]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/stmt.c
Makefile.in (c-decl.o): Depend on rtl.h and expr.h.
[thirdparty/gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file handles the generation of rtl code from tree structure
24 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
25 It also creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 The functions whose names start with `expand_' are called by the
29 parser to generate RTL instructions for various kinds of constructs.
30
31 Some control and binding constructs require calling several such
32 functions at different times. For example, a simple if-then
33 is expanded by calling `expand_start_cond' (with the condition-expression
34 as argument) before parsing the then-clause and calling `expand_end_cond'
35 after parsing the then-clause. */
36
37 #include "config.h"
38 #include "system.h"
39
40 #include "rtl.h"
41 #include "tree.h"
42 #include "tm_p.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "insn-flags.h"
47 #include "insn-config.h"
48 #include "insn-codes.h"
49 #include "expr.h"
50 #include "hard-reg-set.h"
51 #include "obstack.h"
52 #include "loop.h"
53 #include "recog.h"
54 #include "machmode.h"
55 #include "toplev.h"
56 #include "output.h"
57 #include "ggc.h"
58
59 #define obstack_chunk_alloc xmalloc
60 #define obstack_chunk_free free
61 struct obstack stmt_obstack;
62
63 /* Assume that case vectors are not pc-relative. */
64 #ifndef CASE_VECTOR_PC_RELATIVE
65 #define CASE_VECTOR_PC_RELATIVE 0
66 #endif
67
68 \f
69 /* Functions and data structures for expanding case statements. */
70
71 /* Case label structure, used to hold info on labels within case
72 statements. We handle "range" labels; for a single-value label
73 as in C, the high and low limits are the same.
74
75 An AVL tree of case nodes is initially created, and later transformed
76 to a list linked via the RIGHT fields in the nodes. Nodes with
77 higher case values are later in the list.
78
79 Switch statements can be output in one of two forms. A branch table
80 is used if there are more than a few labels and the labels are dense
81 within the range between the smallest and largest case value. If a
82 branch table is used, no further manipulations are done with the case
83 node chain.
84
85 The alternative to the use of a branch table is to generate a series
86 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
87 and PARENT fields to hold a binary tree. Initially the tree is
88 totally unbalanced, with everything on the right. We balance the tree
89 with nodes on the left having lower case values than the parent
90 and nodes on the right having higher values. We then output the tree
91 in order. */
92
93 struct case_node
94 {
95 struct case_node *left; /* Left son in binary tree */
96 struct case_node *right; /* Right son in binary tree; also node chain */
97 struct case_node *parent; /* Parent of node in binary tree */
98 tree low; /* Lowest index value for this label */
99 tree high; /* Highest index value for this label */
100 tree code_label; /* Label to jump to when node matches */
101 int balance;
102 };
103
104 typedef struct case_node case_node;
105 typedef struct case_node *case_node_ptr;
106
107 /* These are used by estimate_case_costs and balance_case_nodes. */
108
109 /* This must be a signed type, and non-ANSI compilers lack signed char. */
110 static short cost_table_[129];
111 static short *cost_table;
112 static int use_cost_table;
113 \f
114 /* Stack of control and binding constructs we are currently inside.
115
116 These constructs begin when you call `expand_start_WHATEVER'
117 and end when you call `expand_end_WHATEVER'. This stack records
118 info about how the construct began that tells the end-function
119 what to do. It also may provide information about the construct
120 to alter the behavior of other constructs within the body.
121 For example, they may affect the behavior of C `break' and `continue'.
122
123 Each construct gets one `struct nesting' object.
124 All of these objects are chained through the `all' field.
125 `nesting_stack' points to the first object (innermost construct).
126 The position of an entry on `nesting_stack' is in its `depth' field.
127
128 Each type of construct has its own individual stack.
129 For example, loops have `loop_stack'. Each object points to the
130 next object of the same type through the `next' field.
131
132 Some constructs are visible to `break' exit-statements and others
133 are not. Which constructs are visible depends on the language.
134 Therefore, the data structure allows each construct to be visible
135 or not, according to the args given when the construct is started.
136 The construct is visible if the `exit_label' field is non-null.
137 In that case, the value should be a CODE_LABEL rtx. */
138
139 struct nesting
140 {
141 struct nesting *all;
142 struct nesting *next;
143 int depth;
144 rtx exit_label;
145 union
146 {
147 /* For conds (if-then and if-then-else statements). */
148 struct
149 {
150 /* Label for the end of the if construct.
151 There is none if EXITFLAG was not set
152 and no `else' has been seen yet. */
153 rtx endif_label;
154 /* Label for the end of this alternative.
155 This may be the end of the if or the next else/elseif. */
156 rtx next_label;
157 } cond;
158 /* For loops. */
159 struct
160 {
161 /* Label at the top of the loop; place to loop back to. */
162 rtx start_label;
163 /* Label at the end of the whole construct. */
164 rtx end_label;
165 /* Label before a jump that branches to the end of the whole
166 construct. This is where destructors go if any. */
167 rtx alt_end_label;
168 /* Label for `continue' statement to jump to;
169 this is in front of the stepper of the loop. */
170 rtx continue_label;
171 } loop;
172 /* For variable binding contours. */
173 struct
174 {
175 /* Sequence number of this binding contour within the function,
176 in order of entry. */
177 int block_start_count;
178 /* Nonzero => value to restore stack to on exit. */
179 rtx stack_level;
180 /* The NOTE that starts this contour.
181 Used by expand_goto to check whether the destination
182 is within each contour or not. */
183 rtx first_insn;
184 /* Innermost containing binding contour that has a stack level. */
185 struct nesting *innermost_stack_block;
186 /* List of cleanups to be run on exit from this contour.
187 This is a list of expressions to be evaluated.
188 The TREE_PURPOSE of each link is the ..._DECL node
189 which the cleanup pertains to. */
190 tree cleanups;
191 /* List of cleanup-lists of blocks containing this block,
192 as they were at the locus where this block appears.
193 There is an element for each containing block,
194 ordered innermost containing block first.
195 The tail of this list can be 0,
196 if all remaining elements would be empty lists.
197 The element's TREE_VALUE is the cleanup-list of that block,
198 which may be null. */
199 tree outer_cleanups;
200 /* Chain of labels defined inside this binding contour.
201 For contours that have stack levels or cleanups. */
202 struct label_chain *label_chain;
203 /* Number of function calls seen, as of start of this block. */
204 int n_function_calls;
205 /* Nonzero if this is associated with a EH region. */
206 int exception_region;
207 /* The saved target_temp_slot_level from our outer block.
208 We may reset target_temp_slot_level to be the level of
209 this block, if that is done, target_temp_slot_level
210 reverts to the saved target_temp_slot_level at the very
211 end of the block. */
212 int block_target_temp_slot_level;
213 /* True if we are currently emitting insns in an area of
214 output code that is controlled by a conditional
215 expression. This is used by the cleanup handling code to
216 generate conditional cleanup actions. */
217 int conditional_code;
218 /* A place to move the start of the exception region for any
219 of the conditional cleanups, must be at the end or after
220 the start of the last unconditional cleanup, and before any
221 conditional branch points. */
222 rtx last_unconditional_cleanup;
223 /* When in a conditional context, this is the specific
224 cleanup list associated with last_unconditional_cleanup,
225 where we place the conditionalized cleanups. */
226 tree *cleanup_ptr;
227 } block;
228 /* For switch (C) or case (Pascal) statements,
229 and also for dummies (see `expand_start_case_dummy'). */
230 struct
231 {
232 /* The insn after which the case dispatch should finally
233 be emitted. Zero for a dummy. */
234 rtx start;
235 /* A list of case labels; it is first built as an AVL tree.
236 During expand_end_case, this is converted to a list, and may be
237 rearranged into a nearly balanced binary tree. */
238 struct case_node *case_list;
239 /* Label to jump to if no case matches. */
240 tree default_label;
241 /* The expression to be dispatched on. */
242 tree index_expr;
243 /* Type that INDEX_EXPR should be converted to. */
244 tree nominal_type;
245 /* Number of range exprs in case statement. */
246 int num_ranges;
247 /* Name of this kind of statement, for warnings. */
248 const char *printname;
249 /* Used to save no_line_numbers till we see the first case label.
250 We set this to -1 when we see the first case label in this
251 case statement. */
252 int line_number_status;
253 } case_stmt;
254 } data;
255 };
256
257 /* Allocate and return a new `struct nesting'. */
258
259 #define ALLOC_NESTING() \
260 (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting))
261
262 /* Pop the nesting stack element by element until we pop off
263 the element which is at the top of STACK.
264 Update all the other stacks, popping off elements from them
265 as we pop them from nesting_stack. */
266
267 #define POPSTACK(STACK) \
268 do { struct nesting *target = STACK; \
269 struct nesting *this; \
270 do { this = nesting_stack; \
271 if (loop_stack == this) \
272 loop_stack = loop_stack->next; \
273 if (cond_stack == this) \
274 cond_stack = cond_stack->next; \
275 if (block_stack == this) \
276 block_stack = block_stack->next; \
277 if (stack_block_stack == this) \
278 stack_block_stack = stack_block_stack->next; \
279 if (case_stack == this) \
280 case_stack = case_stack->next; \
281 nesting_depth = nesting_stack->depth - 1; \
282 nesting_stack = this->all; \
283 obstack_free (&stmt_obstack, this); } \
284 while (this != target); } while (0)
285 \f
286 /* In some cases it is impossible to generate code for a forward goto
287 until the label definition is seen. This happens when it may be necessary
288 for the goto to reset the stack pointer: we don't yet know how to do that.
289 So expand_goto puts an entry on this fixup list.
290 Each time a binding contour that resets the stack is exited,
291 we check each fixup.
292 If the target label has now been defined, we can insert the proper code. */
293
294 struct goto_fixup
295 {
296 /* Points to following fixup. */
297 struct goto_fixup *next;
298 /* Points to the insn before the jump insn.
299 If more code must be inserted, it goes after this insn. */
300 rtx before_jump;
301 /* The LABEL_DECL that this jump is jumping to, or 0
302 for break, continue or return. */
303 tree target;
304 /* The BLOCK for the place where this goto was found. */
305 tree context;
306 /* The CODE_LABEL rtx that this is jumping to. */
307 rtx target_rtl;
308 /* Number of binding contours started in current function
309 before the label reference. */
310 int block_start_count;
311 /* The outermost stack level that should be restored for this jump.
312 Each time a binding contour that resets the stack is exited,
313 if the target label is *not* yet defined, this slot is updated. */
314 rtx stack_level;
315 /* List of lists of cleanup expressions to be run by this goto.
316 There is one element for each block that this goto is within.
317 The tail of this list can be 0,
318 if all remaining elements would be empty.
319 The TREE_VALUE contains the cleanup list of that block as of the
320 time this goto was seen.
321 The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */
322 tree cleanup_list_list;
323 };
324
325 /* Within any binding contour that must restore a stack level,
326 all labels are recorded with a chain of these structures. */
327
328 struct label_chain
329 {
330 /* Points to following fixup. */
331 struct label_chain *next;
332 tree label;
333 };
334
335 struct stmt_status
336 {
337 /* Chain of all pending binding contours. */
338 struct nesting *x_block_stack;
339
340 /* If any new stacks are added here, add them to POPSTACKS too. */
341
342 /* Chain of all pending binding contours that restore stack levels
343 or have cleanups. */
344 struct nesting *x_stack_block_stack;
345
346 /* Chain of all pending conditional statements. */
347 struct nesting *x_cond_stack;
348
349 /* Chain of all pending loops. */
350 struct nesting *x_loop_stack;
351
352 /* Chain of all pending case or switch statements. */
353 struct nesting *x_case_stack;
354
355 /* Separate chain including all of the above,
356 chained through the `all' field. */
357 struct nesting *x_nesting_stack;
358
359 /* Number of entries on nesting_stack now. */
360 int x_nesting_depth;
361
362 /* Number of binding contours started so far in this function. */
363 int x_block_start_count;
364
365 /* Each time we expand an expression-statement,
366 record the expr's type and its RTL value here. */
367 tree x_last_expr_type;
368 rtx x_last_expr_value;
369
370 /* Nonzero if within a ({...}) grouping, in which case we must
371 always compute a value for each expr-stmt in case it is the last one. */
372 int x_expr_stmts_for_value;
373
374 /* Filename and line number of last line-number note,
375 whether we actually emitted it or not. */
376 const char *x_emit_filename;
377 int x_emit_lineno;
378
379 struct goto_fixup *x_goto_fixup_chain;
380 };
381
382 #define block_stack (cfun->stmt->x_block_stack)
383 #define stack_block_stack (cfun->stmt->x_stack_block_stack)
384 #define cond_stack (cfun->stmt->x_cond_stack)
385 #define loop_stack (cfun->stmt->x_loop_stack)
386 #define case_stack (cfun->stmt->x_case_stack)
387 #define nesting_stack (cfun->stmt->x_nesting_stack)
388 #define nesting_depth (cfun->stmt->x_nesting_depth)
389 #define current_block_start_count (cfun->stmt->x_block_start_count)
390 #define last_expr_type (cfun->stmt->x_last_expr_type)
391 #define last_expr_value (cfun->stmt->x_last_expr_value)
392 #define expr_stmts_for_value (cfun->stmt->x_expr_stmts_for_value)
393 #define emit_filename (cfun->stmt->x_emit_filename)
394 #define emit_lineno (cfun->stmt->x_emit_lineno)
395 #define goto_fixup_chain (cfun->stmt->x_goto_fixup_chain)
396
397 /* Non-zero if we are using EH to handle cleanus. */
398 static int using_eh_for_cleanups_p = 0;
399
400 /* Character strings, each containing a single decimal digit. */
401 static char *digit_strings[10];
402
403
404 static int n_occurrences PARAMS ((int, const char *));
405 static void expand_goto_internal PARAMS ((tree, rtx, rtx));
406 static int expand_fixup PARAMS ((tree, rtx, rtx));
407 static rtx expand_nl_handler_label PARAMS ((rtx, rtx));
408 static void expand_nl_goto_receiver PARAMS ((void));
409 static void expand_nl_goto_receivers PARAMS ((struct nesting *));
410 static void fixup_gotos PARAMS ((struct nesting *, rtx, tree,
411 rtx, int));
412 static void expand_null_return_1 PARAMS ((rtx, int));
413 static void expand_value_return PARAMS ((rtx));
414 static int tail_recursion_args PARAMS ((tree, tree));
415 static void expand_cleanups PARAMS ((tree, tree, int, int));
416 static void check_seenlabel PARAMS ((void));
417 static void do_jump_if_equal PARAMS ((rtx, rtx, rtx, int));
418 static int estimate_case_costs PARAMS ((case_node_ptr));
419 static void group_case_nodes PARAMS ((case_node_ptr));
420 static void balance_case_nodes PARAMS ((case_node_ptr *,
421 case_node_ptr));
422 static int node_has_low_bound PARAMS ((case_node_ptr, tree));
423 static int node_has_high_bound PARAMS ((case_node_ptr, tree));
424 static int node_is_bounded PARAMS ((case_node_ptr, tree));
425 static void emit_jump_if_reachable PARAMS ((rtx));
426 static void emit_case_nodes PARAMS ((rtx, case_node_ptr, rtx, tree));
427 static int add_case_node PARAMS ((tree, tree, tree, tree *));
428 static struct case_node *case_tree2list PARAMS ((case_node *, case_node *));
429 static void mark_cond_nesting PARAMS ((struct nesting *));
430 static void mark_loop_nesting PARAMS ((struct nesting *));
431 static void mark_block_nesting PARAMS ((struct nesting *));
432 static void mark_case_nesting PARAMS ((struct nesting *));
433 static void mark_case_node PARAMS ((struct case_node *));
434 static void mark_goto_fixup PARAMS ((struct goto_fixup *));
435
436 \f
437 void
438 using_eh_for_cleanups ()
439 {
440 using_eh_for_cleanups_p = 1;
441 }
442
443 /* Mark N (known to be a cond-nesting) for GC. */
444
445 static void
446 mark_cond_nesting (n)
447 struct nesting *n;
448 {
449 while (n)
450 {
451 ggc_mark_rtx (n->exit_label);
452 ggc_mark_rtx (n->data.cond.endif_label);
453 ggc_mark_rtx (n->data.cond.next_label);
454
455 n = n->next;
456 }
457 }
458
459 /* Mark N (known to be a loop-nesting) for GC. */
460
461 static void
462 mark_loop_nesting (n)
463 struct nesting *n;
464 {
465
466 while (n)
467 {
468 ggc_mark_rtx (n->exit_label);
469 ggc_mark_rtx (n->data.loop.start_label);
470 ggc_mark_rtx (n->data.loop.end_label);
471 ggc_mark_rtx (n->data.loop.alt_end_label);
472 ggc_mark_rtx (n->data.loop.continue_label);
473
474 n = n->next;
475 }
476 }
477
478 /* Mark N (known to be a block-nesting) for GC. */
479
480 static void
481 mark_block_nesting (n)
482 struct nesting *n;
483 {
484 while (n)
485 {
486 struct label_chain *l;
487
488 ggc_mark_rtx (n->exit_label);
489 ggc_mark_rtx (n->data.block.stack_level);
490 ggc_mark_rtx (n->data.block.first_insn);
491 ggc_mark_tree (n->data.block.cleanups);
492 ggc_mark_tree (n->data.block.outer_cleanups);
493
494 for (l = n->data.block.label_chain; l != NULL; l = l->next)
495 ggc_mark_tree (l->label);
496
497 ggc_mark_rtx (n->data.block.last_unconditional_cleanup);
498
499 /* ??? cleanup_ptr never points outside the stack, does it? */
500
501 n = n->next;
502 }
503 }
504
505 /* Mark N (known to be a case-nesting) for GC. */
506
507 static void
508 mark_case_nesting (n)
509 struct nesting *n;
510 {
511 while (n)
512 {
513 ggc_mark_rtx (n->exit_label);
514 ggc_mark_rtx (n->data.case_stmt.start);
515
516 ggc_mark_tree (n->data.case_stmt.default_label);
517 ggc_mark_tree (n->data.case_stmt.index_expr);
518 ggc_mark_tree (n->data.case_stmt.nominal_type);
519
520 mark_case_node (n->data.case_stmt.case_list);
521 n = n->next;
522 }
523 }
524
525 /* Mark C for GC. */
526
527 static void
528 mark_case_node (c)
529 struct case_node *c;
530 {
531 if (c != 0)
532 {
533 ggc_mark_tree (c->low);
534 ggc_mark_tree (c->high);
535 ggc_mark_tree (c->code_label);
536
537 mark_case_node (c->right);
538 mark_case_node (c->left);
539 }
540 }
541
542 /* Mark G for GC. */
543
544 static void
545 mark_goto_fixup (g)
546 struct goto_fixup *g;
547 {
548 while (g)
549 {
550 ggc_mark (g);
551 ggc_mark_rtx (g->before_jump);
552 ggc_mark_tree (g->target);
553 ggc_mark_tree (g->context);
554 ggc_mark_rtx (g->target_rtl);
555 ggc_mark_rtx (g->stack_level);
556 ggc_mark_tree (g->cleanup_list_list);
557
558 g = g->next;
559 }
560 }
561
562 /* Clear out all parts of the state in F that can safely be discarded
563 after the function has been compiled, to let garbage collection
564 reclaim the memory. */
565
566 void
567 free_stmt_status (f)
568 struct function *f;
569 {
570 /* We're about to free the function obstack. If we hold pointers to
571 things allocated there, then we'll try to mark them when we do
572 GC. So, we clear them out here explicitly. */
573 if (f->stmt)
574 free (f->stmt);
575 f->stmt = NULL;
576 }
577
578 /* Mark P for GC. */
579
580 void
581 mark_stmt_status (p)
582 struct stmt_status *p;
583 {
584 if (p == 0)
585 return;
586
587 mark_block_nesting (p->x_block_stack);
588 mark_cond_nesting (p->x_cond_stack);
589 mark_loop_nesting (p->x_loop_stack);
590 mark_case_nesting (p->x_case_stack);
591
592 ggc_mark_tree (p->x_last_expr_type);
593 /* last_epxr_value is only valid if last_expr_type is nonzero. */
594 if (p->x_last_expr_type)
595 ggc_mark_rtx (p->x_last_expr_value);
596
597 mark_goto_fixup (p->x_goto_fixup_chain);
598 }
599
600 void
601 init_stmt ()
602 {
603 int i;
604
605 gcc_obstack_init (&stmt_obstack);
606
607 for (i = 0; i < 10; i++)
608 {
609 digit_strings[i] = ggc_alloc_string (NULL, 1);
610 digit_strings[i][0] = '0' + i;
611 }
612 ggc_add_string_root (digit_strings, 10);
613 }
614
615 void
616 init_stmt_for_function ()
617 {
618 cfun->stmt = (struct stmt_status *) xmalloc (sizeof (struct stmt_status));
619
620 /* We are not currently within any block, conditional, loop or case. */
621 block_stack = 0;
622 stack_block_stack = 0;
623 loop_stack = 0;
624 case_stack = 0;
625 cond_stack = 0;
626 nesting_stack = 0;
627 nesting_depth = 0;
628
629 current_block_start_count = 0;
630
631 /* No gotos have been expanded yet. */
632 goto_fixup_chain = 0;
633
634 /* We are not processing a ({...}) grouping. */
635 expr_stmts_for_value = 0;
636 last_expr_type = 0;
637 last_expr_value = NULL_RTX;
638 }
639 \f
640 /* Return nonzero if anything is pushed on the loop, condition, or case
641 stack. */
642 int
643 in_control_zone_p ()
644 {
645 return cond_stack || loop_stack || case_stack;
646 }
647
648 /* Record the current file and line. Called from emit_line_note. */
649 void
650 set_file_and_line_for_stmt (file, line)
651 const char *file;
652 int line;
653 {
654 /* If we're outputting an inline function, and we add a line note,
655 there may be no CFUN->STMT information. So, there's no need to
656 update it. */
657 if (cfun->stmt)
658 {
659 emit_filename = file;
660 emit_lineno = line;
661 }
662 }
663
664 /* Emit a no-op instruction. */
665
666 void
667 emit_nop ()
668 {
669 rtx last_insn;
670
671 last_insn = get_last_insn ();
672 if (!optimize
673 && (GET_CODE (last_insn) == CODE_LABEL
674 || (GET_CODE (last_insn) == NOTE
675 && prev_real_insn (last_insn) == 0)))
676 emit_insn (gen_nop ());
677 }
678 \f
679 /* Return the rtx-label that corresponds to a LABEL_DECL,
680 creating it if necessary. */
681
682 rtx
683 label_rtx (label)
684 tree label;
685 {
686 if (TREE_CODE (label) != LABEL_DECL)
687 abort ();
688
689 if (DECL_RTL (label))
690 return DECL_RTL (label);
691
692 return DECL_RTL (label) = gen_label_rtx ();
693 }
694
695 /* Add an unconditional jump to LABEL as the next sequential instruction. */
696
697 void
698 emit_jump (label)
699 rtx label;
700 {
701 do_pending_stack_adjust ();
702 emit_jump_insn (gen_jump (label));
703 emit_barrier ();
704 }
705
706 /* Emit code to jump to the address
707 specified by the pointer expression EXP. */
708
709 void
710 expand_computed_goto (exp)
711 tree exp;
712 {
713 rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0);
714
715 #ifdef POINTERS_EXTEND_UNSIGNED
716 x = convert_memory_address (Pmode, x);
717 #endif
718
719 emit_queue ();
720 /* Be sure the function is executable. */
721 if (current_function_check_memory_usage)
722 emit_library_call (chkr_check_exec_libfunc, 1,
723 VOIDmode, 1, x, ptr_mode);
724
725 do_pending_stack_adjust ();
726 emit_indirect_jump (x);
727
728 current_function_has_computed_jump = 1;
729 }
730 \f
731 /* Handle goto statements and the labels that they can go to. */
732
733 /* Specify the location in the RTL code of a label LABEL,
734 which is a LABEL_DECL tree node.
735
736 This is used for the kind of label that the user can jump to with a
737 goto statement, and for alternatives of a switch or case statement.
738 RTL labels generated for loops and conditionals don't go through here;
739 they are generated directly at the RTL level, by other functions below.
740
741 Note that this has nothing to do with defining label *names*.
742 Languages vary in how they do that and what that even means. */
743
744 void
745 expand_label (label)
746 tree label;
747 {
748 struct label_chain *p;
749
750 do_pending_stack_adjust ();
751 emit_label (label_rtx (label));
752 if (DECL_NAME (label))
753 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
754
755 if (stack_block_stack != 0)
756 {
757 p = (struct label_chain *) oballoc (sizeof (struct label_chain));
758 p->next = stack_block_stack->data.block.label_chain;
759 stack_block_stack->data.block.label_chain = p;
760 p->label = label;
761 }
762 }
763
764 /* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos
765 from nested functions. */
766
767 void
768 declare_nonlocal_label (label)
769 tree label;
770 {
771 rtx slot = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
772
773 nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels);
774 LABEL_PRESERVE_P (label_rtx (label)) = 1;
775 if (nonlocal_goto_handler_slots == 0)
776 {
777 emit_stack_save (SAVE_NONLOCAL,
778 &nonlocal_goto_stack_level,
779 PREV_INSN (tail_recursion_reentry));
780 }
781 nonlocal_goto_handler_slots
782 = gen_rtx_EXPR_LIST (VOIDmode, slot, nonlocal_goto_handler_slots);
783 }
784
785 /* Generate RTL code for a `goto' statement with target label LABEL.
786 LABEL should be a LABEL_DECL tree node that was or will later be
787 defined with `expand_label'. */
788
789 void
790 expand_goto (label)
791 tree label;
792 {
793 tree context;
794
795 /* Check for a nonlocal goto to a containing function. */
796 context = decl_function_context (label);
797 if (context != 0 && context != current_function_decl)
798 {
799 struct function *p = find_function_data (context);
800 rtx label_ref = gen_rtx_LABEL_REF (Pmode, label_rtx (label));
801 rtx temp, handler_slot;
802 tree link;
803
804 /* Find the corresponding handler slot for this label. */
805 handler_slot = p->x_nonlocal_goto_handler_slots;
806 for (link = p->x_nonlocal_labels; TREE_VALUE (link) != label;
807 link = TREE_CHAIN (link))
808 handler_slot = XEXP (handler_slot, 1);
809 handler_slot = XEXP (handler_slot, 0);
810
811 p->has_nonlocal_label = 1;
812 current_function_has_nonlocal_goto = 1;
813 LABEL_REF_NONLOCAL_P (label_ref) = 1;
814
815 /* Copy the rtl for the slots so that they won't be shared in
816 case the virtual stack vars register gets instantiated differently
817 in the parent than in the child. */
818
819 #if HAVE_nonlocal_goto
820 if (HAVE_nonlocal_goto)
821 emit_insn (gen_nonlocal_goto (lookup_static_chain (label),
822 copy_rtx (handler_slot),
823 copy_rtx (p->x_nonlocal_goto_stack_level),
824 label_ref));
825 else
826 #endif
827 {
828 rtx addr;
829
830 /* Restore frame pointer for containing function.
