]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/stmt.c
Oops, missed ChangeLog in last checkin...
[thirdparty/gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file handles the generation of rtl code from tree structure
24 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
25 It also creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 The functions whose names start with `expand_' are called by the
29 parser to generate RTL instructions for various kinds of constructs.
30
31 Some control and binding constructs require calling several such
32 functions at different times. For example, a simple if-then
33 is expanded by calling `expand_start_cond' (with the condition-expression
34 as argument) before parsing the then-clause and calling `expand_end_cond'
35 after parsing the then-clause. */
36
37 #include "config.h"
38 #include "system.h"
39
40 #include "rtl.h"
41 #include "tree.h"
42 #include "tm_p.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "insn-flags.h"
47 #include "insn-config.h"
48 #include "insn-codes.h"
49 #include "expr.h"
50 #include "hard-reg-set.h"
51 #include "obstack.h"
52 #include "loop.h"
53 #include "recog.h"
54 #include "machmode.h"
55 #include "toplev.h"
56 #include "output.h"
57 #include "ggc.h"
58
59 #define obstack_chunk_alloc xmalloc
60 #define obstack_chunk_free free
61 struct obstack stmt_obstack;
62
63 /* Assume that case vectors are not pc-relative. */
64 #ifndef CASE_VECTOR_PC_RELATIVE
65 #define CASE_VECTOR_PC_RELATIVE 0
66 #endif
67
68 \f
69 /* Functions and data structures for expanding case statements. */
70
71 /* Case label structure, used to hold info on labels within case
72 statements. We handle "range" labels; for a single-value label
73 as in C, the high and low limits are the same.
74
75 An AVL tree of case nodes is initially created, and later transformed
76 to a list linked via the RIGHT fields in the nodes. Nodes with
77 higher case values are later in the list.
78
79 Switch statements can be output in one of two forms. A branch table
80 is used if there are more than a few labels and the labels are dense
81 within the range between the smallest and largest case value. If a
82 branch table is used, no further manipulations are done with the case
83 node chain.
84
85 The alternative to the use of a branch table is to generate a series
86 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
87 and PARENT fields to hold a binary tree. Initially the tree is
88 totally unbalanced, with everything on the right. We balance the tree
89 with nodes on the left having lower case values than the parent
90 and nodes on the right having higher values. We then output the tree
91 in order. */
92
93 struct case_node
94 {
95 struct case_node *left; /* Left son in binary tree */
96 struct case_node *right; /* Right son in binary tree; also node chain */
97 struct case_node *parent; /* Parent of node in binary tree */
98 tree low; /* Lowest index value for this label */
99 tree high; /* Highest index value for this label */
100 tree code_label; /* Label to jump to when node matches */
101 int balance;
102 };
103
104 typedef struct case_node case_node;
105 typedef struct case_node *case_node_ptr;
106
107 /* These are used by estimate_case_costs and balance_case_nodes. */
108
109 /* This must be a signed type, and non-ANSI compilers lack signed char. */
110 static short cost_table_[129];
111 static short *cost_table;
112 static int use_cost_table;
113 \f
114 /* Stack of control and binding constructs we are currently inside.
115
116 These constructs begin when you call `expand_start_WHATEVER'
117 and end when you call `expand_end_WHATEVER'. This stack records
118 info about how the construct began that tells the end-function
119 what to do. It also may provide information about the construct
120 to alter the behavior of other constructs within the body.
121 For example, they may affect the behavior of C `break' and `continue'.
122
123 Each construct gets one `struct nesting' object.
124 All of these objects are chained through the `all' field.
125 `nesting_stack' points to the first object (innermost construct).
126 The position of an entry on `nesting_stack' is in its `depth' field.
127
128 Each type of construct has its own individual stack.
129 For example, loops have `loop_stack'. Each object points to the
130 next object of the same type through the `next' field.
131
132 Some constructs are visible to `break' exit-statements and others
133 are not. Which constructs are visible depends on the language.
134 Therefore, the data structure allows each construct to be visible
135 or not, according to the args given when the construct is started.
136 The construct is visible if the `exit_label' field is non-null.
137 In that case, the value should be a CODE_LABEL rtx. */
138
139 struct nesting
140 {
141 struct nesting *all;
142 struct nesting *next;
143 int depth;
144 rtx exit_label;
145 union
146 {
147 /* For conds (if-then and if-then-else statements). */
148 struct
149 {
150 /* Label for the end of the if construct.
151 There is none if EXITFLAG was not set
152 and no `else' has been seen yet. */
153 rtx endif_label;
154 /* Label for the end of this alternative.
155 This may be the end of the if or the next else/elseif. */
156 rtx next_label;
157 } cond;
158 /* For loops. */
159 struct
160 {
161 /* Label at the top of the loop; place to loop back to. */
162 rtx start_label;
163 /* Label at the end of the whole construct. */
164 rtx end_label;
165 /* Label before a jump that branches to the end of the whole
166 construct. This is where destructors go if any. */
167 rtx alt_end_label;
168 /* Label for `continue' statement to jump to;
169 this is in front of the stepper of the loop. */
170 rtx continue_label;
171 } loop;
172 /* For variable binding contours. */
173 struct
174 {
175 /* Sequence number of this binding contour within the function,
176 in order of entry. */
177 int block_start_count;
178 /* Nonzero => value to restore stack to on exit. */
179 rtx stack_level;
180 /* The NOTE that starts this contour.
181 Used by expand_goto to check whether the destination
182 is within each contour or not. */
183 rtx first_insn;
184 /* Innermost containing binding contour that has a stack level. */
185 struct nesting *innermost_stack_block;
186 /* List of cleanups to be run on exit from this contour.
187 This is a list of expressions to be evaluated.
188 The TREE_PURPOSE of each link is the ..._DECL node
189 which the cleanup pertains to. */
190 tree cleanups;
191 /* List of cleanup-lists of blocks containing this block,
192 as they were at the locus where this block appears.
193 There is an element for each containing block,
194 ordered innermost containing block first.
195 The tail of this list can be 0,
196 if all remaining elements would be empty lists.
197 The element's TREE_VALUE is the cleanup-list of that block,
198 which may be null. */
199 tree outer_cleanups;
200 /* Chain of labels defined inside this binding contour.
201 For contours that have stack levels or cleanups. */
202 struct label_chain *label_chain;
203 /* Number of function calls seen, as of start of this block. */
204 int n_function_calls;
205 /* Nonzero if this is associated with a EH region. */
206 int exception_region;
207 /* The saved target_temp_slot_level from our outer block.
208 We may reset target_temp_slot_level to be the level of
209 this block, if that is done, target_temp_slot_level
210 reverts to the saved target_temp_slot_level at the very
211 end of the block. */
212 int block_target_temp_slot_level;
213 /* True if we are currently emitting insns in an area of
214 output code that is controlled by a conditional
215 expression. This is used by the cleanup handling code to
216 generate conditional cleanup actions. */
217 int conditional_code;
218 /* A place to move the start of the exception region for any
219 of the conditional cleanups, must be at the end or after
220 the start of the last unconditional cleanup, and before any
221 conditional branch points. */
222 rtx last_unconditional_cleanup;
223 /* When in a conditional context, this is the specific
224 cleanup list associated with last_unconditional_cleanup,
225 where we place the conditionalized cleanups. */
226 tree *cleanup_ptr;
227 } block;
228 /* For switch (C) or case (Pascal) statements,
229 and also for dummies (see `expand_start_case_dummy'). */
230 struct
231 {
232 /* The insn after which the case dispatch should finally
233 be emitted. Zero for a dummy. */
234 rtx start;
235 /* A list of case labels; it is first built as an AVL tree.
236 During expand_end_case, this is converted to a list, and may be
237 rearranged into a nearly balanced binary tree. */
238 struct case_node *case_list;
239 /* Label to jump to if no case matches. */
240 tree default_label;
241 /* The expression to be dispatched on. */
242 tree index_expr;
243 /* Type that INDEX_EXPR should be converted to. */
244 tree nominal_type;
245 /* Number of range exprs in case statement. */
246 int num_ranges;
247 /* Name of this kind of statement, for warnings. */
248 const char *printname;
249 /* Used to save no_line_numbers till we see the first case label.
250 We set this to -1 when we see the first case label in this
251 case statement. */
252 int line_number_status;
253 } case_stmt;
254 } data;
255 };
256
257 /* Allocate and return a new `struct nesting'. */
258
259 #define ALLOC_NESTING() \
260 (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting))
261
262 /* Pop the nesting stack element by element until we pop off
263 the element which is at the top of STACK.
264 Update all the other stacks, popping off elements from them
265 as we pop them from nesting_stack. */
266
267 #define POPSTACK(STACK) \
268 do { struct nesting *target = STACK; \
269 struct nesting *this; \
270 do { this = nesting_stack; \
271 if (loop_stack == this) \
272 loop_stack = loop_stack->next; \
273 if (cond_stack == this) \
274 cond_stack = cond_stack->next; \
275 if (block_stack == this) \
276 block_stack = block_stack->next; \
277 if (stack_block_stack == this) \
278 stack_block_stack = stack_block_stack->next; \
279 if (case_stack == this) \
280 case_stack = case_stack->next; \
281 nesting_depth = nesting_stack->depth - 1; \
282 nesting_stack = this->all; \
283 obstack_free (&stmt_obstack, this); } \
284 while (this != target); } while (0)
285 \f
286 /* In some cases it is impossible to generate code for a forward goto
287 until the label definition is seen. This happens when it may be necessary
288 for the goto to reset the stack pointer: we don't yet know how to do that.
289 So expand_goto puts an entry on this fixup list.
290 Each time a binding contour that resets the stack is exited,
291 we check each fixup.
292 If the target label has now been defined, we can insert the proper code. */
293
294 struct goto_fixup
295 {
296 /* Points to following fixup. */
297 struct goto_fixup *next;
298 /* Points to the insn before the jump insn.
299 If more code must be inserted, it goes after this insn. */
300 rtx before_jump;
301 /* The LABEL_DECL that this jump is jumping to, or 0
302 for break, continue or return. */
303 tree target;
304 /* The BLOCK for the place where this goto was found. */
305 tree context;
306 /* The CODE_LABEL rtx that this is jumping to. */
307 rtx target_rtl;
308 /* Number of binding contours started in current function
309 before the label reference. */
310 int block_start_count;
311 /* The outermost stack level that should be restored for this jump.
312 Each time a binding contour that resets the stack is exited,
313 if the target label is *not* yet defined, this slot is updated. */
314 rtx stack_level;
315 /* List of lists of cleanup expressions to be run by this goto.
316 There is one element for each block that this goto is within.
317 The tail of this list can be 0,
318 if all remaining elements would be empty.
319 The TREE_VALUE contains the cleanup list of that block as of the
320 time this goto was seen.
321 The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */
322 tree cleanup_list_list;
323 };
324
325 /* Within any binding contour that must restore a stack level,
326 all labels are recorded with a chain of these structures. */
327
328 struct label_chain
329 {
330 /* Points to following fixup. */
331 struct label_chain *next;
332 tree label;
333 };
334
335 struct stmt_status
336 {
337 /* Chain of all pending binding contours. */
338 struct nesting *x_block_stack;
339
340 /* If any new stacks are added here, add them to POPSTACKS too. */
341
342 /* Chain of all pending binding contours that restore stack levels
343 or have cleanups. */
344 struct nesting *x_stack_block_stack;
345
346 /* Chain of all pending conditional statements. */
347 struct nesting *x_cond_stack;
348
349 /* Chain of all pending loops. */
350 struct nesting *x_loop_stack;
351
352 /* Chain of all pending case or switch statements. */
353 struct nesting *x_case_stack;
354
355 /* Separate chain including all of the above,
356 chained through the `all' field. */
357 struct nesting *x_nesting_stack;
358
359 /* Number of entries on nesting_stack now. */
360 int x_nesting_depth;
361
362 /* Number of binding contours started so far in this function. */
363 int x_block_start_count;
364
365 /* Each time we expand an expression-statement,
366 record the expr's type and its RTL value here. */
367 tree x_last_expr_type;
368 rtx x_last_expr_value;
369
370 /* Nonzero if within a ({...}) grouping, in which case we must
371 always compute a value for each expr-stmt in case it is the last one. */
372 int x_expr_stmts_for_value;
373
374 /* Filename and line number of last line-number note,
375 whether we actually emitted it or not. */
376 const char *x_emit_filename;
377 int x_emit_lineno;
378
379 struct goto_fixup *x_goto_fixup_chain;
380 };
381
382 #define block_stack (cfun->stmt->x_block_stack)
383 #define stack_block_stack (cfun->stmt->x_stack_block_stack)
384 #define cond_stack (cfun->stmt->x_cond_stack)
385 #define loop_stack (cfun->stmt->x_loop_stack)
386 #define case_stack (cfun->stmt->x_case_stack)
387 #define nesting_stack (cfun->stmt->x_nesting_stack)
388 #define nesting_depth (cfun->stmt->x_nesting_depth)
389 #define current_block_start_count (cfun->stmt->x_block_start_count)
390 #define last_expr_type (cfun->stmt->x_last_expr_type)
391 #define last_expr_value (cfun->stmt->x_last_expr_value)
392 #define expr_stmts_for_value (cfun->stmt->x_expr_stmts_for_value)
393 #define emit_filename (cfun->stmt->x_emit_filename)
394 #define emit_lineno (cfun->stmt->x_emit_lineno)
395 #define goto_fixup_chain (cfun->stmt->x_goto_fixup_chain)
396
397 /* Non-zero if we are using EH to handle cleanus. */
398 static int using_eh_for_cleanups_p = 0;
399
400 /* Character strings, each containing a single decimal digit. */
401 static char *digit_strings[10];
402
403
404 static int n_occurrences PARAMS ((int, const char *));
405 static void expand_goto_internal PARAMS ((tree, rtx, rtx));
406 static int expand_fixup PARAMS ((tree, rtx, rtx));
407 static rtx expand_nl_handler_label PARAMS ((rtx, rtx));
408 static void expand_nl_goto_receiver PARAMS ((void));
409 static void expand_nl_goto_receivers PARAMS ((struct nesting *));
410 static void fixup_gotos PARAMS ((struct nesting *, rtx, tree,
411 rtx, int));
412 static void expand_null_return_1 PARAMS ((rtx, int));
413 static void expand_value_return PARAMS ((rtx));
414 static int tail_recursion_args PARAMS ((tree, tree));
415 static void expand_cleanups PARAMS ((tree, tree, int, int));
416 static void check_seenlabel PARAMS ((void));
417 static void do_jump_if_equal PARAMS ((rtx, rtx, rtx, int));
418 static int estimate_case_costs PARAMS ((case_node_ptr));
419 static void group_case_nodes PARAMS ((case_node_ptr));
420 static void balance_case_nodes PARAMS ((case_node_ptr *,
421 case_node_ptr));
422 static int node_has_low_bound PARAMS ((case_node_ptr, tree));
423 static int node_has_high_bound PARAMS ((case_node_ptr, tree));
424 static int node_is_bounded PARAMS ((case_node_ptr, tree));
425 static void emit_jump_if_reachable PARAMS ((rtx));
426 static void emit_case_nodes PARAMS ((rtx, case_node_ptr, rtx, tree));
427 static int add_case_node PARAMS ((tree, tree, tree, tree *));
428 static struct case_node *case_tree2list PARAMS ((case_node *, case_node *));
429 static void mark_cond_nesting PARAMS ((struct nesting *));
430 static void mark_loop_nesting PARAMS ((struct nesting *));
431 static void mark_block_nesting PARAMS ((struct nesting *));
432 static void mark_case_nesting PARAMS ((struct nesting *));
433 static void mark_case_node PARAMS ((struct case_node *));
434 static void mark_goto_fixup PARAMS ((struct goto_fixup *));
435
436 \f
437 void
438 using_eh_for_cleanups ()
439 {
440 using_eh_for_cleanups_p = 1;
441 }
442
443 /* Mark N (known to be a cond-nesting) for GC. */
444
445 static void
446 mark_cond_nesting (n)
447 struct nesting *n;
448 {
449 while (n)
450 {
451 ggc_mark_rtx (n->exit_label);
452 ggc_mark_rtx (n->data.cond.endif_label);
453 ggc_mark_rtx (n->data.cond.next_label);
454
455 n = n->next;
456 }
457 }
458
459 /* Mark N (known to be a loop-nesting) for GC. */
460
461 static void
462 mark_loop_nesting (n)
463 struct nesting *n;
464 {
465
466 while (n)
467 {
468 ggc_mark_rtx (n->exit_label);
469 ggc_mark_rtx (n->data.loop.start_label);
470 ggc_mark_rtx (n->data.loop.end_label);
471 ggc_mark_rtx (n->data.loop.alt_end_label);
472 ggc_mark_rtx (n->data.loop.continue_label);
473
474 n = n->next;
475 }
476 }
477
478 /* Mark N (known to be a block-nesting) for GC. */
479
480 static void
481 mark_block_nesting (n)
482 struct nesting *n;
483 {
484 while (n)
485 {
486 struct label_chain *l;
487
488 ggc_mark_rtx (n->exit_label);
489 ggc_mark_rtx (n->data.block.stack_level);
490 ggc_mark_rtx (n->data.block.first_insn);
491 ggc_mark_tree (n->data.block.cleanups);
492 ggc_mark_tree (n->data.block.outer_cleanups);
493
494 for (l = n->data.block.label_chain; l != NULL; l = l->next)
495 ggc_mark_tree (l->label);
496
497 ggc_mark_rtx (n->data.block.last_unconditional_cleanup);
498
499 /* ??? cleanup_ptr never points outside the stack, does it? */
500
501 n = n->next;
502 }
503 }
504
505 /* Mark N (known to be a case-nesting) for GC. */
506
507 static void
508 mark_case_nesting (n)
509 struct nesting *n;
510 {
511 while (n)
512 {
513 ggc_mark_rtx (n->exit_label);
514 ggc_mark_rtx (n->data.case_stmt.start);
515
516 ggc_mark_tree (n->data.case_stmt.default_label);
517 ggc_mark_tree (n->data.case_stmt.index_expr);
518 ggc_mark_tree (n->data.case_stmt.nominal_type);
519
520 mark_case_node (n->data.case_stmt.case_list);
521 n = n->next;
522 }
523 }
524
525 /* Mark C for GC. */
526
527 static void
528 mark_case_node (c)
529 struct case_node *c;
530 {
531 if (c != 0)
532 {
533 ggc_mark_tree (c->low);
534 ggc_mark_tree (c->high);
535 ggc_mark_tree (c->code_label);
536
537 mark_case_node (c->right);
538 mark_case_node (c->left);
539 }
540 }
541
542 /* Mark G for GC. */
543
544 static void
545 mark_goto_fixup (g)
546 struct goto_fixup *g;
547 {
548 while (g)
549 {
550 ggc_mark (g);
551 ggc_mark_rtx (g->before_jump);
552 ggc_mark_tree (g->target);
553 ggc_mark_tree (g->context);
554 ggc_mark_rtx (g->target_rtl);
555 ggc_mark_rtx (g->stack_level);
556 ggc_mark_tree (g->cleanup_list_list);
557
558 g = g->next;
559 }
560 }
561
562 /* Clear out all parts of the state in F that can safely be discarded
563 after the function has been compiled, to let garbage collection
564 reclaim the memory. */
565
566 void
567 free_stmt_status (f)
568 struct function *f;
569 {
570 /* We're about to free the function obstack. If we hold pointers to
571 things allocated there, then we'll try to mark them when we do
572 GC. So, we clear them out here explicitly. */
573 if (f->stmt)
574 free (f->stmt);
575 f->stmt = NULL;
576 }
577
578 /* Mark P for GC. */
579
580 void
581 mark_stmt_status (p)
582 struct stmt_status *p;
583 {
584 if (p == 0)
585 return;
586
587 mark_block_nesting (p->x_block_stack);
588 mark_cond_nesting (p->x_cond_stack);
589 mark_loop_nesting (p->x_loop_stack);
590 mark_case_nesting (p->x_case_stack);
591
592 ggc_mark_tree (p->x_last_expr_type);
593 /* last_epxr_value is only valid if last_expr_type is nonzero. */
594 if (p->x_last_expr_type)
595 ggc_mark_rtx (p->x_last_expr_value);
596
597 mark_goto_fixup (p->x_goto_fixup_chain);
598 }
599
600 void
601 init_stmt ()
602 {
603 int i;
604
605 gcc_obstack_init (&stmt_obstack);
606
607 for (i = 0; i < 10; i++)
608 {
609 digit_strings[i] = ggc_alloc_string (NULL, 1);
610 digit_strings[i][0] = '0' + i;
611 }
612 ggc_add_string_root (digit_strings, 10);
613 }
614
615 void
616 init_stmt_for_function ()
617 {
618 cfun->stmt = (struct stmt_status *) xmalloc (sizeof (struct stmt_status));
619
620 /* We are not currently within any block, conditional, loop or case. */
621 block_stack = 0;
622 stack_block_stack = 0;
623 loop_stack = 0;
624 case_stack = 0;
625 cond_stack = 0;
626 nesting_stack = 0;
627 nesting_depth = 0;
628
629 current_block_start_count = 0;
630
631 /* No gotos have been expanded yet. */
632 goto_fixup_chain = 0;
633
634 /* We are not processing a ({...}) grouping. */
635 expr_stmts_for_value = 0;
636 last_expr_type = 0;
637 last_expr_value = NULL_RTX;
638 }
639 \f
640 /* Return nonzero if anything is pushed on the loop, condition, or case
641 stack. */
642 int
643 in_control_zone_p ()
644 {
645 return cond_stack || loop_stack || case_stack;
646 }
647
648 /* Record the current file and line. Called from emit_line_note. */
649 void
650 set_file_and_line_for_stmt (file, line)
651 const char *file;
652 int line;
653 {
654 /* If we're outputting an inline function, and we add a line note,
655 there may be no CFUN->STMT information. So, there's no need to
656 update it. */
657 if (cfun->stmt)
658 {
659 emit_filename = file;
660 emit_lineno = line;
661 }
662 }
663
664 /* Emit a no-op instruction. */
665
666 void
667 emit_nop ()
668 {
669 rtx last_insn;
670
671 last_insn = get_last_insn ();
672 if (!optimize
673 && (GET_CODE (last_insn) == CODE_LABEL
674 || (GET_CODE (last_insn) == NOTE
675 && prev_real_insn (last_insn) == 0)))
676 emit_insn (gen_nop ());
677 }
678 \f
679 /* Return the rtx-label that corresponds to a LABEL_DECL,
680 creating it if necessary. */
681
682 rtx
683 label_rtx (label)
684 tree label;
685 {
686 if (TREE_CODE (label) != LABEL_DECL)
687 abort ();
688
689 if (DECL_RTL (label))
690 return DECL_RTL (label);
691
692 return DECL_RTL (label) = gen_label_rtx ();
693 }
694
695 /* Add an unconditional jump to LABEL as the next sequential instruction. */
696
697 void
698 emit_jump (label)
699 rtx label;
700 {
701 do_pending_stack_adjust ();
702 emit_jump_insn (gen_jump (label));
703 emit_barrier ();
704 }
705
706 /* Emit code to jump to the address
707 specified by the pointer expression EXP. */
708
709 void
710 expand_computed_goto (exp)
711 tree exp;
712 {
713 rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0);
714
715 #ifdef POINTERS_EXTEND_UNSIGNED
716 x = convert_memory_address (Pmode, x);
717 #endif
718
719 emit_queue ();
720 /* Be sure the function is executable. */
721 if (current_function_check_memory_usage)
722 emit_library_call (chkr_check_exec_libfunc, 1,
723 VOIDmode, 1, x, ptr_mode);
724
725 do_pending_stack_adjust ();
726 emit_indirect_jump (x);
727
728 current_function_has_computed_jump = 1;
729 }
730 \f
731 /* Handle goto statements and the labels that they can go to. */
732
733 /* Specify the location in the RTL code of a label LABEL,
734 which is a LABEL_DECL tree node.
735
736 This is used for the kind of label that the user can jump to with a
737 goto statement, and for alternatives of a switch or case statement.
738 RTL labels generated for loops and conditionals don't go through here;
739 they are generated directly at the RTL level, by other functions below.
740
741 Note that this has nothing to do with defining label *names*.
742 Languages vary in how they do that and what that even means. */
743
744 void
745 expand_label (label)
746 tree label;
747 {
748 struct label_chain *p;
749
750 do_pending_stack_adjust ();
751 emit_label (label_rtx (label));
752 if (DECL_NAME (label))
753 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
754
755 if (stack_block_stack != 0)
756 {
757 p = (struct label_chain *) oballoc (sizeof (struct label_chain));
758 p->next = stack_block_stack->data.block.label_chain;
759 stack_block_stack->data.block.label_chain = p;
760 p->label = label;
761 }
762 }
763
764 /* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos
765 from nested functions. */
766
767 void
768 declare_nonlocal_label (label)
769 tree label;
770 {
771 rtx slot = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
772
773 nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels);
774 LABEL_PRESERVE_P (label_rtx (label)) = 1;
775 if (nonlocal_goto_handler_slots == 0)
776 {
777 emit_stack_save (SAVE_NONLOCAL,
778 &nonlocal_goto_stack_level,
779 PREV_INSN (tail_recursion_reentry));
780 }
781 nonlocal_goto_handler_slots
782 = gen_rtx_EXPR_LIST (VOIDmode, slot, nonlocal_goto_handler_slots);
783 }
784
785 /* Generate RTL code for a `goto' statement with target label LABEL.
786 LABEL should be a LABEL_DECL tree node that was or will later be
787 defined with `expand_label'. */
788
789 void
790 expand_goto (label)
791 tree label;
792 {
793 tree context;
794
795 /* Check for a nonlocal goto to a containing function. */
796 context = decl_function_context (label);
797 if (context != 0 && context != current_function_decl)
798 {
799 struct function *p = find_function_data (context);
800 rtx label_ref = gen_rtx_LABEL_REF (Pmode, label_rtx (label));
801 rtx temp, handler_slot;
802 tree link;
803
804 /* Find the corresponding handler slot for this label. */
805 handler_slot = p->x_nonlocal_goto_handler_slots;
806 for (link = p->x_nonlocal_labels; TREE_VALUE (link) != label;
807 link = TREE_CHAIN (link))
808 handler_slot = XEXP (handler_slot, 1);
809 handler_slot = XEXP (handler_slot, 0);
810
811 p->has_nonlocal_label = 1;
812 current_function_has_nonlocal_goto = 1;
813 LABEL_REF_NONLOCAL_P (label_ref) = 1;
814
815 /* Copy the rtl for the slots so that they won't be shared in
816 case the virtual stack vars register gets instantiated differently
817 in the parent than in the child. */
818
819 #if HAVE_nonlocal_goto
820 if (HAVE_nonlocal_goto)
821 emit_insn (gen_nonlocal_goto (lookup_static_chain (label),
822 copy_rtx (handler_slot),
823 copy_rtx (p->x_nonlocal_goto_stack_level),
824 label_ref));
825 else
826 #endif
827 {
828 rtx addr;
829
830 /* Restore frame pointer for containing function.
