]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sese.c
fix PR68279: bail out when scev gets instantiated to not_known
[thirdparty/gcc.git] / gcc / sese.c
1 /* Single entry single exit control flow regions.
2 Copyright (C) 2008-2015 Free Software Foundation, Inc.
3 Contributed by Jan Sjodin <jan.sjodin@amd.com> and
4 Sebastian Pop <sebastian.pop@amd.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "tree-pretty-print.h"
32 #include "fold-const.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimple-pretty-print.h"
36 #include "gimplify-me.h"
37 #include "tree-cfg.h"
38 #include "tree-ssa-loop.h"
39 #include "tree-into-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-data-ref.h"
42 #include "tree-scalar-evolution.h"
43 #include "sese.h"
44 #include "tree-ssa-propagate.h"
45
46 /* Record LOOP as occurring in REGION. */
47
48 static void
49 sese_record_loop (sese_info_p region, loop_p loop)
50 {
51 if (sese_contains_loop (region, loop))
52 return;
53
54 bitmap_set_bit (region->loops, loop->num);
55 region->loop_nest.safe_push (loop);
56 }
57
58 /* Build the loop nests contained in REGION. Returns true when the
59 operation was successful. */
60
61 void
62 build_sese_loop_nests (sese_info_p region)
63 {
64 unsigned i;
65 basic_block bb;
66 struct loop *loop0, *loop1;
67
68 FOR_EACH_BB_FN (bb, cfun)
69 if (bb_in_sese_p (bb, region->region))
70 {
71 struct loop *loop = bb->loop_father;
72
73 /* Only add loops if they are completely contained in the SCoP. */
74 if (loop->header == bb
75 && bb_in_sese_p (loop->latch, region->region))
76 sese_record_loop (region, loop);
77 }
78
79 /* Make sure that the loops in the SESE_LOOP_NEST are ordered. It
80 can be the case that an inner loop is inserted before an outer
81 loop. To avoid this, semi-sort once. */
82 FOR_EACH_VEC_ELT (region->loop_nest, i, loop0)
83 {
84 if (region->loop_nest.length () == i + 1)
85 break;
86
87 loop1 = region->loop_nest[i + 1];
88 if (loop0->num > loop1->num)
89 {
90 region->loop_nest[i] = loop1;
91 region->loop_nest[i + 1] = loop0;
92 }
93 }
94 }
95
96 /* For a USE in BB, if BB is outside REGION, mark the USE in the
97 LIVEOUTS set. */
98
99 static void
100 sese_build_liveouts_use (sese_info_p region, bitmap liveouts, basic_block bb,
101 tree use)
102 {
103 gcc_assert (!bb_in_sese_p (bb, region->region));
104 if (TREE_CODE (use) != SSA_NAME)
105 return;
106
107 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
108
109 if (!def_bb || !bb_in_sese_p (def_bb, region->region))
110 return;
111
112 unsigned ver = SSA_NAME_VERSION (use);
113 bitmap_set_bit (liveouts, ver);
114 }
115
116 /* Marks for rewrite all the SSA_NAMES defined in REGION and that are
117 used in BB that is outside of the REGION. */
118
119 static void
120 sese_build_liveouts_bb (sese_info_p region, bitmap liveouts, basic_block bb)
121 {
122 edge e;
123 edge_iterator ei;
124 ssa_op_iter iter;
125 use_operand_p use_p;
126
127 FOR_EACH_EDGE (e, ei, bb->succs)
128 for (gphi_iterator bsi = gsi_start_phis (e->dest); !gsi_end_p (bsi);
129 gsi_next (&bsi))
130 sese_build_liveouts_use (region, liveouts, bb,
131 PHI_ARG_DEF_FROM_EDGE (bsi.phi (), e));
132
133 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
134 gsi_next (&bsi))
135 {
136 gimple *stmt = gsi_stmt (bsi);
137
138 if (is_gimple_debug (stmt))
139 continue;
140
141 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
142 sese_build_liveouts_use (region, liveouts, bb, USE_FROM_PTR (use_p));
143 }
144 }
145