831 This sets the actual hard register used for the frame pointer
832 to the location of the function's incoming static chain info.
833 The non-local goto handler will then adjust it to contain the
834 proper value and reload the argument pointer, if needed. */
835 emit_move_insn (hard_frame_pointer_rtx, lookup_static_chain (label));
836
837 /* We have now loaded the frame pointer hardware register with
838 the address of that corresponds to the start of the virtual
839 stack vars. So replace virtual_stack_vars_rtx in all
840 addresses we use with stack_pointer_rtx. */
841
842 /* Get addr of containing function's current nonlocal goto handler,
843 which will do any cleanups and then jump to the label. */
844 addr = copy_rtx (handler_slot);
845 temp = copy_to_reg (replace_rtx (addr, virtual_stack_vars_rtx,
846 hard_frame_pointer_rtx));
847
848 /* Restore the stack pointer. Note this uses fp just restored. */
849 addr = p->x_nonlocal_goto_stack_level;
850 if (addr)
851 addr = replace_rtx (copy_rtx (addr),
852 virtual_stack_vars_rtx,
853 hard_frame_pointer_rtx);
854
855 emit_stack_restore (SAVE_NONLOCAL, addr, NULL_RTX);
856
857 /* USE of hard_frame_pointer_rtx added for consistency; not clear if
858 really needed. */
859 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
860 emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
861 emit_indirect_jump (temp);
862 }
863 }
864 else
865 expand_goto_internal (label, label_rtx (label), NULL_RTX);
866 }
867
868 /* Generate RTL code for a `goto' statement with target label BODY.
869 LABEL should be a LABEL_REF.
870 LAST_INSN, if non-0, is the rtx we should consider as the last
871 insn emitted (for the purposes of cleaning up a return). */
872
873 static void
874 expand_goto_internal (body, label, last_insn)
875 tree body;
876 rtx label;
877 rtx last_insn;
878 {
879 struct nesting *block;
880 rtx stack_level = 0;
881
882 if (GET_CODE (label) != CODE_LABEL)
883 abort ();
884
885 /* If label has already been defined, we can tell now
886 whether and how we must alter the stack level. */
887
888 if (PREV_INSN (label) != 0)
889 {
890 /* Find the innermost pending block that contains the label.
891 (Check containment by comparing insn-uids.)
892 Then restore the outermost stack level within that block,
893 and do cleanups of all blocks contained in it. */
894 for (block = block_stack; block; block = block->next)
895 {
896 if (INSN_UID (block->data.block.first_insn) < INSN_UID (label))
897 break;
898 if (block->data.block.stack_level != 0)
899 stack_level = block->data.block.stack_level;
900 /* Execute the cleanups for blocks we are exiting. */
901 if (block->data.block.cleanups != 0)
902 {
903 expand_cleanups (block->data.block.cleanups, NULL_TREE, 1, 1);
904 do_pending_stack_adjust ();
905 }
906 }
907
908 if (stack_level)
909 {
910 /* Ensure stack adjust isn't done by emit_jump, as this
911 would clobber the stack pointer. This one should be
912 deleted as dead by flow. */
913 clear_pending_stack_adjust ();
914 do_pending_stack_adjust ();
915 emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX);
916 }
917
918 if (body != 0 && DECL_TOO_LATE (body))
919 error ("jump to `%s' invalidly jumps into binding contour",
920 IDENTIFIER_POINTER (DECL_NAME (body)));
921 }
922 /* Label not yet defined: may need to put this goto
923 on the fixup list. */
924 else if (! expand_fixup (body, label, last_insn))
925 {
926 /* No fixup needed. Record that the label is the target
927 of at least one goto that has no fixup. */
928 if (body != 0)
929 TREE_ADDRESSABLE (body) = 1;
930 }
931
932 emit_jump (label);
933 }
934 \f
935 /* Generate if necessary a fixup for a goto
936 whose target label in tree structure (if any) is TREE_LABEL
937 and whose target in rtl is RTL_LABEL.
938
939 If LAST_INSN is nonzero, we pretend that the jump appears
940 after insn LAST_INSN instead of at the current point in the insn stream.
941
942 The fixup will be used later to insert insns just before the goto.
943 Those insns will restore the stack level as appropriate for the
944 target label, and will (in the case of C++) also invoke any object
945 destructors which have to be invoked when we exit the scopes which
946 are exited by the goto.
947
948 Value is nonzero if a fixup is made. */
949
950 static int
951 expand_fixup (tree_label, rtl_label, last_insn)
952 tree tree_label;
953 rtx rtl_label;
954 rtx last_insn;
955 {
956 struct nesting *block, *end_block;
957
958 /* See if we can recognize which block the label will be output in.
959 This is possible in some very common cases.
960 If we succeed, set END_BLOCK to that block.
961 Otherwise, set it to 0. */
962
963 if (cond_stack
964 && (rtl_label == cond_stack->data.cond.endif_label
965 || rtl_label == cond_stack->data.cond.next_label))
966 end_block = cond_stack;
967 /* If we are in a loop, recognize certain labels which
968 are likely targets. This reduces the number of fixups
969 we need to create. */
970 else if (loop_stack
971 && (rtl_label == loop_stack->data.loop.start_label
972 || rtl_label == loop_stack->data.loop.end_label
973 || rtl_label == loop_stack->data.loop.continue_label))
974 end_block = loop_stack;
975 else
976 end_block = 0;
977
978 /* Now set END_BLOCK to the binding level to which we will return. */
979
980 if (end_block)
981 {
982 struct nesting *next_block = end_block->all;
983 block = block_stack;
984
985 /* First see if the END_BLOCK is inside the innermost binding level.
986 If so, then no cleanups or stack levels are relevant. */
987 while (next_block && next_block != block)
988 next_block = next_block->all;
989
990 if (next_block)
991 return 0;
992
993 /* Otherwise, set END_BLOCK to the innermost binding level
994 which is outside the relevant control-structure nesting. */
995 next_block = block_stack->next;
996 for (block = block_stack; block != end_block; block = block->all)
997 if (block == next_block)
998 next_block = next_block->next;
999 end_block = next_block;
1000 }
1001
1002 /* Does any containing block have a stack level or cleanups?
1003 If not, no fixup is needed, and that is the normal case
1004 (the only case, for standard C). */
1005 for (block = block_stack; block != end_block; block = block->next)
1006 if (block->data.block.stack_level != 0
1007 || block->data.block.cleanups != 0)
1008 break;
1009
1010 if (block != end_block)
1011 {
1012 /* Ok, a fixup is needed. Add a fixup to the list of such. */
1013 struct goto_fixup *fixup
1014 = (struct goto_fixup *) ggc_alloc_obj (sizeof (struct goto_fixup), 0);
1015 /* In case an old stack level is restored, make sure that comes
1016 after any pending stack adjust. */
1017 /* ?? If the fixup isn't to come at the present position,
1018 doing the stack adjust here isn't useful. Doing it with our
1019 settings at that location isn't useful either. Let's hope
1020 someone does it! */
1021 if (last_insn == 0)
1022 do_pending_stack_adjust ();
1023 fixup->target = tree_label;
1024 fixup->target_rtl = rtl_label;
1025
1026 /* Create a BLOCK node and a corresponding matched set of
1027 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes at
1028 this point. The notes will encapsulate any and all fixup
1029 code which we might later insert at this point in the insn
1030 stream. Also, the BLOCK node will be the parent (i.e. the
1031 `SUPERBLOCK') of any other BLOCK nodes which we might create
1032 later on when we are expanding the fixup code.
1033
1034 Note that optimization passes (including expand_end_loop)
1035 might move the *_BLOCK notes away, so we use a NOTE_INSN_DELETED
1036 as a placeholder. */
1037
1038 {
1039 register rtx original_before_jump
1040 = last_insn ? last_insn : get_last_insn ();
1041 rtx start;
1042 rtx end;
1043 tree block;
1044
1045 block = make_node (BLOCK);
1046 TREE_USED (block) = 1;
1047
1048 if (!cfun->x_whole_function_mode_p)
1049 insert_block (block);
1050 else
1051 {
1052 BLOCK_CHAIN (block)
1053 = BLOCK_CHAIN (DECL_INITIAL (current_function_decl));
1054 BLOCK_CHAIN (DECL_INITIAL (current_function_decl))
1055 = block;
1056 }
1057
1058 start_sequence ();
1059 start = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG);
1060 if (cfun->x_whole_function_mode_p)
1061 NOTE_BLOCK (start) = block;
1062 fixup->before_jump = emit_note (NULL_PTR, NOTE_INSN_DELETED);
1063 end = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END);
1064 if (cfun->x_whole_function_mode_p)
1065 NOTE_BLOCK (end) = block;
1066 fixup->context = block;
1067 end_sequence ();
1068 emit_insns_after (start, original_before_jump);
1069 }
1070
1071 fixup->block_start_count = current_block_start_count;
1072 fixup->stack_level = 0;
1073 fixup->cleanup_list_list
1074 = ((block->data.block.outer_cleanups
1075 || block->data.block.cleanups)
1076 ? tree_cons (NULL_TREE, block->data.block.cleanups,
1077 block->data.block.outer_cleanups)
1078 : 0);
1079 fixup->next = goto_fixup_chain;
1080 goto_fixup_chain = fixup;
1081 }
1082
1083 return block != 0;
1084 }
1085
1086
1087 \f
1088 /* Expand any needed fixups in the outputmost binding level of the
1089 function. FIRST_INSN is the first insn in the function. */
1090
1091 void
1092 expand_fixups (first_insn)
1093 rtx first_insn;
1094 {
1095 fixup_gotos (NULL_PTR, NULL_RTX, NULL_TREE, first_insn, 0);
1096 }
1097
1098 /* When exiting a binding contour, process all pending gotos requiring fixups.
1099 THISBLOCK is the structure that describes the block being exited.
1100 STACK_LEVEL is the rtx for the stack level to restore exiting this contour.
1101 CLEANUP_LIST is a list of expressions to evaluate on exiting this contour.
1102 FIRST_INSN is the insn that began this contour.
1103
1104 Gotos that jump out of this contour must restore the
1105 stack level and do the cleanups before actually jumping.
1106
1107 DONT_JUMP_IN nonzero means report error there is a jump into this
1108 contour from before the beginning of the contour.
1109 This is also done if STACK_LEVEL is nonzero. */
1110
1111 static void
1112 fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in)
1113 struct nesting *thisblock;
1114 rtx stack_level;
1115 tree cleanup_list;
1116 rtx first_insn;
1117 int dont_jump_in;
1118 {
1119 register struct goto_fixup *f, *prev;
1120
1121 /* F is the fixup we are considering; PREV is the previous one. */
1122 /* We run this loop in two passes so that cleanups of exited blocks
1123 are run first, and blocks that are exited are marked so
1124 afterwards. */
1125
1126 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1127 {
1128 /* Test for a fixup that is inactive because it is already handled. */
1129 if (f->before_jump == 0)
1130 {
1131 /* Delete inactive fixup from the chain, if that is easy to do. */
1132 if (prev != 0)
1133 prev->next = f->next;
1134 }
1135 /* Has this fixup's target label been defined?
1136 If so, we can finalize it. */
1137 else if (PREV_INSN (f->target_rtl) != 0)
1138 {
1139 register rtx cleanup_insns;
1140
1141 /* If this fixup jumped into this contour from before the beginning
1142 of this contour, report an error. This code used to use
1143 the first non-label insn after f->target_rtl, but that's
1144 wrong since such can be added, by things like put_var_into_stack
1145 and have INSN_UIDs that are out of the range of the block. */
1146 /* ??? Bug: this does not detect jumping in through intermediate
1147 blocks that have stack levels or cleanups.
1148 It detects only a problem with the innermost block
1149 around the label. */
1150 if (f->target != 0
1151 && (dont_jump_in || stack_level || cleanup_list)
1152 && INSN_UID (first_insn) < INSN_UID (f->target_rtl)
1153 && INSN_UID (first_insn) > INSN_UID (f->before_jump)
1154 && ! DECL_ERROR_ISSUED (f->target))
1155 {
1156 error_with_decl (f->target,
1157 "label `%s' used before containing binding contour");
1158 /* Prevent multiple errors for one label. */
1159 DECL_ERROR_ISSUED (f->target) = 1;
1160 }
1161
1162 /* We will expand the cleanups into a sequence of their own and
1163 then later on we will attach this new sequence to the insn
1164 stream just ahead of the actual jump insn. */
1165
1166 start_sequence ();
1167
1168 /* Temporarily restore the lexical context where we will
1169 logically be inserting the fixup code. We do this for the
1170 sake of getting the debugging information right. */
1171
1172 pushlevel (0);
1173 set_block (f->context);
1174
1175 /* Expand the cleanups for blocks this jump exits. */
1176 if (f->cleanup_list_list)
1177 {
1178 tree lists;
1179 for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists))
1180 /* Marked elements correspond to blocks that have been closed.
1181 Do their cleanups. */
1182 if (TREE_ADDRESSABLE (lists)
1183 && TREE_VALUE (lists) != 0)
1184 {
1185 expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1186 /* Pop any pushes done in the cleanups,
1187 in case function is about to return. */
1188 do_pending_stack_adjust ();
1189 }
1190 }
1191
1192 /* Restore stack level for the biggest contour that this
1193 jump jumps out of. */
1194 if (f->stack_level)
1195 emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump);
1196
1197 /* Finish up the sequence containing the insns which implement the
1198 necessary cleanups, and then attach that whole sequence to the
1199 insn stream just ahead of the actual jump insn. Attaching it
1200 at that point insures that any cleanups which are in fact
1201 implicit C++ object destructions (which must be executed upon
1202 leaving the block) appear (to the debugger) to be taking place
1203 in an area of the generated code where the object(s) being
1204 destructed are still "in scope". */
1205
1206 cleanup_insns = get_insns ();
1207 poplevel (1, 0, 0);
1208
1209 end_sequence ();
1210 emit_insns_after (cleanup_insns, f->before_jump);
1211
1212
1213 f->before_jump = 0;
1214 }
1215 }
1216
1217 /* For any still-undefined labels, do the cleanups for this block now.
1218 We must do this now since items in the cleanup list may go out
1219 of scope when the block ends. */
1220 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1221 if (f->before_jump != 0
1222 && PREV_INSN (f->target_rtl) == 0
1223 /* Label has still not appeared. If we are exiting a block with
1224 a stack level to restore, that started before the fixup,
1225 mark this stack level as needing restoration
1226 when the fixup is later finalized. */
1227 && thisblock != 0
1228 /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared, it
1229 means the label is undefined. That's erroneous, but possible. */
1230 && (thisblock->data.block.block_start_count
1231 <= f->block_start_count))
1232 {
1233 tree lists = f->cleanup_list_list;
1234 rtx cleanup_insns;
1235
1236 for (; lists; lists = TREE_CHAIN (lists))
1237 /* If the following elt. corresponds to our containing block
1238 then the elt. must be for this block. */
1239 if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups)
1240 {
1241 start_sequence ();
1242 pushlevel (0);
1243 set_block (f->context);
1244 expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1245 do_pending_stack_adjust ();
1246 cleanup_insns = get_insns ();
1247 poplevel (1, 0, 0);
1248 end_sequence ();
1249 if (cleanup_insns != 0)
1250 f->before_jump
1251 = emit_insns_after (cleanup_insns, f->before_jump);
1252
1253 f->cleanup_list_list = TREE_CHAIN (lists);
1254 }
1255
1256 if (stack_level)
1257 f->stack_level = stack_level;
1258 }
1259 }
1260 \f
1261 /* Return the number of times character C occurs in string S. */
1262 static int
1263 n_occurrences (c, s)
1264 int c;
1265 const char *s;
1266 {
1267 int n = 0;
1268 while (*s)
1269 n += (*s++ == c);
1270 return n;
1271 }
1272 \f
1273 /* Generate RTL for an asm statement (explicit assembler code).
1274 BODY is a STRING_CST node containing the assembler code text,
1275 or an ADDR_EXPR containing a STRING_CST. */
1276
1277 void
1278 expand_asm (body)
1279 tree body;
1280 {
1281 if (current_function_check_memory_usage)
1282 {
1283 error ("`asm' cannot be used in function where memory usage is checked");
1284 return;
1285 }
1286
1287 if (TREE_CODE (body) == ADDR_EXPR)
1288 body = TREE_OPERAND (body, 0);
1289
1290 emit_insn (gen_rtx_ASM_INPUT (VOIDmode,
1291 TREE_STRING_POINTER (body)));
1292 last_expr_type = 0;
1293 }
1294
1295 /* Generate RTL for an asm statement with arguments.
1296 STRING is the instruction template.
1297 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
1298 Each output or input has an expression in the TREE_VALUE and
1299 a constraint-string in the TREE_PURPOSE.
1300 CLOBBERS is a list of STRING_CST nodes each naming a hard register
1301 that is clobbered by this insn.
1302
1303 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
1304 Some elements of OUTPUTS may be replaced with trees representing temporary
1305 values. The caller should copy those temporary values to the originally
1306 specified lvalues.
1307
1308 VOL nonzero means the insn is volatile; don't optimize it. */
1309
1310 void
1311 expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
1312 tree string, outputs, inputs, clobbers;
1313 int vol;
1314 const char *filename;
1315 int line;
1316 {
1317 rtvec argvec, constraints;
1318 rtx body;
1319 int ninputs = list_length (inputs);
1320 int noutputs = list_length (outputs);
1321 int ninout = 0;
1322 int nclobbers;
1323 tree tail;
1324 register int i;
1325 /* Vector of RTX's of evaluated output operands. */
1326 rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1327 int *inout_opnum = (int *) alloca (noutputs * sizeof (int));
1328 rtx *real_output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1329 enum machine_mode *inout_mode
1330 = (enum machine_mode *) alloca (noutputs * sizeof (enum machine_mode));
1331 /* The insn we have emitted. */
1332 rtx insn;
1333
1334 /* An ASM with no outputs needs to be treated as volatile, for now. */
1335 if (noutputs == 0)
1336 vol = 1;
1337
1338 if (current_function_check_memory_usage)
1339 {
1340 error ("`asm' cannot be used with `-fcheck-memory-usage'");
1341 return;
1342 }
1343
1344 #ifdef MD_ASM_CLOBBERS
1345 /* Sometimes we wish to automatically clobber registers across an asm.
1346 Case in point is when the i386 backend moved from cc0 to a hard reg --
1347 maintaining source-level compatability means automatically clobbering
1348 the flags register. */
1349 MD_ASM_CLOBBERS (clobbers);
1350 #endif
1351
1352 if (current_function_check_memory_usage)
1353 {
1354 error ("`asm' cannot be used in function where memory usage is checked");
1355 return;
1356 }
1357
1358 /* Count the number of meaningful clobbered registers, ignoring what
1359 we would ignore later. */
1360 nclobbers = 0;
1361 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1362 {
1363 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1364
1365 i = decode_reg_name (regname);
1366 if (i >= 0 || i == -4)
1367 ++nclobbers;
1368 else if (i == -2)
1369 error ("unknown register name `%s' in `asm'", regname);
1370 }
1371
1372 last_expr_type = 0;
1373
1374 /* Check that the number of alternatives is constant across all
1375 operands. */
1376 if (outputs || inputs)
1377 {
1378 tree tmp = TREE_PURPOSE (outputs ? outputs : inputs);
1379 int nalternatives = n_occurrences (',', TREE_STRING_POINTER (tmp));
1380 tree next = inputs;
1381
1382 if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
1383 {
1384 error ("too many alternatives in `asm'");
1385 return;
1386 }
1387
1388 tmp = outputs;
1389 while (tmp)
1390 {
1391 const char *constraint = TREE_STRING_POINTER (TREE_PURPOSE (tmp));
1392
1393 if (n_occurrences (',', constraint) != nalternatives)
1394 {
1395 error ("operand constraints for `asm' differ in number of alternatives");
1396 return;
1397 }
1398
1399 if (TREE_CHAIN (tmp))
1400 tmp = TREE_CHAIN (tmp);
1401 else
1402 tmp = next, next = 0;
1403 }
1404 }
1405
1406 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1407 {
1408 tree val = TREE_VALUE (tail);
1409 tree type = TREE_TYPE (val);
1410 char *constraint;
1411 char *p;
1412 int c_len;
1413 int j;
1414 int is_inout = 0;
1415 int allows_reg = 0;
1416 int allows_mem = 0;
1417
1418 /* If there's an erroneous arg, emit no insn. */
1419 if (TREE_TYPE (val) == error_mark_node)
1420 return;
1421
1422 /* Make sure constraint has `=' and does not have `+'. Also, see
1423 if it allows any register. Be liberal on the latter test, since
1424 the worst that happens if we get it wrong is we issue an error
1425 message. */
1426
1427 c_len = strlen (TREE_STRING_POINTER (TREE_PURPOSE (tail)));
1428 constraint = TREE_STRING_POINTER (TREE_PURPOSE (tail));
1429
1430 /* Allow the `=' or `+' to not be at the beginning of the string,
1431 since it wasn't explicitly documented that way, and there is a
1432 large body of code that puts it last. Swap the character to
1433 the front, so as not to uglify any place else. */
1434 switch (c_len)
1435 {
1436 default:
1437 if ((p = strchr (constraint, '=')) != NULL)
1438 break;
1439 if ((p = strchr (constraint, '+')) != NULL)
1440 break;
1441 case 0:
1442 error ("output operand constraint lacks `='");
1443 return;
1444 }
1445
1446 if (p != constraint)
1447 {
1448 j = *p;
1449 bcopy (constraint, constraint+1, p-constraint);
1450 *constraint = j;
1451
1452 warning ("output constraint `%c' for operand %d is not at the beginning", j, i);
1453 }
1454
1455 is_inout = constraint[0] == '+';
1456 /* Replace '+' with '='. */
1457 constraint[0] = '=';
1458 /* Make sure we can specify the matching operand. */
1459 if (is_inout && i > 9)
1460 {
1461 error ("output operand constraint %d contains `+'", i);
1462 return;
1463 }
1464
1465 for (j = 1; j < c_len; j++)
1466 switch (constraint[j])
1467 {
1468 case '+':
1469 case '=':
1470 error ("operand constraint contains '+' or '=' at illegal position.");
1471 return;
1472
1473 case '%':
1474 if (i + 1 == ninputs + noutputs)
1475 {
1476 error ("`%%' constraint used with last operand");
1477 return;
1478 }
1479 break;
1480
1481 case '?': case '!': case '*': case '&':
1482 case 'E': case 'F': case 'G': case 'H':
1483 case 's': case 'i': case 'n':
1484 case 'I': case 'J': case 'K': case 'L': case 'M':
1485 case 'N': case 'O': case 'P': case ',':
1486 #ifdef EXTRA_CONSTRAINT
1487 case 'Q': case 'R': case 'S': case 'T': case 'U':
1488 #endif
1489 break;
1490
1491 case '0': case '1': case '2': case '3': case '4':
1492 case '5': case '6': case '7': case '8': case '9':
1493 error ("matching constraint not valid in output operand");
1494 break;
1495
1496 case 'V': case 'm': case 'o':
1497 allows_mem = 1;
1498 break;
1499
1500 case '<': case '>':
1501 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1502 excepting those that expand_call created. So match memory
1503 and hope. */
1504 allows_mem = 1;
1505 break;
1506
1507 case 'g': case 'X':
1508 allows_reg = 1;
1509 allows_mem = 1;
1510 break;
1511
1512 case 'p': case 'r':
1513 default:
1514 allows_reg = 1;
1515 break;
1516 }
1517
1518 /* If an output operand is not a decl or indirect ref and our constraint
1519 allows a register, make a temporary to act as an intermediate.
1520 Make the asm insn write into that, then our caller will copy it to
1521 the real output operand. Likewise for promoted variables. */
1522
1523 real_output_rtx[i] = NULL_RTX;
1524 if ((TREE_CODE (val) == INDIRECT_REF
1525 && allows_mem)
1526 || (DECL_P (val)
1527 && (allows_mem || GET_CODE (DECL_RTL (val)) == REG)
1528 && ! (GET_CODE (DECL_RTL (val)) == REG
1529 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))
1530 || ! allows_reg
1531 || is_inout)
1532 {
1533 if (! allows_reg)
1534 mark_addressable (TREE_VALUE (tail));
1535
1536 output_rtx[i]
1537 = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode,
1538 EXPAND_MEMORY_USE_WO);
1539
1540 if (! allows_reg && GET_CODE (output_rtx[i]) != MEM)
1541 error ("output number %d not directly addressable", i);
1542 if (! allows_mem && GET_CODE (output_rtx[i]) == MEM)
1543 {
1544 real_output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1545 output_rtx[i] = gen_reg_rtx (GET_MODE (output_rtx[i]));
1546 if (is_inout)
1547 emit_move_insn (output_rtx[i], real_output_rtx[i]);
1548 }
1549 }
1550 else
1551 {
1552 output_rtx[i] = assign_temp (type, 0, 0, 1);
1553 TREE_VALUE (tail) = make_tree (type, output_rtx[i]);
1554 }
1555
1556 if (is_inout)
1557 {
1558 inout_mode[ninout] = TYPE_MODE (TREE_TYPE (TREE_VALUE (tail)));
1559 inout_opnum[ninout++] = i;
1560 }
1561 }
1562
1563 ninputs += ninout;
1564 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
1565 {
1566 error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS);
1567 return;
1568 }
1569
1570 /* Make vectors for the expression-rtx and constraint strings. */
1571
1572 argvec = rtvec_alloc (ninputs);
1573 constraints = rtvec_alloc (ninputs);
1574
1575 body = gen_rtx_ASM_OPERANDS (VOIDmode, TREE_STRING_POINTER (string),
1576 empty_string, 0, argvec, constraints,
1577 filename, line);
1578
1579 MEM_VOLATILE_P (body) = vol;
1580
1581 /* Eval the inputs and put them into ARGVEC.