831 This sets the actual hard register used for the frame pointer
832 to the location of the function's incoming static chain info.
833 The non-local goto handler will then adjust it to contain the
834 proper value and reload the argument pointer, if needed. */
835 emit_move_insn (hard_frame_pointer_rtx, lookup_static_chain (label));
836
837 /* We have now loaded the frame pointer hardware register with
838 the address of that corresponds to the start of the virtual
839 stack vars. So replace virtual_stack_vars_rtx in all
840 addresses we use with stack_pointer_rtx. */
841
842 /* Get addr of containing function's current nonlocal goto handler,
843 which will do any cleanups and then jump to the label. */
844 addr = copy_rtx (handler_slot);
845 temp = copy_to_reg (replace_rtx (addr, virtual_stack_vars_rtx,
846 hard_frame_pointer_rtx));
847
848 /* Restore the stack pointer. Note this uses fp just restored. */
849 addr = p->x_nonlocal_goto_stack_level;
850 if (addr)
851 addr = replace_rtx (copy_rtx (addr),
852 virtual_stack_vars_rtx,
853 hard_frame_pointer_rtx);
854
855 emit_stack_restore (SAVE_NONLOCAL, addr, NULL_RTX);
856
857 /* USE of hard_frame_pointer_rtx added for consistency; not clear if
858 really needed. */
859 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
860 emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
861 emit_indirect_jump (temp);
862 }
863 }
864 else
865 expand_goto_internal (label, label_rtx (label), NULL_RTX);
866 }
867
868 /* Generate RTL code for a `goto' statement with target label BODY.
869 LABEL should be a LABEL_REF.
870 LAST_INSN, if non-0, is the rtx we should consider as the last
871 insn emitted (for the purposes of cleaning up a return). */
872
873 static void
874 expand_goto_internal (body, label, last_insn)
875 tree body;
876 rtx label;
877 rtx last_insn;
878 {
879 struct nesting *block;
880 rtx stack_level = 0;
881
882 if (GET_CODE (label) != CODE_LABEL)
883 abort ();
884
885 /* If label has already been defined, we can tell now
886 whether and how we must alter the stack level. */
887
888 if (PREV_INSN (label) != 0)
889 {
890 /* Find the innermost pending block that contains the label.
891 (Check containment by comparing insn-uids.)
892 Then restore the outermost stack level within that block,
893 and do cleanups of all blocks contained in it. */
894 for (block = block_stack; block; block = block->next)
895 {
896 if (INSN_UID (block->data.block.first_insn) < INSN_UID (label))
897 break;
898 if (block->data.block.stack_level != 0)
899 stack_level = block->data.block.stack_level;
900 /* Execute the cleanups for blocks we are exiting. */
901 if (block->data.block.cleanups != 0)
902 {
903 expand_cleanups (block->data.block.cleanups, NULL_TREE, 1, 1);
904 do_pending_stack_adjust ();
905 }
906 }
907
908 if (stack_level)
909 {
910 /* Ensure stack adjust isn't done by emit_jump, as this
911 would clobber the stack pointer. This one should be
912 deleted as dead by flow. */
913 clear_pending_stack_adjust ();
914 do_pending_stack_adjust ();
915 emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX);
916 }
917
918 if (body != 0 && DECL_TOO_LATE (body))
919 error ("jump to `%s' invalidly jumps into binding contour",
920 IDENTIFIER_POINTER (DECL_NAME (body)));
921 }
922 /* Label not yet defined: may need to put this goto
923 on the fixup list. */
924 else if (! expand_fixup (body, label, last_insn))
925 {
926 /* No fixup needed. Record that the label is the target
927 of at least one goto that has no fixup. */
928 if (body != 0)
929 TREE_ADDRESSABLE (body) = 1;
930 }
931
932 emit_jump (label);
933 }
934 \f
935 /* Generate if necessary a fixup for a goto
936 whose target label in tree structure (if any) is TREE_LABEL
937 and whose target in rtl is RTL_LABEL.
938
939 If LAST_INSN is nonzero, we pretend that the jump appears
940 after insn LAST_INSN instead of at the current point in the insn stream.
941
942 The fixup will be used later to insert insns just before the goto.
943 Those insns will restore the stack level as appropriate for the
944 target label, and will (in the case of C++) also invoke any object
945 destructors which have to be invoked when we exit the scopes which
946 are exited by the goto.
947
948 Value is nonzero if a fixup is made. */
949
950 static int
951 expand_fixup (tree_label, rtl_label, last_insn)
952 tree tree_label;
953 rtx rtl_label;
954 rtx last_insn;
955 {
956 struct nesting *block, *end_block;
957
958 /* See if we can recognize which block the label will be output in.
959 This is possible in some very common cases.
960 If we succeed, set END_BLOCK to that block.
961 Otherwise, set it to 0. */
962
963 if (cond_stack
964 && (rtl_label == cond_stack->data.cond.endif_label
965 || rtl_label == cond_stack->data.cond.next_label))
966 end_block = cond_stack;
967 /* If we are in a loop, recognize certain labels which
968 are likely targets. This reduces the number of fixups
969 we need to create. */
970 else if (loop_stack
971 && (rtl_label == loop_stack->data.loop.start_label
972 || rtl_label == loop_stack->data.loop.end_label
973 || rtl_label == loop_stack->data.loop.continue_label))
974 end_block = loop_stack;
975 else
976 end_block = 0;
977
978 /* Now set END_BLOCK to the binding level to which we will return. */
979
980 if (end_block)
981 {
982 struct nesting *next_block = end_block->all;
983 block = block_stack;
984
985 /* First see if the END_BLOCK is inside the innermost binding level.
986 If so, then no cleanups or stack levels are relevant. */
987 while (next_block && next_block != block)
988 next_block = next_block->all;
989
990 if (next_block)
991 return 0;
992
993 /* Otherwise, set END_BLOCK to the innermost binding level
994 which is outside the relevant control-structure nesting. */
995 next_block = block_stack->next;
996 for (block = block_stack; block != end_block; block = block->all)
997 if (block == next_block)
998 next_block = next_block->next;
999 end_block = next_block;
1000 }
1001
1002 /* Does any containing block have a stack level or cleanups?
1003 If not, no fixup is needed, and that is the normal case
1004 (the only case, for standard C). */
1005 for (block = block_stack; block != end_block; block = block->next)
1006 if (block->data.block.stack_level != 0
1007 || block->data.block.cleanups != 0)
1008 break;
1009
1010 if (block != end_block)
1011 {
1012 /* Ok, a fixup is needed. Add a fixup to the list of such. */
1013 struct goto_fixup *fixup
1014 = (struct goto_fixup *) ggc_alloc_obj (sizeof (struct goto_fixup), 0);
1015 /* In case an old stack level is restored, make sure that comes
1016 after any pending stack adjust. */
1017 /* ?? If the fixup isn't to come at the present position,
1018 doing the stack adjust here isn't useful. Doing it with our
1019 settings at that location isn't useful either. Let's hope
1020 someone does it! */
1021 if (last_insn == 0)
1022 do_pending_stack_adjust ();
1023 fixup->target = tree_label;
1024 fixup->target_rtl = rtl_label;
1025
1026 /* Create a BLOCK node and a corresponding matched set of
1027 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes at
1028 this point. The notes will encapsulate any and all fixup
1029 code which we might later insert at this point in the insn
1030 stream. Also, the BLOCK node will be the parent (i.e. the
1031 `SUPERBLOCK') of any other BLOCK nodes which we might create
1032 later on when we are expanding the fixup code.
1033
1034 Note that optimization passes (including expand_end_loop)
1035 might move the *_BLOCK notes away, so we use a NOTE_INSN_DELETED
1036 as a placeholder. */
1037
1038 {
1039 register rtx original_before_jump
1040 = last_insn ? last_insn : get_last_insn ();
1041 rtx start;
1042 rtx end;
1043 tree block;
1044
1045 block = make_node (BLOCK);
1046 TREE_USED (block) = 1;
1047
1048 if (!cfun->x_whole_function_mode_p)
1049 insert_block (block);
1050 else
1051 {
1052 BLOCK_CHAIN (block)
1053 = BLOCK_CHAIN (DECL_INITIAL (current_function_decl));
1054 BLOCK_CHAIN (DECL_INITIAL (current_function_decl))
1055 = block;
1056 }
1057
1058 start_sequence ();
1059 start = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG);
1060 if (cfun->x_whole_function_mode_p)
1061 NOTE_BLOCK (start) = block;
1062 fixup->before_jump = emit_note (NULL_PTR, NOTE_INSN_DELETED);
1063 end = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END);
1064 if (cfun->x_whole_function_mode_p)
1065 NOTE_BLOCK (end) = block;
1066 fixup->context = block;
1067 end_sequence ();
1068 emit_insns_after (start, original_before_jump);
1069 }
1070
1071 fixup->block_start_count = current_block_start_count;
1072 fixup->stack_level = 0;
1073 fixup->cleanup_list_list
1074 = ((block->data.block.outer_cleanups
1075 || block->data.block.cleanups)
1076 ? tree_cons (NULL_TREE, block->data.block.cleanups,
1077 block->data.block.outer_cleanups)
1078 : 0);
1079 fixup->next = goto_fixup_chain;
1080 goto_fixup_chain = fixup;
1081 }
1082
1083 return block != 0;
1084 }
1085
1086
1087 \f
1088 /* Expand any needed fixups in the outputmost binding level of the
1089 function. FIRST_INSN is the first insn in the function. */
1090
1091 void
1092 expand_fixups (first_insn)
1093 rtx first_insn;
1094 {
1095 fixup_gotos (NULL_PTR, NULL_RTX, NULL_TREE, first_insn, 0);
1096 }
1097
1098 /* When exiting a binding contour, process all pending gotos requiring fixups.
1099 THISBLOCK is the structure that describes the block being exited.
1100 STACK_LEVEL is the rtx for the stack level to restore exiting this contour.
1101 CLEANUP_LIST is a list of expressions to evaluate on exiting this contour.
1102 FIRST_INSN is the insn that began this contour.
1103
1104 Gotos that jump out of this contour must restore the
1105 stack level and do the cleanups before actually jumping.
1106
1107 DONT_JUMP_IN nonzero means report error there is a jump into this
1108 contour from before the beginning of the contour.
1109 This is also done if STACK_LEVEL is nonzero. */
1110
1111 static void
1112 fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in)
1113 struct nesting *thisblock;
1114 rtx stack_level;
1115 tree cleanup_list;
1116 rtx first_insn;
1117 int dont_jump_in;
1118 {
1119 register struct goto_fixup *f, *prev;
1120
1121 /* F is the fixup we are considering; PREV is the previous one. */
1122 /* We run this loop in two passes so that cleanups of exited blocks
1123 are run first, and blocks that are exited are marked so
1124 afterwards. */
1125
1126 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1127 {
1128 /* Test for a fixup that is inactive because it is already handled. */
1129 if (f->before_jump == 0)
1130 {
1131 /* Delete inactive fixup from the chain, if that is easy to do. */
1132 if (prev != 0)
1133 prev->next = f->next;
1134 }
1135 /* Has this fixup's target label been defined?
1136 If so, we can finalize it. */
1137 else if (PREV_INSN (f->target_rtl) != 0)
1138 {
1139 register rtx cleanup_insns;
1140
1141 /* If this fixup jumped into this contour from before the beginning
1142 of this contour, report an error. This code used to use
1143 the first non-label insn after f->target_rtl, but that's
1144 wrong since such can be added, by things like put_var_into_stack
1145 and have INSN_UIDs that are out of the range of the block. */
1146 /* ??? Bug: this does not detect jumping in through intermediate
1147 blocks that have stack levels or cleanups.
1148 It detects only a problem with the innermost block
1149 around the label. */
1150 if (f->target != 0
1151 && (dont_jump_in || stack_level || cleanup_list)
1152 && INSN_UID (first_insn) < INSN_UID (f->target_rtl)
1153 && INSN_UID (first_insn) > INSN_UID (f->before_jump)
1154 && ! DECL_ERROR_ISSUED (f->target))
1155 {
1156 error_with_decl (f->target,
1157 "label `%s' used before containing binding contour");
1158 /* Prevent multiple errors for one label. */
1159 DECL_ERROR_ISSUED (f->target) = 1;
1160 }
1161
1162 /* We will expand the cleanups into a sequence of their own and
1163 then later on we will attach this new sequence to the insn
1164 stream just ahead of the actual jump insn. */
1165
1166 start_sequence ();
1167
1168 /* Temporarily restore the lexical context where we will
1169 logically be inserting the fixup code. We do this for the
1170 sake of getting the debugging information right. */
1171
1172 pushlevel (0);
1173 set_block (f->context);
1174
1175 /* Expand the cleanups for blocks this jump exits. */
1176 if (f->cleanup_list_list)
1177 {
1178 tree lists;
1179 for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists))
1180 /* Marked elements correspond to blocks that have been closed.
1181 Do their cleanups. */
1182 if (TREE_ADDRESSABLE (lists)
1183 && TREE_VALUE (lists) != 0)
1184 {
1185 expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1186 /* Pop any pushes done in the cleanups,
1187 in case function is about to return. */
1188 do_pending_stack_adjust ();
1189 }
1190 }
1191
1192 /* Restore stack level for the biggest contour that this
1193 jump jumps out of. */
1194 if (f->stack_level)
1195 emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump);
1196
1197 /* Finish up the sequence containing the insns which implement the
1198 necessary cleanups, and then attach that whole sequence to the
1199 insn stream just ahead of the actual jump insn. Attaching it
1200 at that point insures that any cleanups which are in fact
1201 implicit C++ object destructions (which must be executed upon
1202 leaving the block) appear (to the debugger) to be taking place
1203 in an area of the generated code where the object(s) being
1204 destructed are still "in scope". */
1205
1206 cleanup_insns = get_insns ();
1207 poplevel (1, 0, 0);
1208
1209 end_sequence ();
1210 emit_insns_after (cleanup_insns, f->before_jump);
1211
1212
1213 f->before_jump = 0;
1214 }
1215 }
1216
1217 /* For any still-undefined labels, do the cleanups for this block now.
1218 We must do this now since items in the cleanup list may go out
1219 of scope when the block ends. */
1220 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1221 if (f->before_jump != 0
1222 && PREV_INSN (f->target_rtl) == 0
1223 /* Label has still not appeared. If we are exiting a block with
1224 a stack level to restore, that started before the fixup,
1225 mark this stack level as needing restoration
1226 when the fixup is later finalized. */
1227 && thisblock != 0
1228 /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared, it
1229 means the label is undefined. That's erroneous, but possible. */
1230 && (thisblock->data.block.block_start_count
1231 <= f->block_start_count))
1232 {
1233 tree lists = f->cleanup_list_list;
1234 rtx cleanup_insns;
1235
1236 for (; lists; lists = TREE_CHAIN (lists))
1237 /* If the following elt. corresponds to our containing block
1238 then the elt. must be for this block. */
1239 if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups)
1240 {
1241 start_sequence ();
1242 pushlevel (0);
1243 set_block (f->context);
1244 expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1245 do_pending_stack_adjust ();
1246 cleanup_insns = get_insns ();
1247 poplevel (1, 0, 0);
1248 end_sequence ();
1249 if (cleanup_insns != 0)
1250 f->before_jump
1251 = emit_insns_after (cleanup_insns, f->before_jump);
1252
1253 f->cleanup_list_list = TREE_CHAIN (lists);
1254 }
1255
1256 if (stack_level)
1257 f->stack_level = stack_level;
1258 }
1259 }
1260 \f
1261 /* Return the number of times character C occurs in string S. */
1262 static int
1263 n_occurrences (c, s)
1264 int c;
1265 const char *s;
1266 {
1267 int n = 0;
1268 while (*s)
1269 n += (*s++ == c);
1270 return n;
1271 }
1272 \f
1273 /* Generate RTL for an asm statement (explicit assembler code).
1274 BODY is a STRING_CST node containing the assembler code text,
1275 or an ADDR_EXPR containing a STRING_CST. */
1276
1277 void
1278 expand_asm (body)
1279 tree body;
1280 {
1281 if (current_function_check_memory_usage)
1282 {
1283 error ("`asm' cannot be used in function where memory usage is checked");
1284 return;
1285 }
1286
1287 if (TREE_CODE (body) == ADDR_EXPR)
1288 body = TREE_OPERAND (body, 0);
1289
1290 emit_insn (gen_rtx_ASM_INPUT (VOIDmode,
1291 TREE_STRING_POINTER (body)));
1292 last_expr_type = 0;
1293 }
1294
1295 /* Generate RTL for an asm statement with arguments.
1296 STRING is the instruction template.
1297 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
1298 Each output or input has an expression in the TREE_VALUE and
1299 a constraint-string in the TREE_PURPOSE.
1300 CLOBBERS is a list of STRING_CST nodes each naming a hard register
1301 that is clobbered by this insn.
1302
1303 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
1304 Some elements of OUTPUTS may be replaced with trees representing temporary
1305 values. The caller should copy those temporary values to the originally
1306 specified lvalues.
1307
1308 VOL nonzero means the insn is volatile; don't optimize it. */
1309
1310 void
1311 expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
1312 tree string, outputs, inputs, clobbers;
1313 int vol;
1314 char *filename;
1315 int line;
1316 {
1317 rtvec argvec, constraints;
1318 rtx body;
1319 int ninputs = list_length (inputs);
1320 int noutputs = list_length (outputs);
1321 int ninout = 0;
1322 int nclobbers;
1323 tree tail;
1324 register int i;
1325 /* Vector of RTX's of evaluated output operands. */
1326 rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1327 int *inout_opnum = (int *) alloca (noutputs * sizeof (int));
1328 rtx *real_output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1329 enum machine_mode *inout_mode
1330 = (enum machine_mode *) alloca (noutputs * sizeof (enum machine_mode));
1331 /* The insn we have emitted. */
1332 rtx insn;
1333
1334 /* An ASM with no outputs needs to be treated as volatile, for now. */
1335 if (noutputs == 0)
1336 vol = 1;
1337
1338 if (current_function_check_memory_usage)
1339 {
1340 error ("`asm' cannot be used with `-fcheck-memory-usage'");
1341 return;
1342 }
1343
1344 #ifdef MD_ASM_CLOBBERS
1345 /* Sometimes we wish to automatically clobber registers across an asm.
1346 Case in point is when the i386 backend moved from cc0 to a hard reg --
1347 maintaining source-level compatability means automatically clobbering
1348 the flags register. */
1349 MD_ASM_CLOBBERS (clobbers);
1350 #endif
1351
1352 if (current_function_check_memory_usage)
1353 {
1354 error ("`asm' cannot be used in function where memory usage is checked");
1355 return;
1356 }
1357
1358 /* Count the number of meaningful clobbered registers, ignoring what
1359 we would ignore later. */
1360 nclobbers = 0;
1361 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1362 {
1363 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1364
1365 i = decode_reg_name (regname);
1366 if (i >= 0 || i == -4)
1367 ++nclobbers;
1368 else if (i == -2)
1369 error ("unknown register name `%s' in `asm'", regname);
1370 }
1371
1372 last_expr_type = 0;
1373
1374 /* Check that the number of alternatives is constant across all
1375 operands. */
1376 if (outputs || inputs)
1377 {
1378 tree tmp = TREE_PURPOSE (outputs ? outputs : inputs);
1379 int nalternatives = n_occurrences (',', TREE_STRING_POINTER (tmp));
1380 tree next = inputs;
1381
1382 if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
1383 {
1384 error ("too many alternatives in `asm'");
1385 return;
1386 }
1387
1388 tmp = outputs;
1389 while (tmp)
1390 {
1391 const char *constraint = TREE_STRING_POINTER (TREE_PURPOSE (tmp));
1392
1393 if (n_occurrences (',', constraint) != nalternatives)
1394 {
1395 error ("operand constraints for `asm' differ in number of alternatives");
1396 return;
1397 }
1398
1399 if (TREE_CHAIN (tmp))
1400 tmp = TREE_CHAIN (tmp);
1401 else
1402 tmp = next, next = 0;
1403 }
1404 }
1405
1406 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1407 {
1408 tree val = TREE_VALUE (tail);
1409 tree type = TREE_TYPE (val);
1410 char *constraint;
1411 char *p;
1412 int c_len;
1413 int j;
1414 int is_inout = 0;
1415 int allows_reg = 0;
1416 int allows_mem = 0;
1417
1418 /* If there's an erroneous arg, emit no insn. */
1419 if (TREE_TYPE (val) == error_mark_node)
1420 return;
1421
1422 /* Make sure constraint has `=' and does not have `+'. Also, see
1423 if it allows any register. Be liberal on the latter test, since
1424 the worst that happens if we get it wrong is we issue an error
1425 message. */
1426
1427 c_len = strlen (TREE_STRING_POINTER (TREE_PURPOSE (tail)));
1428 constraint = TREE_STRING_POINTER (TREE_PURPOSE (tail));
1429
1430 /* Allow the `=' or `+' to not be at the beginning of the string,
1431 since it wasn't explicitly documented that way, and there is a
1432 large body of code that puts it last. Swap the character to
1433 the front, so as not to uglify any place else. */
1434 switch (c_len)
1435 {
1436 default:
1437 if ((p = strchr (constraint, '=')) != NULL)
1438 break;
1439 if ((p = strchr (constraint, '+')) != NULL)
1440 break;
1441 case 0:
1442 error ("output operand constraint lacks `='");
1443 return;
1444 }
1445
1446 if (p != constraint)
1447 {
1448 j = *p;
1449 bcopy (constraint, constraint+1, p-constraint);
1450 *constraint = j;
1451
1452 warning ("output constraint `%c' for operand %d is not at the beginning", j, i);
1453 }
1454
1455 is_inout = constraint[0] == '+';
1456 /* Replace '+' with '='. */
1457 constraint[0] = '=';
1458 /* Make sure we can specify the matching operand. */
1459 if (is_inout && i > 9)
1460 {
1461 error ("output operand constraint %d contains `+'", i);
1462 return;
1463 }
1464
1465 for (j = 1; j < c_len; j++)
1466 switch (constraint[j])
1467 {
1468 case '+':
1469 case '=':
1470 error ("operand constraint contains '+' or '=' at illegal position.");
1471 return;
1472
1473 case '%':
1474 if (i + 1 == ninputs + noutputs)
1475 {
1476 error ("`%%' constraint used with last operand");
1477 return;
1478 }
1479 break;
1480
1481 case '?': case '!': case '*': case '&':
1482 case 'E': case 'F': case 'G': case 'H':
1483 case 's': case 'i': case 'n':
1484 case 'I': case 'J': case 'K': case 'L': case 'M':
1485 case 'N': case 'O': case 'P': case ',':
1486 #ifdef EXTRA_CONSTRAINT
1487 case 'Q': case 'R': case 'S': case 'T': case 'U':
1488 #endif
1489 break;
1490
1491 case '0': case '1': case '2': case '3': case '4':
1492 case '5': case '6': case '7': case '8': case '9':
1493 error ("matching constraint not valid in output operand");
1494 break;
1495
1496 case 'V': case 'm': case 'o':
1497 allows_mem = 1;
1498 break;
1499
1500 case '<': case '>':
1501 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1502 excepting those that expand_call created. So match memory
1503 and hope. */
1504 allows_mem = 1;
1505 break;
1506
1507 case 'g': case 'X':
1508 allows_reg = 1;
1509 allows_mem = 1;
1510 break;
1511
1512 case 'p': case 'r':
1513 default:
1514 allows_reg = 1;
1515 break;
1516 }
1517
1518 /* If an output operand is not a decl or indirect ref and our constraint
1519 allows a register, make a temporary to act as an intermediate.
1520 Make the asm insn write into that, then our caller will copy it to
1521 the real output operand. Likewise for promoted variables. */
1522
1523 real_output_rtx[i] = NULL_RTX;
1524 if ((TREE_CODE (val) == INDIRECT_REF
1525 && allows_mem)
1526 || (DECL_P (val)
1527 && (allows_mem || GET_CODE (DECL_RTL (val)) == REG)
1528 && ! (GET_CODE (DECL_RTL (val)) == REG
1529 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))
1530 || ! allows_reg
1531 || is_inout)
1532 {
1533 if (! allows_reg)
1534 mark_addressable (TREE_VALUE (tail));
1535
1536 output_rtx[i]
1537 = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode,
1538 EXPAND_MEMORY_USE_WO);
1539
1540 if (! allows_reg && GET_CODE (output_rtx[i]) != MEM)
1541 error ("output number %d not directly addressable", i);
1542 if (! allows_mem && GET_CODE (output_rtx[i]) == MEM)
1543 {
1544 real_output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1545 output_rtx[i] = gen_reg_rtx (GET_MODE (output_rtx[i]));
1546 if (is_inout)
1547 emit_move_insn (output_rtx[i], real_output_rtx[i]);
1548 }
1549 }
1550 else
1551 {
1552 output_rtx[i] = assign_temp (type, 0, 0, 1);
1553 TREE_VALUE (tail) = make_tree (type, output_rtx[i]);
1554 }
1555
1556 if (is_inout)
1557 {
1558 inout_mode[ninout] = TYPE_MODE (TREE_TYPE (TREE_VALUE (tail)));
1559 inout_opnum[ninout++] = i;
1560 }
1561 }
1562
1563 ninputs += ninout;
1564 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
1565 {
1566 error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS);
1567 return;
1568 }
1569
1570 /* Make vectors for the expression-rtx and constraint strings. */
1571
1572 argvec = rtvec_alloc (ninputs);
1573 constraints = rtvec_alloc (ninputs);
1574
1575 body = gen_rtx_ASM_OPERANDS (VOIDmode, TREE_STRING_POINTER (string),
1576 empty_string, 0, argvec, constraints,
1577 filename, line);
1578
1579 MEM_VOLATILE_P (body) = vol;
1580
1581 /* Eval the inputs and put them into ARGVEC.
