]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/stmt.c
gimple-predict.h: New file.
[thirdparty/gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
22 The functions whose names start with `expand_' are called by the
23 expander to generate RTL instructions for various kinds of constructs. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "predict.h"
30 #include "tree.h"
31 #include "gimple.h"
32 #include "rtl.h"
33
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "stor-layout.h"
38 #include "tm_p.h"
39 #include "flags.h"
40 #include "except.h"
41 #include "insn-config.h"
42 #include "expmed.h"
43 #include "dojump.h"
44 #include "explow.h"
45 #include "calls.h"
46 #include "emit-rtl.h"
47 #include "stmt.h"
48 #include "expr.h"
49 #include "libfuncs.h"
50 #include "recog.h"
51 #include "diagnostic-core.h"
52 #include "output.h"
53 #include "langhooks.h"
54 #include "insn-codes.h"
55 #include "optabs.h"
56 #include "target.h"
57 #include "cfganal.h"
58 #include "internal-fn.h"
59 #include "regs.h"
60 #include "alloc-pool.h"
61 #include "pretty-print.h"
62 #include "params.h"
63 #include "dumpfile.h"
64 #include "builtins.h"
65
66 \f
67 /* Functions and data structures for expanding case statements. */
68
69 /* Case label structure, used to hold info on labels within case
70 statements. We handle "range" labels; for a single-value label
71 as in C, the high and low limits are the same.
72
73 We start with a vector of case nodes sorted in ascending order, and
74 the default label as the last element in the vector. Before expanding
75 to RTL, we transform this vector into a list linked via the RIGHT
76 fields in the case_node struct. Nodes with higher case values are
77 later in the list.
78
79 Switch statements can be output in three forms. A branch table is
80 used if there are more than a few labels and the labels are dense
81 within the range between the smallest and largest case value. If a
82 branch table is used, no further manipulations are done with the case
83 node chain.
84
85 The alternative to the use of a branch table is to generate a series
86 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
87 and PARENT fields to hold a binary tree. Initially the tree is
88 totally unbalanced, with everything on the right. We balance the tree
89 with nodes on the left having lower case values than the parent
90 and nodes on the right having higher values. We then output the tree
91 in order.
92
93 For very small, suitable switch statements, we can generate a series
94 of simple bit test and branches instead. */
95
96 struct case_node
97 {
98 struct case_node *left; /* Left son in binary tree */
99 struct case_node *right; /* Right son in binary tree; also node chain */
100 struct case_node *parent; /* Parent of node in binary tree */
101 tree low; /* Lowest index value for this label */
102 tree high; /* Highest index value for this label */
103 tree code_label; /* Label to jump to when node matches */
104 int prob; /* Probability of taking this case. */
105 /* Probability of reaching subtree rooted at this node */
106 int subtree_prob;
107 };
108
109 typedef struct case_node case_node;
110 typedef struct case_node *case_node_ptr;
111
112 extern basic_block label_to_block_fn (struct function *, tree);
113 \f
114 static bool check_unique_operand_names (tree, tree, tree);
115 static char *resolve_operand_name_1 (char *, tree, tree, tree);
116 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
117 static int node_has_low_bound (case_node_ptr, tree);
118 static int node_has_high_bound (case_node_ptr, tree);
119 static int node_is_bounded (case_node_ptr, tree);
120 static void emit_case_nodes (rtx, case_node_ptr, rtx_code_label *, int, tree);
121 \f
122 /* Return the rtx-label that corresponds to a LABEL_DECL,
123 creating it if necessary. */
124
125 rtx_insn *
126 label_rtx (tree label)
127 {
128 gcc_assert (TREE_CODE (label) == LABEL_DECL);
129
130 if (!DECL_RTL_SET_P (label))
131 {
132 rtx_code_label *r = gen_label_rtx ();
133 SET_DECL_RTL (label, r);
134 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
135 LABEL_PRESERVE_P (r) = 1;
136 }
137
138 return as_a <rtx_insn *> (DECL_RTL (label));
139 }
140
141 /* As above, but also put it on the forced-reference list of the
142 function that contains it. */
143 rtx_insn *
144 force_label_rtx (tree label)
145 {
146 rtx_insn *ref = label_rtx (label);
147 tree function = decl_function_context (label);
148
149 gcc_assert (function);
150
151 forced_labels = gen_rtx_INSN_LIST (VOIDmode, ref, forced_labels);
152 return ref;
153 }
154
155 /* As label_rtx, but ensures (in check build), that returned value is
156 an existing label (i.e. rtx with code CODE_LABEL). */
157 rtx_code_label *
158 jump_target_rtx (tree label)
159 {
160 return as_a <rtx_code_label *> (label_rtx (label));
161 }
162
163 /* Add an unconditional jump to LABEL as the next sequential instruction. */
164
165 void
166 emit_jump (rtx label)
167 {
168 do_pending_stack_adjust ();
169 emit_jump_insn (targetm.gen_jump (label));
170 emit_barrier ();
171 }
172 \f
173 /* Handle goto statements and the labels that they can go to. */
174
175 /* Specify the location in the RTL code of a label LABEL,
176 which is a LABEL_DECL tree node.
177
178 This is used for the kind of label that the user can jump to with a
179 goto statement, and for alternatives of a switch or case statement.
180 RTL labels generated for loops and conditionals don't go through here;
181 they are generated directly at the RTL level, by other functions below.
182
183 Note that this has nothing to do with defining label *names*.
184 Languages vary in how they do that and what that even means. */
185
186 void
187 expand_label (tree label)
188 {
189 rtx_code_label *label_r = jump_target_rtx (label);
190
191 do_pending_stack_adjust ();
192 emit_label (label_r);
193 if (DECL_NAME (label))
194 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
195
196 if (DECL_NONLOCAL (label))
197 {
198 expand_builtin_setjmp_receiver (NULL);
199 nonlocal_goto_handler_labels
200 = gen_rtx_INSN_LIST (VOIDmode, label_r,
201 nonlocal_goto_handler_labels);
202 }
203
204 if (FORCED_LABEL (label))
205 forced_labels = gen_rtx_INSN_LIST (VOIDmode, label_r, forced_labels);
206
207 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
208 maybe_set_first_label_num (label_r);
209 }
210 \f
211 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
212 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
213 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
214 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
215 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
216 constraint allows the use of a register operand. And, *IS_INOUT
217 will be true if the operand is read-write, i.e., if it is used as
218 an input as well as an output. If *CONSTRAINT_P is not in
219 canonical form, it will be made canonical. (Note that `+' will be
220 replaced with `=' as part of this process.)
