. */
4187 gcc_assert (ready_try [i] == 0);
4188 ready_try[i] = r;
4189 if (!r)
4190 n++;
4191
4192 expr = find_expr_for_ready (i, true);
4193
4194 if (sched_verbose >= 2)
4195 {
4196 dump_vinsn (EXPR_VINSN (expr));
4197 sel_print (":%d; ", ready_try[i]);
4198 }
4199 }
4200
4201 if (sched_verbose >= 2)
4202 sel_print ("\n");
4203 return n;
4204 }
4205
4206 /* Calculate the number of privileged insns and return it. */
4207 static int
4208 calculate_privileged_insns (void)
4209 {
4210 expr_t cur_expr, min_spec_expr = NULL;
4211 int privileged_n = 0, i;
4212
4213 for (i = 0; i < ready.n_ready; i++)
4214 {
4215 if (ready_try[i])
4216 continue;
4217
4218 if (! min_spec_expr)
4219 min_spec_expr = find_expr_for_ready (i, true);
4220
4221 cur_expr = find_expr_for_ready (i, true);
4222
4223 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4224 break;
4225
4226 ++privileged_n;
4227 }
4228
4229 if (i == ready.n_ready)
4230 privileged_n = 0;
4231
4232 if (sched_verbose >= 2)
4233 sel_print ("privileged_n: %d insns with SPEC %d\n",
4234 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4235 return privileged_n;
4236 }
4237
4238 /* Call the rest of the hooks after the choice was made. Return
4239 the number of insns that still can be issued given that the current
4240 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4241 and the insn chosen for scheduling, respectively. */
4242 static int
4243 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4244 {
4245 gcc_assert (INSN_P (best_insn));
4246
4247 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4248 sel_dfa_new_cycle (best_insn, fence);
4249
4250 if (targetm.sched.variable_issue)
4251 {
4252 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4253 issue_more =
4254 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4255 issue_more);
4256 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4257 }
4258 else if (GET_CODE (PATTERN (best_insn)) != USE
4259 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4260 issue_more--;
4261
4262 return issue_more;
4263 }
4264
4265 /* Estimate the cost of issuing INSN on DFA state STATE. */
4266 static int
4267 estimate_insn_cost (rtx insn, state_t state)
4268 {
4269 static state_t temp = NULL;
4270 int cost;
4271
4272 if (!temp)
4273 temp = xmalloc (dfa_state_size);
4274
4275 memcpy (temp, state, dfa_state_size);
4276 cost = state_transition (temp, insn);
4277
4278 if (cost < 0)
4279 return 0;
4280 else if (cost == 0)
4281 return 1;
4282 return cost;
4283 }
4284
4285 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4286 This function properly handles ASMs, USEs etc. */
4287 static int
4288 get_expr_cost (expr_t expr, fence_t fence)
4289 {
4290 rtx insn = EXPR_INSN_RTX (expr);
4291
4292 if (recog_memoized (insn) < 0)
4293 {
4294 if (!FENCE_STARTS_CYCLE_P (fence)
4295 && INSN_ASM_P (insn))
4296 /* This is asm insn which is tryed to be issued on the
4297 cycle not first. Issue it on the next cycle. */
4298 return 1;
4299 else
4300 /* A USE insn, or something else we don't need to
4301 understand. We can't pass these directly to
4302 state_transition because it will trigger a
4303 fatal error for unrecognizable insns. */
4304 return 0;
4305 }
4306 else
4307 return estimate_insn_cost (insn, FENCE_STATE (fence));
4308 }
4309
4310 /* Find the best insn for scheduling, either via max_issue or just take
4311 the most prioritized available. */
4312 static int
4313 choose_best_insn (fence_t fence, int privileged_n, int *index)
4314 {
4315 int can_issue = 0;
4316
4317 if (dfa_lookahead > 0)
4318 {
4319 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4320 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4321 can_issue = max_issue (&ready, privileged_n,
4322 FENCE_STATE (fence), true, index);
4323 if (sched_verbose >= 2)
4324 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4325 can_issue, FENCE_ISSUED_INSNS (fence));
4326 }
4327 else
4328 {
4329 /* We can't use max_issue; just return the first available element. */
4330 int i;
4331
4332 for (i = 0; i < ready.n_ready; i++)
4333 {
4334 expr_t expr = find_expr_for_ready (i, true);
4335
4336 if (get_expr_cost (expr, fence) < 1)
4337 {
4338 can_issue = can_issue_more;
4339 *index = i;
4340
4341 if (sched_verbose >= 2)
4342 sel_print ("using %dth insn from the ready list\n", i + 1);
4343
4344 break;
4345 }
4346 }
4347
4348 if (i == ready.n_ready)
4349 {
4350 can_issue = 0;
4351 *index = -1;
4352 }
4353 }
4354
4355 return can_issue;
4356 }
4357
4358 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4359 BNDS and FENCE are current boundaries and scheduling fence respectively.
4360 Return the expr found and NULL if nothing can be issued atm.
4361 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4362 static expr_t
4363 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4364 int *pneed_stall)
4365 {
4366 expr_t best;
4367
4368 /* Choose the best insn for scheduling via:
4369 1) sorting the ready list based on priority;
4370 2) calling the reorder hook;
4371 3) calling max_issue. */
4372 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4373 if (best == NULL && ready.n_ready > 0)
4374 {
4375 int privileged_n, index;
4376
4377 can_issue_more = invoke_reorder_hooks (fence);
4378 if (can_issue_more > 0)
4379 {
4380 /* Try choosing the best insn until we find one that is could be
4381 scheduled due to liveness restrictions on its destination register.
4382 In the future, we'd like to choose once and then just probe insns
4383 in the order of their priority. */
4384 invoke_dfa_lookahead_guard ();
4385 privileged_n = calculate_privileged_insns ();
4386 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4387 if (can_issue_more)
4388 best = find_expr_for_ready (index, true);
4389 }
4390 /* We had some available insns, so if we can't issue them,
4391 we have a stall. */
4392 if (can_issue_more == 0)
4393 {
4394 best = NULL;
4395 *pneed_stall = 1;
4396 }
4397 }
4398
4399 if (best != NULL)
4400 {
4401 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4402 can_issue_more);
4403 if (targetm.sched.variable_issue
4404 && can_issue_more == 0)
4405 *pneed_stall = 1;
4406 }
4407
4408 if (sched_verbose >= 2)
4409 {
4410 if (best != NULL)
4411 {
4412 sel_print ("Best expression (vliw form): ");
4413 dump_expr (best);
4414 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4415 }
4416 else
4417 sel_print ("No best expr found!\n");
4418 }
4419
4420 return best;
4421 }
4422 \f
4423
4424 /* Functions that implement the core of the scheduler. */
4425
4426
4427 /* Emit an instruction from EXPR with SEQNO and VINSN after
4428 PLACE_TO_INSERT. */
4429 static insn_t
4430 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4431 insn_t place_to_insert)
4432 {
4433 /* This assert fails when we have identical instructions
4434 one of which dominates the other. In this case move_op ()
4435 finds the first instruction and doesn't search for second one.
4436 The solution would be to compute av_set after the first found
4437 insn and, if insn present in that set, continue searching.
4438 For now we workaround this issue in move_op. */
4439 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4440
4441 if (EXPR_WAS_RENAMED (expr))
4442 {
4443 unsigned regno = expr_dest_regno (expr);
4444
4445 if (HARD_REGISTER_NUM_P (regno))
4446 {
4447 df_set_regs_ever_live (regno, true);
4448 reg_rename_tick[regno] = ++reg_rename_this_tick;
4449 }
4450 }
4451
4452 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4453 place_to_insert);
4454 }
4455
4456 /* Return TRUE if BB can hold bookkeeping code. */
4457 static bool
4458 block_valid_for_bookkeeping_p (basic_block bb)
4459 {
4460 insn_t bb_end = BB_END (bb);
4461
4462 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4463 return false;
4464
4465 if (INSN_P (bb_end))
4466 {
4467 if (INSN_SCHED_TIMES (bb_end) > 0)
4468 return false;
4469 }
4470 else
4471 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4472
4473 return true;
4474 }
4475
4476 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4477 into E2->dest, except from E1->src (there may be a sequence of empty basic
4478 blocks between E1->src and E2->dest). Return found block, or NULL if new
4479 one must be created. If LAX holds, don't assume there is a simple path
4480 from E1->src to E2->dest. */
4481 static basic_block
4482 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4483 {
4484 basic_block candidate_block = NULL;
4485 edge e;
4486
4487 /* Loop over edges from E1 to E2, inclusive. */
4488 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4489 {
4490 if (EDGE_COUNT (e->dest->preds) == 2)
4491 {
4492 if (candidate_block == NULL)
4493 candidate_block = (EDGE_PRED (e->dest, 0) == e
4494 ? EDGE_PRED (e->dest, 1)->src
4495 : EDGE_PRED (e->dest, 0)->src);
4496 else
4497 /* Found additional edge leading to path from e1 to e2
4498 from aside. */
4499 return NULL;
4500 }
4501 else if (EDGE_COUNT (e->dest->preds) > 2)
4502 /* Several edges leading to path from e1 to e2 from aside. */
4503 return NULL;
4504
4505 if (e == e2)
4506 return ((!lax || candidate_block)
4507 && block_valid_for_bookkeeping_p (candidate_block)
4508 ? candidate_block
4509 : NULL);
4510
4511 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4512 return NULL;
4513 }
4514
4515 if (lax)
4516 return NULL;
4517
4518 gcc_unreachable ();
4519 }
4520
4521 /* Create new basic block for bookkeeping code for path(s) incoming into
4522 E2->dest, except from E1->src. Return created block. */
4523 static basic_block
4524 create_block_for_bookkeeping (edge e1, edge e2)
4525 {
4526 basic_block new_bb, bb = e2->dest;
4527
4528 /* Check that we don't spoil the loop structure. */
4529 if (current_loop_nest)
4530 {
4531 basic_block latch = current_loop_nest->latch;
4532
4533 /* We do not split header. */
4534 gcc_assert (e2->dest != current_loop_nest->header);
4535
4536 /* We do not redirect the only edge to the latch block. */
4537 gcc_assert (e1->dest != latch
4538 || !single_pred_p (latch)
4539 || e1 != single_pred_edge (latch));
4540 }
4541
4542 /* Split BB to insert BOOK_INSN there. */
4543 new_bb = sched_split_block (bb, NULL);
4544
4545 /* Move note_list from the upper bb. */
4546 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4547 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4548 BB_NOTE_LIST (bb) = NULL_RTX;
4549
4550 gcc_assert (e2->dest == bb);
4551
4552 /* Skip block for bookkeeping copy when leaving E1->src. */
4553 if (e1->flags & EDGE_FALLTHRU)
4554 sel_redirect_edge_and_branch_force (e1, new_bb);
4555 else
4556 sel_redirect_edge_and_branch (e1, new_bb);
4557
4558 gcc_assert (e1->dest == new_bb);
4559 gcc_assert (sel_bb_empty_p (bb));
4560
4561 /* To keep basic block numbers in sync between debug and non-debug
4562 compilations, we have to rotate blocks here. Consider that we
4563 started from (a,b)->d, (c,d)->e, and d contained only debug
4564 insns. It would have been removed before if the debug insns
4565 weren't there, so we'd have split e rather than d. So what we do
4566 now is to swap the block numbers of new_bb and
4567 single_succ(new_bb) == e, so that the insns that were in e before
4568 get the new block number. */
4569
4570 if (MAY_HAVE_DEBUG_INSNS)
4571 {
4572 basic_block succ;
4573 insn_t insn = sel_bb_head (new_bb);
4574 insn_t last;
4575
4576 if (DEBUG_INSN_P (insn)
4577 && single_succ_p (new_bb)
4578 && (succ = single_succ (new_bb))
4579 && succ != EXIT_BLOCK_PTR
4580 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4581 {
4582 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4583 insn = NEXT_INSN (insn);
4584
4585 if (insn == last)
4586 {
4587 sel_global_bb_info_def gbi;
4588 sel_region_bb_info_def rbi;
4589 int i;
4590
4591 if (sched_verbose >= 2)
4592 sel_print ("Swapping block ids %i and %i\n",
4593 new_bb->index, succ->index);
4594
4595 i = new_bb->index;
4596 new_bb->index = succ->index;
4597 succ->index = i;
4598
4599 SET_BASIC_BLOCK (new_bb->index, new_bb);
4600 SET_BASIC_BLOCK (succ->index, succ);
4601
4602 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4603 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4604 sizeof (gbi));
4605 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4606
4607 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4608 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4609 sizeof (rbi));
4610 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4611
4612 i = BLOCK_TO_BB (new_bb->index);
4613 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4614 BLOCK_TO_BB (succ->index) = i;
4615
4616 i = CONTAINING_RGN (new_bb->index);
4617 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4618 CONTAINING_RGN (succ->index) = i;
4619
4620 for (i = 0; i < current_nr_blocks; i++)
4621 if (BB_TO_BLOCK (i) == succ->index)
4622 BB_TO_BLOCK (i) = new_bb->index;
4623 else if (BB_TO_BLOCK (i) == new_bb->index)
4624 BB_TO_BLOCK (i) = succ->index;
4625
4626 FOR_BB_INSNS (new_bb, insn)
4627 if (INSN_P (insn))
4628 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4629
4630 FOR_BB_INSNS (succ, insn)
4631 if (INSN_P (insn))
4632 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4633
4634 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4635 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4636
4637 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4638 && LABEL_P (BB_HEAD (succ)));
4639
4640 if (sched_verbose >= 4)
4641 sel_print ("Swapping code labels %i and %i\n",
4642 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4643 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4644
4645 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4646 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4647 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4648 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4649 }
4650 }
4651 }
4652
4653 return bb;
4654 }
4655
4656 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4657 into E2->dest, except from E1->src. If the returned insn immediately
4658 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4659 static insn_t
4660 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4661 {
4662 insn_t place_to_insert;
4663 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4664 create new basic block, but insert bookkeeping there. */
4665 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4666
4667 if (book_block)
4668 {
4669 place_to_insert = BB_END (book_block);
4670
4671 /* Don't use a block containing only debug insns for
4672 bookkeeping, this causes scheduling differences between debug
4673 and non-debug compilations, for the block would have been
4674 removed already. */
4675 if (DEBUG_INSN_P (place_to_insert))
4676 {
4677 rtx insn = sel_bb_head (book_block);
4678
4679 while (insn != place_to_insert &&
4680 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4681 insn = NEXT_INSN (insn);
4682
4683 if (insn == place_to_insert)
4684 book_block = NULL;
4685 }
4686 }
4687
4688 if (!book_block)
4689 {
4690 book_block = create_block_for_bookkeeping (e1, e2);
4691 place_to_insert = BB_END (book_block);
4692 if (sched_verbose >= 9)
4693 sel_print ("New block is %i, split from bookkeeping block %i\n",
4694 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4695 }
4696 else
4697 {
4698 if (sched_verbose >= 9)
4699 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4700 }
4701
4702 *fence_to_rewind = NULL;
4703 /* If basic block ends with a jump, insert bookkeeping code right before it.