1582 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
1583
1584 i = 0;
1585 for (tail = inputs; tail; tail = TREE_CHAIN (tail))
1586 {
1587 int j;
1588 int allows_reg = 0, allows_mem = 0;
1589 char *constraint, *orig_constraint;
1590 int c_len;
1591 rtx op;
1592
1593 /* If there's an erroneous arg, emit no insn,
1594 because the ASM_INPUT would get VOIDmode
1595 and that could cause a crash in reload. */
1596 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
1597 return;
1598
1599 /* ??? Can this happen, and does the error message make any sense? */
1600 if (TREE_PURPOSE (tail) == NULL_TREE)
1601 {
1602 error ("hard register `%s' listed as input operand to `asm'",
1603 TREE_STRING_POINTER (TREE_VALUE (tail)) );
1604 return;
1605 }
1606
1607 c_len = strlen (TREE_STRING_POINTER (TREE_PURPOSE (tail)));
1608 constraint = TREE_STRING_POINTER (TREE_PURPOSE (tail));
1609 orig_constraint = constraint;
1610
1611 /* Make sure constraint has neither `=', `+', nor '&'. */
1612
1613 for (j = 0; j < c_len; j++)
1614 switch (constraint[j])
1615 {
1616 case '+': case '=': case '&':
1617 if (constraint == orig_constraint)
1618 {
1619 error ("input operand constraint contains `%c'",
1620 constraint[j]);
1621 return;
1622 }
1623 break;
1624
1625 case '%':
1626 if (constraint == orig_constraint
1627 && i + 1 == ninputs - ninout)
1628 {
1629 error ("`%%' constraint used with last operand");
1630 return;
1631 }
1632 break;
1633
1634 case 'V': case 'm': case 'o':
1635 allows_mem = 1;
1636 break;
1637
1638 case '<': case '>':
1639 case '?': case '!': case '*':
1640 case 'E': case 'F': case 'G': case 'H': case 'X':
1641 case 's': case 'i': case 'n':
1642 case 'I': case 'J': case 'K': case 'L': case 'M':
1643 case 'N': case 'O': case 'P': case ',':
1644 #ifdef EXTRA_CONSTRAINT
1645 case 'Q': case 'R': case 'S': case 'T': case 'U':
1646 #endif
1647 break;
1648
1649 /* Whether or not a numeric constraint allows a register is
1650 decided by the matching constraint, and so there is no need
1651 to do anything special with them. We must handle them in
1652 the default case, so that we don't unnecessarily force
1653 operands to memory. */
1654 case '0': case '1': case '2': case '3': case '4':
1655 case '5': case '6': case '7': case '8': case '9':
1656 if (constraint[j] >= '0' + noutputs)
1657 {
1658 error
1659 ("matching constraint references invalid operand number");
1660 return;
1661 }
1662
1663 /* Try and find the real constraint for this dup. */
1664 if ((j == 0 && c_len == 1)
1665 || (j == 1 && c_len == 2 && constraint[0] == '%'))
1666 {
1667 tree o = outputs;
1668
1669 for (j = constraint[j] - '0'; j > 0; --j)
1670 o = TREE_CHAIN (o);
1671
1672 c_len = strlen (TREE_STRING_POINTER (TREE_PURPOSE (o)));
1673 constraint = TREE_STRING_POINTER (TREE_PURPOSE (o));
1674 j = 0;
1675 break;
1676 }
1677
1678 /* ... fall through ... */
1679
1680 case 'p': case 'r':
1681 default:
1682 allows_reg = 1;
1683 break;
1684
1685 case 'g':
1686 allows_reg = 1;
1687 allows_mem = 1;
1688 break;
1689 }
1690
1691 if (! allows_reg && allows_mem)
1692 mark_addressable (TREE_VALUE (tail));
1693
1694 op = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0);
1695
1696 if (asm_operand_ok (op, constraint) <= 0)
1697 {
1698 if (allows_reg)
1699 op = force_reg (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), op);
1700 else if (!allows_mem)
1701 warning ("asm operand %d probably doesn't match constraints", i);
1702 else if (CONSTANT_P (op))
1703 op = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1704 op);
1705 else if (GET_CODE (op) == REG
1706 || GET_CODE (op) == SUBREG
1707 || GET_CODE (op) == CONCAT)
1708 {
1709 tree type = TREE_TYPE (TREE_VALUE (tail));
1710 rtx memloc = assign_temp (type, 1, 1, 1);
1711
1712 emit_move_insn (memloc, op);
1713 op = memloc;
1714 }
1715
1716 else if (GET_CODE (op) == MEM && MEM_VOLATILE_P (op))
1717 /* We won't recognize volatile memory as available a
1718 memory_operand at this point. Ignore it. */
1719 ;
1720 else if (queued_subexp_p (op))
1721 ;
1722 else
1723 /* ??? Leave this only until we have experience with what
1724 happens in combine and elsewhere when constraints are
1725 not satisfied. */
1726 warning ("asm operand %d probably doesn't match constraints", i);
1727 }
1728 XVECEXP (body, 3, i) = op;
1729
1730 XVECEXP (body, 4, i) /* constraints */
1731 = gen_rtx_ASM_INPUT (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1732 orig_constraint);
1733 i++;
1734 }
1735
1736 /* Protect all the operands from the queue now that they have all been
1737 evaluated. */
1738
1739 for (i = 0; i < ninputs - ninout; i++)
1740 XVECEXP (body, 3, i) = protect_from_queue (XVECEXP (body, 3, i), 0);
1741
1742 for (i = 0; i < noutputs; i++)
1743 output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1744
1745 /* For in-out operands, copy output rtx to input rtx. */
1746 for (i = 0; i < ninout; i++)
1747 {
1748 int j = inout_opnum[i];
1749
1750 XVECEXP (body, 3, ninputs - ninout + i) /* argvec */
1751 = output_rtx[j];
1752 XVECEXP (body, 4, ninputs - ninout + i) /* constraints */
1753 = gen_rtx_ASM_INPUT (inout_mode[i], digit_strings[j]);
1754 }
1755
1756 /* Now, for each output, construct an rtx
1757 (set OUTPUT (asm_operands INSN OUTPUTNUMBER OUTPUTCONSTRAINT
1758 ARGVEC CONSTRAINTS))
1759 If there is more than one, put them inside a PARALLEL. */
1760
1761 if (noutputs == 1 && nclobbers == 0)
1762 {
1763 XSTR (body, 1) = TREE_STRING_POINTER (TREE_PURPOSE (outputs));
1764 insn = emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body));
1765 }
1766
1767 else if (noutputs == 0 && nclobbers == 0)
1768 {
1769 /* No output operands: put in a raw ASM_OPERANDS rtx. */
1770 insn = emit_insn (body);
1771 }
1772
1773 else
1774 {
1775 rtx obody = body;
1776 int num = noutputs;
1777
1778 if (num == 0)
1779 num = 1;
1780
1781 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers));
1782
1783 /* For each output operand, store a SET. */
1784 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1785 {
1786 XVECEXP (body, 0, i)
1787 = gen_rtx_SET (VOIDmode,
1788 output_rtx[i],
1789 gen_rtx_ASM_OPERANDS
1790 (VOIDmode,
1791 TREE_STRING_POINTER (string),
1792 TREE_STRING_POINTER (TREE_PURPOSE (tail)),
1793 i, argvec, constraints,
1794 filename, line));
1795
1796 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1797 }
1798
1799 /* If there are no outputs (but there are some clobbers)
1800 store the bare ASM_OPERANDS into the PARALLEL. */
1801
1802 if (i == 0)
1803 XVECEXP (body, 0, i++) = obody;
1804
1805 /* Store (clobber REG) for each clobbered register specified. */
1806
1807 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1808 {
1809 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1810 int j = decode_reg_name (regname);
1811
1812 if (j < 0)
1813 {
1814 if (j == -3) /* `cc', which is not a register */
1815 continue;
1816
1817 if (j == -4) /* `memory', don't cache memory across asm */
1818 {
1819 XVECEXP (body, 0, i++)
1820 = gen_rtx_CLOBBER (VOIDmode,
1821 gen_rtx_MEM
1822 (BLKmode,
1823 gen_rtx_SCRATCH (VOIDmode)));
1824 continue;
1825 }
1826
1827 /* Ignore unknown register, error already signaled. */
1828 continue;
1829 }
1830
1831 /* Use QImode since that's guaranteed to clobber just one reg. */
1832 XVECEXP (body, 0, i++)
1833 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (QImode, j));
1834 }
1835
1836 insn = emit_insn (body);
1837 }
1838
1839 /* For any outputs that needed reloading into registers, spill them
1840 back to where they belong. */
1841 for (i = 0; i < noutputs; ++i)
1842 if (real_output_rtx[i])
1843 emit_move_insn (real_output_rtx[i], output_rtx[i]);
1844
1845 free_temp_slots ();
1846 }
1847 \f
1848 /* Generate RTL to evaluate the expression EXP
1849 and remember it in case this is the VALUE in a ({... VALUE; }) constr. */
1850
1851 void
1852 expand_expr_stmt (exp)
1853 tree exp;
1854 {
1855 /* If -W, warn about statements with no side effects,
1856 except for an explicit cast to void (e.g. for assert()), and
1857 except inside a ({...}) where they may be useful. */
1858 if (expr_stmts_for_value == 0 && exp != error_mark_node)
1859 {
1860 if (! TREE_SIDE_EFFECTS (exp)
1861 && (extra_warnings || warn_unused_value)
1862 && !(TREE_CODE (exp) == CONVERT_EXPR
1863 && TREE_TYPE (exp) == void_type_node))
1864 warning_with_file_and_line (emit_filename, emit_lineno,
1865 "statement with no effect");
1866 else if (warn_unused_value)
1867 warn_if_unused_value (exp);
1868 }
1869
1870 /* If EXP is of function type and we are expanding statements for
1871 value, convert it to pointer-to-function. */
1872 if (expr_stmts_for_value && TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE)
1873 exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp);
1874
1875 last_expr_type = TREE_TYPE (exp);
1876 last_expr_value = expand_expr (exp,
1877 (expr_stmts_for_value
1878 ? NULL_RTX : const0_rtx),
1879 VOIDmode, 0);
1880
1881 /* If all we do is reference a volatile value in memory,
1882 copy it to a register to be sure it is actually touched. */
1883 if (last_expr_value != 0 && GET_CODE (last_expr_value) == MEM
1884 && TREE_THIS_VOLATILE (exp))
1885 {
1886 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode)
1887 ;
1888 else if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
1889 copy_to_reg (last_expr_value);
1890 else
1891 {
1892 rtx lab = gen_label_rtx ();
1893
1894 /* Compare the value with itself to reference it. */
1895 emit_cmp_and_jump_insns (last_expr_value, last_expr_value, EQ,
1896 expand_expr (TYPE_SIZE (last_expr_type),
1897 NULL_RTX, VOIDmode, 0),
1898 BLKmode, 0,
1899 TYPE_ALIGN (last_expr_type) / BITS_PER_UNIT,
1900 lab);
1901 emit_label (lab);
1902 }
1903 }
1904
1905 /* If this expression is part of a ({...}) and is in memory, we may have
1906 to preserve temporaries. */
1907 preserve_temp_slots (last_expr_value);
1908
1909 /* Free any temporaries used to evaluate this expression. Any temporary
1910 used as a result of this expression will already have been preserved
1911 above. */
1912 free_temp_slots ();
1913
1914 emit_queue ();
1915 }
1916
1917 /* Warn if EXP contains any computations whose results are not used.
1918 Return 1 if a warning is printed; 0 otherwise. */
1919
1920 int
1921 warn_if_unused_value (exp)
1922 tree exp;
1923 {
1924 if (TREE_USED (exp))
1925 return 0;
1926
1927 switch (TREE_CODE (exp))
1928 {
1929 case PREINCREMENT_EXPR:
1930 case POSTINCREMENT_EXPR:
1931 case PREDECREMENT_EXPR:
1932 case POSTDECREMENT_EXPR:
1933 case MODIFY_EXPR:
1934 case INIT_EXPR:
1935 case TARGET_EXPR:
1936 case CALL_EXPR:
1937 case METHOD_CALL_EXPR:
1938 case RTL_EXPR:
1939 case TRY_CATCH_EXPR:
1940 case WITH_CLEANUP_EXPR:
1941 case EXIT_EXPR:
1942 /* We don't warn about COND_EXPR because it may be a useful
1943 construct if either arm contains a side effect. */
1944 case COND_EXPR:
1945 return 0;
1946
1947 case BIND_EXPR:
1948 /* For a binding, warn if no side effect within it. */
1949 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1950
1951 case SAVE_EXPR:
1952 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1953
1954 case TRUTH_ORIF_EXPR:
1955 case TRUTH_ANDIF_EXPR:
1956 /* In && or ||, warn if 2nd operand has no side effect. */
1957 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1958
1959 case COMPOUND_EXPR:
1960 if (TREE_NO_UNUSED_WARNING (exp))
1961 return 0;
1962 if (warn_if_unused_value (TREE_OPERAND (exp, 0)))
1963 return 1;
1964 /* Let people do `(foo (), 0)' without a warning. */
1965 if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
1966 return 0;
1967 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1968
1969 case NOP_EXPR:
1970 case CONVERT_EXPR:
1971 case NON_LVALUE_EXPR:
1972 /* Don't warn about values cast to void. */
1973 if (TREE_TYPE (exp) == void_type_node)
1974 return 0;
1975 /* Don't warn about conversions not explicit in the user's program. */
1976 if (TREE_NO_UNUSED_WARNING (exp))
1977 return 0;
1978 /* Assignment to a cast usually results in a cast of a modify.
1979 Don't complain about that. There can be an arbitrary number of
1980 casts before the modify, so we must loop until we find the first
1981 non-cast expression and then test to see if that is a modify. */
1982 {
1983 tree tem = TREE_OPERAND (exp, 0);
1984
1985 while (TREE_CODE (tem) == CONVERT_EXPR || TREE_CODE (tem) == NOP_EXPR)
1986 tem = TREE_OPERAND (tem, 0);
1987
1988 if (TREE_CODE (tem) == MODIFY_EXPR || TREE_CODE (tem) == INIT_EXPR
1989 || TREE_CODE (tem) == CALL_EXPR)
1990 return 0;
1991 }
1992 goto warn;
1993
1994 case INDIRECT_REF:
1995 /* Don't warn about automatic dereferencing of references, since
1996 the user cannot control it. */
1997 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE)
1998 return warn_if_unused_value (TREE_OPERAND (exp, 0));
1999 /* ... fall through ... */
2000
2001 default:
2002 /* Referencing a volatile value is a side effect, so don't warn. */
2003 if ((DECL_P (exp)
2004 || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r')
2005 && TREE_THIS_VOLATILE (exp))
2006 return 0;
2007
2008 /* If this is an expression which has no operands, there is no value
2009 to be unused. There are no such language-independent codes,
2010 but front ends may define such. */
2011 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'e'
2012 && TREE_CODE_LENGTH (TREE_CODE (exp)) == 0)
2013 return 0;
2014
2015 warn:
2016 warning_with_file_and_line (emit_filename, emit_lineno,
2017 "value computed is not used");
2018 return 1;
2019 }
2020 }
2021
2022 /* Clear out the memory of the last expression evaluated. */
2023
2024 void
2025 clear_last_expr ()
2026 {
2027 last_expr_type = 0;
2028 }
2029
2030 /* Begin a statement which will return a value.
2031 Return the RTL_EXPR for this statement expr.
2032 The caller must save that value and pass it to expand_end_stmt_expr. */
2033
2034 tree
2035 expand_start_stmt_expr ()
2036 {
2037 int momentary;
2038 tree t;
2039
2040 /* Make the RTL_EXPR node temporary, not momentary,
2041 so that rtl_expr_chain doesn't become garbage. */
2042 momentary = suspend_momentary ();
2043 t = make_node (RTL_EXPR);
2044 resume_momentary (momentary);
2045 do_pending_stack_adjust ();
2046 start_sequence_for_rtl_expr (t);
2047 NO_DEFER_POP;
2048 expr_stmts_for_value++;
2049 return t;
2050 }
2051
2052 /* Restore the previous state at the end of a statement that returns a value.
2053 Returns a tree node representing the statement's value and the
2054 insns to compute the value.
2055
2056 The nodes of that expression have been freed by now, so we cannot use them.
2057 But we don't want to do that anyway; the expression has already been
2058 evaluated and now we just want to use the value. So generate a RTL_EXPR
2059 with the proper type and RTL value.
2060
2061 If the last substatement was not an expression,
2062 return something with type `void'. */
2063
2064 tree
2065 expand_end_stmt_expr (t)
2066 tree t;
2067 {
2068 OK_DEFER_POP;
2069
2070 if (last_expr_type == 0)
2071 {
2072 last_expr_type = void_type_node;
2073 last_expr_value = const0_rtx;
2074 }
2075 else if (last_expr_value == 0)
2076 /* There are some cases where this can happen, such as when the
2077 statement is void type. */
2078 last_expr_value = const0_rtx;
2079 else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value))
2080 /* Remove any possible QUEUED. */
2081 last_expr_value = protect_from_queue (last_expr_value, 0);
2082
2083 emit_queue ();
2084
2085 TREE_TYPE (t) = last_expr_type;
2086 RTL_EXPR_RTL (t) = last_expr_value;
2087 RTL_EXPR_SEQUENCE (t) = get_insns ();
2088
2089 rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain);
2090
2091 end_sequence ();
2092
2093 /* Don't consider deleting this expr or containing exprs at tree level. */
2094 TREE_SIDE_EFFECTS (t) = 1;
2095 /* Propagate volatility of the actual RTL expr. */
2096 TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value);
2097
2098 last_expr_type = 0;
2099 expr_stmts_for_value--;
2100
2101 return t;
2102 }
2103 \f
2104 /* Generate RTL for the start of an if-then. COND is the expression
2105 whose truth should be tested.
2106
2107 If EXITFLAG is nonzero, this conditional is visible to
2108 `exit_something'. */
2109
2110 void
2111 expand_start_cond (cond, exitflag)
2112 tree cond;
2113 int exitflag;
2114 {
2115 struct nesting *thiscond = ALLOC_NESTING ();
2116
2117 /* Make an entry on cond_stack for the cond we are entering. */
2118
2119 thiscond->next = cond_stack;
2120 thiscond->all = nesting_stack;
2121 thiscond->depth = ++nesting_depth;
2122 thiscond->data.cond.next_label = gen_label_rtx ();
2123 /* Before we encounter an `else', we don't need a separate exit label
2124 unless there are supposed to be exit statements
2125 to exit this conditional. */
2126 thiscond->exit_label = exitflag ? gen_label_rtx () : 0;
2127 thiscond->data.cond.endif_label = thiscond->exit_label;
2128 cond_stack = thiscond;
2129 nesting_stack = thiscond;
2130
2131 do_jump (cond, thiscond->data.cond.next_label, NULL_RTX);
2132 }
2133
2134 /* Generate RTL between then-clause and the elseif-clause
2135 of an if-then-elseif-.... */
2136
2137 void
2138 expand_start_elseif (cond)
2139 tree cond;
2140 {
2141 if (cond_stack->data.cond.endif_label == 0)
2142 cond_stack->data.cond.endif_label = gen_label_rtx ();
2143 emit_jump (cond_stack->data.cond.endif_label);
2144 emit_label (cond_stack->data.cond.next_label);
2145 cond_stack->data.cond.next_label = gen_label_rtx ();
2146 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2147 }
2148
2149 /* Generate RTL between the then-clause and the else-clause
2150 of an if-then-else. */
2151
2152 void
2153 expand_start_else ()
2154 {
2155 if (cond_stack->data.cond.endif_label == 0)
2156 cond_stack->data.cond.endif_label = gen_label_rtx ();
2157
2158 emit_jump (cond_stack->data.cond.endif_label);
2159 emit_label (cond_stack->data.cond.next_label);
2160 cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */
2161 }
2162
2163 /* After calling expand_start_else, turn this "else" into an "else if"
2164 by providing another condition. */
2165
2166 void
2167 expand_elseif (cond)
2168 tree cond;
2169 {
2170 cond_stack->data.cond.next_label = gen_label_rtx ();
2171 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2172 }
2173
2174 /* Generate RTL for the end of an if-then.
2175 Pop the record for it off of cond_stack. */
2176
2177 void
2178 expand_end_cond ()
2179 {
2180 struct nesting *thiscond = cond_stack;
2181
2182 do_pending_stack_adjust ();
2183 if (thiscond->data.cond.next_label)
2184 emit_label (thiscond->data.cond.next_label);
2185 if (thiscond->data.cond.endif_label)
2186 emit_label (thiscond->data.cond.endif_label);
2187
2188 POPSTACK (cond_stack);
2189 last_expr_type = 0;
2190 }
2191
2192
2193 \f
2194 /* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this
2195 loop should be exited by `exit_something'. This is a loop for which
2196 `expand_continue' will jump to the top of the loop.
2197
2198 Make an entry on loop_stack to record the labels associated with
2199 this loop. */
2200
2201 struct nesting *
2202 expand_start_loop (exit_flag)
2203 int exit_flag;
2204 {
2205 register struct nesting *thisloop = ALLOC_NESTING ();
2206
2207 /* Make an entry on loop_stack for the loop we are entering. */
2208
2209 thisloop->next = loop_stack;
2210 thisloop->all = nesting_stack;
2211 thisloop->depth = ++nesting_depth;
2212 thisloop->data.loop.start_label = gen_label_rtx ();
2213 thisloop->data.loop.end_label = gen_label_rtx ();
2214 thisloop->data.loop.alt_end_label = 0;
2215 thisloop->data.loop.continue_label = thisloop->data.loop.start_label;
2216 thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0;
2217 loop_stack = thisloop;
2218 nesting_stack = thisloop;
2219
2220 do_pending_stack_adjust ();
2221 emit_queue ();
2222 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
2223 emit_label (thisloop->data.loop.start_label);
2224
2225 return thisloop;
2226 }
2227
2228 /* Like expand_start_loop but for a loop where the continuation point
2229 (for expand_continue_loop) will be specified explicitly. */
2230
2231 struct nesting *
2232 expand_start_loop_continue_elsewhere (exit_flag)
2233 int exit_flag;
2234 {
2235 struct nesting *thisloop = expand_start_loop (exit_flag);
2236 loop_stack->data.loop.continue_label = gen_label_rtx ();
2237 return thisloop;
2238 }
2239
2240 /* Specify the continuation point for a loop started with
2241 expand_start_loop_continue_elsewhere.
2242 Use this at the point in the code to which a continue statement
2243 should jump. */
2244
2245 void
2246 expand_loop_continue_here ()
2247 {
2248 do_pending_stack_adjust ();
2249 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
2250 emit_label (loop_stack->data.loop.continue_label);
2251 }
2252
2253 /* Finish a loop. Generate a jump back to the top and the loop-exit label.
2254 Pop the block off of loop_stack. */
2255
2256 void
2257 expand_end_loop ()
2258 {
2259 rtx start_label = loop_stack->data.loop.start_label;
2260 rtx insn = get_last_insn ();
2261 int needs_end_jump = 1;
2262
2263 /* Mark the continue-point at the top of the loop if none elsewhere. */
2264 if (start_label == loop_stack->data.loop.continue_label)
2265 emit_note_before (NOTE_INSN_LOOP_CONT, start_label);
2266
2267 do_pending_stack_adjust ();
2268
2269 /* If optimizing, perhaps reorder the loop.
2270 First, try to use a condjump near the end.
2271 expand_exit_loop_if_false ends loops with unconditional jumps,
2272 like this:
2273
2274 if (test) goto label;
2275 optional: cleanup
2276 goto loop_stack->data.loop.end_label
2277 barrier
2278 label:
2279
2280 If we find such a pattern, we can end the loop earlier. */
2281
2282 if (optimize
2283 && GET_CODE (insn) == CODE_LABEL
2284 && LABEL_NAME (insn) == NULL
2285 && GET_CODE (PREV_INSN (insn)) == BARRIER)
2286 {
2287 rtx label = insn;
2288 rtx jump = PREV_INSN (PREV_INSN (label));
2289
2290 if (GET_CODE (jump) == JUMP_INSN
2291 && GET_CODE (PATTERN (jump)) == SET
2292 && SET_DEST (PATTERN (jump)) == pc_rtx
2293 && GET_CODE (SET_SRC (PATTERN (jump))) == LABEL_REF
2294 && (XEXP (SET_SRC (PATTERN (jump)), 0)
2295 == loop_stack->data.loop.end_label))
2296 {
2297 rtx prev;
2298
2299 /* The test might be complex and reference LABEL multiple times,
2300 like the loop in loop_iterations to set vtop. To handle this,
2301 we move LABEL. */
2302 insn = PREV_INSN (label);
2303 reorder_insns (label, label, start_label);
2304
2305 for (prev = PREV_INSN (jump); ; prev = PREV_INSN (prev))
2306 {
2307 /* We ignore line number notes, but if we see any other note,
2308 in particular NOTE_INSN_BLOCK_*, NOTE_INSN_EH_REGION_*,
2309 NOTE_INSN_LOOP_*, we disable this optimization. */
2310 if (GET_CODE (prev) == NOTE)
2311 {
2312 if (NOTE_LINE_NUMBER (prev) < 0)
2313 break;
2314 continue;
2315 }
2316 if (GET_CODE (prev) == CODE_LABEL)
2317 break;
2318 if (GET_CODE (prev) == JUMP_INSN)
2319 {
2320 if (GET_CODE (PATTERN (prev)) == SET
2321 && SET_DEST (PATTERN (prev)) == pc_rtx
2322 && GET_CODE (SET_SRC (PATTERN (prev))) == IF_THEN_ELSE
2323 && (GET_CODE (XEXP (SET_SRC (PATTERN (prev)), 1))
2324 == LABEL_REF)
2325 && XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0) == label)
2326 {
2327 XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0)
2328 = start_label;
2329 emit_note_after (NOTE_INSN_LOOP_END, prev);
2330 needs_end_jump = 0;
2331 }
2332 break;
2333 }
2334 }
2335 }
2336 }
2337
2338 /* If the loop starts with a loop exit, roll that to the end where
2339 it will optimize together with the jump back.
2340
2341 We look for the conditional branch to the exit, except that once
2342 we find such a branch, we don't look past 30 instructions.
2343
2344 In more detail, if the loop presently looks like this (in pseudo-C):
2345
2346 start_label:
2347 if (test) goto end_label;
2348 body;
2349 goto start_label;
2350 end_label:
2351
2352 transform it to look like:
2353
2354 goto start_label;
2355 newstart_label:
2356 body;
2357 start_label:
2358 if (test) goto end_label;
2359 goto newstart_label;
2360 end_label:
2361
2362 Here, the `test' may actually consist of some reasonably complex
2363 code, terminating in a test. */
2364
2365 if (optimize
2366 && needs_end_jump
2367 &&
2368 ! (GET_CODE (insn) == JUMP_INSN
2369 && GET_CODE (PATTERN (insn)) == SET
2370 && SET_DEST (PATTERN (insn)) == pc_rtx
2371 && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE))
2372 {
2373 int eh_regions = 0;
2374 int num_insns = 0;
2375 rtx last_test_insn = NULL_RTX;
2376
2377 /* Scan insns from the top of the loop looking for a qualified
2378 conditional exit. */
2379 for (insn = NEXT_INSN (loop_stack->data.loop.start_label); insn;
2380 insn = NEXT_INSN (insn))
2381 {
2382 if (GET_CODE (insn) == NOTE)
2383 {
2384 if (optimize < 2
2385 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2386 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2387 /* The code that actually moves the exit test will
2388 carefully leave BLOCK notes in their original
2389 location. That means, however, that we can't debug
2390 the exit test itself. So, we refuse to move code
2391 containing BLOCK notes at low optimization levels. */
2392 break;
2393
2394 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2395 ++eh_regions;
2396 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
2397 {
2398 --eh_regions;
2399 if (eh_regions < 0)
2400 /* We've come to the end of an EH region, but
2401 never saw the beginning of that region. That
2402 means that an EH region begins before the top
2403 of the loop, and ends in the middle of it. The
2404 existence of such a situation violates a basic
2405 assumption in this code, since that would imply
2406 that even when EH_REGIONS is zero, we might
2407 move code out of an exception region. */
2408 abort ();
2409 }
2410
2411 /* We must not walk into a nested loop. */
2412 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2413 break;
2414
2415 /* We already know this INSN is a NOTE, so there's no
2416 point in looking at it to see if it's a JUMP. */
2417 continue;
2418 }
2419
2420 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN)
2421 num_insns++;
2422
2423 if (last_test_insn && num_insns > 30)
2424 break;
2425
2426 if (eh_regions > 0)
2427 /* We don't want to move a partial EH region. Consider:
2428
2429 while ( ( { try {
2430 if (cond ()) 0;
2431 else {
2432 bar();
2433 1;
2434 }
2435 } catch (...) {
2436 1;
2437 } )) {
2438 body;
2439 }
2440
2441 This isn't legal C++, but here's what it's supposed to
2442 mean: if cond() is true, stop looping. Otherwise,
2443 call bar, and keep looping. In addition, if cond
2444 throws an exception, catch it and keep looping. Such
2445 constructs are certainy legal in LISP.