146 /* For a USE in BB, return true if BB is outside REGION and it's not
147 in the LIVEOUTS set. */
148
149 static bool
150 sese_bad_liveouts_use (sese_info_p region, bitmap liveouts, basic_block bb,
151 tree use)
152 {
153 gcc_assert (!bb_in_sese_p (bb, region->region));
154
155 if (TREE_CODE (use) != SSA_NAME)
156 return false;
157
158 unsigned ver = SSA_NAME_VERSION (use);
159
160 /* If it's in liveouts, the variable will get a new PHI node, and
161 the debug use will be properly adjusted. */
162 if (bitmap_bit_p (liveouts, ver))
163 return false;
164
165 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
166
167 if (!def_bb || !bb_in_sese_p (def_bb, region->region))
168 return false;
169
170 return true;
171 }
172
173 /* Reset debug stmts that reference SSA_NAMES defined in REGION that
174 are not marked as liveouts. */
175
176 static void
177 sese_reset_debug_liveouts_bb (sese_info_p region, bitmap liveouts,
178 basic_block bb)
179 {
180 gimple_stmt_iterator bsi;
181 ssa_op_iter iter;
182 use_operand_p use_p;
183
184 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
185 {
186 gimple *stmt = gsi_stmt (bsi);
187
188 if (!is_gimple_debug (stmt))
189 continue;
190
191 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
192 if (sese_bad_liveouts_use (region, liveouts, bb,
193 USE_FROM_PTR (use_p)))
194 {
195 gimple_debug_bind_reset_value (stmt);
196 update_stmt (stmt);
197 break;
198 }
199 }
200 }
201
202 /* Build the LIVEOUTS of REGION: the set of variables defined inside
203 and used outside the REGION. */
204
205 static void
206 sese_build_liveouts (sese_info_p region, bitmap liveouts)
207 {
208 basic_block bb;
209
210 /* FIXME: We could start iterating form the successor of sese. */
211 FOR_EACH_BB_FN (bb, cfun)
212 if (!bb_in_sese_p (bb, region->region))
213 sese_build_liveouts_bb (region, liveouts, bb);
214
215 /* FIXME: We could start iterating form the successor of sese. */
216 if (MAY_HAVE_DEBUG_STMTS)
217 FOR_EACH_BB_FN (bb, cfun)
218 if (!bb_in_sese_p (bb, region->region))
219 sese_reset_debug_liveouts_bb (region, liveouts, bb);
220 }
221
222 /* Builds a new SESE region from edges ENTRY and EXIT. */
223
224 sese_info_p
225 new_sese_info (edge entry, edge exit)
226 {
227 sese_info_p region = XNEW (struct sese_info_t);
228
229 region->region.entry = entry;
230 region->region.exit = exit;
231 region->loops = BITMAP_ALLOC (NULL);
232 region->loop_nest.create (3);
233 region->params.create (3);
234 region->rename_map = new rename_map_t;
235 region->copied_bb_map = new bb_map_t;
236 region->bbs.create (3);
237 region->incomplete_phis.create (3);
238
239 return region;
240 }
241
242 /* Deletes REGION. */
243
244 void
245 free_sese_info (sese_info_p region)
246 {
247 if (region->loops)
248 region->loops = BITMAP_ALLOC (NULL);
249
250 region->params.release ();
251 region->loop_nest.release ();
252
253 for (rename_map_t::iterator it = region->rename_map->begin ();
254 it != region->rename_map->begin (); ++it)
255 (*it).second.release ();
256
257 for (bb_map_t::iterator it = region->copied_bb_map->begin ();
258 it != region->copied_bb_map->begin (); ++it)
259 (*it).second.release ();
260
261 delete region->rename_map;
262 delete region->copied_bb_map;
263
264 region->rename_map = NULL;
265 region->copied_bb_map = NULL;
266
267 region->bbs.release ();
268 region->incomplete_phis.release ();
269
270 XDELETE (region);
271 }
272
273 /* Add exit phis for USE on EXIT. */
274
275 static void
276 sese_add_exit_phis_edge (basic_block exit, tree use, edge false_e, edge true_e)