4704 Notice if we are crossing a fence when taking PREV_INSN. */
4705 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4706 {
4707 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4708 place_to_insert = PREV_INSN (place_to_insert);
4709 }
4710
4711 return place_to_insert;
4712 }
4713
4714 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4715 for JOIN_POINT. */
4716 static int
4717 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4718 {
4719 int seqno;
4720 rtx next;
4721
4722 /* Check if we are about to insert bookkeeping copy before a jump, and use
4723 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4724 next = NEXT_INSN (place_to_insert);
4725 if (INSN_P (next)
4726 && JUMP_P (next)
4727 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4728 {
4729 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4730 seqno = INSN_SEQNO (next);
4731 }
4732 else if (INSN_SEQNO (join_point) > 0)
4733 seqno = INSN_SEQNO (join_point);
4734 else
4735 {
4736 seqno = get_seqno_by_preds (place_to_insert);
4737
4738 /* Sometimes the fences can move in such a way that there will be
4739 no instructions with positive seqno around this bookkeeping.
4740 This means that there will be no way to get to it by a regular
4741 fence movement. Never mind because we pick up such pieces for
4742 rescheduling anyways, so any positive value will do for now. */
4743 if (seqno < 0)
4744 {
4745 gcc_assert (pipelining_p);
4746 seqno = 1;
4747 }
4748 }
4749
4750 gcc_assert (seqno > 0);
4751 return seqno;
4752 }
4753
4754 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4755 NEW_SEQNO to it. Return created insn. */
4756 static insn_t
4757 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4758 {
4759 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4760
4761 vinsn_t new_vinsn
4762 = create_vinsn_from_insn_rtx (new_insn_rtx,
4763 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4764
4765 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4766 place_to_insert);
4767
4768 INSN_SCHED_TIMES (new_insn) = 0;
4769 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4770
4771 return new_insn;
4772 }
4773
4774 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4775 E2->dest, except from E1->src (there may be a sequence of empty blocks
4776 between E1->src and E2->dest). Return block containing the copy.
4777 All scheduler data is initialized for the newly created insn. */
4778 static basic_block
4779 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4780 {
4781 insn_t join_point, place_to_insert, new_insn;
4782 int new_seqno;
4783 bool need_to_exchange_data_sets;
4784 fence_t fence_to_rewind;
4785
4786 if (sched_verbose >= 4)
4787 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4788 e2->dest->index);
4789
4790 join_point = sel_bb_head (e2->dest);
4791 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4792 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4793 need_to_exchange_data_sets
4794 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4795
4796 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4797
4798 if (fence_to_rewind)
4799 FENCE_INSN (fence_to_rewind) = new_insn;
4800
4801 /* When inserting bookkeeping insn in new block, av sets should be
4802 following: old basic block (that now holds bookkeeping) data sets are
4803 the same as was before generation of bookkeeping, and new basic block
4804 (that now hold all other insns of old basic block) data sets are
4805 invalid. So exchange data sets for these basic blocks as sel_split_block
4806 mistakenly exchanges them in this case. Cannot do it earlier because
4807 when single instruction is added to new basic block it should hold NULL
4808 lv_set. */
4809 if (need_to_exchange_data_sets)
4810 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4811 BLOCK_FOR_INSN (join_point));
4812
4813 stat_bookkeeping_copies++;
4814 return BLOCK_FOR_INSN (new_insn);
4815 }
4816
4817 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4818 on FENCE, but we are unable to copy them. */
4819 static void
4820 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4821 {
4822 expr_t expr;
4823 av_set_iterator i;
4824
4825 /* An expression does not need bookkeeping if it is available on all paths
4826 from current block to original block and current block dominates
4827 original block. We check availability on all paths by examining
4828 EXPR_SPEC; this is not equivalent, because it may be positive even
4829 if expr is available on all paths (but if expr is not available on
4830 any path, EXPR_SPEC will be positive). */
4831
4832 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4833 {
4834 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4835 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4836 && (EXPR_SPEC (expr)
4837 || !EXPR_ORIG_BB_INDEX (expr)
4838 || !dominated_by_p (CDI_DOMINATORS,
4839 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4840 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4841 {
4842 if (sched_verbose >= 4)
4843 sel_print ("Expr %d removed because it would need bookkeeping, which "
4844 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4845 av_set_iter_remove (&i);
4846 }
4847 }
4848 }
4849
4850 /* Moving conditional jump through some instructions.
4851
4852 Consider example:
4853
4854 ... <- current scheduling point
4855 NOTE BASIC BLOCK: <- bb header
4856 (p8) add r14=r14+0x9;;
4857 (p8) mov [r14]=r23
4858 (!p8) jump L1;;
4859 NOTE BASIC BLOCK:
4860 ...
4861
4862 We can schedule jump one cycle earlier, than mov, because they cannot be
4863 executed together as their predicates are mutually exclusive.
4864
4865 This is done in this way: first, new fallthrough basic block is created
4866 after jump (it is always can be done, because there already should be a
4867 fallthrough block, where control flow goes in case of predicate being true -
4868 in our example; otherwise there should be a dependence between those
4869 instructions and jump and we cannot schedule jump right now);
4870 next, all instructions between jump and current scheduling point are moved
4871 to this new block. And the result is this:
4872
4873 NOTE BASIC BLOCK:
4874 (!p8) jump L1 <- current scheduling point
4875 NOTE BASIC BLOCK: <- bb header
4876 (p8) add r14=r14+0x9;;
4877 (p8) mov [r14]=r23
4878 NOTE BASIC BLOCK:
4879 ...
4880 */
4881 static void
4882 move_cond_jump (rtx insn, bnd_t bnd)
4883 {
4884 edge ft_edge;
4885 basic_block block_from, block_next, block_new, block_bnd, bb;
4886 rtx next, prev, link, head;
4887
4888 block_from = BLOCK_FOR_INSN (insn);
4889 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4890 prev = BND_TO (bnd);
4891
4892 #ifdef ENABLE_CHECKING
4893 /* Moving of jump should not cross any other jumps or beginnings of new
4894 basic blocks. The only exception is when we move a jump through
4895 mutually exclusive insns along fallthru edges. */
4896 if (block_from != block_bnd)
4897 {
4898 bb = block_from;
4899 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4900 link = PREV_INSN (link))
4901 {
4902 if (INSN_P (link))
4903 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4904 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4905 {
4906 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4907 bb = BLOCK_FOR_INSN (link);
4908 }
4909 }
4910 }
4911 #endif
4912
4913 /* Jump is moved to the boundary. */
4914 next = PREV_INSN (insn);
4915 BND_TO (bnd) = insn;
4916
4917 ft_edge = find_fallthru_edge_from (block_from);
4918 block_next = ft_edge->dest;
4919 /* There must be a fallthrough block (or where should go
4920 control flow in case of false jump predicate otherwise?). */
4921 gcc_assert (block_next);
4922
4923 /* Create new empty basic block after source block. */
4924 block_new = sel_split_edge (ft_edge);
4925 gcc_assert (block_new->next_bb == block_next
4926 && block_from->next_bb == block_new);
4927
4928 /* Move all instructions except INSN to BLOCK_NEW. */
4929 bb = block_bnd;
4930 head = BB_HEAD (block_new);
4931 while (bb != block_from->next_bb)
4932 {
4933 rtx from, to;
4934 from = bb == block_bnd ? prev : sel_bb_head (bb);
4935 to = bb == block_from ? next : sel_bb_end (bb);
4936
4937 /* The jump being moved can be the first insn in the block.
4938 In this case we don't have to move anything in this block. */
4939 if (NEXT_INSN (to) != from)
4940 {
4941 reorder_insns (from, to, head);
4942
4943 for (link = to; link != head; link = PREV_INSN (link))
4944 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4945 head = to;
4946 }
4947
4948 /* Cleanup possibly empty blocks left. */
4949 block_next = bb->next_bb;
4950 if (bb != block_from)
4951 tidy_control_flow (bb, false);
4952 bb = block_next;
4953 }
4954
4955 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4956 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4957
4958 gcc_assert (!sel_bb_empty_p (block_from)
4959 && !sel_bb_empty_p (block_new));
4960
4961 /* Update data sets for BLOCK_NEW to represent that INSN and
4962 instructions from the other branch of INSN is no longer
4963 available at BLOCK_NEW. */
4964 BB_AV_LEVEL (block_new) = global_level;
4965 gcc_assert (BB_LV_SET (block_new) == NULL);
4966 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4967 update_data_sets (sel_bb_head (block_new));
4968
4969 /* INSN is a new basic block header - so prepare its data
4970 structures and update availability and liveness sets. */
4971 update_data_sets (insn);
4972
4973 if (sched_verbose >= 4)
4974 sel_print ("Moving jump %d\n", INSN_UID (insn));
4975 }
4976
4977 /* Remove nops generated during move_op for preventing removal of empty
4978 basic blocks. */
4979 static void
4980 remove_temp_moveop_nops (bool full_tidying)
4981 {
4982 int i;
4983 insn_t insn;
4984
4985 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4986 {
4987 gcc_assert (INSN_NOP_P (insn));
4988 return_nop_to_pool (insn, full_tidying);
4989 }
4990
4991 /* Empty the vector. */
4992 if (vec_temp_moveop_nops.length () > 0)
4993 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
4994 }
4995
4996 /* Records the maximal UID before moving up an instruction. Used for
4997 distinguishing between bookkeeping copies and original insns. */
4998 static int max_uid_before_move_op = 0;
4999
5000 /* Remove from AV_VLIW_P all instructions but next when debug counter
5001 tells us so. Next instruction is fetched from BNDS. */
5002 static void
5003 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5004 {
5005 if (! dbg_cnt (sel_sched_insn_cnt))
5006 /* Leave only the next insn in av_vliw. */
5007 {
5008 av_set_iterator av_it;
5009 expr_t expr;
5010 bnd_t bnd = BLIST_BND (bnds);
5011 insn_t next = BND_TO (bnd);
5012
5013 gcc_assert (BLIST_NEXT (bnds) == NULL);
5014
5015 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5016 if (EXPR_INSN_RTX (expr) != next)
5017 av_set_iter_remove (&av_it);
5018 }
5019 }
5020
5021 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5022 the computed set to *AV_VLIW_P. */
5023 static void
5024 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5025 {
5026 if (sched_verbose >= 2)
5027 {
5028 sel_print ("Boundaries: ");
5029 dump_blist (bnds);
5030 sel_print ("\n");
5031 }
5032
5033 for (; bnds; bnds = BLIST_NEXT (bnds))
5034 {
5035 bnd_t bnd = BLIST_BND (bnds);
5036 av_set_t av1_copy;
5037 insn_t bnd_to = BND_TO (bnd);
5038
5039 /* Rewind BND->TO to the basic block header in case some bookkeeping
5040 instructions were inserted before BND->TO and it needs to be
5041 adjusted. */
5042 if (sel_bb_head_p (bnd_to))
5043 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5044 else
5045 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5046 {
5047 bnd_to = PREV_INSN (bnd_to);
5048 if (sel_bb_head_p (bnd_to))
5049 break;
5050 }
5051
5052 if (BND_TO (bnd) != bnd_to)
5053 {
5054 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5055 FENCE_INSN (fence) = bnd_to;
5056 BND_TO (bnd) = bnd_to;
5057 }
5058
5059 av_set_clear (&BND_AV (bnd));
5060 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5061
5062 av_set_clear (&BND_AV1 (bnd));
5063 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5064
5065 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5066
5067 av1_copy = av_set_copy (BND_AV1 (bnd));
5068 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5069 }
5070
5071 if (sched_verbose >= 2)
5072 {
5073 sel_print ("Available exprs (vliw form): ");
5074 dump_av_set (*av_vliw_p);
5075 sel_print ("\n");
5076 }
5077 }
5078
5079 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5080 expression. When FOR_MOVEOP is true, also replace the register of
5081 expressions found with the register from EXPR_VLIW. */
5082 static av_set_t
5083 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5084 {
5085 av_set_t expr_seq = NULL;
5086 expr_t expr;
5087 av_set_iterator i;
5088
5089 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5090 {
5091 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5092 {
5093 if (for_moveop)
5094 {
5095 /* The sequential expression has the right form to pass
5096 to move_op except when renaming happened. Put the
5097 correct register in EXPR then. */
5098 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5099 {
5100 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5101 {
5102 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5103 stat_renamed_scheduled++;
5104 }
5105 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5106 This is needed when renaming came up with original
5107 register. */
5108 else if (EXPR_TARGET_AVAILABLE (expr)
5109 != EXPR_TARGET_AVAILABLE (expr_vliw))
5110 {
