]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/stmt.c
system.h (REG_CLASS_FROM_CONSTRAINT): Poison.
[thirdparty/gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
22 The functions whose names start with `expand_' are called by the
23 expander to generate RTL instructions for various kinds of constructs. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29
30 #include "rtl.h"
31 #include "hard-reg-set.h"
32 #include "tree.h"
33 #include "varasm.h"
34 #include "stor-layout.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "except.h"
38 #include "function.h"
39 #include "insn-config.h"
40 #include "expr.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "machmode.h"
44 #include "diagnostic-core.h"
45 #include "output.h"
46 #include "langhooks.h"
47 #include "predict.h"
48 #include "optabs.h"
49 #include "target.h"
50 #include "pointer-set.h"
51 #include "basic-block.h"
52 #include "tree-ssa-alias.h"
53 #include "internal-fn.h"
54 #include "gimple-expr.h"
55 #include "is-a.h"
56 #include "gimple.h"
57 #include "regs.h"
58 #include "alloc-pool.h"
59 #include "pretty-print.h"
60 #include "params.h"
61 #include "dumpfile.h"
62 #include "builtins.h"
63
64 \f
65 /* Functions and data structures for expanding case statements. */
66
67 /* Case label structure, used to hold info on labels within case
68 statements. We handle "range" labels; for a single-value label
69 as in C, the high and low limits are the same.
70
71 We start with a vector of case nodes sorted in ascending order, and
72 the default label as the last element in the vector. Before expanding
73 to RTL, we transform this vector into a list linked via the RIGHT
74 fields in the case_node struct. Nodes with higher case values are
75 later in the list.
76
77 Switch statements can be output in three forms. A branch table is
78 used if there are more than a few labels and the labels are dense
79 within the range between the smallest and largest case value. If a
80 branch table is used, no further manipulations are done with the case
81 node chain.
82
83 The alternative to the use of a branch table is to generate a series
84 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
85 and PARENT fields to hold a binary tree. Initially the tree is
86 totally unbalanced, with everything on the right. We balance the tree
87 with nodes on the left having lower case values than the parent
88 and nodes on the right having higher values. We then output the tree
89 in order.
90
91 For very small, suitable switch statements, we can generate a series
92 of simple bit test and branches instead. */
93
94 struct case_node
95 {
96 struct case_node *left; /* Left son in binary tree */
97 struct case_node *right; /* Right son in binary tree; also node chain */
98 struct case_node *parent; /* Parent of node in binary tree */
99 tree low; /* Lowest index value for this label */
100 tree high; /* Highest index value for this label */
101 tree code_label; /* Label to jump to when node matches */
102 int prob; /* Probability of taking this case. */
103 /* Probability of reaching subtree rooted at this node */
104 int subtree_prob;
105 };
106
107 typedef struct case_node case_node;
108 typedef struct case_node *case_node_ptr;
109
110 extern basic_block label_to_block_fn (struct function *, tree);
111 \f
112 static bool check_unique_operand_names (tree, tree, tree);
113 static char *resolve_operand_name_1 (char *, tree, tree, tree);
114 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
115 static int node_has_low_bound (case_node_ptr, tree);
116 static int node_has_high_bound (case_node_ptr, tree);
117 static int node_is_bounded (case_node_ptr, tree);
118 static void emit_case_nodes (rtx, case_node_ptr, rtx, int, tree);
119 \f
120 /* Return the rtx-label that corresponds to a LABEL_DECL,
121 creating it if necessary. */
122
123 rtx
124 label_rtx (tree label)
125 {
126 gcc_assert (TREE_CODE (label) == LABEL_DECL);
127
128 if (!DECL_RTL_SET_P (label))
129 {
130 rtx r = gen_label_rtx ();
131 SET_DECL_RTL (label, r);
132 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
133 LABEL_PRESERVE_P (r) = 1;
134 }
135
136 return DECL_RTL (label);
137 }
138
139 /* As above, but also put it on the forced-reference list of the
140 function that contains it. */
141 rtx
142 force_label_rtx (tree label)
143 {
144 rtx ref = label_rtx (label);
145 tree function = decl_function_context (label);
146
147 gcc_assert (function);
148
149 forced_labels = gen_rtx_EXPR_LIST (VOIDmode, ref, forced_labels);
150 return ref;
151 }
152
153 /* Add an unconditional jump to LABEL as the next sequential instruction. */
154
155 void
156 emit_jump (rtx label)
157 {
158 do_pending_stack_adjust ();
159 emit_jump_insn (gen_jump (label));
160 emit_barrier ();
161 }
162 \f
163 /* Handle goto statements and the labels that they can go to. */
164
165 /* Specify the location in the RTL code of a label LABEL,
166 which is a LABEL_DECL tree node.