221
222 Returns TRUE if all went well; FALSE if an error occurred. */
223
224 bool
225 parse_output_constraint (const char **constraint_p, int operand_num,
226 int ninputs, int noutputs, bool *allows_mem,
227 bool *allows_reg, bool *is_inout)
228 {
229 const char *constraint = *constraint_p;
230 const char *p;
231
232 /* Assume the constraint doesn't allow the use of either a register
233 or memory. */
234 *allows_mem = false;
235 *allows_reg = false;
236
237 /* Allow the `=' or `+' to not be at the beginning of the string,
238 since it wasn't explicitly documented that way, and there is a
239 large body of code that puts it last. Swap the character to
240 the front, so as not to uglify any place else. */
241 p = strchr (constraint, '=');
242 if (!p)
243 p = strchr (constraint, '+');
244
245 /* If the string doesn't contain an `=', issue an error
246 message. */
247 if (!p)
248 {
249 error ("output operand constraint lacks %<=%>");
250 return false;
251 }
252
253 /* If the constraint begins with `+', then the operand is both read
254 from and written to. */
255 *is_inout = (*p == '+');
256
257 /* Canonicalize the output constraint so that it begins with `='. */
258 if (p != constraint || *is_inout)
259 {
260 char *buf;
261 size_t c_len = strlen (constraint);
262
263 if (p != constraint)
264 warning (0, "output constraint %qc for operand %d "
265 "is not at the beginning",
266 *p, operand_num);
267
268 /* Make a copy of the constraint. */
269 buf = XALLOCAVEC (char, c_len + 1);
270 strcpy (buf, constraint);
271 /* Swap the first character and the `=' or `+'. */
272 buf[p - constraint] = buf[0];
273 /* Make sure the first character is an `='. (Until we do this,
274 it might be a `+'.) */
275 buf[0] = '=';
276 /* Replace the constraint with the canonicalized string. */
277 *constraint_p = ggc_alloc_string (buf, c_len);
278 constraint = *constraint_p;
279 }
280
281 /* Loop through the constraint string. */
282 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
283 switch (*p)
284 {
285 case '+':
286 case '=':
287 error ("operand constraint contains incorrectly positioned "
288 "%<+%> or %<=%>");
289 return false;
290
291 case '%':
292 if (operand_num + 1 == ninputs + noutputs)
293 {
294 error ("%<%%%> constraint used with last operand");
295 return false;
296 }
297 break;
298
299 case '?': case '!': case '*': case '&': case '#':
300 case '$': case '^':
301 case 'E': case 'F': case 'G': case 'H':
302 case 's': case 'i': case 'n':
303 case 'I': case 'J': case 'K': case 'L': case 'M':
304 case 'N': case 'O': case 'P': case ',':
305 break;
306
307 case '0': case '1': case '2': case '3': case '4':
308 case '5': case '6': case '7': case '8': case '9':
309 case '[':
310 error ("matching constraint not valid in output operand");
311 return false;
312
313 case '<': case '>':
314 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
315 excepting those that expand_call created. So match memory
316 and hope. */
317 *allows_mem = true;
318 break;
319
320 case 'g': case 'X':
321 *allows_reg = true;
322 *allows_mem = true;
323 break;
324
325 default:
326 if (!ISALPHA (*p))
327 break;
328 enum constraint_num cn = lookup_constraint (p);
329 if (reg_class_for_constraint (cn) != NO_REGS
330 || insn_extra_address_constraint (cn))
331 *allows_reg = true;
332 else if (insn_extra_memory_constraint (cn))
333 *allows_mem = true;
334 else
335 insn_extra_constraint_allows_reg_mem (cn, allows_reg, allows_mem);
336 break;
337 }
338
339 return true;
340 }
341
342 /* Similar, but for input constraints. */
343
344 bool
345 parse_input_constraint (const char **constraint_p, int input_num,
346 int ninputs, int noutputs, int ninout,
347 const char * const * constraints,
348 bool *allows_mem, bool *allows_reg)
349 {
350 const char *constraint = *constraint_p;
351 const char *orig_constraint = constraint;
352 size_t c_len = strlen (constraint);
353 size_t j;
354 bool saw_match = false;
355
356 /* Assume the constraint doesn't allow the use of either
357 a register or memory. */
358 *allows_mem = false;
359 *allows_reg = false;
360
361 /* Make sure constraint has neither `=', `+', nor '&'. */
362
363 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
364 switch (constraint[j])
365 {
366 case '+': case '=': case '&':
367 if (constraint == orig_constraint)
368 {
369 error ("input operand constraint contains %qc", constraint[j]);
370 return false;
371 }
372 break;
373
374 case '%':
375 if (constraint == orig_constraint
376 && input_num + 1 == ninputs - ninout)
377 {
378 error ("%<%%%> constraint used with last operand");
379 return false;
380 }
381 break;
382
383 case '<': case '>':
384 case '?': case '!': case '*': case '#':
385 case '$': case '^':
386 case 'E': case 'F': case 'G': case 'H':
387 case 's': case 'i': case 'n':
388 case 'I': case 'J': case 'K': case 'L': case 'M':
389 case 'N': case 'O': case 'P': case ',':
390 break;
391
392 /* Whether or not a numeric constraint allows a register is
393 decided by the matching constraint, and so there is no need
394 to do anything special with them. We must handle them in
395 the default case, so that we don't unnecessarily force
396 operands to memory. */
397 case '0': case '1': case '2': case '3': case '4':
398 case '5': case '6': case '7': case '8': case '9':
399 {
400 char *end;
401 unsigned long match;
402
403 saw_match = true;
404
405 match = strtoul (constraint + j, &end, 10);
406 if (match >= (unsigned long) noutputs)
407 {
408 error ("matching constraint references invalid operand number");
409 return false;
410 }
411
412 /* Try and find the real constraint for this dup. Only do this
413 if the matching constraint is the only alternative. */
414 if (*end == '\0'
415 && (j == 0 || (j == 1 && constraint[0] == '%')))
416 {
417 constraint = constraints[match];
418 *constraint_p = constraint;
419 c_len = strlen (constraint);
420 j = 0;
421 /* ??? At the end of the loop, we will skip the first part of
422 the matched constraint. This assumes not only that the
423 other constraint is an output constraint, but also that
424 the '=' or '+' come first. */
425 break;
426 }
427 else
428 j = end - constraint;
429 /* Anticipate increment at end of loop. */
430 j--;
431 }
432 /* Fall through. */
433
434 case 'g': case 'X':
435 *allows_reg = true;
436 *allows_mem = true;
437 break;
438
439 default:
440 if (! ISALPHA (constraint[j]))
441 {
442 error ("invalid punctuation %qc in constraint", constraint[j]);
443 return false;
444 }
445 enum constraint_num cn = lookup_constraint (constraint + j);
446 if (reg_class_for_constraint (cn) != NO_REGS
447 || insn_extra_address_constraint (cn))
448 *allows_reg = true;
449 else if (insn_extra_memory_constraint (cn))
450 *allows_mem = true;
451 else
452 insn_extra_constraint_allows_reg_mem (cn, allows_reg, allows_mem);
453 break;
454 }
455
456 if (saw_match && !*allows_reg)
457 warning (0, "matching constraint does not allow a register");
458
459 return true;
460 }
461
462 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
463 can be an asm-declared register. Called via walk_tree. */
464
465 static tree
466 decl_overlaps_hard_reg_set_p (tree *declp, int *walk_subtrees ATTRIBUTE_UNUSED,
467 void *data)
468 {
469 tree decl = *declp;
470 const HARD_REG_SET *const regs = (const HARD_REG_SET *) data;
471
472 if (TREE_CODE (decl) == VAR_DECL)
473 {
474 if (DECL_HARD_REGISTER (decl)
475 && REG_P (DECL_RTL (decl))
476 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
477 {
478 rtx reg = DECL_RTL (decl);
479
480 if (overlaps_hard_reg_set_p (*regs, GET_MODE (reg), REGNO (reg)))
481 return decl;
482 }
483 walk_subtrees = 0;
484 }
485 else if (TYPE_P (decl) || TREE_CODE (decl) == PARM_DECL)
486 walk_subtrees = 0;
487 return NULL_TREE;
488 }
489
490 /* If there is an overlap between *REGS and DECL, return the first overlap
491 found. */
492 tree
493 tree_overlaps_hard_reg_set (tree decl, HARD_REG_SET *regs)
494 {
495 return walk_tree (&decl, decl_overlaps_hard_reg_set_p, regs, NULL);
496 }
497
498
499 /* A subroutine of expand_asm_operands. Check that all operand names
500 are unique. Return true if so. We rely on the fact that these names
501 are identifiers, and so have been canonicalized by get_identifier,
502 so all we need are pointer comparisons. */
503
504 static bool
505 check_unique_operand_names (tree outputs, tree inputs, tree labels)
506 {
507 tree i, j, i_name = NULL_TREE;
508
509 for (i = outputs; i ; i = TREE_CHAIN (i))
510 {
511 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
512 if (! i_name)
513 continue;
514
515 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
516 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
517 goto failure;
518 }
519
520 for (i = inputs; i ; i = TREE_CHAIN (i))
521 {
522 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
523 if (! i_name)
524 continue;
525
526 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
527 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
528 goto failure;
529 for (j = outputs; j ; j = TREE_CHAIN (j))
530 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
531 goto failure;
532 }
533
534 for (i = labels; i ; i = TREE_CHAIN (i))
535 {
536 i_name = TREE_PURPOSE (i);
537 if (! i_name)
538 continue;
539
540 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
541 if (simple_cst_equal (i_name, TREE_PURPOSE (j)))
542 goto failure;
543 for (j = inputs; j ; j = TREE_CHAIN (j))
544 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
545 goto failure;
546 }
547
548 return true;
549
550 failure:
551 error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name));
552 return false;
553 }
554
555 /* Resolve the names of the operands in *POUTPUTS and *PINPUTS to numbers,
556 and replace the name expansions in STRING and in the constraints to
557 those numbers. This is generally done in the front end while creating
558 the ASM_EXPR generic tree that eventually becomes the GIMPLE_ASM. */
559
560 tree
561 resolve_asm_operand_names (tree string, tree outputs, tree inputs, tree labels)
562 {
563 char *buffer;
564 char *p;
565 const char *c;
566 tree t;
567
568 check_unique_operand_names (outputs, inputs, labels);
569
570 /* Substitute [<name>] in input constraint strings. There should be no
571 named operands in output constraints. */
572 for (t = inputs; t ; t = TREE_CHAIN (t))
573 {
574 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
575 if (strchr (c, '[') != NULL)
576 {
577 p = buffer = xstrdup (c);
578 while ((p = strchr (p, '[')) != NULL)
579 p = resolve_operand_name_1 (p, outputs, inputs, NULL);
580 TREE_VALUE (TREE_PURPOSE (t))
581 = build_string (strlen (buffer), buffer);
582 free (buffer);
583 }
584 }
585
586 /* Now check for any needed substitutions in the template. */
587 c = TREE_STRING_POINTER (string);
588 while ((c = strchr (c, '%')) != NULL)
589 {
590 if (c[1] == '[')
591 break;
592 else if (ISALPHA (c[1]) && c[2] == '[')
593 break;
594 else
595 {
596 c += 1 + (c[1] == '%');
597 continue;
598 }
599 }
600
601 if (c)
602 {
603 /* OK, we need to make a copy so we can perform the substitutions.
