]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/stmt.c
expr.c (try_casesi): Remove bogus ATTRIBUTE_UNUSED markers.
[thirdparty/gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
24 The functions whose names start with `expand_' are called by the
25 expander to generate RTL instructions for various kinds of constructs. */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31
32 #include "rtl.h"
33 #include "hard-reg-set.h"
34 #include "tree.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "except.h"
38 #include "function.h"
39 #include "insn-config.h"
40 #include "expr.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "machmode.h"
44 #include "diagnostic-core.h"
45 #include "output.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "predict.h"
49 #include "optabs.h"
50 #include "target.h"
51 #include "gimple.h"
52 #include "regs.h"
53 #include "alloc-pool.h"
54 #include "pretty-print.h"
55 #include "bitmap.h"
56 #include "params.h"
57
58 \f
59 /* Functions and data structures for expanding case statements. */
60
61 /* Case label structure, used to hold info on labels within case
62 statements. We handle "range" labels; for a single-value label
63 as in C, the high and low limits are the same.
64
65 We start with a vector of case nodes sorted in ascending order, and
66 the default label as the last element in the vector. Before expanding
67 to RTL, we transform this vector into a list linked via the RIGHT
68 fields in the case_node struct. Nodes with higher case values are
69 later in the list.
70
71 Switch statements can be output in three forms. A branch table is
72 used if there are more than a few labels and the labels are dense
73 within the range between the smallest and largest case value. If a
74 branch table is used, no further manipulations are done with the case
75 node chain.
76
77 The alternative to the use of a branch table is to generate a series
78 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
79 and PARENT fields to hold a binary tree. Initially the tree is
80 totally unbalanced, with everything on the right. We balance the tree
81 with nodes on the left having lower case values than the parent
82 and nodes on the right having higher values. We then output the tree
83 in order.
84
85 For very small, suitable switch statements, we can generate a series
86 of simple bit test and branches instead. */
87
88 struct case_node
89 {
90 struct case_node *left; /* Left son in binary tree */
91 struct case_node *right; /* Right son in binary tree; also node chain */
92 struct case_node *parent; /* Parent of node in binary tree */
93 tree low; /* Lowest index value for this label */
94 tree high; /* Highest index value for this label */
95 tree code_label; /* Label to jump to when node matches */
96 };
97
98 typedef struct case_node case_node;
99 typedef struct case_node *case_node_ptr;
100
101 \f
102 static int n_occurrences (int, const char *);
103 static bool tree_conflicts_with_clobbers_p (tree, HARD_REG_SET *);
104 static void expand_nl_goto_receiver (void);
105 static bool check_operand_nalternatives (tree, tree);
106 static bool check_unique_operand_names (tree, tree, tree);
107 static char *resolve_operand_name_1 (char *, tree, tree, tree);
108 static void expand_null_return_1 (void);
109 static void expand_value_return (rtx);
110 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
111 static int node_has_low_bound (case_node_ptr, tree);
112 static int node_has_high_bound (case_node_ptr, tree);
113 static int node_is_bounded (case_node_ptr, tree);
114 static void emit_case_nodes (rtx, case_node_ptr, rtx, tree);
115 static struct case_node *add_case_node (struct case_node *, tree,
116 tree, tree, tree, alloc_pool);
117
118 \f
119 /* Return the rtx-label that corresponds to a LABEL_DECL,
120 creating it if necessary. */
121
122 rtx
123 label_rtx (tree label)
124 {
125 gcc_assert (TREE_CODE (label) == LABEL_DECL);
126
127 if (!DECL_RTL_SET_P (label))
128 {
129 rtx r = gen_label_rtx ();
130 SET_DECL_RTL (label, r);
131 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
132 LABEL_PRESERVE_P (r) = 1;
133 }
134
135 return DECL_RTL (label);
136 }
137
138 /* As above, but also put it on the forced-reference list of the
139 function that contains it. */
140 rtx
141 force_label_rtx (tree label)
142 {
143 rtx ref = label_rtx (label);
144 tree function = decl_function_context (label);
145
146 gcc_assert (function);
147
148 forced_labels = gen_rtx_EXPR_LIST (VOIDmode, ref, forced_labels);
149 return ref;
150 }
151
152 /* Add an unconditional jump to LABEL as the next sequential instruction. */
153
154 void
155 emit_jump (rtx label)
156 {
157 do_pending_stack_adjust ();
158 emit_jump_insn (gen_jump (label));
159 emit_barrier ();
160 }
161
162 /* Emit code to jump to the address
163 specified by the pointer expression EXP. */
164
165 void
166 expand_computed_goto (tree exp)
167 {
168 rtx x = expand_normal (exp);
169
170 x = convert_memory_address (Pmode, x);
171
172 do_pending_stack_adjust ();
173 emit_indirect_jump (x);
174 }
175 \f
176 /* Handle goto statements and the labels that they can go to. */
177
178 /* Specify the location in the RTL code of a label LABEL,
179 which is a LABEL_DECL tree node.
180
181 This is used for the kind of label that the user can jump to with a
182 goto statement, and for alternatives of a switch or case statement.
183 RTL labels generated for loops and conditionals don't go through here;
184 they are generated directly at the RTL level, by other functions below.
185
186 Note that this has nothing to do with defining label *names*.
187 Languages vary in how they do that and what that even means. */
188
189 void
190 expand_label (tree label)
191 {
192 rtx label_r = label_rtx (label);
193
194 do_pending_stack_adjust ();
195 emit_label (label_r);
196 if (DECL_NAME (label))
197 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
198
199 if (DECL_NONLOCAL (label))
200 {
201 expand_nl_goto_receiver ();
202 nonlocal_goto_handler_labels
203 = gen_rtx_EXPR_LIST (VOIDmode, label_r,
204 nonlocal_goto_handler_labels);
205 }
206
207 if (FORCED_LABEL (label))
208 forced_labels = gen_rtx_EXPR_LIST (VOIDmode, label_r, forced_labels);
209
210 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
211 maybe_set_first_label_num (label_r);
212 }
213
214 /* Generate RTL code for a `goto' statement with target label LABEL.
215 LABEL should be a LABEL_DECL tree node that was or will later be
216 defined with `expand_label'. */
217
218 void
219 expand_goto (tree label)
220 {
221 #ifdef ENABLE_CHECKING
222 /* Check for a nonlocal goto to a containing function. Should have
223 gotten translated to __builtin_nonlocal_goto. */
224 tree context = decl_function_context (label);
225 gcc_assert (!context || context == current_function_decl);
226 #endif
227
228 emit_jump (label_rtx (label));
229 }
230 \f
231 /* Return the number of times character C occurs in string S. */
232 static int
233 n_occurrences (int c, const char *s)
234 {
235 int n = 0;
236 while (*s)
237 n += (*s++ == c);
238 return n;
239 }
240 \f
241 /* Generate RTL for an asm statement (explicit assembler code).
242 STRING is a STRING_CST node containing the assembler code text,
243 or an ADDR_EXPR containing a STRING_CST. VOL nonzero means the
244 insn is volatile; don't optimize it. */
245
246 static void
247 expand_asm_loc (tree string, int vol, location_t locus)
248 {
249 rtx body;
250
251 if (TREE_CODE (string) == ADDR_EXPR)
252 string = TREE_OPERAND (string, 0);
253
254 body = gen_rtx_ASM_INPUT_loc (VOIDmode,
255 ggc_strdup (TREE_STRING_POINTER (string)),
256 locus);
257
258 MEM_VOLATILE_P (body) = vol;
259
260 emit_insn (body);
261 }
262
263 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
264 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
265 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
266 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
267 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
268 constraint allows the use of a register operand. And, *IS_INOUT
269 will be true if the operand is read-write, i.e., if it is used as
270 an input as well as an output. If *CONSTRAINT_P is not in
271 canonical form, it will be made canonical. (Note that `+' will be
272 replaced with `=' as part of this process.)
273
274 Returns TRUE if all went well; FALSE if an error occurred. */
275
276 bool
277 parse_output_constraint (const char **constraint_p, int operand_num,
278 int ninputs, int noutputs, bool *allows_mem,
279 bool *allows_reg, bool *is_inout)
280 {
281 const char *constraint = *constraint_p;
282 const char *p;
283
284 /* Assume the constraint doesn't allow the use of either a register
285 or memory. */
286 *allows_mem = false;
287 *allows_reg = false;
288
289 /* Allow the `=' or `+' to not be at the beginning of the string,
290 since it wasn't explicitly documented that way, and there is a
291 large body of code that puts it last. Swap the character to
292 the front, so as not to uglify any place else. */
293 p = strchr (constraint, '=');
294 if (!p)
295 p = strchr (constraint, '+');
296
297 /* If the string doesn't contain an `=', issue an error
298 message. */
299 if (!p)
300 {
301 error ("output operand constraint lacks %<=%>");
302 return false;
303 }
304
305 /* If the constraint begins with `+', then the operand is both read
306 from and written to. */
307 *is_inout = (*p == '+');
308
309 /* Canonicalize the output constraint so that it begins with `='. */
310 if (p != constraint || *is_inout)
311 {
312 char *buf;
313 size_t c_len = strlen (constraint);
314
315 if (p != constraint)
316 warning (0, "output constraint %qc for operand %d "
317 "is not at the beginning",
318 *p, operand_num);
319
320 /* Make a copy of the constraint. */
321 buf = XALLOCAVEC (char, c_len + 1);
322 strcpy (buf, constraint);
323 /* Swap the first character and the `=' or `+'. */
324 buf[p - constraint] = buf[0];
325 /* Make sure the first character is an `='. (Until we do this,
326 it might be a `+'.) */
327 buf[0] = '=';
328 /* Replace the constraint with the canonicalized string. */
329 *constraint_p = ggc_alloc_string (buf, c_len);
330 constraint = *constraint_p;
331 }
332
333 /* Loop through the constraint string. */
334 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
335 switch (*p)
336 {
337 case '+':
338 case '=':
339 error ("operand constraint contains incorrectly positioned "
340 "%<+%> or %<=%>");
341 return false;
342
343 case '%':
344 if (operand_num + 1 == ninputs + noutputs)
345 {
346 error ("%<%%%> constraint used with last operand");
347 return false;
348 }
349 break;
350
351 case 'V': case TARGET_MEM_CONSTRAINT: case 'o':
352 *allows_mem = true;
353 break;
354
355 case '?': case '!': case '*': case '&': case '#':
356 case 'E': case 'F': case 'G': case 'H':
357 case 's': case 'i': case 'n':
358 case 'I': case 'J': case 'K': case 'L': case 'M':
359 case 'N': case 'O': case 'P': case ',':
360 break;
361
362 case '0': case '1': case '2': case '3': case '4':
363 case '5': case '6': case '7': case '8': case '9':
364 case '[':
365 error ("matching constraint not valid in output operand");
366 return false;
367
368 case '<': case '>':
369 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
370 excepting those that expand_call created. So match memory
371 and hope. */
372 *allows_mem = true;
373 break;
374
375 case 'g': case 'X':
376 *allows_reg = true;
377 *allows_mem = true;
378 break;
379
380 case 'p': case 'r':
381 *allows_reg = true;
382 break;
383
384 default:
385 if (!ISALPHA (*p))
386 break;
387 if (REG_CLASS_FROM_CONSTRAINT (*p, p) != NO_REGS)
388 *allows_reg = true;
389 #ifdef EXTRA_CONSTRAINT_STR
390 else if (EXTRA_ADDRESS_CONSTRAINT (*p, p))
391 *allows_reg = true;
392 else if (EXTRA_MEMORY_CONSTRAINT (*p, p))
393 *allows_mem = true;
394 else
395 {
396 /* Otherwise we can't assume anything about the nature of
397 the constraint except that it isn't purely registers.