5111 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5112 EXPR_TARGET_AVAILABLE (expr) = 1;
5113 }
5114 }
5115 if (EXPR_WAS_SUBSTITUTED (expr))
5116 stat_substitutions_total++;
5117 }
5118
5119 av_set_add (&expr_seq, expr);
5120
5121 /* With substitution inside insn group, it is possible
5122 that more than one expression in expr_seq will correspond
5123 to expr_vliw. In this case, choose one as the attempt to
5124 move both leads to miscompiles. */
5125 break;
5126 }
5127 }
5128
5129 if (for_moveop && sched_verbose >= 2)
5130 {
5131 sel_print ("Best expression(s) (sequential form): ");
5132 dump_av_set (expr_seq);
5133 sel_print ("\n");
5134 }
5135
5136 return expr_seq;
5137 }
5138
5139
5140 /* Move nop to previous block. */
5141 static void ATTRIBUTE_UNUSED
5142 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5143 {
5144 insn_t prev_insn, next_insn, note;
5145
5146 gcc_assert (sel_bb_head_p (nop)
5147 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5148 note = bb_note (BLOCK_FOR_INSN (nop));
5149 prev_insn = sel_bb_end (prev_bb);
5150 next_insn = NEXT_INSN (nop);
5151 gcc_assert (prev_insn != NULL_RTX
5152 && PREV_INSN (note) == prev_insn);
5153
5154 NEXT_INSN (prev_insn) = nop;
5155 PREV_INSN (nop) = prev_insn;
5156
5157 PREV_INSN (note) = nop;
5158 NEXT_INSN (note) = next_insn;
5159
5160 NEXT_INSN (nop) = note;
5161 PREV_INSN (next_insn) = note;
5162
5163 BB_END (prev_bb) = nop;
5164 BLOCK_FOR_INSN (nop) = prev_bb;
5165 }
5166
5167 /* Prepare a place to insert the chosen expression on BND. */
5168 static insn_t
5169 prepare_place_to_insert (bnd_t bnd)
5170 {
5171 insn_t place_to_insert;
5172
5173 /* Init place_to_insert before calling move_op, as the later
5174 can possibly remove BND_TO (bnd). */
5175 if (/* If this is not the first insn scheduled. */
5176 BND_PTR (bnd))
5177 {
5178 /* Add it after last scheduled. */
5179 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5180 if (DEBUG_INSN_P (place_to_insert))
5181 {
5182 ilist_t l = BND_PTR (bnd);
5183 while ((l = ILIST_NEXT (l)) &&
5184 DEBUG_INSN_P (ILIST_INSN (l)))
5185 ;
5186 if (!l)
5187 place_to_insert = NULL;
5188 }
5189 }
5190 else
5191 place_to_insert = NULL;
5192
5193 if (!place_to_insert)
5194 {
5195 /* Add it before BND_TO. The difference is in the
5196 basic block, where INSN will be added. */
5197 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5198 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5199 == BLOCK_FOR_INSN (BND_TO (bnd)));
5200 }
5201
5202 return place_to_insert;
5203 }
5204
5205 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5206 Return the expression to emit in C_EXPR. */
5207 static bool
5208 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5209 av_set_t expr_seq, expr_t c_expr)
5210 {
5211 bool b, should_move;
5212 unsigned book_uid;
5213 bitmap_iterator bi;
5214 int n_bookkeeping_copies_before_moveop;
5215
5216 /* Make a move. This call will remove the original operation,
5217 insert all necessary bookkeeping instructions and update the
5218 data sets. After that all we have to do is add the operation
5219 at before BND_TO (BND). */
5220 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5221 max_uid_before_move_op = get_max_uid ();
5222 bitmap_clear (current_copies);
5223 bitmap_clear (current_originators);
5224
5225 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5226 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5227
5228 /* We should be able to find the expression we've chosen for
5229 scheduling. */
5230 gcc_assert (b);
5231
5232 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5233 stat_insns_needed_bookkeeping++;
5234
5235 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5236 {
5237 unsigned uid;
5238 bitmap_iterator bi;
5239
5240 /* We allocate these bitmaps lazily. */
5241 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5242 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5243
5244 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5245 current_originators);
5246
5247 /* Transitively add all originators' originators. */
5248 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5249 if (INSN_ORIGINATORS_BY_UID (uid))
5250 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5251 INSN_ORIGINATORS_BY_UID (uid));
5252 }
5253
5254 return should_move;
5255 }
5256
5257
5258 /* Debug a DFA state as an array of bytes. */
5259 static void
5260 debug_state (state_t state)
5261 {
5262 unsigned char *p;
5263 unsigned int i, size = dfa_state_size;
5264
5265 sel_print ("state (%u):", size);
5266 for (i = 0, p = (unsigned char *) state; i < size; i++)
5267 sel_print (" %d", p[i]);
5268 sel_print ("\n");
5269 }
5270
5271 /* Advance state on FENCE with INSN. Return true if INSN is
5272 an ASM, and we should advance state once more. */
5273 static bool
5274 advance_state_on_fence (fence_t fence, insn_t insn)
5275 {
5276 bool asm_p;
5277
5278 if (recog_memoized (insn) >= 0)
5279 {
5280 int res;
5281 state_t temp_state = alloca (dfa_state_size);
5282
5283 gcc_assert (!INSN_ASM_P (insn));
5284 asm_p = false;
5285
5286 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5287 res = state_transition (FENCE_STATE (fence), insn);
5288 gcc_assert (res < 0);
5289
5290 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5291 {
5292 FENCE_ISSUED_INSNS (fence)++;
5293
5294 /* We should never issue more than issue_rate insns. */
5295 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5296 gcc_unreachable ();
5297 }
5298 }
5299 else
5300 {
5301 /* This could be an ASM insn which we'd like to schedule
5302 on the next cycle. */
5303 asm_p = INSN_ASM_P (insn);
5304 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5305 advance_one_cycle (fence);
5306 }
5307
5308 if (sched_verbose >= 2)
5309 debug_state (FENCE_STATE (fence));
5310 if (!DEBUG_INSN_P (insn))
5311 FENCE_STARTS_CYCLE_P (fence) = 0;
5312 FENCE_ISSUE_MORE (fence) = can_issue_more;
5313 return asm_p;
5314 }
5315
5316 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5317 is nonzero if we need to stall after issuing INSN. */
5318 static void
5319 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5320 {
5321 bool asm_p;
5322
5323 /* First, reflect that something is scheduled on this fence. */
5324 asm_p = advance_state_on_fence (fence, insn);
5325 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5326 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5327 if (SCHED_GROUP_P (insn))
5328 {
5329 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5330 SCHED_GROUP_P (insn) = 0;
5331 }
5332 else
5333 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5334 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5335 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5336
5337 /* Set instruction scheduling info. This will be used in bundling,
5338 pipelining, tick computations etc. */
5339 ++INSN_SCHED_TIMES (insn);
5340 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5341 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5342 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5343 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5344
5345 /* This does not account for adjust_cost hooks, just add the biggest
5346 constant the hook may add to the latency. TODO: make this
5347 a target dependent constant. */
5348 INSN_READY_CYCLE (insn)
5349 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5350 ? 1
5351 : maximal_insn_latency (insn) + 1);
5352
5353 /* Change these fields last, as they're used above. */
5354 FENCE_AFTER_STALL_P (fence) = 0;
5355 if (asm_p || need_stall)
5356 advance_one_cycle (fence);
5357
5358 /* Indicate that we've scheduled something on this fence. */
5359 FENCE_SCHEDULED_P (fence) = true;
5360 scheduled_something_on_previous_fence = true;
5361
5362 /* Print debug information when insn's fields are updated. */
5363 if (sched_verbose >= 2)
5364 {
5365 sel_print ("Scheduling insn: ");
5366 dump_insn_1 (insn, 1);
5367 sel_print ("\n");
5368 }
5369 }
5370
5371 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5372 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5373 return it. */
5374 static blist_t *
5375 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5376 blist_t *bnds_tailp)
5377 {
5378 succ_iterator si;
5379 insn_t succ;
5380
5381 advance_deps_context (BND_DC (bnd), insn);
5382 FOR_EACH_SUCC_1 (succ, si, insn,
5383 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5384 {
5385 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5386
5387 ilist_add (&ptr, insn);
5388
5389 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5390 && is_ineligible_successor (succ, ptr))
5391 {
5392 ilist_clear (&ptr);
5393 continue;
5394 }
5395
5396 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5397 {
5398 if (sched_verbose >= 9)
5399 sel_print ("Updating fence insn from %i to %i\n",
5400 INSN_UID (insn), INSN_UID (succ));
5401 FENCE_INSN (fence) = succ;
5402 }
5403 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5404 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5405 }
5406
5407 blist_remove (bndsp);
5408 return bnds_tailp;
5409 }
5410
5411 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5412 static insn_t
5413 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5414 {
5415 av_set_t expr_seq;
5416 expr_t c_expr = XALLOCA (expr_def);
5417 insn_t place_to_insert;
5418 insn_t insn;
5419 bool should_move;
5420
5421 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5422
5423 /* In case of scheduling a jump skipping some other instructions,
5424 prepare CFG. After this, jump is at the boundary and can be
5425 scheduled as usual insn by MOVE_OP. */
5426 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5427 {
5428 insn = EXPR_INSN_RTX (expr_vliw);
5429
5430 /* Speculative jumps are not handled. */
5431 if (insn != BND_TO (bnd)
5432 && !sel_insn_is_speculation_check (insn))
5433 move_cond_jump (insn, bnd);
5434 }
5435
5436 /* Find a place for C_EXPR to schedule. */
5437 place_to_insert = prepare_place_to_insert (bnd);
5438 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5439 clear_expr (c_expr);
5440
5441 /* Add the instruction. The corner case to care about is when
5442 the expr_seq set has more than one expr, and we chose the one that
5443 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5444 we can't use it. Generate the new vinsn. */
5445 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5446 {
5447 vinsn_t vinsn_new;
5448
5449 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5450 change_vinsn_in_expr (expr_vliw, vinsn_new);
5451 should_move = false;
5452 }
5453 if (should_move)
5454 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5455 else
5456 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5457 place_to_insert);
5458
5459 /* Return the nops generated for preserving of data sets back
5460 into pool. */
5461 if (INSN_NOP_P (place_to_insert))
5462 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5463 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5464
5465 av_set_clear (&expr_seq);
5466
5467 /* Save the expression scheduled so to reset target availability if we'll
5468 meet it later on the same fence. */
5469 if (EXPR_WAS_RENAMED (expr_vliw))
5470 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5471
5472 /* Check that the recent movement didn't destroyed loop
5473 structure. */
5474 gcc_assert (!pipelining_p
5475 || current_loop_nest == NULL
5476 || loop_latch_edge (current_loop_nest));
5477 return insn;
5478 }
5479
5480 /* Stall for N cycles on FENCE. */
5481 static void
5482 stall_for_cycles (fence_t fence, int n)
5483 {
5484 int could_more;
5485
5486 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5487 while (n--)
5488 advance_one_cycle (fence);
5489 if (could_more)
5490 FENCE_AFTER_STALL_P (fence) = 1;
5491 }
5492
5493 /* Gather a parallel group of insns at FENCE and assign their seqno
5494 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5495 list for later recalculation of seqnos. */
5496 static void
5497 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5498 {
5499 blist_t bnds = NULL, *bnds_tailp;
5500 av_set_t av_vliw = NULL;
5501 insn_t insn = FENCE_INSN (fence);
5502
5503 if (sched_verbose >= 2)
5504 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5505 INSN_UID (insn), FENCE_CYCLE (fence));
5506
5507 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5508 bnds_tailp = &BLIST_NEXT (bnds);
5509 set_target_context (FENCE_TC (fence));
5510 can_issue_more = FENCE_ISSUE_MORE (fence);
5511 target_bb = INSN_BB (insn);
5512
5513 /* Do while we can add any operation to the current group. */
5514 do
5515 {
5516 blist_t *bnds_tailp1, *bndsp;
5517 expr_t expr_vliw;
5518 int need_stall = false;
5519 int was_stall = 0, scheduled_insns = 0;
5520 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5521 int max_stall = pipelining_p ? 1 : 3;
5522 bool last_insn_was_debug = false;
5523 bool was_debug_bb_end_p = false;
5524
5525 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5526 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5527 remove_insns_for_debug (bnds, &av_vliw);
5528
5529 /* Return early if we have nothing to schedule. */
5530 if (av_vliw == NULL)
5531 break;
5532
5533 /* Choose the best expression and, if needed, destination register
5534 for it. */
5535 do
5536 {
5537 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5538 if (! expr_vliw && need_stall)
5539 {
5540 /* All expressions required a stall. Do not recompute av sets
5541 as we'll get the same answer (modulo the insns between
5542 the fence and its boundary, which will not be available for
5543 pipelining).