167
168 This is used for the kind of label that the user can jump to with a
169 goto statement, and for alternatives of a switch or case statement.
170 RTL labels generated for loops and conditionals don't go through here;
171 they are generated directly at the RTL level, by other functions below.
172
173 Note that this has nothing to do with defining label *names*.
174 Languages vary in how they do that and what that even means. */
175
176 void
177 expand_label (tree label)
178 {
179 rtx label_r = label_rtx (label);
180
181 do_pending_stack_adjust ();
182 emit_label (label_r);
183 if (DECL_NAME (label))
184 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
185
186 if (DECL_NONLOCAL (label))
187 {
188 expand_builtin_setjmp_receiver (NULL);
189 nonlocal_goto_handler_labels
190 = gen_rtx_EXPR_LIST (VOIDmode, label_r,
191 nonlocal_goto_handler_labels);
192 }
193
194 if (FORCED_LABEL (label))
195 forced_labels = gen_rtx_EXPR_LIST (VOIDmode, label_r, forced_labels);
196
197 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
198 maybe_set_first_label_num (label_r);
199 }
200 \f
201 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
202 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
203 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
204 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
205 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
206 constraint allows the use of a register operand. And, *IS_INOUT
207 will be true if the operand is read-write, i.e., if it is used as
208 an input as well as an output. If *CONSTRAINT_P is not in
209 canonical form, it will be made canonical. (Note that `+' will be
210 replaced with `=' as part of this process.)
211
212 Returns TRUE if all went well; FALSE if an error occurred. */
213
214 bool
215 parse_output_constraint (const char **constraint_p, int operand_num,
216 int ninputs, int noutputs, bool *allows_mem,
217 bool *allows_reg, bool *is_inout)
218 {
219 const char *constraint = *constraint_p;
220 const char *p;
221
222 /* Assume the constraint doesn't allow the use of either a register
223 or memory. */
224 *allows_mem = false;
225 *allows_reg = false;
226
227 /* Allow the `=' or `+' to not be at the beginning of the string,
228 since it wasn't explicitly documented that way, and there is a
229 large body of code that puts it last. Swap the character to
230 the front, so as not to uglify any place else. */
231 p = strchr (constraint, '=');
232 if (!p)
233 p = strchr (constraint, '+');
234
235 /* If the string doesn't contain an `=', issue an error
236 message. */
237 if (!p)
238 {
239 error ("output operand constraint lacks %<=%>");
240 return false;
241 }
242
243 /* If the constraint begins with `+', then the operand is both read
244 from and written to. */
245 *is_inout = (*p == '+');
246
247 /* Canonicalize the output constraint so that it begins with `='. */
248 if (p != constraint || *is_inout)
249 {
250 char *buf;
251 size_t c_len = strlen (constraint);
252
253 if (p != constraint)
254 warning (0, "output constraint %qc for operand %d "
255 "is not at the beginning",
256 *p, operand_num);
257
258 /* Make a copy of the constraint. */
259 buf = XALLOCAVEC (char, c_len + 1);
260 strcpy (buf, constraint);
261 /* Swap the first character and the `=' or `+'. */
262 buf[p - constraint] = buf[0];
263 /* Make sure the first character is an `='. (Until we do this,
264 it might be a `+'.) */
265 buf[0] = '=';
266 /* Replace the constraint with the canonicalized string. */
267 *constraint_p = ggc_alloc_string (buf, c_len);
268 constraint = *constraint_p;
269 }
270
271 /* Loop through the constraint string. */
272 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
273 switch (*p)
274 {
275 case '+':
276 case '=':
277 error ("operand constraint contains incorrectly positioned "
278 "%<+%> or %<=%>");
279 return false;
280
281 case '%':
282 if (operand_num + 1 == ninputs + noutputs)
283 {