1582 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
1583
1584 i = 0;
1585 for (tail = inputs; tail; tail = TREE_CHAIN (tail))
1586 {
1587 int j;
1588 int allows_reg = 0, allows_mem = 0;
1589 char *constraint, *orig_constraint;
1590 int c_len;
1591 rtx op;
1592
1593 /* If there's an erroneous arg, emit no insn,
1594 because the ASM_INPUT would get VOIDmode
1595 and that could cause a crash in reload. */
1596 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
1597 return;
1598
1599 /* ??? Can this happen, and does the error message make any sense? */
1600 if (TREE_PURPOSE (tail) == NULL_TREE)
1601 {
1602 error ("hard register `%s' listed as input operand to `asm'",
1603 TREE_STRING_POINTER (TREE_VALUE (tail)) );
1604 return;
1605 }
1606
1607 c_len = strlen (TREE_STRING_POINTER (TREE_PURPOSE (tail)));
1608 constraint = TREE_STRING_POINTER (TREE_PURPOSE (tail));
1609 orig_constraint = constraint;
1610
1611 /* Make sure constraint has neither `=', `+', nor '&'. */
1612
1613 for (j = 0; j < c_len; j++)
1614 switch (constraint[j])
1615 {
1616 case '+': case '=': case '&':
1617 if (constraint == orig_constraint)
1618 {
1619 error ("input operand constraint contains `%c'",
1620 constraint[j]);
1621 return;
1622 }
1623 break;
1624
1625 case '%':
1626 if (constraint == orig_constraint
1627 && i + 1 == ninputs - ninout)
1628 {
1629 error ("`%%' constraint used with last operand");
1630 return;
1631 }
1632 break;
1633
1634 case 'V': case 'm': case 'o':
1635 allows_mem = 1;
1636 break;
1637
1638 case '<': case '>':
1639 case '?': case '!': case '*':
1640 case 'E': case 'F': case 'G': case 'H': case 'X':
1641 case 's': case 'i': case 'n':
1642 case 'I': case 'J': case 'K': case 'L': case 'M':
1643 case 'N': case 'O': case 'P': case ',':
1644 #ifdef EXTRA_CONSTRAINT
1645 case 'Q': case 'R': case 'S': case 'T': case 'U':
1646 #endif
1647 break;
1648
1649 /* Whether or not a numeric constraint allows a register is
1650 decided by the matching constraint, and so there is no need
1651 to do anything special with them. We must handle them in
1652 the default case, so that we don't unnecessarily force
1653 operands to memory. */
1654 case '0': case '1': case '2': case '3': case '4':
1655 case '5': case '6': case '7': case '8': case '9':
1656 if (constraint[j] >= '0' + noutputs)
1657 {
1658 error
1659 ("matching constraint references invalid operand number");
1660 return;
1661 }
1662
1663 /* Try and find the real constraint for this dup. */
1664 if ((j == 0 && c_len == 1)
1665 || (j == 1 && c_len == 2 && constraint[0] == '%'))
1666 {
1667 tree o = outputs;
1668
1669 for (j = constraint[j] - '0'; j > 0; --j)
1670 o = TREE_CHAIN (o);
1671
1672 c_len = strlen (TREE_STRING_POINTER (TREE_PURPOSE (o)));
1673 constraint = TREE_STRING_POINTER (TREE_PURPOSE (o));
1674 j = 0;
1675 break;
1676 }
1677
1678 /* ... fall through ... */
1679
1680 case 'p': case 'r':
1681 default:
1682 allows_reg = 1;
1683 break;
1684
1685 case 'g':
1686 allows_reg = 1;
1687 allows_mem = 1;
1688 break;
1689 }
1690
1691 if (! allows_reg && allows_mem)
1692 mark_addressable (TREE_VALUE (tail));
1693
1694 op = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0);
1695
1696 if (asm_operand_ok (op, constraint) <= 0)
1697 {
1698 if (allows_reg)
1699 op = force_reg (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), op);
1700 else if (!allows_mem)
1701 warning ("asm operand %d probably doesn't match constraints", i);
1702 else if (CONSTANT_P (op))
1703 op = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1704 op);
1705 else if (GET_CODE (op) == REG
1706 || GET_CODE (op) == SUBREG
1707 || GET_CODE (op) == CONCAT)
1708 {
1709 tree type = TREE_TYPE (TREE_VALUE (tail));
1710 rtx memloc = assign_temp (type, 1, 1, 1);
1711
1712 emit_move_insn (memloc, op);
1713 op = memloc;
1714 }
1715
1716 else if (GET_CODE (op) == MEM && MEM_VOLATILE_P (op))
1717 /* We won't recognize volatile memory as available a
1718 memory_operand at this point. Ignore it. */
1719 ;
1720 else if (queued_subexp_p (op))
1721 ;
1722 else
1723 /* ??? Leave this only until we have experience with what
1724 happens in combine and elsewhere when constraints are
1725 not satisfied. */
1726 warning ("asm operand %d probably doesn't match constraints", i);
1727 }
1728 XVECEXP (body, 3, i) = op;
1729
1730 XVECEXP (body, 4, i) /* constraints */
1731 = gen_rtx_ASM_INPUT (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1732 orig_constraint);
1733 i++;
1734 }
1735
1736 /* Protect all the operands from the queue now that they have all been
1737 evaluated. */
1738
1739 for (i = 0; i < ninputs - ninout; i++)
1740 XVECEXP (body, 3, i) = protect_from_queue (XVECEXP (body, 3, i), 0);
1741
1742 for (i = 0; i < noutputs; i++)
1743 output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1744
1745 /* For in-out operands, copy output rtx to input rtx. */
1746 for (i = 0; i < ninout; i++)
1747 {
1748 int j = inout_opnum[i];
1749
1750 XVECEXP (body, 3, ninputs - ninout + i) /* argvec */
1751 = output_rtx[j];
1752 XVECEXP (body, 4, ninputs - ninout + i) /* constraints */
1753 = gen_rtx_ASM_INPUT (inout_mode[i], digit_strings[j]);
1754 }
1755
1756 /* Now, for each output, construct an rtx
1757 (set OUTPUT (asm_operands INSN OUTPUTNUMBER OUTPUTCONSTRAINT
1758 ARGVEC CONSTRAINTS))
1759 If there is more than one, put them inside a PARALLEL. */
1760
1761 if (noutputs == 1 && nclobbers == 0)
1762 {
1763 XSTR (body, 1) = TREE_STRING_POINTER (TREE_PURPOSE (outputs));
1764 insn = emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body));
1765 }
1766
1767 else if (noutputs == 0 && nclobbers == 0)
1768 {
1769 /* No output operands: put in a raw ASM_OPERANDS rtx. */
1770 insn = emit_insn (body);
1771 }
1772
1773 else
1774 {
1775 rtx obody = body;
1776 int num = noutputs;
1777
1778 if (num == 0)
1779 num = 1;
1780
1781 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers));
1782
1783 /* For each output operand, store a SET. */
1784 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1785 {
1786 XVECEXP (body, 0, i)
1787 = gen_rtx_SET (VOIDmode,
1788 output_rtx[i],
1789 gen_rtx_ASM_OPERANDS
1790 (VOIDmode,
1791 TREE_STRING_POINTER (string),
1792 TREE_STRING_POINTER (TREE_PURPOSE (tail)),
1793 i, argvec, constraints,
1794 filename, line));
1795
1796 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1797 }
1798
1799 /* If there are no outputs (but there are some clobbers)
1800 store the bare ASM_OPERANDS into the PARALLEL. */
1801
1802 if (i == 0)
1803 XVECEXP (body, 0, i++) = obody;
1804
1805 /* Store (clobber REG) for each clobbered register specified. */
1806
1807 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1808 {
1809 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1810 int j = decode_reg_name (regname);
1811
1812 if (j < 0)
1813 {
1814 if (j == -3) /* `cc', which is not a register */
1815 continue;
1816
1817 if (j == -4) /* `memory', don't cache memory across asm */
1818 {
1819 XVECEXP (body, 0, i++)
1820 = gen_rtx_CLOBBER (VOIDmode,
1821 gen_rtx_MEM
1822 (BLKmode,
1823 gen_rtx_SCRATCH (VOIDmode)));
1824 continue;
1825 }
1826
1827 /* Ignore unknown register, error already signaled. */
1828 continue;
1829 }
1830
1831 /* Use QImode since that's guaranteed to clobber just one reg. */
1832 XVECEXP (body, 0, i++)
1833 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (QImode, j));
1834 }
1835
1836 insn = emit_insn (body);
1837 }
1838
1839 /* For any outputs that needed reloading into registers, spill them
1840 back to where they belong. */
1841 for (i = 0; i < noutputs; ++i)
1842 if (real_output_rtx[i])
1843 emit_move_insn (real_output_rtx[i], output_rtx[i]);
1844
1845 free_temp_slots ();
1846 }
1847 \f
1848 /* Generate RTL to evaluate the expression EXP
1849 and remember it in case this is the VALUE in a ({... VALUE; }) constr. */
1850
1851 void
1852 expand_expr_stmt (exp)
1853 tree exp;
1854 {
1855 /* If -W, warn about statements with no side effects,
1856 except for an explicit cast to void (e.g. for assert()), and
1857 except inside a ({...}) where they may be useful. */
1858 if (expr_stmts_for_value == 0 && exp != error_mark_node)
1859 {
1860 if (! TREE_SIDE_EFFECTS (exp) && (extra_warnings || warn_unused)
1861 && !(TREE_CODE (exp) == CONVERT_EXPR
1862 && TREE_TYPE (exp) == void_type_node))
1863 warning_with_file_and_line (emit_filename, emit_lineno,
1864 "statement with no effect");
1865 else if (warn_unused)
1866 warn_if_unused_value (exp);
1867 }
1868
1869 /* If EXP is of function type and we are expanding statements for
1870 value, convert it to pointer-to-function. */
1871 if (expr_stmts_for_value && TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE)
1872 exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp);
1873
1874 last_expr_type = TREE_TYPE (exp);
1875 last_expr_value = expand_expr (exp,
1876 (expr_stmts_for_value
1877 ? NULL_RTX : const0_rtx),
1878 VOIDmode, 0);
1879
1880 /* If all we do is reference a volatile value in memory,
1881 copy it to a register to be sure it is actually touched. */
1882 if (last_expr_value != 0 && GET_CODE (last_expr_value) == MEM
1883 && TREE_THIS_VOLATILE (exp))
1884 {
1885 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode)
1886 ;
1887 else if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
1888 copy_to_reg (last_expr_value);
1889 else
1890 {
1891 rtx lab = gen_label_rtx ();
1892
1893 /* Compare the value with itself to reference it. */
1894 emit_cmp_and_jump_insns (last_expr_value, last_expr_value, EQ,
1895 expand_expr (TYPE_SIZE (last_expr_type),
1896 NULL_RTX, VOIDmode, 0),
1897 BLKmode, 0,
1898 TYPE_ALIGN (last_expr_type) / BITS_PER_UNIT,
1899 lab);
1900 emit_label (lab);
1901 }
1902 }
1903
1904 /* If this expression is part of a ({...}) and is in memory, we may have
1905 to preserve temporaries. */
1906 preserve_temp_slots (last_expr_value);
1907
1908 /* Free any temporaries used to evaluate this expression. Any temporary
1909 used as a result of this expression will already have been preserved
1910 above. */
1911 free_temp_slots ();
1912
1913 emit_queue ();
1914 }
1915
1916 /* Warn if EXP contains any computations whose results are not used.
1917 Return 1 if a warning is printed; 0 otherwise. */
1918
1919 int
1920 warn_if_unused_value (exp)
1921 tree exp;
1922 {
1923 if (TREE_USED (exp))
1924 return 0;
1925
1926 switch (TREE_CODE (exp))
1927 {
1928 case PREINCREMENT_EXPR:
1929 case POSTINCREMENT_EXPR:
1930 case PREDECREMENT_EXPR:
1931 case POSTDECREMENT_EXPR:
1932 case MODIFY_EXPR:
1933 case INIT_EXPR:
1934 case TARGET_EXPR:
1935 case CALL_EXPR:
1936 case METHOD_CALL_EXPR:
1937 case RTL_EXPR:
1938 case TRY_CATCH_EXPR:
1939 case WITH_CLEANUP_EXPR:
1940 case EXIT_EXPR:
1941 /* We don't warn about COND_EXPR because it may be a useful
1942 construct if either arm contains a side effect. */
1943 case COND_EXPR:
1944 return 0;
1945
1946 case BIND_EXPR:
1947 /* For a binding, warn if no side effect within it. */
1948 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1949
1950 case SAVE_EXPR:
1951 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1952
1953 case TRUTH_ORIF_EXPR:
1954 case TRUTH_ANDIF_EXPR:
1955 /* In && or ||, warn if 2nd operand has no side effect. */
1956 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1957
1958 case COMPOUND_EXPR:
1959 if (TREE_NO_UNUSED_WARNING (exp))
1960 return 0;
1961 if (warn_if_unused_value (TREE_OPERAND (exp, 0)))
1962 return 1;
1963 /* Let people do `(foo (), 0)' without a warning. */
1964 if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
1965 return 0;
1966 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1967
1968 case NOP_EXPR:
1969 case CONVERT_EXPR:
1970 case NON_LVALUE_EXPR:
1971 /* Don't warn about values cast to void. */
1972 if (TREE_TYPE (exp) == void_type_node)
1973 return 0;
1974 /* Don't warn about conversions not explicit in the user's program. */
1975 if (TREE_NO_UNUSED_WARNING (exp))
1976 return 0;
1977 /* Assignment to a cast usually results in a cast of a modify.
1978 Don't complain about that. There can be an arbitrary number of
1979 casts before the modify, so we must loop until we find the first
1980 non-cast expression and then test to see if that is a modify. */
1981 {
1982 tree tem = TREE_OPERAND (exp, 0);
1983
1984 while (TREE_CODE (tem) == CONVERT_EXPR || TREE_CODE (tem) == NOP_EXPR)
1985 tem = TREE_OPERAND (tem, 0);
1986
1987 if (TREE_CODE (tem) == MODIFY_EXPR || TREE_CODE (tem) == INIT_EXPR
1988 || TREE_CODE (tem) == CALL_EXPR)
1989 return 0;
1990 }
1991 goto warn;
1992
1993 case INDIRECT_REF:
1994 /* Don't warn about automatic dereferencing of references, since
1995 the user cannot control it. */
1996 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE)
1997 return warn_if_unused_value (TREE_OPERAND (exp, 0));
1998 /* ... fall through ... */
1999
2000 default:
2001 /* Referencing a volatile value is a side effect, so don't warn. */
2002 if ((DECL_P (exp)
2003 || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r')
2004 && TREE_THIS_VOLATILE (exp))
2005 return 0;
2006 warn:
2007 warning_with_file_and_line (emit_filename, emit_lineno,
2008 "value computed is not used");
2009 return 1;
2010 }
2011 }
2012
2013 /* Clear out the memory of the last expression evaluated. */
2014
2015 void
2016 clear_last_expr ()
2017 {
2018 last_expr_type = 0;
2019 }
2020
2021 /* Begin a statement which will return a value.
2022 Return the RTL_EXPR for this statement expr.
2023 The caller must save that value and pass it to expand_end_stmt_expr. */
2024
2025 tree
2026 expand_start_stmt_expr ()
2027 {
2028 int momentary;
2029 tree t;
2030
2031 /* Make the RTL_EXPR node temporary, not momentary,
2032 so that rtl_expr_chain doesn't become garbage. */
2033 momentary = suspend_momentary ();
2034 t = make_node (RTL_EXPR);
2035 resume_momentary (momentary);
2036 do_pending_stack_adjust ();
2037 start_sequence_for_rtl_expr (t);
2038 NO_DEFER_POP;
2039 expr_stmts_for_value++;
2040 return t;
2041 }
2042
2043 /* Restore the previous state at the end of a statement that returns a value.
2044 Returns a tree node representing the statement's value and the
2045 insns to compute the value.
2046
2047 The nodes of that expression have been freed by now, so we cannot use them.
2048 But we don't want to do that anyway; the expression has already been
2049 evaluated and now we just want to use the value. So generate a RTL_EXPR
2050 with the proper type and RTL value.
2051
2052 If the last substatement was not an expression,
2053 return something with type `void'. */
2054
2055 tree
2056 expand_end_stmt_expr (t)
2057 tree t;
2058 {
2059 OK_DEFER_POP;
2060
2061 if (last_expr_type == 0)
2062 {
2063 last_expr_type = void_type_node;
2064 last_expr_value = const0_rtx;
2065 }
2066 else if (last_expr_value == 0)
2067 /* There are some cases where this can happen, such as when the
2068 statement is void type. */
2069 last_expr_value = const0_rtx;
2070 else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value))
2071 /* Remove any possible QUEUED. */
2072 last_expr_value = protect_from_queue (last_expr_value, 0);
2073
2074 emit_queue ();
2075
2076 TREE_TYPE (t) = last_expr_type;
2077 RTL_EXPR_RTL (t) = last_expr_value;
2078 RTL_EXPR_SEQUENCE (t) = get_insns ();
2079
2080 rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain);
2081
2082 end_sequence ();
2083
2084 /* Don't consider deleting this expr or containing exprs at tree level. */
2085 TREE_SIDE_EFFECTS (t) = 1;
2086 /* Propagate volatility of the actual RTL expr. */
2087 TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value);
2088
2089 last_expr_type = 0;
2090 expr_stmts_for_value--;
2091
2092 return t;
2093 }
2094 \f
2095 /* Generate RTL for the start of an if-then. COND is the expression
2096 whose truth should be tested.
2097
2098 If EXITFLAG is nonzero, this conditional is visible to
2099 `exit_something'. */
2100
2101 void
2102 expand_start_cond (cond, exitflag)
2103 tree cond;
2104 int exitflag;
2105 {
2106 struct nesting *thiscond = ALLOC_NESTING ();
2107
2108 /* Make an entry on cond_stack for the cond we are entering. */
2109
2110 thiscond->next = cond_stack;
2111 thiscond->all = nesting_stack;
2112 thiscond->depth = ++nesting_depth;
2113 thiscond->data.cond.next_label = gen_label_rtx ();
2114 /* Before we encounter an `else', we don't need a separate exit label
2115 unless there are supposed to be exit statements
2116 to exit this conditional. */
2117 thiscond->exit_label = exitflag ? gen_label_rtx () : 0;
2118 thiscond->data.cond.endif_label = thiscond->exit_label;
2119 cond_stack = thiscond;
2120 nesting_stack = thiscond;
2121
2122 do_jump (cond, thiscond->data.cond.next_label, NULL_RTX);
2123 }
2124
2125 /* Generate RTL between then-clause and the elseif-clause
2126 of an if-then-elseif-.... */
2127
2128 void
2129 expand_start_elseif (cond)
2130 tree cond;
2131 {
2132 if (cond_stack->data.cond.endif_label == 0)
2133 cond_stack->data.cond.endif_label = gen_label_rtx ();
2134 emit_jump (cond_stack->data.cond.endif_label);
2135 emit_label (cond_stack->data.cond.next_label);
2136 cond_stack->data.cond.next_label = gen_label_rtx ();
2137 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2138 }
2139
2140 /* Generate RTL between the then-clause and the else-clause
2141 of an if-then-else. */
2142
2143 void
2144 expand_start_else ()
2145 {
2146 if (cond_stack->data.cond.endif_label == 0)
2147 cond_stack->data.cond.endif_label = gen_label_rtx ();
2148
2149 emit_jump (cond_stack->data.cond.endif_label);
2150 emit_label (cond_stack->data.cond.next_label);
2151 cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */
2152 }
2153
2154 /* After calling expand_start_else, turn this "else" into an "else if"
2155 by providing another condition. */
2156
2157 void
2158 expand_elseif (cond)
2159 tree cond;
2160 {
2161 cond_stack->data.cond.next_label = gen_label_rtx ();
2162 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2163 }
2164
2165 /* Generate RTL for the end of an if-then.
2166 Pop the record for it off of cond_stack. */
2167
2168 void
2169 expand_end_cond ()
2170 {
2171 struct nesting *thiscond = cond_stack;
2172
2173 do_pending_stack_adjust ();
2174 if (thiscond->data.cond.next_label)
2175 emit_label (thiscond->data.cond.next_label);
2176 if (thiscond->data.cond.endif_label)
2177 emit_label (thiscond->data.cond.endif_label);
2178
2179 POPSTACK (cond_stack);
2180 last_expr_type = 0;
2181 }
2182
2183
2184 \f
2185 /* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this
2186 loop should be exited by `exit_something'. This is a loop for which
2187 `expand_continue' will jump to the top of the loop.
2188
2189 Make an entry on loop_stack to record the labels associated with
2190 this loop. */
2191
2192 struct nesting *
2193 expand_start_loop (exit_flag)
2194 int exit_flag;
2195 {
2196 register struct nesting *thisloop = ALLOC_NESTING ();
2197
2198 /* Make an entry on loop_stack for the loop we are entering. */
2199
2200 thisloop->next = loop_stack;
2201 thisloop->all = nesting_stack;
2202 thisloop->depth = ++nesting_depth;
2203 thisloop->data.loop.start_label = gen_label_rtx ();
2204 thisloop->data.loop.end_label = gen_label_rtx ();
2205 thisloop->data.loop.alt_end_label = 0;
2206 thisloop->data.loop.continue_label = thisloop->data.loop.start_label;
2207 thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0;
2208 loop_stack = thisloop;
2209 nesting_stack = thisloop;
2210
2211 do_pending_stack_adjust ();
2212 emit_queue ();
2213 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
2214 emit_label (thisloop->data.loop.start_label);
2215
2216 return thisloop;
2217 }
2218
2219 /* Like expand_start_loop but for a loop where the continuation point
2220 (for expand_continue_loop) will be specified explicitly. */
2221
2222 struct nesting *
2223 expand_start_loop_continue_elsewhere (exit_flag)
2224 int exit_flag;
2225 {
2226 struct nesting *thisloop = expand_start_loop (exit_flag);
2227 loop_stack->data.loop.continue_label = gen_label_rtx ();
2228 return thisloop;
2229 }
2230
2231 /* Specify the continuation point for a loop started with
2232 expand_start_loop_continue_elsewhere.
2233 Use this at the point in the code to which a continue statement
2234 should jump. */
2235
2236 void
2237 expand_loop_continue_here ()
2238 {
2239 do_pending_stack_adjust ();
2240 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
2241 emit_label (loop_stack->data.loop.continue_label);
2242 }
2243
2244 /* Finish a loop. Generate a jump back to the top and the loop-exit label.
2245 Pop the block off of loop_stack. */
2246
2247 void
2248 expand_end_loop ()
2249 {
2250 rtx start_label = loop_stack->data.loop.start_label;
2251 rtx insn = get_last_insn ();
2252 int needs_end_jump = 1;
2253
2254 /* Mark the continue-point at the top of the loop if none elsewhere. */
2255 if (start_label == loop_stack->data.loop.continue_label)
2256 emit_note_before (NOTE_INSN_LOOP_CONT, start_label);
2257
2258 do_pending_stack_adjust ();
2259
2260 /* If optimizing, perhaps reorder the loop.
2261 First, try to use a condjump near the end.
2262 expand_exit_loop_if_false ends loops with unconditional jumps,
2263 like this:
2264
2265 if (test) goto label;
2266 optional: cleanup
2267 goto loop_stack->data.loop.end_label
2268 barrier
2269 label:
2270
2271 If we find such a pattern, we can end the loop earlier. */
2272
2273 if (optimize
2274 && GET_CODE (insn) == CODE_LABEL
2275 && LABEL_NAME (insn) == NULL
2276 && GET_CODE (PREV_INSN (insn)) == BARRIER)
2277 {
2278 rtx label = insn;
2279 rtx jump = PREV_INSN (PREV_INSN (label));
2280
2281 if (GET_CODE (jump) == JUMP_INSN
2282 && GET_CODE (PATTERN (jump)) == SET
2283 && SET_DEST (PATTERN (jump)) == pc_rtx
2284 && GET_CODE (SET_SRC (PATTERN (jump))) == LABEL_REF
2285 && (XEXP (SET_SRC (PATTERN (jump)), 0)
2286 == loop_stack->data.loop.end_label))
2287 {
2288 rtx prev;
2289
2290 /* The test might be complex and reference LABEL multiple times,
2291 like the loop in loop_iterations to set vtop. To handle this,
2292 we move LABEL. */
2293 insn = PREV_INSN (label);
2294 reorder_insns (label, label, start_label);
2295
2296 for (prev = PREV_INSN (jump); ; prev = PREV_INSN (prev))
2297 {
2298 /* We ignore line number notes, but if we see any other note,
2299 in particular NOTE_INSN_BLOCK_*, NOTE_INSN_EH_REGION_*,
2300 NOTE_INSN_LOOP_*, we disable this optimization. */
2301 if (GET_CODE (prev) == NOTE)
2302 {
2303 if (NOTE_LINE_NUMBER (prev) < 0)
2304 break;
2305 continue;
2306 }
2307 if (GET_CODE (prev) == CODE_LABEL)
2308 break;
2309 if (GET_CODE (prev) == JUMP_INSN)
2310 {
2311 if (GET_CODE (PATTERN (prev)) == SET
2312 && SET_DEST (PATTERN (prev)) == pc_rtx
2313 && GET_CODE (SET_SRC (PATTERN (prev))) == IF_THEN_ELSE
2314 && (GET_CODE (XEXP (SET_SRC (PATTERN (prev)), 1))
2315 == LABEL_REF)
2316 && XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0) == label)
2317 {
2318 XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0)
2319 = start_label;
2320 emit_note_after (NOTE_INSN_LOOP_END, prev);
2321 needs_end_jump = 0;
2322 }
2323 break;
2324 }
2325 }
2326 }
2327 }
2328
2329 /* If the loop starts with a loop exit, roll that to the end where
2330 it will optimize together with the jump back.
2331
2332 We look for the conditional branch to the exit, except that once
2333 we find such a branch, we don't look past 30 instructions.
2334
2335 In more detail, if the loop presently looks like this (in pseudo-C):
2336
2337 start_label:
2338 if (test) goto end_label;
2339 body;
2340 goto start_label;
2341 end_label:
2342
2343 transform it to look like:
2344
2345 goto start_label;
2346 newstart_label:
2347 body;
2348 start_label:
2349 if (test) goto end_label;
2350 goto newstart_label;
2351 end_label:
2352
2353 Here, the `test' may actually consist of some reasonably complex
2354 code, terminating in a test. */
2355
2356 if (optimize
2357 && needs_end_jump
2358 &&
2359 ! (GET_CODE (insn) == JUMP_INSN
2360 && GET_CODE (PATTERN (insn)) == SET
2361 && SET_DEST (PATTERN (insn)) == pc_rtx
2362 && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE))
2363 {
2364 int eh_regions = 0;
2365 int num_insns = 0;
2366 rtx last_test_insn = NULL_RTX;
2367
2368 /* Scan insns from the top of the loop looking for a qualified
2369 conditional exit. */
2370 for (insn = NEXT_INSN (loop_stack->data.loop.start_label); insn;
2371 insn = NEXT_INSN (insn))
2372 {
2373 if (GET_CODE (insn) == NOTE)
2374 {
2375 if (optimize < 2
2376 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2377 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2378 /* The code that actually moves the exit test will
2379 carefully leave BLOCK notes in their original
2380 location. That means, however, that we can't debug
2381 the exit test itself. So, we refuse to move code
2382 containing BLOCK notes at low optimization levels. */
2383 break;
2384
2385 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2386 ++eh_regions;
2387 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
2388 {
2389 --eh_regions;
2390 if (eh_regions < 0)
2391 /* We've come to the end of an EH region, but
2392 never saw the beginning of that region. That
2393 means that an EH region begins before the top
2394 of the loop, and ends in the middle of it. The
2395 existence of such a situation violates a basic
2396 assumption in this code, since that would imply
2397 that even when EH_REGIONS is zero, we might
2398 move code out of an exception region. */
2399 abort ();
2400 }
2401
2402 /* We must not walk into a nested loop. */
2403 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2404 break;
2405
2406 /* We already know this INSN is a NOTE, so there's no
2407 point in looking at it to see if it's a JUMP. */
2408 continue;
2409 }
2410
2411 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN)
2412 num_insns++;
2413
2414 if (last_test_insn && num_insns > 30)
2415 break;
2416
2417 if (eh_regions > 0)
2418 /* We don't want to move a partial EH region. Consider:
2419
2420 while ( ( { try {
2421 if (cond ()) 0;
2422 else {
2423 bar();
2424 1;
2425 }
2426 } catch (...) {
2427 1;
2428 } )) {
2429 body;
2430 }
2431
2432 This isn't legal C++, but here's what it's supposed to
2433 mean: if cond() is true, stop looping. Otherwise,
2434 call bar, and keep looping. In addition, if cond
2435 throws an exception, catch it and keep looping. Such
2436 constructs are certainy legal in LISP.