5544 If we are going to stall for too long, break to recompute av
5545 sets and bring more insns for pipelining. */
5546 was_stall++;
5547 if (need_stall <= 3)
5548 stall_for_cycles (fence, need_stall);
5549 else
5550 {
5551 stall_for_cycles (fence, 1);
5552 break;
5553 }
5554 }
5555 }
5556 while (! expr_vliw && need_stall);
5557
5558 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5559 if (!expr_vliw)
5560 {
5561 av_set_clear (&av_vliw);
5562 break;
5563 }
5564
5565 bndsp = &bnds;
5566 bnds_tailp1 = bnds_tailp;
5567
5568 do
5569 /* This code will be executed only once until we'd have several
5570 boundaries per fence. */
5571 {
5572 bnd_t bnd = BLIST_BND (*bndsp);
5573
5574 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5575 {
5576 bndsp = &BLIST_NEXT (*bndsp);
5577 continue;
5578 }
5579
5580 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5581 last_insn_was_debug = DEBUG_INSN_P (insn);
5582 if (last_insn_was_debug)
5583 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5584 update_fence_and_insn (fence, insn, need_stall);
5585 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5586
5587 /* Add insn to the list of scheduled on this cycle instructions. */
5588 ilist_add (*scheduled_insns_tailpp, insn);
5589 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5590 }
5591 while (*bndsp != *bnds_tailp1);
5592
5593 av_set_clear (&av_vliw);
5594 if (!last_insn_was_debug)
5595 scheduled_insns++;
5596
5597 /* We currently support information about candidate blocks only for
5598 one 'target_bb' block. Hence we can't schedule after jump insn,
5599 as this will bring two boundaries and, hence, necessity to handle
5600 information for two or more blocks concurrently. */
5601 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5602 || (was_stall
5603 && (was_stall >= max_stall
5604 || scheduled_insns >= max_insns)))
5605 break;
5606 }
5607 while (bnds);
5608
5609 gcc_assert (!FENCE_BNDS (fence));
5610
5611 /* Update boundaries of the FENCE. */
5612 while (bnds)
5613 {
5614 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5615
5616 if (ptr)
5617 {
5618 insn = ILIST_INSN (ptr);
5619
5620 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5621 ilist_add (&FENCE_BNDS (fence), insn);
5622 }
5623
5624 blist_remove (&bnds);
5625 }
5626
5627 /* Update target context on the fence. */
5628 reset_target_context (FENCE_TC (fence), false);
5629 }
5630
5631 /* All exprs in ORIG_OPS must have the same destination register or memory.
5632 Return that destination. */
5633 static rtx
5634 get_dest_from_orig_ops (av_set_t orig_ops)
5635 {
5636 rtx dest = NULL_RTX;
5637 av_set_iterator av_it;
5638 expr_t expr;
5639 bool first_p = true;
5640
5641 FOR_EACH_EXPR (expr, av_it, orig_ops)
5642 {
5643 rtx x = EXPR_LHS (expr);
5644
5645 if (first_p)
5646 {
5647 first_p = false;
5648 dest = x;
5649 }
5650 else
5651 gcc_assert (dest == x
5652 || (dest != NULL_RTX && x != NULL_RTX
5653 && rtx_equal_p (dest, x)));
5654 }
5655
5656 return dest;
5657 }
5658
5659 /* Update data sets for the bookkeeping block and record those expressions
5660 which become no longer available after inserting this bookkeeping. */
5661 static void
5662 update_and_record_unavailable_insns (basic_block book_block)
5663 {
5664 av_set_iterator i;
5665 av_set_t old_av_set = NULL;
5666 expr_t cur_expr;
5667 rtx bb_end = sel_bb_end (book_block);
5668
5669 /* First, get correct liveness in the bookkeeping block. The problem is
5670 the range between the bookeeping insn and the end of block. */
5671 update_liveness_on_insn (bb_end);
5672 if (control_flow_insn_p (bb_end))
5673 update_liveness_on_insn (PREV_INSN (bb_end));
5674
5675 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5676 fence above, where we may choose to schedule an insn which is
5677 actually blocked from moving up with the bookkeeping we create here. */
5678 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5679 {
5680 old_av_set = av_set_copy (BB_AV_SET (book_block));
5681 update_data_sets (sel_bb_head (book_block));
5682
5683 /* Traverse all the expressions in the old av_set and check whether
5684 CUR_EXPR is in new AV_SET. */
5685 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5686 {
5687 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5688 EXPR_VINSN (cur_expr));
5689
5690 if (! new_expr
5691 /* In this case, we can just turn off the E_T_A bit, but we can't
5692 represent this information with the current vector. */
5693 || EXPR_TARGET_AVAILABLE (new_expr)
5694 != EXPR_TARGET_AVAILABLE (cur_expr))
5695 /* Unfortunately, the below code could be also fired up on
5696 separable insns, e.g. when moving insns through the new
5697 speculation check as in PR 53701. */
5698 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5699 }
5700
5701 av_set_clear (&old_av_set);
5702 }
5703 }
5704
5705 /* The main effect of this function is that sparams->c_expr is merged
5706 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5707 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5708 lparams->c_expr_merged is copied back to sparams->c_expr after all
5709 successors has been traversed. lparams->c_expr_local is an expr allocated
5710 on stack in the caller function, and is used if there is more than one
5711 successor.
5712
5713 SUCC is one of the SUCCS_NORMAL successors of INSN,
5714 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5715 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5716 static void
5717 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5718 insn_t succ ATTRIBUTE_UNUSED,
5719 int moveop_drv_call_res,
5720 cmpd_local_params_p lparams, void *static_params)
5721 {
5722 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5723
5724 /* Nothing to do, if original expr wasn't found below. */
5725 if (moveop_drv_call_res != 1)
5726 return;
5727
5728 /* If this is a first successor. */
5729 if (!lparams->c_expr_merged)
5730 {
5731 lparams->c_expr_merged = sparams->c_expr;
5732 sparams->c_expr = lparams->c_expr_local;
5733 }
5734 else
5735 {
5736 /* We must merge all found expressions to get reasonable
5737 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5738 do so then we can first find the expr with epsilon
5739 speculation success probability and only then with the
5740 good probability. As a result the insn will get epsilon
5741 probability and will never be scheduled because of
5742 weakness_cutoff in find_best_expr.
5743
5744 We call merge_expr_data here instead of merge_expr
5745 because due to speculation C_EXPR and X may have the
5746 same insns with different speculation types. And as of
5747 now such insns are considered non-equal.
5748
5749 However, EXPR_SCHED_TIMES is different -- we must get
5750 SCHED_TIMES from a real insn, not a bookkeeping copy.
5751 We force this here. Instead, we may consider merging
5752 SCHED_TIMES to the maximum instead of minimum in the
5753 below function. */
5754 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5755
5756 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5757 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5758 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5759
5760 clear_expr (sparams->c_expr);
5761 }
5762 }
5763
5764 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5765
5766 SUCC is one of the SUCCS_NORMAL successors of INSN,
5767 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5768 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5769 STATIC_PARAMS contain USED_REGS set. */
5770 static void
5771 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5772 int moveop_drv_call_res,
5773 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5774 void *static_params)
5775 {
5776 regset succ_live;
5777 fur_static_params_p sparams = (fur_static_params_p) static_params;
5778
5779 /* Here we compute live regsets only for branches that do not lie
5780 on the code motion paths. These branches correspond to value
5781 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5782 for such branches code_motion_path_driver is not called. */
5783 if (moveop_drv_call_res != 0)
5784 return;
5785
5786 /* Mark all registers that do not meet the following condition:
5787 (3) not live on the other path of any conditional branch
5788 that is passed by the operation, in case original
5789 operations are not present on both paths of the
5790 conditional branch. */
5791 succ_live = compute_live (succ);
5792 IOR_REG_SET (sparams->used_regs, succ_live);
5793 }
5794
5795 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5796 into SP->CEXPR. */
5797 static void
5798 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5799 {
5800 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5801
5802 sp->c_expr = lp->c_expr_merged;
5803 }
5804
5805 /* Track bookkeeping copies created, insns scheduled, and blocks for
5806 rescheduling when INSN is found by move_op. */
5807 static void
5808 track_scheduled_insns_and_blocks (rtx insn)
5809 {
5810 /* Even if this insn can be a copy that will be removed during current move_op,
5811 we still need to count it as an originator. */
5812 bitmap_set_bit (current_originators, INSN_UID (insn));
5813
5814 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5815 {
5816 /* Note that original block needs to be rescheduled, as we pulled an
5817 instruction out of it. */
5818 if (INSN_SCHED_TIMES (insn) > 0)
5819 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5820 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5821 num_insns_scheduled++;
5822 }
5823
5824 /* For instructions we must immediately remove insn from the
5825 stream, so subsequent update_data_sets () won't include this
5826 insn into av_set.
5827 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5828 if (INSN_UID (insn) > max_uid_before_move_op)
5829 stat_bookkeeping_copies--;
5830 }
5831
5832 /* Emit a register-register copy for INSN if needed. Return true if
5833 emitted one. PARAMS is the move_op static parameters. */
5834 static bool
5835 maybe_emit_renaming_copy (rtx insn,
5836 moveop_static_params_p params)
5837 {
5838 bool insn_emitted = false;
5839 rtx cur_reg;
5840
5841 /* Bail out early when expression can not be renamed at all. */
5842 if (!EXPR_SEPARABLE_P (params->c_expr))
5843 return false;
5844
5845 cur_reg = expr_dest_reg (params->c_expr);
5846 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5847
5848 /* If original operation has expr and the register chosen for
5849 that expr is not original operation's dest reg, substitute
5850 operation's right hand side with the register chosen. */
5851 if (REGNO (params->dest) != REGNO (cur_reg))
5852 {
5853 insn_t reg_move_insn, reg_move_insn_rtx;
5854
5855 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5856 params->dest);
5857 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5858 INSN_EXPR (insn),
5859 INSN_SEQNO (insn),
5860 insn);
5861 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5862 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5863
5864 insn_emitted = true;
5865 params->was_renamed = true;
5866 }
5867
5868 return insn_emitted;
5869 }
5870
5871 /* Emit a speculative check for INSN speculated as EXPR if needed.
5872 Return true if we've emitted one. PARAMS is the move_op static
5873 parameters. */
5874 static bool
5875 maybe_emit_speculative_check (rtx insn, expr_t expr,
5876 moveop_static_params_p params)
5877 {
5878 bool insn_emitted = false;
5879 insn_t x;
5880 ds_t check_ds;
5881
5882 check_ds = get_spec_check_type_for_insn (insn, expr);
5883 if (check_ds != 0)
5884 {
5885 /* A speculation check should be inserted. */
5886 x = create_speculation_check (params->c_expr, check_ds, insn);
5887 insn_emitted = true;
5888 }
5889 else
5890 {
5891 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5892 x = insn;
5893 }
5894
5895 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5896 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5897 return insn_emitted;
5898 }
5899
5900 /* Handle transformations that leave an insn in place of original
5901 insn such as renaming/speculation. Return true if one of such
5902 transformations actually happened, and we have emitted this insn. */
5903 static bool
5904 handle_emitting_transformations (rtx insn, expr_t expr,
5905 moveop_static_params_p params)
5906 {
5907 bool insn_emitted = false;
5908
5909 insn_emitted = maybe_emit_renaming_copy (insn, params);
5910 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5911
5912 return insn_emitted;
5913 }
5914
5915 /* If INSN is the only insn in the basic block (not counting JUMP,
5916 which may be a jump to next insn, and DEBUG_INSNs), we want to
5917 leave a NOP there till the return to fill_insns. */
5918
5919 static bool
5920 need_nop_to_preserve_insn_bb (rtx insn)
5921 {
5922 insn_t bb_head, bb_end, bb_next, in_next;
5923 basic_block bb = BLOCK_FOR_INSN (insn);
5924
5925 bb_head = sel_bb_head (bb);
5926 bb_end = sel_bb_end (bb);
5927
5928 if (bb_head == bb_end)
5929 return true;
5930
5931 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5932 bb_head = NEXT_INSN (bb_head);
5933
5934 if (bb_head == bb_end)
5935 return true;
5936
5937 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5938 bb_end = PREV_INSN (bb_end);
5939
5940 if (bb_head == bb_end)
5941 return true;
5942
5943 bb_next = NEXT_INSN (bb_head);
5944 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5945 bb_next = NEXT_INSN (bb_next);
5946
5947 if (bb_next == bb_end && JUMP_P (bb_end))
5948 return true;
5949
5950 in_next = NEXT_INSN (insn);
5951 while (DEBUG_INSN_P (in_next))
5952 in_next = NEXT_INSN (in_next);
5953
5954 if (IN_CURRENT_FENCE_P (in_next))
5955 return true;
5956
5957 return false;
5958 }
5959
5960 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5961 is not removed but reused when INSN is re-emitted. */
5962 static void
5963 remove_insn_from_stream (rtx insn, bool only_disconnect)
5964 {
5965 /* If there's only one insn in the BB, make sure that a nop is
5966 inserted into it, so the basic block won't disappear when we'll
5967 delete INSN below with sel_remove_insn. It should also survive
5968 till the return to fill_insns. */
5969 if (need_nop_to_preserve_insn_bb (insn))
5970 {
5971 insn_t nop = get_nop_from_pool (insn);
5972 gcc_assert (INSN_NOP_P (nop));
5973 vec_temp_moveop_nops.safe_push (nop);
5974 }
5975
5976 sel_remove_insn (insn, only_disconnect, false);
5977 }
5978
5979 /* This function is called when original expr is found.