284 error ("%<%%%> constraint used with last operand");
285 return false;
286 }
287 break;
288
289 case 'V': case TARGET_MEM_CONSTRAINT: case 'o':
290 *allows_mem = true;
291 break;
292
293 case '?': case '!': case '*': case '&': case '#':
294 case 'E': case 'F': case 'G': case 'H':
295 case 's': case 'i': case 'n':
296 case 'I': case 'J': case 'K': case 'L': case 'M':
297 case 'N': case 'O': case 'P': case ',':
298 break;
299
300 case '0': case '1': case '2': case '3': case '4':
301 case '5': case '6': case '7': case '8': case '9':
302 case '[':
303 error ("matching constraint not valid in output operand");
304 return false;
305
306 case '<': case '>':
307 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
308 excepting those that expand_call created. So match memory
309 and hope. */
310 *allows_mem = true;
311 break;
312
313 case 'g': case 'X':
314 *allows_reg = true;
315 *allows_mem = true;
316 break;
317
318 case 'p': case 'r':
319 *allows_reg = true;
320 break;
321
322 default:
323 if (!ISALPHA (*p))
324 break;
325 enum constraint_num cn = lookup_constraint (p);
326 if (reg_class_for_constraint (cn) != NO_REGS
327 || insn_extra_address_constraint (cn))
328 *allows_reg = true;
329 else if (insn_extra_memory_constraint (cn))
330 *allows_mem = true;
331 else
332 {
333 /* Otherwise we can't assume anything about the nature of
334 the constraint except that it isn't purely registers.
335 Treat it like "g" and hope for the best. */
336 *allows_reg = true;
337 *allows_mem = true;
338 }
339 break;
340 }
341
342 return true;
343 }
344
345 /* Similar, but for input constraints. */
346
347 bool
348 parse_input_constraint (const char **constraint_p, int input_num,
349 int ninputs, int noutputs, int ninout,
350 const char * const * constraints,
351 bool *allows_mem, bool *allows_reg)
352 {
353 const char *constraint = *constraint_p;
354 const char *orig_constraint = constraint;
355 size_t c_len = strlen (constraint);
356 size_t j;
357 bool saw_match = false;
358
359 /* Assume the constraint doesn't allow the use of either
360 a register or memory. */
361 *allows_mem = false;
362 *allows_reg = false;
363
364 /* Make sure constraint has neither `=', `+', nor '&'. */
365
366 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
367 switch (constraint[j])
368 {
369 case '+': case '=': case '&':
370 if (constraint == orig_constraint)
371 {
372 error ("input operand constraint contains %qc", constraint[j]);
373 return false;
374 }
375 break;
376
377 case '%':
378 if (constraint == orig_constraint
379 && input_num + 1 == ninputs - ninout)
380 {
381 error ("%<%%%> constraint used with last operand");
382 return false;
383 }
384 break;
385
386 case 'V': case TARGET_MEM_CONSTRAINT: case 'o':
387 *allows_mem = true;
388 break;
389
390 case '<': case '>':
391 case '?': case '!': case '*': case '#':
392 case 'E': case 'F': case 'G': case 'H':
393 case 's': case 'i': case 'n':
394 case 'I': case 'J': case 'K': case 'L': case 'M':
395 case 'N': case 'O': case 'P': case ',':
396 break;
397
398 /* Whether or not a numeric constraint allows a register is
399 decided by the matching constraint, and so there is no need
400 to do anything special with them. We must handle them in
401 the default case, so that we don't unnecessarily force
402 operands to memory. */
403 case '0': case '1': case '2': case '3': case '4':
404 case '5': case '6': case '7': case '8': case '9':
405 {
406 char *end;
407 unsigned long match;
408
409 saw_match = true;
410
411 match = strtoul (constraint + j, &end, 10);
412 if (match >= (unsigned long) noutputs)
413 {
414 error ("matching constraint references invalid operand number");
415 return false;
416 }
417
418 /* Try and find the real constraint for this dup. Only do this
419 if the matching constraint is the only alternative. */
420 if (*end == '\0'
421 && (j == 0 || (j == 1 && constraint[0] == '%')))
422 {
423 constraint = constraints[match];