604 Assume that we will not need extra space--we get to remove '['
605 and ']', which means we cannot have a problem until we have more
606 than 999 operands. */
607 buffer = xstrdup (TREE_STRING_POINTER (string));
608 p = buffer + (c - TREE_STRING_POINTER (string));
609
610 while ((p = strchr (p, '%')) != NULL)
611 {
612 if (p[1] == '[')
613 p += 1;
614 else if (ISALPHA (p[1]) && p[2] == '[')
615 p += 2;
616 else
617 {
618 p += 1 + (p[1] == '%');
619 continue;
620 }
621
622 p = resolve_operand_name_1 (p, outputs, inputs, labels);
623 }
624
625 string = build_string (strlen (buffer), buffer);
626 free (buffer);
627 }
628
629 return string;
630 }
631
632 /* A subroutine of resolve_operand_names. P points to the '[' for a
633 potential named operand of the form [<name>]. In place, replace
634 the name and brackets with a number. Return a pointer to the
635 balance of the string after substitution. */
636
637 static char *
638 resolve_operand_name_1 (char *p, tree outputs, tree inputs, tree labels)
639 {
640 char *q;
641 int op;
642 tree t;
643
644 /* Collect the operand name. */
645 q = strchr (++p, ']');
646 if (!q)
647 {
648 error ("missing close brace for named operand");
649 return strchr (p, '\0');
650 }
651 *q = '\0';
652
653 /* Resolve the name to a number. */
654 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
655 {
656 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
657 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
658 goto found;
659 }
660 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
661 {
662 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
663 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
664 goto found;
665 }
666 for (t = labels; t ; t = TREE_CHAIN (t), op++)
667 {
668 tree name = TREE_PURPOSE (t);
669 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
670 goto found;
671 }
672
673 error ("undefined named operand %qs", identifier_to_locale (p));
674 op = 0;
675
676 found:
677 /* Replace the name with the number. Unfortunately, not all libraries
678 get the return value of sprintf correct, so search for the end of the
679 generated string by hand. */
680 sprintf (--p, "%d", op);
681 p = strchr (p, '\0');
682
683 /* Verify the no extra buffer space assumption. */
684 gcc_assert (p <= q);
685
686 /* Shift the rest of the buffer down to fill the gap. */
687 memmove (p, q + 1, strlen (q + 1) + 1);
688
689 return p;
690 }
691 \f
692
693 /* Generate RTL to return directly from the current function.
694 (That is, we bypass any return value.) */
695
696 void
697 expand_naked_return (void)
698 {
699 rtx_code_label *end_label;
700
701 clear_pending_stack_adjust ();
702 do_pending_stack_adjust ();
703
704 end_label = naked_return_label;
705 if (end_label == 0)
706 end_label = naked_return_label = gen_label_rtx ();
707
708 emit_jump (end_label);
709 }
710
711 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. PROB
712 is the probability of jumping to LABEL. */
713 static void
714 do_jump_if_equal (machine_mode mode, rtx op0, rtx op1, rtx_code_label *label,
715 int unsignedp, int prob)
716 {
717 gcc_assert (prob <= REG_BR_PROB_BASE);
718 do_compare_rtx_and_jump (op0, op1, EQ, unsignedp, mode,
719 NULL_RTX, NULL, label, prob);
720 }
721 \f
722 /* Do the insertion of a case label into case_list. The labels are
723 fed to us in descending order from the sorted vector of case labels used
724 in the tree part of the middle end. So the list we construct is
725 sorted in ascending order.
726
727 LABEL is the case label to be inserted. LOW and HIGH are the bounds
728 against which the index is compared to jump to LABEL and PROB is the
729 estimated probability LABEL is reached from the switch statement. */
730
731 static struct case_node *
732 add_case_node (struct case_node *head, tree low, tree high,
733 tree label, int prob, pool_allocator<case_node> &case_node_pool)
734 {
735 struct case_node *r;
736
737 gcc_checking_assert (low);
738 gcc_checking_assert (high && (TREE_TYPE (low) == TREE_TYPE (high)));
739
740 /* Add this label to the chain. */
741 r = case_node_pool.allocate ();
742 r->low = low;
743 r->high = high;
744 r->code_label = label;
745 r->parent = r->left = NULL;
746 r->prob = prob;
747 r->subtree_prob = prob;
748 r->right = head;
749 return r;
750 }
751 \f
752 /* Dump ROOT, a list or tree of case nodes, to file. */
753
754 static void
755 dump_case_nodes (FILE *f, struct case_node *root,
756 int indent_step, int indent_level)
757 {
758 if (root == 0)
759 return;
760 indent_level++;
761
762 dump_case_nodes (f, root->left, indent_step, indent_level);
763
764 fputs (";; ", f);
765 fprintf (f, "%*s", indent_step * indent_level, "");
766 print_dec (root->low, f, TYPE_SIGN (TREE_TYPE (root->low)));
767 if (!tree_int_cst_equal (root->low, root->high))
768 {
769 fprintf (f, " ... ");
770 print_dec (root->high, f, TYPE_SIGN (TREE_TYPE (root->high)));
771 }
772 fputs ("\n", f);
773
774 dump_case_nodes (f, root->right, indent_step, indent_level);
775 }
776 \f
777 /* Return the smallest number of different values for which it is best to use a
778 jump-table instead of a tree of conditional branches. */
779
780 static unsigned int
781 case_values_threshold (void)
782 {
783 unsigned int threshold = PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD);
784
785 if (threshold == 0)
786 threshold = targetm.case_values_threshold ();
787
788 return threshold;
789 }
790
791 /* Return true if a switch should be expanded as a decision tree.
792 RANGE is the difference between highest and lowest case.
793 UNIQ is number of unique case node targets, not counting the default case.
794 COUNT is the number of comparisons needed, not counting the default case. */
795
796 static bool
797 expand_switch_as_decision_tree_p (tree range,
798 unsigned int uniq ATTRIBUTE_UNUSED,
799 unsigned int count)
800 {
801 int max_ratio;
802
803 /* If neither casesi or tablejump is available, or flag_jump_tables
804 over-ruled us, we really have no choice. */
805 if (!targetm.have_casesi () && !targetm.have_tablejump ())
806 return true;
807 if (!flag_jump_tables)
808 return true;
809 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
810 if (flag_pic)
811 return true;
812 #endif
813
814 /* If the switch is relatively small such that the cost of one
815 indirect jump on the target are higher than the cost of a
816 decision tree, go with the decision tree.
817
818 If range of values is much bigger than number of values,
819 or if it is too large to represent in a HOST_WIDE_INT,
820 make a sequence of conditional branches instead of a dispatch.