2446
2447 We should not move the `if (cond()) 0' test since then
2448 the EH-region for the try-block would be broken up.
2449 (In this case we would the EH_BEG note for the `try'
2450 and `if cond()' but not the call to bar() or the
2451 EH_END note.)
2452
2453 So we don't look for tests within an EH region. */
2454 continue;
2455
2456 if (GET_CODE (insn) == JUMP_INSN
2457 && GET_CODE (PATTERN (insn)) == SET
2458 && SET_DEST (PATTERN (insn)) == pc_rtx)
2459 {
2460 /* This is indeed a jump. */
2461 rtx dest1 = NULL_RTX;
2462 rtx dest2 = NULL_RTX;
2463 rtx potential_last_test;
2464 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2465 {
2466 /* A conditional jump. */
2467 dest1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2468 dest2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2469 potential_last_test = insn;
2470 }
2471 else
2472 {
2473 /* An unconditional jump. */
2474 dest1 = SET_SRC (PATTERN (insn));
2475 /* Include the BARRIER after the JUMP. */
2476 potential_last_test = NEXT_INSN (insn);
2477 }
2478
2479 do {
2480 if (dest1 && GET_CODE (dest1) == LABEL_REF
2481 && ((XEXP (dest1, 0)
2482 == loop_stack->data.loop.alt_end_label)
2483 || (XEXP (dest1, 0)
2484 == loop_stack->data.loop.end_label)))
2485 {
2486 last_test_insn = potential_last_test;
2487 break;
2488 }
2489
2490 /* If this was a conditional jump, there may be
2491 another label at which we should look. */
2492 dest1 = dest2;
2493 dest2 = NULL_RTX;
2494 } while (dest1);
2495 }
2496 }
2497
2498 if (last_test_insn != 0 && last_test_insn != get_last_insn ())
2499 {
2500 /* We found one. Move everything from there up
2501 to the end of the loop, and add a jump into the loop
2502 to jump to there. */
2503 register rtx newstart_label = gen_label_rtx ();
2504 register rtx start_move = start_label;
2505 rtx next_insn;
2506
2507 /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note,
2508 then we want to move this note also. */
2509 if (GET_CODE (PREV_INSN (start_move)) == NOTE
2510 && (NOTE_LINE_NUMBER (PREV_INSN (start_move))
2511 == NOTE_INSN_LOOP_CONT))
2512 start_move = PREV_INSN (start_move);
2513
2514 emit_label_after (newstart_label, PREV_INSN (start_move));
2515
2516 /* Actually move the insns. Start at the beginning, and
2517 keep copying insns until we've copied the
2518 last_test_insn. */
2519 for (insn = start_move; insn; insn = next_insn)
2520 {
2521 /* Figure out which insn comes after this one. We have
2522 to do this before we move INSN. */
2523 if (insn == last_test_insn)
2524 /* We've moved all the insns. */
2525 next_insn = NULL_RTX;
2526 else
2527 next_insn = NEXT_INSN (insn);
2528
2529 if (GET_CODE (insn) == NOTE
2530 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2531 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2532 /* We don't want to move NOTE_INSN_BLOCK_BEGs or
2533 NOTE_INSN_BLOCK_ENDs because the correct generation
2534 of debugging information depends on these appearing
2535 in the same order in the RTL and in the tree
2536 structure, where they are represented as BLOCKs.
2537 So, we don't move block notes. Of course, moving
2538 the code inside the block is likely to make it
2539 impossible to debug the instructions in the exit
2540 test, but such is the price of optimization. */
2541 continue;
2542
2543 /* Move the INSN. */
2544 reorder_insns (insn, insn, get_last_insn ());
2545 }
2546
2547 emit_jump_insn_after (gen_jump (start_label),
2548 PREV_INSN (newstart_label));
2549 emit_barrier_after (PREV_INSN (newstart_label));
2550 start_label = newstart_label;
2551 }
2552 }
2553
2554 if (needs_end_jump)
2555 {
2556 emit_jump (start_label);
2557 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
2558 }
2559 emit_label (loop_stack->data.loop.end_label);
2560
2561 POPSTACK (loop_stack);
2562
2563 last_expr_type = 0;
2564 }
2565
2566 /* Generate a jump to the current loop's continue-point.
2567 This is usually the top of the loop, but may be specified
2568 explicitly elsewhere. If not currently inside a loop,
2569 return 0 and do nothing; caller will print an error message. */
2570
2571 int
2572 expand_continue_loop (whichloop)
2573 struct nesting *whichloop;
2574 {
2575 last_expr_type = 0;
2576 if (whichloop == 0)
2577 whichloop = loop_stack;
2578 if (whichloop == 0)
2579 return 0;
2580 expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label,
2581 NULL_RTX);
2582 return 1;
2583 }
2584
2585 /* Generate a jump to exit the current loop. If not currently inside a loop,
2586 return 0 and do nothing; caller will print an error message. */
2587
2588 int
2589 expand_exit_loop (whichloop)
2590 struct nesting *whichloop;
2591 {
2592 last_expr_type = 0;
2593 if (whichloop == 0)
2594 whichloop = loop_stack;
2595 if (whichloop == 0)
2596 return 0;
2597 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX);
2598 return 1;
2599 }
2600
2601 /* Generate a conditional jump to exit the current loop if COND
2602 evaluates to zero. If not currently inside a loop,
2603 return 0 and do nothing; caller will print an error message. */
2604
2605 int
2606 expand_exit_loop_if_false (whichloop, cond)
2607 struct nesting *whichloop;
2608 tree cond;
2609 {
2610 rtx label = gen_label_rtx ();
2611 rtx last_insn;
2612 last_expr_type = 0;
2613
2614 if (whichloop == 0)
2615 whichloop = loop_stack;
2616 if (whichloop == 0)
2617 return 0;
2618 /* In order to handle fixups, we actually create a conditional jump
2619 around a unconditional branch to exit the loop. If fixups are
2620 necessary, they go before the unconditional branch. */
2621
2622
2623 do_jump (cond, NULL_RTX, label);
2624 last_insn = get_last_insn ();
2625 if (GET_CODE (last_insn) == CODE_LABEL)
2626 whichloop->data.loop.alt_end_label = last_insn;
2627 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label,
2628 NULL_RTX);
2629 emit_label (label);
2630
2631 return 1;
2632 }
2633
2634 /* Return nonzero if the loop nest is empty. Else return zero. */
2635
2636 int
2637 stmt_loop_nest_empty ()
2638 {
2639 /* cfun->stmt can be NULL if we are building a call to get the
2640 EH context for a setjmp/longjmp EH target and the current
2641 function was a deferred inline function. */
2642 return (cfun->stmt == NULL || loop_stack == NULL);
2643 }
2644
2645 /* Return non-zero if we should preserve sub-expressions as separate
2646 pseudos. We never do so if we aren't optimizing. We always do so
2647 if -fexpensive-optimizations.
2648
2649 Otherwise, we only do so if we are in the "early" part of a loop. I.e.,
2650 the loop may still be a small one. */
2651
2652 int
2653 preserve_subexpressions_p ()
2654 {
2655 rtx insn;
2656
2657 if (flag_expensive_optimizations)
2658 return 1;
2659
2660 if (optimize == 0 || cfun == 0 || cfun->stmt == 0 || loop_stack == 0)
2661 return 0;
2662
2663 insn = get_last_insn_anywhere ();
2664
2665 return (insn
2666 && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label)
2667 < n_non_fixed_regs * 3));
2668
2669 }
2670
2671 /* Generate a jump to exit the current loop, conditional, binding contour
2672 or case statement. Not all such constructs are visible to this function,
2673 only those started with EXIT_FLAG nonzero. Individual languages use
2674 the EXIT_FLAG parameter to control which kinds of constructs you can
2675 exit this way.
2676
2677 If not currently inside anything that can be exited,
2678 return 0 and do nothing; caller will print an error message. */
2679
2680 int
2681 expand_exit_something ()
2682 {
2683 struct nesting *n;
2684 last_expr_type = 0;
2685 for (n = nesting_stack; n; n = n->all)
2686 if (n->exit_label != 0)
2687 {
2688 expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX);
2689 return 1;
2690 }
2691
2692 return 0;
2693 }
2694 \f
2695 /* Generate RTL to return from the current function, with no value.
2696 (That is, we do not do anything about returning any value.) */
2697
2698 void
2699 expand_null_return ()
2700 {
2701 struct nesting *block = block_stack;
2702 rtx last_insn = get_last_insn ();
2703
2704 /* If this function was declared to return a value, but we
2705 didn't, clobber the return registers so that they are not
2706 propogated live to the rest of the function. */
2707 clobber_return_register ();
2708
2709 /* Does any pending block have cleanups? */
2710 while (block && block->data.block.cleanups == 0)
2711 block = block->next;
2712
2713 /* If yes, use a goto to return, since that runs cleanups. */
2714
2715 expand_null_return_1 (last_insn, block != 0);
2716 }
2717
2718 /* Generate RTL to return from the current function, with value VAL. */
2719
2720 static void
2721 expand_value_return (val)
2722 rtx val;
2723 {
2724 struct nesting *block = block_stack;
2725 rtx last_insn = get_last_insn ();
2726 rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
2727
2728 /* Copy the value to the return location
2729 unless it's already there. */
2730
2731 if (return_reg != val)
2732 {
2733 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
2734 #ifdef PROMOTE_FUNCTION_RETURN
2735 int unsignedp = TREE_UNSIGNED (type);
2736 enum machine_mode old_mode
2737 = DECL_MODE (DECL_RESULT (current_function_decl));
2738 enum machine_mode mode
2739 = promote_mode (type, old_mode, &unsignedp, 1);
2740
2741 if (mode != old_mode)
2742 val = convert_modes (mode, old_mode, val, unsignedp);
2743 #endif
2744 if (GET_CODE (return_reg) == PARALLEL)
2745 emit_group_load (return_reg, val, int_size_in_bytes (type),
2746 TYPE_ALIGN (type));
2747 else
2748 emit_move_insn (return_reg, val);
2749 }
2750
2751 /* Does any pending block have cleanups? */
2752
2753 while (block && block->data.block.cleanups == 0)
2754 block = block->next;
2755
2756 /* If yes, use a goto to return, since that runs cleanups.
2757 Use LAST_INSN to put cleanups *before* the move insn emitted above. */
2758
2759 expand_null_return_1 (last_insn, block != 0);
2760 }
2761
2762 /* Output a return with no value. If LAST_INSN is nonzero,
2763 pretend that the return takes place after LAST_INSN.
2764 If USE_GOTO is nonzero then don't use a return instruction;
2765 go to the return label instead. This causes any cleanups
2766 of pending blocks to be executed normally. */
2767
2768 static void
2769 expand_null_return_1 (last_insn, use_goto)
2770 rtx last_insn;
2771 int use_goto;
2772 {
2773 rtx end_label = cleanup_label ? cleanup_label : return_label;
2774
2775 clear_pending_stack_adjust ();
2776 do_pending_stack_adjust ();
2777 last_expr_type = 0;
2778
2779 /* PCC-struct return always uses an epilogue. */
2780 if (current_function_returns_pcc_struct || use_goto)
2781 {
2782 if (end_label == 0)
2783 end_label = return_label = gen_label_rtx ();
2784 expand_goto_internal (NULL_TREE, end_label, last_insn);
2785 return;
2786 }
2787
2788 /* Otherwise output a simple return-insn if one is available,
2789 unless it won't do the job. */
2790 #ifdef HAVE_return
2791 if (HAVE_return && use_goto == 0 && cleanup_label == 0)
2792 {
2793 emit_jump_insn (gen_return ());
2794 emit_barrier ();
2795 return;
2796 }
2797 #endif
2798
2799 /* Otherwise jump to the epilogue. */
2800 expand_goto_internal (NULL_TREE, end_label, last_insn);
2801 }
2802 \f
2803 /* Generate RTL to evaluate the expression RETVAL and return it
2804 from the current function. */
2805
2806 void
2807 expand_return (retval)
2808 tree retval;
2809 {
2810 /* If there are any cleanups to be performed, then they will
2811 be inserted following LAST_INSN. It is desirable
2812 that the last_insn, for such purposes, should be the
2813 last insn before computing the return value. Otherwise, cleanups
2814 which call functions can clobber the return value. */
2815 /* ??? rms: I think that is erroneous, because in C++ it would
2816 run destructors on variables that might be used in the subsequent
2817 computation of the return value. */
2818 rtx last_insn = 0;
2819 rtx result_rtl = DECL_RTL (DECL_RESULT (current_function_decl));
2820 register rtx val = 0;
2821 #ifdef HAVE_return
2822 register rtx op0;
2823 #endif
2824 tree retval_rhs;
2825 int cleanups;
2826
2827 /* If function wants no value, give it none. */
2828 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
2829 {
2830 expand_expr (retval, NULL_RTX, VOIDmode, 0);
2831 emit_queue ();
2832 expand_null_return ();
2833 return;
2834 }
2835
2836 /* Are any cleanups needed? E.g. C++ destructors to be run? */
2837 /* This is not sufficient. We also need to watch for cleanups of the
2838 expression we are about to expand. Unfortunately, we cannot know
2839 if it has cleanups until we expand it, and we want to change how we
2840 expand it depending upon if we need cleanups. We can't win. */
2841 #if 0
2842 cleanups = any_pending_cleanups (1);
2843 #else
2844 cleanups = 1;
2845 #endif
2846
2847 if (TREE_CODE (retval) == RESULT_DECL)
2848 retval_rhs = retval;
2849 else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR)
2850 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
2851 retval_rhs = TREE_OPERAND (retval, 1);
2852 else if (TREE_TYPE (retval) == void_type_node)
2853 /* Recognize tail-recursive call to void function. */
2854 retval_rhs = retval;
2855 else
2856 retval_rhs = NULL_TREE;
2857
2858 /* Only use `last_insn' if there are cleanups which must be run. */
2859 if (cleanups || cleanup_label != 0)
2860 last_insn = get_last_insn ();
2861
2862 /* Distribute return down conditional expr if either of the sides
2863 may involve tail recursion (see test below). This enhances the number
2864 of tail recursions we see. Don't do this always since it can produce
2865 sub-optimal code in some cases and we distribute assignments into
2866 conditional expressions when it would help. */
2867
2868 if (optimize && retval_rhs != 0
2869 && frame_offset == 0
2870 && TREE_CODE (retval_rhs) == COND_EXPR
2871 && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR
2872 || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR))
2873 {
2874 rtx label = gen_label_rtx ();
2875 tree expr;
2876
2877 do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX);
2878 start_cleanup_deferral ();
2879 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
2880 DECL_RESULT (current_function_decl),
2881 TREE_OPERAND (retval_rhs, 1));
2882 TREE_SIDE_EFFECTS (expr) = 1;
2883 expand_return (expr);
2884 emit_label (label);
2885
2886 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
2887 DECL_RESULT (current_function_decl),
2888 TREE_OPERAND (retval_rhs, 2));
2889 TREE_SIDE_EFFECTS (expr) = 1;
2890 expand_return (expr);
2891 end_cleanup_deferral ();
2892 return;
2893 }
2894
2895 /* Attempt to optimize the call if it is tail recursive. */
2896 if (flag_optimize_sibling_calls
2897 && retval_rhs != NULL_TREE
2898 && frame_offset == 0
2899 && TREE_CODE (retval_rhs) == CALL_EXPR
2900 && TREE_CODE (TREE_OPERAND (retval_rhs, 0)) == ADDR_EXPR
2901 && (TREE_OPERAND (TREE_OPERAND (retval_rhs, 0), 0)
2902 == current_function_decl)
2903 && optimize_tail_recursion (TREE_OPERAND (retval_rhs, 1), last_insn))
2904 return;
2905
2906 #ifdef HAVE_return
2907 /* This optimization is safe if there are local cleanups
2908 because expand_null_return takes care of them.
2909 ??? I think it should also be safe when there is a cleanup label,
2910 because expand_null_return takes care of them, too.
2911 Any reason why not? */
2912 if (HAVE_return && cleanup_label == 0
2913 && ! current_function_returns_pcc_struct
2914 && BRANCH_COST <= 1)
2915 {
2916 /* If this is return x == y; then generate
2917 if (x == y) return 1; else return 0;
2918 if we can do it with explicit return insns and branches are cheap,
2919 but not if we have the corresponding scc insn. */
2920 int has_scc = 0;
2921 if (retval_rhs)
2922 switch (TREE_CODE (retval_rhs))
2923 {
2924 case EQ_EXPR:
2925 #ifdef HAVE_seq
2926 has_scc = HAVE_seq;
2927 #endif
2928 case NE_EXPR:
2929 #ifdef HAVE_sne
2930 has_scc = HAVE_sne;
2931 #endif
2932 case GT_EXPR:
2933 #ifdef HAVE_sgt
2934 has_scc = HAVE_sgt;
2935 #endif
2936 case GE_EXPR:
2937 #ifdef HAVE_sge
2938 has_scc = HAVE_sge;
2939 #endif
2940 case LT_EXPR:
2941 #ifdef HAVE_slt
2942 has_scc = HAVE_slt;
2943 #endif
2944 case LE_EXPR:
2945 #ifdef HAVE_sle
2946 has_scc = HAVE_sle;
2947 #endif
2948 case TRUTH_ANDIF_EXPR:
2949 case TRUTH_ORIF_EXPR:
2950 case TRUTH_AND_EXPR:
2951 case TRUTH_OR_EXPR:
2952 case TRUTH_NOT_EXPR:
2953 case TRUTH_XOR_EXPR:
2954 if (! has_scc)
2955 {
2956 op0 = gen_label_rtx ();
2957 jumpifnot (retval_rhs, op0);
2958 expand_value_return (const1_rtx);
2959 emit_label (op0);
2960 expand_value_return (const0_rtx);
2961 return;
2962 }
2963 break;
2964
2965 default:
2966 break;
2967 }
2968 }
2969 #endif /* HAVE_return */
2970
2971 /* If the result is an aggregate that is being returned in one (or more)
2972 registers, load the registers here. The compiler currently can't handle
2973 copying a BLKmode value into registers. We could put this code in a
2974 more general area (for use by everyone instead of just function
2975 call/return), but until this feature is generally usable it is kept here
2976 (and in expand_call). The value must go into a pseudo in case there
2977 are cleanups that will clobber the real return register. */
2978
2979 if (retval_rhs != 0
2980 && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode
2981 && GET_CODE (result_rtl) == REG)
2982 {
2983 int i;
2984 unsigned HOST_WIDE_INT bitpos, xbitpos;
2985 unsigned HOST_WIDE_INT big_endian_correction = 0;
2986 unsigned HOST_WIDE_INT bytes
2987 = int_size_in_bytes (TREE_TYPE (retval_rhs));
2988 int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2989 unsigned int bitsize
2990 = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)), BITS_PER_WORD);
2991 rtx *result_pseudos = (rtx *) alloca (sizeof (rtx) * n_regs);
2992 rtx result_reg, src = NULL_RTX, dst = NULL_RTX;
2993 rtx result_val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0);
2994 enum machine_mode tmpmode, result_reg_mode;
2995
2996 /* Structures whose size is not a multiple of a word are aligned
2997 to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
2998 machine, this means we must skip the empty high order bytes when
2999 calculating the bit offset. */
3000 if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD)
3001 big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
3002 * BITS_PER_UNIT));
3003
3004 /* Copy the structure BITSIZE bits at a time. */
3005 for (bitpos = 0, xbitpos = big_endian_correction;
3006 bitpos < bytes * BITS_PER_UNIT;
3007 bitpos += bitsize, xbitpos += bitsize)
3008 {
3009 /* We need a new destination pseudo each time xbitpos is
3010 on a word boundary and when xbitpos == big_endian_correction
3011 (the first time through). */
3012 if (xbitpos % BITS_PER_WORD == 0
3013 || xbitpos == big_endian_correction)
3014 {
3015 /* Generate an appropriate register. */
3016 dst = gen_reg_rtx (word_mode);
3017 result_pseudos[xbitpos / BITS_PER_WORD] = dst;
3018
3019 /* Clobber the destination before we move anything into it. */
3020 emit_insn (gen_rtx_CLOBBER (VOIDmode, dst));
3021 }
3022
3023 /* We need a new source operand each time bitpos is on a word
3024 boundary. */
3025 if (bitpos % BITS_PER_WORD == 0)
3026 src = operand_subword_force (result_val,
3027 bitpos / BITS_PER_WORD,
3028 BLKmode);
3029
3030 /* Use bitpos for the source extraction (left justified) and
3031 xbitpos for the destination store (right justified). */
3032 store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode,
3033 extract_bit_field (src, bitsize,
3034 bitpos % BITS_PER_WORD, 1,
3035 NULL_RTX, word_mode, word_mode,
3036 bitsize, BITS_PER_WORD),
3037 bitsize, BITS_PER_WORD);
3038 }
3039
3040 /* Find the smallest integer mode large enough to hold the
3041 entire structure and use that mode instead of BLKmode
3042 on the USE insn for the return register. */
3043 bytes = int_size_in_bytes (TREE_TYPE (retval_rhs));
3044 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3045 tmpmode != VOIDmode;
3046 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
3047 {
3048 /* Have we found a large enough mode? */
3049 if (GET_MODE_SIZE (tmpmode) >= bytes)
3050 break;
3051 }
3052
3053 /* No suitable mode found. */
3054 if (tmpmode == VOIDmode)
3055 abort ();
3056
3057 PUT_MODE (result_rtl, tmpmode);
3058
3059 if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode))
3060 result_reg_mode = word_mode;
3061 else
3062 result_reg_mode = tmpmode;
3063 result_reg = gen_reg_rtx (result_reg_mode);
3064
3065 emit_queue ();
3066 for (i = 0; i < n_regs; i++)
3067 emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode),
3068 result_pseudos[i]);
3069
3070 if (tmpmode != result_reg_mode)
3071 result_reg = gen_lowpart (tmpmode, result_reg);
3072
3073 expand_value_return (result_reg);
3074 }
3075 else if (cleanups
3076 && retval_rhs != 0
3077 && TREE_TYPE (retval_rhs) != void_type_node
3078 && (GET_CODE (result_rtl) == REG
3079 || (GET_CODE (result_rtl) == PARALLEL)))
3080 {
3081 /* Calculate the return value into a temporary (usually a pseudo
3082 reg). */
3083 val = assign_temp (TREE_TYPE (DECL_RESULT (current_function_decl)),
3084 0, 0, 1);
3085 val = expand_expr (retval_rhs, val, GET_MODE (val), 0);
3086 val = force_not_mem (val);
3087 emit_queue ();
3088 /* Return the calculated value, doing cleanups first. */
3089 expand_value_return (val);
3090 }
3091 else
3092 {
3093 /* No cleanups or no hard reg used;
3094 calculate value into hard return reg. */
3095 expand_expr (retval, const0_rtx, VOIDmode, 0);
3096 emit_queue ();
3097 expand_value_return (result_rtl);
3098 }
3099 }
3100
3101 /* Return 1 if the end of the generated RTX is not a barrier.
3102 This means code already compiled can drop through. */
3103
3104 int
3105 drop_through_at_end_p ()
3106 {
3107 rtx insn = get_last_insn ();
3108 while (insn && GET_CODE (insn) == NOTE)
3109 insn = PREV_INSN (insn);
3110 return insn && GET_CODE (insn) != BARRIER;
3111 }
3112 \f
3113 /* Attempt to optimize a potential tail recursion call into a goto.
3114 ARGUMENTS are the arguments to a CALL_EXPR; LAST_INSN indicates
3115 where to place the jump to the tail recursion label.
3116
3117 Return TRUE if the call was optimized into a goto. */
3118
3119 int
3120 optimize_tail_recursion (arguments, last_insn)
3121 tree arguments;
3122 rtx last_insn;
3123 {
3124 /* Finish checking validity, and if valid emit code to set the
3125 argument variables for the new call. */
3126 if (tail_recursion_args (arguments, DECL_ARGUMENTS (current_function_decl)))
3127 {
3128 if (tail_recursion_label == 0)
3129 {
3130 tail_recursion_label = gen_label_rtx ();
3131 emit_label_after (tail_recursion_label,
3132 tail_recursion_reentry);
3133 }
3134 emit_queue ();
3135 expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn);
3136 emit_barrier ();
3137 return 1;
3138 }
3139 return 0;
3140 }
3141
3142 /* Emit code to alter this function's formal parms for a tail-recursive call.
3143 ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs).
3144 FORMALS is the chain of decls of formals.
3145 Return 1 if this can be done;
3146 otherwise return 0 and do not emit any code. */
3147
3148 static int
3149 tail_recursion_args (actuals, formals)
3150 tree actuals, formals;
3151 {
3152 register tree a = actuals, f = formals;
3153 register int i;
3154 register rtx *argvec;
3155
3156 /* Check that number and types of actuals are compatible
3157 with the formals. This is not always true in valid C code.
3158 Also check that no formal needs to be addressable
3159 and that all formals are scalars. */
3160
3161 /* Also count the args. */
3162
3163 for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++)
3164 {
3165 if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (a)))
3166 != TYPE_MAIN_VARIANT (TREE_TYPE (f)))
3167 return 0;
3168 if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode)
3169 return 0;
3170 }
3171 if (a != 0 || f != 0)
3172 return 0;
3173
3174 /* Compute all the actuals. */
3175
3176 argvec = (rtx *) alloca (i * sizeof (rtx));
3177
3178 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3179 argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0);
3180
3181 /* Find which actual values refer to current values of previous formals.