5980 INSN - current insn traversed, EXPR - the corresponding expr found.
5981 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5982 is static parameters of move_op. */
5983 static void
5984 move_op_orig_expr_found (insn_t insn, expr_t expr,
5985 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5986 void *static_params)
5987 {
5988 bool only_disconnect, insn_emitted;
5989 moveop_static_params_p params = (moveop_static_params_p) static_params;
5990
5991 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5992 track_scheduled_insns_and_blocks (insn);
5993 insn_emitted = handle_emitting_transformations (insn, expr, params);
5994 only_disconnect = (params->uid == INSN_UID (insn)
5995 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5996
5997 /* Mark that we've disconnected an insn. */
5998 if (only_disconnect)
5999 params->uid = -1;
6000 remove_insn_from_stream (insn, only_disconnect);
6001 }
6002
6003 /* The function is called when original expr is found.
6004 INSN - current insn traversed, EXPR - the corresponding expr found,
6005 crosses_call and original_insns in STATIC_PARAMS are updated. */
6006 static void
6007 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6008 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6009 void *static_params)
6010 {
6011 fur_static_params_p params = (fur_static_params_p) static_params;
6012 regset tmp;
6013
6014 if (CALL_P (insn))
6015 params->crosses_call = true;
6016
6017 def_list_add (params->original_insns, insn, params->crosses_call);
6018
6019 /* Mark the registers that do not meet the following condition:
6020 (2) not among the live registers of the point
6021 immediately following the first original operation on
6022 a given downward path, except for the original target
6023 register of the operation. */
6024 tmp = get_clear_regset_from_pool ();
6025 compute_live_below_insn (insn, tmp);
6026 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6027 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6028 IOR_REG_SET (params->used_regs, tmp);
6029 return_regset_to_pool (tmp);
6030
6031 /* (*1) We need to add to USED_REGS registers that are read by
6032 INSN's lhs. This may lead to choosing wrong src register.
6033 E.g. (scheduling const expr enabled):
6034
6035 429: ax=0x0 <- Can't use AX for this expr (0x0)
6036 433: dx=[bp-0x18]
6037 427: [ax+dx+0x1]=ax
6038 REG_DEAD: ax
6039 168: di=dx
6040 REG_DEAD: dx
6041 */
6042 /* FIXME: see comment above and enable MEM_P
6043 in vinsn_separable_p. */
6044 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6045 || !MEM_P (INSN_LHS (insn)));
6046 }
6047
6048 /* This function is called on the ascending pass, before returning from
6049 current basic block. */
6050 static void
6051 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6052 void *static_params)
6053 {
6054 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6055 basic_block book_block = NULL;
6056
6057 /* When we have removed the boundary insn for scheduling, which also
6058 happened to be the end insn in its bb, we don't need to update sets. */
6059 if (!lparams->removed_last_insn
6060 && lparams->e1
6061 && sel_bb_head_p (insn))
6062 {
6063 /* We should generate bookkeeping code only if we are not at the
6064 top level of the move_op. */
6065 if (sel_num_cfg_preds_gt_1 (insn))
6066 book_block = generate_bookkeeping_insn (sparams->c_expr,
6067 lparams->e1, lparams->e2);
6068 /* Update data sets for the current insn. */
6069 update_data_sets (insn);
6070 }
6071
6072 /* If bookkeeping code was inserted, we need to update av sets of basic
6073 block that received bookkeeping. After generation of bookkeeping insn,
6074 bookkeeping block does not contain valid av set because we are not following
6075 the original algorithm in every detail with regards to e.g. renaming
6076 simple reg-reg copies. Consider example:
6077
6078 bookkeeping block scheduling fence
6079 \ /
6080 \ join /
6081 ----------
6082 | |
6083 ----------
6084 / \
6085 / \
6086 r1 := r2 r1 := r3
6087
6088 We try to schedule insn "r1 := r3" on the current
6089 scheduling fence. Also, note that av set of bookkeeping block
6090 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6091 been scheduled, the CFG is as follows:
6092
6093 r1 := r3 r1 := r3
6094 bookkeeping block scheduling fence
6095 \ /
6096 \ join /
6097 ----------
6098 | |
6099 ----------
6100 / \
6101 / \
6102 r1 := r2
6103
6104 Here, insn "r1 := r3" was scheduled at the current scheduling point
6105 and bookkeeping code was generated at the bookeeping block. This
6106 way insn "r1 := r2" is no longer available as a whole instruction
6107 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6108 This situation is handled by calling update_data_sets.
6109
6110 Since update_data_sets is called only on the bookkeeping block, and
6111 it also may have predecessors with av_sets, containing instructions that
6112 are no longer available, we save all such expressions that become
6113 unavailable during data sets update on the bookkeeping block in
6114 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6115 expressions for scheduling. This allows us to avoid recomputation of
6116 av_sets outside the code motion path. */
6117
6118 if (book_block)
6119 update_and_record_unavailable_insns (book_block);
6120
6121 /* If INSN was previously marked for deletion, it's time to do it. */
6122 if (lparams->removed_last_insn)
6123 insn = PREV_INSN (insn);
6124
6125 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6126 kill a block with a single nop in which the insn should be emitted. */
6127 if (lparams->e1)
6128 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6129 }
6130
6131 /* This function is called on the ascending pass, before returning from the
6132 current basic block. */
6133 static void
6134 fur_at_first_insn (insn_t insn,
6135 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6136 void *static_params ATTRIBUTE_UNUSED)
6137 {
6138 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6139 || AV_LEVEL (insn) == -1);
6140 }
6141
6142 /* Called on the backward stage of recursion to call moveup_expr for insn
6143 and sparams->c_expr. */
6144 static void
6145 move_op_ascend (insn_t insn, void *static_params)
6146 {
6147 enum MOVEUP_EXPR_CODE res;
6148 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6149
6150 if (! INSN_NOP_P (insn))
6151 {
6152 res = moveup_expr_cached (sparams->c_expr, insn, false);
6153 gcc_assert (res != MOVEUP_EXPR_NULL);
6154 }
6155
6156 /* Update liveness for this insn as it was invalidated. */
6157 update_liveness_on_insn (insn);
6158 }
6159
6160 /* This function is called on enter to the basic block.
6161 Returns TRUE if this block already have been visited and
6162 code_motion_path_driver should return 1, FALSE otherwise. */
6163 static int
6164 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6165 void *static_params, bool visited_p)
6166 {
6167 fur_static_params_p sparams = (fur_static_params_p) static_params;
6168
6169 if (visited_p)
6170 {
6171 /* If we have found something below this block, there should be at
6172 least one insn in ORIGINAL_INSNS. */
6173 gcc_assert (*sparams->original_insns);
6174
6175 /* Adjust CROSSES_CALL, since we may have come to this block along
6176 different path. */
6177 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6178 |= sparams->crosses_call;
6179 }
6180 else
6181 local_params->old_original_insns = *sparams->original_insns;
6182
6183 return 1;
6184 }
6185
6186 /* Same as above but for move_op. */
6187 static int
6188 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6189 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6190 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6191 {
6192 if (visited_p)
6193 return -1;
6194 return 1;
6195 }
6196
6197 /* This function is called while descending current basic block if current
6198 insn is not the original EXPR we're searching for.
6199
6200 Return value: FALSE, if code_motion_path_driver should perform a local
6201 cleanup and return 0 itself;
6202 TRUE, if code_motion_path_driver should continue. */
6203 static bool
6204 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6205 void *static_params)
6206 {
6207 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6208
6209 #ifdef ENABLE_CHECKING
6210 sparams->failed_insn = insn;
6211 #endif
6212
6213 /* If we're scheduling separate expr, in order to generate correct code
6214 we need to stop the search at bookkeeping code generated with the
6215 same destination register or memory. */
6216 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6217 return false;
6218 return true;
6219 }
6220
6221 /* This function is called while descending current basic block if current
6222 insn is not the original EXPR we're searching for.
6223
6224 Return value: TRUE (code_motion_path_driver should continue). */
6225 static bool
6226 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6227 {
6228 bool mutexed;
6229 expr_t r;
6230 av_set_iterator avi;
6231 fur_static_params_p sparams = (fur_static_params_p) static_params;
6232
6233 if (CALL_P (insn))
6234 sparams->crosses_call = true;
6235 else if (DEBUG_INSN_P (insn))
6236 return true;
6237
6238 /* If current insn we are looking at cannot be executed together
6239 with original insn, then we can skip it safely.
6240
6241 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6242 INSN = (!p6) r14 = r14 + 1;
6243
6244 Here we can schedule ORIG_OP with lhs = r14, though only
6245 looking at the set of used and set registers of INSN we must
6246 forbid it. So, add set/used in INSN registers to the
6247 untouchable set only if there is an insn in ORIG_OPS that can
6248 affect INSN. */
6249 mutexed = true;
6250 FOR_EACH_EXPR (r, avi, orig_ops)
6251 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6252 {
6253 mutexed = false;
6254 break;
6255 }
6256
6257 /* Mark all registers that do not meet the following condition:
6258 (1) Not set or read on any path from xi to an instance of the
6259 original operation. */
6260 if (!mutexed)
6261 {
6262 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6263 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6264 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6265 }
6266
6267 return true;
6268 }
6269
6270 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6271 struct code_motion_path_driver_info_def move_op_hooks = {
6272 move_op_on_enter,
6273 move_op_orig_expr_found,
6274 move_op_orig_expr_not_found,
6275 move_op_merge_succs,
6276 move_op_after_merge_succs,
6277 move_op_ascend,
6278 move_op_at_first_insn,
6279 SUCCS_NORMAL,
6280 "move_op"
6281 };
6282
6283 /* Hooks and data to perform find_used_regs operations
6284 with code_motion_path_driver. */
6285 struct code_motion_path_driver_info_def fur_hooks = {
6286 fur_on_enter,
6287 fur_orig_expr_found,
6288 fur_orig_expr_not_found,
6289 fur_merge_succs,
6290 NULL, /* fur_after_merge_succs */
6291 NULL, /* fur_ascend */
6292 fur_at_first_insn,
6293 SUCCS_ALL,
6294 "find_used_regs"
6295 };
6296
6297 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6298 code_motion_path_driver is called recursively. Original operation
6299 was found at least on one path that is starting with one of INSN's
6300 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6301 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6302 of either move_op or find_used_regs depending on the caller.
6303
6304 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6305 know for sure at this point. */
6306 static int
6307 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6308 ilist_t path, void *static_params)
6309 {
6310 int res = 0;
6311 succ_iterator succ_i;
6312 rtx succ;
6313 basic_block bb;
6314 int old_index;
6315 unsigned old_succs;
6316
6317 struct cmpd_local_params lparams;
6318 expr_def _x;
6319
6320 lparams.c_expr_local = &_x;
6321 lparams.c_expr_merged = NULL;
6322
6323 /* We need to process only NORMAL succs for move_op, and collect live
6324 registers from ALL branches (including those leading out of the
6325 region) for find_used_regs.
6326
6327 In move_op, there can be a case when insn's bb number has changed
6328 due to created bookkeeping. This happens very rare, as we need to
6329 move expression from the beginning to the end of the same block.
6330 Rescan successors in this case. */
6331
6332 rescan:
6333 bb = BLOCK_FOR_INSN (insn);
6334 old_index = bb->index;
6335 old_succs = EDGE_COUNT (bb->succs);
6336
6337 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6338 {
6339 int b;
6340
6341 lparams.e1 = succ_i.e1;
6342 lparams.e2 = succ_i.e2;
6343
6344 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6345 current region). */
6346 if (succ_i.current_flags == SUCCS_NORMAL)
6347 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6348 static_params);
6349 else
6350 b = 0;
6351
6352 /* Merge c_expres found or unify live register sets from different
6353 successors. */
6354 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6355 static_params);
6356 if (b == 1)
6357 res = b;
6358 else if (b == -1 && res != 1)
6359 res = b;
6360
6361 /* We have simplified the control flow below this point. In this case,
6362 the iterator becomes invalid. We need to try again. */
6363 if (BLOCK_FOR_INSN (insn)->index != old_index
6364 || EDGE_COUNT (bb->succs) != old_succs)
6365 {
6366 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6367 goto rescan;
6368 }
6369 }
6370
6371 #ifdef ENABLE_CHECKING
6372 /* Here, RES==1 if original expr was found at least for one of the
6373 successors. After the loop, RES may happen to have zero value
6374 only if at some point the expr searched is present in av_set, but is
6375 not found below. In most cases, this situation is an error.