398 Treat it like "g" and hope for the best. */
399 *allows_reg = true;
400 *allows_mem = true;
401 }
402 #endif
403 break;
404 }
405
406 return true;
407 }
408
409 /* Similar, but for input constraints. */
410
411 bool
412 parse_input_constraint (const char **constraint_p, int input_num,
413 int ninputs, int noutputs, int ninout,
414 const char * const * constraints,
415 bool *allows_mem, bool *allows_reg)
416 {
417 const char *constraint = *constraint_p;
418 const char *orig_constraint = constraint;
419 size_t c_len = strlen (constraint);
420 size_t j;
421 bool saw_match = false;
422
423 /* Assume the constraint doesn't allow the use of either
424 a register or memory. */
425 *allows_mem = false;
426 *allows_reg = false;
427
428 /* Make sure constraint has neither `=', `+', nor '&'. */
429
430 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
431 switch (constraint[j])
432 {
433 case '+': case '=': case '&':
434 if (constraint == orig_constraint)
435 {
436 error ("input operand constraint contains %qc", constraint[j]);
437 return false;
438 }
439 break;
440
441 case '%':
442 if (constraint == orig_constraint
443 && input_num + 1 == ninputs - ninout)
444 {
445 error ("%<%%%> constraint used with last operand");
446 return false;
447 }
448 break;
449
450 case 'V': case TARGET_MEM_CONSTRAINT: case 'o':
451 *allows_mem = true;
452 break;
453
454 case '<': case '>':
455 case '?': case '!': case '*': case '#':
456 case 'E': case 'F': case 'G': case 'H':
457 case 's': case 'i': case 'n':
458 case 'I': case 'J': case 'K': case 'L': case 'M':
459 case 'N': case 'O': case 'P': case ',':
460 break;
461
462 /* Whether or not a numeric constraint allows a register is
463 decided by the matching constraint, and so there is no need
464 to do anything special with them. We must handle them in
465 the default case, so that we don't unnecessarily force
466 operands to memory. */
467 case '0': case '1': case '2': case '3': case '4':
468 case '5': case '6': case '7': case '8': case '9':
469 {
470 char *end;
471 unsigned long match;
472
473 saw_match = true;
474
475 match = strtoul (constraint + j, &end, 10);
476 if (match >= (unsigned long) noutputs)
477 {
478 error ("matching constraint references invalid operand number");
479 return false;
480 }
481
482 /* Try and find the real constraint for this dup. Only do this
483 if the matching constraint is the only alternative. */
484 if (*end == '\0'
485 && (j == 0 || (j == 1 && constraint[0] == '%')))
486 {
487 constraint = constraints[match];
488 *constraint_p = constraint;
489 c_len = strlen (constraint);
490 j = 0;
491 /* ??? At the end of the loop, we will skip the first part of
492 the matched constraint. This assumes not only that the
493 other constraint is an output constraint, but also that
494 the '=' or '+' come first. */
495 break;
496 }
497 else
498 j = end - constraint;
499 /* Anticipate increment at end of loop. */
500 j--;
501 }
502 /* Fall through. */
503
504 case 'p': case 'r':
505 *allows_reg = true;
506 break;
507
508 case 'g': case 'X':
509 *allows_reg = true;
510 *allows_mem = true;
511 break;
512
513 default:
514 if (! ISALPHA (constraint[j]))
515 {
516 error ("invalid punctuation %qc in constraint", constraint[j]);
517 return false;
518 }
519 if (REG_CLASS_FROM_CONSTRAINT (constraint[j], constraint + j)
520 != NO_REGS)
521 *allows_reg = true;
522 #ifdef EXTRA_CONSTRAINT_STR
523 else if (EXTRA_ADDRESS_CONSTRAINT (constraint[j], constraint + j))
524 *allows_reg = true;
525 else if (EXTRA_MEMORY_CONSTRAINT (constraint[j], constraint + j))
526 *allows_mem = true;
527 else
528 {
529 /* Otherwise we can't assume anything about the nature of
530 the constraint except that it isn't purely registers.
531 Treat it like "g" and hope for the best. */
532 *allows_reg = true;
533 *allows_mem = true;
534 }
535 #endif
536 break;
537 }
538
539 if (saw_match && !*allows_reg)
540 warning (0, "matching constraint does not allow a register");
541
542 return true;
543 }
544
545 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
546 can be an asm-declared register. Called via walk_tree. */
547
548 static tree
549 decl_overlaps_hard_reg_set_p (tree *declp, int *walk_subtrees ATTRIBUTE_UNUSED,
550 void *data)
551 {
552 tree decl = *declp;
553 const HARD_REG_SET *const regs = (const HARD_REG_SET *) data;
554
555 if (TREE_CODE (decl) == VAR_DECL)
556 {
557 if (DECL_HARD_REGISTER (decl)
558 && REG_P (DECL_RTL (decl))
559 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
560 {
561 rtx reg = DECL_RTL (decl);
562
563 if (overlaps_hard_reg_set_p (*regs, GET_MODE (reg), REGNO (reg)))
564 return decl;
565 }
566 walk_subtrees = 0;
567 }
568 else if (TYPE_P (decl) || TREE_CODE (decl) == PARM_DECL)
569 walk_subtrees = 0;
570 return NULL_TREE;
571 }
572
573 /* If there is an overlap between *REGS and DECL, return the first overlap
574 found. */
575 tree
576 tree_overlaps_hard_reg_set (tree decl, HARD_REG_SET *regs)
577 {
578 return walk_tree (&decl, decl_overlaps_hard_reg_set_p, regs, NULL);
579 }
580
581 /* Check for overlap between registers marked in CLOBBERED_REGS and
582 anything inappropriate in T. Emit error and return the register
583 variable definition for error, NULL_TREE for ok. */
584
585 static bool
586 tree_conflicts_with_clobbers_p (tree t, HARD_REG_SET *clobbered_regs)
587 {
588 /* Conflicts between asm-declared register variables and the clobber
589 list are not allowed. */
590 tree overlap = tree_overlaps_hard_reg_set (t, clobbered_regs);
591
592 if (overlap)
593 {
594 error ("asm-specifier for variable %qE conflicts with asm clobber list",
595 DECL_NAME (overlap));
596
597 /* Reset registerness to stop multiple errors emitted for a single
598 variable. */
599 DECL_REGISTER (overlap) = 0;
600 return true;
601 }
602
603 return false;
604 }
605
606 /* Generate RTL for an asm statement with arguments.
607 STRING is the instruction template.
608 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
609 Each output or input has an expression in the TREE_VALUE and
610 a tree list in TREE_PURPOSE which in turn contains a constraint
611 name in TREE_VALUE (or NULL_TREE) and a constraint string
612 in TREE_PURPOSE.
613 CLOBBERS is a list of STRING_CST nodes each naming a hard register
614 that is clobbered by this insn.
615
616 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
617 Some elements of OUTPUTS may be replaced with trees representing temporary
618 values. The caller should copy those temporary values to the originally
619 specified lvalues.
620
621 VOL nonzero means the insn is volatile; don't optimize it. */
622
623 static void
624 expand_asm_operands (tree string, tree outputs, tree inputs,
625 tree clobbers, tree labels, int vol, location_t locus)
626 {
627 rtvec argvec, constraintvec, labelvec;
628 rtx body;
629 int ninputs = list_length (inputs);
630 int noutputs = list_length (outputs);
631 int nlabels = list_length (labels);
632 int ninout;
633 int nclobbers;
634 HARD_REG_SET clobbered_regs;
635 int clobber_conflict_found = 0;
636 tree tail;
637 tree t;
638 int i;
639 /* Vector of RTX's of evaluated output operands. */
640 rtx *output_rtx = XALLOCAVEC (rtx, noutputs);
641 int *inout_opnum = XALLOCAVEC (int, noutputs);
642 rtx *real_output_rtx = XALLOCAVEC (rtx, noutputs);
643 enum machine_mode *inout_mode = XALLOCAVEC (enum machine_mode, noutputs);
644 const char **constraints = XALLOCAVEC (const char *, noutputs + ninputs);
645 int old_generating_concat_p = generating_concat_p;
646
647 /* An ASM with no outputs needs to be treated as volatile, for now. */
648 if (noutputs == 0)
649 vol = 1;
650
651 if (! check_operand_nalternatives (outputs, inputs))
652 return;
653
654 string = resolve_asm_operand_names (string, outputs, inputs, labels);
655
656 /* Collect constraints. */
657 i = 0;
658 for (t = outputs; t ; t = TREE_CHAIN (t), i++)
659 constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
660 for (t = inputs; t ; t = TREE_CHAIN (t), i++)
661 constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
662
663 /* Sometimes we wish to automatically clobber registers across an asm.