2437
2438 We should not move the `if (cond()) 0' test since then
2439 the EH-region for the try-block would be broken up.
2440 (In this case we would the EH_BEG note for the `try'
2441 and `if cond()' but not the call to bar() or the
2442 EH_END note.)
2443
2444 So we don't look for tests within an EH region. */
2445 continue;
2446
2447 if (GET_CODE (insn) == JUMP_INSN
2448 && GET_CODE (PATTERN (insn)) == SET
2449 && SET_DEST (PATTERN (insn)) == pc_rtx)
2450 {
2451 /* This is indeed a jump. */
2452 rtx dest1 = NULL_RTX;
2453 rtx dest2 = NULL_RTX;
2454 rtx potential_last_test;
2455 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2456 {
2457 /* A conditional jump. */
2458 dest1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2459 dest2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2460 potential_last_test = insn;
2461 }
2462 else
2463 {
2464 /* An unconditional jump. */
2465 dest1 = SET_SRC (PATTERN (insn));
2466 /* Include the BARRIER after the JUMP. */
2467 potential_last_test = NEXT_INSN (insn);
2468 }
2469
2470 do {
2471 if (dest1 && GET_CODE (dest1) == LABEL_REF
2472 && ((XEXP (dest1, 0)
2473 == loop_stack->data.loop.alt_end_label)
2474 || (XEXP (dest1, 0)
2475 == loop_stack->data.loop.end_label)))
2476 {
2477 last_test_insn = potential_last_test;
2478 break;
2479 }
2480
2481 /* If this was a conditional jump, there may be
2482 another label at which we should look. */
2483 dest1 = dest2;
2484 dest2 = NULL_RTX;
2485 } while (dest1);
2486 }
2487 }
2488
2489 if (last_test_insn != 0 && last_test_insn != get_last_insn ())
2490 {
2491 /* We found one. Move everything from there up
2492 to the end of the loop, and add a jump into the loop
2493 to jump to there. */
2494 register rtx newstart_label = gen_label_rtx ();
2495 register rtx start_move = start_label;
2496 rtx next_insn;
2497
2498 /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note,
2499 then we want to move this note also. */
2500 if (GET_CODE (PREV_INSN (start_move)) == NOTE
2501 && (NOTE_LINE_NUMBER (PREV_INSN (start_move))
2502 == NOTE_INSN_LOOP_CONT))
2503 start_move = PREV_INSN (start_move);
2504
2505 emit_label_after (newstart_label, PREV_INSN (start_move));
2506
2507 /* Actually move the insns. Start at the beginning, and
2508 keep copying insns until we've copied the
2509 last_test_insn. */
2510 for (insn = start_move; insn; insn = next_insn)
2511 {
2512 /* Figure out which insn comes after this one. We have
2513 to do this before we move INSN. */
2514 if (insn == last_test_insn)
2515 /* We've moved all the insns. */
2516 next_insn = NULL_RTX;
2517 else
2518 next_insn = NEXT_INSN (insn);
2519
2520 if (GET_CODE (insn) == NOTE
2521 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2522 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2523 /* We don't want to move NOTE_INSN_BLOCK_BEGs or
2524 NOTE_INSN_BLOCK_ENDs because the correct generation
2525 of debugging information depends on these appearing
2526 in the same order in the RTL and in the tree
2527 structure, where they are represented as BLOCKs.
2528 So, we don't move block notes. Of course, moving
2529 the code inside the block is likely to make it
2530 impossible to debug the instructions in the exit
2531 test, but such is the price of optimization. */
2532 continue;
2533
2534 /* Move the INSN. */
2535 reorder_insns (insn, insn, get_last_insn ());
2536 }
2537
2538 emit_jump_insn_after (gen_jump (start_label),
2539 PREV_INSN (newstart_label));
2540 emit_barrier_after (PREV_INSN (newstart_label));
2541 start_label = newstart_label;
2542 }
2543 }
2544
2545 if (needs_end_jump)
2546 {
2547 emit_jump (start_label);
2548 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
2549 }
2550 emit_label (loop_stack->data.loop.end_label);
2551
2552 POPSTACK (loop_stack);
2553
2554 last_expr_type = 0;
2555 }
2556
2557 /* Generate a jump to the current loop's continue-point.
2558 This is usually the top of the loop, but may be specified
2559 explicitly elsewhere. If not currently inside a loop,
2560 return 0 and do nothing; caller will print an error message. */
2561
2562 int
2563 expand_continue_loop (whichloop)
2564 struct nesting *whichloop;
2565 {
2566 last_expr_type = 0;
2567 if (whichloop == 0)
2568 whichloop = loop_stack;
2569 if (whichloop == 0)
2570 return 0;
2571 expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label,
2572 NULL_RTX);
2573 return 1;
2574 }
2575
2576 /* Generate a jump to exit the current loop. If not currently inside a loop,
2577 return 0 and do nothing; caller will print an error message. */
2578
2579 int
2580 expand_exit_loop (whichloop)
2581 struct nesting *whichloop;
2582 {
2583 last_expr_type = 0;
2584 if (whichloop == 0)
2585 whichloop = loop_stack;
2586 if (whichloop == 0)
2587 return 0;
2588 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX);
2589 return 1;
2590 }
2591
2592 /* Generate a conditional jump to exit the current loop if COND
2593 evaluates to zero. If not currently inside a loop,
2594 return 0 and do nothing; caller will print an error message. */
2595
2596 int
2597 expand_exit_loop_if_false (whichloop, cond)
2598 struct nesting *whichloop;
2599 tree cond;
2600 {
2601 rtx label = gen_label_rtx ();
2602 rtx last_insn;
2603 last_expr_type = 0;
2604
2605 if (whichloop == 0)
2606 whichloop = loop_stack;
2607 if (whichloop == 0)
2608 return 0;
2609 /* In order to handle fixups, we actually create a conditional jump
2610 around a unconditional branch to exit the loop. If fixups are
2611 necessary, they go before the unconditional branch. */
2612
2613
2614 do_jump (cond, NULL_RTX, label);
2615 last_insn = get_last_insn ();
2616 if (GET_CODE (last_insn) == CODE_LABEL)
2617 whichloop->data.loop.alt_end_label = last_insn;
2618 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label,
2619 NULL_RTX);
2620 emit_label (label);
2621
2622 return 1;
2623 }
2624
2625 /* Return nonzero if the loop nest is empty. Else return zero. */
2626
2627 int
2628 stmt_loop_nest_empty ()
2629 {
2630 /* cfun->stmt can be NULL if we are building a call to get the
2631 EH context for a setjmp/longjmp EH target and the current
2632 function was a deferred inline function. */
2633 return (cfun->stmt == NULL || loop_stack == NULL);
2634 }
2635
2636 /* Return non-zero if we should preserve sub-expressions as separate
2637 pseudos. We never do so if we aren't optimizing. We always do so
2638 if -fexpensive-optimizations.
2639
2640 Otherwise, we only do so if we are in the "early" part of a loop. I.e.,
2641 the loop may still be a small one. */
2642
2643 int
2644 preserve_subexpressions_p ()
2645 {
2646 rtx insn;
2647
2648 if (flag_expensive_optimizations)
2649 return 1;
2650
2651 if (optimize == 0 || cfun == 0 || cfun->stmt == 0 || loop_stack == 0)
2652 return 0;
2653
2654 insn = get_last_insn_anywhere ();
2655
2656 return (insn
2657 && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label)
2658 < n_non_fixed_regs * 3));
2659
2660 }
2661
2662 /* Generate a jump to exit the current loop, conditional, binding contour
2663 or case statement. Not all such constructs are visible to this function,
2664 only those started with EXIT_FLAG nonzero. Individual languages use
2665 the EXIT_FLAG parameter to control which kinds of constructs you can
2666 exit this way.
2667
2668 If not currently inside anything that can be exited,
2669 return 0 and do nothing; caller will print an error message. */
2670
2671 int
2672 expand_exit_something ()
2673 {
2674 struct nesting *n;
2675 last_expr_type = 0;
2676 for (n = nesting_stack; n; n = n->all)
2677 if (n->exit_label != 0)
2678 {
2679 expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX);
2680 return 1;
2681 }
2682
2683 return 0;
2684 }
2685 \f
2686 /* Generate RTL to return from the current function, with no value.
2687 (That is, we do not do anything about returning any value.) */
2688
2689 void
2690 expand_null_return ()
2691 {
2692 struct nesting *block = block_stack;
2693 rtx last_insn = get_last_insn ();
2694
2695 /* If this function was declared to return a value, but we
2696 didn't, clobber the return registers so that they are not
2697 propogated live to the rest of the function. */
2698 clobber_return_register ();
2699
2700 /* Does any pending block have cleanups? */
2701 while (block && block->data.block.cleanups == 0)
2702 block = block->next;
2703
2704 /* If yes, use a goto to return, since that runs cleanups. */
2705
2706 expand_null_return_1 (last_insn, block != 0);
2707 }
2708
2709 /* Generate RTL to return from the current function, with value VAL. */
2710
2711 static void
2712 expand_value_return (val)
2713 rtx val;
2714 {
2715 struct nesting *block = block_stack;
2716 rtx last_insn = get_last_insn ();
2717 rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
2718
2719 /* Copy the value to the return location
2720 unless it's already there. */
2721
2722 if (return_reg != val)
2723 {
2724 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
2725 #ifdef PROMOTE_FUNCTION_RETURN
2726 int unsignedp = TREE_UNSIGNED (type);
2727 enum machine_mode old_mode
2728 = DECL_MODE (DECL_RESULT (current_function_decl));
2729 enum machine_mode mode
2730 = promote_mode (type, old_mode, &unsignedp, 1);
2731
2732 if (mode != old_mode)
2733 val = convert_modes (mode, old_mode, val, unsignedp);
2734 #endif
2735 if (GET_CODE (return_reg) == PARALLEL)
2736 emit_group_load (return_reg, val, int_size_in_bytes (type),
2737 TYPE_ALIGN (type));
2738 else
2739 emit_move_insn (return_reg, val);
2740 }
2741
2742 /* Does any pending block have cleanups? */
2743
2744 while (block && block->data.block.cleanups == 0)
2745 block = block->next;
2746
2747 /* If yes, use a goto to return, since that runs cleanups.
2748 Use LAST_INSN to put cleanups *before* the move insn emitted above. */
2749
2750 expand_null_return_1 (last_insn, block != 0);
2751 }
2752
2753 /* Output a return with no value. If LAST_INSN is nonzero,
2754 pretend that the return takes place after LAST_INSN.
2755 If USE_GOTO is nonzero then don't use a return instruction;
2756 go to the return label instead. This causes any cleanups
2757 of pending blocks to be executed normally. */
2758
2759 static void
2760 expand_null_return_1 (last_insn, use_goto)
2761 rtx last_insn;
2762 int use_goto;
2763 {
2764 rtx end_label = cleanup_label ? cleanup_label : return_label;
2765
2766 clear_pending_stack_adjust ();
2767 do_pending_stack_adjust ();
2768 last_expr_type = 0;
2769
2770 /* PCC-struct return always uses an epilogue. */
2771 if (current_function_returns_pcc_struct || use_goto)
2772 {
2773 if (end_label == 0)
2774 end_label = return_label = gen_label_rtx ();
2775 expand_goto_internal (NULL_TREE, end_label, last_insn);
2776 return;
2777 }
2778
2779 /* Otherwise output a simple return-insn if one is available,
2780 unless it won't do the job. */
2781 #ifdef HAVE_return
2782 if (HAVE_return && use_goto == 0 && cleanup_label == 0)
2783 {
2784 emit_jump_insn (gen_return ());
2785 emit_barrier ();
2786 return;
2787 }
2788 #endif
2789
2790 /* Otherwise jump to the epilogue. */
2791 expand_goto_internal (NULL_TREE, end_label, last_insn);
2792 }
2793 \f
2794 /* Generate RTL to evaluate the expression RETVAL and return it
2795 from the current function. */
2796
2797 void
2798 expand_return (retval)
2799 tree retval;
2800 {
2801 /* If there are any cleanups to be performed, then they will
2802 be inserted following LAST_INSN. It is desirable
2803 that the last_insn, for such purposes, should be the
2804 last insn before computing the return value. Otherwise, cleanups
2805 which call functions can clobber the return value. */
2806 /* ??? rms: I think that is erroneous, because in C++ it would
2807 run destructors on variables that might be used in the subsequent
2808 computation of the return value. */
2809 rtx last_insn = 0;
2810 rtx result_rtl = DECL_RTL (DECL_RESULT (current_function_decl));
2811 register rtx val = 0;
2812 #ifdef HAVE_return
2813 register rtx op0;
2814 #endif
2815 tree retval_rhs;
2816 int cleanups;
2817
2818 /* If function wants no value, give it none. */
2819 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
2820 {
2821 expand_expr (retval, NULL_RTX, VOIDmode, 0);
2822 emit_queue ();
2823 expand_null_return ();
2824 return;
2825 }
2826
2827 /* Are any cleanups needed? E.g. C++ destructors to be run? */
2828 /* This is not sufficient. We also need to watch for cleanups of the
2829 expression we are about to expand. Unfortunately, we cannot know
2830 if it has cleanups until we expand it, and we want to change how we
2831 expand it depending upon if we need cleanups. We can't win. */
2832 #if 0
2833 cleanups = any_pending_cleanups (1);
2834 #else
2835 cleanups = 1;
2836 #endif
2837
2838 if (TREE_CODE (retval) == RESULT_DECL)
2839 retval_rhs = retval;
2840 else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR)
2841 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
2842 retval_rhs = TREE_OPERAND (retval, 1);
2843 else if (TREE_TYPE (retval) == void_type_node)
2844 /* Recognize tail-recursive call to void function. */
2845 retval_rhs = retval;
2846 else
2847 retval_rhs = NULL_TREE;
2848
2849 /* Only use `last_insn' if there are cleanups which must be run. */
2850 if (cleanups || cleanup_label != 0)
2851 last_insn = get_last_insn ();
2852
2853 /* Distribute return down conditional expr if either of the sides
2854 may involve tail recursion (see test below). This enhances the number
2855 of tail recursions we see. Don't do this always since it can produce
2856 sub-optimal code in some cases and we distribute assignments into
2857 conditional expressions when it would help. */
2858
2859 if (optimize && retval_rhs != 0
2860 && frame_offset == 0
2861 && TREE_CODE (retval_rhs) == COND_EXPR
2862 && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR
2863 || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR))
2864 {
2865 rtx label = gen_label_rtx ();
2866 tree expr;
2867
2868 do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX);
2869 start_cleanup_deferral ();
2870 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
2871 DECL_RESULT (current_function_decl),
2872 TREE_OPERAND (retval_rhs, 1));
2873 TREE_SIDE_EFFECTS (expr) = 1;
2874 expand_return (expr);
2875 emit_label (label);
2876
2877 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
2878 DECL_RESULT (current_function_decl),
2879 TREE_OPERAND (retval_rhs, 2));
2880 TREE_SIDE_EFFECTS (expr) = 1;
2881 expand_return (expr);
2882 end_cleanup_deferral ();
2883 return;
2884 }
2885
2886 /* Attempt to optimize the call if it is tail recursive. */
2887 if (flag_optimize_sibling_calls
2888 && retval_rhs != NULL_TREE
2889 && frame_offset == 0
2890 && TREE_CODE (retval_rhs) == CALL_EXPR
2891 && TREE_CODE (TREE_OPERAND (retval_rhs, 0)) == ADDR_EXPR
2892 && (TREE_OPERAND (TREE_OPERAND (retval_rhs, 0), 0)
2893 == current_function_decl)
2894 && optimize_tail_recursion (TREE_OPERAND (retval_rhs, 1), last_insn))
2895 return;
2896
2897 #ifdef HAVE_return
2898 /* This optimization is safe if there are local cleanups
2899 because expand_null_return takes care of them.
2900 ??? I think it should also be safe when there is a cleanup label,
2901 because expand_null_return takes care of them, too.
2902 Any reason why not? */
2903 if (HAVE_return && cleanup_label == 0
2904 && ! current_function_returns_pcc_struct
2905 && BRANCH_COST <= 1)
2906 {
2907 /* If this is return x == y; then generate
2908 if (x == y) return 1; else return 0;
2909 if we can do it with explicit return insns and branches are cheap,
2910 but not if we have the corresponding scc insn. */
2911 int has_scc = 0;
2912 if (retval_rhs)
2913 switch (TREE_CODE (retval_rhs))
2914 {
2915 case EQ_EXPR:
2916 #ifdef HAVE_seq
2917 has_scc = HAVE_seq;
2918 #endif
2919 case NE_EXPR:
2920 #ifdef HAVE_sne
2921 has_scc = HAVE_sne;
2922 #endif
2923 case GT_EXPR:
2924 #ifdef HAVE_sgt
2925 has_scc = HAVE_sgt;
2926 #endif
2927 case GE_EXPR:
2928 #ifdef HAVE_sge
2929 has_scc = HAVE_sge;
2930 #endif
2931 case LT_EXPR:
2932 #ifdef HAVE_slt
2933 has_scc = HAVE_slt;
2934 #endif
2935 case LE_EXPR:
2936 #ifdef HAVE_sle
2937 has_scc = HAVE_sle;
2938 #endif
2939 case TRUTH_ANDIF_EXPR:
2940 case TRUTH_ORIF_EXPR:
2941 case TRUTH_AND_EXPR:
2942 case TRUTH_OR_EXPR:
2943 case TRUTH_NOT_EXPR:
2944 case TRUTH_XOR_EXPR:
2945 if (! has_scc)
2946 {
2947 op0 = gen_label_rtx ();
2948 jumpifnot (retval_rhs, op0);
2949 expand_value_return (const1_rtx);
2950 emit_label (op0);
2951 expand_value_return (const0_rtx);
2952 return;
2953 }
2954 break;
2955
2956 default:
2957 break;
2958 }
2959 }
2960 #endif /* HAVE_return */
2961
2962 /* If the result is an aggregate that is being returned in one (or more)
2963 registers, load the registers here. The compiler currently can't handle
2964 copying a BLKmode value into registers. We could put this code in a
2965 more general area (for use by everyone instead of just function
2966 call/return), but until this feature is generally usable it is kept here
2967 (and in expand_call). The value must go into a pseudo in case there
2968 are cleanups that will clobber the real return register. */
2969
2970 if (retval_rhs != 0
2971 && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode
2972 && GET_CODE (result_rtl) == REG)
2973 {
2974 int i;
2975 unsigned HOST_WIDE_INT bitpos, xbitpos;
2976 unsigned HOST_WIDE_INT big_endian_correction = 0;
2977 unsigned HOST_WIDE_INT bytes
2978 = int_size_in_bytes (TREE_TYPE (retval_rhs));
2979 int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2980 unsigned int bitsize
2981 = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)), BITS_PER_WORD);
2982 rtx *result_pseudos = (rtx *) alloca (sizeof (rtx) * n_regs);
2983 rtx result_reg, src = NULL_RTX, dst = NULL_RTX;
2984 rtx result_val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0);
2985 enum machine_mode tmpmode, result_reg_mode;
2986
2987 /* Structures whose size is not a multiple of a word are aligned
2988 to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
2989 machine, this means we must skip the empty high order bytes when
2990 calculating the bit offset. */
2991 if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD)
2992 big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2993 * BITS_PER_UNIT));
2994
2995 /* Copy the structure BITSIZE bits at a time. */
2996 for (bitpos = 0, xbitpos = big_endian_correction;
2997 bitpos < bytes * BITS_PER_UNIT;
2998 bitpos += bitsize, xbitpos += bitsize)
2999 {
3000 /* We need a new destination pseudo each time xbitpos is
3001 on a word boundary and when xbitpos == big_endian_correction
3002 (the first time through). */
3003 if (xbitpos % BITS_PER_WORD == 0
3004 || xbitpos == big_endian_correction)
3005 {
3006 /* Generate an appropriate register. */
3007 dst = gen_reg_rtx (word_mode);
3008 result_pseudos[xbitpos / BITS_PER_WORD] = dst;
3009
3010 /* Clobber the destination before we move anything into it. */
3011 emit_insn (gen_rtx_CLOBBER (VOIDmode, dst));
3012 }
3013
3014 /* We need a new source operand each time bitpos is on a word
3015 boundary. */
3016 if (bitpos % BITS_PER_WORD == 0)
3017 src = operand_subword_force (result_val,
3018 bitpos / BITS_PER_WORD,
3019 BLKmode);
3020
3021 /* Use bitpos for the source extraction (left justified) and
3022 xbitpos for the destination store (right justified). */
3023 store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode,
3024 extract_bit_field (src, bitsize,
3025 bitpos % BITS_PER_WORD, 1,
3026 NULL_RTX, word_mode, word_mode,
3027 bitsize, BITS_PER_WORD),
3028 bitsize, BITS_PER_WORD);
3029 }
3030
3031 /* Find the smallest integer mode large enough to hold the
3032 entire structure and use that mode instead of BLKmode
3033 on the USE insn for the return register. */
3034 bytes = int_size_in_bytes (TREE_TYPE (retval_rhs));
3035 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3036 tmpmode != VOIDmode;
3037 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
3038 {
3039 /* Have we found a large enough mode? */
3040 if (GET_MODE_SIZE (tmpmode) >= bytes)
3041 break;
3042 }
3043
3044 /* No suitable mode found. */
3045 if (tmpmode == VOIDmode)
3046 abort ();
3047
3048 PUT_MODE (result_rtl, tmpmode);
3049
3050 if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode))
3051 result_reg_mode = word_mode;
3052 else
3053 result_reg_mode = tmpmode;
3054 result_reg = gen_reg_rtx (result_reg_mode);
3055
3056 emit_queue ();
3057 for (i = 0; i < n_regs; i++)
3058 emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode),
3059 result_pseudos[i]);
3060
3061 if (tmpmode != result_reg_mode)
3062 result_reg = gen_lowpart (tmpmode, result_reg);
3063
3064 expand_value_return (result_reg);
3065 }
3066 else if (cleanups
3067 && retval_rhs != 0
3068 && TREE_TYPE (retval_rhs) != void_type_node
3069 && (GET_CODE (result_rtl) == REG
3070 || (GET_CODE (result_rtl) == PARALLEL)))
3071 {
3072 /* Calculate the return value into a temporary (usually a pseudo
3073 reg). */
3074 val = assign_temp (TREE_TYPE (DECL_RESULT (current_function_decl)),
3075 0, 0, 1);
3076 val = expand_expr (retval_rhs, val, GET_MODE (val), 0);
3077 val = force_not_mem (val);
3078 emit_queue ();
3079 /* Return the calculated value, doing cleanups first. */
3080 expand_value_return (val);
3081 }
3082 else
3083 {
3084 /* No cleanups or no hard reg used;
3085 calculate value into hard return reg. */
3086 expand_expr (retval, const0_rtx, VOIDmode, 0);
3087 emit_queue ();
3088 expand_value_return (result_rtl);
3089 }
3090 }
3091
3092 /* Return 1 if the end of the generated RTX is not a barrier.
3093 This means code already compiled can drop through. */
3094
3095 int
3096 drop_through_at_end_p ()
3097 {
3098 rtx insn = get_last_insn ();
3099 while (insn && GET_CODE (insn) == NOTE)
3100 insn = PREV_INSN (insn);
3101 return insn && GET_CODE (insn) != BARRIER;
3102 }
3103 \f
3104 /* Attempt to optimize a potential tail recursion call into a goto.
3105 ARGUMENTS are the arguments to a CALL_EXPR; LAST_INSN indicates
3106 where to place the jump to the tail recursion label.
3107
3108 Return TRUE if the call was optimized into a goto. */
3109
3110 int
3111 optimize_tail_recursion (arguments, last_insn)
3112 tree arguments;
3113 rtx last_insn;
3114 {
3115 /* Finish checking validity, and if valid emit code to set the
3116 argument variables for the new call. */
3117 if (tail_recursion_args (arguments, DECL_ARGUMENTS (current_function_decl)))
3118 {
3119 if (tail_recursion_label == 0)
3120 {
3121 tail_recursion_label = gen_label_rtx ();
3122 emit_label_after (tail_recursion_label,
3123 tail_recursion_reentry);
3124 }
3125 emit_queue ();
3126 expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn);
3127 emit_barrier ();
3128 return 1;
3129 }
3130 return 0;
3131 }
3132
3133 /* Emit code to alter this function's formal parms for a tail-recursive call.
3134 ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs).
3135 FORMALS is the chain of decls of formals.
3136 Return 1 if this can be done;
3137 otherwise return 0 and do not emit any code. */
3138
3139 static int
3140 tail_recursion_args (actuals, formals)
3141 tree actuals, formals;
3142 {
3143 register tree a = actuals, f = formals;
3144 register int i;
3145 register rtx *argvec;
3146
3147 /* Check that number and types of actuals are compatible
3148 with the formals. This is not always true in valid C code.
3149 Also check that no formal needs to be addressable
3150 and that all formals are scalars. */
3151
3152 /* Also count the args. */
3153
3154 for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++)
3155 {
3156 if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (a)))
3157 != TYPE_MAIN_VARIANT (TREE_TYPE (f)))
3158 return 0;
3159 if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode)
3160 return 0;
3161 }
3162 if (a != 0 || f != 0)
3163 return 0;
3164
3165 /* Compute all the actuals. */
3166
3167 argvec = (rtx *) alloca (i * sizeof (rtx));
3168
3169 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3170 argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0);
3171
3172 /* Find which actual values refer to current values of previous formals.
3173 Copy each of them now, before any formal is changed. */
3174
3175 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3176 {
3177 int copy = 0;
3178 register int j;
3179 for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++)
3180 if (reg_mentioned_p (DECL_RTL (f), argvec[i]))
3181 { copy = 1; break; }
3182 if (copy)
3183 argvec[i] = copy_to_reg (argvec[i]);
3184 }
3185
3186 /* Store the values of the actuals into the formals. */
3187
3188 for (f = formals, a = actuals, i = 0; f;
3189 f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++)
3190 {
3191 if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i]))
3192 emit_move_insn (DECL_RTL (f), argvec[i]);
3193 else
3194 convert_move (DECL_RTL (f), argvec[i],
3195 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a))));
3196 }
3197
3198 free_temp_slots ();
3199 return 1;
3200 }
3201 \f
3202 /* Generate the RTL code for entering a binding contour.
3203 The variables are declared one by one, by calls to `expand_decl'.
3204
3205 FLAGS is a bitwise or of the following flags:
3206
3207 1 - Nonzero if this construct should be visible to
3208 `exit_something'.