424 *constraint_p = constraint;
425 c_len = strlen (constraint);
426 j = 0;
427 /* ??? At the end of the loop, we will skip the first part of
428 the matched constraint. This assumes not only that the
429 other constraint is an output constraint, but also that
430 the '=' or '+' come first. */
431 break;
432 }
433 else
434 j = end - constraint;
435 /* Anticipate increment at end of loop. */
436 j--;
437 }
438 /* Fall through. */
439
440 case 'p': case 'r':
441 *allows_reg = true;
442 break;
443
444 case 'g': case 'X':
445 *allows_reg = true;
446 *allows_mem = true;
447 break;
448
449 default:
450 if (! ISALPHA (constraint[j]))
451 {
452 error ("invalid punctuation %qc in constraint", constraint[j]);
453 return false;
454 }
455 enum constraint_num cn = lookup_constraint (constraint + j);
456 if (reg_class_for_constraint (cn) != NO_REGS
457 || insn_extra_address_constraint (cn))
458 *allows_reg = true;
459 else if (insn_extra_memory_constraint (cn))
460 *allows_mem = true;
461 else
462 {
463 /* Otherwise we can't assume anything about the nature of
464 the constraint except that it isn't purely registers.
465 Treat it like "g" and hope for the best. */
466 *allows_reg = true;
467 *allows_mem = true;
468 }
469 break;
470 }
471
472 if (saw_match && !*allows_reg)
473 warning (0, "matching constraint does not allow a register");
474
475 return true;
476 }
477
478 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
479 can be an asm-declared register. Called via walk_tree. */
480
481 static tree
482 decl_overlaps_hard_reg_set_p (tree *declp, int *walk_subtrees ATTRIBUTE_UNUSED,
483 void *data)
484 {
485 tree decl = *declp;
486 const HARD_REG_SET *const regs = (const HARD_REG_SET *) data;
487
488 if (TREE_CODE (decl) == VAR_DECL)
489 {
490 if (DECL_HARD_REGISTER (decl)
491 && REG_P (DECL_RTL (decl))
492 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
493 {
494 rtx reg = DECL_RTL (decl);
495
496 if (overlaps_hard_reg_set_p (*regs, GET_MODE (reg), REGNO (reg)))
497 return decl;
498 }
499 walk_subtrees = 0;
500 }
501 else if (TYPE_P (decl) || TREE_CODE (decl) == PARM_DECL)
502 walk_subtrees = 0;
503 return NULL_TREE;
504 }
505
506 /* If there is an overlap between *REGS and DECL, return the first overlap
507 found. */
508 tree
509 tree_overlaps_hard_reg_set (tree decl, HARD_REG_SET *regs)
510 {
511 return walk_tree (&decl, decl_overlaps_hard_reg_set_p, regs, NULL);
512 }
513
514
515 /* A subroutine of expand_asm_operands. Check that all operand names
516 are unique. Return true if so. We rely on the fact that these names
517 are identifiers, and so have been canonicalized by get_identifier,
518 so all we need are pointer comparisons. */
519
520 static bool
521 check_unique_operand_names (tree outputs, tree inputs, tree labels)
522 {
523 tree i, j, i_name = NULL_TREE;
524
525 for (i = outputs; i ; i = TREE_CHAIN (i))
526 {
527 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
528 if (! i_name)
529 continue;
530
531 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
532 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
533 goto failure;
534 }
535
536 for (i = inputs; i ; i = TREE_CHAIN (i))
537 {
538 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
539 if (! i_name)
540 continue;
541
542 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
543 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
544 goto failure;
545 for (j = outputs; j ; j = TREE_CHAIN (j))
546 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
547 goto failure;
548 }
549
550 for (i = labels; i ; i = TREE_CHAIN (i))
551 {
552 i_name = TREE_PURPOSE (i);
553 if (! i_name)
554 continue;
555
556 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
557 if (simple_cst_equal (i_name, TREE_PURPOSE (j)))
558 goto failure;
559 for (j = inputs; j ; j = TREE_CHAIN (j))
560 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
561 goto failure;
562 }
563
564 return true;
565
566 failure:
567 error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name));
568 return false;
569 }
570
571 /* A subroutine of expand_asm_operands. Resolve the names of the operands
572 in *POUTPUTS and *PINPUTS to numbers, and replace the name expansions in
573 STRING and in the constraints to those numbers. */
574
575 tree
576 resolve_asm_operand_names (tree string, tree outputs, tree inputs, tree labels)
577 {
578 char *buffer;
579 char *p;
580 const char *c;
581 tree t;
582
583 check_unique_operand_names (outputs, inputs, labels);
584
585 /* Substitute [<name>] in input constraint strings. There should be no
586 named operands in output constraints. */
587 for (t = inputs; t ; t = TREE_CHAIN (t))
588 {
589 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
590 if (strchr (c, '[') != NULL)
591 {
592 p = buffer = xstrdup (c);
593 while ((p = strchr (p, '[')) != NULL)
594 p = resolve_operand_name_1 (p, outputs, inputs, NULL);
595 TREE_VALUE (TREE_PURPOSE (t))
596 = build_string (strlen (buffer), buffer);
597 free (buffer);
598 }
599 }
600
601 /* Now check for any needed substitutions in the template. */
602 c = TREE_STRING_POINTER (string);
603 while ((c = strchr (c, '%')) != NULL)
604 {
605 if (c[1] == '[')
606 break;
607 else if (ISALPHA (c[1]) && c[2] == '[')
608 break;
609 else
610 {
611 c += 1 + (c[1] == '%');
612 continue;
613 }
614 }
615
616 if (c)
617 {
618 /* OK, we need to make a copy so we can perform the substitutions.
619 Assume that we will not need extra space--we get to remove '['
620 and ']', which means we cannot have a problem until we have more
621 than 999 operands. */
622 buffer = xstrdup (TREE_STRING_POINTER (string));
623 p = buffer + (c - TREE_STRING_POINTER (string));
624
625 while ((p = strchr (p, '%')) != NULL)
626 {
627 if (p[1] == '[')
628 p += 1;
629 else if (ISALPHA (p[1]) && p[2] == '[')
630 p += 2;
631 else
632 {
633 p += 1 + (p[1] == '%');
634 continue;
635 }
636
637 p = resolve_operand_name_1 (p, outputs, inputs, labels);
638 }
639
640 string = build_string (strlen (buffer), buffer);
641 free (buffer);
642 }
643
644 return string;
645 }
646
647 /* A subroutine of resolve_operand_names. P points to the '[' for a
648 potential named operand of the form [<name>]. In place, replace
649 the name and brackets with a number. Return a pointer to the
650 balance of the string after substitution. */
651
652 static char *
653 resolve_operand_name_1 (char *p, tree outputs, tree inputs, tree labels)
654 {
655 char *q;
656 int op;
657 tree t;
658
659 /* Collect the operand name. */
660 q = strchr (++p, ']');
661 if (!q)
662 {
663 error ("missing close brace for named operand");
664 return strchr (p, '\0');
665 }
666 *q = '\0';
667
668 /* Resolve the name to a number. */
669 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
670 {
671 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
672 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
673 goto found;
674 }
675 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
676 {
677 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
678 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
679 goto found;
680 }
681 for (t = labels; t ; t = TREE_CHAIN (t), op++)
682 {
683 tree name = TREE_PURPOSE (t);
684 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
685 goto found;
686 }
687
688 error ("undefined named operand %qs", identifier_to_locale (p));
689 op = 0;
690
691 found:
692 /* Replace the name with the number. Unfortunately, not all libraries
693 get the return value of sprintf correct, so search for the end of the
694 generated string by hand. */
695 sprintf (--p, "%d", op);
696 p = strchr (p, '\0');
697
698 /* Verify the no extra buffer space assumption. */
699 gcc_assert (p <= q);
700
701 /* Shift the rest of the buffer down to fill the gap. */
702 memmove (p, q + 1, strlen (q + 1) + 1);
703
704 return p;
705 }
706 \f
707
708 /* Generate RTL to return directly from the current function.