664 Case in point is when the i386 backend moved from cc0 to a hard reg --
665 maintaining source-level compatibility means automatically clobbering
666 the flags register. */
667 clobbers = targetm.md_asm_clobbers (outputs, inputs, clobbers);
668
669 /* Count the number of meaningful clobbered registers, ignoring what
670 we would ignore later. */
671 nclobbers = 0;
672 CLEAR_HARD_REG_SET (clobbered_regs);
673 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
674 {
675 const char *regname;
676 int nregs;
677
678 if (TREE_VALUE (tail) == error_mark_node)
679 return;
680 regname = TREE_STRING_POINTER (TREE_VALUE (tail));
681
682 i = decode_reg_name_and_count (regname, &nregs);
683 if (i == -4)
684 ++nclobbers;
685 else if (i == -2)
686 error ("unknown register name %qs in %<asm%>", regname);
687
688 /* Mark clobbered registers. */
689 if (i >= 0)
690 {
691 int reg;
692
693 for (reg = i; reg < i + nregs; reg++)
694 {
695 ++nclobbers;
696
697 /* Clobbering the PIC register is an error. */
698 if (reg == (int) PIC_OFFSET_TABLE_REGNUM)
699 {
700 error ("PIC register clobbered by %qs in %<asm%>", regname);
701 return;
702 }
703
704 SET_HARD_REG_BIT (clobbered_regs, reg);
705 }
706 }
707 }
708
709 /* First pass over inputs and outputs checks validity and sets
710 mark_addressable if needed. */
711
712 ninout = 0;
713 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
714 {
715 tree val = TREE_VALUE (tail);
716 tree type = TREE_TYPE (val);
717 const char *constraint;
718 bool is_inout;
719 bool allows_reg;
720 bool allows_mem;
721
722 /* If there's an erroneous arg, emit no insn. */
723 if (type == error_mark_node)
724 return;
725
726 /* Try to parse the output constraint. If that fails, there's
727 no point in going further. */
728 constraint = constraints[i];
729 if (!parse_output_constraint (&constraint, i, ninputs, noutputs,
730 &allows_mem, &allows_reg, &is_inout))
731 return;
732
733 if (! allows_reg
734 && (allows_mem
735 || is_inout
736 || (DECL_P (val)
737 && REG_P (DECL_RTL (val))
738 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type))))
739 mark_addressable (val);
740
741 if (is_inout)
742 ninout++;
743 }
744
745 ninputs += ninout;
746 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
747 {
748 error ("more than %d operands in %<asm%>", MAX_RECOG_OPERANDS);
749 return;
750 }
751
752 for (i = 0, tail = inputs; tail; i++, tail = TREE_CHAIN (tail))
753 {
754 bool allows_reg, allows_mem;
755 const char *constraint;
756
757 /* If there's an erroneous arg, emit no insn, because the ASM_INPUT
758 would get VOIDmode and that could cause a crash in reload. */
759 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
760 return;
761
762 constraint = constraints[i + noutputs];
763 if (! parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
764 constraints, &allows_mem, &allows_reg))
765 return;
766
767 if (! allows_reg && allows_mem)
768 mark_addressable (TREE_VALUE (tail));
769 }
770
771 /* Second pass evaluates arguments. */
772
773 /* Make sure stack is consistent for asm goto. */
774 if (nlabels > 0)
775 do_pending_stack_adjust ();
776
777 ninout = 0;
778 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
779 {
780 tree val = TREE_VALUE (tail);
781 tree type = TREE_TYPE (val);
782 bool is_inout;
783 bool allows_reg;
784 bool allows_mem;
785 rtx op;
786 bool ok;
787
788 ok = parse_output_constraint (&constraints[i], i, ninputs,
789 noutputs, &allows_mem, &allows_reg,
790 &is_inout);
791 gcc_assert (ok);
792
793 /* If an output operand is not a decl or indirect ref and our constraint
794 allows a register, make a temporary to act as an intermediate.
795 Make the asm insn write into that, then our caller will copy it to
796 the real output operand. Likewise for promoted variables. */
797
798 generating_concat_p = 0;
799
800 real_output_rtx[i] = NULL_RTX;
801 if ((TREE_CODE (val) == INDIRECT_REF
802 && allows_mem)
803 || (DECL_P (val)
804 && (allows_mem || REG_P (DECL_RTL (val)))
805 && ! (REG_P (DECL_RTL (val))
806 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))
807 || ! allows_reg
808 || is_inout)
809 {
810 op = expand_expr (val, NULL_RTX, VOIDmode, EXPAND_WRITE);
811 if (MEM_P (op))
812 op = validize_mem (op);
813
814 if (! allows_reg && !MEM_P (op))
815 error ("output number %d not directly addressable", i);
816 if ((! allows_mem && MEM_P (op))
817 || GET_CODE (op) == CONCAT)
818 {
819 real_output_rtx[i] = op;
820 op = gen_reg_rtx (GET_MODE (op));
821 if (is_inout)
822 emit_move_insn (op, real_output_rtx[i]);
823 }
824 }
825 else
826 {
827 op = assign_temp (type, 0, 1);
828 op = validize_mem (op);
829 if (!MEM_P (op) && TREE_CODE (TREE_VALUE (tail)) == SSA_NAME)
830 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (TREE_VALUE (tail)), op);
831 TREE_VALUE (tail) = make_tree (type, op);
832 }
833 output_rtx[i] = op;
834
835 generating_concat_p = old_generating_concat_p;
836
837 if (is_inout)
838 {
839 inout_mode[ninout] = TYPE_MODE (type);
840 inout_opnum[ninout++] = i;
841 }
842
843 if (tree_conflicts_with_clobbers_p (val, &clobbered_regs))
844 clobber_conflict_found = 1;
845 }
846
847 /* Make vectors for the expression-rtx, constraint strings,
848 and named operands. */
849
850 argvec = rtvec_alloc (ninputs);
851 constraintvec = rtvec_alloc (ninputs);
852 labelvec = rtvec_alloc (nlabels);
853
854 body = gen_rtx_ASM_OPERANDS ((noutputs == 0 ? VOIDmode
855 : GET_MODE (output_rtx[0])),
856 ggc_strdup (TREE_STRING_POINTER (string)),
857 empty_string, 0, argvec, constraintvec,
858 labelvec, locus);
859
860 MEM_VOLATILE_P (body) = vol;
861
862 /* Eval the inputs and put them into ARGVEC.
863 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
864
865 for (i = 0, tail = inputs; tail; tail = TREE_CHAIN (tail), ++i)
866 {
867 bool allows_reg, allows_mem;
868 const char *constraint;
869 tree val, type;
870 rtx op;
871 bool ok;
872
873 constraint = constraints[i + noutputs];
874 ok = parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
875 constraints, &allows_mem, &allows_reg);
876 gcc_assert (ok);
877
878 generating_concat_p = 0;
879
880 val = TREE_VALUE (tail);
881 type = TREE_TYPE (val);
882 /* EXPAND_INITIALIZER will not generate code for valid initializer
883 constants, but will still generate code for other types of operand.
884 This is the behavior we want for constant constraints. */
885 op = expand_expr (val, NULL_RTX, VOIDmode,
886 allows_reg ? EXPAND_NORMAL
887 : allows_mem ? EXPAND_MEMORY
888 : EXPAND_INITIALIZER);
889
890 /* Never pass a CONCAT to an ASM. */
891 if (GET_CODE (op) == CONCAT)
892 op = force_reg (GET_MODE (op), op);
893 else if (MEM_P (op))
894 op = validize_mem (op);
895
896 if (asm_operand_ok (op, constraint, NULL) <= 0)
897 {
898 if (allows_reg && TYPE_MODE (type) != BLKmode)
899 op = force_reg (TYPE_MODE (type), op);
900 else if (!allows_mem)
901 warning (0, "asm operand %d probably doesn%'t match constraints",
902 i + noutputs);
903 else if (MEM_P (op))
904 {
905 /* We won't recognize either volatile memory or memory
906 with a queued address as available a memory_operand
907 at this point. Ignore it: clearly this *is* a memory. */
908 }
909 else
910 gcc_unreachable ();
911 }
912
913 generating_concat_p = old_generating_concat_p;
914 ASM_OPERANDS_INPUT (body, i) = op;
915
916 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, i)
917 = gen_rtx_ASM_INPUT (TYPE_MODE (type),
918 ggc_strdup (constraints[i + noutputs]));
919
920 if (tree_conflicts_with_clobbers_p (val, &clobbered_regs))
921 clobber_conflict_found = 1;
922 }
923
924 /* Protect all the operands from the queue now that they have all been
925 evaluated. */
926
927 generating_concat_p = 0;
928
929 /* For in-out operands, copy output rtx to input rtx. */
930 for (i = 0; i < ninout; i++)
931 {
932 int j = inout_opnum[i];
933 char buffer[16];
934
935 ASM_OPERANDS_INPUT (body, ninputs - ninout + i)
936 = output_rtx[j];
937
938 sprintf (buffer, "%d", j);
939 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, ninputs - ninout + i)
940 = gen_rtx_ASM_INPUT (inout_mode[i], ggc_strdup (buffer));
941 }
942
943 /* Copy labels to the vector. */
944 for (i = 0, tail = labels; i < nlabels; ++i, tail = TREE_CHAIN (tail))
945 ASM_OPERANDS_LABEL (body, i)
946 = gen_rtx_LABEL_REF (Pmode, label_rtx (TREE_VALUE (tail)));
947
948 generating_concat_p = old_generating_concat_p;
949
950 /* Now, for each output, construct an rtx
951 (set OUTPUT (asm_operands INSN OUTPUTCONSTRAINT OUTPUTNUMBER
952 ARGVEC CONSTRAINTS OPNAMES))
953 If there is more than one, put them inside a PARALLEL. */
954
955 if (nlabels > 0 && nclobbers == 0)
956 {
957 gcc_assert (noutputs == 0);
958 emit_jump_insn (body);
959 }
960 else if (noutputs == 0 && nclobbers == 0)
961 {
962 /* No output operands: put in a raw ASM_OPERANDS rtx. */
963 emit_insn (body);
964 }
965 else if (noutputs == 1 && nclobbers == 0)
966 {
967 ASM_OPERANDS_OUTPUT_CONSTRAINT (body) = ggc_strdup (constraints[0]);
968 emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body));
969 }
970 else
971 {
972 rtx obody = body;
973 int num = noutputs;
974
975 if (num == 0)
976 num = 1;
977
978 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers));
979
980 /* For each output operand, store a SET. */
981 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
982 {
983 XVECEXP (body, 0, i)
984 = gen_rtx_SET (VOIDmode,
985 output_rtx[i],
986 gen_rtx_ASM_OPERANDS
987 (GET_MODE (output_rtx[i]),
988 ggc_strdup (TREE_STRING_POINTER (string)),
989 ggc_strdup (constraints[i]),
990 i, argvec, constraintvec, labelvec, locus));
991
992 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
993 }
994
995 /* If there are no outputs (but there are some clobbers)
996 store the bare ASM_OPERANDS into the PARALLEL. */
997
998 if (i == 0)
999 XVECEXP (body, 0, i++) = obody;
1000
1001 /* Store (clobber REG) for each clobbered register specified. */
1002
1003 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1004 {
1005 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1006 int reg, nregs;
1007 int j = decode_reg_name_and_count (regname, &nregs);
1008 rtx clobbered_reg;
1009
1010 if (j < 0)
1011 {
1012 if (j == -3) /* `cc', which is not a register */
1013 continue;
1014
1015 if (j == -4) /* `memory', don't cache memory across asm */
1016 {
1017 XVECEXP (body, 0, i++)
1018 = gen_rtx_CLOBBER (VOIDmode,
1019 gen_rtx_MEM
1020 (BLKmode,
1021 gen_rtx_SCRATCH (VOIDmode)));
1022 continue;
1023 }
1024
1025 /* Ignore unknown register, error already signaled. */
1026 continue;
1027 }
1028
1029 for (reg = j; reg < j + nregs; reg++)
1030 {
1031 /* Use QImode since that's guaranteed to clobber just
1032 * one reg. */
1033 clobbered_reg = gen_rtx_REG (QImode, reg);
1034
1035 /* Do sanity check for overlap between clobbers and
1036 respectively input and outputs that hasn't been
1037 handled. Such overlap should have been detected and
1038 reported above. */
1039 if (!clobber_conflict_found)
1040 {
1041 int opno;
1042
1043 /* We test the old body (obody) contents to avoid
1044 tripping over the under-construction body. */
1045 for (opno = 0; opno < noutputs; opno++)
1046 if (reg_overlap_mentioned_p (clobbered_reg,
1047 output_rtx[opno]))
1048 internal_error
1049 ("asm clobber conflict with output operand");
1050
1051 for (opno = 0; opno < ninputs - ninout; opno++)
1052 if (reg_overlap_mentioned_p (clobbered_reg,
1053 ASM_OPERANDS_INPUT (obody,
1054 opno)))
1055 internal_error
1056 ("asm clobber conflict with input operand");
1057 }
1058
1059 XVECEXP (body, 0, i++)
1060 = gen_rtx_CLOBBER (VOIDmode, clobbered_reg);
1061 }
1062 }
1063
1064 if (nlabels > 0)
1065 emit_jump_insn (body);
1066 else
1067 emit_insn (body);
1068 }
1069
1070 /* For any outputs that needed reloading into registers, spill them
1071 back to where they belong. */
1072 for (i = 0; i < noutputs; ++i)
1073 if (real_output_rtx[i])
1074 emit_move_insn (real_output_rtx[i], output_rtx[i]);
1075
1076 crtl->has_asm_statement = 1;
1077 free_temp_slots ();
1078 }
1079
1080 void
1081 expand_asm_stmt (gimple stmt)
1082 {
1083 int noutputs;
1084 tree outputs, tail, t;
1085 tree *o;
1086 size_t i, n;
1087 const char *s;
1088 tree str, out, in, cl, labels;
1089 location_t locus = gimple_location (stmt);
1090
1091 /* Meh... convert the gimple asm operands into real tree lists.