3182 Copy each of them now, before any formal is changed. */
3183
3184 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3185 {
3186 int copy = 0;
3187 register int j;
3188 for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++)
3189 if (reg_mentioned_p (DECL_RTL (f), argvec[i]))
3190 { copy = 1; break; }
3191 if (copy)
3192 argvec[i] = copy_to_reg (argvec[i]);
3193 }
3194
3195 /* Store the values of the actuals into the formals. */
3196
3197 for (f = formals, a = actuals, i = 0; f;
3198 f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++)
3199 {
3200 if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i]))
3201 emit_move_insn (DECL_RTL (f), argvec[i]);
3202 else
3203 convert_move (DECL_RTL (f), argvec[i],
3204 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a))));
3205 }
3206
3207 free_temp_slots ();
3208 return 1;
3209 }
3210 \f
3211 /* Generate the RTL code for entering a binding contour.
3212 The variables are declared one by one, by calls to `expand_decl'.
3213
3214 FLAGS is a bitwise or of the following flags:
3215
3216 1 - Nonzero if this construct should be visible to
3217 `exit_something'.
3218
3219 2 - Nonzero if this contour does not require a
3220 NOTE_INSN_BLOCK_BEG note. Virtually all calls from
3221 language-independent code should set this flag because they
3222 will not create corresponding BLOCK nodes. (There should be
3223 a one-to-one correspondence between NOTE_INSN_BLOCK_BEG notes
3224 and BLOCKs.) If this flag is set, MARK_ENDS should be zero
3225 when expand_end_bindings is called.
3226
3227 If we are creating a NOTE_INSN_BLOCK_BEG note, a BLOCK may
3228 optionally be supplied. If so, it becomes the NOTE_BLOCK for the
3229 note. */
3230
3231 void
3232 expand_start_bindings_and_block (flags, block)
3233 int flags;
3234 tree block;
3235 {
3236 struct nesting *thisblock = ALLOC_NESTING ();
3237 rtx note;
3238 int exit_flag = ((flags & 1) != 0);
3239 int block_flag = ((flags & 2) == 0);
3240
3241 /* If a BLOCK is supplied, then the caller should be requesting a
3242 NOTE_INSN_BLOCK_BEG note. */
3243 if (!block_flag && block)
3244 abort ();
3245
3246 /* Create a note to mark the beginning of the block. */
3247 if (block_flag)
3248 {
3249 note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG);
3250 NOTE_BLOCK (note) = block;
3251 }
3252 else
3253 note = emit_note (NULL_PTR, NOTE_INSN_DELETED);
3254
3255 /* Make an entry on block_stack for the block we are entering. */
3256
3257 thisblock->next = block_stack;
3258 thisblock->all = nesting_stack;
3259 thisblock->depth = ++nesting_depth;
3260 thisblock->data.block.stack_level = 0;
3261 thisblock->data.block.cleanups = 0;
3262 thisblock->data.block.n_function_calls = 0;
3263 thisblock->data.block.exception_region = 0;
3264 thisblock->data.block.block_target_temp_slot_level = target_temp_slot_level;
3265
3266 thisblock->data.block.conditional_code = 0;
3267 thisblock->data.block.last_unconditional_cleanup = note;
3268 /* When we insert instructions after the last unconditional cleanup,
3269 we don't adjust last_insn. That means that a later add_insn will
3270 clobber the instructions we've just added. The easiest way to
3271 fix this is to just insert another instruction here, so that the
3272 instructions inserted after the last unconditional cleanup are
3273 never the last instruction. */
3274 emit_note (NULL_PTR, NOTE_INSN_DELETED);
3275 thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
3276
3277 if (block_stack
3278 && !(block_stack->data.block.cleanups == NULL_TREE
3279 && block_stack->data.block.outer_cleanups == NULL_TREE))
3280 thisblock->data.block.outer_cleanups
3281 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
3282 block_stack->data.block.outer_cleanups);
3283 else
3284 thisblock->data.block.outer_cleanups = 0;
3285 thisblock->data.block.label_chain = 0;
3286 thisblock->data.block.innermost_stack_block = stack_block_stack;
3287 thisblock->data.block.first_insn = note;
3288 thisblock->data.block.block_start_count = ++current_block_start_count;
3289 thisblock->exit_label = exit_flag ? gen_label_rtx () : 0;
3290 block_stack = thisblock;
3291 nesting_stack = thisblock;
3292
3293 /* Make a new level for allocating stack slots. */
3294 push_temp_slots ();
3295 }
3296
3297 /* Specify the scope of temporaries created by TARGET_EXPRs. Similar
3298 to CLEANUP_POINT_EXPR, but handles cases when a series of calls to
3299 expand_expr are made. After we end the region, we know that all
3300 space for all temporaries that were created by TARGET_EXPRs will be
3301 destroyed and their space freed for reuse. */
3302
3303 void
3304 expand_start_target_temps ()
3305 {
3306 /* This is so that even if the result is preserved, the space
3307 allocated will be freed, as we know that it is no longer in use. */
3308 push_temp_slots ();
3309
3310 /* Start a new binding layer that will keep track of all cleanup
3311 actions to be performed. */
3312 expand_start_bindings (2);
3313
3314 target_temp_slot_level = temp_slot_level;
3315 }
3316
3317 void
3318 expand_end_target_temps ()
3319 {
3320 expand_end_bindings (NULL_TREE, 0, 0);
3321
3322 /* This is so that even if the result is preserved, the space
3323 allocated will be freed, as we know that it is no longer in use. */
3324 pop_temp_slots ();
3325 }
3326
3327 /* Given a pointer to a BLOCK node return non-zero if (and only if) the node
3328 in question represents the outermost pair of curly braces (i.e. the "body
3329 block") of a function or method.
3330
3331 For any BLOCK node representing a "body block" of a function or method, the
3332 BLOCK_SUPERCONTEXT of the node will point to another BLOCK node which
3333 represents the outermost (function) scope for the function or method (i.e.
3334 the one which includes the formal parameters). The BLOCK_SUPERCONTEXT of
3335 *that* node in turn will point to the relevant FUNCTION_DECL node. */
3336
3337 int
3338 is_body_block (stmt)
3339 register tree stmt;
3340 {
3341 if (TREE_CODE (stmt) == BLOCK)
3342 {
3343 tree parent = BLOCK_SUPERCONTEXT (stmt);
3344
3345 if (parent && TREE_CODE (parent) == BLOCK)
3346 {
3347 tree grandparent = BLOCK_SUPERCONTEXT (parent);
3348
3349 if (grandparent && TREE_CODE (grandparent) == FUNCTION_DECL)
3350 return 1;
3351 }
3352 }
3353
3354 return 0;
3355 }
3356
3357 /* Mark top block of block_stack as an implicit binding for an
3358 exception region. This is used to prevent infinite recursion when
3359 ending a binding with expand_end_bindings. It is only ever called
3360 by expand_eh_region_start, as that it the only way to create a
3361 block stack for a exception region. */
3362
3363 void
3364 mark_block_as_eh_region ()
3365 {
3366 block_stack->data.block.exception_region = 1;
3367 if (block_stack->next
3368 && block_stack->next->data.block.conditional_code)
3369 {
3370 block_stack->data.block.conditional_code
3371 = block_stack->next->data.block.conditional_code;
3372 block_stack->data.block.last_unconditional_cleanup
3373 = block_stack->next->data.block.last_unconditional_cleanup;
3374 block_stack->data.block.cleanup_ptr
3375 = block_stack->next->data.block.cleanup_ptr;
3376 }
3377 }
3378
3379 /* True if we are currently emitting insns in an area of output code
3380 that is controlled by a conditional expression. This is used by
3381 the cleanup handling code to generate conditional cleanup actions. */
3382
3383 int
3384 conditional_context ()
3385 {
3386 return block_stack && block_stack->data.block.conditional_code;
3387 }
3388
3389 /* Mark top block of block_stack as not for an implicit binding for an
3390 exception region. This is only ever done by expand_eh_region_end
3391 to let expand_end_bindings know that it is being called explicitly
3392 to end the binding layer for just the binding layer associated with
3393 the exception region, otherwise expand_end_bindings would try and
3394 end all implicit binding layers for exceptions regions, and then
3395 one normal binding layer. */
3396
3397 void
3398 mark_block_as_not_eh_region ()
3399 {
3400 block_stack->data.block.exception_region = 0;
3401 }
3402
3403 /* True if the top block of block_stack was marked as for an exception
3404 region by mark_block_as_eh_region. */
3405
3406 int
3407 is_eh_region ()
3408 {
3409 return cfun && block_stack && block_stack->data.block.exception_region;
3410 }
3411
3412 /* Emit a handler label for a nonlocal goto handler.
3413 Also emit code to store the handler label in SLOT before BEFORE_INSN. */
3414
3415 static rtx
3416 expand_nl_handler_label (slot, before_insn)
3417 rtx slot, before_insn;
3418 {
3419 rtx insns;
3420 rtx handler_label = gen_label_rtx ();
3421
3422 /* Don't let jump_optimize delete the handler. */
3423 LABEL_PRESERVE_P (handler_label) = 1;
3424
3425 start_sequence ();
3426 emit_move_insn (slot, gen_rtx_LABEL_REF (Pmode, handler_label));
3427 insns = get_insns ();
3428 end_sequence ();
3429 emit_insns_before (insns, before_insn);
3430
3431 emit_label (handler_label);
3432
3433 return handler_label;
3434 }
3435
3436 /* Emit code to restore vital registers at the beginning of a nonlocal goto
3437 handler. */
3438 static void
3439 expand_nl_goto_receiver ()
3440 {
3441 #ifdef HAVE_nonlocal_goto
3442 if (! HAVE_nonlocal_goto)
3443 #endif
3444 /* First adjust our frame pointer to its actual value. It was
3445 previously set to the start of the virtual area corresponding to
3446 the stacked variables when we branched here and now needs to be
3447 adjusted to the actual hardware fp value.
3448
3449 Assignments are to virtual registers are converted by
3450 instantiate_virtual_regs into the corresponding assignment
3451 to the underlying register (fp in this case) that makes
3452 the original assignment true.
3453 So the following insn will actually be
3454 decrementing fp by STARTING_FRAME_OFFSET. */
3455 emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
3456
3457 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3458 if (fixed_regs[ARG_POINTER_REGNUM])
3459 {
3460 #ifdef ELIMINABLE_REGS
3461 /* If the argument pointer can be eliminated in favor of the
3462 frame pointer, we don't need to restore it. We assume here
3463 that if such an elimination is present, it can always be used.
3464 This is the case on all known machines; if we don't make this
3465 assumption, we do unnecessary saving on many machines. */
3466 static struct elims {int from, to;} elim_regs[] = ELIMINABLE_REGS;
3467 size_t i;
3468
3469 for (i = 0; i < sizeof elim_regs / sizeof elim_regs[0]; i++)
3470 if (elim_regs[i].from == ARG_POINTER_REGNUM
3471 && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
3472 break;
3473
3474 if (i == sizeof elim_regs / sizeof elim_regs [0])
3475 #endif
3476 {
3477 /* Now restore our arg pointer from the address at which it
3478 was saved in our stack frame.
3479 If there hasn't be space allocated for it yet, make
3480 some now. */
3481 if (arg_pointer_save_area == 0)
3482 arg_pointer_save_area
3483 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
3484 emit_move_insn (virtual_incoming_args_rtx,
3485 /* We need a pseudo here, or else
3486 instantiate_virtual_regs_1 complains. */
3487 copy_to_reg (arg_pointer_save_area));
3488 }
3489 }
3490 #endif
3491
3492 #ifdef HAVE_nonlocal_goto_receiver
3493 if (HAVE_nonlocal_goto_receiver)
3494 emit_insn (gen_nonlocal_goto_receiver ());
3495 #endif
3496 }
3497
3498 /* Make handlers for nonlocal gotos taking place in the function calls in
3499 block THISBLOCK. */
3500
3501 static void
3502 expand_nl_goto_receivers (thisblock)
3503 struct nesting *thisblock;
3504 {
3505 tree link;
3506 rtx afterward = gen_label_rtx ();
3507 rtx insns, slot;
3508 rtx label_list;
3509 int any_invalid;
3510
3511 /* Record the handler address in the stack slot for that purpose,
3512 during this block, saving and restoring the outer value. */
3513 if (thisblock->next != 0)
3514 for (slot = nonlocal_goto_handler_slots; slot; slot = XEXP (slot, 1))
3515 {
3516 rtx save_receiver = gen_reg_rtx (Pmode);
3517 emit_move_insn (XEXP (slot, 0), save_receiver);
3518
3519 start_sequence ();
3520 emit_move_insn (save_receiver, XEXP (slot, 0));
3521 insns = get_insns ();
3522 end_sequence ();
3523 emit_insns_before (insns, thisblock->data.block.first_insn);
3524 }
3525
3526 /* Jump around the handlers; they run only when specially invoked. */
3527 emit_jump (afterward);
3528
3529 /* Make a separate handler for each label. */
3530 link = nonlocal_labels;
3531 slot = nonlocal_goto_handler_slots;
3532 label_list = NULL_RTX;
3533 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3534 /* Skip any labels we shouldn't be able to jump to from here,
3535 we generate one special handler for all of them below which just calls
3536 abort. */
3537 if (! DECL_TOO_LATE (TREE_VALUE (link)))
3538 {
3539 rtx lab;
3540 lab = expand_nl_handler_label (XEXP (slot, 0),
3541 thisblock->data.block.first_insn);
3542 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3543
3544 expand_nl_goto_receiver ();
3545
3546 /* Jump to the "real" nonlocal label. */
3547 expand_goto (TREE_VALUE (link));
3548 }
3549
3550 /* A second pass over all nonlocal labels; this time we handle those
3551 we should not be able to jump to at this point. */
3552 link = nonlocal_labels;
3553 slot = nonlocal_goto_handler_slots;
3554 any_invalid = 0;
3555 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3556 if (DECL_TOO_LATE (TREE_VALUE (link)))
3557 {
3558 rtx lab;
3559 lab = expand_nl_handler_label (XEXP (slot, 0),
3560 thisblock->data.block.first_insn);
3561 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3562 any_invalid = 1;
3563 }
3564
3565 if (any_invalid)
3566 {
3567 expand_nl_goto_receiver ();
3568 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "abort"), 0,
3569 VOIDmode, 0);
3570 emit_barrier ();
3571 }
3572
3573 nonlocal_goto_handler_labels = label_list;
3574 emit_label (afterward);
3575 }
3576
3577 /* Warn about any unused VARS (which may contain nodes other than
3578 VAR_DECLs, but such nodes are ignored). The nodes are connected
3579 via the TREE_CHAIN field. */
3580
3581 void
3582 warn_about_unused_variables (vars)
3583 tree vars;
3584 {
3585 tree decl;
3586
3587 if (warn_unused_variable)
3588 for (decl = vars; decl; decl = TREE_CHAIN (decl))
3589 if (TREE_CODE (decl) == VAR_DECL
3590 && ! TREE_USED (decl)
3591 && ! DECL_IN_SYSTEM_HEADER (decl)
3592 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
3593 warning_with_decl (decl, "unused variable `%s'");
3594 }
3595
3596 /* Generate RTL code to terminate a binding contour.
3597
3598 VARS is the chain of VAR_DECL nodes for the variables bound in this
3599 contour. There may actually be other nodes in this chain, but any
3600 nodes other than VAR_DECLS are ignored.
3601
3602 MARK_ENDS is nonzero if we should put a note at the beginning
3603 and end of this binding contour.
3604
3605 DONT_JUMP_IN is nonzero if it is not valid to jump into this contour.
3606 (That is true automatically if the contour has a saved stack level.) */
3607
3608 void
3609 expand_end_bindings (vars, mark_ends, dont_jump_in)
3610 tree vars;
3611 int mark_ends;
3612 int dont_jump_in;
3613 {
3614 register struct nesting *thisblock;
3615
3616 while (block_stack->data.block.exception_region)
3617 {
3618 /* Because we don't need or want a new temporary level and
3619 because we didn't create one in expand_eh_region_start,
3620 create a fake one now to avoid removing one in
3621 expand_end_bindings. */
3622 push_temp_slots ();
3623
3624 block_stack->data.block.exception_region = 0;
3625
3626 expand_end_bindings (NULL_TREE, 0, 0);
3627 }
3628
3629 /* Since expand_eh_region_start does an expand_start_bindings, we
3630 have to first end all the bindings that were created by
3631 expand_eh_region_start. */
3632
3633 thisblock = block_stack;
3634
3635 /* If any of the variables in this scope were not used, warn the
3636 user. */
3637 warn_about_unused_variables (vars);
3638
3639 if (thisblock->exit_label)
3640 {
3641 do_pending_stack_adjust ();
3642 emit_label (thisblock->exit_label);
3643 }
3644
3645 /* If necessary, make handlers for nonlocal gotos taking
3646 place in the function calls in this block. */
3647 if (function_call_count != thisblock->data.block.n_function_calls
3648 && nonlocal_labels
3649 /* Make handler for outermost block
3650 if there were any nonlocal gotos to this function. */
3651 && (thisblock->next == 0 ? current_function_has_nonlocal_label
3652 /* Make handler for inner block if it has something
3653 special to do when you jump out of it. */
3654 : (thisblock->data.block.cleanups != 0
3655 || thisblock->data.block.stack_level != 0)))
3656 expand_nl_goto_receivers (thisblock);
3657
3658 /* Don't allow jumping into a block that has a stack level.
3659 Cleanups are allowed, though. */
3660 if (dont_jump_in
3661 || thisblock->data.block.stack_level != 0)
3662 {
3663 struct label_chain *chain;
3664
3665 /* Any labels in this block are no longer valid to go to.
3666 Mark them to cause an error message. */
3667 for (chain = thisblock->data.block.label_chain; chain; chain = chain->next)
3668 {
3669 DECL_TOO_LATE (chain->label) = 1;
3670 /* If any goto without a fixup came to this label,
3671 that must be an error, because gotos without fixups
3672 come from outside all saved stack-levels. */
3673 if (TREE_ADDRESSABLE (chain->label))
3674 error_with_decl (chain->label,
3675 "label `%s' used before containing binding contour");
3676 }
3677 }
3678
3679 /* Restore stack level in effect before the block
3680 (only if variable-size objects allocated). */
3681 /* Perform any cleanups associated with the block. */
3682
3683 if (thisblock->data.block.stack_level != 0
3684 || thisblock->data.block.cleanups != 0)
3685 {
3686 int reachable;
3687 rtx insn;
3688
3689 /* Don't let cleanups affect ({...}) constructs. */
3690 int old_expr_stmts_for_value = expr_stmts_for_value;
3691 rtx old_last_expr_value = last_expr_value;
3692 tree old_last_expr_type = last_expr_type;
3693 expr_stmts_for_value = 0;
3694
3695 /* Only clean up here if this point can actually be reached. */
3696 insn = get_last_insn ();
3697 if (GET_CODE (insn) == NOTE)
3698 insn = prev_nonnote_insn (insn);
3699 reachable = (! insn || GET_CODE (insn) != BARRIER);
3700
3701 /* Do the cleanups. */
3702 expand_cleanups (thisblock->data.block.cleanups, NULL_TREE, 0, reachable);
3703 if (reachable)
3704 do_pending_stack_adjust ();
3705
3706 expr_stmts_for_value = old_expr_stmts_for_value;
3707 last_expr_value = old_last_expr_value;
3708 last_expr_type = old_last_expr_type;
3709
3710 /* Restore the stack level. */
3711
3712 if (reachable && thisblock->data.block.stack_level != 0)
3713 {
3714 emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3715 thisblock->data.block.stack_level, NULL_RTX);
3716 if (nonlocal_goto_handler_slots != 0)
3717 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level,
3718 NULL_RTX);
3719 }
3720
3721 /* Any gotos out of this block must also do these things.
3722 Also report any gotos with fixups that came to labels in this
3723 level. */
3724 fixup_gotos (thisblock,
3725 thisblock->data.block.stack_level,
3726 thisblock->data.block.cleanups,
3727 thisblock->data.block.first_insn,
3728 dont_jump_in);
3729 }
3730
3731 /* Mark the beginning and end of the scope if requested.
3732 We do this now, after running cleanups on the variables
3733 just going out of scope, so they are in scope for their cleanups. */
3734
3735 if (mark_ends)
3736 {
3737 rtx note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END);
3738 NOTE_BLOCK (note) = NOTE_BLOCK (thisblock->data.block.first_insn);
3739 }
3740 else
3741 /* Get rid of the beginning-mark if we don't make an end-mark. */
3742 NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED;
3743
3744 /* Restore the temporary level of TARGET_EXPRs. */
3745 target_temp_slot_level = thisblock->data.block.block_target_temp_slot_level;
3746
3747 /* Restore block_stack level for containing block. */
3748
3749 stack_block_stack = thisblock->data.block.innermost_stack_block;
3750 POPSTACK (block_stack);
3751
3752 /* Pop the stack slot nesting and free any slots at this level. */
3753 pop_temp_slots ();
3754 }
3755 \f
3756 /* Generate RTL for the automatic variable declaration DECL.
3757 (Other kinds of declarations are simply ignored if seen here.) */
3758
3759 void
3760 expand_decl (decl)
3761 register tree decl;
3762 {
3763 struct nesting *thisblock;
3764 tree type;
3765
3766 type = TREE_TYPE (decl);
3767
3768 /* Only automatic variables need any expansion done.
3769 Static and external variables, and external functions,
3770 will be handled by `assemble_variable' (called from finish_decl).
3771 TYPE_DECL and CONST_DECL require nothing.
3772 PARM_DECLs are handled in `assign_parms'. */
3773
3774 if (TREE_CODE (decl) != VAR_DECL)
3775 return;
3776 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
3777 return;
3778
3779 thisblock = block_stack;
3780
3781 /* Create the RTL representation for the variable. */
3782
3783 if (type == error_mark_node)
3784 DECL_RTL (decl) = gen_rtx_MEM (BLKmode, const0_rtx);
3785 else if (DECL_SIZE (decl) == 0)
3786 /* Variable with incomplete type. */
3787 {
3788 if (DECL_INITIAL (decl) == 0)
3789 /* Error message was already done; now avoid a crash. */
3790 DECL_RTL (decl) = assign_stack_temp (DECL_MODE (decl), 0, 1);
3791 else
3792 /* An initializer is going to decide the size of this array.
3793 Until we know the size, represent its address with a reg. */
3794 DECL_RTL (decl) = gen_rtx_MEM (BLKmode, gen_reg_rtx (Pmode));
3795
3796 set_mem_attributes (DECL_RTL (decl), decl, 1);
3797 }
3798 else if (DECL_MODE (decl) != BLKmode
3799 /* If -ffloat-store, don't put explicit float vars
3800 into regs. */
3801 && !(flag_float_store
3802 && TREE_CODE (type) == REAL_TYPE)
3803 && ! TREE_THIS_VOLATILE (decl)
3804 && ! TREE_ADDRESSABLE (decl)
3805 && (DECL_REGISTER (decl) || optimize)
3806 /* if -fcheck-memory-usage, check all variables. */
3807 && ! current_function_check_memory_usage)
3808 {
3809 /* Automatic variable that can go in a register. */
3810 int unsignedp = TREE_UNSIGNED (type);
3811 enum machine_mode reg_mode
3812 = promote_mode (type, DECL_MODE (decl), &unsignedp, 0);
3813
3814 DECL_RTL (decl) = gen_reg_rtx (reg_mode);
3815 mark_user_reg (DECL_RTL (decl));
3816
3817 if (POINTER_TYPE_P (type))
3818 mark_reg_pointer (DECL_RTL (decl),
3819 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))));
3820
3821 if (TREE_READONLY (decl))
3822 RTX_UNCHANGING_P (DECL_RTL (decl)) = 1;
3823 }
3824
3825 else if (TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST
3826 && ! (flag_stack_check && ! STACK_CHECK_BUILTIN
3827 && 0 < compare_tree_int (DECL_SIZE_UNIT (decl),
3828 STACK_CHECK_MAX_VAR_SIZE)))
3829 {
3830 /* Variable of fixed size that goes on the stack. */
3831 rtx oldaddr = 0;
3832 rtx addr;
3833
3834 /* If we previously made RTL for this decl, it must be an array
3835 whose size was determined by the initializer.
3836 The old address was a register; set that register now
3837 to the proper address. */
3838 if (DECL_RTL (decl) != 0)
3839 {
3840 if (GET_CODE (DECL_RTL (decl)) != MEM
3841 || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG)
3842 abort ();
3843 oldaddr = XEXP (DECL_RTL (decl), 0);
3844 }
3845
3846 DECL_RTL (decl) = assign_temp (TREE_TYPE (decl), 1, 1, 1);
3847
3848 /* Set alignment we actually gave this decl. */
3849 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
3850 : GET_MODE_BITSIZE (DECL_MODE (decl)));
3851
3852 if (oldaddr)
3853 {
3854 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
3855 if (addr != oldaddr)
3856 emit_move_insn (oldaddr, addr);
3857 }
3858 }
3859 else
3860 /* Dynamic-size object: must push space on the stack. */
3861 {
3862 rtx address, size;
3863
3864 /* Record the stack pointer on entry to block, if have
3865 not already done so. */
3866 if (thisblock->data.block.stack_level == 0)
3867 {
3868 do_pending_stack_adjust ();
3869 emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3870 &thisblock->data.block.stack_level,
3871 thisblock->data.block.first_insn);
3872 stack_block_stack = thisblock;
3873 }
3874
3875 /* In function-at-a-time mode, variable_size doesn't expand this,
3876 so do it now. */
3877 if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
3878 expand_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)),
3879 const0_rtx, VOIDmode, 0);
3880
3881 /* Compute the variable's size, in bytes. */
3882 size = expand_expr (DECL_SIZE_UNIT (decl), NULL_RTX, VOIDmode, 0);
3883 free_temp_slots ();
3884
3885 /* Allocate space on the stack for the variable. Note that
3886 DECL_ALIGN says how the variable is to be aligned and we
3887 cannot use it to conclude anything about the alignment of
3888 the size. */
3889 address = allocate_dynamic_stack_space (size, NULL_RTX,
3890 TYPE_ALIGN (TREE_TYPE (decl)));
3891
3892 /* Reference the variable indirect through that rtx. */
3893 DECL_RTL (decl) = gen_rtx_MEM (DECL_MODE (decl), address);
3894
3895 set_mem_attributes (DECL_RTL (decl), decl, 1);
3896
3897 /* Indicate the alignment we actually gave this variable. */
3898 #ifdef STACK_BOUNDARY
3899 DECL_ALIGN (decl) = STACK_BOUNDARY;
3900 #else
3901 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
3902 #endif
3903 }
3904 }
3905 \f
3906 /* Emit code to perform the initialization of a declaration DECL. */
3907
3908 void
3909 expand_decl_init (decl)
3910 tree decl;
3911 {
3912 int was_used = TREE_USED (decl);
3913
3914 /* If this is a CONST_DECL, we don't have to generate any code, but
3915 if DECL_INITIAL is a constant, call expand_expr to force TREE_CST_RTL
3916 to be set while in the obstack containing the constant. If we don't
3917 do this, we can lose if we have functions nested three deep and the middle
3918 function makes a CONST_DECL whose DECL_INITIAL is a STRING_CST while
3919 the innermost function is the first to expand that STRING_CST. */
3920 if (TREE_CODE (decl) == CONST_DECL)
3921 {
3922 if (DECL_INITIAL (decl) && TREE_CONSTANT (DECL_INITIAL (decl)))
3923 expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
3924 EXPAND_INITIALIZER);
3925 return;
3926 }
3927
3928 if (TREE_STATIC (decl))
3929 return;
3930
3931 /* Compute and store the initial value now. */
3932
3933 if (DECL_INITIAL (decl) == error_mark_node)
3934 {
3935 enum tree_code code = TREE_CODE (TREE_TYPE (decl));
3936
3937 if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE
3938 || code == POINTER_TYPE || code == REFERENCE_TYPE)
3939 expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node),
3940 0, 0);
3941 emit_queue ();
3942 }
3943 else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST)
3944 {
3945 emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl));
3946 expand_assignment (decl, DECL_INITIAL (decl), 0, 0);
3947 emit_queue ();
3948 }
3949
3950 /* Don't let the initialization count as "using" the variable. */
3951 TREE_USED (decl) = was_used;
3952
3953 /* Free any temporaries we made while initializing the decl. */
3954 preserve_temp_slots (NULL_RTX);
3955 free_temp_slots ();
3956 }
3957
3958 /* CLEANUP is an expression to be executed at exit from this binding contour;
3959 for example, in C++, it might call the destructor for this variable.