709 (That is, we bypass any return value.) */
710
711 void
712 expand_naked_return (void)
713 {
714 rtx end_label;
715
716 clear_pending_stack_adjust ();
717 do_pending_stack_adjust ();
718
719 end_label = naked_return_label;
720 if (end_label == 0)
721 end_label = naked_return_label = gen_label_rtx ();
722
723 emit_jump (end_label);
724 }
725
726 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. PROB
727 is the probability of jumping to LABEL. */
728 static void
729 do_jump_if_equal (enum machine_mode mode, rtx op0, rtx op1, rtx label,
730 int unsignedp, int prob)
731 {
732 gcc_assert (prob <= REG_BR_PROB_BASE);
733 do_compare_rtx_and_jump (op0, op1, EQ, unsignedp, mode,
734 NULL_RTX, NULL_RTX, label, prob);
735 }
736 \f
737 /* Do the insertion of a case label into case_list. The labels are
738 fed to us in descending order from the sorted vector of case labels used
739 in the tree part of the middle end. So the list we construct is
740 sorted in ascending order.
741
742 LABEL is the case label to be inserted. LOW and HIGH are the bounds
743 against which the index is compared to jump to LABEL and PROB is the
744 estimated probability LABEL is reached from the switch statement. */
745
746 static struct case_node *
747 add_case_node (struct case_node *head, tree low, tree high,
748 tree label, int prob, alloc_pool case_node_pool)
749 {
750 struct case_node *r;
751
752 gcc_checking_assert (low);
753 gcc_checking_assert (high && (TREE_TYPE (low) == TREE_TYPE (high)));
754
755 /* Add this label to the chain. */
756 r = (struct case_node *) pool_alloc (case_node_pool);
757 r->low = low;
758 r->high = high;
759 r->code_label = label;
760 r->parent = r->left = NULL;
761 r->prob = prob;
762 r->subtree_prob = prob;
763 r->right = head;
764 return r;
765 }
766 \f
767 /* Dump ROOT, a list or tree of case nodes, to file. */
768
769 static void
770 dump_case_nodes (FILE *f, struct case_node *root,
771 int indent_step, int indent_level)
772 {
773 if (root == 0)
774 return;
775 indent_level++;
776
777 dump_case_nodes (f, root->left, indent_step, indent_level);
778
779 fputs (";; ", f);
780 fprintf (f, "%*s", indent_step * indent_level, "");
781 print_dec (root->low, f, TYPE_SIGN (TREE_TYPE (root->low)));
782 if (!tree_int_cst_equal (root->low, root->high))
783 {
784 fprintf (f, " ... ");
785 print_dec (root->high, f, TYPE_SIGN (TREE_TYPE (root->high)));
786 }
787 fputs ("\n", f);
788
789 dump_case_nodes (f, root->right, indent_step, indent_level);
790 }
791 \f
792 #ifndef HAVE_casesi
793 #define HAVE_casesi 0
794 #endif
795
796 #ifndef HAVE_tablejump
797 #define HAVE_tablejump 0
798 #endif
799
800 /* Return the smallest number of different values for which it is best to use a
801 jump-table instead of a tree of conditional branches. */
802
803 static unsigned int
804 case_values_threshold (void)
805 {
806 unsigned int threshold = PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD);
807
808 if (threshold == 0)
809 threshold = targetm.case_values_threshold ();
810
811 return threshold;
812 }
813
814 /* Return true if a switch should be expanded as a decision tree.