821
822 The definition of "much bigger" depends on whether we are
823 optimizing for size or for speed. If the former, the maximum
824 ratio range/count = 3, because this was found to be the optimal
825 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
826 10 is much older, and was probably selected after an extensive
827 benchmarking investigation on numerous platforms. Or maybe it
828 just made sense to someone at some point in the history of GCC,
829 who knows... */
830 max_ratio = optimize_insn_for_size_p () ? 3 : 10;
831 if (count < case_values_threshold ()
832 || ! tree_fits_uhwi_p (range)
833 || compare_tree_int (range, max_ratio * count) > 0)
834 return true;
835
836 return false;
837 }
838
839 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
840 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
841 DEFAULT_PROB is the estimated probability that it jumps to
842 DEFAULT_LABEL.
843
844 We generate a binary decision tree to select the appropriate target
845 code. This is done as follows:
846
847 If the index is a short or char that we do not have
848 an insn to handle comparisons directly, convert it to
849 a full integer now, rather than letting each comparison
850 generate the conversion.
851
852 Load the index into a register.
853
854 The list of cases is rearranged into a binary tree,
855 nearly optimal assuming equal probability for each case.
856
857 The tree is transformed into RTL, eliminating redundant
858 test conditions at the same time.
859
860 If program flow could reach the end of the decision tree
861 an unconditional jump to the default code is emitted.
862
863 The above process is unaware of the CFG. The caller has to fix up
864 the CFG itself. This is done in cfgexpand.c. */
865
866 static void
867 emit_case_decision_tree (tree index_expr, tree index_type,
868 case_node_ptr case_list, rtx_code_label *default_label,
869 int default_prob)
870 {
871 rtx index = expand_normal (index_expr);
872
873 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
874 && ! have_insn_for (COMPARE, GET_MODE (index)))
875 {
876 int unsignedp = TYPE_UNSIGNED (index_type);
877 machine_mode wider_mode;
878 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
879 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
880 if (have_insn_for (COMPARE, wider_mode))
881 {
882 index = convert_to_mode (wider_mode, index, unsignedp);
883 break;
884 }
885 }
886
887 do_pending_stack_adjust ();
888
889 if (MEM_P (index))
890 {
891 index = copy_to_reg (index);
892 if (TREE_CODE (index_expr) == SSA_NAME)
893 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (index_expr), index);
894 }
895
896 balance_case_nodes (&case_list, NULL);
897
898 if (dump_file && (dump_flags & TDF_DETAILS))
899 {
900 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
901 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
902 dump_case_nodes (dump_file, case_list, indent_step, 0);
903 }
904
905 emit_case_nodes (index, case_list, default_label, default_prob, index_type);
906 if (default_label)
907 emit_jump (default_label);
908 }
909
910 /* Return the sum of probabilities of outgoing edges of basic block BB. */
911
912 static int
913 get_outgoing_edge_probs (basic_block bb)
914 {
915 edge e;
916 edge_iterator ei;
917 int prob_sum = 0;
918 if (!bb)
919 return 0;
920 FOR_EACH_EDGE (e, ei, bb->succs)
921 prob_sum += e->probability;
922 return prob_sum;
923 }
924
925 /* Computes the conditional probability of jumping to a target if the branch
926 instruction is executed.
927 TARGET_PROB is the estimated probability of jumping to a target relative
928 to some basic block BB.
929 BASE_PROB is the probability of reaching the branch instruction relative
930 to the same basic block BB. */
931
932 static inline int
933 conditional_probability (int target_prob, int base_prob)
934 {
935 if (base_prob > 0)
936 {
937 gcc_assert (target_prob >= 0);
938 gcc_assert (target_prob <= base_prob);
939 return GCOV_COMPUTE_SCALE (target_prob, base_prob);
940 }
941 return -1;
942 }
943
944 /* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
945 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
946 MINVAL, MAXVAL, and RANGE are the extrema and range of the case
947 labels in CASE_LIST. STMT_BB is the basic block containing the statement.
948
949 First, a jump insn is emitted. First we try "casesi". If that
950 fails, try "tablejump". A target *must* have one of them (or both).
951
952 Then, a table with the target labels is emitted.
953
954 The process is unaware of the CFG. The caller has to fix up
955 the CFG itself. This is done in cfgexpand.c. */
956
957 static void
958 emit_case_dispatch_table (tree index_expr, tree index_type,
959 struct case_node *case_list, rtx default_label,
960 tree minval, tree maxval, tree range,
961 basic_block stmt_bb)
962 {
963 int i, ncases;
964 struct case_node *n;
965 rtx *labelvec;
966 rtx_insn *fallback_label = label_rtx (case_list->code_label);
967 rtx_code_label *table_label = gen_label_rtx ();
968 bool has_gaps = false;
969 edge default_edge = stmt_bb ? EDGE_SUCC (stmt_bb, 0) : NULL;
970 int default_prob = default_edge ? default_edge->probability : 0;
971 int base = get_outgoing_edge_probs (stmt_bb);
972 bool try_with_tablejump = false;
973
974 int new_default_prob = conditional_probability (default_prob,
975 base);
976
977 if (! try_casesi (index_type, index_expr, minval, range,
978 table_label, default_label, fallback_label,
979 new_default_prob))
980 {
981 /* Index jumptables from zero for suitable values of minval to avoid
982 a subtraction. For the rationale see:
983 "http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
984 if (optimize_insn_for_speed_p ()
985 && compare_tree_int (minval, 0) > 0
986 && compare_tree_int (minval, 3) < 0)
987 {
988 minval = build_int_cst (index_type, 0);
989 range = maxval;
990 has_gaps = true;
991 }
992 try_with_tablejump = true;
993 }
994
995 /* Get table of labels to jump to, in order of case index. */
996
997 ncases = tree_to_shwi (range) + 1;
998 labelvec = XALLOCAVEC (rtx, ncases);
999 memset (labelvec, 0, ncases * sizeof (rtx));
1000
1001 for (n = case_list; n; n = n->right)
1002 {
1003 /* Compute the low and high bounds relative to the minimum
1004 value since that should fit in a HOST_WIDE_INT while the
1005 actual values may not. */
1006 HOST_WIDE_INT i_low
1007 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1008 n->low, minval));
1009 HOST_WIDE_INT i_high
1010 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1011 n->high, minval));
1012 HOST_WIDE_INT i;
1013
1014 for (i = i_low; i <= i_high; i ++)
1015 labelvec[i]
1016 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
1017 }
1018
1019 /* Fill in the gaps with the default. We may have gaps at
1020 the beginning if we tried to avoid the minval subtraction,
1021 so substitute some label even if the default label was
1022 deemed unreachable. */
1023 if (!default_label)
1024 default_label = fallback_label;
1025 for (i = 0; i < ncases; i++)
1026 if (labelvec[i] == 0)
1027 {
1028 has_gaps = true;
1029 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
1030 }
1031
1032 if (has_gaps)
1033 {
1034 /* There is at least one entry in the jump table that jumps
1035 to default label. The default label can either be reached
1036 through the indirect jump or the direct conditional jump
1037 before that. Split the probability of reaching the
1038 default label among these two jumps. */
1039 new_default_prob = conditional_probability (default_prob/2,
1040 base);
1041 default_prob /= 2;
1042 base -= default_prob;
1043 }
1044 else
1045 {
1046 base -= default_prob;
1047 default_prob = 0;
1048 }
1049
1050 if (default_edge)
1051 default_edge->probability = default_prob;
1052
1053 /* We have altered the probability of the default edge. So the probabilities
1054 of all other edges need to be adjusted so that it sums up to
1055 REG_BR_PROB_BASE. */
1056 if (base)
1057 {
1058 edge e;
1059 edge_iterator ei;
1060 FOR_EACH_EDGE (e, ei, stmt_bb->succs)
1061 e->probability = GCOV_COMPUTE_SCALE (e->probability, base);
1062 }
1063
1064 if (try_with_tablejump)
1065 {
1066 bool ok = try_tablejump (index_type, index_expr, minval, range,
1067 table_label, default_label, new_default_prob);
1068 gcc_assert (ok);
1069 }
1070 /* Output the table. */
1071 emit_label (table_label);
1072
1073 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
1074 emit_jump_table_data (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
1075 gen_rtx_LABEL_REF (Pmode,
1076 table_label),
1077 gen_rtvec_v (ncases, labelvec),
1078 const0_rtx, const0_rtx));
1079 else
1080 emit_jump_table_data (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
1081 gen_rtvec_v (ncases, labelvec)));
1082
1083 /* Record no drop-through after the table. */
1084 emit_barrier ();
1085 }
1086
1087 /* Reset the aux field of all outgoing edges of basic block BB. */
1088
1089 static inline void
1090 reset_out_edges_aux (basic_block bb)
1091 {
1092 edge e;
1093 edge_iterator ei;
1094 FOR_EACH_EDGE (e, ei, bb->succs)
1095 e->aux = (void *)0;
1096 }
1097
1098 /* Compute the number of case labels that correspond to each outgoing edge of
1099 STMT. Record this information in the aux field of the edge. */
1100
1101 static inline void
1102 compute_cases_per_edge (gswitch *stmt)
1103 {
1104 basic_block bb = gimple_bb (stmt);
1105 reset_out_edges_aux (bb);
1106 int ncases = gimple_switch_num_labels (stmt);
1107 for (int i = ncases - 1; i >= 1; --i)
1108 {
1109 tree elt = gimple_switch_label (stmt, i);
1110 tree lab = CASE_LABEL (elt);
1111 basic_block case_bb = label_to_block_fn (cfun, lab);
1112 edge case_edge = find_edge (bb, case_bb);
1113 case_edge->aux = (void *)((intptr_t)(case_edge->aux) + 1);
1114 }
1115 }
1116
1117 /* Terminate a case (Pascal/Ada) or switch (C) statement
1118 in which ORIG_INDEX is the expression to be tested.