3960
3961 We wrap CLEANUP in an UNSAVE_EXPR node, so that we can expand the
3962 CLEANUP multiple times, and have the correct semantics. This
3963 happens in exception handling, for gotos, returns, breaks that
3964 leave the current scope.
3965
3966 If CLEANUP is nonzero and DECL is zero, we record a cleanup
3967 that is not associated with any particular variable. */
3968
3969 int
3970 expand_decl_cleanup (decl, cleanup)
3971 tree decl, cleanup;
3972 {
3973 struct nesting *thisblock;
3974
3975 /* Error if we are not in any block. */
3976 if (cfun == 0 || block_stack == 0)
3977 return 0;
3978
3979 thisblock = block_stack;
3980
3981 /* Record the cleanup if there is one. */
3982
3983 if (cleanup != 0)
3984 {
3985 tree t;
3986 rtx seq;
3987 tree *cleanups = &thisblock->data.block.cleanups;
3988 int cond_context = conditional_context ();
3989
3990 if (cond_context)
3991 {
3992 rtx flag = gen_reg_rtx (word_mode);
3993 rtx set_flag_0;
3994 tree cond;
3995
3996 start_sequence ();
3997 emit_move_insn (flag, const0_rtx);
3998 set_flag_0 = get_insns ();
3999 end_sequence ();
4000
4001 thisblock->data.block.last_unconditional_cleanup
4002 = emit_insns_after (set_flag_0,
4003 thisblock->data.block.last_unconditional_cleanup);
4004
4005 emit_move_insn (flag, const1_rtx);
4006
4007 /* All cleanups must be on the function_obstack. */
4008 push_obstacks_nochange ();
4009 resume_temporary_allocation ();
4010
4011 cond = build_decl (VAR_DECL, NULL_TREE, type_for_mode (word_mode, 1));
4012 DECL_RTL (cond) = flag;
4013
4014 /* Conditionalize the cleanup. */
4015 cleanup = build (COND_EXPR, void_type_node,
4016 truthvalue_conversion (cond),
4017 cleanup, integer_zero_node);
4018 cleanup = fold (cleanup);
4019
4020 pop_obstacks ();
4021
4022 cleanups = thisblock->data.block.cleanup_ptr;
4023 }
4024
4025 /* All cleanups must be on the function_obstack. */
4026 push_obstacks_nochange ();
4027 resume_temporary_allocation ();
4028 cleanup = unsave_expr (cleanup);
4029 pop_obstacks ();
4030
4031 t = *cleanups = temp_tree_cons (decl, cleanup, *cleanups);
4032
4033 if (! cond_context)
4034 /* If this block has a cleanup, it belongs in stack_block_stack. */
4035 stack_block_stack = thisblock;
4036
4037 if (cond_context)
4038 {
4039 start_sequence ();
4040 }
4041
4042 /* If this was optimized so that there is no exception region for the
4043 cleanup, then mark the TREE_LIST node, so that we can later tell
4044 if we need to call expand_eh_region_end. */
4045 if (! using_eh_for_cleanups_p
4046 || expand_eh_region_start_tree (decl, cleanup))
4047 TREE_ADDRESSABLE (t) = 1;
4048 /* If that started a new EH region, we're in a new block. */
4049 thisblock = block_stack;
4050
4051 if (cond_context)
4052 {
4053 seq = get_insns ();
4054 end_sequence ();
4055 if (seq)
4056 thisblock->data.block.last_unconditional_cleanup
4057 = emit_insns_after (seq,
4058 thisblock->data.block.last_unconditional_cleanup);
4059 }
4060 else
4061 {
4062 thisblock->data.block.last_unconditional_cleanup
4063 = get_last_insn ();
4064 thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
4065 }
4066 }
4067 return 1;
4068 }
4069
4070 /* Like expand_decl_cleanup, but suppress generating an exception handler
4071 to perform the cleanup. */
4072
4073 #if 0
4074 int
4075 expand_decl_cleanup_no_eh (decl, cleanup)
4076 tree decl, cleanup;
4077 {
4078 int save_eh = using_eh_for_cleanups_p;
4079 int result;
4080
4081 using_eh_for_cleanups_p = 0;
4082 result = expand_decl_cleanup (decl, cleanup);
4083 using_eh_for_cleanups_p = save_eh;
4084
4085 return result;
4086 }
4087 #endif
4088
4089 /* Arrange for the top element of the dynamic cleanup chain to be
4090 popped if we exit the current binding contour. DECL is the
4091 associated declaration, if any, otherwise NULL_TREE. If the
4092 current contour is left via an exception, then __sjthrow will pop
4093 the top element off the dynamic cleanup chain. The code that
4094 avoids doing the action we push into the cleanup chain in the
4095 exceptional case is contained in expand_cleanups.
4096
4097 This routine is only used by expand_eh_region_start, and that is
4098 the only way in which an exception region should be started. This
4099 routine is only used when using the setjmp/longjmp codegen method
4100 for exception handling. */
4101
4102 int
4103 expand_dcc_cleanup (decl)
4104 tree decl;
4105 {
4106 struct nesting *thisblock;
4107 tree cleanup;
4108
4109 /* Error if we are not in any block. */
4110 if (cfun == 0 || block_stack == 0)
4111 return 0;
4112 thisblock = block_stack;
4113
4114 /* Record the cleanup for the dynamic handler chain. */
4115
4116 /* All cleanups must be on the function_obstack. */
4117 push_obstacks_nochange ();
4118 resume_temporary_allocation ();
4119 cleanup = make_node (POPDCC_EXPR);
4120 pop_obstacks ();
4121
4122 /* Add the cleanup in a manner similar to expand_decl_cleanup. */
4123 thisblock->data.block.cleanups
4124 = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups);
4125
4126 /* If this block has a cleanup, it belongs in stack_block_stack. */
4127 stack_block_stack = thisblock;
4128 return 1;
4129 }
4130
4131 /* Arrange for the top element of the dynamic handler chain to be
4132 popped if we exit the current binding contour. DECL is the
4133 associated declaration, if any, otherwise NULL_TREE. If the current
4134 contour is left via an exception, then __sjthrow will pop the top
4135 element off the dynamic handler chain. The code that avoids doing
4136 the action we push into the handler chain in the exceptional case
4137 is contained in expand_cleanups.
4138
4139 This routine is only used by expand_eh_region_start, and that is
4140 the only way in which an exception region should be started. This
4141 routine is only used when using the setjmp/longjmp codegen method
4142 for exception handling. */
4143
4144 int
4145 expand_dhc_cleanup (decl)
4146 tree decl;
4147 {
4148 struct nesting *thisblock;
4149 tree cleanup;
4150
4151 /* Error if we are not in any block. */
4152 if (cfun == 0 || block_stack == 0)
4153 return 0;
4154 thisblock = block_stack;
4155
4156 /* Record the cleanup for the dynamic handler chain. */
4157
4158 /* All cleanups must be on the function_obstack. */
4159 push_obstacks_nochange ();
4160 resume_temporary_allocation ();
4161 cleanup = make_node (POPDHC_EXPR);
4162 pop_obstacks ();
4163
4164 /* Add the cleanup in a manner similar to expand_decl_cleanup. */
4165 thisblock->data.block.cleanups
4166 = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups);
4167
4168 /* If this block has a cleanup, it belongs in stack_block_stack. */
4169 stack_block_stack = thisblock;
4170 return 1;
4171 }
4172 \f
4173 /* DECL is an anonymous union. CLEANUP is a cleanup for DECL.
4174 DECL_ELTS is the list of elements that belong to DECL's type.
4175 In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */
4176
4177 void
4178 expand_anon_union_decl (decl, cleanup, decl_elts)
4179 tree decl, cleanup, decl_elts;
4180 {
4181 struct nesting *thisblock = cfun == 0 ? 0 : block_stack;
4182 rtx x;
4183 tree t;
4184
4185 /* If any of the elements are addressable, so is the entire union. */
4186 for (t = decl_elts; t; t = TREE_CHAIN (t))
4187 if (TREE_ADDRESSABLE (TREE_VALUE (t)))
4188 {
4189 TREE_ADDRESSABLE (decl) = 1;
4190 break;
4191 }
4192
4193 expand_decl (decl);
4194 expand_decl_cleanup (decl, cleanup);
4195 x = DECL_RTL (decl);
4196
4197 /* Go through the elements, assigning RTL to each. */
4198 for (t = decl_elts; t; t = TREE_CHAIN (t))
4199 {
4200 tree decl_elt = TREE_VALUE (t);
4201 tree cleanup_elt = TREE_PURPOSE (t);
4202 enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt));
4203
4204 /* Propagate the union's alignment to the elements. */
4205 DECL_ALIGN (decl_elt) = DECL_ALIGN (decl);
4206
4207 /* If the element has BLKmode and the union doesn't, the union is
4208 aligned such that the element doesn't need to have BLKmode, so
4209 change the element's mode to the appropriate one for its size. */
4210 if (mode == BLKmode && DECL_MODE (decl) != BLKmode)
4211 DECL_MODE (decl_elt) = mode
4212 = mode_for_size_tree (DECL_SIZE (decl_elt), MODE_INT, 1);
4213
4214 /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we
4215 instead create a new MEM rtx with the proper mode. */
4216 if (GET_CODE (x) == MEM)
4217 {
4218 if (mode == GET_MODE (x))
4219 DECL_RTL (decl_elt) = x;
4220 else
4221 {
4222 DECL_RTL (decl_elt) = gen_rtx_MEM (mode, copy_rtx (XEXP (x, 0)));
4223 MEM_COPY_ATTRIBUTES (DECL_RTL (decl_elt), x);
4224 }
4225 }
4226 else if (GET_CODE (x) == REG)
4227 {
4228 if (mode == GET_MODE (x))
4229 DECL_RTL (decl_elt) = x;
4230 else
4231 DECL_RTL (decl_elt) = gen_rtx_SUBREG (mode, x, 0);
4232 }
4233 else
4234 abort ();
4235
4236 /* Record the cleanup if there is one. */
4237
4238 if (cleanup != 0)
4239 thisblock->data.block.cleanups
4240 = temp_tree_cons (decl_elt, cleanup_elt,
4241 thisblock->data.block.cleanups);
4242 }
4243 }
4244 \f
4245 /* Expand a list of cleanups LIST.
4246 Elements may be expressions or may be nested lists.
4247
4248 If DONT_DO is nonnull, then any list-element
4249 whose TREE_PURPOSE matches DONT_DO is omitted.
4250 This is sometimes used to avoid a cleanup associated with
4251 a value that is being returned out of the scope.
4252
4253 If IN_FIXUP is non-zero, we are generating this cleanup for a fixup
4254 goto and handle protection regions specially in that case.
4255
4256 If REACHABLE, we emit code, otherwise just inform the exception handling
4257 code about this finalization. */
4258
4259 static void
4260 expand_cleanups (list, dont_do, in_fixup, reachable)
4261 tree list;
4262 tree dont_do;
4263 int in_fixup;
4264 int reachable;
4265 {
4266 tree tail;
4267 for (tail = list; tail; tail = TREE_CHAIN (tail))
4268 if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do)
4269 {
4270 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
4271 expand_cleanups (TREE_VALUE (tail), dont_do, in_fixup, reachable);
4272 else
4273 {
4274 if (! in_fixup)
4275 {
4276 tree cleanup = TREE_VALUE (tail);
4277
4278 /* See expand_d{h,c}c_cleanup for why we avoid this. */
4279 if (TREE_CODE (cleanup) != POPDHC_EXPR
4280 && TREE_CODE (cleanup) != POPDCC_EXPR
4281 /* See expand_eh_region_start_tree for this case. */
4282 && ! TREE_ADDRESSABLE (tail))
4283 {
4284 cleanup = protect_with_terminate (cleanup);
4285 expand_eh_region_end (cleanup);
4286 }
4287 }
4288
4289 if (reachable)
4290 {
4291 /* Cleanups may be run multiple times. For example,
4292 when exiting a binding contour, we expand the
4293 cleanups associated with that contour. When a goto
4294 within that binding contour has a target outside that
4295 contour, it will expand all cleanups from its scope to
4296 the target. Though the cleanups are expanded multiple
4297 times, the control paths are non-overlapping so the
4298 cleanups will not be executed twice. */
4299
4300 /* We may need to protect fixups with rethrow regions. */
4301 int protect = (in_fixup && ! TREE_ADDRESSABLE (tail));
4302
4303 if (protect)
4304 expand_fixup_region_start ();
4305
4306 /* The cleanup might contain try-blocks, so we have to
4307 preserve our current queue. */
4308 push_ehqueue ();
4309 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4310 pop_ehqueue ();
4311 if (protect)
4312 expand_fixup_region_end (TREE_VALUE (tail));
4313 free_temp_slots ();
4314 }
4315 }
4316 }
4317 }
4318
4319 /* Mark when the context we are emitting RTL for as a conditional
4320 context, so that any cleanup actions we register with
4321 expand_decl_init will be properly conditionalized when those
4322 cleanup actions are later performed. Must be called before any
4323 expression (tree) is expanded that is within a conditional context. */
4324
4325 void
4326 start_cleanup_deferral ()
4327 {
4328 /* block_stack can be NULL if we are inside the parameter list. It is
4329 OK to do nothing, because cleanups aren't possible here. */
4330 if (block_stack)
4331 ++block_stack->data.block.conditional_code;
4332 }
4333
4334 /* Mark the end of a conditional region of code. Because cleanup
4335 deferrals may be nested, we may still be in a conditional region
4336 after we end the currently deferred cleanups, only after we end all
4337 deferred cleanups, are we back in unconditional code. */
4338
4339 void
4340 end_cleanup_deferral ()
4341 {
4342 /* block_stack can be NULL if we are inside the parameter list. It is
4343 OK to do nothing, because cleanups aren't possible here. */
4344 if (block_stack)
4345 --block_stack->data.block.conditional_code;
4346 }
4347
4348 /* Move all cleanups from the current block_stack
4349 to the containing block_stack, where they are assumed to
4350 have been created. If anything can cause a temporary to
4351 be created, but not expanded for more than one level of
4352 block_stacks, then this code will have to change. */
4353
4354 void
4355 move_cleanups_up ()
4356 {
4357 struct nesting *block = block_stack;
4358 struct nesting *outer = block->next;
4359
4360 outer->data.block.cleanups
4361 = chainon (block->data.block.cleanups,
4362 outer->data.block.cleanups);
4363 block->data.block.cleanups = 0;
4364 }
4365
4366 tree
4367 last_cleanup_this_contour ()
4368 {
4369 if (block_stack == 0)
4370 return 0;
4371
4372 return block_stack->data.block.cleanups;
4373 }
4374
4375 /* Return 1 if there are any pending cleanups at this point.
4376 If THIS_CONTOUR is nonzero, check the current contour as well.
4377 Otherwise, look only at the contours that enclose this one. */
4378
4379 int
4380 any_pending_cleanups (this_contour)
4381 int this_contour;
4382 {
4383 struct nesting *block;
4384
4385 if (cfun == NULL || cfun->stmt == NULL || block_stack == 0)
4386 return 0;
4387
4388 if (this_contour && block_stack->data.block.cleanups != NULL)
4389 return 1;
4390 if (block_stack->data.block.cleanups == 0
4391 && block_stack->data.block.outer_cleanups == 0)
4392 return 0;
4393
4394 for (block = block_stack->next; block; block = block->next)
4395 if (block->data.block.cleanups != 0)
4396 return 1;
4397
4398 return 0;
4399 }
4400 \f
4401 /* Enter a case (Pascal) or switch (C) statement.
4402 Push a block onto case_stack and nesting_stack
4403 to accumulate the case-labels that are seen
4404 and to record the labels generated for the statement.
4405
4406 EXIT_FLAG is nonzero if `exit_something' should exit this case stmt.
4407 Otherwise, this construct is transparent for `exit_something'.
4408
4409 EXPR is the index-expression to be dispatched on.
4410 TYPE is its nominal type. We could simply convert EXPR to this type,
4411 but instead we take short cuts. */
4412
4413 void
4414 expand_start_case (exit_flag, expr, type, printname)
4415 int exit_flag;
4416 tree expr;
4417 tree type;
4418 const char *printname;
4419 {
4420 register struct nesting *thiscase = ALLOC_NESTING ();
4421
4422 /* Make an entry on case_stack for the case we are entering. */
4423
4424 thiscase->next = case_stack;
4425 thiscase->all = nesting_stack;
4426 thiscase->depth = ++nesting_depth;
4427 thiscase->exit_label = exit_flag ? gen_label_rtx () : 0;
4428 thiscase->data.case_stmt.case_list = 0;
4429 thiscase->data.case_stmt.index_expr = expr;
4430 thiscase->data.case_stmt.nominal_type = type;
4431 thiscase->data.case_stmt.default_label = 0;
4432 thiscase->data.case_stmt.num_ranges = 0;
4433 thiscase->data.case_stmt.printname = printname;
4434 thiscase->data.case_stmt.line_number_status = force_line_numbers ();
4435 case_stack = thiscase;
4436 nesting_stack = thiscase;
4437
4438 do_pending_stack_adjust ();
4439
4440 /* Make sure case_stmt.start points to something that won't
4441 need any transformation before expand_end_case. */
4442 if (GET_CODE (get_last_insn ()) != NOTE)
4443 emit_note (NULL_PTR, NOTE_INSN_DELETED);
4444
4445 thiscase->data.case_stmt.start = get_last_insn ();
4446
4447 start_cleanup_deferral ();
4448 }
4449
4450
4451 /* Start a "dummy case statement" within which case labels are invalid
4452 and are not connected to any larger real case statement.
4453 This can be used if you don't want to let a case statement jump
4454 into the middle of certain kinds of constructs. */
4455
4456 void
4457 expand_start_case_dummy ()
4458 {
4459 register struct nesting *thiscase = ALLOC_NESTING ();
4460
4461 /* Make an entry on case_stack for the dummy. */
4462
4463 thiscase->next = case_stack;
4464 thiscase->all = nesting_stack;
4465 thiscase->depth = ++nesting_depth;
4466 thiscase->exit_label = 0;
4467 thiscase->data.case_stmt.case_list = 0;
4468 thiscase->data.case_stmt.start = 0;
4469 thiscase->data.case_stmt.nominal_type = 0;
4470 thiscase->data.case_stmt.default_label = 0;
4471 thiscase->data.case_stmt.num_ranges = 0;
4472 case_stack = thiscase;
4473 nesting_stack = thiscase;
4474 start_cleanup_deferral ();
4475 }
4476
4477 /* End a dummy case statement. */
4478
4479 void
4480 expand_end_case_dummy ()
4481 {
4482 end_cleanup_deferral ();
4483 POPSTACK (case_stack);
4484 }
4485
4486 /* Return the data type of the index-expression
4487 of the innermost case statement, or null if none. */
4488
4489 tree
4490 case_index_expr_type ()
4491 {
4492 if (case_stack)
4493 return TREE_TYPE (case_stack->data.case_stmt.index_expr);
4494 return 0;
4495 }
4496 \f
4497 static void
4498 check_seenlabel ()
4499 {
4500 /* If this is the first label, warn if any insns have been emitted. */
4501 if (case_stack->data.case_stmt.line_number_status >= 0)
4502 {
4503 rtx insn;
4504
4505 restore_line_number_status
4506 (case_stack->data.case_stmt.line_number_status);
4507 case_stack->data.case_stmt.line_number_status = -1;
4508
4509 for (insn = case_stack->data.case_stmt.start;
4510 insn;
4511 insn = NEXT_INSN (insn))
4512 {
4513 if (GET_CODE (insn) == CODE_LABEL)
4514 break;
4515 if (GET_CODE (insn) != NOTE
4516 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
4517 {
4518 do
4519 insn = PREV_INSN (insn);
4520 while (insn && (GET_CODE (insn) != NOTE || NOTE_LINE_NUMBER (insn) < 0));
4521
4522 /* If insn is zero, then there must have been a syntax error. */
4523 if (insn)
4524 warning_with_file_and_line (NOTE_SOURCE_FILE(insn),
4525 NOTE_LINE_NUMBER(insn),
4526 "unreachable code at beginning of %s",
4527 case_stack->data.case_stmt.printname);
4528 break;
4529 }
4530 }
4531 }
4532 }
4533
4534 /* Accumulate one case or default label inside a case or switch statement.
4535 VALUE is the value of the case (a null pointer, for a default label).
4536 The function CONVERTER, when applied to arguments T and V,
4537 converts the value V to the type T.
4538
4539 If not currently inside a case or switch statement, return 1 and do
4540 nothing. The caller will print a language-specific error message.
4541 If VALUE is a duplicate or overlaps, return 2 and do nothing
4542 except store the (first) duplicate node in *DUPLICATE.
4543 If VALUE is out of range, return 3 and do nothing.
4544 If we are jumping into the scope of a cleanup or var-sized array, return 5.
4545 Return 0 on success.
4546
4547 Extended to handle range statements. */
4548
4549 int
4550 pushcase (value, converter, label, duplicate)
4551 register tree value;
4552 tree (*converter) PARAMS ((tree, tree));
4553 register tree label;
4554 tree *duplicate;
4555 {
4556 tree index_type;
4557 tree nominal_type;
4558
4559 /* Fail if not inside a real case statement. */
4560 if (! (case_stack && case_stack->data.case_stmt.start))
4561 return 1;
4562
4563 if (stack_block_stack
4564 && stack_block_stack->depth > case_stack->depth)
4565 return 5;
4566
4567 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4568 nominal_type = case_stack->data.case_stmt.nominal_type;
4569
4570 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4571 if (index_type == error_mark_node)
4572 return 0;
4573
4574 /* Convert VALUE to the type in which the comparisons are nominally done. */
4575 if (value != 0)
4576 value = (*converter) (nominal_type, value);
4577
4578 check_seenlabel ();
4579
4580 /* Fail if this value is out of range for the actual type of the index
4581 (which may be narrower than NOMINAL_TYPE). */
4582 if (value != 0
4583 && (TREE_CONSTANT_OVERFLOW (value)
4584 || ! int_fits_type_p (value, index_type)))
4585 return 3;
4586
4587 /* Fail if this is a duplicate or overlaps another entry. */
4588 if (value == 0)
4589 {
4590 if (case_stack->data.case_stmt.default_label != 0)
4591 {
4592 *duplicate = case_stack->data.case_stmt.default_label;
4593 return 2;
4594 }
4595 case_stack->data.case_stmt.default_label = label;
4596 }
4597 else
4598 return add_case_node (value, value, label, duplicate);
4599
4600 expand_label (label);
4601 return 0;
4602 }
4603
4604 /* Like pushcase but this case applies to all values between VALUE1 and
4605 VALUE2 (inclusive). If VALUE1 is NULL, the range starts at the lowest
4606 value of the index type and ends at VALUE2. If VALUE2 is NULL, the range
4607 starts at VALUE1 and ends at the highest value of the index type.
4608 If both are NULL, this case applies to all values.
4609
4610 The return value is the same as that of pushcase but there is one
4611 additional error code: 4 means the specified range was empty. */
4612
4613 int
4614 pushcase_range (value1, value2, converter, label, duplicate)
4615 register tree value1, value2;
4616 tree (*converter) PARAMS ((tree, tree));
4617 register tree label;
4618 tree *duplicate;
4619 {
4620 tree index_type;
4621 tree nominal_type;
4622
4623 /* Fail if not inside a real case statement. */
4624 if (! (case_stack && case_stack->data.case_stmt.start))
4625 return 1;
4626
4627 if (stack_block_stack
4628 && stack_block_stack->depth > case_stack->depth)
4629 return 5;
4630
4631 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4632 nominal_type = case_stack->data.case_stmt.nominal_type;
4633
4634 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4635 if (index_type == error_mark_node)
4636 return 0;
4637
4638 check_seenlabel ();
4639
4640 /* Convert VALUEs to type in which the comparisons are nominally done
4641 and replace any unspecified value with the corresponding bound. */
4642 if (value1 == 0)
4643 value1 = TYPE_MIN_VALUE (index_type);
4644 if (value2 == 0)
4645 value2 = TYPE_MAX_VALUE (index_type);
4646
4647 /* Fail if the range is empty. Do this before any conversion since
4648 we want to allow out-of-range empty ranges. */
4649 if (value2 != 0 && tree_int_cst_lt (value2, value1))
4650 return 4;
4651
4652 /* If the max was unbounded, use the max of the nominal_type we are
4653 converting to. Do this after the < check above to suppress false
4654 positives. */
4655 if (value2 == 0)
4656 value2 = TYPE_MAX_VALUE (nominal_type);
4657
4658 value1 = (*converter) (nominal_type, value1);
4659 value2 = (*converter) (nominal_type, value2);
4660
4661 /* Fail if these values are out of range. */
4662 if (TREE_CONSTANT_OVERFLOW (value1)
4663 || ! int_fits_type_p (value1, index_type))
4664 return 3;
4665
4666 if (TREE_CONSTANT_OVERFLOW (value2)
4667 || ! int_fits_type_p (value2, index_type))
4668 return 3;
4669
4670 return add_case_node (value1, value2, label, duplicate);
4671 }
4672
4673 /* Do the actual insertion of a case label for pushcase and pushcase_range
4674 into case_stack->data.case_stmt.case_list. Use an AVL tree to avoid
4675 slowdown for large switch statements. */
4676
4677 static int
4678 add_case_node (low, high, label, duplicate)
4679 tree low, high;
4680 tree label;
4681 tree *duplicate;
4682 {
4683 struct case_node *p, **q, *r;
4684
4685 q = &case_stack->data.case_stmt.case_list;
4686 p = *q;
4687
4688 while ((r = *q))
4689 {
4690 p = r;
4691
4692 /* Keep going past elements distinctly greater than HIGH. */
4693 if (tree_int_cst_lt (high, p->low))
4694 q = &p->left;
4695
4696 /* or distinctly less than LOW. */
4697 else if (tree_int_cst_lt (p->high, low))
4698 q = &p->right;
4699
4700 else
4701 {
4702 /* We have an overlap; this is an error. */
4703 *duplicate = p->code_label;
4704 return 2;
4705 }
4706 }
4707
4708 /* Add this label to the chain, and succeed.