3209
3210 2 - Nonzero if this contour does not require a
3211 NOTE_INSN_BLOCK_BEG note. Virtually all calls from
3212 language-independent code should set this flag because they
3213 will not create corresponding BLOCK nodes. (There should be
3214 a one-to-one correspondence between NOTE_INSN_BLOCK_BEG notes
3215 and BLOCKs.) If this flag is set, MARK_ENDS should be zero
3216 when expand_end_bindings is called.
3217
3218 If we are creating a NOTE_INSN_BLOCK_BEG note, a BLOCK may
3219 optionally be supplied. If so, it becomes the NOTE_BLOCK for the
3220 note. */
3221
3222 void
3223 expand_start_bindings_and_block (flags, block)
3224 int flags;
3225 tree block;
3226 {
3227 struct nesting *thisblock = ALLOC_NESTING ();
3228 rtx note;
3229 int exit_flag = ((flags & 1) != 0);
3230 int block_flag = ((flags & 2) == 0);
3231
3232 /* If a BLOCK is supplied, then the caller should be requesting a
3233 NOTE_INSN_BLOCK_BEG note. */
3234 if (!block_flag && block)
3235 abort ();
3236
3237 /* Create a note to mark the beginning of the block. */
3238 if (block_flag)
3239 {
3240 note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG);
3241 NOTE_BLOCK (note) = block;
3242 }
3243 else
3244 note = emit_note (NULL_PTR, NOTE_INSN_DELETED);
3245
3246 /* Make an entry on block_stack for the block we are entering. */
3247
3248 thisblock->next = block_stack;
3249 thisblock->all = nesting_stack;
3250 thisblock->depth = ++nesting_depth;
3251 thisblock->data.block.stack_level = 0;
3252 thisblock->data.block.cleanups = 0;
3253 thisblock->data.block.n_function_calls = 0;
3254 thisblock->data.block.exception_region = 0;
3255 thisblock->data.block.block_target_temp_slot_level = target_temp_slot_level;
3256
3257 thisblock->data.block.conditional_code = 0;
3258 thisblock->data.block.last_unconditional_cleanup = note;
3259 /* When we insert instructions after the last unconditional cleanup,
3260 we don't adjust last_insn. That means that a later add_insn will
3261 clobber the instructions we've just added. The easiest way to
3262 fix this is to just insert another instruction here, so that the
3263 instructions inserted after the last unconditional cleanup are
3264 never the last instruction. */
3265 emit_note (NULL_PTR, NOTE_INSN_DELETED);
3266 thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
3267
3268 if (block_stack
3269 && !(block_stack->data.block.cleanups == NULL_TREE
3270 && block_stack->data.block.outer_cleanups == NULL_TREE))
3271 thisblock->data.block.outer_cleanups
3272 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
3273 block_stack->data.block.outer_cleanups);
3274 else
3275 thisblock->data.block.outer_cleanups = 0;
3276 thisblock->data.block.label_chain = 0;
3277 thisblock->data.block.innermost_stack_block = stack_block_stack;
3278 thisblock->data.block.first_insn = note;
3279 thisblock->data.block.block_start_count = ++current_block_start_count;
3280 thisblock->exit_label = exit_flag ? gen_label_rtx () : 0;
3281 block_stack = thisblock;
3282 nesting_stack = thisblock;
3283
3284 /* Make a new level for allocating stack slots. */
3285 push_temp_slots ();
3286 }
3287
3288 /* Specify the scope of temporaries created by TARGET_EXPRs. Similar
3289 to CLEANUP_POINT_EXPR, but handles cases when a series of calls to
3290 expand_expr are made. After we end the region, we know that all
3291 space for all temporaries that were created by TARGET_EXPRs will be
3292 destroyed and their space freed for reuse. */
3293
3294 void
3295 expand_start_target_temps ()
3296 {
3297 /* This is so that even if the result is preserved, the space
3298 allocated will be freed, as we know that it is no longer in use. */
3299 push_temp_slots ();
3300
3301 /* Start a new binding layer that will keep track of all cleanup
3302 actions to be performed. */
3303 expand_start_bindings (2);
3304
3305 target_temp_slot_level = temp_slot_level;
3306 }
3307
3308 void
3309 expand_end_target_temps ()
3310 {
3311 expand_end_bindings (NULL_TREE, 0, 0);
3312
3313 /* This is so that even if the result is preserved, the space
3314 allocated will be freed, as we know that it is no longer in use. */
3315 pop_temp_slots ();
3316 }
3317
3318 /* Given a pointer to a BLOCK node return non-zero if (and only if) the node
3319 in question represents the outermost pair of curly braces (i.e. the "body
3320 block") of a function or method.
3321
3322 For any BLOCK node representing a "body block" of a function or method, the
3323 BLOCK_SUPERCONTEXT of the node will point to another BLOCK node which
3324 represents the outermost (function) scope for the function or method (i.e.
3325 the one which includes the formal parameters). The BLOCK_SUPERCONTEXT of
3326 *that* node in turn will point to the relevant FUNCTION_DECL node. */
3327
3328 int
3329 is_body_block (stmt)
3330 register tree stmt;
3331 {
3332 if (TREE_CODE (stmt) == BLOCK)
3333 {
3334 tree parent = BLOCK_SUPERCONTEXT (stmt);
3335
3336 if (parent && TREE_CODE (parent) == BLOCK)
3337 {
3338 tree grandparent = BLOCK_SUPERCONTEXT (parent);
3339
3340 if (grandparent && TREE_CODE (grandparent) == FUNCTION_DECL)
3341 return 1;
3342 }
3343 }
3344
3345 return 0;
3346 }
3347
3348 /* Mark top block of block_stack as an implicit binding for an
3349 exception region. This is used to prevent infinite recursion when
3350 ending a binding with expand_end_bindings. It is only ever called
3351 by expand_eh_region_start, as that it the only way to create a
3352 block stack for a exception region. */
3353
3354 void
3355 mark_block_as_eh_region ()
3356 {
3357 block_stack->data.block.exception_region = 1;
3358 if (block_stack->next
3359 && block_stack->next->data.block.conditional_code)
3360 {
3361 block_stack->data.block.conditional_code
3362 = block_stack->next->data.block.conditional_code;
3363 block_stack->data.block.last_unconditional_cleanup
3364 = block_stack->next->data.block.last_unconditional_cleanup;
3365 block_stack->data.block.cleanup_ptr
3366 = block_stack->next->data.block.cleanup_ptr;
3367 }
3368 }
3369
3370 /* True if we are currently emitting insns in an area of output code
3371 that is controlled by a conditional expression. This is used by
3372 the cleanup handling code to generate conditional cleanup actions. */
3373
3374 int
3375 conditional_context ()
3376 {
3377 return block_stack && block_stack->data.block.conditional_code;
3378 }
3379
3380 /* Mark top block of block_stack as not for an implicit binding for an
3381 exception region. This is only ever done by expand_eh_region_end
3382 to let expand_end_bindings know that it is being called explicitly
3383 to end the binding layer for just the binding layer associated with
3384 the exception region, otherwise expand_end_bindings would try and
3385 end all implicit binding layers for exceptions regions, and then
3386 one normal binding layer. */
3387
3388 void
3389 mark_block_as_not_eh_region ()
3390 {
3391 block_stack->data.block.exception_region = 0;
3392 }
3393
3394 /* True if the top block of block_stack was marked as for an exception
3395 region by mark_block_as_eh_region. */
3396
3397 int
3398 is_eh_region ()
3399 {
3400 return cfun && block_stack && block_stack->data.block.exception_region;
3401 }
3402
3403 /* Emit a handler label for a nonlocal goto handler.
3404 Also emit code to store the handler label in SLOT before BEFORE_INSN. */
3405
3406 static rtx
3407 expand_nl_handler_label (slot, before_insn)
3408 rtx slot, before_insn;
3409 {
3410 rtx insns;
3411 rtx handler_label = gen_label_rtx ();
3412
3413 /* Don't let jump_optimize delete the handler. */
3414 LABEL_PRESERVE_P (handler_label) = 1;
3415
3416 start_sequence ();
3417 emit_move_insn (slot, gen_rtx_LABEL_REF (Pmode, handler_label));
3418 insns = get_insns ();
3419 end_sequence ();
3420 emit_insns_before (insns, before_insn);
3421
3422 emit_label (handler_label);
3423
3424 return handler_label;
3425 }
3426
3427 /* Emit code to restore vital registers at the beginning of a nonlocal goto
3428 handler. */
3429 static void
3430 expand_nl_goto_receiver ()
3431 {
3432 #ifdef HAVE_nonlocal_goto
3433 if (! HAVE_nonlocal_goto)
3434 #endif
3435 /* First adjust our frame pointer to its actual value. It was
3436 previously set to the start of the virtual area corresponding to
3437 the stacked variables when we branched here and now needs to be
3438 adjusted to the actual hardware fp value.
3439
3440 Assignments are to virtual registers are converted by
3441 instantiate_virtual_regs into the corresponding assignment
3442 to the underlying register (fp in this case) that makes
3443 the original assignment true.
3444 So the following insn will actually be
3445 decrementing fp by STARTING_FRAME_OFFSET. */
3446 emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
3447
3448 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3449 if (fixed_regs[ARG_POINTER_REGNUM])
3450 {
3451 #ifdef ELIMINABLE_REGS
3452 /* If the argument pointer can be eliminated in favor of the
3453 frame pointer, we don't need to restore it. We assume here
3454 that if such an elimination is present, it can always be used.
3455 This is the case on all known machines; if we don't make this
3456 assumption, we do unnecessary saving on many machines. */
3457 static struct elims {int from, to;} elim_regs[] = ELIMINABLE_REGS;
3458 size_t i;
3459
3460 for (i = 0; i < sizeof elim_regs / sizeof elim_regs[0]; i++)
3461 if (elim_regs[i].from == ARG_POINTER_REGNUM
3462 && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
3463 break;
3464
3465 if (i == sizeof elim_regs / sizeof elim_regs [0])
3466 #endif
3467 {
3468 /* Now restore our arg pointer from the address at which it
3469 was saved in our stack frame.
3470 If there hasn't be space allocated for it yet, make
3471 some now. */
3472 if (arg_pointer_save_area == 0)
3473 arg_pointer_save_area
3474 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
3475 emit_move_insn (virtual_incoming_args_rtx,
3476 /* We need a pseudo here, or else
3477 instantiate_virtual_regs_1 complains. */
3478 copy_to_reg (arg_pointer_save_area));
3479 }
3480 }
3481 #endif
3482
3483 #ifdef HAVE_nonlocal_goto_receiver
3484 if (HAVE_nonlocal_goto_receiver)
3485 emit_insn (gen_nonlocal_goto_receiver ());
3486 #endif
3487 }
3488
3489 /* Make handlers for nonlocal gotos taking place in the function calls in
3490 block THISBLOCK. */
3491
3492 static void
3493 expand_nl_goto_receivers (thisblock)
3494 struct nesting *thisblock;
3495 {
3496 tree link;
3497 rtx afterward = gen_label_rtx ();
3498 rtx insns, slot;
3499 rtx label_list;
3500 int any_invalid;
3501
3502 /* Record the handler address in the stack slot for that purpose,
3503 during this block, saving and restoring the outer value. */
3504 if (thisblock->next != 0)
3505 for (slot = nonlocal_goto_handler_slots; slot; slot = XEXP (slot, 1))
3506 {
3507 rtx save_receiver = gen_reg_rtx (Pmode);
3508 emit_move_insn (XEXP (slot, 0), save_receiver);
3509
3510 start_sequence ();
3511 emit_move_insn (save_receiver, XEXP (slot, 0));
3512 insns = get_insns ();
3513 end_sequence ();
3514 emit_insns_before (insns, thisblock->data.block.first_insn);
3515 }
3516
3517 /* Jump around the handlers; they run only when specially invoked. */
3518 emit_jump (afterward);
3519
3520 /* Make a separate handler for each label. */
3521 link = nonlocal_labels;
3522 slot = nonlocal_goto_handler_slots;
3523 label_list = NULL_RTX;
3524 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3525 /* Skip any labels we shouldn't be able to jump to from here,
3526 we generate one special handler for all of them below which just calls
3527 abort. */
3528 if (! DECL_TOO_LATE (TREE_VALUE (link)))
3529 {
3530 rtx lab;
3531 lab = expand_nl_handler_label (XEXP (slot, 0),
3532 thisblock->data.block.first_insn);
3533 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3534
3535 expand_nl_goto_receiver ();
3536
3537 /* Jump to the "real" nonlocal label. */
3538 expand_goto (TREE_VALUE (link));
3539 }
3540
3541 /* A second pass over all nonlocal labels; this time we handle those
3542 we should not be able to jump to at this point. */
3543 link = nonlocal_labels;
3544 slot = nonlocal_goto_handler_slots;
3545 any_invalid = 0;
3546 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3547 if (DECL_TOO_LATE (TREE_VALUE (link)))
3548 {
3549 rtx lab;
3550 lab = expand_nl_handler_label (XEXP (slot, 0),
3551 thisblock->data.block.first_insn);
3552 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3553 any_invalid = 1;
3554 }
3555
3556 if (any_invalid)
3557 {
3558 expand_nl_goto_receiver ();
3559 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "abort"), 0,
3560 VOIDmode, 0);
3561 emit_barrier ();
3562 }
3563
3564 nonlocal_goto_handler_labels = label_list;
3565 emit_label (afterward);
3566 }
3567
3568 /* Warn about any unused VARS (which may contain nodes other than
3569 VAR_DECLs, but such nodes are ignored). The nodes are connected
3570 via the TREE_CHAIN field. */
3571
3572 void
3573 warn_about_unused_variables (vars)
3574 tree vars;
3575 {
3576 tree decl;
3577
3578 if (warn_unused)
3579 for (decl = vars; decl; decl = TREE_CHAIN (decl))
3580 if (TREE_CODE (decl) == VAR_DECL
3581 && ! TREE_USED (decl)
3582 && ! DECL_IN_SYSTEM_HEADER (decl)
3583 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
3584 warning_with_decl (decl, "unused variable `%s'");
3585 }
3586
3587 /* Generate RTL code to terminate a binding contour.
3588
3589 VARS is the chain of VAR_DECL nodes for the variables bound in this
3590 contour. There may actually be other nodes in this chain, but any
3591 nodes other than VAR_DECLS are ignored.
3592
3593 MARK_ENDS is nonzero if we should put a note at the beginning
3594 and end of this binding contour.
3595
3596 DONT_JUMP_IN is nonzero if it is not valid to jump into this contour.
3597 (That is true automatically if the contour has a saved stack level.) */
3598
3599 void
3600 expand_end_bindings (vars, mark_ends, dont_jump_in)
3601 tree vars;
3602 int mark_ends;
3603 int dont_jump_in;
3604 {
3605 register struct nesting *thisblock;
3606
3607 while (block_stack->data.block.exception_region)
3608 {
3609 /* Because we don't need or want a new temporary level and
3610 because we didn't create one in expand_eh_region_start,
3611 create a fake one now to avoid removing one in
3612 expand_end_bindings. */
3613 push_temp_slots ();
3614
3615 block_stack->data.block.exception_region = 0;
3616
3617 expand_end_bindings (NULL_TREE, 0, 0);
3618 }
3619
3620 /* Since expand_eh_region_start does an expand_start_bindings, we
3621 have to first end all the bindings that were created by
3622 expand_eh_region_start. */
3623
3624 thisblock = block_stack;
3625
3626 /* If any of the variables in this scope were not used, warn the
3627 user. */
3628 warn_about_unused_variables (vars);
3629
3630 if (thisblock->exit_label)
3631 {
3632 do_pending_stack_adjust ();
3633 emit_label (thisblock->exit_label);
3634 }
3635
3636 /* If necessary, make handlers for nonlocal gotos taking
3637 place in the function calls in this block. */
3638 if (function_call_count != thisblock->data.block.n_function_calls
3639 && nonlocal_labels
3640 /* Make handler for outermost block
3641 if there were any nonlocal gotos to this function. */
3642 && (thisblock->next == 0 ? current_function_has_nonlocal_label
3643 /* Make handler for inner block if it has something
3644 special to do when you jump out of it. */
3645 : (thisblock->data.block.cleanups != 0
3646 || thisblock->data.block.stack_level != 0)))
3647 expand_nl_goto_receivers (thisblock);
3648
3649 /* Don't allow jumping into a block that has a stack level.
3650 Cleanups are allowed, though. */
3651 if (dont_jump_in
3652 || thisblock->data.block.stack_level != 0)
3653 {
3654 struct label_chain *chain;
3655
3656 /* Any labels in this block are no longer valid to go to.
3657 Mark them to cause an error message. */
3658 for (chain = thisblock->data.block.label_chain; chain; chain = chain->next)
3659 {
3660 DECL_TOO_LATE (chain->label) = 1;
3661 /* If any goto without a fixup came to this label,
3662 that must be an error, because gotos without fixups
3663 come from outside all saved stack-levels. */
3664 if (TREE_ADDRESSABLE (chain->label))
3665 error_with_decl (chain->label,
3666 "label `%s' used before containing binding contour");
3667 }
3668 }
3669
3670 /* Restore stack level in effect before the block
3671 (only if variable-size objects allocated). */
3672 /* Perform any cleanups associated with the block. */
3673
3674 if (thisblock->data.block.stack_level != 0
3675 || thisblock->data.block.cleanups != 0)
3676 {
3677 /* Only clean up here if this point can actually be reached. */
3678 int reachable = GET_CODE (get_last_insn ()) != BARRIER;
3679
3680 /* Don't let cleanups affect ({...}) constructs. */
3681 int old_expr_stmts_for_value = expr_stmts_for_value;
3682 rtx old_last_expr_value = last_expr_value;
3683 tree old_last_expr_type = last_expr_type;
3684 expr_stmts_for_value = 0;
3685
3686 /* Do the cleanups. */
3687 expand_cleanups (thisblock->data.block.cleanups, NULL_TREE, 0, reachable);
3688 if (reachable)
3689 do_pending_stack_adjust ();
3690
3691 expr_stmts_for_value = old_expr_stmts_for_value;
3692 last_expr_value = old_last_expr_value;
3693 last_expr_type = old_last_expr_type;
3694
3695 /* Restore the stack level. */
3696
3697 if (reachable && thisblock->data.block.stack_level != 0)
3698 {
3699 emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3700 thisblock->data.block.stack_level, NULL_RTX);
3701 if (nonlocal_goto_handler_slots != 0)
3702 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level,
3703 NULL_RTX);
3704 }
3705
3706 /* Any gotos out of this block must also do these things.
3707 Also report any gotos with fixups that came to labels in this
3708 level. */
3709 fixup_gotos (thisblock,
3710 thisblock->data.block.stack_level,
3711 thisblock->data.block.cleanups,
3712 thisblock->data.block.first_insn,
3713 dont_jump_in);
3714 }
3715
3716 /* Mark the beginning and end of the scope if requested.
3717 We do this now, after running cleanups on the variables
3718 just going out of scope, so they are in scope for their cleanups. */
3719
3720 if (mark_ends)
3721 {
3722 rtx note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END);
3723 NOTE_BLOCK (note) = NOTE_BLOCK (thisblock->data.block.first_insn);
3724 }
3725 else
3726 /* Get rid of the beginning-mark if we don't make an end-mark. */
3727 NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED;
3728
3729 /* Restore the temporary level of TARGET_EXPRs. */
3730 target_temp_slot_level = thisblock->data.block.block_target_temp_slot_level;
3731
3732 /* Restore block_stack level for containing block. */
3733
3734 stack_block_stack = thisblock->data.block.innermost_stack_block;
3735 POPSTACK (block_stack);
3736
3737 /* Pop the stack slot nesting and free any slots at this level. */
3738 pop_temp_slots ();
3739 }
3740 \f
3741 /* Generate RTL for the automatic variable declaration DECL.
3742 (Other kinds of declarations are simply ignored if seen here.) */
3743
3744 void
3745 expand_decl (decl)
3746 register tree decl;
3747 {
3748 struct nesting *thisblock;
3749 tree type;
3750
3751 type = TREE_TYPE (decl);
3752
3753 /* Only automatic variables need any expansion done.
3754 Static and external variables, and external functions,
3755 will be handled by `assemble_variable' (called from finish_decl).
3756 TYPE_DECL and CONST_DECL require nothing.
3757 PARM_DECLs are handled in `assign_parms'. */
3758
3759 if (TREE_CODE (decl) != VAR_DECL)
3760 return;
3761 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
3762 return;
3763
3764 thisblock = block_stack;
3765
3766 /* Create the RTL representation for the variable. */
3767
3768 if (type == error_mark_node)
3769 DECL_RTL (decl) = gen_rtx_MEM (BLKmode, const0_rtx);
3770 else if (DECL_SIZE (decl) == 0)
3771 /* Variable with incomplete type. */
3772 {
3773 if (DECL_INITIAL (decl) == 0)
3774 /* Error message was already done; now avoid a crash. */
3775 DECL_RTL (decl) = assign_stack_temp (DECL_MODE (decl), 0, 1);
3776 else
3777 /* An initializer is going to decide the size of this array.
3778 Until we know the size, represent its address with a reg. */
3779 DECL_RTL (decl) = gen_rtx_MEM (BLKmode, gen_reg_rtx (Pmode));
3780 MEM_SET_IN_STRUCT_P (DECL_RTL (decl), AGGREGATE_TYPE_P (type));
3781 }
3782 else if (DECL_MODE (decl) != BLKmode
3783 /* If -ffloat-store, don't put explicit float vars
3784 into regs. */
3785 && !(flag_float_store
3786 && TREE_CODE (type) == REAL_TYPE)
3787 && ! TREE_THIS_VOLATILE (decl)
3788 && ! TREE_ADDRESSABLE (decl)
3789 && (DECL_REGISTER (decl) || optimize)
3790 /* if -fcheck-memory-usage, check all variables. */
3791 && ! current_function_check_memory_usage)
3792 {
3793 /* Automatic variable that can go in a register. */
3794 int unsignedp = TREE_UNSIGNED (type);
3795 enum machine_mode reg_mode
3796 = promote_mode (type, DECL_MODE (decl), &unsignedp, 0);
3797
3798 DECL_RTL (decl) = gen_reg_rtx (reg_mode);
3799 mark_user_reg (DECL_RTL (decl));
3800
3801 if (POINTER_TYPE_P (type))
3802 mark_reg_pointer (DECL_RTL (decl),
3803 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))));
3804
3805 }
3806
3807 else if (TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST
3808 && ! (flag_stack_check && ! STACK_CHECK_BUILTIN
3809 && 0 < compare_tree_int (DECL_SIZE_UNIT (decl),
3810 STACK_CHECK_MAX_VAR_SIZE)))
3811 {
3812 /* Variable of fixed size that goes on the stack. */
3813 rtx oldaddr = 0;
3814 rtx addr;
3815
3816 /* If we previously made RTL for this decl, it must be an array
3817 whose size was determined by the initializer.
3818 The old address was a register; set that register now
3819 to the proper address. */
3820 if (DECL_RTL (decl) != 0)
3821 {
3822 if (GET_CODE (DECL_RTL (decl)) != MEM
3823 || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG)
3824 abort ();
3825 oldaddr = XEXP (DECL_RTL (decl), 0);
3826 }
3827
3828 DECL_RTL (decl) = assign_temp (TREE_TYPE (decl), 1, 1, 1);
3829 MEM_SET_IN_STRUCT_P (DECL_RTL (decl),
3830 AGGREGATE_TYPE_P (TREE_TYPE (decl)));
3831
3832 /* Set alignment we actually gave this decl. */
3833 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
3834 : GET_MODE_BITSIZE (DECL_MODE (decl)));
3835
3836 if (oldaddr)
3837 {
3838 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
3839 if (addr != oldaddr)
3840 emit_move_insn (oldaddr, addr);
3841 }
3842
3843 /* If this is a memory ref that contains aggregate components,
3844 mark it as such for cse and loop optimize. */
3845 MEM_SET_IN_STRUCT_P (DECL_RTL (decl),
3846 AGGREGATE_TYPE_P (TREE_TYPE (decl)));
3847 #if 0
3848 /* If this is in memory because of -ffloat-store,
3849 set the volatile bit, to prevent optimizations from
3850 undoing the effects. */
3851 if (flag_float_store && TREE_CODE (type) == REAL_TYPE)
3852 MEM_VOLATILE_P (DECL_RTL (decl)) = 1;
3853 #endif
3854
3855 MEM_ALIAS_SET (DECL_RTL (decl)) = get_alias_set (decl);
3856 }
3857 else
3858 /* Dynamic-size object: must push space on the stack. */
3859 {
3860 rtx address, size;
3861
3862 /* Record the stack pointer on entry to block, if have
3863 not already done so. */
3864 if (thisblock->data.block.stack_level == 0)
3865 {
3866 do_pending_stack_adjust ();
3867 emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3868 &thisblock->data.block.stack_level,
3869 thisblock->data.block.first_insn);
3870 stack_block_stack = thisblock;
3871 }
3872
3873 /* In function-at-a-time mode, variable_size doesn't expand this,
3874 so do it now. */
3875 if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
3876 expand_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)),
3877 const0_rtx, VOIDmode, 0);
3878
3879 /* Compute the variable's size, in bytes. */
3880 size = expand_expr (DECL_SIZE_UNIT (decl), NULL_RTX, VOIDmode, 0);
3881 free_temp_slots ();
3882
3883 /* Allocate space on the stack for the variable. Note that
3884 DECL_ALIGN says how the variable is to be aligned and we
3885 cannot use it to conclude anything about the alignment of
3886 the size. */
3887 address = allocate_dynamic_stack_space (size, NULL_RTX,
3888 TYPE_ALIGN (TREE_TYPE (decl)));
3889
3890 /* Reference the variable indirect through that rtx. */
3891 DECL_RTL (decl) = gen_rtx_MEM (DECL_MODE (decl), address);
3892
3893 /* If this is a memory ref that contains aggregate components,
3894 mark it as such for cse and loop optimize. */
3895 MEM_SET_IN_STRUCT_P (DECL_RTL (decl),
3896 AGGREGATE_TYPE_P (TREE_TYPE (decl)));
3897
3898 /* Indicate the alignment we actually gave this variable. */
3899 #ifdef STACK_BOUNDARY
3900 DECL_ALIGN (decl) = STACK_BOUNDARY;
3901 #else
3902 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
3903 #endif
3904 }
3905
3906 if (TREE_THIS_VOLATILE (decl))
3907 MEM_VOLATILE_P (DECL_RTL (decl)) = 1;
3908
3909 if (TREE_READONLY (decl))
3910 RTX_UNCHANGING_P (DECL_RTL (decl)) = 1;
3911 }
3912 \f
3913 /* Emit code to perform the initialization of a declaration DECL. */
3914
3915 void
3916 expand_decl_init (decl)
3917 tree decl;
3918 {
3919 int was_used = TREE_USED (decl);
3920
3921 /* If this is a CONST_DECL, we don't have to generate any code, but
3922 if DECL_INITIAL is a constant, call expand_expr to force TREE_CST_RTL
3923 to be set while in the obstack containing the constant. If we don't
3924 do this, we can lose if we have functions nested three deep and the middle
3925 function makes a CONST_DECL whose DECL_INITIAL is a STRING_CST while
3926 the innermost function is the first to expand that STRING_CST. */
3927 if (TREE_CODE (decl) == CONST_DECL)
3928 {
3929 if (DECL_INITIAL (decl) && TREE_CONSTANT (DECL_INITIAL (decl)))
3930 expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
3931 EXPAND_INITIALIZER);
3932 return;
3933 }
3934
3935 if (TREE_STATIC (decl))
3936 return;
3937
3938 /* Compute and store the initial value now. */
3939
3940 if (DECL_INITIAL (decl) == error_mark_node)
3941 {
3942 enum tree_code code = TREE_CODE (TREE_TYPE (decl));
3943
3944 if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE
3945 || code == POINTER_TYPE || code == REFERENCE_TYPE)
3946 expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node),
3947 0, 0);
3948 emit_queue ();
3949 }
3950 else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST)
3951 {
3952 emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl));
3953 expand_assignment (decl, DECL_INITIAL (decl), 0, 0);
3954 emit_queue ();
3955 }
3956
3957 /* Don't let the initialization count as "using" the variable. */
3958 TREE_USED (decl) = was_used;
3959
3960 /* Free any temporaries we made while initializing the decl. */
3961 preserve_temp_slots (NULL_RTX);
3962 free_temp_slots ();
3963 }
3964
3965 /* CLEANUP is an expression to be executed at exit from this binding contour;
3966 for example, in C++, it might call the destructor for this variable.