1119 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
1120 type as given in the source before any compiler conversions.
1121 Generate the code to test it and jump to the right place. */
1122
1123 void
1124 expand_case (gswitch *stmt)
1125 {
1126 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
1127 rtx_code_label *default_label = NULL;
1128 unsigned int count, uniq;
1129 int i;
1130 int ncases = gimple_switch_num_labels (stmt);
1131 tree index_expr = gimple_switch_index (stmt);
1132 tree index_type = TREE_TYPE (index_expr);
1133 tree elt;
1134 basic_block bb = gimple_bb (stmt);
1135
1136 /* A list of case labels; it is first built as a list and it may then
1137 be rearranged into a nearly balanced binary tree. */
1138 struct case_node *case_list = 0;
1139
1140 /* A pool for case nodes. */
1141 pool_allocator<case_node> case_node_pool ("struct case_node pool", 100);
1142
1143 /* An ERROR_MARK occurs for various reasons including invalid data type.
1144 ??? Can this still happen, with GIMPLE and all? */
1145 if (index_type == error_mark_node)
1146 return;
1147
1148 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
1149 expressions being INTEGER_CST. */
1150 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
1151
1152
1153 do_pending_stack_adjust ();
1154
1155 /* Find the default case target label. */
1156 default_label = jump_target_rtx
1157 (CASE_LABEL (gimple_switch_default_label (stmt)));
1158 edge default_edge = EDGE_SUCC (bb, 0);
1159 int default_prob = default_edge->probability;
1160
1161 /* Get upper and lower bounds of case values. */
1162 elt = gimple_switch_label (stmt, 1);
1163 minval = fold_convert (index_type, CASE_LOW (elt));
1164 elt = gimple_switch_label (stmt, ncases - 1);
1165 if (CASE_HIGH (elt))
1166 maxval = fold_convert (index_type, CASE_HIGH (elt));
1167 else
1168 maxval = fold_convert (index_type, CASE_LOW (elt));
1169
1170 /* Compute span of values. */
1171 range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
1172
1173 /* Listify the labels queue and gather some numbers to decide
1174 how to expand this switch(). */
1175 uniq = 0;
1176 count = 0;
1177 hash_set<tree> seen_labels;
1178 compute_cases_per_edge (stmt);
1179
1180 for (i = ncases - 1; i >= 1; --i)
1181 {
1182 elt = gimple_switch_label (stmt, i);
1183 tree low = CASE_LOW (elt);
1184 gcc_assert (low);
1185 tree high = CASE_HIGH (elt);
1186 gcc_assert (! high || tree_int_cst_lt (low, high));
1187 tree lab = CASE_LABEL (elt);
1188
1189 /* Count the elements.
1190 A range counts double, since it requires two compares. */
1191 count++;
1192 if (high)
1193 count++;
1194
1195 /* If we have not seen this label yet, then increase the
1196 number of unique case node targets seen. */
1197 if (!seen_labels.add (lab))
1198 uniq++;
1199
1200 /* The bounds on the case range, LOW and HIGH, have to be converted
1201 to case's index type TYPE. Note that the original type of the
1202 case index in the source code is usually "lost" during
1203 gimplification due to type promotion, but the case labels retain the
1204 original type. Make sure to drop overflow flags. */
1205 low = fold_convert (index_type, low);
1206 if (TREE_OVERFLOW (low))
1207 low = wide_int_to_tree (index_type, low);
1208
1209 /* The canonical from of a case label in GIMPLE is that a simple case
1210 has an empty CASE_HIGH. For the casesi and tablejump expanders,
1211 the back ends want simple cases to have high == low. */
1212 if (! high)
1213 high = low;
1214 high = fold_convert (index_type, high);
1215 if (TREE_OVERFLOW (high))
1216 high = wide_int_to_tree (index_type, high);
1217
1218 basic_block case_bb = label_to_block_fn (cfun, lab);
1219 edge case_edge = find_edge (bb, case_bb);
1220 case_list = add_case_node (
1221 case_list, low, high, lab,
1222 case_edge->probability / (intptr_t)(case_edge->aux),
1223 case_node_pool);
1224 }
1225 reset_out_edges_aux (bb);
1226
1227 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
1228 destination, such as one with a default case only.
1229 It also removes cases that are out of range for the switch
1230 type, so we should never get a zero here. */
1231 gcc_assert (count > 0);
1232
1233 rtx_insn *before_case = get_last_insn ();
1234
1235 /* Decide how to expand this switch.
1236 The two options at this point are a dispatch table (casesi or
1237 tablejump) or a decision tree. */
1238
1239 if (expand_switch_as_decision_tree_p (range, uniq, count))
1240 emit_case_decision_tree (index_expr, index_type,
1241 case_list, default_label,
1242 default_prob);
1243 else
1244 emit_case_dispatch_table (index_expr, index_type,
1245 case_list, default_label,
1246 minval, maxval, range, bb);
1247
1248 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1249
1250 free_temp_slots ();
1251 }
1252
1253 /* Expand the dispatch to a short decrement chain if there are few cases
1254 to dispatch to. Likewise if neither casesi nor tablejump is available,
1255 or if flag_jump_tables is set. Otherwise, expand as a casesi or a
1256 tablejump. The index mode is always the mode of integer_type_node.
1257 Trap if no case matches the index.
1258
1259 DISPATCH_INDEX is the index expression to switch on. It should be a
1260 memory or register operand.
1261
1262 DISPATCH_TABLE is a set of case labels. The set should be sorted in
1263 ascending order, be contiguous, starting with value 0, and contain only
1264 single-valued case labels. */
1265
1266 void
1267 expand_sjlj_dispatch_table (rtx dispatch_index,
1268 vec<tree> dispatch_table)
1269 {
1270 tree index_type = integer_type_node;
1271 machine_mode index_mode = TYPE_MODE (index_type);
1272
1273 int ncases = dispatch_table.length ();
1274
1275 do_pending_stack_adjust ();
1276 rtx_insn *before_case = get_last_insn ();
1277
1278 /* Expand as a decrement-chain if there are 5 or fewer dispatch
1279 labels. This covers more than 98% of the cases in libjava,
1280 and seems to be a reasonable compromise between the "old way"
1281 of expanding as a decision tree or dispatch table vs. the "new
1282 way" with decrement chain or dispatch table. */
1283 if (dispatch_table.length () <= 5
1284 || (!targetm.have_casesi () && !targetm.have_tablejump ())
1285 || !flag_jump_tables)
1286 {
1287 /* Expand the dispatch as a decrement chain:
1288
1289 "switch(index) {case 0: do_0; case 1: do_1; ...; case N: do_N;}"
1290
1291 ==>
1292
1293 if (index == 0) do_0; else index--;
1294 if (index == 0) do_1; else index--;
1295 ...