6376 The exception is when the original operation is blocked by
6377 bookkeeping generated for another fence or for another path in current
6378 move_op. */
6379 gcc_assert (res == 1
6380 || (res == 0
6381 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6382 static_params))
6383 || res == -1);
6384 #endif
6385
6386 /* Merge data, clean up, etc. */
6387 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6388 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6389
6390 return res;
6391 }
6392
6393
6394 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6395 is the pointer to the av set with expressions we were looking for,
6396 PATH_P is the pointer to the traversed path. */
6397 static inline void
6398 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6399 {
6400 ilist_remove (path_p);
6401 av_set_clear (orig_ops_p);
6402 }
6403
6404 /* The driver function that implements move_op or find_used_regs
6405 functionality dependent whether code_motion_path_driver_INFO is set to
6406 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6407 of code (CFG traversal etc) that are shared among both functions. INSN
6408 is the insn we're starting the search from, ORIG_OPS are the expressions
6409 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6410 parameters of the driver, and STATIC_PARAMS are static parameters of
6411 the caller.
6412
6413 Returns whether original instructions were found. Note that top-level
6414 code_motion_path_driver always returns true. */
6415 static int
6416 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6417 cmpd_local_params_p local_params_in,
6418 void *static_params)
6419 {
6420 expr_t expr = NULL;
6421 basic_block bb = BLOCK_FOR_INSN (insn);
6422 insn_t first_insn, bb_tail, before_first;
6423 bool removed_last_insn = false;
6424
6425 if (sched_verbose >= 6)
6426 {
6427 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6428 dump_insn (insn);
6429 sel_print (",");
6430 dump_av_set (orig_ops);
6431 sel_print (")\n");
6432 }
6433
6434 gcc_assert (orig_ops);
6435
6436 /* If no original operations exist below this insn, return immediately. */
6437 if (is_ineligible_successor (insn, path))
6438 {
6439 if (sched_verbose >= 6)
6440 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6441 return false;
6442 }
6443
6444 /* The block can have invalid av set, in which case it was created earlier
6445 during move_op. Return immediately. */
6446 if (sel_bb_head_p (insn))
6447 {
6448 if (! AV_SET_VALID_P (insn))
6449 {
6450 if (sched_verbose >= 6)
6451 sel_print ("Returned from block %d as it had invalid av set\n",
6452 bb->index);
6453 return false;
6454 }
6455
6456 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6457 {
6458 /* We have already found an original operation on this branch, do not
6459 go any further and just return TRUE here. If we don't stop here,
6460 function can have exponential behaviour even on the small code
6461 with many different paths (e.g. with data speculation and
6462 recovery blocks). */
6463 if (sched_verbose >= 6)
6464 sel_print ("Block %d already visited in this traversal\n", bb->index);
6465 if (code_motion_path_driver_info->on_enter)
6466 return code_motion_path_driver_info->on_enter (insn,
6467 local_params_in,
6468 static_params,
6469 true);
6470 }
6471 }
6472
6473 if (code_motion_path_driver_info->on_enter)
6474 code_motion_path_driver_info->on_enter (insn, local_params_in,
6475 static_params, false);
6476 orig_ops = av_set_copy (orig_ops);
6477
6478 /* Filter the orig_ops set. */
6479 if (AV_SET_VALID_P (insn))
6480 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6481
6482 /* If no more original ops, return immediately. */
6483 if (!orig_ops)
6484 {
6485 if (sched_verbose >= 6)
6486 sel_print ("No intersection with av set of block %d\n", bb->index);
6487 return false;
6488 }
6489
6490 /* For non-speculative insns we have to leave only one form of the
6491 original operation, because if we don't, we may end up with
6492 different C_EXPRes and, consequently, with bookkeepings for different
6493 expression forms along the same code motion path. That may lead to
6494 generation of incorrect code. So for each code motion we stick to
6495 the single form of the instruction, except for speculative insns
6496 which we need to keep in different forms with all speculation
6497 types. */
6498 av_set_leave_one_nonspec (&orig_ops);
6499
6500 /* It is not possible that all ORIG_OPS are filtered out. */
6501 gcc_assert (orig_ops);
6502
6503 /* It is enough to place only heads and tails of visited basic blocks into
6504 the PATH. */
6505 ilist_add (&path, insn);
6506 first_insn = insn;
6507 bb_tail = sel_bb_end (bb);
6508
6509 /* Descend the basic block in search of the original expr; this part
6510 corresponds to the part of the original move_op procedure executed
6511 before the recursive call. */
6512 for (;;)
6513 {
6514 /* Look at the insn and decide if it could be an ancestor of currently
6515 scheduling operation. If it is so, then the insn "dest = op" could
6516 either be replaced with "dest = reg", because REG now holds the result
6517 of OP, or just removed, if we've scheduled the insn as a whole.
6518
6519 If this insn doesn't contain currently scheduling OP, then proceed
6520 with searching and look at its successors. Operations we're searching
6521 for could have changed when moving up through this insn via
6522 substituting. In this case, perform unsubstitution on them first.
6523
6524 When traversing the DAG below this insn is finished, insert
6525 bookkeeping code, if the insn is a joint point, and remove
6526 leftovers. */
6527
6528 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6529 if (expr)
6530 {
6531 insn_t last_insn = PREV_INSN (insn);
6532
6533 /* We have found the original operation. */
6534 if (sched_verbose >= 6)
6535 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6536
6537 code_motion_path_driver_info->orig_expr_found
6538 (insn, expr, local_params_in, static_params);
6539
6540 /* Step back, so on the way back we'll start traversing from the
6541 previous insn (or we'll see that it's bb_note and skip that
6542 loop). */
6543 if (insn == first_insn)
6544 {
6545 first_insn = NEXT_INSN (last_insn);
6546 removed_last_insn = sel_bb_end_p (last_insn);
6547 }
6548 insn = last_insn;
6549 break;
6550 }
6551 else
6552 {
6553 /* We haven't found the original expr, continue descending the basic
6554 block. */
6555 if (code_motion_path_driver_info->orig_expr_not_found
6556 (insn, orig_ops, static_params))
6557 {
6558 /* Av set ops could have been changed when moving through this
6559 insn. To find them below it, we have to un-substitute them. */
6560 undo_transformations (&orig_ops, insn);
6561 }
6562 else
6563 {
6564 /* Clean up and return, if the hook tells us to do so. It may
6565 happen if we've encountered the previously created
6566 bookkeeping. */
6567 code_motion_path_driver_cleanup (&orig_ops, &path);
6568 return -1;
6569 }
6570
6571 gcc_assert (orig_ops);
6572 }
6573
6574 /* Stop at insn if we got to the end of BB. */
6575 if (insn == bb_tail)
6576 break;
6577
6578 insn = NEXT_INSN (insn);
6579 }
6580
6581 /* Here INSN either points to the insn before the original insn (may be
6582 bb_note, if original insn was a bb_head) or to the bb_end. */
6583 if (!expr)
6584 {
6585 int res;
6586 rtx last_insn = PREV_INSN (insn);
6587 bool added_to_path;
6588
6589 gcc_assert (insn == sel_bb_end (bb));
6590
6591 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6592 it's already in PATH then). */
6593 if (insn != first_insn)
6594 {
6595 ilist_add (&path, insn);
6596 added_to_path = true;
6597 }
6598 else
6599 added_to_path = false;
6600
6601 /* Process_successors should be able to find at least one
6602 successor for which code_motion_path_driver returns TRUE. */
6603 res = code_motion_process_successors (insn, orig_ops,
6604 path, static_params);
6605
6606 /* Jump in the end of basic block could have been removed or replaced
6607 during code_motion_process_successors, so recompute insn as the
6608 last insn in bb. */
6609 if (NEXT_INSN (last_insn) != insn)
6610 {
6611 insn = sel_bb_end (bb);
6612 first_insn = sel_bb_head (bb);
6613 }
6614
6615 /* Remove bb tail from path. */
6616 if (added_to_path)
6617 ilist_remove (&path);
6618
6619 if (res != 1)
6620 {
6621 /* This is the case when one of the original expr is no longer available
6622 due to bookkeeping created on this branch with the same register.
6623 In the original algorithm, which doesn't have update_data_sets call
6624 on a bookkeeping block, it would simply result in returning
6625 FALSE when we've encountered a previously generated bookkeeping
6626 insn in moveop_orig_expr_not_found. */
6627 code_motion_path_driver_cleanup (&orig_ops, &path);
6628 return res;
6629 }
6630 }
6631
6632 /* Don't need it any more. */
6633 av_set_clear (&orig_ops);
6634
6635 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6636 the beginning of the basic block. */
6637 before_first = PREV_INSN (first_insn);
6638 while (insn != before_first)
6639 {
6640 if (code_motion_path_driver_info->ascend)
6641 code_motion_path_driver_info->ascend (insn, static_params);
6642
6643 insn = PREV_INSN (insn);
6644 }
6645
6646 /* Now we're at the bb head. */
6647 insn = first_insn;
6648 ilist_remove (&path);
6649 local_params_in->removed_last_insn = removed_last_insn;
6650 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6651
6652 /* This should be the very last operation as at bb head we could change
6653 the numbering by creating bookkeeping blocks. */
6654 if (removed_last_insn)
6655 insn = PREV_INSN (insn);
6656 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6657 return true;
6658 }
6659
6660 /* Move up the operations from ORIG_OPS set traversing the dag starting
6661 from INSN. PATH represents the edges traversed so far.
6662 DEST is the register chosen for scheduling the current expr. Insert
6663 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6664 C_EXPR is how it looks like at the given cfg point.
6665 Set *SHOULD_MOVE to indicate whether we have only disconnected
6666 one of the insns found.
6667
6668 Returns whether original instructions were found, which is asserted
6669 to be true in the caller. */
6670 static bool
6671 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6672 rtx dest, expr_t c_expr, bool *should_move)
6673 {
6674 struct moveop_static_params sparams;
6675 struct cmpd_local_params lparams;
6676 int res;
6677
6678 /* Init params for code_motion_path_driver. */
6679 sparams.dest = dest;
6680 sparams.c_expr = c_expr;
6681 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6682 #ifdef ENABLE_CHECKING
6683 sparams.failed_insn = NULL;
6684 #endif
6685 sparams.was_renamed = false;
6686 lparams.e1 = NULL;
6687
6688 /* We haven't visited any blocks yet. */
6689 bitmap_clear (code_motion_visited_blocks);
6690
6691 /* Set appropriate hooks and data. */
6692 code_motion_path_driver_info = &move_op_hooks;
6693 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6694
6695 gcc_assert (res != -1);
6696
6697 if (sparams.was_renamed)
6698 EXPR_WAS_RENAMED (expr_vliw) = true;
6699
6700 *should_move = (sparams.uid == -1);
6701
6702 return res;
6703 }
6704 \f
6705
6706 /* Functions that work with regions. */
6707
6708 /* Current number of seqno used in init_seqno and init_seqno_1. */
6709 static int cur_seqno;
6710
6711 /* A helper for init_seqno. Traverse the region starting from BB and
6712 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6713 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6714 static void
6715 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6716 {
6717 int bbi = BLOCK_TO_BB (bb->index);
6718 insn_t insn, note = bb_note (bb);
6719 insn_t succ_insn;
6720 succ_iterator si;
6721
6722 bitmap_set_bit (visited_bbs, bbi);
6723 if (blocks_to_reschedule)
6724 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6725
6726 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6727 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6728 {
6729 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6730 int succ_bbi = BLOCK_TO_BB (succ->index);
6731
6732 gcc_assert (in_current_region_p (succ));
6733
6734 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6735 {
6736 gcc_assert (succ_bbi > bbi);
6737
6738 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6739 }
6740 else if (blocks_to_reschedule)
6741 bitmap_set_bit (forced_ebb_heads, succ->index);
6742 }
6743
6744 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6745 INSN_SEQNO (insn) = cur_seqno--;
6746 }
6747
6748 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6749 blocks on which we're rescheduling when pipelining, FROM is the block where
6750 traversing region begins (it may not be the head of the region when
6751 pipelining, but the head of the loop instead).