3967
3968 We wrap CLEANUP in an UNSAVE_EXPR node, so that we can expand the
3969 CLEANUP multiple times, and have the correct semantics. This
3970 happens in exception handling, for gotos, returns, breaks that
3971 leave the current scope.
3972
3973 If CLEANUP is nonzero and DECL is zero, we record a cleanup
3974 that is not associated with any particular variable. */
3975
3976 int
3977 expand_decl_cleanup (decl, cleanup)
3978 tree decl, cleanup;
3979 {
3980 struct nesting *thisblock;
3981
3982 /* Error if we are not in any block. */
3983 if (cfun == 0 || block_stack == 0)
3984 return 0;
3985
3986 thisblock = block_stack;
3987
3988 /* Record the cleanup if there is one. */
3989
3990 if (cleanup != 0)
3991 {
3992 tree t;
3993 rtx seq;
3994 tree *cleanups = &thisblock->data.block.cleanups;
3995 int cond_context = conditional_context ();
3996
3997 if (cond_context)
3998 {
3999 rtx flag = gen_reg_rtx (word_mode);
4000 rtx set_flag_0;
4001 tree cond;
4002
4003 start_sequence ();
4004 emit_move_insn (flag, const0_rtx);
4005 set_flag_0 = get_insns ();
4006 end_sequence ();
4007
4008 thisblock->data.block.last_unconditional_cleanup
4009 = emit_insns_after (set_flag_0,
4010 thisblock->data.block.last_unconditional_cleanup);
4011
4012 emit_move_insn (flag, const1_rtx);
4013
4014 /* All cleanups must be on the function_obstack. */
4015 push_obstacks_nochange ();
4016 resume_temporary_allocation ();
4017
4018 cond = build_decl (VAR_DECL, NULL_TREE, type_for_mode (word_mode, 1));
4019 DECL_RTL (cond) = flag;
4020
4021 /* Conditionalize the cleanup. */
4022 cleanup = build (COND_EXPR, void_type_node,
4023 truthvalue_conversion (cond),
4024 cleanup, integer_zero_node);
4025 cleanup = fold (cleanup);
4026
4027 pop_obstacks ();
4028
4029 cleanups = thisblock->data.block.cleanup_ptr;
4030 }
4031
4032 /* All cleanups must be on the function_obstack. */
4033 push_obstacks_nochange ();
4034 resume_temporary_allocation ();
4035 cleanup = unsave_expr (cleanup);
4036 pop_obstacks ();
4037
4038 t = *cleanups = temp_tree_cons (decl, cleanup, *cleanups);
4039
4040 if (! cond_context)
4041 /* If this block has a cleanup, it belongs in stack_block_stack. */
4042 stack_block_stack = thisblock;
4043
4044 if (cond_context)
4045 {
4046 start_sequence ();
4047 }
4048
4049 /* If this was optimized so that there is no exception region for the
4050 cleanup, then mark the TREE_LIST node, so that we can later tell
4051 if we need to call expand_eh_region_end. */
4052 if (! using_eh_for_cleanups_p
4053 || expand_eh_region_start_tree (decl, cleanup))
4054 TREE_ADDRESSABLE (t) = 1;
4055 /* If that started a new EH region, we're in a new block. */
4056 thisblock = block_stack;
4057
4058 if (cond_context)
4059 {
4060 seq = get_insns ();
4061 end_sequence ();
4062 if (seq)
4063 thisblock->data.block.last_unconditional_cleanup
4064 = emit_insns_after (seq,
4065 thisblock->data.block.last_unconditional_cleanup);
4066 }
4067 else
4068 {
4069 thisblock->data.block.last_unconditional_cleanup
4070 = get_last_insn ();
4071 thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
4072 }
4073 }
4074 return 1;
4075 }
4076
4077 /* Like expand_decl_cleanup, but suppress generating an exception handler
4078 to perform the cleanup. */
4079
4080 #if 0
4081 int
4082 expand_decl_cleanup_no_eh (decl, cleanup)
4083 tree decl, cleanup;
4084 {
4085 int save_eh = using_eh_for_cleanups_p;
4086 int result;
4087
4088 using_eh_for_cleanups_p = 0;
4089 result = expand_decl_cleanup (decl, cleanup);
4090 using_eh_for_cleanups_p = save_eh;
4091
4092 return result;
4093 }
4094 #endif
4095
4096 /* Arrange for the top element of the dynamic cleanup chain to be
4097 popped if we exit the current binding contour. DECL is the
4098 associated declaration, if any, otherwise NULL_TREE. If the
4099 current contour is left via an exception, then __sjthrow will pop
4100 the top element off the dynamic cleanup chain. The code that
4101 avoids doing the action we push into the cleanup chain in the
4102 exceptional case is contained in expand_cleanups.
4103
4104 This routine is only used by expand_eh_region_start, and that is
4105 the only way in which an exception region should be started. This
4106 routine is only used when using the setjmp/longjmp codegen method
4107 for exception handling. */
4108
4109 int
4110 expand_dcc_cleanup (decl)
4111 tree decl;
4112 {
4113 struct nesting *thisblock;
4114 tree cleanup;
4115
4116 /* Error if we are not in any block. */
4117 if (cfun == 0 || block_stack == 0)
4118 return 0;
4119 thisblock = block_stack;
4120
4121 /* Record the cleanup for the dynamic handler chain. */
4122
4123 /* All cleanups must be on the function_obstack. */
4124 push_obstacks_nochange ();
4125 resume_temporary_allocation ();
4126 cleanup = make_node (POPDCC_EXPR);
4127 pop_obstacks ();
4128
4129 /* Add the cleanup in a manner similar to expand_decl_cleanup. */
4130 thisblock->data.block.cleanups
4131 = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups);
4132
4133 /* If this block has a cleanup, it belongs in stack_block_stack. */
4134 stack_block_stack = thisblock;
4135 return 1;
4136 }
4137
4138 /* Arrange for the top element of the dynamic handler chain to be
4139 popped if we exit the current binding contour. DECL is the
4140 associated declaration, if any, otherwise NULL_TREE. If the current
4141 contour is left via an exception, then __sjthrow will pop the top
4142 element off the dynamic handler chain. The code that avoids doing
4143 the action we push into the handler chain in the exceptional case
4144 is contained in expand_cleanups.
4145
4146 This routine is only used by expand_eh_region_start, and that is
4147 the only way in which an exception region should be started. This
4148 routine is only used when using the setjmp/longjmp codegen method
4149 for exception handling. */
4150
4151 int
4152 expand_dhc_cleanup (decl)
4153 tree decl;
4154 {
4155 struct nesting *thisblock;
4156 tree cleanup;
4157
4158 /* Error if we are not in any block. */
4159 if (cfun == 0 || block_stack == 0)
4160 return 0;
4161 thisblock = block_stack;
4162
4163 /* Record the cleanup for the dynamic handler chain. */
4164
4165 /* All cleanups must be on the function_obstack. */
4166 push_obstacks_nochange ();
4167 resume_temporary_allocation ();
4168 cleanup = make_node (POPDHC_EXPR);
4169 pop_obstacks ();
4170
4171 /* Add the cleanup in a manner similar to expand_decl_cleanup. */
4172 thisblock->data.block.cleanups
4173 = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups);
4174
4175 /* If this block has a cleanup, it belongs in stack_block_stack. */
4176 stack_block_stack = thisblock;
4177 return 1;
4178 }
4179 \f
4180 /* DECL is an anonymous union. CLEANUP is a cleanup for DECL.
4181 DECL_ELTS is the list of elements that belong to DECL's type.
4182 In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */
4183
4184 void
4185 expand_anon_union_decl (decl, cleanup, decl_elts)
4186 tree decl, cleanup, decl_elts;
4187 {
4188 struct nesting *thisblock = cfun == 0 ? 0 : block_stack;
4189 rtx x;
4190 tree t;
4191
4192 /* If any of the elements are addressable, so is the entire union. */
4193 for (t = decl_elts; t; t = TREE_CHAIN (t))
4194 if (TREE_ADDRESSABLE (TREE_VALUE (t)))
4195 {
4196 TREE_ADDRESSABLE (decl) = 1;
4197 break;
4198 }
4199
4200 expand_decl (decl);
4201 expand_decl_cleanup (decl, cleanup);
4202 x = DECL_RTL (decl);
4203
4204 /* Go through the elements, assigning RTL to each. */
4205 for (t = decl_elts; t; t = TREE_CHAIN (t))
4206 {
4207 tree decl_elt = TREE_VALUE (t);
4208 tree cleanup_elt = TREE_PURPOSE (t);
4209 enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt));
4210
4211 /* Propagate the union's alignment to the elements. */
4212 DECL_ALIGN (decl_elt) = DECL_ALIGN (decl);
4213
4214 /* If the element has BLKmode and the union doesn't, the union is
4215 aligned such that the element doesn't need to have BLKmode, so
4216 change the element's mode to the appropriate one for its size. */
4217 if (mode == BLKmode && DECL_MODE (decl) != BLKmode)
4218 DECL_MODE (decl_elt) = mode
4219 = mode_for_size_tree (DECL_SIZE (decl_elt), MODE_INT, 1);
4220
4221 /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we
4222 instead create a new MEM rtx with the proper mode. */
4223 if (GET_CODE (x) == MEM)
4224 {
4225 if (mode == GET_MODE (x))
4226 DECL_RTL (decl_elt) = x;
4227 else
4228 {
4229 DECL_RTL (decl_elt) = gen_rtx_MEM (mode, copy_rtx (XEXP (x, 0)));
4230 MEM_COPY_ATTRIBUTES (DECL_RTL (decl_elt), x);
4231 RTX_UNCHANGING_P (DECL_RTL (decl_elt)) = RTX_UNCHANGING_P (x);
4232 }
4233 }
4234 else if (GET_CODE (x) == REG)
4235 {
4236 if (mode == GET_MODE (x))
4237 DECL_RTL (decl_elt) = x;
4238 else
4239 DECL_RTL (decl_elt) = gen_rtx_SUBREG (mode, x, 0);
4240 }
4241 else
4242 abort ();
4243
4244 /* Record the cleanup if there is one. */
4245
4246 if (cleanup != 0)
4247 thisblock->data.block.cleanups
4248 = temp_tree_cons (decl_elt, cleanup_elt,
4249 thisblock->data.block.cleanups);
4250 }
4251 }
4252 \f
4253 /* Expand a list of cleanups LIST.
4254 Elements may be expressions or may be nested lists.
4255
4256 If DONT_DO is nonnull, then any list-element
4257 whose TREE_PURPOSE matches DONT_DO is omitted.
4258 This is sometimes used to avoid a cleanup associated with
4259 a value that is being returned out of the scope.
4260
4261 If IN_FIXUP is non-zero, we are generating this cleanup for a fixup
4262 goto and handle protection regions specially in that case.
4263
4264 If REACHABLE, we emit code, otherwise just inform the exception handling
4265 code about this finalization. */
4266
4267 static void
4268 expand_cleanups (list, dont_do, in_fixup, reachable)
4269 tree list;
4270 tree dont_do;
4271 int in_fixup;
4272 int reachable;
4273 {
4274 tree tail;
4275 for (tail = list; tail; tail = TREE_CHAIN (tail))
4276 if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do)
4277 {
4278 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
4279 expand_cleanups (TREE_VALUE (tail), dont_do, in_fixup, reachable);
4280 else
4281 {
4282 if (! in_fixup)
4283 {
4284 tree cleanup = TREE_VALUE (tail);
4285
4286 /* See expand_d{h,c}c_cleanup for why we avoid this. */
4287 if (TREE_CODE (cleanup) != POPDHC_EXPR
4288 && TREE_CODE (cleanup) != POPDCC_EXPR
4289 /* See expand_eh_region_start_tree for this case. */
4290 && ! TREE_ADDRESSABLE (tail))
4291 {
4292 cleanup = protect_with_terminate (cleanup);
4293 expand_eh_region_end (cleanup);
4294 }
4295 }
4296
4297 if (reachable)
4298 {
4299 /* Cleanups may be run multiple times. For example,
4300 when exiting a binding contour, we expand the
4301 cleanups associated with that contour. When a goto
4302 within that binding contour has a target outside that
4303 contour, it will expand all cleanups from its scope to
4304 the target. Though the cleanups are expanded multiple
4305 times, the control paths are non-overlapping so the
4306 cleanups will not be executed twice. */
4307
4308 /* We may need to protect fixups with rethrow regions. */
4309 int protect = (in_fixup && ! TREE_ADDRESSABLE (tail));
4310
4311 if (protect)
4312 expand_fixup_region_start ();
4313
4314 /* The cleanup might contain try-blocks, so we have to
4315 preserve our current queue. */
4316 push_ehqueue ();
4317 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4318 pop_ehqueue ();
4319 if (protect)
4320 expand_fixup_region_end (TREE_VALUE (tail));
4321 free_temp_slots ();
4322 }
4323 }
4324 }
4325 }
4326
4327 /* Mark when the context we are emitting RTL for as a conditional
4328 context, so that any cleanup actions we register with
4329 expand_decl_init will be properly conditionalized when those
4330 cleanup actions are later performed. Must be called before any
4331 expression (tree) is expanded that is within a conditional context. */
4332
4333 void
4334 start_cleanup_deferral ()
4335 {
4336 /* block_stack can be NULL if we are inside the parameter list. It is
4337 OK to do nothing, because cleanups aren't possible here. */
4338 if (block_stack)
4339 ++block_stack->data.block.conditional_code;
4340 }
4341
4342 /* Mark the end of a conditional region of code. Because cleanup
4343 deferrals may be nested, we may still be in a conditional region
4344 after we end the currently deferred cleanups, only after we end all
4345 deferred cleanups, are we back in unconditional code. */
4346
4347 void
4348 end_cleanup_deferral ()
4349 {
4350 /* block_stack can be NULL if we are inside the parameter list. It is
4351 OK to do nothing, because cleanups aren't possible here. */
4352 if (block_stack)
4353 --block_stack->data.block.conditional_code;
4354 }
4355
4356 /* Move all cleanups from the current block_stack
4357 to the containing block_stack, where they are assumed to
4358 have been created. If anything can cause a temporary to
4359 be created, but not expanded for more than one level of
4360 block_stacks, then this code will have to change. */
4361
4362 void
4363 move_cleanups_up ()
4364 {
4365 struct nesting *block = block_stack;
4366 struct nesting *outer = block->next;
4367
4368 outer->data.block.cleanups
4369 = chainon (block->data.block.cleanups,
4370 outer->data.block.cleanups);
4371 block->data.block.cleanups = 0;
4372 }
4373
4374 tree
4375 last_cleanup_this_contour ()
4376 {
4377 if (block_stack == 0)
4378 return 0;
4379
4380 return block_stack->data.block.cleanups;
4381 }
4382
4383 /* Return 1 if there are any pending cleanups at this point.
4384 If THIS_CONTOUR is nonzero, check the current contour as well.
4385 Otherwise, look only at the contours that enclose this one. */
4386
4387 int
4388 any_pending_cleanups (this_contour)
4389 int this_contour;
4390 {
4391 struct nesting *block;
4392
4393 if (cfun == NULL || cfun->stmt == NULL || block_stack == 0)
4394 return 0;
4395
4396 if (this_contour && block_stack->data.block.cleanups != NULL)
4397 return 1;
4398 if (block_stack->data.block.cleanups == 0
4399 && block_stack->data.block.outer_cleanups == 0)
4400 return 0;
4401
4402 for (block = block_stack->next; block; block = block->next)
4403 if (block->data.block.cleanups != 0)
4404 return 1;
4405
4406 return 0;
4407 }
4408 \f
4409 /* Enter a case (Pascal) or switch (C) statement.
4410 Push a block onto case_stack and nesting_stack
4411 to accumulate the case-labels that are seen
4412 and to record the labels generated for the statement.
4413
4414 EXIT_FLAG is nonzero if `exit_something' should exit this case stmt.
4415 Otherwise, this construct is transparent for `exit_something'.
4416
4417 EXPR is the index-expression to be dispatched on.
4418 TYPE is its nominal type. We could simply convert EXPR to this type,
4419 but instead we take short cuts. */
4420
4421 void
4422 expand_start_case (exit_flag, expr, type, printname)
4423 int exit_flag;
4424 tree expr;
4425 tree type;
4426 const char *printname;
4427 {
4428 register struct nesting *thiscase = ALLOC_NESTING ();
4429
4430 /* Make an entry on case_stack for the case we are entering. */
4431
4432 thiscase->next = case_stack;
4433 thiscase->all = nesting_stack;
4434 thiscase->depth = ++nesting_depth;
4435 thiscase->exit_label = exit_flag ? gen_label_rtx () : 0;
4436 thiscase->data.case_stmt.case_list = 0;
4437 thiscase->data.case_stmt.index_expr = expr;
4438 thiscase->data.case_stmt.nominal_type = type;
4439 thiscase->data.case_stmt.default_label = 0;
4440 thiscase->data.case_stmt.num_ranges = 0;
4441 thiscase->data.case_stmt.printname = printname;
4442 thiscase->data.case_stmt.line_number_status = force_line_numbers ();
4443 case_stack = thiscase;
4444 nesting_stack = thiscase;
4445
4446 do_pending_stack_adjust ();
4447
4448 /* Make sure case_stmt.start points to something that won't
4449 need any transformation before expand_end_case. */
4450 if (GET_CODE (get_last_insn ()) != NOTE)
4451 emit_note (NULL_PTR, NOTE_INSN_DELETED);
4452
4453 thiscase->data.case_stmt.start = get_last_insn ();
4454
4455 start_cleanup_deferral ();
4456 }
4457
4458
4459 /* Start a "dummy case statement" within which case labels are invalid
4460 and are not connected to any larger real case statement.
4461 This can be used if you don't want to let a case statement jump
4462 into the middle of certain kinds of constructs. */
4463
4464 void
4465 expand_start_case_dummy ()
4466 {
4467 register struct nesting *thiscase = ALLOC_NESTING ();
4468
4469 /* Make an entry on case_stack for the dummy. */
4470
4471 thiscase->next = case_stack;
4472 thiscase->all = nesting_stack;
4473 thiscase->depth = ++nesting_depth;
4474 thiscase->exit_label = 0;
4475 thiscase->data.case_stmt.case_list = 0;
4476 thiscase->data.case_stmt.start = 0;
4477 thiscase->data.case_stmt.nominal_type = 0;
4478 thiscase->data.case_stmt.default_label = 0;
4479 thiscase->data.case_stmt.num_ranges = 0;
4480 case_stack = thiscase;
4481 nesting_stack = thiscase;
4482 start_cleanup_deferral ();
4483 }
4484
4485 /* End a dummy case statement. */
4486
4487 void
4488 expand_end_case_dummy ()
4489 {
4490 end_cleanup_deferral ();
4491 POPSTACK (case_stack);
4492 }
4493
4494 /* Return the data type of the index-expression
4495 of the innermost case statement, or null if none. */
4496
4497 tree
4498 case_index_expr_type ()
4499 {
4500 if (case_stack)
4501 return TREE_TYPE (case_stack->data.case_stmt.index_expr);
4502 return 0;
4503 }
4504 \f
4505 static void
4506 check_seenlabel ()
4507 {
4508 /* If this is the first label, warn if any insns have been emitted. */
4509 if (case_stack->data.case_stmt.line_number_status >= 0)
4510 {
4511 rtx insn;
4512
4513 restore_line_number_status
4514 (case_stack->data.case_stmt.line_number_status);
4515 case_stack->data.case_stmt.line_number_status = -1;
4516
4517 for (insn = case_stack->data.case_stmt.start;
4518 insn;
4519 insn = NEXT_INSN (insn))
4520 {
4521 if (GET_CODE (insn) == CODE_LABEL)
4522 break;
4523 if (GET_CODE (insn) != NOTE
4524 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
4525 {
4526 do
4527 insn = PREV_INSN (insn);
4528 while (insn && (GET_CODE (insn) != NOTE || NOTE_LINE_NUMBER (insn) < 0));
4529
4530 /* If insn is zero, then there must have been a syntax error. */
4531 if (insn)
4532 warning_with_file_and_line (NOTE_SOURCE_FILE(insn),
4533 NOTE_LINE_NUMBER(insn),
4534 "unreachable code at beginning of %s",
4535 case_stack->data.case_stmt.printname);
4536 break;
4537 }
4538 }
4539 }
4540 }
4541
4542 /* Accumulate one case or default label inside a case or switch statement.
4543 VALUE is the value of the case (a null pointer, for a default label).
4544 The function CONVERTER, when applied to arguments T and V,
4545 converts the value V to the type T.
4546
4547 If not currently inside a case or switch statement, return 1 and do
4548 nothing. The caller will print a language-specific error message.
4549 If VALUE is a duplicate or overlaps, return 2 and do nothing
4550 except store the (first) duplicate node in *DUPLICATE.
4551 If VALUE is out of range, return 3 and do nothing.
4552 If we are jumping into the scope of a cleanup or var-sized array, return 5.
4553 Return 0 on success.
4554
4555 Extended to handle range statements. */
4556
4557 int
4558 pushcase (value, converter, label, duplicate)
4559 register tree value;
4560 tree (*converter) PARAMS ((tree, tree));
4561 register tree label;
4562 tree *duplicate;
4563 {
4564 tree index_type;
4565 tree nominal_type;
4566
4567 /* Fail if not inside a real case statement. */
4568 if (! (case_stack && case_stack->data.case_stmt.start))
4569 return 1;
4570
4571 if (stack_block_stack
4572 && stack_block_stack->depth > case_stack->depth)
4573 return 5;
4574
4575 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4576 nominal_type = case_stack->data.case_stmt.nominal_type;
4577
4578 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4579 if (index_type == error_mark_node)
4580 return 0;
4581
4582 /* Convert VALUE to the type in which the comparisons are nominally done. */
4583 if (value != 0)
4584 value = (*converter) (nominal_type, value);
4585
4586 check_seenlabel ();
4587
4588 /* Fail if this value is out of range for the actual type of the index
4589 (which may be narrower than NOMINAL_TYPE). */
4590 if (value != 0
4591 && (TREE_CONSTANT_OVERFLOW (value)
4592 || ! int_fits_type_p (value, index_type)))
4593 return 3;
4594
4595 /* Fail if this is a duplicate or overlaps another entry. */
4596 if (value == 0)
4597 {
4598 if (case_stack->data.case_stmt.default_label != 0)
4599 {
4600 *duplicate = case_stack->data.case_stmt.default_label;
4601 return 2;
4602 }
4603 case_stack->data.case_stmt.default_label = label;
4604 }
4605 else
4606 return add_case_node (value, value, label, duplicate);
4607
4608 expand_label (label);
4609 return 0;
4610 }
4611
4612 /* Like pushcase but this case applies to all values between VALUE1 and
4613 VALUE2 (inclusive). If VALUE1 is NULL, the range starts at the lowest
4614 value of the index type and ends at VALUE2. If VALUE2 is NULL, the range
4615 starts at VALUE1 and ends at the highest value of the index type.
4616 If both are NULL, this case applies to all values.
4617
4618 The return value is the same as that of pushcase but there is one
4619 additional error code: 4 means the specified range was empty. */
4620
4621 int
4622 pushcase_range (value1, value2, converter, label, duplicate)
4623 register tree value1, value2;
4624 tree (*converter) PARAMS ((tree, tree));
4625 register tree label;
4626 tree *duplicate;
4627 {
4628 tree index_type;
4629 tree nominal_type;
4630
4631 /* Fail if not inside a real case statement. */
4632 if (! (case_stack && case_stack->data.case_stmt.start))
4633 return 1;
4634
4635 if (stack_block_stack
4636 && stack_block_stack->depth > case_stack->depth)
4637 return 5;
4638
4639 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4640 nominal_type = case_stack->data.case_stmt.nominal_type;
4641
4642 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4643 if (index_type == error_mark_node)
4644 return 0;
4645
4646 check_seenlabel ();
4647
4648 /* Convert VALUEs to type in which the comparisons are nominally done
4649 and replace any unspecified value with the corresponding bound. */
4650 if (value1 == 0)
4651 value1 = TYPE_MIN_VALUE (index_type);
4652 if (value2 == 0)
4653 value2 = TYPE_MAX_VALUE (index_type);
4654
4655 /* Fail if the range is empty. Do this before any conversion since
4656 we want to allow out-of-range empty ranges. */
4657 if (value2 != 0 && tree_int_cst_lt (value2, value1))
4658 return 4;
4659
4660 /* If the max was unbounded, use the max of the nominal_type we are
4661 converting to. Do this after the < check above to suppress false
4662 positives. */
4663 if (value2 == 0)
4664 value2 = TYPE_MAX_VALUE (nominal_type);
4665
4666 value1 = (*converter) (nominal_type, value1);
4667 value2 = (*converter) (nominal_type, value2);
4668
4669 /* Fail if these values are out of range. */
4670 if (TREE_CONSTANT_OVERFLOW (value1)
4671 || ! int_fits_type_p (value1, index_type))
4672 return 3;
4673
4674 if (TREE_CONSTANT_OVERFLOW (value2)
4675 || ! int_fits_type_p (value2, index_type))
4676 return 3;
4677
4678 return add_case_node (value1, value2, label, duplicate);
4679 }
4680
4681 /* Do the actual insertion of a case label for pushcase and pushcase_range
4682 into case_stack->data.case_stmt.case_list. Use an AVL tree to avoid
4683 slowdown for large switch statements. */
4684
4685 static int
4686 add_case_node (low, high, label, duplicate)
4687 tree low, high;
4688 tree label;
4689 tree *duplicate;
4690 {
4691 struct case_node *p, **q, *r;
4692
4693 q = &case_stack->data.case_stmt.case_list;
4694 p = *q;
4695
4696 while ((r = *q))
4697 {
4698 p = r;
4699
4700 /* Keep going past elements distinctly greater than HIGH. */
4701 if (tree_int_cst_lt (high, p->low))
4702 q = &p->left;
4703
4704 /* or distinctly less than LOW. */
4705 else if (tree_int_cst_lt (p->high, low))
4706 q = &p->right;
4707
4708 else
4709 {
4710 /* We have an overlap; this is an error. */
4711 *duplicate = p->code_label;
4712 return 2;
4713 }
4714 }
4715
4716 /* Add this label to the chain, and succeed.