1296 if (index == 0) do_N; else index--;
1297
1298 This is more efficient than a dispatch table on most machines.
1299 The last "index--" is redundant but the code is trivially dead
1300 and will be cleaned up by later passes. */
1301 rtx index = copy_to_mode_reg (index_mode, dispatch_index);
1302 rtx zero = CONST0_RTX (index_mode);
1303 for (int i = 0; i < ncases; i++)
1304 {
1305 tree elt = dispatch_table[i];
1306 rtx_code_label *lab = jump_target_rtx (CASE_LABEL (elt));
1307 do_jump_if_equal (index_mode, index, zero, lab, 0, -1);
1308 force_expand_binop (index_mode, sub_optab,
1309 index, CONST1_RTX (index_mode),
1310 index, 0, OPTAB_DIRECT);
1311 }
1312 }
1313 else
1314 {
1315 /* Similar to expand_case, but much simpler. */
1316 struct case_node *case_list = 0;
1317 pool_allocator<case_node> case_node_pool ("struct sjlj_case pool",
1318 ncases);
1319 tree index_expr = make_tree (index_type, dispatch_index);
1320 tree minval = build_int_cst (index_type, 0);
1321 tree maxval = CASE_LOW (dispatch_table.last ());
1322 tree range = maxval;
1323 rtx_code_label *default_label = gen_label_rtx ();
1324
1325 for (int i = ncases - 1; i >= 0; --i)
1326 {
1327 tree elt = dispatch_table[i];
1328 tree low = CASE_LOW (elt);
1329 tree lab = CASE_LABEL (elt);
1330 case_list = add_case_node (case_list, low, low, lab, 0, case_node_pool);
1331 }
1332
1333 emit_case_dispatch_table (index_expr, index_type,
1334 case_list, default_label,
1335 minval, maxval, range,
1336 BLOCK_FOR_INSN (before_case));
1337 emit_label (default_label);
1338 }
1339
1340 /* Dispatching something not handled? Trap! */
1341 expand_builtin_trap ();
1342
1343 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1344
1345 free_temp_slots ();
1346 }
1347
1348 \f
1349 /* Take an ordered list of case nodes
1350 and transform them into a near optimal binary tree,
1351 on the assumption that any target code selection value is as
1352 likely as any other.
1353
1354 The transformation is performed by splitting the ordered
1355 list into two equal sections plus a pivot. The parts are
1356 then attached to the pivot as left and right branches. Each
1357 branch is then transformed recursively. */
1358
1359 static void
1360 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
1361 {
1362 case_node_ptr np;
1363
1364 np = *head;
1365 if (np)
1366 {
1367 int i = 0;
1368 int ranges = 0;
1369 case_node_ptr *npp;
1370 case_node_ptr left;
1371
1372 /* Count the number of entries on branch. Also count the ranges. */
1373
1374 while (np)
1375 {
1376 if (!tree_int_cst_equal (np->low, np->high))
1377 ranges++;
1378
1379 i++;
1380 np = np->right;
1381 }
1382
1383 if (i > 2)
1384 {
1385 /* Split this list if it is long enough for that to help. */
1386 npp = head;
1387 left = *npp;
1388
1389 /* If there are just three nodes, split at the middle one. */
1390 if (i == 3)
1391 npp = &(*npp)->right;
1392 else
1393 {
1394 /* Find the place in the list that bisects the list's total cost,
1395 where ranges count as 2.
1396 Here I gets half the total cost. */
1397 i = (i + ranges + 1) / 2;
1398 while (1)
1399 {
1400 /* Skip nodes while their cost does not reach that amount. */
1401 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
1402 i--;
1403 i--;
1404 if (i <= 0)
1405 break;
1406 npp = &(*npp)->right;
1407 }
1408 }
1409 *head = np = *npp;
1410 *npp = 0;
1411 np->parent = parent;
1412 np->left = left;
1413
1414 /* Optimize each of the two split parts. */
1415 balance_case_nodes (&np->left, np);
1416 balance_case_nodes (&np->right, np);
1417 np->subtree_prob = np->prob;
1418 np->subtree_prob += np->left->subtree_prob;
1419 np->subtree_prob += np->right->subtree_prob;
1420 }
1421 else
1422 {
1423 /* Else leave this branch as one level,
1424 but fill in `parent' fields. */
1425 np = *head;
1426 np->parent = parent;
1427 np->subtree_prob = np->prob;
1428 for (; np->right; np = np->right)
1429 {
1430 np->right->parent = np;
1431 (*head)->subtree_prob += np->right->subtree_prob;
1432 }
1433 }
1434 }
1435 }
1436 \f
1437 /* Search the parent sections of the case node tree
1438 to see if a test for the lower bound of NODE would be redundant.
1439 INDEX_TYPE is the type of the index expression.
1440
1441 The instructions to generate the case decision tree are
1442 output in the same order as nodes are processed so it is
1443 known that if a parent node checks the range of the current
1444 node minus one that the current node is bounded at its lower
1445 span. Thus the test would be redundant. */
1446
1447 static int
1448 node_has_low_bound (case_node_ptr node, tree index_type)
1449 {
1450 tree low_minus_one;
1451 case_node_ptr pnode;
1452
1453 /* If the lower bound of this node is the lowest value in the index type,
1454 we need not test it. */
1455
1456 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
1457 return 1;
1458
1459 /* If this node has a left branch, the value at the left must be less
1460 than that at this node, so it cannot be bounded at the bottom and
1461 we need not bother testing any further. */
1462
1463 if (node->left)
1464 return 0;
1465
1466 low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low),
1467 node->low,
1468 build_int_cst (TREE_TYPE (node->low), 1));
1469
1470 /* If the subtraction above overflowed, we can't verify anything.
1471 Otherwise, look for a parent that tests our value - 1. */
1472
1473 if (! tree_int_cst_lt (low_minus_one, node->low))
1474 return 0;
1475
1476 for (pnode = node->parent; pnode; pnode = pnode->parent)
1477 if (tree_int_cst_equal (low_minus_one, pnode->high))
1478 return 1;
1479
1480 return 0;
1481 }
1482
1483 /* Search the parent sections of the case node tree
1484 to see if a test for the upper bound of NODE would be redundant.
1485 INDEX_TYPE is the type of the index expression.
1486
1487 The instructions to generate the case decision tree are
1488 output in the same order as nodes are processed so it is
1489 known that if a parent node checks the range of the current
1490 node plus one that the current node is bounded at its upper
1491 span. Thus the test would be redundant. */
1492
1493 static int
1494 node_has_high_bound (case_node_ptr node, tree index_type)
1495 {
1496 tree high_plus_one;
1497 case_node_ptr pnode;
1498
1499 /* If there is no upper bound, obviously no test is needed. */
1500
1501 if (TYPE_MAX_VALUE (index_type) == NULL)
1502 return 1;
1503
1504 /* If the upper bound of this node is the highest value in the type
1505 of the index expression, we need not test against it. */
1506
1507 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
1508 return 1;
1509
1510 /* If this node has a right branch, the value at the right must be greater
1511 than that at this node, so it cannot be bounded at the top and
1512 we need not bother testing any further. */
1513
1514 if (node->right)
1515 return 0;
1516
1517 high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high),
1518 node->high,
1519 build_int_cst (TREE_TYPE (node->high), 1));
1520
1521 /* If the addition above overflowed, we can't verify anything.
1522 Otherwise, look for a parent that tests our value + 1. */
1523
1524 if (! tree_int_cst_lt (node->high, high_plus_one))
1525 return 0;
1526
1527 for (pnode = node->parent; pnode; pnode = pnode->parent)
1528 if (tree_int_cst_equal (high_plus_one, pnode->low))
1529 return 1;
1530
1531 return 0;
1532 }
1533
1534 /* Search the parent sections of the
1535 case node tree to see if both tests for the upper and lower
1536 bounds of NODE would be redundant. */
1537
1538 static int
1539 node_is_bounded (case_node_ptr node, tree index_type)
1540 {
1541 return (node_has_low_bound (node, index_type)
1542 && node_has_high_bound (node, index_type));
1543 }
1544 \f
1545
1546 /* Emit step-by-step code to select a case for the value of INDEX.