6752
6753 Returns the maximal seqno found. */
6754 static int
6755 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6756 {
6757 sbitmap visited_bbs;
6758 bitmap_iterator bi;
6759 unsigned bbi;
6760
6761 visited_bbs = sbitmap_alloc (current_nr_blocks);
6762
6763 if (blocks_to_reschedule)
6764 {
6765 bitmap_ones (visited_bbs);
6766 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6767 {
6768 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6769 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6770 }
6771 }
6772 else
6773 {
6774 bitmap_clear (visited_bbs);
6775 from = EBB_FIRST_BB (0);
6776 }
6777
6778 cur_seqno = sched_max_luid - 1;
6779 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6780
6781 /* cur_seqno may be positive if the number of instructions is less than
6782 sched_max_luid - 1 (when rescheduling or if some instructions have been
6783 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6784 gcc_assert (cur_seqno >= 0);
6785
6786 sbitmap_free (visited_bbs);
6787 return sched_max_luid - 1;
6788 }
6789
6790 /* Initialize scheduling parameters for current region. */
6791 static void
6792 sel_setup_region_sched_flags (void)
6793 {
6794 enable_schedule_as_rhs_p = 1;
6795 bookkeeping_p = 1;
6796 pipelining_p = (bookkeeping_p
6797 && (flag_sel_sched_pipelining != 0)
6798 && current_loop_nest != NULL
6799 && loop_has_exit_edges (current_loop_nest));
6800 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6801 max_ws = MAX_WS;
6802 }
6803
6804 /* Return true if all basic blocks of current region are empty. */
6805 static bool
6806 current_region_empty_p (void)
6807 {
6808 int i;
6809 for (i = 0; i < current_nr_blocks; i++)
6810 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6811 return false;
6812
6813 return true;
6814 }
6815
6816 /* Prepare and verify loop nest for pipelining. */
6817 static void
6818 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6819 {
6820 current_loop_nest = get_loop_nest_for_rgn (rgn);
6821
6822 if (!current_loop_nest)
6823 return;
6824
6825 /* If this loop has any saved loop preheaders from nested loops,
6826 add these basic blocks to the current region. */
6827 sel_add_loop_preheaders (bbs);
6828
6829 /* Check that we're starting with a valid information. */
6830 gcc_assert (loop_latch_edge (current_loop_nest));
6831 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6832 }
6833
6834 /* Compute instruction priorities for current region. */
6835 static void
6836 sel_compute_priorities (int rgn)
6837 {
6838 sched_rgn_compute_dependencies (rgn);
6839
6840 /* Compute insn priorities in haifa style. Then free haifa style
6841 dependencies that we've calculated for this. */
6842 compute_priorities ();
6843
6844 if (sched_verbose >= 5)
6845 debug_rgn_dependencies (0);
6846
6847 free_rgn_deps ();
6848 }
6849
6850 /* Init scheduling data for RGN. Returns true when this region should not
6851 be scheduled. */
6852 static bool
6853 sel_region_init (int rgn)
6854 {
6855 int i;
6856 bb_vec_t bbs;
6857
6858 rgn_setup_region (rgn);
6859
6860 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6861 do region initialization here so the region can be bundled correctly,
6862 but we'll skip the scheduling in sel_sched_region (). */
6863 if (current_region_empty_p ())
6864 return true;
6865
6866 bbs.create (current_nr_blocks);
6867
6868 for (i = 0; i < current_nr_blocks; i++)
6869 bbs.quick_push (BASIC_BLOCK (BB_TO_BLOCK (i)));
6870
6871 sel_init_bbs (bbs);
6872
6873 if (flag_sel_sched_pipelining)
6874 setup_current_loop_nest (rgn, &bbs);
6875
6876 sel_setup_region_sched_flags ();
6877
6878 /* Initialize luids and dependence analysis which both sel-sched and haifa
6879 need. */
6880 sched_init_luids (bbs);
6881 sched_deps_init (false);
6882
6883 /* Initialize haifa data. */
6884 rgn_setup_sched_infos ();
6885 sel_set_sched_flags ();
6886 haifa_init_h_i_d (bbs);
6887
6888 sel_compute_priorities (rgn);
6889 init_deps_global ();
6890
6891 /* Main initialization. */
6892 sel_setup_sched_infos ();
6893 sel_init_global_and_expr (bbs);
6894
6895 bbs.release ();
6896
6897 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6898
6899 /* Init correct liveness sets on each instruction of a single-block loop.
6900 This is the only situation when we can't update liveness when calling
6901 compute_live for the first insn of the loop. */
6902 if (current_loop_nest)
6903 {
6904 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6905 ? 1
6906 : 0);
6907
6908 if (current_nr_blocks == header + 1)
6909 update_liveness_on_insn
6910 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6911 }
6912
6913 /* Set hooks so that no newly generated insn will go out unnoticed. */
6914 sel_register_cfg_hooks ();
6915
6916 /* !!! We call target.sched.init () for the whole region, but we invoke
6917 targetm.sched.finish () for every ebb. */
6918 if (targetm.sched.init)
6919 /* None of the arguments are actually used in any target. */
6920 targetm.sched.init (sched_dump, sched_verbose, -1);
6921
6922 first_emitted_uid = get_max_uid () + 1;
6923 preheader_removed = false;
6924
6925 /* Reset register allocation ticks array. */
6926 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6927 reg_rename_this_tick = 0;
6928
6929 bitmap_initialize (forced_ebb_heads, 0);
6930 bitmap_clear (forced_ebb_heads);
6931
6932 setup_nop_vinsn ();
6933 current_copies = BITMAP_ALLOC (NULL);
6934 current_originators = BITMAP_ALLOC (NULL);
6935 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6936
6937 return false;
6938 }
6939
6940 /* Simplify insns after the scheduling. */
6941 static void
6942 simplify_changed_insns (void)
6943 {
6944 int i;
6945
6946 for (i = 0; i < current_nr_blocks; i++)
6947 {
6948 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6949 rtx insn;
6950
6951 FOR_BB_INSNS (bb, insn)
6952 if (INSN_P (insn))
6953 {
6954 expr_t expr = INSN_EXPR (insn);
6955
6956 if (EXPR_WAS_SUBSTITUTED (expr))
6957 validate_simplify_insn (insn);
6958 }
6959 }
6960 }
6961
6962 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6963 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6964 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6965 static void
6966 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6967 {
6968 insn_t head, tail;
6969 basic_block bb1 = bb;
6970 if (sched_verbose >= 2)
6971 sel_print ("Finishing schedule in bbs: ");
6972
6973 do
6974 {
6975 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6976
6977 if (sched_verbose >= 2)
6978 sel_print ("%d; ", bb1->index);
6979 }
6980 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6981
6982 if (sched_verbose >= 2)
6983 sel_print ("\n");
6984
6985 get_ebb_head_tail (bb, bb1, &head, &tail);
6986
6987 current_sched_info->head = head;
6988 current_sched_info->tail = tail;
6989 current_sched_info->prev_head = PREV_INSN (head);
6990 current_sched_info->next_tail = NEXT_INSN (tail);
6991 }
6992
6993 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6994 static void
6995 reset_sched_cycles_in_current_ebb (void)
6996 {
6997 int last_clock = 0;
6998 int haifa_last_clock = -1;
6999 int haifa_clock = 0;
7000 int issued_insns = 0;
7001 insn_t insn;
7002
7003 if (targetm.sched.init)
7004 {
7005 /* None of the arguments are actually used in any target.
7006 NB: We should have md_reset () hook for cases like this. */
7007 targetm.sched.init (sched_dump, sched_verbose, -1);
7008 }
7009
7010 state_reset (curr_state);
7011 advance_state (curr_state);
7012
7013 for (insn = current_sched_info->head;
7014 insn != current_sched_info->next_tail;
7015 insn = NEXT_INSN (insn))
7016 {
7017 int cost, haifa_cost;
7018 int sort_p;
7019 bool asm_p, real_insn, after_stall, all_issued;
7020 int clock;
7021
7022 if (!INSN_P (insn))
7023 continue;
7024
7025 asm_p = false;
7026 real_insn = recog_memoized (insn) >= 0;
7027 clock = INSN_SCHED_CYCLE (insn);
7028
7029 cost = clock - last_clock;
7030
7031 /* Initialize HAIFA_COST. */
7032 if (! real_insn)
7033 {
7034 asm_p = INSN_ASM_P (insn);
7035
7036 if (asm_p)
7037 /* This is asm insn which *had* to be scheduled first
7038 on the cycle. */
7039 haifa_cost = 1;
7040 else
7041 /* This is a use/clobber insn. It should not change
7042 cost. */
7043 haifa_cost = 0;
7044 }
7045 else
7046 haifa_cost = estimate_insn_cost (insn, curr_state);
7047
7048 /* Stall for whatever cycles we've stalled before. */
7049 after_stall = 0;
7050 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7051 {
7052 haifa_cost = cost;
7053 after_stall = 1;
7054 }
7055 all_issued = issued_insns == issue_rate;
7056 if (haifa_cost == 0 && all_issued)
7057 haifa_cost = 1;
7058 if (haifa_cost > 0)
7059 {
7060 int i = 0;
7061
7062 while (haifa_cost--)
7063 {
7064 advance_state (curr_state);
7065 issued_insns = 0;
7066 i++;
7067
7068 if (sched_verbose >= 2)
7069 {
7070 sel_print ("advance_state (state_transition)\n");
7071 debug_state (curr_state);
7072 }
7073
7074 /* The DFA may report that e.g. insn requires 2 cycles to be
7075 issued, but on the next cycle it says that insn is ready
7076 to go. Check this here. */
7077 if (!after_stall
7078 && real_insn
7079 && haifa_cost > 0
7080 && estimate_insn_cost (insn, curr_state) == 0)
7081 break;
7082
7083 /* When the data dependency stall is longer than the DFA stall,
7084 and when we have issued exactly issue_rate insns and stalled,
7085 it could be that after this longer stall the insn will again
7086 become unavailable to the DFA restrictions. Looks strange
7087 but happens e.g. on x86-64. So recheck DFA on the last
7088 iteration. */
7089 if ((after_stall || all_issued)
7090 && real_insn
7091 && haifa_cost == 0)
7092 haifa_cost = estimate_insn_cost (insn, curr_state);
7093 }
7094
7095 haifa_clock += i;
7096 if (sched_verbose >= 2)
7097 sel_print ("haifa clock: %d\n", haifa_clock);
7098 }
7099 else
7100 gcc_assert (haifa_cost == 0);
7101
7102 if (sched_verbose >= 2)
7103 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7104
7105 if (targetm.sched.dfa_new_cycle)
7106 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7107 haifa_last_clock, haifa_clock,
7108 &sort_p))
7109 {
7110 advance_state (curr_state);
7111 issued_insns = 0;
7112 haifa_clock++;
7113 if (sched_verbose >= 2)
7114 {
7115 sel_print ("advance_state (dfa_new_cycle)\n");
7116 debug_state (curr_state);
7117 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7118 }
7119 }
7120
7121 if (real_insn)
7122 {
7123 static state_t temp = NULL;
7124
7125 if (!temp)
7126 temp = xmalloc (dfa_state_size);
7127 memcpy (temp, curr_state, dfa_state_size);
7128
7129 cost = state_transition (curr_state, insn);
7130 if (memcmp (temp, curr_state, dfa_state_size))
7131 issued_insns++;
7132
7133 if (sched_verbose >= 2)
7134 {
7135 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7136 haifa_clock + 1);
7137 debug_state (curr_state);
7138 }
7139 gcc_assert (cost < 0);
7140 }
7141
7142 if (targetm.sched.variable_issue)
7143 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7144
7145 INSN_SCHED_CYCLE (insn) = haifa_clock;
7146
7147 last_clock = clock;
7148 haifa_last_clock = haifa_clock;
7149 }
7150 }
7151
7152 /* Put TImode markers on insns starting a new issue group. */
7153 static void
7154 put_TImodes (void)
7155 {
7156 int last_clock = -1;
7157 insn_t insn;
7158
7159 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7160 insn = NEXT_INSN (insn))
7161 {
7162 int cost, clock;
7163
7164 if (!INSN_P (insn))
7165 continue;
7166
7167 clock = INSN_SCHED_CYCLE (insn);
7168 cost = (last_clock == -1) ? 1 : clock - last_clock;
7169
7170 gcc_assert (cost >= 0);
7171
7172 if (issue_rate > 1
7173 && GET_CODE (PATTERN (insn)) != USE
7174 && GET_CODE (PATTERN (insn)) != CLOBBER)
7175 {
7176 if (reload_completed && cost > 0)
7177 PUT_MODE (insn, TImode);
7178
7179 last_clock = clock;
7180 }
7181
7182 if (sched_verbose >= 2)
7183 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7184 }
7185 }
7186
7187 /* Perform MD_FINISH on EBBs comprising current region. When
7188 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7189 to produce correct sched cycles on insns. */
7190 static void
7191 sel_region_target_finish (bool reset_sched_cycles_p)
7192 {
7193 int i;
7194 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7195
7196 for (i = 0; i < current_nr_blocks; i++)
7197 {
7198 if (bitmap_bit_p (scheduled_blocks, i))
7199 continue;
7200
7201 /* While pipelining outer loops, skip bundling for loop
7202 preheaders. Those will be rescheduled in the outer loop. */
7203 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7204 continue;
7205
7206 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7207
7208 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7209 continue;
7210
7211 if (reset_sched_cycles_p)
7212 reset_sched_cycles_in_current_ebb ();
7213
7214 if (targetm.sched.init)
7215 targetm.sched.init (sched_dump, sched_verbose, -1);
7216
7217 put_TImodes ();
7218
7219 if (targetm.sched.finish)
7220 {
7221 targetm.sched.finish (sched_dump, sched_verbose);
7222
7223 /* Extend luids so that insns generated by the target will
7224 get zero luid. */
7225 sched_extend_luids ();
7226 }
7227 }
7228
7229 BITMAP_FREE (scheduled_blocks);
7230 }
7231
7232 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7233 is true, make an additional pass emulating scheduler to get correct insn
7234 cycles for md_finish calls. */
7235 static void
7236 sel_region_finish (bool reset_sched_cycles_p)
7237 {
7238 simplify_changed_insns ();
7239 sched_finish_ready_list ();
7240 free_nop_pool ();
7241
7242 /* Free the vectors. */
7243 vec_av_set.release ();
7244 BITMAP_FREE (current_copies);
7245 BITMAP_FREE (current_originators);
7246 BITMAP_FREE (code_motion_visited_blocks);
7247 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7248 vinsn_vec_free (vec_target_unavailable_vinsns);
7249
7250 /* If LV_SET of the region head should be updated, do it now because
7251 there will be no other chance. */
7252 {
7253 succ_iterator si;
7254 insn_t insn;
7255
7256 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7257 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7258 {
7259 basic_block bb = BLOCK_FOR_INSN (insn);
7260
7261 if (!BB_LV_SET_VALID_P (bb))
7262 compute_live (insn);
7263 }
7264 }
7265
7266 /* Emulate the Haifa scheduler for bundling. */
7267 if (reload_completed)
7268 sel_region_target_finish (reset_sched_cycles_p);
7269
7270 sel_finish_global_and_expr ();
7271
7272 bitmap_clear (forced_ebb_heads);
7273
7274 free_nop_vinsn ();
7275
7276 finish_deps_global ();
7277 sched_finish_luids ();
7278 h_d_i_d.release ();
7279
7280 sel_finish_bbs ();
7281 BITMAP_FREE (blocks_to_reschedule);
7282
7283 sel_unregister_cfg_hooks ();
7284
7285 max_issue_size = 0;
7286 }
7287 \f
7288
7289 /* Functions that implement the scheduler driver. */
7290
7291 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7292 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7293 of insns scheduled -- these would be postprocessed later. */
7294 static void
7295 schedule_on_fences (flist_t fences, int max_seqno,
7296 ilist_t **scheduled_insns_tailpp)
7297 {
7298 flist_t old_fences = fences;
7299
7300 if (sched_verbose >= 1)
7301 {
7302 sel_print ("\nScheduling on fences: ");
7303 dump_flist (fences);
7304 sel_print ("\n");
7305 }
7306
7307 scheduled_something_on_previous_fence = false;
7308 for (; fences; fences = FLIST_NEXT (fences))
7309 {
7310 fence_t fence = NULL;
7311 int seqno = 0;
7312 flist_t fences2;
7313 bool first_p = true;
7314
7315 /* Choose the next fence group to schedule.