4709 Copy LOW, HIGH so they are on temporary rather than momentary
4710 obstack and will thus survive till the end of the case statement. */
4711
4712 r = (struct case_node *) oballoc (sizeof (struct case_node));
4713 r->low = copy_node (low);
4714
4715 /* If the bounds are equal, turn this into the one-value case. */
4716
4717 if (tree_int_cst_equal (low, high))
4718 r->high = r->low;
4719 else
4720 {
4721 r->high = copy_node (high);
4722 case_stack->data.case_stmt.num_ranges++;
4723 }
4724
4725 r->code_label = label;
4726 expand_label (label);
4727
4728 *q = r;
4729 r->parent = p;
4730 r->left = 0;
4731 r->right = 0;
4732 r->balance = 0;
4733
4734 while (p)
4735 {
4736 struct case_node *s;
4737
4738 if (r == p->left)
4739 {
4740 int b;
4741
4742 if (! (b = p->balance))
4743 /* Growth propagation from left side. */
4744 p->balance = -1;
4745 else if (b < 0)
4746 {
4747 if (r->balance < 0)
4748 {
4749 /* R-Rotation */
4750 if ((p->left = s = r->right))
4751 s->parent = p;
4752
4753 r->right = p;
4754 p->balance = 0;
4755 r->balance = 0;
4756 s = p->parent;
4757 p->parent = r;
4758
4759 if ((r->parent = s))
4760 {
4761 if (s->left == p)
4762 s->left = r;
4763 else
4764 s->right = r;
4765 }
4766 else
4767 case_stack->data.case_stmt.case_list = r;
4768 }
4769 else
4770 /* r->balance == +1 */
4771 {
4772 /* LR-Rotation */
4773
4774 int b2;
4775 struct case_node *t = r->right;
4776
4777 if ((p->left = s = t->right))
4778 s->parent = p;
4779
4780 t->right = p;
4781 if ((r->right = s = t->left))
4782 s->parent = r;
4783
4784 t->left = r;
4785 b = t->balance;
4786 b2 = b < 0;
4787 p->balance = b2;
4788 b2 = -b2 - b;
4789 r->balance = b2;
4790 t->balance = 0;
4791 s = p->parent;
4792 p->parent = t;
4793 r->parent = t;
4794
4795 if ((t->parent = s))
4796 {
4797 if (s->left == p)
4798 s->left = t;
4799 else
4800 s->right = t;
4801 }
4802 else
4803 case_stack->data.case_stmt.case_list = t;
4804 }
4805 break;
4806 }
4807
4808 else
4809 {
4810 /* p->balance == +1; growth of left side balances the node. */
4811 p->balance = 0;
4812 break;
4813 }
4814 }
4815 else
4816 /* r == p->right */
4817 {
4818 int b;
4819
4820 if (! (b = p->balance))
4821 /* Growth propagation from right side. */
4822 p->balance++;
4823 else if (b > 0)
4824 {
4825 if (r->balance > 0)
4826 {
4827 /* L-Rotation */
4828
4829 if ((p->right = s = r->left))
4830 s->parent = p;
4831
4832 r->left = p;
4833 p->balance = 0;
4834 r->balance = 0;
4835 s = p->parent;
4836 p->parent = r;
4837 if ((r->parent = s))
4838 {
4839 if (s->left == p)
4840 s->left = r;
4841 else
4842 s->right = r;
4843 }
4844
4845 else
4846 case_stack->data.case_stmt.case_list = r;
4847 }
4848
4849 else
4850 /* r->balance == -1 */
4851 {
4852 /* RL-Rotation */
4853 int b2;
4854 struct case_node *t = r->left;
4855
4856 if ((p->right = s = t->left))
4857 s->parent = p;
4858
4859 t->left = p;
4860
4861 if ((r->left = s = t->right))
4862 s->parent = r;
4863
4864 t->right = r;
4865 b = t->balance;
4866 b2 = b < 0;
4867 r->balance = b2;
4868 b2 = -b2 - b;
4869 p->balance = b2;
4870 t->balance = 0;
4871 s = p->parent;
4872 p->parent = t;
4873 r->parent = t;
4874
4875 if ((t->parent = s))
4876 {
4877 if (s->left == p)
4878 s->left = t;
4879 else
4880 s->right = t;
4881 }
4882
4883 else
4884 case_stack->data.case_stmt.case_list = t;
4885 }
4886 break;
4887 }
4888 else
4889 {
4890 /* p->balance == -1; growth of right side balances the node. */
4891 p->balance = 0;
4892 break;
4893 }
4894 }
4895
4896 r = p;
4897 p = p->parent;
4898 }
4899
4900 return 0;
4901 }
4902
4903 \f
4904 /* Returns the number of possible values of TYPE.
4905 Returns -1 if the number is unknown, variable, or if the number does not
4906 fit in a HOST_WIDE_INT.
4907 Sets *SPARENESS to 2 if TYPE is an ENUMERAL_TYPE whose values
4908 do not increase monotonically (there may be duplicates);
4909 to 1 if the values increase monotonically, but not always by 1;
4910 otherwise sets it to 0. */
4911
4912 HOST_WIDE_INT
4913 all_cases_count (type, spareness)
4914 tree type;
4915 int *spareness;
4916 {
4917 tree t;
4918 HOST_WIDE_INT count, minval, lastval;
4919
4920 *spareness = 0;
4921
4922 switch (TREE_CODE (type))
4923 {
4924 case BOOLEAN_TYPE:
4925 count = 2;
4926 break;
4927
4928 case CHAR_TYPE:
4929 count = 1 << BITS_PER_UNIT;
4930 break;
4931
4932 default:
4933 case INTEGER_TYPE:
4934 if (TYPE_MAX_VALUE (type) != 0
4935 && 0 != (t = fold (build (MINUS_EXPR, type, TYPE_MAX_VALUE (type),
4936 TYPE_MIN_VALUE (type))))
4937 && 0 != (t = fold (build (PLUS_EXPR, type, t,
4938 convert (type, integer_zero_node))))
4939 && host_integerp (t, 1))
4940 count = tree_low_cst (t, 1);
4941 else
4942 return -1;
4943 break;
4944
4945 case ENUMERAL_TYPE:
4946 /* Don't waste time with enumeral types with huge values. */
4947 if (! host_integerp (TYPE_MIN_VALUE (type), 0)
4948 || TYPE_MAX_VALUE (type) == 0
4949 || ! host_integerp (TYPE_MAX_VALUE (type), 0))
4950 return -1;
4951
4952 lastval = minval = tree_low_cst (TYPE_MIN_VALUE (type), 0);
4953 count = 0;
4954
4955 for (t = TYPE_VALUES (type); t != NULL_TREE; t = TREE_CHAIN (t))
4956 {
4957 HOST_WIDE_INT thisval = tree_low_cst (TREE_VALUE (t), 0);
4958
4959 if (*spareness == 2 || thisval < lastval)
4960 *spareness = 2;
4961 else if (thisval != minval + count)
4962 *spareness = 1;
4963
4964 count++;
4965 }
4966 }
4967
4968 return count;
4969 }
4970
4971 #define BITARRAY_TEST(ARRAY, INDEX) \
4972 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4973 & (1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR)))
4974 #define BITARRAY_SET(ARRAY, INDEX) \
4975 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4976 |= 1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR))
4977
4978 /* Set the elements of the bitstring CASES_SEEN (which has length COUNT),
4979 with the case values we have seen, assuming the case expression
4980 has the given TYPE.
4981 SPARSENESS is as determined by all_cases_count.
4982
4983 The time needed is proportional to COUNT, unless
4984 SPARSENESS is 2, in which case quadratic time is needed. */
4985
4986 void
4987 mark_seen_cases (type, cases_seen, count, sparseness)
4988 tree type;
4989 unsigned char *cases_seen;
4990 HOST_WIDE_INT count;
4991 int sparseness;
4992 {
4993 tree next_node_to_try = NULL_TREE;
4994 HOST_WIDE_INT next_node_offset = 0;
4995
4996 register struct case_node *n, *root = case_stack->data.case_stmt.case_list;
4997 tree val = make_node (INTEGER_CST);
4998
4999 TREE_TYPE (val) = type;
5000 if (! root)
5001 ; /* Do nothing */
5002 else if (sparseness == 2)
5003 {
5004 tree t;
5005 unsigned HOST_WIDE_INT xlo;
5006
5007 /* This less efficient loop is only needed to handle
5008 duplicate case values (multiple enum constants
5009 with the same value). */
5010 TREE_TYPE (val) = TREE_TYPE (root->low);
5011 for (t = TYPE_VALUES (type), xlo = 0; t != NULL_TREE;
5012 t = TREE_CHAIN (t), xlo++)
5013 {
5014 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (TREE_VALUE (t));
5015 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (TREE_VALUE (t));
5016 n = root;
5017 do
5018 {
5019 /* Keep going past elements distinctly greater than VAL. */
5020 if (tree_int_cst_lt (val, n->low))
5021 n = n->left;
5022
5023 /* or distinctly less than VAL. */
5024 else if (tree_int_cst_lt (n->high, val))
5025 n = n->right;
5026
5027 else
5028 {
5029 /* We have found a matching range. */
5030 BITARRAY_SET (cases_seen, xlo);
5031 break;
5032 }
5033 }
5034 while (n);
5035 }
5036 }
5037 else
5038 {
5039 if (root->left)
5040 case_stack->data.case_stmt.case_list = root = case_tree2list (root, 0);
5041
5042 for (n = root; n; n = n->right)
5043 {
5044 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (n->low);
5045 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (n->low);
5046 while ( ! tree_int_cst_lt (n->high, val))
5047 {
5048 /* Calculate (into xlo) the "offset" of the integer (val).
5049 The element with lowest value has offset 0, the next smallest
5050 element has offset 1, etc. */
5051
5052 unsigned HOST_WIDE_INT xlo;
5053 HOST_WIDE_INT xhi;
5054 tree t;
5055
5056 if (sparseness && TYPE_VALUES (type) != NULL_TREE)
5057 {
5058 /* The TYPE_VALUES will be in increasing order, so
5059 starting searching where we last ended. */
5060 t = next_node_to_try;
5061 xlo = next_node_offset;
5062 xhi = 0;
5063 for (;;)
5064 {
5065 if (t == NULL_TREE)
5066 {
5067 t = TYPE_VALUES (type);
5068 xlo = 0;
5069 }
5070 if (tree_int_cst_equal (val, TREE_VALUE (t)))
5071 {
5072 next_node_to_try = TREE_CHAIN (t);
5073 next_node_offset = xlo + 1;
5074 break;
5075 }
5076 xlo++;
5077 t = TREE_CHAIN (t);
5078 if (t == next_node_to_try)
5079 {
5080 xlo = -1;
5081 break;
5082 }
5083 }
5084 }
5085 else
5086 {
5087 t = TYPE_MIN_VALUE (type);
5088 if (t)
5089 neg_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t),
5090 &xlo, &xhi);
5091 else
5092 xlo = xhi = 0;
5093 add_double (xlo, xhi,
5094 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5095 &xlo, &xhi);
5096 }
5097
5098 if (xhi == 0 && xlo < (unsigned HOST_WIDE_INT) count)
5099 BITARRAY_SET (cases_seen, xlo);
5100
5101 add_double (TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5102 1, 0,
5103 &TREE_INT_CST_LOW (val), &TREE_INT_CST_HIGH (val));
5104 }
5105 }
5106 }
5107 }
5108
5109 /* Called when the index of a switch statement is an enumerated type
5110 and there is no default label.
5111
5112 Checks that all enumeration literals are covered by the case
5113 expressions of a switch. Also, warn if there are any extra
5114 switch cases that are *not* elements of the enumerated type.
5115
5116 If all enumeration literals were covered by the case expressions,
5117 turn one of the expressions into the default expression since it should
5118 not be possible to fall through such a switch. */
5119
5120 void
5121 check_for_full_enumeration_handling (type)
5122 tree type;
5123 {
5124 register struct case_node *n;
5125 register tree chain;
5126 #if 0 /* variable used by 'if 0'ed code below. */
5127 register struct case_node **l;
5128 int all_values = 1;
5129 #endif
5130
5131 /* True iff the selector type is a numbered set mode. */
5132 int sparseness = 0;
5133
5134 /* The number of possible selector values. */
5135 HOST_WIDE_INT size;
5136
5137 /* For each possible selector value. a one iff it has been matched
5138 by a case value alternative. */
5139 unsigned char *cases_seen;
5140
5141 /* The allocated size of cases_seen, in chars. */
5142 HOST_WIDE_INT bytes_needed;
5143
5144 if (! warn_switch)
5145 return;
5146
5147 size = all_cases_count (type, &sparseness);
5148 bytes_needed = (size + HOST_BITS_PER_CHAR) / HOST_BITS_PER_CHAR;
5149
5150 if (size > 0 && size < 600000
5151 /* We deliberately use calloc here, not cmalloc, so that we can suppress
5152 this optimization if we don't have enough memory rather than
5153 aborting, as xmalloc would do. */
5154 && (cases_seen = (unsigned char *) calloc (bytes_needed, 1)) != NULL)
5155 {
5156 HOST_WIDE_INT i;
5157 tree v = TYPE_VALUES (type);
5158
5159 /* The time complexity of this code is normally O(N), where
5160 N being the number of members in the enumerated type.
5161 However, if type is a ENUMERAL_TYPE whose values do not
5162 increase monotonically, O(N*log(N)) time may be needed. */
5163
5164 mark_seen_cases (type, cases_seen, size, sparseness);
5165
5166 for (i = 0; v != NULL_TREE && i < size; i++, v = TREE_CHAIN (v))
5167 if (BITARRAY_TEST(cases_seen, i) == 0)
5168 warning ("enumeration value `%s' not handled in switch",
5169 IDENTIFIER_POINTER (TREE_PURPOSE (v)));
5170
5171 free (cases_seen);
5172 }
5173
5174 /* Now we go the other way around; we warn if there are case
5175 expressions that don't correspond to enumerators. This can
5176 occur since C and C++ don't enforce type-checking of
5177 assignments to enumeration variables. */
5178
5179 if (case_stack->data.case_stmt.case_list
5180 && case_stack->data.case_stmt.case_list->left)
5181 case_stack->data.case_stmt.case_list
5182 = case_tree2list (case_stack->data.case_stmt.case_list, 0);
5183 if (warn_switch)
5184 for (n = case_stack->data.case_stmt.case_list; n; n = n->right)
5185 {
5186 for (chain = TYPE_VALUES (type);
5187 chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain));
5188 chain = TREE_CHAIN (chain))
5189 ;
5190
5191 if (!chain)
5192 {
5193 if (TYPE_NAME (type) == 0)
5194 warning ("case value `%ld' not in enumerated type",
5195 (long) TREE_INT_CST_LOW (n->low));
5196 else
5197 warning ("case value `%ld' not in enumerated type `%s'",
5198 (long) TREE_INT_CST_LOW (n->low),
5199 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5200 == IDENTIFIER_NODE)
5201 ? TYPE_NAME (type)
5202 : DECL_NAME (TYPE_NAME (type))));
5203 }
5204 if (!tree_int_cst_equal (n->low, n->high))
5205 {
5206 for (chain = TYPE_VALUES (type);
5207 chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain));
5208 chain = TREE_CHAIN (chain))
5209 ;
5210
5211 if (!chain)
5212 {
5213 if (TYPE_NAME (type) == 0)
5214 warning ("case value `%ld' not in enumerated type",
5215 (long) TREE_INT_CST_LOW (n->high));
5216 else
5217 warning ("case value `%ld' not in enumerated type `%s'",
5218 (long) TREE_INT_CST_LOW (n->high),
5219 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5220 == IDENTIFIER_NODE)
5221 ? TYPE_NAME (type)
5222 : DECL_NAME (TYPE_NAME (type))));
5223 }
5224 }
5225 }
5226
5227 #if 0
5228 /* ??? This optimization is disabled because it causes valid programs to
5229 fail. ANSI C does not guarantee that an expression with enum type
5230 will have a value that is the same as one of the enumeration literals. */
5231
5232 /* If all values were found as case labels, make one of them the default
5233 label. Thus, this switch will never fall through. We arbitrarily pick
5234 the last one to make the default since this is likely the most
5235 efficient choice. */
5236
5237 if (all_values)
5238 {
5239 for (l = &case_stack->data.case_stmt.case_list;
5240 (*l)->right != 0;
5241 l = &(*l)->right)
5242 ;
5243
5244 case_stack->data.case_stmt.default_label = (*l)->code_label;
5245 *l = 0;
5246 }
5247 #endif /* 0 */
5248 }
5249
5250 \f
5251 /* Terminate a case (Pascal) or switch (C) statement
5252 in which ORIG_INDEX is the expression to be tested.
5253 Generate the code to test it and jump to the right place. */
5254
5255 void
5256 expand_end_case (orig_index)
5257 tree orig_index;
5258 {
5259 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE, orig_minval;
5260 rtx default_label = 0;
5261 register struct case_node *n;
5262 unsigned int count;
5263 rtx index;
5264 rtx table_label;
5265 int ncases;
5266 rtx *labelvec;
5267 register int i;
5268 rtx before_case;
5269 register struct nesting *thiscase = case_stack;
5270 tree index_expr, index_type;
5271 int unsignedp;
5272
5273 /* Don't crash due to previous errors. */
5274 if (thiscase == NULL)
5275 return;
5276
5277 table_label = gen_label_rtx ();
5278 index_expr = thiscase->data.case_stmt.index_expr;
5279 index_type = TREE_TYPE (index_expr);
5280 unsignedp = TREE_UNSIGNED (index_type);
5281
5282 do_pending_stack_adjust ();
5283
5284 /* This might get an spurious warning in the presence of a syntax error;
5285 it could be fixed by moving the call to check_seenlabel after the
5286 check for error_mark_node, and copying the code of check_seenlabel that
5287 deals with case_stack->data.case_stmt.line_number_status /
5288 restore_line_number_status in front of the call to end_cleanup_deferral;
5289 However, this might miss some useful warnings in the presence of
5290 non-syntax errors. */
5291 check_seenlabel ();
5292
5293 /* An ERROR_MARK occurs for various reasons including invalid data type. */
5294 if (index_type != error_mark_node)
5295 {
5296 /* If switch expression was an enumerated type, check that all
5297 enumeration literals are covered by the cases.
5298 No sense trying this if there's a default case, however. */
5299
5300 if (!thiscase->data.case_stmt.default_label
5301 && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE
5302 && TREE_CODE (index_expr) != INTEGER_CST)
5303 check_for_full_enumeration_handling (TREE_TYPE (orig_index));
5304
5305 /* If we don't have a default-label, create one here,
5306 after the body of the switch. */
5307 if (thiscase->data.case_stmt.default_label == 0)
5308 {
5309 thiscase->data.case_stmt.default_label
5310 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
5311 expand_label (thiscase->data.case_stmt.default_label);
5312 }
5313 default_label = label_rtx (thiscase->data.case_stmt.default_label);
5314
5315 before_case = get_last_insn ();
5316
5317 if (thiscase->data.case_stmt.case_list
5318 && thiscase->data.case_stmt.case_list->left)
5319 thiscase->data.case_stmt.case_list
5320 = case_tree2list(thiscase->data.case_stmt.case_list, 0);
5321
5322 /* Simplify the case-list before we count it. */
5323 group_case_nodes (thiscase->data.case_stmt.case_list);
5324
5325 /* Get upper and lower bounds of case values.
5326 Also convert all the case values to the index expr's data type. */
5327
5328 count = 0;
5329 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5330 {
5331 /* Check low and high label values are integers. */
5332 if (TREE_CODE (n->low) != INTEGER_CST)
5333 abort ();
5334 if (TREE_CODE (n->high) != INTEGER_CST)
5335 abort ();
5336
5337 n->low = convert (index_type, n->low);
5338 n->high = convert (index_type, n->high);
5339
5340 /* Count the elements and track the largest and smallest
5341 of them (treating them as signed even if they are not). */
5342 if (count++ == 0)
5343 {
5344 minval = n->low;
5345 maxval = n->high;
5346 }
5347 else
5348 {
5349 if (INT_CST_LT (n->low, minval))
5350 minval = n->low;
5351 if (INT_CST_LT (maxval, n->high))
5352 maxval = n->high;
5353 }
5354 /* A range counts double, since it requires two compares. */
5355 if (! tree_int_cst_equal (n->low, n->high))
5356 count++;
5357 }
5358
5359 orig_minval = minval;
5360
5361 /* Compute span of values. */
5362 if (count != 0)
5363 range = fold (build (MINUS_EXPR, index_type, maxval, minval));
5364
5365 end_cleanup_deferral ();
5366
5367 if (count == 0)
5368 {
5369 expand_expr (index_expr, const0_rtx, VOIDmode, 0);
5370 emit_queue ();
5371 emit_jump (default_label);
5372 }
5373
5374 /* If range of values is much bigger than number of values,
5375 make a sequence of conditional branches instead of a dispatch.
5376 If the switch-index is a constant, do it this way
5377 because we can optimize it. */
5378
5379 #ifndef CASE_VALUES_THRESHOLD
5380 #ifdef HAVE_casesi
5381 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
5382 #else
5383 /* If machine does not have a case insn that compares the
5384 bounds, this means extra overhead for dispatch tables
5385 which raises the threshold for using them. */
5386 #define CASE_VALUES_THRESHOLD 5
5387 #endif /* HAVE_casesi */
5388 #endif /* CASE_VALUES_THRESHOLD */
5389
5390 else if (count < CASE_VALUES_THRESHOLD
5391 || compare_tree_int (range, 10 * count) > 0
5392 /* RANGE may be signed, and really large ranges will show up
5393 as negative numbers. */
5394 || compare_tree_int (range, 0) < 0
5395 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
5396 || flag_pic
5397 #endif
5398 || TREE_CODE (index_expr) == INTEGER_CST
5399 /* These will reduce to a constant. */
5400 || (TREE_CODE (index_expr) == CALL_EXPR
5401 && TREE_CODE (TREE_OPERAND (index_expr, 0)) == ADDR_EXPR
5402 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == FUNCTION_DECL
5403 && DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_NORMAL
5404 && DECL_FUNCTION_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_CLASSIFY_TYPE)
5405 || (TREE_CODE (index_expr) == COMPOUND_EXPR
5406 && TREE_CODE (TREE_OPERAND (index_expr, 1)) == INTEGER_CST))
5407 {
5408 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5409
5410 /* If the index is a short or char that we do not have
5411 an insn to handle comparisons directly, convert it to
5412 a full integer now, rather than letting each comparison
5413 generate the conversion. */
5414
5415 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
5416 && (cmp_optab->handlers[(int) GET_MODE(index)].insn_code
5417 == CODE_FOR_nothing))
5418 {
5419 enum machine_mode wider_mode;
5420 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
5421 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5422 if (cmp_optab->handlers[(int) wider_mode].insn_code
5423 != CODE_FOR_nothing)
5424 {
5425 index = convert_to_mode (wider_mode, index, unsignedp);
5426 break;
5427 }
5428 }
5429
5430 emit_queue ();
5431 do_pending_stack_adjust ();
5432
5433 index = protect_from_queue (index, 0);
5434 if (GET_CODE (index) == MEM)
5435 index = copy_to_reg (index);
5436 if (GET_CODE (index) == CONST_INT
5437 || TREE_CODE (index_expr) == INTEGER_CST)
5438 {
5439 /* Make a tree node with the proper constant value
5440 if we don't already have one. */
5441 if (TREE_CODE (index_expr) != INTEGER_CST)
5442 {
5443 index_expr
5444 = build_int_2 (INTVAL (index),
5445 unsignedp || INTVAL (index) >= 0 ? 0 : -1);
5446 index_expr = convert (index_type, index_expr);
5447 }
5448
5449 /* For constant index expressions we need only
5450 issue a unconditional branch to the appropriate
5451 target code. The job of removing any unreachable
5452 code is left to the optimisation phase if the
5453 "-O" option is specified. */
5454 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5455 if (! tree_int_cst_lt (index_expr, n->low)
5456 && ! tree_int_cst_lt (n->high, index_expr))
5457 break;
5458
5459 if (n)
5460 emit_jump (label_rtx (n->code_label));
5461 else
5462 emit_jump (default_label);
5463 }
5464 else
5465 {
5466 /* If the index expression is not constant we generate
5467 a binary decision tree to select the appropriate
5468 target code. This is done as follows:
5469
5470 The list of cases is rearranged into a binary tree,
5471 nearly optimal assuming equal probability for each case.
5472
5473 The tree is transformed into RTL, eliminating
5474 redundant test conditions at the same time.