277 {
278 gphi *phi = create_phi_node (NULL_TREE, exit);
279 create_new_def_for (use, phi, gimple_phi_result_ptr (phi));
280 add_phi_arg (phi, use, false_e, UNKNOWN_LOCATION);
281 add_phi_arg (phi, use, true_e, UNKNOWN_LOCATION);
282 update_stmt (phi);
283 }
284
285 /* Insert in the block BB phi nodes for variables defined in REGION
286 and used outside the REGION. The code generation moves REGION in
287 the else clause of an "if (1)" and generates code in the then
288 clause that is at this point empty:
289
290 | if (1)
291 | empty;
292 | else
293 | REGION;
294 */
295
296 void
297 sese_insert_phis_for_liveouts (sese_info_p region, basic_block bb,
298 edge false_e, edge true_e)
299 {
300 unsigned i;
301 bitmap_iterator bi;
302 bitmap liveouts = BITMAP_ALLOC (NULL);
303
304 sese_build_liveouts (region, liveouts);
305
306 EXECUTE_IF_SET_IN_BITMAP (liveouts, 0, i, bi)
307 if (!virtual_operand_p (ssa_name (i)))
308 sese_add_exit_phis_edge (bb, ssa_name (i), false_e, true_e);
309
310 BITMAP_FREE (liveouts);
311 }
312
313 /* Returns the outermost loop in SCOP that contains BB. */
314
315 struct loop *
316 outermost_loop_in_sese_1 (sese_l &region, basic_block bb)
317 {
318 struct loop *nest;
319
320 nest = bb->loop_father;
321 while (loop_outer (nest)
322 && loop_in_sese_p (loop_outer (nest), region))
323 nest = loop_outer (nest);
324
325 return nest;
326 }
327
328 /* Same as outermost_loop_in_sese_1, returns the outermost loop
329 containing BB in REGION, but makes sure that the returned loop
330 belongs to the REGION, and so this returns the first loop in the
331 REGION when the loop containing BB does not belong to REGION. */
332
333 loop_p
334 outermost_loop_in_sese (sese_l &region, basic_block bb)
335 {
336 loop_p nest = outermost_loop_in_sese_1 (region, bb);
337
338 if (loop_in_sese_p (nest, region))
339 return nest;
340
341 /* When the basic block BB does not belong to a loop in the region,
342 return the first loop in the region. */
343 nest = nest->inner;
344 while (nest)
345 if (loop_in_sese_p (nest, region))
346 break;
347 else
348 nest = nest->next;
349
350 gcc_assert (nest);
351 return nest;
352 }
353
354 /* Returns the first successor edge of BB with EDGE_TRUE_VALUE flag set. */
355
356 edge
357 get_true_edge_from_guard_bb (basic_block bb)
358 {
359 edge e;
360 edge_iterator ei;
361
362 FOR_EACH_EDGE (e, ei, bb->succs)
363 if (e->flags & EDGE_TRUE_VALUE)
364 return e;
365
366 gcc_unreachable ();
367 return NULL;
368 }
369
370 /* Returns the first successor edge of BB with EDGE_TRUE_VALUE flag cleared. */
371
372 edge
373 get_false_edge_from_guard_bb (basic_block bb)
374 {
375 edge e;
376 edge_iterator ei;
377
378 FOR_EACH_EDGE (e, ei, bb->succs)
379 if (!(e->flags & EDGE_TRUE_VALUE))
380 return e;
381
382 gcc_unreachable ();
383 return NULL;
384 }
385
386 /* Sets the false region of an IF_REGION to REGION. */
387
388 void
389 if_region_set_false_region (ifsese if_region, sese_info_p region)
390 {
391 basic_block condition = if_region_get_condition_block (if_region);
392 edge false_edge = get_false_edge_from_guard_bb (condition);
393 basic_block dummy = false_edge->dest;
394 edge entry_region = region->region.entry;
395 edge exit_region = region->region.exit;
396 basic_block before_region = entry_region->src;
397 basic_block last_in_region = exit_region->src;
398 hashval_t hash = htab_hash_pointer (exit_region);
399 loop_exit **slot
400 = current_loops->exits->find_slot_with_hash (exit_region, hash, NO_INSERT);