1547 The thus generated decision tree follows the form of the
1548 case-node binary tree NODE, whose nodes represent test conditions.
1549 INDEX_TYPE is the type of the index of the switch.
1550
1551 Care is taken to prune redundant tests from the decision tree
1552 by detecting any boundary conditions already checked by
1553 emitted rtx. (See node_has_high_bound, node_has_low_bound
1554 and node_is_bounded, above.)
1555
1556 Where the test conditions can be shown to be redundant we emit
1557 an unconditional jump to the target code. As a further
1558 optimization, the subordinates of a tree node are examined to
1559 check for bounded nodes. In this case conditional and/or
1560 unconditional jumps as a result of the boundary check for the
1561 current node are arranged to target the subordinates associated
1562 code for out of bound conditions on the current node.
1563
1564 We can assume that when control reaches the code generated here,
1565 the index value has already been compared with the parents
1566 of this node, and determined to be on the same side of each parent
1567 as this node is. Thus, if this node tests for the value 51,
1568 and a parent tested for 52, we don't need to consider
1569 the possibility of a value greater than 51. If another parent
1570 tests for the value 50, then this node need not test anything. */
1571
1572 static void
1573 emit_case_nodes (rtx index, case_node_ptr node, rtx_code_label *default_label,
1574 int default_prob, tree index_type)
1575 {
1576 /* If INDEX has an unsigned type, we must make unsigned branches. */
1577 int unsignedp = TYPE_UNSIGNED (index_type);
1578 int probability;
1579 int prob = node->prob, subtree_prob = node->subtree_prob;
1580 machine_mode mode = GET_MODE (index);
1581 machine_mode imode = TYPE_MODE (index_type);
1582
1583 /* Handle indices detected as constant during RTL expansion. */
1584 if (mode == VOIDmode)
1585 mode = imode;
1586
1587 /* See if our parents have already tested everything for us.
1588 If they have, emit an unconditional jump for this node. */
1589 if (node_is_bounded (node, index_type))
1590 emit_jump (label_rtx (node->code_label));
1591
1592 else if (tree_int_cst_equal (node->low, node->high))
1593 {
1594 probability = conditional_probability (prob, subtree_prob + default_prob);
1595 /* Node is single valued. First see if the index expression matches
1596 this node and then check our children, if any. */
1597 do_jump_if_equal (mode, index,
1598 convert_modes (mode, imode,
1599 expand_normal (node->low),
1600 unsignedp),
1601 jump_target_rtx (node->code_label),
1602 unsignedp, probability);
1603 /* Since this case is taken at this point, reduce its weight from
1604 subtree_weight. */
1605 subtree_prob -= prob;
1606 if (node->right != 0 && node->left != 0)
1607 {
1608 /* This node has children on both sides.
1609 Dispatch to one side or the other
1610 by comparing the index value with this node's value.
1611 If one subtree is bounded, check that one first,
1612 so we can avoid real branches in the tree. */
1613
1614 if (node_is_bounded (node->right, index_type))
1615 {
1616 probability = conditional_probability (
1617 node->right->prob,
1618 subtree_prob + default_prob);
1619 emit_cmp_and_jump_insns (index,
1620 convert_modes
1621 (mode, imode,
1622 expand_normal (node->high),
1623 unsignedp),
1624 GT, NULL_RTX, mode, unsignedp,
1625 label_rtx (node->right->code_label),
1626 probability);
1627 emit_case_nodes (index, node->left, default_label, default_prob,
1628 index_type);
1629 }
1630
1631 else if (node_is_bounded (node->left, index_type))
1632 {
1633 probability = conditional_probability (
1634 node->left->prob,
1635 subtree_prob + default_prob);
1636 emit_cmp_and_jump_insns (index,
1637 convert_modes
1638 (mode, imode,
1639 expand_normal (node->high),
1640 unsignedp),
1641 LT, NULL_RTX, mode, unsignedp,
1642 label_rtx (node->left->code_label),
1643 probability);
1644 emit_case_nodes (index, node->right, default_label, default_prob,
1645 index_type);
1646 }
1647
1648 /* If both children are single-valued cases with no
1649 children, finish up all the work. This way, we can save
1650 one ordered comparison. */
1651 else if (tree_int_cst_equal (node->right->low, node->right->high)
1652 && node->right->left == 0
1653 && node->right->right == 0
1654 && tree_int_cst_equal (node->left->low, node->left->high)
1655 && node->left->left == 0
1656 && node->left->right == 0)
1657 {
1658 /* Neither node is bounded. First distinguish the two sides;
1659 then emit the code for one side at a time. */
1660
1661 /* See if the value matches what the right hand side
1662 wants. */
1663 probability = conditional_probability (
1664 node->right->prob,
1665 subtree_prob + default_prob);
1666 do_jump_if_equal (mode, index,
1667 convert_modes (mode, imode,
1668 expand_normal (node->right->low),
1669 unsignedp),
1670 jump_target_rtx (node->right->code_label),
1671 unsignedp, probability);
1672
1673 /* See if the value matches what the left hand side
1674 wants. */
1675 probability = conditional_probability (
1676 node->left->prob,
1677 subtree_prob + default_prob);
1678 do_jump_if_equal (mode, index,
1679 convert_modes (mode, imode,
1680 expand_normal (node->left->low),
1681 unsignedp),
1682 jump_target_rtx (node->left->code_label),
1683 unsignedp, probability);
1684 }
1685
1686 else
1687 {
1688 /* Neither node is bounded. First distinguish the two sides;
1689 then emit the code for one side at a time. */
1690
1691 tree test_label
1692 = build_decl (curr_insn_location (),
1693 LABEL_DECL, NULL_TREE, void_type_node);
1694
1695 /* The default label could be reached either through the right
1696 subtree or the left subtree. Divide the probability
1697 equally. */
1698 probability = conditional_probability (
1699 node->right->subtree_prob + default_prob/2,
1700 subtree_prob + default_prob);
1701 /* See if the value is on the right. */
1702 emit_cmp_and_jump_insns (index,
1703 convert_modes
1704 (mode, imode,
1705 expand_normal (node->high),
1706 unsignedp),
1707 GT, NULL_RTX, mode, unsignedp,
1708 label_rtx (test_label),
1709 probability);
1710 default_prob /= 2;
1711
1712 /* Value must be on the left.
1713 Handle the left-hand subtree. */
1714 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1715 /* If left-hand subtree does nothing,
1716 go to default. */
1717 if (default_label)
1718 emit_jump (default_label);
1719
1720 /* Code branches here for the right-hand subtree. */
1721 expand_label (test_label);
1722 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1723 }
1724 }
1725
1726 else if (node->right != 0 && node->left == 0)
1727 {
1728 /* Here we have a right child but no left so we issue a conditional
1729 branch to default and process the right child.
1730
1731 Omit the conditional branch to default if the right child
1732 does not have any children and is single valued; it would
1733 cost too much space to save so little time. */
1734
1735 if (node->right->right || node->right->left
1736 || !tree_int_cst_equal (node->right->low, node->right->high))
1737 {
1738 if (!node_has_low_bound (node, index_type))
1739 {
1740 probability = conditional_probability (
1741 default_prob/2,
1742 subtree_prob + default_prob);
1743 emit_cmp_and_jump_insns (index,
1744 convert_modes
1745 (mode, imode,
1746 expand_normal (node->high),
1747 unsignedp),
1748 LT, NULL_RTX, mode, unsignedp,
1749 default_label,
1750 probability);
1751 default_prob /= 2;
1752 }
1753
1754 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1755 }
1756 else
1757 {
1758 probability = conditional_probability (
1759 node->right->subtree_prob,
1760 subtree_prob + default_prob);
1761 /* We cannot process node->right normally
1762 since we haven't ruled out the numbers less than
1763 this node's value. So handle node->right explicitly. */
1764 do_jump_if_equal (mode, index,
1765 convert_modes
1766 (mode, imode,
1767 expand_normal (node->right->low),
1768 unsignedp),
1769 jump_target_rtx (node->right->code_label),
1770 unsignedp, probability);
1771 }
1772 }
1773
1774 else if (node->right == 0 && node->left != 0)
1775 {
1776 /* Just one subtree, on the left. */
1777 if (node->left->left || node->left->right
1778 || !tree_int_cst_equal (node->left->low, node->left->high))
1779 {
1780 if (!node_has_high_bound (node, index_type))
1781 {
1782 probability = conditional_probability (
1783 default_prob/2,
1784 subtree_prob + default_prob);
1785 emit_cmp_and_jump_insns (index,
1786 convert_modes
1787 (mode, imode,
1788 expand_normal (node->high),
1789 unsignedp),
1790 GT, NULL_RTX, mode, unsignedp,
1791 default_label,
1792 probability);
1793 default_prob /= 2;
1794 }
1795
1796 emit_case_nodes (index, node->left, default_label,
1797 default_prob, index_type);
1798 }
1799 else
1800 {
1801 probability = conditional_probability (
1802 node->left->subtree_prob,
1803 subtree_prob + default_prob);
1804 /* We cannot process node->left normally
1805 since we haven't ruled out the numbers less than
1806 this node's value. So handle node->left explicitly. */
1807 do_jump_if_equal (mode, index,
1808 convert_modes
1809 (mode, imode,
1810 expand_normal (node->left->low),
1811 unsignedp),
1812 jump_target_rtx (node->left->code_label),
1813 unsignedp, probability);
1814 }
1815 }
1816 }
1817 else
1818 {
1819 /* Node is a range. These cases are very similar to those for a single
1820 value, except that we do not start by testing whether this node
1821 is the one to branch to. */
1822
1823 if (node->right != 0 && node->left != 0)
1824 {
1825 /* Node has subtrees on both sides.