7316 The fact that insn can be scheduled only once
7317 on the cycle is guaranteed by two properties:
7318 1. seqnos of parallel groups decrease with each iteration.
7319 2. If is_ineligible_successor () sees the larger seqno, it
7320 checks if candidate insn is_in_current_fence_p (). */
7321 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7322 {
7323 fence_t f = FLIST_FENCE (fences2);
7324
7325 if (!FENCE_PROCESSED_P (f))
7326 {
7327 int i = INSN_SEQNO (FENCE_INSN (f));
7328
7329 if (first_p || i > seqno)
7330 {
7331 seqno = i;
7332 fence = f;
7333 first_p = false;
7334 }
7335 else
7336 /* ??? Seqnos of different groups should be different. */
7337 gcc_assert (1 || i != seqno);
7338 }
7339 }
7340
7341 gcc_assert (fence);
7342
7343 /* As FENCE is nonnull, SEQNO is initialized. */
7344 seqno -= max_seqno + 1;
7345 fill_insns (fence, seqno, scheduled_insns_tailpp);
7346 FENCE_PROCESSED_P (fence) = true;
7347 }
7348
7349 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7350 don't need to keep bookkeeping-invalidated and target-unavailable
7351 vinsns any more. */
7352 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7353 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7354 }
7355
7356 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7357 static void
7358 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7359 {
7360 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7361
7362 /* The first element is already processed. */
7363 while ((fences = FLIST_NEXT (fences)))
7364 {
7365 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7366
7367 if (*min_seqno > seqno)
7368 *min_seqno = seqno;
7369 else if (*max_seqno < seqno)
7370 *max_seqno = seqno;
7371 }
7372 }
7373
7374 /* Calculate new fences from FENCES. */
7375 static flist_t
7376 calculate_new_fences (flist_t fences, int orig_max_seqno)
7377 {
7378 flist_t old_fences = fences;
7379 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7380
7381 flist_tail_init (new_fences);
7382 for (; fences; fences = FLIST_NEXT (fences))
7383 {
7384 fence_t fence = FLIST_FENCE (fences);
7385 insn_t insn;
7386
7387 if (!FENCE_BNDS (fence))
7388 {
7389 /* This fence doesn't have any successors. */
7390 if (!FENCE_SCHEDULED_P (fence))
7391 {
7392 /* Nothing was scheduled on this fence. */
7393 int seqno;
7394
7395 insn = FENCE_INSN (fence);
7396 seqno = INSN_SEQNO (insn);
7397 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7398
7399 if (sched_verbose >= 1)
7400 sel_print ("Fence %d[%d] has not changed\n",
7401 INSN_UID (insn),
7402 BLOCK_NUM (insn));
7403 move_fence_to_fences (fences, new_fences);
7404 }
7405 }
7406 else
7407 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7408 }
7409
7410 flist_clear (&old_fences);
7411 return FLIST_TAIL_HEAD (new_fences);
7412 }
7413
7414 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7415 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7416 the highest seqno used in a region. Return the updated highest seqno. */
7417 static int
7418 update_seqnos_and_stage (int min_seqno, int max_seqno,
7419 int highest_seqno_in_use,
7420 ilist_t *pscheduled_insns)
7421 {
7422 int new_hs;
7423 ilist_iterator ii;
7424 insn_t insn;
7425
7426 /* Actually, new_hs is the seqno of the instruction, that was
7427 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7428 if (*pscheduled_insns)
7429 {
7430 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7431 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7432 gcc_assert (new_hs > highest_seqno_in_use);
7433 }
7434 else
7435 new_hs = highest_seqno_in_use;
7436
7437 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7438 {
7439 gcc_assert (INSN_SEQNO (insn) < 0);
7440 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7441 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7442
7443 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7444 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7445 require > 1GB of memory e.g. on limit-fnargs.c. */
7446 if (! pipelining_p)
7447 free_data_for_scheduled_insn (insn);
7448 }
7449
7450 ilist_clear (pscheduled_insns);
7451 global_level++;
7452
7453 return new_hs;
7454 }
7455
7456 /* The main driver for scheduling a region. This function is responsible
7457 for correct propagation of fences (i.e. scheduling points) and creating
7458 a group of parallel insns at each of them. It also supports
7459 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7460 of scheduling. */
7461 static void
7462 sel_sched_region_2 (int orig_max_seqno)
7463 {
7464 int highest_seqno_in_use = orig_max_seqno;
7465
7466 stat_bookkeeping_copies = 0;
7467 stat_insns_needed_bookkeeping = 0;
7468 stat_renamed_scheduled = 0;
7469 stat_substitutions_total = 0;
7470 num_insns_scheduled = 0;
7471
7472 while (fences)
7473 {
7474 int min_seqno, max_seqno;
7475 ilist_t scheduled_insns = NULL;
7476 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7477
7478 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7479 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7480 fences = calculate_new_fences (fences, orig_max_seqno);
7481 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7482 highest_seqno_in_use,
7483 &scheduled_insns);
7484 }
7485
7486 if (sched_verbose >= 1)
7487 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7488 "bookkeeping, %d insns renamed, %d insns substituted\n",
7489 stat_bookkeeping_copies,
7490 stat_insns_needed_bookkeeping,
7491 stat_renamed_scheduled,
7492 stat_substitutions_total);
7493 }
7494
7495 /* Schedule a region. When pipelining, search for possibly never scheduled
7496 bookkeeping code and schedule it. Reschedule pipelined code without
7497 pipelining after. */
7498 static void
7499 sel_sched_region_1 (void)
7500 {
7501 int orig_max_seqno;
7502
7503 /* Remove empty blocks that might be in the region from the beginning. */
7504 purge_empty_blocks ();
7505
7506 orig_max_seqno = init_seqno (NULL, NULL);
7507 gcc_assert (orig_max_seqno >= 1);
7508
7509 /* When pipelining outer loops, create fences on the loop header,
7510 not preheader. */
7511 fences = NULL;
7512 if (current_loop_nest)
7513 init_fences (BB_END (EBB_FIRST_BB (0)));
7514 else
7515 init_fences (bb_note (EBB_FIRST_BB (0)));
7516 global_level = 1;
7517
7518 sel_sched_region_2 (orig_max_seqno);
7519
7520 gcc_assert (fences == NULL);
7521
7522 if (pipelining_p)
7523 {
7524 int i;
7525 basic_block bb;
7526 struct flist_tail_def _new_fences;
7527 flist_tail_t new_fences = &_new_fences;
7528 bool do_p = true;
7529
7530 pipelining_p = false;
7531 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7532 bookkeeping_p = false;
7533 enable_schedule_as_rhs_p = false;
7534
7535 /* Schedule newly created code, that has not been scheduled yet. */
7536 do_p = true;
7537
7538 while (do_p)
7539 {
7540 do_p = false;
7541
7542 for (i = 0; i < current_nr_blocks; i++)
7543 {
7544 basic_block bb = EBB_FIRST_BB (i);
7545
7546 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7547 {
7548 if (! bb_ends_ebb_p (bb))
7549 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7550 if (sel_bb_empty_p (bb))
7551 {
7552 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7553 continue;
7554 }
7555 clear_outdated_rtx_info (bb);
7556 if (sel_insn_is_speculation_check (BB_END (bb))
7557 && JUMP_P (BB_END (bb)))
7558 bitmap_set_bit (blocks_to_reschedule,
7559 BRANCH_EDGE (bb)->dest->index);
7560 }
7561 else if (! sel_bb_empty_p (bb)
7562 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7563 bitmap_set_bit (blocks_to_reschedule, bb->index);
7564 }
7565
7566 for (i = 0; i < current_nr_blocks; i++)
7567 {
7568 bb = EBB_FIRST_BB (i);
7569
7570 /* While pipelining outer loops, skip bundling for loop
7571 preheaders. Those will be rescheduled in the outer
7572 loop. */
7573 if (sel_is_loop_preheader_p (bb))
7574 {
7575 clear_outdated_rtx_info (bb);
7576 continue;
7577 }
7578
7579 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7580 {
7581 flist_tail_init (new_fences);
7582
7583 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7584
7585 /* Mark BB as head of the new ebb. */
7586 bitmap_set_bit (forced_ebb_heads, bb->index);
7587
7588 gcc_assert (fences == NULL);
7589
7590 init_fences (bb_note (bb));
7591
7592 sel_sched_region_2 (orig_max_seqno);
7593
7594 do_p = true;
7595 break;
7596 }
7597 }
7598 }
7599 }
7600 }
7601
7602 /* Schedule the RGN region. */
7603 void
7604 sel_sched_region (int rgn)
7605 {
7606 bool schedule_p;
7607 bool reset_sched_cycles_p;
7608
7609 if (sel_region_init (rgn))
7610 return;
7611
7612 if (sched_verbose >= 1)
7613 sel_print ("Scheduling region %d\n", rgn);
7614
7615 schedule_p = (!sched_is_disabled_for_current_region_p ()
7616 && dbg_cnt (sel_sched_region_cnt));
7617 reset_sched_cycles_p = pipelining_p;
7618 if (schedule_p)
7619 sel_sched_region_1 ();
7620 else
7621 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7622 reset_sched_cycles_p = true;
7623
7624 sel_region_finish (reset_sched_cycles_p);
7625 }
7626
7627 /* Perform global init for the scheduler. */
7628 static void
7629 sel_global_init (void)
7630 {
7631 calculate_dominance_info (CDI_DOMINATORS);
7632 alloc_sched_pools ();
7633
7634 /* Setup the infos for sched_init. */
7635 sel_setup_sched_infos ();
7636 setup_sched_dump ();
7637
7638 sched_rgn_init (false);
7639 sched_init ();
7640
7641 sched_init_bbs ();
7642 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7643 after_recovery = 0;
7644 can_issue_more = issue_rate;
7645
7646 sched_extend_target ();
7647 sched_deps_init (true);
7648 setup_nop_and_exit_insns ();
7649 sel_extend_global_bb_info ();
7650 init_lv_sets ();
7651 init_hard_regs_data ();
7652 }
7653
7654 /* Free the global data of the scheduler. */
7655 static void
7656 sel_global_finish (void)
7657 {
7658 free_bb_note_pool ();
7659 free_lv_sets ();
7660 sel_finish_global_bb_info ();
7661
7662 free_regset_pool ();
7663 free_nop_and_exit_insns ();
7664
7665 sched_rgn_finish ();
7666 sched_deps_finish ();
7667 sched_finish ();
7668
7669 if (current_loops)
7670 sel_finish_pipelining ();
7671
7672 free_sched_pools ();
7673 free_dominance_info (CDI_DOMINATORS);
7674 }
7675
7676 /* Return true when we need to skip selective scheduling. Used for debugging. */
7677 bool
7678 maybe_skip_selective_scheduling (void)
7679 {
7680 return ! dbg_cnt (sel_sched_cnt);
7681 }
7682
7683 /* The entry point. */
7684 void
7685 run_selective_scheduling (void)
7686 {
7687 int rgn;
7688
7689 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7690 return;
7691
7692 sel_global_init ();
7693
7694 for (rgn = 0; rgn < nr_regions; rgn++)
7695 sel_sched_region (rgn);
7696
7697 sel_global_finish ();
7698 }
7699
7700 #endif