401
402 entry_region->flags = false_edge->flags;
403 false_edge->flags = exit_region->flags;
404
405 redirect_edge_pred (entry_region, condition);
406 redirect_edge_pred (exit_region, before_region);
407 redirect_edge_pred (false_edge, last_in_region);
408 redirect_edge_succ (false_edge, single_succ (dummy));
409 delete_basic_block (dummy);
410
411 exit_region->flags = EDGE_FALLTHRU;
412 recompute_all_dominators ();
413
414 region->region.exit = false_edge;
415
416 free (if_region->false_region);
417 if_region->false_region = region;
418
419 if (slot)
420 {
421 struct loop_exit *loop_exit = ggc_cleared_alloc<struct loop_exit> ();
422
423 memcpy (loop_exit, *((struct loop_exit **) slot),
424 sizeof (struct loop_exit));
425 current_loops->exits->clear_slot (slot);
426
427 hashval_t hash = htab_hash_pointer (false_edge);
428 slot = current_loops->exits->find_slot_with_hash (false_edge, hash,
429 INSERT);
430 loop_exit->e = false_edge;
431 *slot = loop_exit;
432 false_edge->src->loop_father->exits->next = loop_exit;
433 }
434 }
435
436 /* Creates an IFSESE with CONDITION on edge ENTRY. */
437
438 static ifsese
439 create_if_region_on_edge (edge entry, tree condition)
440 {
441 edge e;
442 edge_iterator ei;
443 sese_info_p sese_region = XNEW (struct sese_info_t);
444 sese_info_p true_region = XNEW (struct sese_info_t);
445 sese_info_p false_region = XNEW (struct sese_info_t);
446 ifsese if_region = XNEW (struct ifsese_s);
447 edge exit = create_empty_if_region_on_edge (entry, condition);
448
449 if_region->region = sese_region;
450 if_region->region->region.entry = entry;
451 if_region->region->region.exit = exit;
452
453 FOR_EACH_EDGE (e, ei, entry->dest->succs)
454 {
455 if (e->flags & EDGE_TRUE_VALUE)
456 {
457 true_region->region.entry = e;
458 true_region->region.exit = single_succ_edge (e->dest);
459 if_region->true_region = true_region;
460 }
461 else if (e->flags & EDGE_FALSE_VALUE)
462 {
463 false_region->region.entry = e;
464 false_region->region.exit = single_succ_edge (e->dest);
465 if_region->false_region = false_region;
466 }
467 }
468
469 return if_region;
470 }
471
472 /* Moves REGION in a condition expression:
473 | if (1)
474 | ;
475 | else
476 | REGION;
477 */
478
479 ifsese
480 move_sese_in_condition (sese_info_p region)
481 {
482 basic_block pred_block = split_edge (region->region.entry);
483 ifsese if_region;
484
485 region->region.entry = single_succ_edge (pred_block);
486 if_region = create_if_region_on_edge (single_pred_edge (pred_block),
487 integer_one_node);
488 if_region_set_false_region (if_region, region);
489
490 return if_region;
491 }
492
493 /* Replaces the condition of the IF_REGION with CONDITION:
494 | if (CONDITION)
495 | true_region;
496 | else
497 | false_region;
498 */
499
500 void
501 set_ifsese_condition (ifsese if_region, tree condition)
502 {
503 sese_info_p region = if_region->region;
504 edge entry = region->region.entry;
505 basic_block bb = entry->dest;
506 gimple *last = last_stmt (bb);
507 gimple_stmt_iterator gsi = gsi_last_bb (bb);
508 gcond *cond_stmt;
509
510 gcc_assert (gimple_code (last) == GIMPLE_COND);
511
512 gsi_remove (&gsi, true);
513 gsi = gsi_last_bb (bb);
514 condition = force_gimple_operand_gsi (&gsi, condition, true, NULL,
515 false, GSI_NEW_STMT);
516 cond_stmt = gimple_build_cond_from_tree (condition, NULL_TREE, NULL_TREE);
517 gsi = gsi_last_bb (bb);
518 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
519 }
520