815 RANGE is the difference between highest and lowest case.
816 UNIQ is number of unique case node targets, not counting the default case.
817 COUNT is the number of comparisons needed, not counting the default case. */
818
819 static bool
820 expand_switch_as_decision_tree_p (tree range,
821 unsigned int uniq ATTRIBUTE_UNUSED,
822 unsigned int count)
823 {
824 int max_ratio;
825
826 /* If neither casesi or tablejump is available, or flag_jump_tables
827 over-ruled us, we really have no choice. */
828 if (!HAVE_casesi && !HAVE_tablejump)
829 return true;
830 if (!flag_jump_tables)
831 return true;
832 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
833 if (flag_pic)
834 return true;
835 #endif
836
837 /* If the switch is relatively small such that the cost of one
838 indirect jump on the target are higher than the cost of a
839 decision tree, go with the decision tree.
840
841 If range of values is much bigger than number of values,
842 or if it is too large to represent in a HOST_WIDE_INT,
843 make a sequence of conditional branches instead of a dispatch.
844
845 The definition of "much bigger" depends on whether we are
846 optimizing for size or for speed. If the former, the maximum
847 ratio range/count = 3, because this was found to be the optimal
848 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
849 10 is much older, and was probably selected after an extensive
850 benchmarking investigation on numerous platforms. Or maybe it
851 just made sense to someone at some point in the history of GCC,
852 who knows... */
853 max_ratio = optimize_insn_for_size_p () ? 3 : 10;
854 if (count < case_values_threshold ()
855 || ! tree_fits_uhwi_p (range)
856 || compare_tree_int (range, max_ratio * count) > 0)
857 return true;
858
859 return false;
860 }
861
862 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
863 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
864 DEFAULT_PROB is the estimated probability that it jumps to
865 DEFAULT_LABEL.
866
867 We generate a binary decision tree to select the appropriate target
868 code. This is done as follows:
869
870 If the index is a short or char that we do not have
871 an insn to handle comparisons directly, convert it to
872 a full integer now, rather than letting each comparison
873 generate the conversion.
874
875 Load the index into a register.
876
877 The list of cases is rearranged into a binary tree,
878 nearly optimal assuming equal probability for each case.
879
880 The tree is transformed into RTL, eliminating redundant
881 test conditions at the same time.
882
883 If program flow could reach the end of the decision tree
884 an unconditional jump to the default code is emitted.
885
886 The above process is unaware of the CFG. The caller has to fix up
887 the CFG itself. This is done in cfgexpand.c. */
888
889 static void
890 emit_case_decision_tree (tree index_expr, tree index_type,
891 struct case_node *case_list, rtx default_label,
892 int default_prob)
893 {
894 rtx index = expand_normal (index_expr);
895
896 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
897 && ! have_insn_for (COMPARE, GET_MODE (index)))
898 {
899 int unsignedp = TYPE_UNSIGNED (index_type);
900 enum machine_mode wider_mode;
901 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
902 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
903 if (have_insn_for (COMPARE, wider_mode))
904 {
905 index = convert_to_mode (wider_mode, index, unsignedp);
906 break;
907 }
908 }
909
910 do_pending_stack_adjust ();
911
912 if (MEM_P (index))
913 {
914 index = copy_to_reg (index);
915 if (TREE_CODE (index_expr) == SSA_NAME)
916 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (index_expr), index);
917 }
918
919 balance_case_nodes (&case_list, NULL);
920
921 if (dump_file && (dump_flags & TDF_DETAILS))
922 {
923 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
924 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
925 dump_case_nodes (dump_file, case_list, indent_step, 0);
926 }
927
928 emit_case_nodes (index, case_list, default_label, default_prob, index_type);
929 if (default_label)
930 emit_jump (default_label);
931 }
932
933 /* Return the sum of probabilities of outgoing edges of basic block BB. */
934
935 static int
936 get_outgoing_edge_probs (basic_block bb)
937 {
938 edge e;
939 edge_iterator ei;
940 int prob_sum = 0;
941 if (!bb)
942 return 0;
943 FOR_EACH_EDGE (e, ei, bb->succs)
944 prob_sum += e->probability;
945 return prob_sum;
946 }
947
948 /* Computes the conditional probability of jumping to a target if the branch
949 instruction is executed.
950 TARGET_PROB is the estimated probability of jumping to a target relative
951 to some basic block BB.