4717 Copy LOW, HIGH so they are on temporary rather than momentary
4718 obstack and will thus survive till the end of the case statement. */
4719
4720 r = (struct case_node *) oballoc (sizeof (struct case_node));
4721 r->low = copy_node (low);
4722
4723 /* If the bounds are equal, turn this into the one-value case. */
4724
4725 if (tree_int_cst_equal (low, high))
4726 r->high = r->low;
4727 else
4728 {
4729 r->high = copy_node (high);
4730 case_stack->data.case_stmt.num_ranges++;
4731 }
4732
4733 r->code_label = label;
4734 expand_label (label);
4735
4736 *q = r;
4737 r->parent = p;
4738 r->left = 0;
4739 r->right = 0;
4740 r->balance = 0;
4741
4742 while (p)
4743 {
4744 struct case_node *s;
4745
4746 if (r == p->left)
4747 {
4748 int b;
4749
4750 if (! (b = p->balance))
4751 /* Growth propagation from left side. */
4752 p->balance = -1;
4753 else if (b < 0)
4754 {
4755 if (r->balance < 0)
4756 {
4757 /* R-Rotation */
4758 if ((p->left = s = r->right))
4759 s->parent = p;
4760
4761 r->right = p;
4762 p->balance = 0;
4763 r->balance = 0;
4764 s = p->parent;
4765 p->parent = r;
4766
4767 if ((r->parent = s))
4768 {
4769 if (s->left == p)
4770 s->left = r;
4771 else
4772 s->right = r;
4773 }
4774 else
4775 case_stack->data.case_stmt.case_list = r;
4776 }
4777 else
4778 /* r->balance == +1 */
4779 {
4780 /* LR-Rotation */
4781
4782 int b2;
4783 struct case_node *t = r->right;
4784
4785 if ((p->left = s = t->right))
4786 s->parent = p;
4787
4788 t->right = p;
4789 if ((r->right = s = t->left))
4790 s->parent = r;
4791
4792 t->left = r;
4793 b = t->balance;
4794 b2 = b < 0;
4795 p->balance = b2;
4796 b2 = -b2 - b;
4797 r->balance = b2;
4798 t->balance = 0;
4799 s = p->parent;
4800 p->parent = t;
4801 r->parent = t;
4802
4803 if ((t->parent = s))
4804 {
4805 if (s->left == p)
4806 s->left = t;
4807 else
4808 s->right = t;
4809 }
4810 else
4811 case_stack->data.case_stmt.case_list = t;
4812 }
4813 break;
4814 }
4815
4816 else
4817 {
4818 /* p->balance == +1; growth of left side balances the node. */
4819 p->balance = 0;
4820 break;
4821 }
4822 }
4823 else
4824 /* r == p->right */
4825 {
4826 int b;
4827
4828 if (! (b = p->balance))
4829 /* Growth propagation from right side. */
4830 p->balance++;
4831 else if (b > 0)
4832 {
4833 if (r->balance > 0)
4834 {
4835 /* L-Rotation */
4836
4837 if ((p->right = s = r->left))
4838 s->parent = p;
4839
4840 r->left = p;
4841 p->balance = 0;
4842 r->balance = 0;
4843 s = p->parent;
4844 p->parent = r;
4845 if ((r->parent = s))
4846 {
4847 if (s->left == p)
4848 s->left = r;
4849 else
4850 s->right = r;
4851 }
4852
4853 else
4854 case_stack->data.case_stmt.case_list = r;
4855 }
4856
4857 else
4858 /* r->balance == -1 */
4859 {
4860 /* RL-Rotation */
4861 int b2;
4862 struct case_node *t = r->left;
4863
4864 if ((p->right = s = t->left))
4865 s->parent = p;
4866
4867 t->left = p;
4868
4869 if ((r->left = s = t->right))
4870 s->parent = r;
4871
4872 t->right = r;
4873 b = t->balance;
4874 b2 = b < 0;
4875 r->balance = b2;
4876 b2 = -b2 - b;
4877 p->balance = b2;
4878 t->balance = 0;
4879 s = p->parent;
4880 p->parent = t;
4881 r->parent = t;
4882
4883 if ((t->parent = s))
4884 {
4885 if (s->left == p)
4886 s->left = t;
4887 else
4888 s->right = t;
4889 }
4890
4891 else
4892 case_stack->data.case_stmt.case_list = t;
4893 }
4894 break;
4895 }
4896 else
4897 {
4898 /* p->balance == -1; growth of right side balances the node. */
4899 p->balance = 0;
4900 break;
4901 }
4902 }
4903
4904 r = p;
4905 p = p->parent;
4906 }
4907
4908 return 0;
4909 }
4910
4911 \f
4912 /* Returns the number of possible values of TYPE.
4913 Returns -1 if the number is unknown, variable, or if the number does not
4914 fit in a HOST_WIDE_INT.
4915 Sets *SPARENESS to 2 if TYPE is an ENUMERAL_TYPE whose values
4916 do not increase monotonically (there may be duplicates);
4917 to 1 if the values increase monotonically, but not always by 1;
4918 otherwise sets it to 0. */
4919
4920 HOST_WIDE_INT
4921 all_cases_count (type, spareness)
4922 tree type;
4923 int *spareness;
4924 {
4925 tree t;
4926 HOST_WIDE_INT count, minval, lastval;
4927
4928 *spareness = 0;
4929
4930 switch (TREE_CODE (type))
4931 {
4932 case BOOLEAN_TYPE:
4933 count = 2;
4934 break;
4935
4936 case CHAR_TYPE:
4937 count = 1 << BITS_PER_UNIT;
4938 break;
4939
4940 default:
4941 case INTEGER_TYPE:
4942 if (TYPE_MAX_VALUE (type) != 0
4943 && 0 != (t = fold (build (MINUS_EXPR, type, TYPE_MAX_VALUE (type),
4944 TYPE_MIN_VALUE (type))))
4945 && 0 != (t = fold (build (PLUS_EXPR, type, t,
4946 convert (type, integer_zero_node))))
4947 && host_integerp (t, 1))
4948 count = tree_low_cst (t, 1);
4949 else
4950 return -1;
4951 break;
4952
4953 case ENUMERAL_TYPE:
4954 /* Don't waste time with enumeral types with huge values. */
4955 if (! host_integerp (TYPE_MIN_VALUE (type), 0)
4956 || TYPE_MAX_VALUE (type) == 0
4957 || ! host_integerp (TYPE_MAX_VALUE (type), 0))
4958 return -1;
4959
4960 lastval = minval = tree_low_cst (TYPE_MIN_VALUE (type), 0);
4961 count = 0;
4962
4963 for (t = TYPE_VALUES (type); t != NULL_TREE; t = TREE_CHAIN (t))
4964 {
4965 HOST_WIDE_INT thisval = tree_low_cst (TREE_VALUE (t), 0);
4966
4967 if (*spareness == 2 || thisval < lastval)
4968 *spareness = 2;
4969 else if (thisval != minval + count)
4970 *spareness = 1;
4971
4972 count++;
4973 }
4974 }
4975
4976 return count;
4977 }
4978
4979 #define BITARRAY_TEST(ARRAY, INDEX) \
4980 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4981 & (1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR)))
4982 #define BITARRAY_SET(ARRAY, INDEX) \
4983 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4984 |= 1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR))
4985
4986 /* Set the elements of the bitstring CASES_SEEN (which has length COUNT),
4987 with the case values we have seen, assuming the case expression
4988 has the given TYPE.
4989 SPARSENESS is as determined by all_cases_count.
4990
4991 The time needed is proportional to COUNT, unless
4992 SPARSENESS is 2, in which case quadratic time is needed. */
4993
4994 void
4995 mark_seen_cases (type, cases_seen, count, sparseness)
4996 tree type;
4997 unsigned char *cases_seen;
4998 HOST_WIDE_INT count;
4999 int sparseness;
5000 {
5001 tree next_node_to_try = NULL_TREE;
5002 HOST_WIDE_INT next_node_offset = 0;
5003
5004 register struct case_node *n, *root = case_stack->data.case_stmt.case_list;
5005 tree val = make_node (INTEGER_CST);
5006
5007 TREE_TYPE (val) = type;
5008 if (! root)
5009 ; /* Do nothing */
5010 else if (sparseness == 2)
5011 {
5012 tree t;
5013 unsigned HOST_WIDE_INT xlo;
5014
5015 /* This less efficient loop is only needed to handle
5016 duplicate case values (multiple enum constants
5017 with the same value). */
5018 TREE_TYPE (val) = TREE_TYPE (root->low);
5019 for (t = TYPE_VALUES (type), xlo = 0; t != NULL_TREE;
5020 t = TREE_CHAIN (t), xlo++)
5021 {
5022 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (TREE_VALUE (t));
5023 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (TREE_VALUE (t));
5024 n = root;
5025 do
5026 {
5027 /* Keep going past elements distinctly greater than VAL. */
5028 if (tree_int_cst_lt (val, n->low))
5029 n = n->left;
5030
5031 /* or distinctly less than VAL. */
5032 else if (tree_int_cst_lt (n->high, val))
5033 n = n->right;
5034
5035 else
5036 {
5037 /* We have found a matching range. */
5038 BITARRAY_SET (cases_seen, xlo);
5039 break;
5040 }
5041 }
5042 while (n);
5043 }
5044 }
5045 else
5046 {
5047 if (root->left)
5048 case_stack->data.case_stmt.case_list = root = case_tree2list (root, 0);
5049
5050 for (n = root; n; n = n->right)
5051 {
5052 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (n->low);
5053 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (n->low);
5054 while ( ! tree_int_cst_lt (n->high, val))
5055 {
5056 /* Calculate (into xlo) the "offset" of the integer (val).
5057 The element with lowest value has offset 0, the next smallest
5058 element has offset 1, etc. */
5059
5060 unsigned HOST_WIDE_INT xlo;
5061 HOST_WIDE_INT xhi;
5062 tree t;
5063
5064 if (sparseness && TYPE_VALUES (type) != NULL_TREE)
5065 {
5066 /* The TYPE_VALUES will be in increasing order, so
5067 starting searching where we last ended. */
5068 t = next_node_to_try;
5069 xlo = next_node_offset;
5070 xhi = 0;
5071 for (;;)
5072 {
5073 if (t == NULL_TREE)
5074 {
5075 t = TYPE_VALUES (type);
5076 xlo = 0;
5077 }
5078 if (tree_int_cst_equal (val, TREE_VALUE (t)))
5079 {
5080 next_node_to_try = TREE_CHAIN (t);
5081 next_node_offset = xlo + 1;
5082 break;
5083 }
5084 xlo++;
5085 t = TREE_CHAIN (t);
5086 if (t == next_node_to_try)
5087 {
5088 xlo = -1;
5089 break;
5090 }
5091 }
5092 }
5093 else
5094 {
5095 t = TYPE_MIN_VALUE (type);
5096 if (t)
5097 neg_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t),
5098 &xlo, &xhi);
5099 else
5100 xlo = xhi = 0;
5101 add_double (xlo, xhi,
5102 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5103 &xlo, &xhi);
5104 }
5105
5106 if (xhi == 0 && xlo < (unsigned HOST_WIDE_INT) count)
5107 BITARRAY_SET (cases_seen, xlo);
5108
5109 add_double (TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5110 1, 0,
5111 &TREE_INT_CST_LOW (val), &TREE_INT_CST_HIGH (val));
5112 }
5113 }
5114 }
5115 }
5116
5117 /* Called when the index of a switch statement is an enumerated type
5118 and there is no default label.
5119
5120 Checks that all enumeration literals are covered by the case
5121 expressions of a switch. Also, warn if there are any extra
5122 switch cases that are *not* elements of the enumerated type.
5123
5124 If all enumeration literals were covered by the case expressions,
5125 turn one of the expressions into the default expression since it should
5126 not be possible to fall through such a switch. */
5127
5128 void
5129 check_for_full_enumeration_handling (type)
5130 tree type;
5131 {
5132 register struct case_node *n;
5133 register tree chain;
5134 #if 0 /* variable used by 'if 0'ed code below. */
5135 register struct case_node **l;
5136 int all_values = 1;
5137 #endif
5138
5139 /* True iff the selector type is a numbered set mode. */
5140 int sparseness = 0;
5141
5142 /* The number of possible selector values. */
5143 HOST_WIDE_INT size;
5144
5145 /* For each possible selector value. a one iff it has been matched
5146 by a case value alternative. */
5147 unsigned char *cases_seen;
5148
5149 /* The allocated size of cases_seen, in chars. */
5150 HOST_WIDE_INT bytes_needed;
5151
5152 if (! warn_switch)
5153 return;
5154
5155 size = all_cases_count (type, &sparseness);
5156 bytes_needed = (size + HOST_BITS_PER_CHAR) / HOST_BITS_PER_CHAR;
5157
5158 if (size > 0 && size < 600000
5159 /* We deliberately use calloc here, not cmalloc, so that we can suppress
5160 this optimization if we don't have enough memory rather than
5161 aborting, as xmalloc would do. */
5162 && (cases_seen = (unsigned char *) calloc (bytes_needed, 1)) != NULL)
5163 {
5164 HOST_WIDE_INT i;
5165 tree v = TYPE_VALUES (type);
5166
5167 /* The time complexity of this code is normally O(N), where
5168 N being the number of members in the enumerated type.
5169 However, if type is a ENUMERAL_TYPE whose values do not
5170 increase monotonically, O(N*log(N)) time may be needed. */
5171
5172 mark_seen_cases (type, cases_seen, size, sparseness);
5173
5174 for (i = 0; v != NULL_TREE && i < size; i++, v = TREE_CHAIN (v))
5175 if (BITARRAY_TEST(cases_seen, i) == 0)
5176 warning ("enumeration value `%s' not handled in switch",
5177 IDENTIFIER_POINTER (TREE_PURPOSE (v)));
5178
5179 free (cases_seen);
5180 }
5181
5182 /* Now we go the other way around; we warn if there are case
5183 expressions that don't correspond to enumerators. This can
5184 occur since C and C++ don't enforce type-checking of
5185 assignments to enumeration variables. */
5186
5187 if (case_stack->data.case_stmt.case_list
5188 && case_stack->data.case_stmt.case_list->left)
5189 case_stack->data.case_stmt.case_list
5190 = case_tree2list (case_stack->data.case_stmt.case_list, 0);
5191 if (warn_switch)
5192 for (n = case_stack->data.case_stmt.case_list; n; n = n->right)
5193 {
5194 for (chain = TYPE_VALUES (type);
5195 chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain));
5196 chain = TREE_CHAIN (chain))
5197 ;
5198
5199 if (!chain)
5200 {
5201 if (TYPE_NAME (type) == 0)
5202 warning ("case value `%ld' not in enumerated type",
5203 (long) TREE_INT_CST_LOW (n->low));
5204 else
5205 warning ("case value `%ld' not in enumerated type `%s'",
5206 (long) TREE_INT_CST_LOW (n->low),
5207 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5208 == IDENTIFIER_NODE)
5209 ? TYPE_NAME (type)
5210 : DECL_NAME (TYPE_NAME (type))));
5211 }
5212 if (!tree_int_cst_equal (n->low, n->high))
5213 {
5214 for (chain = TYPE_VALUES (type);
5215 chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain));
5216 chain = TREE_CHAIN (chain))
5217 ;
5218
5219 if (!chain)
5220 {
5221 if (TYPE_NAME (type) == 0)
5222 warning ("case value `%ld' not in enumerated type",
5223 (long) TREE_INT_CST_LOW (n->high));
5224 else
5225 warning ("case value `%ld' not in enumerated type `%s'",
5226 (long) TREE_INT_CST_LOW (n->high),
5227 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5228 == IDENTIFIER_NODE)
5229 ? TYPE_NAME (type)
5230 : DECL_NAME (TYPE_NAME (type))));
5231 }
5232 }
5233 }
5234
5235 #if 0
5236 /* ??? This optimization is disabled because it causes valid programs to
5237 fail. ANSI C does not guarantee that an expression with enum type
5238 will have a value that is the same as one of the enumeration literals. */
5239
5240 /* If all values were found as case labels, make one of them the default
5241 label. Thus, this switch will never fall through. We arbitrarily pick
5242 the last one to make the default since this is likely the most
5243 efficient choice. */
5244
5245 if (all_values)
5246 {
5247 for (l = &case_stack->data.case_stmt.case_list;
5248 (*l)->right != 0;
5249 l = &(*l)->right)
5250 ;
5251
5252 case_stack->data.case_stmt.default_label = (*l)->code_label;
5253 *l = 0;
5254 }
5255 #endif /* 0 */
5256 }
5257
5258 \f
5259 /* Terminate a case (Pascal) or switch (C) statement
5260 in which ORIG_INDEX is the expression to be tested.
5261 Generate the code to test it and jump to the right place. */
5262
5263 void
5264 expand_end_case (orig_index)
5265 tree orig_index;
5266 {
5267 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE, orig_minval;
5268 rtx default_label = 0;
5269 register struct case_node *n;
5270 unsigned int count;
5271 rtx index;
5272 rtx table_label;
5273 int ncases;
5274 rtx *labelvec;
5275 register int i;
5276 rtx before_case;
5277 register struct nesting *thiscase = case_stack;
5278 tree index_expr, index_type;
5279 int unsignedp;
5280
5281 /* Don't crash due to previous errors. */
5282 if (thiscase == NULL)
5283 return;
5284
5285 table_label = gen_label_rtx ();
5286 index_expr = thiscase->data.case_stmt.index_expr;
5287 index_type = TREE_TYPE (index_expr);
5288 unsignedp = TREE_UNSIGNED (index_type);
5289
5290 do_pending_stack_adjust ();
5291
5292 /* This might get an spurious warning in the presence of a syntax error;
5293 it could be fixed by moving the call to check_seenlabel after the
5294 check for error_mark_node, and copying the code of check_seenlabel that
5295 deals with case_stack->data.case_stmt.line_number_status /
5296 restore_line_number_status in front of the call to end_cleanup_deferral;
5297 However, this might miss some useful warnings in the presence of
5298 non-syntax errors. */
5299 check_seenlabel ();
5300
5301 /* An ERROR_MARK occurs for various reasons including invalid data type. */
5302 if (index_type != error_mark_node)
5303 {
5304 /* If switch expression was an enumerated type, check that all
5305 enumeration literals are covered by the cases.
5306 No sense trying this if there's a default case, however. */
5307
5308 if (!thiscase->data.case_stmt.default_label
5309 && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE
5310 && TREE_CODE (index_expr) != INTEGER_CST)
5311 check_for_full_enumeration_handling (TREE_TYPE (orig_index));
5312
5313 /* If we don't have a default-label, create one here,
5314 after the body of the switch. */
5315 if (thiscase->data.case_stmt.default_label == 0)
5316 {
5317 thiscase->data.case_stmt.default_label
5318 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
5319 expand_label (thiscase->data.case_stmt.default_label);
5320 }
5321 default_label = label_rtx (thiscase->data.case_stmt.default_label);
5322
5323 before_case = get_last_insn ();
5324
5325 if (thiscase->data.case_stmt.case_list
5326 && thiscase->data.case_stmt.case_list->left)
5327 thiscase->data.case_stmt.case_list
5328 = case_tree2list(thiscase->data.case_stmt.case_list, 0);
5329
5330 /* Simplify the case-list before we count it. */
5331 group_case_nodes (thiscase->data.case_stmt.case_list);
5332
5333 /* Get upper and lower bounds of case values.
5334 Also convert all the case values to the index expr's data type. */
5335
5336 count = 0;
5337 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5338 {
5339 /* Check low and high label values are integers. */
5340 if (TREE_CODE (n->low) != INTEGER_CST)
5341 abort ();
5342 if (TREE_CODE (n->high) != INTEGER_CST)
5343 abort ();
5344
5345 n->low = convert (index_type, n->low);
5346 n->high = convert (index_type, n->high);
5347
5348 /* Count the elements and track the largest and smallest
5349 of them (treating them as signed even if they are not). */
5350 if (count++ == 0)
5351 {
5352 minval = n->low;
5353 maxval = n->high;
5354 }
5355 else
5356 {
5357 if (INT_CST_LT (n->low, minval))
5358 minval = n->low;
5359 if (INT_CST_LT (maxval, n->high))
5360 maxval = n->high;
5361 }
5362 /* A range counts double, since it requires two compares. */
5363 if (! tree_int_cst_equal (n->low, n->high))
5364 count++;
5365 }
5366
5367 orig_minval = minval;
5368
5369 /* Compute span of values. */
5370 if (count != 0)
5371 range = fold (build (MINUS_EXPR, index_type, maxval, minval));
5372
5373 end_cleanup_deferral ();
5374
5375 if (count == 0)
5376 {
5377 expand_expr (index_expr, const0_rtx, VOIDmode, 0);
5378 emit_queue ();
5379 emit_jump (default_label);
5380 }
5381
5382 /* If range of values is much bigger than number of values,
5383 make a sequence of conditional branches instead of a dispatch.
5384 If the switch-index is a constant, do it this way
5385 because we can optimize it. */
5386
5387 #ifndef CASE_VALUES_THRESHOLD
5388 #ifdef HAVE_casesi
5389 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
5390 #else
5391 /* If machine does not have a case insn that compares the
5392 bounds, this means extra overhead for dispatch tables
5393 which raises the threshold for using them. */
5394 #define CASE_VALUES_THRESHOLD 5
5395 #endif /* HAVE_casesi */
5396 #endif /* CASE_VALUES_THRESHOLD */
5397
5398 else if (count < CASE_VALUES_THRESHOLD
5399 || compare_tree_int (range, 10 * count) > 0
5400 /* RANGE may be signed, and really large ranges will show up
5401 as negative numbers. */
5402 || compare_tree_int (range, 0) < 0
5403 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
5404 || flag_pic
5405 #endif
5406 || TREE_CODE (index_expr) == INTEGER_CST
5407 /* These will reduce to a constant. */
5408 || (TREE_CODE (index_expr) == CALL_EXPR
5409 && TREE_CODE (TREE_OPERAND (index_expr, 0)) == ADDR_EXPR
5410 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == FUNCTION_DECL
5411 && DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_NORMAL
5412 && DECL_FUNCTION_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_CLASSIFY_TYPE)
5413 || (TREE_CODE (index_expr) == COMPOUND_EXPR
5414 && TREE_CODE (TREE_OPERAND (index_expr, 1)) == INTEGER_CST))
5415 {
5416 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5417
5418 /* If the index is a short or char that we do not have
5419 an insn to handle comparisons directly, convert it to
5420 a full integer now, rather than letting each comparison
5421 generate the conversion. */
5422
5423 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
5424 && (cmp_optab->handlers[(int) GET_MODE(index)].insn_code
5425 == CODE_FOR_nothing))
5426 {
5427 enum machine_mode wider_mode;
5428 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
5429 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5430 if (cmp_optab->handlers[(int) wider_mode].insn_code
5431 != CODE_FOR_nothing)
5432 {
5433 index = convert_to_mode (wider_mode, index, unsignedp);
5434 break;
5435 }
5436 }
5437
5438 emit_queue ();
5439 do_pending_stack_adjust ();
5440
5441 index = protect_from_queue (index, 0);
5442 if (GET_CODE (index) == MEM)
5443 index = copy_to_reg (index);
5444 if (GET_CODE (index) == CONST_INT
5445 || TREE_CODE (index_expr) == INTEGER_CST)
5446 {
5447 /* Make a tree node with the proper constant value
5448 if we don't already have one. */
5449 if (TREE_CODE (index_expr) != INTEGER_CST)
5450 {
5451 index_expr
5452 = build_int_2 (INTVAL (index),
5453 unsignedp || INTVAL (index) >= 0 ? 0 : -1);
5454 index_expr = convert (index_type, index_expr);
5455 }
5456
5457 /* For constant index expressions we need only
5458 issue a unconditional branch to the appropriate
5459 target code. The job of removing any unreachable
5460 code is left to the optimisation phase if the
5461 "-O" option is specified. */
5462 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5463 if (! tree_int_cst_lt (index_expr, n->low)
5464 && ! tree_int_cst_lt (n->high, index_expr))
5465 break;
5466
5467 if (n)
5468 emit_jump (label_rtx (n->code_label));
5469 else
5470 emit_jump (default_label);
5471 }
5472 else
5473 {
5474 /* If the index expression is not constant we generate
5475 a binary decision tree to select the appropriate
5476 target code. This is done as follows:
5477
5478 The list of cases is rearranged into a binary tree,
5479 nearly optimal assuming equal probability for each case.
5480
5481 The tree is transformed into RTL, eliminating
5482 redundant test conditions at the same time.