521 /* Return true when T is defined outside REGION or when no definitions are
522 variant in REGION. When HAS_VDEFS is a valid pointer, sets HAS_VDEFS to true
523 when T depends on memory that may change in REGION. */
524
525 bool
526 invariant_in_sese_p_rec (tree t, sese_l &region, bool *has_vdefs)
527 {
528 if (!defined_in_sese_p (t, region))
529 return true;
530
531 gimple *stmt = SSA_NAME_DEF_STMT (t);
532
533 if (gimple_code (stmt) == GIMPLE_PHI
534 || gimple_code (stmt) == GIMPLE_CALL)
535 return false;
536
537 /* VDEF is variant when it is in the region. */
538 if (gimple_vdef (stmt))
539 {
540 if (has_vdefs)
541 *has_vdefs = true;
542 return false;
543 }
544
545 /* A VUSE may or may not be variant following the VDEFs. */
546 if (tree vuse = gimple_vuse (stmt))
547 return invariant_in_sese_p_rec (vuse, region, has_vdefs);
548
549 ssa_op_iter iter;
550 use_operand_p use_p;
551 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
552 {
553 tree use = USE_FROM_PTR (use_p);
554
555 if (!defined_in_sese_p (use, region))
556 continue;
557
558 if (!invariant_in_sese_p_rec (use, region, has_vdefs))
559 return false;
560 }
561
562 return true;
563 }
564
565 /* Return true when DEF can be analyzed in REGION by the scalar
566 evolution analyzer. */
567
568 bool
569 scev_analyzable_p (tree def, sese_l &region)
570 {
571 loop_p loop;
572 tree scev;
573 tree type = TREE_TYPE (def);
574
575 /* When Graphite generates code for a scev, the code generator
576 expresses the scev in function of a single induction variable.
577 This is unsafe for floating point computations, as it may replace
578 a floating point sum reduction with a multiplication. The
579 following test returns false for non integer types to avoid such
580 problems. */
581 if (!INTEGRAL_TYPE_P (type)
582 && !POINTER_TYPE_P (type))
583 return false;
584
585 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
586 scev = scalar_evolution_in_region (region, loop, def);
587
588 return !chrec_contains_undetermined (scev)
589 && (TREE_CODE (scev) != SSA_NAME
590 || !defined_in_sese_p (scev, region))
591 && (tree_does_not_contain_chrecs (scev)
592 || evolution_function_is_affine_p (scev));
593 }
594
595 /* Returns the scalar evolution of T in REGION. Every variable that
596 is not defined in the REGION is considered a parameter. */
597
598 tree
599 scalar_evolution_in_region (sese_l &region, loop_p loop, tree t)
600 {
601 gimple *def;
602 struct loop *def_loop;
603 basic_block before = region.entry->src;
604
605 /* SCOP parameters. */
606 if (TREE_CODE (t) == SSA_NAME
607 && !defined_in_sese_p (t, region))
608 return t;
609
610 if (TREE_CODE (t) != SSA_NAME
611 || loop_in_sese_p (loop, region))
612 /* FIXME: we would need instantiate SCEV to work on a region, and be more
613 flexible wrt. memory loads that may be invariant in the region. */
614 return instantiate_scev (before, loop,
615 analyze_scalar_evolution (loop, t));
616
617 def = SSA_NAME_DEF_STMT (t);
618 def_loop = loop_containing_stmt (def);
619
620 if (loop_in_sese_p (def_loop, region))
621 {
622 t = analyze_scalar_evolution (def_loop, t);
623 def_loop = superloop_at_depth (def_loop, loop_depth (loop) + 1);
624 t = compute_overall_effect_of_inner_loop (def_loop, t);
625 return t;
626 }
627
628 bool has_vdefs = false;
629 if (invariant_in_sese_p_rec (t, region, &has_vdefs))
630 return t;
631
632 /* T variates in REGION. */
633 if (has_vdefs)
634 return chrec_dont_know;
635
636 return instantiate_scev (before, loop, t);
637 }