1092 Eventually we should make all routines work on the vectors instead
1093 of relying on TREE_CHAIN. */
1094 out = NULL_TREE;
1095 n = gimple_asm_noutputs (stmt);
1096 if (n > 0)
1097 {
1098 t = out = gimple_asm_output_op (stmt, 0);
1099 for (i = 1; i < n; i++)
1100 t = TREE_CHAIN (t) = gimple_asm_output_op (stmt, i);
1101 }
1102
1103 in = NULL_TREE;
1104 n = gimple_asm_ninputs (stmt);
1105 if (n > 0)
1106 {
1107 t = in = gimple_asm_input_op (stmt, 0);
1108 for (i = 1; i < n; i++)
1109 t = TREE_CHAIN (t) = gimple_asm_input_op (stmt, i);
1110 }
1111
1112 cl = NULL_TREE;
1113 n = gimple_asm_nclobbers (stmt);
1114 if (n > 0)
1115 {
1116 t = cl = gimple_asm_clobber_op (stmt, 0);
1117 for (i = 1; i < n; i++)
1118 t = TREE_CHAIN (t) = gimple_asm_clobber_op (stmt, i);
1119 }
1120
1121 labels = NULL_TREE;
1122 n = gimple_asm_nlabels (stmt);
1123 if (n > 0)
1124 {
1125 t = labels = gimple_asm_label_op (stmt, 0);
1126 for (i = 1; i < n; i++)
1127 t = TREE_CHAIN (t) = gimple_asm_label_op (stmt, i);
1128 }
1129
1130 s = gimple_asm_string (stmt);
1131 str = build_string (strlen (s), s);
1132
1133 if (gimple_asm_input_p (stmt))
1134 {
1135 expand_asm_loc (str, gimple_asm_volatile_p (stmt), locus);
1136 return;
1137 }
1138
1139 outputs = out;
1140 noutputs = gimple_asm_noutputs (stmt);
1141 /* o[I] is the place that output number I should be written. */
1142 o = (tree *) alloca (noutputs * sizeof (tree));
1143
1144 /* Record the contents of OUTPUTS before it is modified. */
1145 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1146 o[i] = TREE_VALUE (tail);
1147
1148 /* Generate the ASM_OPERANDS insn; store into the TREE_VALUEs of
1149 OUTPUTS some trees for where the values were actually stored. */
1150 expand_asm_operands (str, outputs, in, cl, labels,
1151 gimple_asm_volatile_p (stmt), locus);
1152
1153 /* Copy all the intermediate outputs into the specified outputs. */
1154 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1155 {
1156 if (o[i] != TREE_VALUE (tail))
1157 {
1158 expand_assignment (o[i], TREE_VALUE (tail), false);
1159 free_temp_slots ();
1160
1161 /* Restore the original value so that it's correct the next
1162 time we expand this function. */
1163 TREE_VALUE (tail) = o[i];
1164 }
1165 }
1166 }
1167
1168 /* A subroutine of expand_asm_operands. Check that all operands have
1169 the same number of alternatives. Return true if so. */
1170
1171 static bool
1172 check_operand_nalternatives (tree outputs, tree inputs)
1173 {
1174 if (outputs || inputs)
1175 {
1176 tree tmp = TREE_PURPOSE (outputs ? outputs : inputs);
1177 int nalternatives
1178 = n_occurrences (',', TREE_STRING_POINTER (TREE_VALUE (tmp)));
1179 tree next = inputs;
1180
1181 if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
1182 {
1183 error ("too many alternatives in %<asm%>");
1184 return false;
1185 }
1186
1187 tmp = outputs;
1188 while (tmp)
1189 {
1190 const char *constraint
1191 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tmp)));
1192
1193 if (n_occurrences (',', constraint) != nalternatives)
1194 {
1195 error ("operand constraints for %<asm%> differ "
1196 "in number of alternatives");
1197 return false;
1198 }
1199
1200 if (TREE_CHAIN (tmp))
1201 tmp = TREE_CHAIN (tmp);
1202 else
1203 tmp = next, next = 0;
1204 }
1205 }
1206
1207 return true;
1208 }
1209
1210 /* A subroutine of expand_asm_operands. Check that all operand names
1211 are unique. Return true if so. We rely on the fact that these names
1212 are identifiers, and so have been canonicalized by get_identifier,
1213 so all we need are pointer comparisons. */
1214
1215 static bool
1216 check_unique_operand_names (tree outputs, tree inputs, tree labels)
1217 {
1218 tree i, j, i_name = NULL_TREE;
1219
1220 for (i = outputs; i ; i = TREE_CHAIN (i))
1221 {
1222 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1223 if (! i_name)
1224 continue;
1225
1226 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1227 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1228 goto failure;
1229 }
1230
1231 for (i = inputs; i ; i = TREE_CHAIN (i))
1232 {
1233 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1234 if (! i_name)
1235 continue;
1236
1237 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1238 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1239 goto failure;
1240 for (j = outputs; j ; j = TREE_CHAIN (j))
1241 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1242 goto failure;
1243 }
1244
1245 for (i = labels; i ; i = TREE_CHAIN (i))
1246 {
1247 i_name = TREE_PURPOSE (i);
1248 if (! i_name)
1249 continue;
1250
1251 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1252 if (simple_cst_equal (i_name, TREE_PURPOSE (j)))
1253 goto failure;
1254 for (j = inputs; j ; j = TREE_CHAIN (j))
1255 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1256 goto failure;
1257 }
1258
1259 return true;
1260
1261 failure:
1262 error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name));
1263 return false;
1264 }
1265
1266 /* A subroutine of expand_asm_operands. Resolve the names of the operands
1267 in *POUTPUTS and *PINPUTS to numbers, and replace the name expansions in
1268 STRING and in the constraints to those numbers. */
1269
1270 tree
1271 resolve_asm_operand_names (tree string, tree outputs, tree inputs, tree labels)
1272 {
1273 char *buffer;
1274 char *p;
1275 const char *c;
1276 tree t;
1277
1278 check_unique_operand_names (outputs, inputs, labels);
1279
1280 /* Substitute [<name>] in input constraint strings. There should be no
1281 named operands in output constraints. */
1282 for (t = inputs; t ; t = TREE_CHAIN (t))
1283 {
1284 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1285 if (strchr (c, '[') != NULL)
1286 {
1287 p = buffer = xstrdup (c);
1288 while ((p = strchr (p, '[')) != NULL)
1289 p = resolve_operand_name_1 (p, outputs, inputs, NULL);
1290 TREE_VALUE (TREE_PURPOSE (t))
1291 = build_string (strlen (buffer), buffer);
1292 free (buffer);
1293 }
1294 }
1295
1296 /* Now check for any needed substitutions in the template. */
1297 c = TREE_STRING_POINTER (string);
1298 while ((c = strchr (c, '%')) != NULL)
1299 {
1300 if (c[1] == '[')
1301 break;
1302 else if (ISALPHA (c[1]) && c[2] == '[')
1303 break;
1304 else
1305 {
1306 c += 1 + (c[1] == '%');
1307 continue;
1308 }
1309 }
1310
1311 if (c)
1312 {
1313 /* OK, we need to make a copy so we can perform the substitutions.
1314 Assume that we will not need extra space--we get to remove '['
1315 and ']', which means we cannot have a problem until we have more
1316 than 999 operands. */
1317 buffer = xstrdup (TREE_STRING_POINTER (string));
1318 p = buffer + (c - TREE_STRING_POINTER (string));
1319
1320 while ((p = strchr (p, '%')) != NULL)
1321 {
1322 if (p[1] == '[')
1323 p += 1;
1324 else if (ISALPHA (p[1]) && p[2] == '[')
1325 p += 2;
1326 else
1327 {
1328 p += 1 + (p[1] == '%');
1329 continue;
1330 }
1331
1332 p = resolve_operand_name_1 (p, outputs, inputs, labels);
1333 }
1334
1335 string = build_string (strlen (buffer), buffer);
1336 free (buffer);
1337 }
1338
1339 return string;
1340 }
1341
1342 /* A subroutine of resolve_operand_names. P points to the '[' for a
1343 potential named operand of the form [<name>]. In place, replace
1344 the name and brackets with a number. Return a pointer to the
1345 balance of the string after substitution. */
1346
1347 static char *
1348 resolve_operand_name_1 (char *p, tree outputs, tree inputs, tree labels)
1349 {
1350 char *q;
1351 int op;
1352 tree t;
1353
1354 /* Collect the operand name. */
1355 q = strchr (++p, ']');
1356 if (!q)
1357 {
1358 error ("missing close brace for named operand");
1359 return strchr (p, '\0');
1360 }
1361 *q = '\0';
1362
1363 /* Resolve the name to a number. */
1364 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
1365 {
1366 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
1367 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
1368 goto found;
1369 }
1370 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
1371 {
1372 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
1373 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
1374 goto found;
1375 }
1376 for (t = labels; t ; t = TREE_CHAIN (t), op++)
1377 {
1378 tree name = TREE_PURPOSE (t);
1379 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
1380 goto found;
1381 }
1382
1383 error ("undefined named operand %qs", identifier_to_locale (p));
1384 op = 0;
1385
1386 found:
1387 /* Replace the name with the number. Unfortunately, not all libraries
1388 get the return value of sprintf correct, so search for the end of the
1389 generated string by hand. */
1390 sprintf (--p, "%d", op);
1391 p = strchr (p, '\0');
1392
1393 /* Verify the no extra buffer space assumption. */
1394 gcc_assert (p <= q);
1395
1396 /* Shift the rest of the buffer down to fill the gap. */
1397 memmove (p, q + 1, strlen (q + 1) + 1);
1398
1399 return p;
1400 }
1401 \f
1402 /* Generate RTL to evaluate the expression EXP. */
1403
1404 void
1405 expand_expr_stmt (tree exp)
1406 {
1407 rtx value;
1408 tree type;
1409
1410 value = expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
1411 type = TREE_TYPE (exp);
1412
1413 /* If all we do is reference a volatile value in memory,
1414 copy it to a register to be sure it is actually touched. */
1415 if (value && MEM_P (value) && TREE_THIS_VOLATILE (exp))
1416 {
1417 if (TYPE_MODE (type) == VOIDmode)
1418 ;
1419 else if (TYPE_MODE (type) != BLKmode)
1420 copy_to_reg (value);
1421 else
1422 {
1423 rtx lab = gen_label_rtx ();
1424
1425 /* Compare the value with itself to reference it. */
1426 emit_cmp_and_jump_insns (value, value, EQ,
1427 expand_normal (TYPE_SIZE (type)),
1428 BLKmode, 0, lab);
1429 emit_label (lab);
1430 }
1431 }
1432
1433 /* Free any temporaries used to evaluate this expression. */
1434 free_temp_slots ();
1435 }
1436
1437 \f
1438 /* Generate RTL to return from the current function, with no value.