5475
5476 If program flow could reach the end of the
5477 decision tree an unconditional jump to the
5478 default code is emitted. */
5479
5480 use_cost_table
5481 = (TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE
5482 && estimate_case_costs (thiscase->data.case_stmt.case_list));
5483 balance_case_nodes (&thiscase->data.case_stmt.case_list,
5484 NULL_PTR);
5485 emit_case_nodes (index, thiscase->data.case_stmt.case_list,
5486 default_label, index_type);
5487 emit_jump_if_reachable (default_label);
5488 }
5489 }
5490 else
5491 {
5492 int win = 0;
5493 #ifdef HAVE_casesi
5494 if (HAVE_casesi)
5495 {
5496 enum machine_mode index_mode = SImode;
5497 int index_bits = GET_MODE_BITSIZE (index_mode);
5498 rtx op1, op2;
5499 enum machine_mode op_mode;
5500
5501 /* Convert the index to SImode. */
5502 if (GET_MODE_BITSIZE (TYPE_MODE (index_type))
5503 > GET_MODE_BITSIZE (index_mode))
5504 {
5505 enum machine_mode omode = TYPE_MODE (index_type);
5506 rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0);
5507
5508 /* We must handle the endpoints in the original mode. */
5509 index_expr = build (MINUS_EXPR, index_type,
5510 index_expr, minval);
5511 minval = integer_zero_node;
5512 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5513 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
5514 omode, 1, 0, default_label);
5515 /* Now we can safely truncate. */
5516 index = convert_to_mode (index_mode, index, 0);
5517 }
5518 else
5519 {
5520 if (TYPE_MODE (index_type) != index_mode)
5521 {
5522 index_expr = convert (type_for_size (index_bits, 0),
5523 index_expr);
5524 index_type = TREE_TYPE (index_expr);
5525 }
5526
5527 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5528 }
5529 emit_queue ();
5530 index = protect_from_queue (index, 0);
5531 do_pending_stack_adjust ();
5532
5533 op_mode = insn_data[(int)CODE_FOR_casesi].operand[0].mode;
5534 if (! (*insn_data[(int)CODE_FOR_casesi].operand[0].predicate)
5535 (index, op_mode))
5536 index = copy_to_mode_reg (op_mode, index);
5537
5538 op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0);
5539
5540 op_mode = insn_data[(int)CODE_FOR_casesi].operand[1].mode;
5541 if (! (*insn_data[(int)CODE_FOR_casesi].operand[1].predicate)
5542 (op1, op_mode))
5543 op1 = copy_to_mode_reg (op_mode, op1);
5544
5545 op2 = expand_expr (range, NULL_RTX, VOIDmode, 0);
5546
5547 op_mode = insn_data[(int)CODE_FOR_casesi].operand[2].mode;
5548 if (! (*insn_data[(int)CODE_FOR_casesi].operand[2].predicate)
5549 (op2, op_mode))
5550 op2 = copy_to_mode_reg (op_mode, op2);
5551
5552 emit_jump_insn (gen_casesi (index, op1, op2,
5553 table_label, default_label));
5554 win = 1;
5555 }
5556 #endif
5557 #ifdef HAVE_tablejump
5558 if (! win && HAVE_tablejump)
5559 {
5560 index_type = thiscase->data.case_stmt.nominal_type;
5561 index_expr = fold (build (MINUS_EXPR, index_type,
5562 convert (index_type, index_expr),
5563 convert (index_type, minval)));
5564 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5565 emit_queue ();
5566 index = protect_from_queue (index, 0);
5567 do_pending_stack_adjust ();
5568
5569 do_tablejump (index, TYPE_MODE (index_type),
5570 expand_expr (range, NULL_RTX, VOIDmode, 0),
5571 table_label, default_label);
5572 win = 1;
5573 }
5574 #endif
5575 if (! win)
5576 abort ();
5577
5578 /* Get table of labels to jump to, in order of case index. */
5579
5580 ncases = TREE_INT_CST_LOW (range) + 1;
5581 labelvec = (rtx *) alloca (ncases * sizeof (rtx));
5582 bzero ((char *) labelvec, ncases * sizeof (rtx));
5583
5584 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5585 {
5586 register HOST_WIDE_INT i
5587 = TREE_INT_CST_LOW (n->low) - TREE_INT_CST_LOW (orig_minval);
5588
5589 while (1)
5590 {
5591 labelvec[i]
5592 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
5593 if (i + TREE_INT_CST_LOW (orig_minval)
5594 == TREE_INT_CST_LOW (n->high))
5595 break;
5596 i++;
5597 }
5598 }
5599
5600 /* Fill in the gaps with the default. */
5601 for (i = 0; i < ncases; i++)
5602 if (labelvec[i] == 0)
5603 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
5604
5605 /* Output the table */
5606 emit_label (table_label);
5607
5608 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
5609 emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
5610 gen_rtx_LABEL_REF (Pmode, table_label),
5611 gen_rtvec_v (ncases, labelvec),
5612 const0_rtx, const0_rtx));
5613 else
5614 emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
5615 gen_rtvec_v (ncases, labelvec)));
5616
5617 /* If the case insn drops through the table,
5618 after the table we must jump to the default-label.
5619 Otherwise record no drop-through after the table. */
5620 #ifdef CASE_DROPS_THROUGH
5621 emit_jump (default_label);
5622 #else
5623 emit_barrier ();
5624 #endif
5625 }
5626
5627 before_case = squeeze_notes (NEXT_INSN (before_case), get_last_insn ());
5628 reorder_insns (before_case, get_last_insn (),
5629 thiscase->data.case_stmt.start);
5630 }
5631 else
5632 end_cleanup_deferral ();
5633
5634 if (thiscase->exit_label)
5635 emit_label (thiscase->exit_label);
5636
5637 POPSTACK (case_stack);
5638
5639 free_temp_slots ();
5640 }
5641
5642 /* Convert the tree NODE into a list linked by the right field, with the left
5643 field zeroed. RIGHT is used for recursion; it is a list to be placed
5644 rightmost in the resulting list. */
5645
5646 static struct case_node *
5647 case_tree2list (node, right)
5648 struct case_node *node, *right;
5649 {
5650 struct case_node *left;
5651
5652 if (node->right)
5653 right = case_tree2list (node->right, right);
5654
5655 node->right = right;
5656 if ((left = node->left))
5657 {
5658 node->left = 0;
5659 return case_tree2list (left, node);
5660 }
5661
5662 return node;
5663 }
5664
5665 /* Generate code to jump to LABEL if OP1 and OP2 are equal. */
5666
5667 static void
5668 do_jump_if_equal (op1, op2, label, unsignedp)
5669 rtx op1, op2, label;
5670 int unsignedp;
5671 {
5672 if (GET_CODE (op1) == CONST_INT
5673 && GET_CODE (op2) == CONST_INT)
5674 {
5675 if (INTVAL (op1) == INTVAL (op2))
5676 emit_jump (label);
5677 }
5678 else
5679 {
5680 enum machine_mode mode = GET_MODE (op1);
5681 if (mode == VOIDmode)
5682 mode = GET_MODE (op2);
5683 emit_cmp_and_jump_insns (op1, op2, EQ, NULL_RTX, mode, unsignedp,
5684 0, label);
5685 }
5686 }
5687 \f
5688 /* Not all case values are encountered equally. This function
5689 uses a heuristic to weight case labels, in cases where that
5690 looks like a reasonable thing to do.
5691
5692 Right now, all we try to guess is text, and we establish the
5693 following weights:
5694
5695 chars above space: 16
5696 digits: 16
5697 default: 12
5698 space, punct: 8
5699 tab: 4
5700 newline: 2
5701 other "\" chars: 1
5702 remaining chars: 0
5703
5704 If we find any cases in the switch that are not either -1 or in the range
5705 of valid ASCII characters, or are control characters other than those
5706 commonly used with "\", don't treat this switch scanning text.
5707
5708 Return 1 if these nodes are suitable for cost estimation, otherwise
5709 return 0. */
5710
5711 static int
5712 estimate_case_costs (node)
5713 case_node_ptr node;
5714 {
5715 tree min_ascii = build_int_2 (-1, -1);
5716 tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0));
5717 case_node_ptr n;
5718 int i;
5719
5720 /* If we haven't already made the cost table, make it now. Note that the
5721 lower bound of the table is -1, not zero. */
5722
5723 if (cost_table == NULL)
5724 {
5725 cost_table = cost_table_ + 1;
5726
5727 for (i = 0; i < 128; i++)
5728 {
5729 if (ISALNUM (i))
5730 cost_table[i] = 16;
5731 else if (ISPUNCT (i))
5732 cost_table[i] = 8;
5733 else if (ISCNTRL (i))
5734 cost_table[i] = -1;
5735 }
5736
5737 cost_table[' '] = 8;
5738 cost_table['\t'] = 4;
5739 cost_table['\0'] = 4;
5740 cost_table['\n'] = 2;
5741 cost_table['\f'] = 1;
5742 cost_table['\v'] = 1;
5743 cost_table['\b'] = 1;
5744 }
5745
5746 /* See if all the case expressions look like text. It is text if the
5747 constant is >= -1 and the highest constant is <= 127. Do all comparisons
5748 as signed arithmetic since we don't want to ever access cost_table with a
5749 value less than -1. Also check that none of the constants in a range
5750 are strange control characters. */
5751
5752 for (n = node; n; n = n->right)
5753 {
5754 if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high))
5755 return 0;
5756
5757 for (i = (HOST_WIDE_INT) TREE_INT_CST_LOW (n->low);
5758 i <= (HOST_WIDE_INT) TREE_INT_CST_LOW (n->high); i++)
5759 if (cost_table[i] < 0)
5760 return 0;
5761 }
5762
5763 /* All interesting values are within the range of interesting
5764 ASCII characters. */
5765 return 1;
5766 }
5767
5768 /* Scan an ordered list of case nodes
5769 combining those with consecutive values or ranges.
5770
5771 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
5772
5773 static void
5774 group_case_nodes (head)
5775 case_node_ptr head;
5776 {
5777 case_node_ptr node = head;
5778
5779 while (node)
5780 {
5781 rtx lb = next_real_insn (label_rtx (node->code_label));
5782 rtx lb2;
5783 case_node_ptr np = node;
5784
5785 /* Try to group the successors of NODE with NODE. */
5786 while (((np = np->right) != 0)
5787 /* Do they jump to the same place? */
5788 && ((lb2 = next_real_insn (label_rtx (np->code_label))) == lb
5789 || (lb != 0 && lb2 != 0
5790 && simplejump_p (lb)
5791 && simplejump_p (lb2)
5792 && rtx_equal_p (SET_SRC (PATTERN (lb)),
5793 SET_SRC (PATTERN (lb2)))))
5794 /* Are their ranges consecutive? */
5795 && tree_int_cst_equal (np->low,
5796 fold (build (PLUS_EXPR,
5797 TREE_TYPE (node->high),
5798 node->high,
5799 integer_one_node)))
5800 /* An overflow is not consecutive. */
5801 && tree_int_cst_lt (node->high,
5802 fold (build (PLUS_EXPR,
5803 TREE_TYPE (node->high),
5804 node->high,
5805 integer_one_node))))
5806 {
5807 node->high = np->high;
5808 }
5809 /* NP is the first node after NODE which can't be grouped with it.
5810 Delete the nodes in between, and move on to that node. */
5811 node->right = np;
5812 node = np;
5813 }
5814 }
5815
5816 /* Take an ordered list of case nodes
5817 and transform them into a near optimal binary tree,
5818 on the assumption that any target code selection value is as
5819 likely as any other.
5820
5821 The transformation is performed by splitting the ordered
5822 list into two equal sections plus a pivot. The parts are
5823 then attached to the pivot as left and right branches. Each
5824 branch is then transformed recursively. */
5825
5826 static void
5827 balance_case_nodes (head, parent)
5828 case_node_ptr *head;
5829 case_node_ptr parent;
5830 {
5831 register case_node_ptr np;
5832
5833 np = *head;
5834 if (np)
5835 {
5836 int cost = 0;
5837 int i = 0;
5838 int ranges = 0;
5839 register case_node_ptr *npp;
5840 case_node_ptr left;
5841
5842 /* Count the number of entries on branch. Also count the ranges. */
5843
5844 while (np)
5845 {
5846 if (!tree_int_cst_equal (np->low, np->high))
5847 {
5848 ranges++;
5849 if (use_cost_table)
5850 cost += cost_table[TREE_INT_CST_LOW (np->high)];
5851 }
5852
5853 if (use_cost_table)
5854 cost += cost_table[TREE_INT_CST_LOW (np->low)];
5855
5856 i++;
5857 np = np->right;
5858 }
5859
5860 if (i > 2)
5861 {
5862 /* Split this list if it is long enough for that to help. */
5863 npp = head;
5864 left = *npp;
5865 if (use_cost_table)
5866 {
5867 /* Find the place in the list that bisects the list's total cost,
5868 Here I gets half the total cost. */
5869 int n_moved = 0;
5870 i = (cost + 1) / 2;
5871 while (1)
5872 {
5873 /* Skip nodes while their cost does not reach that amount. */
5874 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5875 i -= cost_table[TREE_INT_CST_LOW ((*npp)->high)];
5876 i -= cost_table[TREE_INT_CST_LOW ((*npp)->low)];
5877 if (i <= 0)
5878 break;
5879 npp = &(*npp)->right;
5880 n_moved += 1;
5881 }
5882 if (n_moved == 0)
5883 {
5884 /* Leave this branch lopsided, but optimize left-hand
5885 side and fill in `parent' fields for right-hand side. */
5886 np = *head;
5887 np->parent = parent;
5888 balance_case_nodes (&np->left, np);
5889 for (; np->right; np = np->right)
5890 np->right->parent = np;
5891 return;
5892 }
5893 }
5894 /* If there are just three nodes, split at the middle one. */
5895 else if (i == 3)
5896 npp = &(*npp)->right;
5897 else
5898 {
5899 /* Find the place in the list that bisects the list's total cost,
5900 where ranges count as 2.
5901 Here I gets half the total cost. */
5902 i = (i + ranges + 1) / 2;
5903 while (1)
5904 {
5905 /* Skip nodes while their cost does not reach that amount. */
5906 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5907 i--;
5908 i--;
5909 if (i <= 0)
5910 break;
5911 npp = &(*npp)->right;
5912 }
5913 }
5914 *head = np = *npp;
5915 *npp = 0;
5916 np->parent = parent;
5917 np->left = left;
5918
5919 /* Optimize each of the two split parts. */
5920 balance_case_nodes (&np->left, np);
5921 balance_case_nodes (&np->right, np);
5922 }
5923 else
5924 {
5925 /* Else leave this branch as one level,
5926 but fill in `parent' fields. */
5927 np = *head;
5928 np->parent = parent;
5929 for (; np->right; np = np->right)
5930 np->right->parent = np;
5931 }
5932 }
5933 }
5934 \f
5935 /* Search the parent sections of the case node tree
5936 to see if a test for the lower bound of NODE would be redundant.
5937 INDEX_TYPE is the type of the index expression.
5938
5939 The instructions to generate the case decision tree are
5940 output in the same order as nodes are processed so it is
5941 known that if a parent node checks the range of the current
5942 node minus one that the current node is bounded at its lower
5943 span. Thus the test would be redundant. */
5944
5945 static int
5946 node_has_low_bound (node, index_type)
5947 case_node_ptr node;
5948 tree index_type;
5949 {
5950 tree low_minus_one;
5951 case_node_ptr pnode;
5952
5953 /* If the lower bound of this node is the lowest value in the index type,
5954 we need not test it. */
5955
5956 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
5957 return 1;
5958
5959 /* If this node has a left branch, the value at the left must be less
5960 than that at this node, so it cannot be bounded at the bottom and
5961 we need not bother testing any further. */
5962
5963 if (node->left)
5964 return 0;
5965
5966 low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low),
5967 node->low, integer_one_node));
5968
5969 /* If the subtraction above overflowed, we can't verify anything.
5970 Otherwise, look for a parent that tests our value - 1. */
5971
5972 if (! tree_int_cst_lt (low_minus_one, node->low))
5973 return 0;
5974
5975 for (pnode = node->parent; pnode; pnode = pnode->parent)
5976 if (tree_int_cst_equal (low_minus_one, pnode->high))
5977 return 1;
5978
5979 return 0;
5980 }
5981
5982 /* Search the parent sections of the case node tree
5983 to see if a test for the upper bound of NODE would be redundant.
5984 INDEX_TYPE is the type of the index expression.
5985
5986 The instructions to generate the case decision tree are
5987 output in the same order as nodes are processed so it is
5988 known that if a parent node checks the range of the current
5989 node plus one that the current node is bounded at its upper
5990 span. Thus the test would be redundant. */
5991
5992 static int
5993 node_has_high_bound (node, index_type)
5994 case_node_ptr node;
5995 tree index_type;
5996 {
5997 tree high_plus_one;
5998 case_node_ptr pnode;
5999
6000 /* If there is no upper bound, obviously no test is needed. */
6001
6002 if (TYPE_MAX_VALUE (index_type) == NULL)
6003 return 1;
6004
6005 /* If the upper bound of this node is the highest value in the type
6006 of the index expression, we need not test against it. */
6007
6008 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
6009 return 1;
6010
6011 /* If this node has a right branch, the value at the right must be greater
6012 than that at this node, so it cannot be bounded at the top and
6013 we need not bother testing any further. */
6014
6015 if (node->right)
6016 return 0;
6017
6018 high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high),
6019 node->high, integer_one_node));
6020
6021 /* If the addition above overflowed, we can't verify anything.
6022 Otherwise, look for a parent that tests our value + 1. */
6023
6024 if (! tree_int_cst_lt (node->high, high_plus_one))
6025 return 0;
6026
6027 for (pnode = node->parent; pnode; pnode = pnode->parent)
6028 if (tree_int_cst_equal (high_plus_one, pnode->low))
6029 return 1;
6030
6031 return 0;
6032 }
6033
6034 /* Search the parent sections of the
6035 case node tree to see if both tests for the upper and lower
6036 bounds of NODE would be redundant. */
6037
6038 static int
6039 node_is_bounded (node, index_type)
6040 case_node_ptr node;
6041 tree index_type;
6042 {
6043 return (node_has_low_bound (node, index_type)
6044 && node_has_high_bound (node, index_type));
6045 }
6046
6047 /* Emit an unconditional jump to LABEL unless it would be dead code. */
6048
6049 static void
6050 emit_jump_if_reachable (label)
6051 rtx label;
6052 {
6053 if (GET_CODE (get_last_insn ()) != BARRIER)
6054 emit_jump (label);
6055 }
6056 \f
6057 /* Emit step-by-step code to select a case for the value of INDEX.
6058 The thus generated decision tree follows the form of the
6059 case-node binary tree NODE, whose nodes represent test conditions.
6060 INDEX_TYPE is the type of the index of the switch.
6061
6062 Care is taken to prune redundant tests from the decision tree
6063 by detecting any boundary conditions already checked by
6064 emitted rtx. (See node_has_high_bound, node_has_low_bound
6065 and node_is_bounded, above.)
6066
6067 Where the test conditions can be shown to be redundant we emit
6068 an unconditional jump to the target code. As a further
6069 optimization, the subordinates of a tree node are examined to
6070 check for bounded nodes. In this case conditional and/or
6071 unconditional jumps as a result of the boundary check for the
6072 current node are arranged to target the subordinates associated
6073 code for out of bound conditions on the current node.
6074
6075 We can assume that when control reaches the code generated here,
6076 the index value has already been compared with the parents
6077 of this node, and determined to be on the same side of each parent
6078 as this node is. Thus, if this node tests for the value 51,
6079 and a parent tested for 52, we don't need to consider
6080 the possibility of a value greater than 51. If another parent
6081 tests for the value 50, then this node need not test anything. */
6082
6083 static void
6084 emit_case_nodes (index, node, default_label, index_type)
6085 rtx index;
6086 case_node_ptr node;
6087 rtx default_label;
6088 tree index_type;
6089 {
6090 /* If INDEX has an unsigned type, we must make unsigned branches. */
6091 int unsignedp = TREE_UNSIGNED (index_type);
6092 enum machine_mode mode = GET_MODE (index);
6093
6094 /* See if our parents have already tested everything for us.
6095 If they have, emit an unconditional jump for this node. */
6096 if (node_is_bounded (node, index_type))
6097 emit_jump (label_rtx (node->code_label));
6098
6099 else if (tree_int_cst_equal (node->low, node->high))
6100 {
6101 /* Node is single valued. First see if the index expression matches
6102 this node and then check our children, if any. */
6103
6104 do_jump_if_equal (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0),
6105 label_rtx (node->code_label), unsignedp);
6106
6107 if (node->right != 0 && node->left != 0)
6108 {
6109 /* This node has children on both sides.
6110 Dispatch to one side or the other
6111 by comparing the index value with this node's value.
6112 If one subtree is bounded, check that one first,
6113 so we can avoid real branches in the tree. */
6114
6115 if (node_is_bounded (node->right, index_type))
6116 {
6117 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6118 VOIDmode, 0),
6119 GT, NULL_RTX, mode, unsignedp, 0,
6120 label_rtx (node->right->code_label));
6121 emit_case_nodes (index, node->left, default_label, index_type);
6122 }
6123
6124 else if (node_is_bounded (node->left, index_type))
6125 {
6126 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6127 VOIDmode, 0),
6128 LT, NULL_RTX, mode, unsignedp, 0,
6129 label_rtx (node->left->code_label));
6130 emit_case_nodes (index, node->right, default_label, index_type);
6131 }
6132
6133 else
6134 {
6135 /* Neither node is bounded. First distinguish the two sides;
6136 then emit the code for one side at a time. */
6137
6138 tree test_label
6139 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6140
6141 /* See if the value is on the right. */
6142 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6143 VOIDmode, 0),
6144 GT, NULL_RTX, mode, unsignedp, 0,
6145 label_rtx (test_label));
6146
6147 /* Value must be on the left.
6148 Handle the left-hand subtree. */
6149 emit_case_nodes (index, node->left, default_label, index_type);
6150 /* If left-hand subtree does nothing,
6151 go to default. */
6152 emit_jump_if_reachable (default_label);
6153
6154 /* Code branches here for the right-hand subtree. */
6155 expand_label (test_label);
6156 emit_case_nodes (index, node->right, default_label, index_type);
6157 }
6158 }
6159
6160 else if (node->right != 0 && node->left == 0)
6161 {
6162 /* Here we have a right child but no left so we issue conditional
6163 branch to default and process the right child.
6164
6165 Omit the conditional branch to default if we it avoid only one
6166 right child; it costs too much space to save so little time. */
6167
6168 if (node->right->right || node->right->left
6169 || !tree_int_cst_equal (node->right->low, node->right->high))
6170 {
6171 if (!node_has_low_bound (node, index_type))
6172 {
6173 emit_cmp_and_jump_insns (index, expand_expr (node->high,
6174 NULL_RTX,
6175 VOIDmode, 0),
6176 LT, NULL_RTX, mode, unsignedp, 0,
6177 default_label);
6178 }
6179
6180 emit_case_nodes (index, node->right, default_label, index_type);
6181 }
6182 else
6183 /* We cannot process node->right normally
6184 since we haven't ruled out the numbers less than
6185 this node's value. So handle node->right explicitly. */
6186 do_jump_if_equal (index,
6187 expand_expr (node->right->low, NULL_RTX,
6188 VOIDmode, 0),
6189 label_rtx (node->right->code_label), unsignedp);
6190 }
6191
6192 else if (node->right == 0 && node->left != 0)
6193 {
6194 /* Just one subtree, on the left. */
6195
6196 #if 0 /* The following code and comment were formerly part
6197 of the condition here, but they didn't work
6198 and I don't understand what the idea was. -- rms. */
6199 /* If our "most probable entry" is less probable
6200 than the default label, emit a jump to
6201 the default label using condition codes
6202 already lying around. With no right branch,
6203 a branch-greater-than will get us to the default
6204 label correctly. */
6205 if (use_cost_table
6206 && cost_table[TREE_INT_CST_LOW (node->high)] < 12)
6207 ;
6208 #endif /* 0 */
6209 if (node->left->left || node->left->right
6210 || !tree_int_cst_equal (node->left->low, node->left->high))
6211 {
6212 if (!node_has_high_bound (node, index_type))
6213 {
6214 emit_cmp_and_jump_insns (index, expand_expr (node->high,
6215 NULL_RTX,
6216 VOIDmode, 0),
6217 GT, NULL_RTX, mode, unsignedp, 0,
6218 default_label);
6219 }
6220
6221 emit_case_nodes (index, node->left, default_label, index_type);
6222 }
6223 else
6224 /* We cannot process node->left normally
6225 since we haven't ruled out the numbers less than
6226 this node's value. So handle node->left explicitly. */
6227 do_jump_if_equal (index,
6228 expand_expr (node->left->low, NULL_RTX,
6229 VOIDmode, 0),
6230 label_rtx (node->left->code_label), unsignedp);
6231 }
6232 }
6233 else
6234 {
6235 /* Node is a range. These cases are very similar to those for a single
6236 value, except that we do not start by testing whether this node
6237 is the one to branch to. */
6238
6239 if (node->right != 0 && node->left != 0)
6240 {
6241 /* Node has subtrees on both sides.
6242 If the right-hand subtree is bounded,
6243 test for it first, since we can go straight there.
6244 Otherwise, we need to make a branch in the control structure,
6245 then handle the two subtrees. */
6246 tree test_label = 0;
6247
6248
6249 if (node_is_bounded (node->right, index_type))
6250 /* Right hand node is fully bounded so we can eliminate any
6251 testing and branch directly to the target code. */
6252 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6253 VOIDmode, 0),
6254 GT, NULL_RTX, mode, unsignedp, 0,
6255 label_rtx (node->right->code_label));
6256 else
6257 {
6258 /* Right hand node requires testing.
6259 Branch to a label where we will handle it later. */
6260
6261 test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6262 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6263 VOIDmode, 0),
6264 GT, NULL_RTX, mode, unsignedp, 0,
6265 label_rtx (test_label));
6266 }
6267
6268 /* Value belongs to this node or to the left-hand subtree. */
6269
6270 emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX,
6271 VOIDmode, 0),
6272 GE, NULL_RTX, mode, unsignedp, 0,
6273 label_rtx (node->code_label));
6274
6275 /* Handle the left-hand subtree. */
6276 emit_case_nodes (index, node->left, default_label, index_type);
6277
6278 /* If right node had to be handled later, do that now. */
6279
6280 if (test_label)
6281 {
6282 /* If the left-hand subtree fell through,
6283 don't let it fall into the right-hand subtree. */
6284 emit_jump_if_reachable (default_label);
6285
6286 expand_label (test_label);
6287 emit_case_nodes (index, node->right, default_label, index_type);
6288 }
6289 }
6290
6291 else if (node->right != 0 && node->left == 0)
6292 {
6293 /* Deal with values to the left of this node,
6294 if they are possible. */
6295 if (!node_has_low_bound (node, index_type))
6296 {
6297 emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX,
6298 VOIDmode, 0),
6299 LT, NULL_RTX, mode, unsignedp, 0,
6300 default_label);
6301 }
6302
6303 /* Value belongs to this node or to the right-hand subtree. */
6304
6305 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6306 VOIDmode, 0),
6307 LE, NULL_RTX, mode, unsignedp, 0,
6308 label_rtx (node->code_label));
6309
6310 emit_case_nodes (index, node->right, default_label, index_type);
6311 }
6312
6313 else if (node->right == 0 && node->left != 0)
6314 {
6315 /* Deal with values to the right of this node,
6316 if they are possible. */
6317 if (!node_has_high_bound (node, index_type))
6318 {
6319 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6320 VOIDmode, 0),
6321 GT, NULL_RTX, mode, unsignedp, 0,
6322 default_label);
6323 }
6324
6325 /* Value belongs to this node or to the left-hand subtree. */
6326
6327 emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX,
6328 VOIDmode, 0),
6329 GE, NULL_RTX, mode, unsignedp, 0,
6330 label_rtx (node->code_label));
6331
6332 emit_case_nodes (index, node->left, default_label, index_type);
6333 }
6334
6335 else
6336 {
6337 /* Node has no children so we check low and high bounds to remove
6338 redundant tests. Only one of the bounds can exist,
6339 since otherwise this node is bounded--a case tested already. */
6340
6341 if (!node_has_high_bound (node, index_type))
6342 {
6343 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6344 VOIDmode, 0),
6345 GT, NULL_RTX, mode, unsignedp, 0,
6346 default_label);
6347 }
6348
6349 if (!node_has_low_bound (node, index_type))
6350 {
6351 emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX,
6352 VOIDmode, 0),
6353 LT, NULL_RTX, mode, unsignedp, 0,
6354 default_label);
6355 }
6356
6357 emit_jump (label_rtx (node->code_label));
6358 }
6359 }
6360 }
6361 \f