1826 If the right-hand subtree is bounded,
1827 test for it first, since we can go straight there.
1828 Otherwise, we need to make a branch in the control structure,
1829 then handle the two subtrees. */
1830 tree test_label = 0;
1831
1832 if (node_is_bounded (node->right, index_type))
1833 {
1834 /* Right hand node is fully bounded so we can eliminate any
1835 testing and branch directly to the target code. */
1836 probability = conditional_probability (
1837 node->right->subtree_prob,
1838 subtree_prob + default_prob);
1839 emit_cmp_and_jump_insns (index,
1840 convert_modes
1841 (mode, imode,
1842 expand_normal (node->high),
1843 unsignedp),
1844 GT, NULL_RTX, mode, unsignedp,
1845 label_rtx (node->right->code_label),
1846 probability);
1847 }
1848 else
1849 {
1850 /* Right hand node requires testing.
1851 Branch to a label where we will handle it later. */
1852
1853 test_label = build_decl (curr_insn_location (),
1854 LABEL_DECL, NULL_TREE, void_type_node);
1855 probability = conditional_probability (
1856 node->right->subtree_prob + default_prob/2,
1857 subtree_prob + default_prob);
1858 emit_cmp_and_jump_insns (index,
1859 convert_modes
1860 (mode, imode,
1861 expand_normal (node->high),
1862 unsignedp),
1863 GT, NULL_RTX, mode, unsignedp,
1864 label_rtx (test_label),
1865 probability);
1866 default_prob /= 2;
1867 }
1868
1869 /* Value belongs to this node or to the left-hand subtree. */
1870
1871 probability = conditional_probability (
1872 prob,
1873 subtree_prob + default_prob);
1874 emit_cmp_and_jump_insns (index,
1875 convert_modes
1876 (mode, imode,
1877 expand_normal (node->low),
1878 unsignedp),
1879 GE, NULL_RTX, mode, unsignedp,
1880 label_rtx (node->code_label),
1881 probability);
1882
1883 /* Handle the left-hand subtree. */
1884 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1885
1886 /* If right node had to be handled later, do that now. */
1887
1888 if (test_label)
1889 {
1890 /* If the left-hand subtree fell through,
1891 don't let it fall into the right-hand subtree. */
1892 if (default_label)
1893 emit_jump (default_label);
1894
1895 expand_label (test_label);
1896 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1897 }
1898 }
1899
1900 else if (node->right != 0 && node->left == 0)
1901 {
1902 /* Deal with values to the left of this node,
1903 if they are possible. */
1904 if (!node_has_low_bound (node, index_type))
1905 {
1906 probability = conditional_probability (
1907 default_prob/2,
1908 subtree_prob + default_prob);
1909 emit_cmp_and_jump_insns (index,
1910 convert_modes
1911 (mode, imode,
1912 expand_normal (node->low),
1913 unsignedp),
1914 LT, NULL_RTX, mode, unsignedp,
1915 default_label,
1916 probability);
1917 default_prob /= 2;
1918 }
1919
1920 /* Value belongs to this node or to the right-hand subtree. */
1921
1922 probability = conditional_probability (
1923 prob,
1924 subtree_prob + default_prob);
1925 emit_cmp_and_jump_insns (index,
1926 convert_modes
1927 (mode, imode,
1928 expand_normal (node->high),
1929 unsignedp),
1930 LE, NULL_RTX, mode, unsignedp,
1931 label_rtx (node->code_label),
1932 probability);
1933
1934 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1935 }
1936
1937 else if (node->right == 0 && node->left != 0)
1938 {
1939 /* Deal with values to the right of this node,
1940 if they are possible. */
1941 if (!node_has_high_bound (node, index_type))
1942 {
1943 probability = conditional_probability (
1944 default_prob/2,
1945 subtree_prob + default_prob);
1946 emit_cmp_and_jump_insns (index,
1947 convert_modes
1948 (mode, imode,
1949 expand_normal (node->high),
1950 unsignedp),
1951 GT, NULL_RTX, mode, unsignedp,
1952 default_label,
1953 probability);
1954 default_prob /= 2;
1955 }
1956
1957 /* Value belongs to this node or to the left-hand subtree. */
1958
1959 probability = conditional_probability (
1960 prob,
1961 subtree_prob + default_prob);
1962 emit_cmp_and_jump_insns (index,
1963 convert_modes
1964 (mode, imode,
1965 expand_normal (node->low),
1966 unsignedp),
1967 GE, NULL_RTX, mode, unsignedp,
1968 label_rtx (node->code_label),
1969 probability);
1970
1971 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1972 }
1973
1974 else
1975 {
1976 /* Node has no children so we check low and high bounds to remove
1977 redundant tests. Only one of the bounds can exist,
1978 since otherwise this node is bounded--a case tested already. */
1979 int high_bound = node_has_high_bound (node, index_type);
1980 int low_bound = node_has_low_bound (node, index_type);
1981
1982 if (!high_bound && low_bound)
1983 {
1984 probability = conditional_probability (
1985 default_prob,
1986 subtree_prob + default_prob);
1987 emit_cmp_and_jump_insns (index,
1988 convert_modes
1989 (mode, imode,
1990 expand_normal (node->high),
1991 unsignedp),
1992 GT, NULL_RTX, mode, unsignedp,
1993 default_label,
1994 probability);
1995 }
1996
1997 else if (!low_bound && high_bound)
1998 {
1999 probability = conditional_probability (
2000 default_prob,
2001 subtree_prob + default_prob);
2002 emit_cmp_and_jump_insns (index,
2003 convert_modes
2004 (mode, imode,
2005 expand_normal (node->low),
2006 unsignedp),
2007 LT, NULL_RTX, mode, unsignedp,
2008 default_label,
2009 probability);
2010 }
2011 else if (!low_bound && !high_bound)
2012 {
2013 /* Widen LOW and HIGH to the same width as INDEX. */
2014 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
2015 tree low = build1 (CONVERT_EXPR, type, node->low);
2016 tree high = build1 (CONVERT_EXPR, type, node->high);
2017 rtx low_rtx, new_index, new_bound;
2018
2019 /* Instead of doing two branches, emit one unsigned branch for
2020 (index-low) > (high-low). */
2021 low_rtx = expand_expr (low, NULL_RTX, mode, EXPAND_NORMAL);
2022 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
2023 NULL_RTX, unsignedp,
2024 OPTAB_WIDEN);
2025 new_bound = expand_expr (fold_build2 (MINUS_EXPR, type,
2026 high, low),
2027 NULL_RTX, mode, EXPAND_NORMAL);
2028
2029 probability = conditional_probability (
2030 default_prob,
2031 subtree_prob + default_prob);
2032 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
2033 mode, 1, default_label, probability);
2034 }
2035
2036 emit_jump (jump_target_rtx (node->code_label));
2037 }
2038 }
2039 }