1439 (That is, we do not do anything about returning any value.) */
1440
1441 void
1442 expand_null_return (void)
1443 {
1444 /* If this function was declared to return a value, but we
1445 didn't, clobber the return registers so that they are not
1446 propagated live to the rest of the function. */
1447 clobber_return_register ();
1448
1449 expand_null_return_1 ();
1450 }
1451
1452 /* Generate RTL to return directly from the current function.
1453 (That is, we bypass any return value.) */
1454
1455 void
1456 expand_naked_return (void)
1457 {
1458 rtx end_label;
1459
1460 clear_pending_stack_adjust ();
1461 do_pending_stack_adjust ();
1462
1463 end_label = naked_return_label;
1464 if (end_label == 0)
1465 end_label = naked_return_label = gen_label_rtx ();
1466
1467 emit_jump (end_label);
1468 }
1469
1470 /* Generate RTL to return from the current function, with value VAL. */
1471
1472 static void
1473 expand_value_return (rtx val)
1474 {
1475 /* Copy the value to the return location unless it's already there. */
1476
1477 tree decl = DECL_RESULT (current_function_decl);
1478 rtx return_reg = DECL_RTL (decl);
1479 if (return_reg != val)
1480 {
1481 tree funtype = TREE_TYPE (current_function_decl);
1482 tree type = TREE_TYPE (decl);
1483 int unsignedp = TYPE_UNSIGNED (type);
1484 enum machine_mode old_mode = DECL_MODE (decl);
1485 enum machine_mode mode;
1486 if (DECL_BY_REFERENCE (decl))
1487 mode = promote_function_mode (type, old_mode, &unsignedp, funtype, 2);
1488 else
1489 mode = promote_function_mode (type, old_mode, &unsignedp, funtype, 1);
1490
1491 if (mode != old_mode)
1492 val = convert_modes (mode, old_mode, val, unsignedp);
1493
1494 if (GET_CODE (return_reg) == PARALLEL)
1495 emit_group_load (return_reg, val, type, int_size_in_bytes (type));
1496 else
1497 emit_move_insn (return_reg, val);
1498 }
1499
1500 expand_null_return_1 ();
1501 }
1502
1503 /* Output a return with no value. */
1504
1505 static void
1506 expand_null_return_1 (void)
1507 {
1508 clear_pending_stack_adjust ();
1509 do_pending_stack_adjust ();
1510 emit_jump (return_label);
1511 }
1512 \f
1513 /* Generate RTL to evaluate the expression RETVAL and return it
1514 from the current function. */
1515
1516 void
1517 expand_return (tree retval)
1518 {
1519 rtx result_rtl;
1520 rtx val = 0;
1521 tree retval_rhs;
1522
1523 /* If function wants no value, give it none. */
1524 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
1525 {
1526 expand_normal (retval);
1527 expand_null_return ();
1528 return;
1529 }
1530
1531 if (retval == error_mark_node)
1532 {
1533 /* Treat this like a return of no value from a function that
1534 returns a value. */
1535 expand_null_return ();
1536 return;
1537 }
1538 else if ((TREE_CODE (retval) == MODIFY_EXPR
1539 || TREE_CODE (retval) == INIT_EXPR)
1540 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
1541 retval_rhs = TREE_OPERAND (retval, 1);
1542 else
1543 retval_rhs = retval;
1544
1545 result_rtl = DECL_RTL (DECL_RESULT (current_function_decl));
1546
1547 /* If we are returning the RESULT_DECL, then the value has already
1548 been stored into it, so we don't have to do anything special. */
1549 if (TREE_CODE (retval_rhs) == RESULT_DECL)
1550 expand_value_return (result_rtl);
1551
1552 /* If the result is an aggregate that is being returned in one (or more)
1553 registers, load the registers here. */
1554
1555 else if (retval_rhs != 0
1556 && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode
1557 && REG_P (result_rtl))
1558 {
1559 val = copy_blkmode_to_reg (GET_MODE (result_rtl), retval_rhs);
1560 if (val)
1561 {
1562 /* Use the mode of the result value on the return register. */
1563 PUT_MODE (result_rtl, GET_MODE (val));
1564 expand_value_return (val);
1565 }
1566 else
1567 expand_null_return ();
1568 }
1569 else if (retval_rhs != 0
1570 && !VOID_TYPE_P (TREE_TYPE (retval_rhs))
1571 && (REG_P (result_rtl)
1572 || (GET_CODE (result_rtl) == PARALLEL)))
1573 {
1574 /* Calculate the return value into a temporary (usually a pseudo
1575 reg). */
1576 tree ot = TREE_TYPE (DECL_RESULT (current_function_decl));
1577 tree nt = build_qualified_type (ot, TYPE_QUALS (ot) | TYPE_QUAL_CONST);
1578
1579 val = assign_temp (nt, 0, 1);
1580 val = expand_expr (retval_rhs, val, GET_MODE (val), EXPAND_NORMAL);
1581 val = force_not_mem (val);
1582 /* Return the calculated value. */
1583 expand_value_return (val);
1584 }
1585 else
1586 {
1587 /* No hard reg used; calculate value into hard return reg. */
1588 expand_expr (retval, const0_rtx, VOIDmode, EXPAND_NORMAL);
1589 expand_value_return (result_rtl);
1590 }
1591 }
1592 \f
1593 /* Emit code to restore vital registers at the beginning of a nonlocal goto
1594 handler. */
1595 static void
1596 expand_nl_goto_receiver (void)
1597 {
1598 rtx chain;
1599
1600 /* Clobber the FP when we get here, so we have to make sure it's
1601 marked as used by this function. */
1602 emit_use (hard_frame_pointer_rtx);
1603
1604 /* Mark the static chain as clobbered here so life information
1605 doesn't get messed up for it. */
1606 chain = targetm.calls.static_chain (current_function_decl, true);
1607 if (chain && REG_P (chain))
1608 emit_clobber (chain);
1609
1610 #ifdef HAVE_nonlocal_goto
1611 if (! HAVE_nonlocal_goto)
1612 #endif
1613 /* First adjust our frame pointer to its actual value. It was
1614 previously set to the start of the virtual area corresponding to
1615 the stacked variables when we branched here and now needs to be
1616 adjusted to the actual hardware fp value.
1617
1618 Assignments are to virtual registers are converted by
1619 instantiate_virtual_regs into the corresponding assignment
1620 to the underlying register (fp in this case) that makes
1621 the original assignment true.
1622 So the following insn will actually be
1623 decrementing fp by STARTING_FRAME_OFFSET. */
1624 emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
1625
1626 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
1627 if (fixed_regs[ARG_POINTER_REGNUM])
1628 {
1629 #ifdef ELIMINABLE_REGS
1630 /* If the argument pointer can be eliminated in favor of the
1631 frame pointer, we don't need to restore it. We assume here
1632 that if such an elimination is present, it can always be used.
1633 This is the case on all known machines; if we don't make this
1634 assumption, we do unnecessary saving on many machines. */
1635 static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
1636 size_t i;
1637
1638 for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
1639 if (elim_regs[i].from == ARG_POINTER_REGNUM
1640 && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
1641 break;
1642
1643 if (i == ARRAY_SIZE (elim_regs))
1644 #endif
1645 {
1646 /* Now restore our arg pointer from the address at which it
1647 was saved in our stack frame. */
1648 emit_move_insn (crtl->args.internal_arg_pointer,
1649 copy_to_reg (get_arg_pointer_save_area ()));
1650 }
1651 }
1652 #endif
1653
1654 #ifdef HAVE_nonlocal_goto_receiver
1655 if (HAVE_nonlocal_goto_receiver)
1656 emit_insn (gen_nonlocal_goto_receiver ());
1657 #endif
1658
1659 /* We must not allow the code we just generated to be reordered by
1660 scheduling. Specifically, the update of the frame pointer must
1661 happen immediately, not later. */
1662 emit_insn (gen_blockage ());
1663 }
1664 \f
1665 /* Emit code to save the current value of stack. */
1666 rtx
1667 expand_stack_save (void)
1668 {
1669 rtx ret = NULL_RTX;
1670
1671 do_pending_stack_adjust ();
1672 emit_stack_save (SAVE_BLOCK, &ret);
1673 return ret;
1674 }
1675
1676 /* Emit code to restore the current value of stack. */
1677 void
1678 expand_stack_restore (tree var)
1679 {
1680 rtx prev, sa = expand_normal (var);
1681
1682 sa = convert_memory_address (Pmode, sa);
1683
1684 prev = get_last_insn ();
1685 emit_stack_restore (SAVE_BLOCK, sa);
1686 fixup_args_size_notes (prev, get_last_insn (), 0);
1687 }
1688 \f
1689 /* Do the insertion of a case label into case_list. The labels are
1690 fed to us in descending order from the sorted vector of case labels used
1691 in the tree part of the middle end. So the list we construct is
1692 sorted in ascending order. The bounds on the case range, LOW and HIGH,
1693 are converted to case's index type TYPE. Note that the original type
1694 of the case index in the source code is usually "lost" during
1695 gimplification due to type promotion, but the case labels retain the
1696 original type. */
1697
1698 static struct case_node *
1699 add_case_node (struct case_node *head, tree type, tree low, tree high,
1700 tree label, alloc_pool case_node_pool)
1701 {
1702 struct case_node *r;
1703
1704 gcc_checking_assert (low);
1705 gcc_checking_assert (! high || (TREE_TYPE (low) == TREE_TYPE (high)));
1706
1707 /* Add this label to the chain. Make sure to drop overflow flags. */
1708 r = (struct case_node *) pool_alloc (case_node_pool);
1709 r->low = build_int_cst_wide (type, TREE_INT_CST_LOW (low),
1710 TREE_INT_CST_HIGH (low));
1711 r->high = build_int_cst_wide (type, TREE_INT_CST_LOW (high),
1712 TREE_INT_CST_HIGH (high));
1713 r->code_label = label;
1714 r->parent = r->left = NULL;
1715 r->right = head;
1716 return r;
1717 }
1718 \f
1719 /* Dump ROOT, a list or tree of case nodes, to file. */
1720
1721 static void
1722 dump_case_nodes (FILE *f, struct case_node *root,
1723 int indent_step, int indent_level)
1724 {
1725 HOST_WIDE_INT low, high;
1726
1727 if (root == 0)
1728 return;
1729 indent_level++;
1730
1731 dump_case_nodes (f, root->left, indent_step, indent_level);
1732
1733 low = tree_low_cst (root->low, 0);
1734 high = tree_low_cst (root->high, 0);
1735
1736 fputs (";; ", f);
1737 if (high == low)
1738 fprintf(f, "%*s" HOST_WIDE_INT_PRINT_DEC,
1739 indent_step * indent_level, "", low);
1740 else
1741 fprintf(f, "%*s" HOST_WIDE_INT_PRINT_DEC " ... " HOST_WIDE_INT_PRINT_DEC,
1742 indent_step * indent_level, "", low, high);
1743 fputs ("\n", f);
1744
1745 dump_case_nodes (f, root->right, indent_step, indent_level);
1746 }
1747 \f
1748 #ifndef HAVE_casesi
1749 #define HAVE_casesi 0
1750 #endif
1751
1752 #ifndef HAVE_tablejump
1753 #define HAVE_tablejump 0
1754 #endif
1755
1756 /* Return the smallest number of different values for which it is best to use a
1757 jump-table instead of a tree of conditional branches. */
1758
1759 static unsigned int
1760 case_values_threshold (void)
1761 {
1762 unsigned int threshold = PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD);
1763
1764 if (threshold == 0)
1765 threshold = targetm.case_values_threshold ();
1766
1767 return threshold;
1768 }
1769
1770 /* Return true if a switch should be expanded as a decision tree.