5483
5484 If program flow could reach the end of the
5485 decision tree an unconditional jump to the
5486 default code is emitted. */
5487
5488 use_cost_table
5489 = (TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE
5490 && estimate_case_costs (thiscase->data.case_stmt.case_list));
5491 balance_case_nodes (&thiscase->data.case_stmt.case_list,
5492 NULL_PTR);
5493 emit_case_nodes (index, thiscase->data.case_stmt.case_list,
5494 default_label, index_type);
5495 emit_jump_if_reachable (default_label);
5496 }
5497 }
5498 else
5499 {
5500 int win = 0;
5501 #ifdef HAVE_casesi
5502 if (HAVE_casesi)
5503 {
5504 enum machine_mode index_mode = SImode;
5505 int index_bits = GET_MODE_BITSIZE (index_mode);
5506 rtx op1, op2;
5507 enum machine_mode op_mode;
5508
5509 /* Convert the index to SImode. */
5510 if (GET_MODE_BITSIZE (TYPE_MODE (index_type))
5511 > GET_MODE_BITSIZE (index_mode))
5512 {
5513 enum machine_mode omode = TYPE_MODE (index_type);
5514 rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0);
5515
5516 /* We must handle the endpoints in the original mode. */
5517 index_expr = build (MINUS_EXPR, index_type,
5518 index_expr, minval);
5519 minval = integer_zero_node;
5520 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5521 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
5522 omode, 1, 0, default_label);
5523 /* Now we can safely truncate. */
5524 index = convert_to_mode (index_mode, index, 0);
5525 }
5526 else
5527 {
5528 if (TYPE_MODE (index_type) != index_mode)
5529 {
5530 index_expr = convert (type_for_size (index_bits, 0),
5531 index_expr);
5532 index_type = TREE_TYPE (index_expr);
5533 }
5534
5535 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5536 }
5537 emit_queue ();
5538 index = protect_from_queue (index, 0);
5539 do_pending_stack_adjust ();
5540
5541 op_mode = insn_data[(int)CODE_FOR_casesi].operand[0].mode;
5542 if (! (*insn_data[(int)CODE_FOR_casesi].operand[0].predicate)
5543 (index, op_mode))
5544 index = copy_to_mode_reg (op_mode, index);
5545
5546 op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0);
5547
5548 op_mode = insn_data[(int)CODE_FOR_casesi].operand[1].mode;
5549 if (! (*insn_data[(int)CODE_FOR_casesi].operand[1].predicate)
5550 (op1, op_mode))
5551 op1 = copy_to_mode_reg (op_mode, op1);
5552
5553 op2 = expand_expr (range, NULL_RTX, VOIDmode, 0);
5554
5555 op_mode = insn_data[(int)CODE_FOR_casesi].operand[2].mode;
5556 if (! (*insn_data[(int)CODE_FOR_casesi].operand[2].predicate)
5557 (op2, op_mode))
5558 op2 = copy_to_mode_reg (op_mode, op2);
5559
5560 emit_jump_insn (gen_casesi (index, op1, op2,
5561 table_label, default_label));
5562 win = 1;
5563 }
5564 #endif
5565 #ifdef HAVE_tablejump
5566 if (! win && HAVE_tablejump)
5567 {
5568 index_expr = convert (thiscase->data.case_stmt.nominal_type,
5569 fold (build (MINUS_EXPR, index_type,
5570 index_expr, minval)));
5571 index_type = TREE_TYPE (index_expr);
5572 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5573 emit_queue ();
5574 index = protect_from_queue (index, 0);
5575 do_pending_stack_adjust ();
5576
5577 do_tablejump (index, TYPE_MODE (index_type),
5578 expand_expr (range, NULL_RTX, VOIDmode, 0),
5579 table_label, default_label);
5580 win = 1;
5581 }
5582 #endif
5583 if (! win)
5584 abort ();
5585
5586 /* Get table of labels to jump to, in order of case index. */
5587
5588 ncases = TREE_INT_CST_LOW (range) + 1;
5589 labelvec = (rtx *) alloca (ncases * sizeof (rtx));
5590 bzero ((char *) labelvec, ncases * sizeof (rtx));
5591
5592 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5593 {
5594 register HOST_WIDE_INT i
5595 = TREE_INT_CST_LOW (n->low) - TREE_INT_CST_LOW (orig_minval);
5596
5597 while (1)
5598 {
5599 labelvec[i]
5600 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
5601 if (i + TREE_INT_CST_LOW (orig_minval)
5602 == TREE_INT_CST_LOW (n->high))
5603 break;
5604 i++;
5605 }
5606 }
5607
5608 /* Fill in the gaps with the default. */
5609 for (i = 0; i < ncases; i++)
5610 if (labelvec[i] == 0)
5611 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
5612
5613 /* Output the table */
5614 emit_label (table_label);
5615
5616 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
5617 emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
5618 gen_rtx_LABEL_REF (Pmode, table_label),
5619 gen_rtvec_v (ncases, labelvec),
5620 const0_rtx, const0_rtx));
5621 else
5622 emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
5623 gen_rtvec_v (ncases, labelvec)));
5624
5625 /* If the case insn drops through the table,
5626 after the table we must jump to the default-label.
5627 Otherwise record no drop-through after the table. */
5628 #ifdef CASE_DROPS_THROUGH
5629 emit_jump (default_label);
5630 #else
5631 emit_barrier ();
5632 #endif
5633 }
5634
5635 before_case = squeeze_notes (NEXT_INSN (before_case), get_last_insn ());
5636 reorder_insns (before_case, get_last_insn (),
5637 thiscase->data.case_stmt.start);
5638 }
5639 else
5640 end_cleanup_deferral ();
5641
5642 if (thiscase->exit_label)
5643 emit_label (thiscase->exit_label);
5644
5645 POPSTACK (case_stack);
5646
5647 free_temp_slots ();
5648 }
5649
5650 /* Convert the tree NODE into a list linked by the right field, with the left
5651 field zeroed. RIGHT is used for recursion; it is a list to be placed
5652 rightmost in the resulting list. */
5653
5654 static struct case_node *
5655 case_tree2list (node, right)
5656 struct case_node *node, *right;
5657 {
5658 struct case_node *left;
5659
5660 if (node->right)
5661 right = case_tree2list (node->right, right);
5662
5663 node->right = right;
5664 if ((left = node->left))
5665 {
5666 node->left = 0;
5667 return case_tree2list (left, node);
5668 }
5669
5670 return node;
5671 }
5672
5673 /* Generate code to jump to LABEL if OP1 and OP2 are equal. */
5674
5675 static void
5676 do_jump_if_equal (op1, op2, label, unsignedp)
5677 rtx op1, op2, label;
5678 int unsignedp;
5679 {
5680 if (GET_CODE (op1) == CONST_INT
5681 && GET_CODE (op2) == CONST_INT)
5682 {
5683 if (INTVAL (op1) == INTVAL (op2))
5684 emit_jump (label);
5685 }
5686 else
5687 {
5688 enum machine_mode mode = GET_MODE (op1);
5689 if (mode == VOIDmode)
5690 mode = GET_MODE (op2);
5691 emit_cmp_and_jump_insns (op1, op2, EQ, NULL_RTX, mode, unsignedp,
5692 0, label);
5693 }
5694 }
5695 \f
5696 /* Not all case values are encountered equally. This function
5697 uses a heuristic to weight case labels, in cases where that
5698 looks like a reasonable thing to do.
5699
5700 Right now, all we try to guess is text, and we establish the
5701 following weights:
5702
5703 chars above space: 16
5704 digits: 16
5705 default: 12
5706 space, punct: 8
5707 tab: 4
5708 newline: 2
5709 other "\" chars: 1
5710 remaining chars: 0
5711
5712 If we find any cases in the switch that are not either -1 or in the range
5713 of valid ASCII characters, or are control characters other than those
5714 commonly used with "\", don't treat this switch scanning text.
5715
5716 Return 1 if these nodes are suitable for cost estimation, otherwise
5717 return 0. */
5718
5719 static int
5720 estimate_case_costs (node)
5721 case_node_ptr node;
5722 {
5723 tree min_ascii = build_int_2 (-1, -1);
5724 tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0));
5725 case_node_ptr n;
5726 int i;
5727
5728 /* If we haven't already made the cost table, make it now. Note that the
5729 lower bound of the table is -1, not zero. */
5730
5731 if (cost_table == NULL)
5732 {
5733 cost_table = cost_table_ + 1;
5734
5735 for (i = 0; i < 128; i++)
5736 {
5737 if (ISALNUM (i))
5738 cost_table[i] = 16;
5739 else if (ISPUNCT (i))
5740 cost_table[i] = 8;
5741 else if (ISCNTRL (i))
5742 cost_table[i] = -1;
5743 }
5744
5745 cost_table[' '] = 8;
5746 cost_table['\t'] = 4;
5747 cost_table['\0'] = 4;
5748 cost_table['\n'] = 2;
5749 cost_table['\f'] = 1;
5750 cost_table['\v'] = 1;
5751 cost_table['\b'] = 1;
5752 }
5753
5754 /* See if all the case expressions look like text. It is text if the
5755 constant is >= -1 and the highest constant is <= 127. Do all comparisons
5756 as signed arithmetic since we don't want to ever access cost_table with a
5757 value less than -1. Also check that none of the constants in a range
5758 are strange control characters. */
5759
5760 for (n = node; n; n = n->right)
5761 {
5762 if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high))
5763 return 0;
5764
5765 for (i = (HOST_WIDE_INT) TREE_INT_CST_LOW (n->low);
5766 i <= (HOST_WIDE_INT) TREE_INT_CST_LOW (n->high); i++)
5767 if (cost_table[i] < 0)
5768 return 0;
5769 }
5770
5771 /* All interesting values are within the range of interesting
5772 ASCII characters. */
5773 return 1;
5774 }
5775
5776 /* Scan an ordered list of case nodes
5777 combining those with consecutive values or ranges.
5778
5779 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
5780
5781 static void
5782 group_case_nodes (head)
5783 case_node_ptr head;
5784 {
5785 case_node_ptr node = head;
5786
5787 while (node)
5788 {
5789 rtx lb = next_real_insn (label_rtx (node->code_label));
5790 rtx lb2;
5791 case_node_ptr np = node;
5792
5793 /* Try to group the successors of NODE with NODE. */
5794 while (((np = np->right) != 0)
5795 /* Do they jump to the same place? */
5796 && ((lb2 = next_real_insn (label_rtx (np->code_label))) == lb
5797 || (lb != 0 && lb2 != 0
5798 && simplejump_p (lb)
5799 && simplejump_p (lb2)
5800 && rtx_equal_p (SET_SRC (PATTERN (lb)),
5801 SET_SRC (PATTERN (lb2)))))
5802 /* Are their ranges consecutive? */
5803 && tree_int_cst_equal (np->low,
5804 fold (build (PLUS_EXPR,
5805 TREE_TYPE (node->high),
5806 node->high,
5807 integer_one_node)))
5808 /* An overflow is not consecutive. */
5809 && tree_int_cst_lt (node->high,
5810 fold (build (PLUS_EXPR,
5811 TREE_TYPE (node->high),
5812 node->high,
5813 integer_one_node))))
5814 {
5815 node->high = np->high;
5816 }
5817 /* NP is the first node after NODE which can't be grouped with it.
5818 Delete the nodes in between, and move on to that node. */
5819 node->right = np;
5820 node = np;
5821 }
5822 }
5823
5824 /* Take an ordered list of case nodes
5825 and transform them into a near optimal binary tree,
5826 on the assumption that any target code selection value is as
5827 likely as any other.
5828
5829 The transformation is performed by splitting the ordered
5830 list into two equal sections plus a pivot. The parts are
5831 then attached to the pivot as left and right branches. Each
5832 branch is then transformed recursively. */
5833
5834 static void
5835 balance_case_nodes (head, parent)
5836 case_node_ptr *head;
5837 case_node_ptr parent;
5838 {
5839 register case_node_ptr np;
5840
5841 np = *head;
5842 if (np)
5843 {
5844 int cost = 0;
5845 int i = 0;
5846 int ranges = 0;
5847 register case_node_ptr *npp;
5848 case_node_ptr left;
5849
5850 /* Count the number of entries on branch. Also count the ranges. */
5851
5852 while (np)
5853 {
5854 if (!tree_int_cst_equal (np->low, np->high))
5855 {
5856 ranges++;
5857 if (use_cost_table)
5858 cost += cost_table[TREE_INT_CST_LOW (np->high)];
5859 }
5860
5861 if (use_cost_table)
5862 cost += cost_table[TREE_INT_CST_LOW (np->low)];
5863
5864 i++;
5865 np = np->right;
5866 }
5867
5868 if (i > 2)
5869 {
5870 /* Split this list if it is long enough for that to help. */
5871 npp = head;
5872 left = *npp;
5873 if (use_cost_table)
5874 {
5875 /* Find the place in the list that bisects the list's total cost,
5876 Here I gets half the total cost. */
5877 int n_moved = 0;
5878 i = (cost + 1) / 2;
5879 while (1)
5880 {
5881 /* Skip nodes while their cost does not reach that amount. */
5882 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5883 i -= cost_table[TREE_INT_CST_LOW ((*npp)->high)];
5884 i -= cost_table[TREE_INT_CST_LOW ((*npp)->low)];
5885 if (i <= 0)
5886 break;
5887 npp = &(*npp)->right;
5888 n_moved += 1;
5889 }
5890 if (n_moved == 0)
5891 {
5892 /* Leave this branch lopsided, but optimize left-hand
5893 side and fill in `parent' fields for right-hand side. */
5894 np = *head;
5895 np->parent = parent;
5896 balance_case_nodes (&np->left, np);
5897 for (; np->right; np = np->right)
5898 np->right->parent = np;
5899 return;
5900 }
5901 }
5902 /* If there are just three nodes, split at the middle one. */
5903 else if (i == 3)
5904 npp = &(*npp)->right;
5905 else
5906 {
5907 /* Find the place in the list that bisects the list's total cost,
5908 where ranges count as 2.
5909 Here I gets half the total cost. */
5910 i = (i + ranges + 1) / 2;
5911 while (1)
5912 {
5913 /* Skip nodes while their cost does not reach that amount. */
5914 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5915 i--;
5916 i--;
5917 if (i <= 0)
5918 break;
5919 npp = &(*npp)->right;
5920 }
5921 }
5922 *head = np = *npp;
5923 *npp = 0;
5924 np->parent = parent;
5925 np->left = left;
5926
5927 /* Optimize each of the two split parts. */
5928 balance_case_nodes (&np->left, np);
5929 balance_case_nodes (&np->right, np);
5930 }
5931 else
5932 {
5933 /* Else leave this branch as one level,
5934 but fill in `parent' fields. */
5935 np = *head;
5936 np->parent = parent;
5937 for (; np->right; np = np->right)
5938 np->right->parent = np;
5939 }
5940 }
5941 }
5942 \f
5943 /* Search the parent sections of the case node tree
5944 to see if a test for the lower bound of NODE would be redundant.
5945 INDEX_TYPE is the type of the index expression.
5946
5947 The instructions to generate the case decision tree are
5948 output in the same order as nodes are processed so it is
5949 known that if a parent node checks the range of the current
5950 node minus one that the current node is bounded at its lower
5951 span. Thus the test would be redundant. */
5952
5953 static int
5954 node_has_low_bound (node, index_type)
5955 case_node_ptr node;
5956 tree index_type;
5957 {
5958 tree low_minus_one;
5959 case_node_ptr pnode;
5960
5961 /* If the lower bound of this node is the lowest value in the index type,
5962 we need not test it. */
5963
5964 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
5965 return 1;
5966
5967 /* If this node has a left branch, the value at the left must be less
5968 than that at this node, so it cannot be bounded at the bottom and
5969 we need not bother testing any further. */
5970
5971 if (node->left)
5972 return 0;
5973
5974 low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low),
5975 node->low, integer_one_node));
5976
5977 /* If the subtraction above overflowed, we can't verify anything.
5978 Otherwise, look for a parent that tests our value - 1. */
5979
5980 if (! tree_int_cst_lt (low_minus_one, node->low))
5981 return 0;
5982
5983 for (pnode = node->parent; pnode; pnode = pnode->parent)
5984 if (tree_int_cst_equal (low_minus_one, pnode->high))
5985 return 1;
5986
5987 return 0;
5988 }
5989
5990 /* Search the parent sections of the case node tree
5991 to see if a test for the upper bound of NODE would be redundant.
5992 INDEX_TYPE is the type of the index expression.
5993
5994 The instructions to generate the case decision tree are
5995 output in the same order as nodes are processed so it is
5996 known that if a parent node checks the range of the current
5997 node plus one that the current node is bounded at its upper
5998 span. Thus the test would be redundant. */
5999
6000 static int
6001 node_has_high_bound (node, index_type)
6002 case_node_ptr node;
6003 tree index_type;
6004 {
6005 tree high_plus_one;
6006 case_node_ptr pnode;
6007
6008 /* If there is no upper bound, obviously no test is needed. */
6009
6010 if (TYPE_MAX_VALUE (index_type) == NULL)
6011 return 1;
6012
6013 /* If the upper bound of this node is the highest value in the type
6014 of the index expression, we need not test against it. */
6015
6016 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
6017 return 1;
6018
6019 /* If this node has a right branch, the value at the right must be greater
6020 than that at this node, so it cannot be bounded at the top and
6021 we need not bother testing any further. */
6022
6023 if (node->right)
6024 return 0;
6025
6026 high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high),
6027 node->high, integer_one_node));
6028
6029 /* If the addition above overflowed, we can't verify anything.
6030 Otherwise, look for a parent that tests our value + 1. */
6031
6032 if (! tree_int_cst_lt (node->high, high_plus_one))
6033 return 0;
6034
6035 for (pnode = node->parent; pnode; pnode = pnode->parent)
6036 if (tree_int_cst_equal (high_plus_one, pnode->low))
6037 return 1;
6038
6039 return 0;
6040 }
6041
6042 /* Search the parent sections of the
6043 case node tree to see if both tests for the upper and lower
6044 bounds of NODE would be redundant. */
6045
6046 static int
6047 node_is_bounded (node, index_type)
6048 case_node_ptr node;
6049 tree index_type;
6050 {
6051 return (node_has_low_bound (node, index_type)
6052 && node_has_high_bound (node, index_type));
6053 }
6054
6055 /* Emit an unconditional jump to LABEL unless it would be dead code. */
6056
6057 static void
6058 emit_jump_if_reachable (label)
6059 rtx label;
6060 {
6061 if (GET_CODE (get_last_insn ()) != BARRIER)
6062 emit_jump (label);
6063 }
6064 \f
6065 /* Emit step-by-step code to select a case for the value of INDEX.
6066 The thus generated decision tree follows the form of the
6067 case-node binary tree NODE, whose nodes represent test conditions.
6068 INDEX_TYPE is the type of the index of the switch.
6069
6070 Care is taken to prune redundant tests from the decision tree
6071 by detecting any boundary conditions already checked by
6072 emitted rtx. (See node_has_high_bound, node_has_low_bound
6073 and node_is_bounded, above.)
6074
6075 Where the test conditions can be shown to be redundant we emit
6076 an unconditional jump to the target code. As a further
6077 optimization, the subordinates of a tree node are examined to
6078 check for bounded nodes. In this case conditional and/or
6079 unconditional jumps as a result of the boundary check for the
6080 current node are arranged to target the subordinates associated
6081 code for out of bound conditions on the current node.
6082
6083 We can assume that when control reaches the code generated here,
6084 the index value has already been compared with the parents
6085 of this node, and determined to be on the same side of each parent
6086 as this node is. Thus, if this node tests for the value 51,
6087 and a parent tested for 52, we don't need to consider
6088 the possibility of a value greater than 51. If another parent
6089 tests for the value 50, then this node need not test anything. */
6090
6091 static void
6092 emit_case_nodes (index, node, default_label, index_type)
6093 rtx index;
6094 case_node_ptr node;
6095 rtx default_label;
6096 tree index_type;
6097 {
6098 /* If INDEX has an unsigned type, we must make unsigned branches. */
6099 int unsignedp = TREE_UNSIGNED (index_type);
6100 enum machine_mode mode = GET_MODE (index);
6101
6102 /* See if our parents have already tested everything for us.
6103 If they have, emit an unconditional jump for this node. */
6104 if (node_is_bounded (node, index_type))
6105 emit_jump (label_rtx (node->code_label));
6106
6107 else if (tree_int_cst_equal (node->low, node->high))
6108 {
6109 /* Node is single valued. First see if the index expression matches
6110 this node and then check our children, if any. */
6111
6112 do_jump_if_equal (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0),
6113 label_rtx (node->code_label), unsignedp);
6114
6115 if (node->right != 0 && node->left != 0)
6116 {
6117 /* This node has children on both sides.
6118 Dispatch to one side or the other
6119 by comparing the index value with this node's value.
6120 If one subtree is bounded, check that one first,
6121 so we can avoid real branches in the tree. */
6122
6123 if (node_is_bounded (node->right, index_type))
6124 {
6125 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6126 VOIDmode, 0),
6127 GT, NULL_RTX, mode, unsignedp, 0,
6128 label_rtx (node->right->code_label));
6129 emit_case_nodes (index, node->left, default_label, index_type);
6130 }
6131
6132 else if (node_is_bounded (node->left, index_type))
6133 {
6134 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6135 VOIDmode, 0),
6136 LT, NULL_RTX, mode, unsignedp, 0,
6137 label_rtx (node->left->code_label));
6138 emit_case_nodes (index, node->right, default_label, index_type);
6139 }
6140
6141 else
6142 {
6143 /* Neither node is bounded. First distinguish the two sides;
6144 then emit the code for one side at a time. */
6145
6146 tree test_label
6147 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6148
6149 /* See if the value is on the right. */
6150 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6151 VOIDmode, 0),
6152 GT, NULL_RTX, mode, unsignedp, 0,
6153 label_rtx (test_label));
6154
6155 /* Value must be on the left.
6156 Handle the left-hand subtree. */
6157 emit_case_nodes (index, node->left, default_label, index_type);
6158 /* If left-hand subtree does nothing,
6159 go to default. */
6160 emit_jump_if_reachable (default_label);
6161
6162 /* Code branches here for the right-hand subtree. */
6163 expand_label (test_label);
6164 emit_case_nodes (index, node->right, default_label, index_type);
6165 }
6166 }
6167
6168 else if (node->right != 0 && node->left == 0)
6169 {
6170 /* Here we have a right child but no left so we issue conditional
6171 branch to default and process the right child.
6172
6173 Omit the conditional branch to default if we it avoid only one
6174 right child; it costs too much space to save so little time. */
6175
6176 if (node->right->right || node->right->left
6177 || !tree_int_cst_equal (node->right->low, node->right->high))
6178 {
6179 if (!node_has_low_bound (node, index_type))
6180 {
6181 emit_cmp_and_jump_insns (index, expand_expr (node->high,
6182 NULL_RTX,
6183 VOIDmode, 0),
6184 LT, NULL_RTX, mode, unsignedp, 0,
6185 default_label);
6186 }
6187
6188 emit_case_nodes (index, node->right, default_label, index_type);
6189 }
6190 else
6191 /* We cannot process node->right normally
6192 since we haven't ruled out the numbers less than
6193 this node's value. So handle node->right explicitly. */
6194 do_jump_if_equal (index,
6195 expand_expr (node->right->low, NULL_RTX,
6196 VOIDmode, 0),
6197 label_rtx (node->right->code_label), unsignedp);
6198 }
6199
6200 else if (node->right == 0 && node->left != 0)
6201 {
6202 /* Just one subtree, on the left. */
6203
6204 #if 0 /* The following code and comment were formerly part
6205 of the condition here, but they didn't work
6206 and I don't understand what the idea was. -- rms. */
6207 /* If our "most probable entry" is less probable
6208 than the default label, emit a jump to
6209 the default label using condition codes
6210 already lying around. With no right branch,
6211 a branch-greater-than will get us to the default
6212 label correctly. */
6213 if (use_cost_table
6214 && cost_table[TREE_INT_CST_LOW (node->high)] < 12)
6215 ;
6216 #endif /* 0 */
6217 if (node->left->left || node->left->right
6218 || !tree_int_cst_equal (node->left->low, node->left->high))
6219 {
6220 if (!node_has_high_bound (node, index_type))
6221 {
6222 emit_cmp_and_jump_insns (index, expand_expr (node->high,
6223 NULL_RTX,
6224 VOIDmode, 0),
6225 GT, NULL_RTX, mode, unsignedp, 0,
6226 default_label);
6227 }
6228
6229 emit_case_nodes (index, node->left, default_label, index_type);
6230 }
6231 else
6232 /* We cannot process node->left normally
6233 since we haven't ruled out the numbers less than
6234 this node's value. So handle node->left explicitly. */
6235 do_jump_if_equal (index,
6236 expand_expr (node->left->low, NULL_RTX,
6237 VOIDmode, 0),
6238 label_rtx (node->left->code_label), unsignedp);
6239 }
6240 }
6241 else
6242 {
6243 /* Node is a range. These cases are very similar to those for a single
6244 value, except that we do not start by testing whether this node
6245 is the one to branch to. */
6246
6247 if (node->right != 0 && node->left != 0)
6248 {
6249 /* Node has subtrees on both sides.
6250 If the right-hand subtree is bounded,
6251 test for it first, since we can go straight there.
6252 Otherwise, we need to make a branch in the control structure,
6253 then handle the two subtrees. */
6254 tree test_label = 0;
6255
6256
6257 if (node_is_bounded (node->right, index_type))
6258 /* Right hand node is fully bounded so we can eliminate any
6259 testing and branch directly to the target code. */
6260 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6261 VOIDmode, 0),
6262 GT, NULL_RTX, mode, unsignedp, 0,
6263 label_rtx (node->right->code_label));
6264 else
6265 {
6266 /* Right hand node requires testing.
6267 Branch to a label where we will handle it later. */
6268
6269 test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6270 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6271 VOIDmode, 0),
6272 GT, NULL_RTX, mode, unsignedp, 0,
6273 label_rtx (test_label));
6274 }
6275
6276 /* Value belongs to this node or to the left-hand subtree. */
6277
6278 emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX,
6279 VOIDmode, 0),
6280 GE, NULL_RTX, mode, unsignedp, 0,
6281 label_rtx (node->code_label));
6282
6283 /* Handle the left-hand subtree. */
6284 emit_case_nodes (index, node->left, default_label, index_type);
6285
6286 /* If right node had to be handled later, do that now. */
6287
6288 if (test_label)
6289 {
6290 /* If the left-hand subtree fell through,
6291 don't let it fall into the right-hand subtree. */
6292 emit_jump_if_reachable (default_label);
6293
6294 expand_label (test_label);
6295 emit_case_nodes (index, node->right, default_label, index_type);
6296 }
6297 }
6298
6299 else if (node->right != 0 && node->left == 0)
6300 {
6301 /* Deal with values to the left of this node,
6302 if they are possible. */
6303 if (!node_has_low_bound (node, index_type))
6304 {
6305 emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX,
6306 VOIDmode, 0),
6307 LT, NULL_RTX, mode, unsignedp, 0,
6308 default_label);
6309 }
6310
6311 /* Value belongs to this node or to the right-hand subtree. */
6312
6313 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6314 VOIDmode, 0),
6315 LE, NULL_RTX, mode, unsignedp, 0,
6316 label_rtx (node->code_label));
6317
6318 emit_case_nodes (index, node->right, default_label, index_type);
6319 }
6320
6321 else if (node->right == 0 && node->left != 0)
6322 {
6323 /* Deal with values to the right of this node,
6324 if they are possible. */
6325 if (!node_has_high_bound (node, index_type))
6326 {
6327 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6328 VOIDmode, 0),
6329 GT, NULL_RTX, mode, unsignedp, 0,
6330 default_label);
6331 }
6332
6333 /* Value belongs to this node or to the left-hand subtree. */
6334
6335 emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX,
6336 VOIDmode, 0),
6337 GE, NULL_RTX, mode, unsignedp, 0,
6338 label_rtx (node->code_label));
6339
6340 emit_case_nodes (index, node->left, default_label, index_type);
6341 }
6342
6343 else
6344 {
6345 /* Node has no children so we check low and high bounds to remove
6346 redundant tests. Only one of the bounds can exist,
6347 since otherwise this node is bounded--a case tested already. */
6348
6349 if (!node_has_high_bound (node, index_type))
6350 {
6351 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6352 VOIDmode, 0),
6353 GT, NULL_RTX, mode, unsignedp, 0,
6354 default_label);
6355 }
6356
6357 if (!node_has_low_bound (node, index_type))
6358 {
6359 emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX,
6360 VOIDmode, 0),
6361 LT, NULL_RTX, mode, unsignedp, 0,
6362 default_label);
6363 }
6364
6365 emit_jump (label_rtx (node->code_label));
6366 }
6367 }
6368 }
6369 \f