1771 RANGE is the difference between highest and lowest case.
1772 UNIQ is number of unique case node targets, not counting the default case.
1773 COUNT is the number of comparisons needed, not counting the default case. */
1774
1775 static bool
1776 expand_switch_as_decision_tree_p (tree range,
1777 unsigned int uniq ATTRIBUTE_UNUSED,
1778 unsigned int count)
1779 {
1780 int max_ratio;
1781
1782 /* If neither casesi or tablejump is available, or flag_jump_tables
1783 over-ruled us, we really have no choice. */
1784 if (!HAVE_casesi && !HAVE_tablejump)
1785 return true;
1786 if (!flag_jump_tables)
1787 return true;
1788
1789 /* If the switch is relatively small such that the cost of one
1790 indirect jump on the target are higher than the cost of a
1791 decision tree, go with the decision tree.
1792
1793 If range of values is much bigger than number of values,
1794 or if it is too large to represent in a HOST_WIDE_INT,
1795 make a sequence of conditional branches instead of a dispatch.
1796
1797 The definition of "much bigger" depends on whether we are
1798 optimizing for size or for speed. If the former, the maximum
1799 ratio range/count = 3, because this was found to be the optimal
1800 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
1801 10 is much older, and was probably selected after an extensive
1802 benchmarking investigation on numerous platforms. Or maybe it
1803 just made sense to someone at some point in the history of GCC,
1804 who knows... */
1805 max_ratio = optimize_insn_for_size_p () ? 3 : 10;
1806 if (count < case_values_threshold ()
1807 || ! host_integerp (range, /*pos=*/1)
1808 || compare_tree_int (range, max_ratio * count) > 0)
1809 return true;
1810
1811 return false;
1812 }
1813
1814 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
1815 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
1816
1817 We generate a binary decision tree to select the appropriate target
1818 code. This is done as follows:
1819
1820 If the index is a short or char that we do not have
1821 an insn to handle comparisons directly, convert it to
1822 a full integer now, rather than letting each comparison
1823 generate the conversion.
1824
1825 Load the index into a register.
1826
1827 The list of cases is rearranged into a binary tree,
1828 nearly optimal assuming equal probability for each case.
1829
1830 The tree is transformed into RTL, eliminating redundant
1831 test conditions at the same time.
1832
1833 If program flow could reach the end of the decision tree
1834 an unconditional jump to the default code is emitted.
1835
1836 The above process is unaware of the CFG. The caller has to fix up
1837 the CFG itself. This is done in cfgexpand.c. */
1838
1839 static void
1840 emit_case_decision_tree (tree index_expr, tree index_type,
1841 struct case_node *case_list, rtx default_label)
1842 {
1843 rtx index = expand_normal (index_expr);
1844
1845 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
1846 && ! have_insn_for (COMPARE, GET_MODE (index)))
1847 {
1848 int unsignedp = TYPE_UNSIGNED (index_type);
1849 enum machine_mode wider_mode;
1850 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
1851 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1852 if (have_insn_for (COMPARE, wider_mode))
1853 {
1854 index = convert_to_mode (wider_mode, index, unsignedp);
1855 break;
1856 }
1857 }
1858
1859 do_pending_stack_adjust ();
1860
1861 if (MEM_P (index))
1862 {
1863 index = copy_to_reg (index);
1864 if (TREE_CODE (index_expr) == SSA_NAME)
1865 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (index_expr), index);
1866 }
1867
1868 balance_case_nodes (&case_list, NULL);
1869
1870 /* Don't want to include tree-pass.h here. This code will be moved
1871 to a GIMPLE pass for GCC 4.9 anyway, so for now always dump. */
1872 if (dump_file && 1/*(dump_flags & TDF_DETAILS)*/)
1873 {
1874 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
1875 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
1876 dump_case_nodes (dump_file, case_list, indent_step, 0);
1877 }
1878
1879 emit_case_nodes (index, case_list, default_label, index_type);
1880 if (default_label)
1881 emit_jump (default_label);
1882 }
1883
1884 /* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
1885 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
1886 MINVAL, MAXVAL, and RANGE are the extrema and range of the case
1887 labels in CASE_LIST.
1888
1889 First, a jump insn is emitted. First we try "casesi". If that
1890 fails, try "tablejump". A target *must* have one of them (or both).
1891
1892 Then, a table with the target labels is emitted.
1893
1894 The process is unaware of the CFG. The caller has to fix up
1895 the CFG itself. This is done in cfgexpand.c. */
1896
1897 static void
1898 emit_case_dispatch_table (tree index_expr, tree index_type,
1899 struct case_node *case_list, rtx default_label,
1900 tree minval, tree maxval, tree range)
1901 {
1902 int i, ncases;
1903 struct case_node *n;
1904 rtx *labelvec;
1905 rtx fallback_label = label_rtx (case_list->code_label);
1906 rtx table_label = gen_label_rtx ();
1907
1908 if (! try_casesi (index_type, index_expr, minval, range,
1909 table_label, default_label, fallback_label))
1910 {
1911 bool ok;
1912
1913 /* Index jumptables from zero for suitable values of minval to avoid
1914 a subtraction. For the rationale see:
1915 "http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
1916 if (optimize_insn_for_speed_p ()
1917 && compare_tree_int (minval, 0) > 0
1918 && compare_tree_int (minval, 3) < 0)
1919 {
1920 minval = build_int_cst (index_type, 0);
1921 range = maxval;
1922 }
1923
1924 ok = try_tablejump (index_type, index_expr, minval, range,
1925 table_label, default_label);
1926 gcc_assert (ok);
1927 }
1928
1929 /* Get table of labels to jump to, in order of case index. */
1930
1931 ncases = tree_low_cst (range, 0) + 1;
1932 labelvec = XALLOCAVEC (rtx, ncases);
1933 memset (labelvec, 0, ncases * sizeof (rtx));
1934
1935 for (n = case_list; n; n = n->right)
1936 {
1937 /* Compute the low and high bounds relative to the minimum
1938 value since that should fit in a HOST_WIDE_INT while the
1939 actual values may not. */
1940 HOST_WIDE_INT i_low
1941 = tree_low_cst (fold_build2 (MINUS_EXPR, index_type,
1942 n->low, minval), 1);
1943 HOST_WIDE_INT i_high
1944 = tree_low_cst (fold_build2 (MINUS_EXPR, index_type,
1945 n->high, minval), 1);
1946 HOST_WIDE_INT i;
1947
1948 for (i = i_low; i <= i_high; i ++)
1949 labelvec[i]
1950 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
1951 }
1952
1953 /* Fill in the gaps with the default. We may have gaps at
1954 the beginning if we tried to avoid the minval subtraction,
1955 so substitute some label even if the default label was
1956 deemed unreachable. */
1957 if (!default_label)
1958 default_label = fallback_label;
1959 for (i = 0; i < ncases; i++)
1960 if (labelvec[i] == 0)
1961 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
1962
1963 /* Output the table. */
1964 emit_label (table_label);
1965
1966 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
1967 emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
1968 gen_rtx_LABEL_REF (Pmode, table_label),
1969 gen_rtvec_v (ncases, labelvec),
1970 const0_rtx, const0_rtx));
1971 else
1972 emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
1973 gen_rtvec_v (ncases, labelvec)));
1974
1975 /* Record no drop-through after the table. */
1976 emit_barrier ();
1977 }
1978
1979 /* Terminate a case (Pascal/Ada) or switch (C) statement
1980 in which ORIG_INDEX is the expression to be tested.
1981 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
1982 type as given in the source before any compiler conversions.
1983 Generate the code to test it and jump to the right place. */
1984
1985 void
1986 expand_case (gimple stmt)
1987 {
1988 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
1989 rtx default_label = NULL_RTX;
1990 unsigned int count, uniq;
1991 int i, stopi = 0;
1992 rtx before_case, end;
1993 int ncases = gimple_switch_num_labels (stmt);
1994 tree index_expr = gimple_switch_index (stmt);
1995 tree index_type = TREE_TYPE (index_expr);
1996
1997 tree elt;
1998 bitmap label_bitmap;
1999
2000 /* The insn after which the case dispatch should finally
2001 be emitted. Zero for a dummy. */
2002 rtx start;
2003
2004 /* A list of case labels; it is first built as a list and it may then
2005 be rearranged into a nearly balanced binary tree. */
2006 struct case_node *case_list = 0;
2007
2008 /* A pool for case nodes. */
2009 alloc_pool case_node_pool;
2010
2011 /* An ERROR_MARK occurs for various reasons including invalid data type.
2012 ??? Can this still happen, with GIMPLE and all? */
2013 if (index_type == error_mark_node)
2014 return;
2015
2016 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
2017 expressions being INTEGER_CST. */
2018 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
2019
2020 case_node_pool = create_alloc_pool ("struct case_node pool",
2021 sizeof (struct case_node),
2022 100);
2023
2024 do_pending_stack_adjust ();
2025
2026 /* The default case, if ever taken, is the first element. */
2027 elt = gimple_switch_label (stmt, 0);
2028 if (!CASE_LOW (elt) && !CASE_HIGH (elt))
2029 {
2030 default_label = label_rtx (CASE_LABEL (elt));
2031 stopi = 1;
2032 }
2033
2034 /* Get upper and lower bounds of case values. */
2035 elt = gimple_switch_label (stmt, stopi);
2036 minval = fold_convert (index_type, CASE_LOW (elt));
2037 elt = gimple_switch_label (stmt, ncases - 1);
2038 if (CASE_HIGH (elt))
2039 maxval = fold_convert (index_type, CASE_HIGH (elt));
2040 else
2041 maxval = fold_convert (index_type, CASE_LOW (elt));
2042
2043 /* Compute span of values. */
2044 range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
2045
2046 /* Listify the labels queue and gather some numbers to decide
2047 how to expand this switch(). */
2048 uniq = 0;
2049 count = 0;
2050 label_bitmap = BITMAP_ALLOC (NULL);
2051 for (i = gimple_switch_num_labels (stmt) - 1; i >= stopi; --i)
2052 {
2053 tree low, high;
2054 rtx lab;
2055
2056 elt = gimple_switch_label (stmt, i);
2057 low = CASE_LOW (elt);
2058 gcc_assert (low);
2059 high = CASE_HIGH (elt);
2060 gcc_assert (! high || tree_int_cst_lt (low, high));
2061
2062 /* Count the elements.
2063 A range counts double, since it requires two compares. */
2064 count++;
2065 if (high)
2066 count++;
2067
2068 /* If we have not seen this label yet, then increase the
2069 number of unique case node targets seen. */
2070 lab = label_rtx (CASE_LABEL (elt));
2071 if (bitmap_set_bit (label_bitmap, CODE_LABEL_NUMBER (lab)))
2072 uniq++;
2073
2074 /* The canonical from of a case label in GIMPLE is that a simple case
2075 has an empty CASE_HIGH. For the casesi and tablejump expanders,
2076 the back ends want simple cases to have high == low. */
2077 if (! high)
2078 high = low;
2079
2080 case_list = add_case_node (case_list, index_type, low, high,
2081 CASE_LABEL (elt), case_node_pool);
2082 }
2083 BITMAP_FREE (label_bitmap);
2084
2085 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
2086 destination, such as one with a default case only.
2087 It also removes cases that are out of range for the switch
2088 type, so we should never get a zero here. */
2089 gcc_assert (count > 0);
2090
2091 before_case = start = get_last_insn ();
2092
2093 /* Decide how to expand this switch.
2094 The two options at this point are a dispatch table (casesi or
2095 tablejump) or a decision tree. */
2096
2097 if (expand_switch_as_decision_tree_p (range, uniq, count))
2098 emit_case_decision_tree (index_expr, index_type,
2099 case_list, default_label);
2100 else
2101 emit_case_dispatch_table (index_expr, index_type,
2102 case_list, default_label,
2103 minval, maxval, range);
2104
2105 before_case = NEXT_INSN (before_case);
2106 end = get_last_insn ();
2107 reorder_insns (before_case, end, start);
2108
2109 free_temp_slots ();
2110 free_alloc_pool (case_node_pool);
2111 }
2112
2113 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. */
2114
2115 static void
2116 do_jump_if_equal (enum machine_mode mode, rtx op0, rtx op1, rtx label,
2117 int unsignedp)
2118 {
2119 do_compare_rtx_and_jump (op0, op1, EQ, unsignedp, mode,
2120 NULL_RTX, NULL_RTX, label, -1);
2121 }
2122 \f
2123 /* Take an ordered list of case nodes
2124 and transform them into a near optimal binary tree,
2125 on the assumption that any target code selection value is as
2126 likely as any other.
2127
2128 The transformation is performed by splitting the ordered
2129 list into two equal sections plus a pivot. The parts are
2130 then attached to the pivot as left and right branches. Each
2131 branch is then transformed recursively. */
2132
2133 static void
2134 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
2135 {
2136 case_node_ptr np;
2137
2138 np = *head;
2139 if (np)
2140 {
2141 int i = 0;
2142 int ranges = 0;
2143 case_node_ptr *npp;
2144 case_node_ptr left;
2145
2146 /* Count the number of entries on branch. Also count the ranges. */
2147
2148 while (np)
2149 {
2150 if (!tree_int_cst_equal (np->low, np->high))
2151 ranges++;
2152
2153 i++;
2154 np = np->right;
2155 }
2156
2157 if (i > 2)
2158 {
2159 /* Split this list if it is long enough for that to help. */
2160 npp = head;
2161 left = *npp;
2162
2163 /* If there are just three nodes, split at the middle one. */
2164 if (i == 3)
2165 npp = &(*npp)->right;
2166 else
2167 {
2168 /* Find the place in the list that bisects the list's total cost,
2169 where ranges count as 2.
2170 Here I gets half the total cost. */
2171 i = (i + ranges + 1) / 2;
2172 while (1)
2173 {
2174 /* Skip nodes while their cost does not reach that amount. */
2175 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
2176 i--;
2177 i--;
2178 if (i <= 0)
2179 break;
2180 npp = &(*npp)->right;
2181 }
2182 }
2183 *head = np = *npp;
2184 *npp = 0;
2185 np->parent = parent;
2186 np->left = left;
2187
2188 /* Optimize each of the two split parts. */
2189 balance_case_nodes (&np->left, np);
2190 balance_case_nodes (&np->right, np);
2191 }
2192 else
2193 {
2194 /* Else leave this branch as one level,
2195 but fill in `parent' fields. */
2196 np = *head;
2197 np->parent = parent;
2198 for (; np->right; np = np->right)
2199 np->right->parent = np;
2200 }
2201 }
2202 }
2203 \f
2204 /* Search the parent sections of the case node tree
2205 to see if a test for the lower bound of NODE would be redundant.
2206 INDEX_TYPE is the type of the index expression.
2207
2208 The instructions to generate the case decision tree are
2209 output in the same order as nodes are processed so it is
2210 known that if a parent node checks the range of the current
2211 node minus one that the current node is bounded at its lower
2212 span. Thus the test would be redundant. */
2213
2214 static int
2215 node_has_low_bound (case_node_ptr node, tree index_type)
2216 {
2217 tree low_minus_one;
2218 case_node_ptr pnode;
2219
2220 /* If the lower bound of this node is the lowest value in the index type,
2221 we need not test it. */
2222
2223 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
2224 return 1;
2225
2226 /* If this node has a left branch, the value at the left must be less
2227 than that at this node, so it cannot be bounded at the bottom and
2228 we need not bother testing any further. */
2229
2230 if (node->left)
2231 return 0;
2232
2233 low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low),
2234 node->low,
2235 build_int_cst (TREE_TYPE (node->low), 1));
2236
2237 /* If the subtraction above overflowed, we can't verify anything.
2238 Otherwise, look for a parent that tests our value - 1. */
2239
2240 if (! tree_int_cst_lt (low_minus_one, node->low))
2241 return 0;
2242
2243 for (pnode = node->parent; pnode; pnode = pnode->parent)
2244 if (tree_int_cst_equal (low_minus_one, pnode->high))
2245 return 1;
2246
2247 return 0;
2248 }
2249
2250 /* Search the parent sections of the case node tree
2251 to see if a test for the upper bound of NODE would be redundant.
2252 INDEX_TYPE is the type of the index expression.
2253
2254 The instructions to generate the case decision tree are
2255 output in the same order as nodes are processed so it is
2256 known that if a parent node checks the range of the current
2257 node plus one that the current node is bounded at its upper
2258 span. Thus the test would be redundant. */
2259
2260 static int
2261 node_has_high_bound (case_node_ptr node, tree index_type)
2262 {
2263 tree high_plus_one;
2264 case_node_ptr pnode;
2265
2266 /* If there is no upper bound, obviously no test is needed. */
2267
2268 if (TYPE_MAX_VALUE (index_type) == NULL)
2269 return 1;
2270
2271 /* If the upper bound of this node is the highest value in the type
2272 of the index expression, we need not test against it. */
2273
2274 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
2275 return 1;
2276
2277 /* If this node has a right branch, the value at the right must be greater
2278 than that at this node, so it cannot be bounded at the top and
2279 we need not bother testing any further. */
2280
2281 if (node->right)
2282 return 0;
2283
2284 high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high),
2285 node->high,
2286 build_int_cst (TREE_TYPE (node->high), 1));
2287
2288 /* If the addition above overflowed, we can't verify anything.
2289 Otherwise, look for a parent that tests our value + 1. */
2290
2291 if (! tree_int_cst_lt (node->high, high_plus_one))
2292 return 0;
2293
2294 for (pnode = node->parent; pnode; pnode = pnode->parent)
2295 if (tree_int_cst_equal (high_plus_one, pnode->low))
2296 return 1;
2297
2298 return 0;
2299 }
2300
2301 /* Search the parent sections of the
2302 case node tree to see if both tests for the upper and lower
2303 bounds of NODE would be redundant. */
2304
2305 static int
2306 node_is_bounded (case_node_ptr node, tree index_type)
2307 {
2308 return (node_has_low_bound (node, index_type)
2309 && node_has_high_bound (node, index_type));
2310 }
2311 \f
2312 /* Emit step-by-step code to select a case for the value of INDEX.
2313 The thus generated decision tree follows the form of the
2314 case-node binary tree NODE, whose nodes represent test conditions.
2315 INDEX_TYPE is the type of the index of the switch.
2316
2317 Care is taken to prune redundant tests from the decision tree
2318 by detecting any boundary conditions already checked by
2319 emitted rtx. (See node_has_high_bound, node_has_low_bound
2320 and node_is_bounded, above.)
2321
2322 Where the test conditions can be shown to be redundant we emit
2323 an unconditional jump to the target code. As a further
2324 optimization, the subordinates of a tree node are examined to
2325 check for bounded nodes. In this case conditional and/or
2326 unconditional jumps as a result of the boundary check for the
2327 current node are arranged to target the subordinates associated
2328 code for out of bound conditions on the current node.
2329
2330 We can assume that when control reaches the code generated here,
2331 the index value has already been compared with the parents
2332 of this node, and determined to be on the same side of each parent
2333 as this node is. Thus, if this node tests for the value 51,
2334 and a parent tested for 52, we don't need to consider
2335 the possibility of a value greater than 51. If another parent
2336 tests for the value 50, then this node need not test anything. */
2337
2338 static void
2339 emit_case_nodes (rtx index, case_node_ptr node, rtx default_label,
2340 tree index_type)
2341 {
2342 /* If INDEX has an unsigned type, we must make unsigned branches. */
2343 int unsignedp = TYPE_UNSIGNED (index_type);
2344 enum machine_mode mode = GET_MODE (index);
2345 enum machine_mode imode = TYPE_MODE (index_type);
2346
2347 /* Handle indices detected as constant during RTL expansion. */
2348 if (mode == VOIDmode)
2349 mode = imode;
2350
2351 /* See if our parents have already tested everything for us.
2352 If they have, emit an unconditional jump for this node. */
2353 if (node_is_bounded (node, index_type))
2354 emit_jump (label_rtx (node->code_label));
2355
2356 else if (tree_int_cst_equal (node->low, node->high))
2357 {
2358 /* Node is single valued. First see if the index expression matches
2359 this node and then check our children, if any. */
2360
2361 do_jump_if_equal (mode, index,
2362 convert_modes (mode, imode,
2363 expand_normal (node->low),
2364 unsignedp),
2365 label_rtx (node->code_label), unsignedp);
2366
2367 if (node->right != 0 && node->left != 0)
2368 {
2369 /* This node has children on both sides.
2370 Dispatch to one side or the other
2371 by comparing the index value with this node's value.
2372 If one subtree is bounded, check that one first,
2373 so we can avoid real branches in the tree. */
2374
2375 if (node_is_bounded (node->right, index_type))
2376 {
2377 emit_cmp_and_jump_insns (index,
2378 convert_modes
2379 (mode, imode,
2380 expand_normal (node->high),
2381 unsignedp),
2382 GT, NULL_RTX, mode, unsignedp,
2383 label_rtx (node->right->code_label));
2384 emit_case_nodes (index, node->left, default_label, index_type);
2385 }
2386
2387 else if (node_is_bounded (node->left, index_type))
2388 {
2389 emit_cmp_and_jump_insns (index,
2390 convert_modes
2391 (mode, imode,
2392 expand_normal (node->high),
2393 unsignedp),
2394 LT, NULL_RTX, mode, unsignedp,
2395 label_rtx (node->left->code_label));
2396 emit_case_nodes (index, node->right, default_label, index_type);
2397 }
2398
2399 /* If both children are single-valued cases with no
2400 children, finish up all the work. This way, we can save
2401 one ordered comparison. */
2402 else if (tree_int_cst_equal (node->right->low, node->right->high)
2403 && node->right->left == 0
2404 && node->right->right == 0
2405 && tree_int_cst_equal (node->left->low, node->left->high)
2406 && node->left->left == 0
2407 && node->left->right == 0)
2408 {
2409 /* Neither node is bounded. First distinguish the two sides;
2410 then emit the code for one side at a time. */
2411
2412 /* See if the value matches what the right hand side
2413 wants. */
2414 do_jump_if_equal (mode, index,
2415 convert_modes (mode, imode,
2416 expand_normal (node->right->low),
2417 unsignedp),
2418 label_rtx (node->right->code_label),
2419 unsignedp);
2420
2421 /* See if the value matches what the left hand side
2422 wants. */
2423 do_jump_if_equal (mode, index,
2424 convert_modes (mode, imode,
2425 expand_normal (node->left->low),
2426 unsignedp),
2427 label_rtx (node->left->code_label),
2428 unsignedp);
2429 }
2430
2431 else
2432 {
2433 /* Neither node is bounded. First distinguish the two sides;
2434 then emit the code for one side at a time. */
2435
2436 tree test_label
2437 = build_decl (CURR_INSN_LOCATION,
2438 LABEL_DECL, NULL_TREE, NULL_TREE);
2439
2440 /* See if the value is on the right. */
2441 emit_cmp_and_jump_insns (index,
2442 convert_modes
2443 (mode, imode,
2444 expand_normal (node->high),
2445 unsignedp),
2446 GT, NULL_RTX, mode, unsignedp,
2447 label_rtx (test_label));
2448
2449 /* Value must be on the left.
2450 Handle the left-hand subtree. */
2451 emit_case_nodes (index, node->left, default_label, index_type);
2452 /* If left-hand subtree does nothing,
2453 go to default. */
2454 if (default_label)
2455 emit_jump (default_label);
2456
2457 /* Code branches here for the right-hand subtree. */
2458 expand_label (test_label);
2459 emit_case_nodes (index, node->right, default_label, index_type);
2460 }
2461 }
2462
2463 else if (node->right != 0 && node->left == 0)
2464 {
2465 /* Here we have a right child but no left so we issue a conditional
2466 branch to default and process the right child.
2467
2468 Omit the conditional branch to default if the right child
2469 does not have any children and is single valued; it would
2470 cost too much space to save so little time. */
2471
2472 if (node->right->right || node->right->left
2473 || !tree_int_cst_equal (node->right->low, node->right->high))
2474 {
2475 if (!node_has_low_bound (node, index_type))
2476 {
2477 emit_cmp_and_jump_insns (index,
2478 convert_modes
2479 (mode, imode,
2480 expand_normal (node->high),
2481 unsignedp),
2482 LT, NULL_RTX, mode, unsignedp,
2483 default_label);
2484 }
2485
2486 emit_case_nodes (index, node->right, default_label, index_type);
2487 }
2488 else
2489 /* We cannot process node->right normally
2490 since we haven't ruled out the numbers less than
2491 this node's value. So handle node->right explicitly. */
2492 do_jump_if_equal (mode, index,
2493 convert_modes
2494 (mode, imode,
2495 expand_normal (node->right->low),
2496 unsignedp),
2497 label_rtx (node->right->code_label), unsignedp);
2498 }
2499
2500 else if (node->right == 0 && node->left != 0)
2501 {
2502 /* Just one subtree, on the left. */
2503 if (node->left->left || node->left->right
2504 || !tree_int_cst_equal (node->left->low, node->left->high))
2505 {
2506 if (!node_has_high_bound (node, index_type))
2507 {
2508 emit_cmp_and_jump_insns (index,
2509 convert_modes
2510 (mode, imode,
2511 expand_normal (node->high),
2512 unsignedp),
2513 GT, NULL_RTX, mode, unsignedp,
2514 default_label);
2515 }
2516
2517 emit_case_nodes (index, node->left, default_label, index_type);
2518 }
2519 else
2520 /* We cannot process node->left normally
2521 since we haven't ruled out the numbers less than
2522 this node's value. So handle node->left explicitly. */
2523 do_jump_if_equal (mode, index,
2524 convert_modes
2525 (mode, imode,
2526 expand_normal (node->left->low),
2527 unsignedp),
2528 label_rtx (node->left->code_label), unsignedp);
2529 }
2530 }
2531 else
2532 {
2533 /* Node is a range. These cases are very similar to those for a single
2534 value, except that we do not start by testing whether this node
2535 is the one to branch to. */
2536
2537 if (node->right != 0 && node->left != 0)
2538 {
2539 /* Node has subtrees on both sides.
2540 If the right-hand subtree is bounded,
2541 test for it first, since we can go straight there.
2542 Otherwise, we need to make a branch in the control structure,
2543 then handle the two subtrees. */
2544 tree test_label = 0;
2545
2546 if (node_is_bounded (node->right, index_type))
2547 /* Right hand node is fully bounded so we can eliminate any
2548 testing and branch directly to the target code. */
2549 emit_cmp_and_jump_insns (index,
2550 convert_modes
2551 (mode, imode,
2552 expand_normal (node->high),
2553 unsignedp),
2554 GT, NULL_RTX, mode, unsignedp,
2555 label_rtx (node->right->code_label));
2556 else
2557 {
2558 /* Right hand node requires testing.
2559 Branch to a label where we will handle it later. */
2560
2561 test_label = build_decl (CURR_INSN_LOCATION,
2562 LABEL_DECL, NULL_TREE, NULL_TREE);
2563 emit_cmp_and_jump_insns (index,
2564 convert_modes
2565 (mode, imode,
2566 expand_normal (node->high),
2567 unsignedp),
2568 GT, NULL_RTX, mode, unsignedp,
2569 label_rtx (test_label));
2570 }
2571
2572 /* Value belongs to this node or to the left-hand subtree. */
2573
2574 emit_cmp_and_jump_insns (index,
2575 convert_modes
2576 (mode, imode,
2577 expand_normal (node->low),
2578 unsignedp),
2579 GE, NULL_RTX, mode, unsignedp,
2580 label_rtx (node->code_label));
2581
2582 /* Handle the left-hand subtree. */
2583 emit_case_nodes (index, node->left, default_label, index_type);
2584
2585 /* If right node had to be handled later, do that now. */
2586
2587 if (test_label)
2588 {
2589 /* If the left-hand subtree fell through,
2590 don't let it fall into the right-hand subtree. */
2591 if (default_label)
2592 emit_jump (default_label);
2593
2594 expand_label (test_label);
2595 emit_case_nodes (index, node->right, default_label, index_type);
2596 }
2597 }
2598
2599 else if (node->right != 0 && node->left == 0)
2600 {
2601 /* Deal with values to the left of this node,
2602 if they are possible. */
2603 if (!node_has_low_bound (node, index_type))
2604 {
2605 emit_cmp_and_jump_insns (index,
2606 convert_modes
2607 (mode, imode,
2608 expand_normal (node->low),
2609 unsignedp),
2610 LT, NULL_RTX, mode, unsignedp,
2611 default_label);
2612 }
2613
2614 /* Value belongs to this node or to the right-hand subtree. */
2615
2616 emit_cmp_and_jump_insns (index,
2617 convert_modes
2618 (mode, imode,
2619 expand_normal (node->high),
2620 unsignedp),
2621 LE, NULL_RTX, mode, unsignedp,
2622 label_rtx (node->code_label));
2623
2624 emit_case_nodes (index, node->right, default_label, index_type);
2625 }
2626
2627 else if (node->right == 0 && node->left != 0)
2628 {
2629 /* Deal with values to the right of this node,
2630 if they are possible. */
2631 if (!node_has_high_bound (node, index_type))
2632 {
2633 emit_cmp_and_jump_insns (index,
2634 convert_modes
2635 (mode, imode,
2636 expand_normal (node->high),
2637 unsignedp),
2638 GT, NULL_RTX, mode, unsignedp,
2639 default_label);
2640 }
2641
2642 /* Value belongs to this node or to the left-hand subtree. */
2643
2644 emit_cmp_and_jump_insns (index,
2645 convert_modes
2646 (mode, imode,
2647 expand_normal (node->low),
2648 unsignedp),
2649 GE, NULL_RTX, mode, unsignedp,
2650 label_rtx (node->code_label));
2651
2652 emit_case_nodes (index, node->left, default_label, index_type);
2653 }
2654
2655 else
2656 {
2657 /* Node has no children so we check low and high bounds to remove
2658 redundant tests. Only one of the bounds can exist,
2659 since otherwise this node is bounded--a case tested already. */
2660 int high_bound = node_has_high_bound (node, index_type);
2661 int low_bound = node_has_low_bound (node, index_type);
2662
2663 if (!high_bound && low_bound)
2664 {
2665 emit_cmp_and_jump_insns (index,
2666 convert_modes
2667 (mode, imode,
2668 expand_normal (node->high),
2669 unsignedp),
2670 GT, NULL_RTX, mode, unsignedp,
2671 default_label);
2672 }
2673
2674 else if (!low_bound && high_bound)
2675 {
2676 emit_cmp_and_jump_insns (index,
2677 convert_modes
2678 (mode, imode,
2679 expand_normal (node->low),
2680 unsignedp),
2681 LT, NULL_RTX, mode, unsignedp,
2682 default_label);
2683 }
2684 else if (!low_bound && !high_bound)
2685 {
2686 /* Widen LOW and HIGH to the same width as INDEX. */
2687 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
2688 tree low = build1 (CONVERT_EXPR, type, node->low);
2689 tree high = build1 (CONVERT_EXPR, type, node->high);
2690 rtx low_rtx, new_index, new_bound;
2691
2692 /* Instead of doing two branches, emit one unsigned branch for
2693 (index-low) > (high-low). */
2694 low_rtx = expand_expr (low, NULL_RTX, mode, EXPAND_NORMAL);
2695 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
2696 NULL_RTX, unsignedp,
2697 OPTAB_WIDEN);
2698 new_bound = expand_expr (fold_build2 (MINUS_EXPR, type,
2699 high, low),
2700 NULL_RTX, mode, EXPAND_NORMAL);
2701
2702 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
2703 mode, 1, default_label);
2704 }
2705
2706 emit_jump (label_rtx (node->code_label));
2707 }
2708 }
2709 }