952 BASE_PROB is the probability of reaching the branch instruction relative
953 to the same basic block BB. */
954
955 static inline int
956 conditional_probability (int target_prob, int base_prob)
957 {
958 if (base_prob > 0)
959 {
960 gcc_assert (target_prob >= 0);
961 gcc_assert (target_prob <= base_prob);
962 return GCOV_COMPUTE_SCALE (target_prob, base_prob);
963 }
964 return -1;
965 }
966
967 /* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
968 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
969 MINVAL, MAXVAL, and RANGE are the extrema and range of the case
970 labels in CASE_LIST. STMT_BB is the basic block containing the statement.
971
972 First, a jump insn is emitted. First we try "casesi". If that
973 fails, try "tablejump". A target *must* have one of them (or both).
974
975 Then, a table with the target labels is emitted.
976
977 The process is unaware of the CFG. The caller has to fix up
978 the CFG itself. This is done in cfgexpand.c. */
979
980 static void
981 emit_case_dispatch_table (tree index_expr, tree index_type,
982 struct case_node *case_list, rtx default_label,
983 tree minval, tree maxval, tree range,
984 basic_block stmt_bb)
985 {
986 int i, ncases;
987 struct case_node *n;
988 rtx *labelvec;
989 rtx fallback_label = label_rtx (case_list->code_label);
990 rtx table_label = gen_label_rtx ();
991 bool has_gaps = false;
992 edge default_edge = stmt_bb ? EDGE_SUCC (stmt_bb, 0) : NULL;
993 int default_prob = default_edge ? default_edge->probability : 0;
994 int base = get_outgoing_edge_probs (stmt_bb);
995 bool try_with_tablejump = false;
996
997 int new_default_prob = conditional_probability (default_prob,
998 base);
999
1000 if (! try_casesi (index_type, index_expr, minval, range,
1001 table_label, default_label, fallback_label,
1002 new_default_prob))
1003 {
1004 /* Index jumptables from zero for suitable values of minval to avoid
1005 a subtraction. For the rationale see:
1006 "http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
1007 if (optimize_insn_for_speed_p ()
1008 && compare_tree_int (minval, 0) > 0
1009 && compare_tree_int (minval, 3) < 0)
1010 {
1011 minval = build_int_cst (index_type, 0);
1012 range = maxval;
1013 has_gaps = true;
1014 }
1015 try_with_tablejump = true;
1016 }
1017
1018 /* Get table of labels to jump to, in order of case index. */
1019
1020 ncases = tree_to_shwi (range) + 1;
1021 labelvec = XALLOCAVEC (rtx, ncases);
1022 memset (labelvec, 0, ncases * sizeof (rtx));
1023
1024 for (n = case_list; n; n = n->right)
1025 {
1026 /* Compute the low and high bounds relative to the minimum
1027 value since that should fit in a HOST_WIDE_INT while the
1028 actual values may not. */
1029 HOST_WIDE_INT i_low
1030 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1031 n->low, minval));
1032 HOST_WIDE_INT i_high
1033 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1034 n->high, minval));
1035 HOST_WIDE_INT i;
1036
1037 for (i = i_low; i <= i_high; i ++)
1038 labelvec[i]
1039 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
1040 }
1041
1042 /* Fill in the gaps with the default. We may have gaps at
1043 the beginning if we tried to avoid the minval subtraction,
1044 so substitute some label even if the default label was
1045 deemed unreachable. */
1046 if (!default_label)
1047 default_label = fallback_label;
1048 for (i = 0; i < ncases; i++)
1049 if (labelvec[i] == 0)
1050 {
1051 has_gaps = true;
1052 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
1053 }
1054
1055 if (has_gaps)
1056 {
1057 /* There is at least one entry in the jump table that jumps
1058 to default label. The default label can either be reached
1059 through the indirect jump or the direct conditional jump
1060 before that. Split the probability of reaching the
1061 default label among these two jumps. */
1062 new_default_prob = conditional_probability (default_prob/2,
1063 base);
1064 default_prob /= 2;
1065 base -= default_prob;
1066 }
1067 else
1068 {
1069 base -= default_prob;
1070 default_prob = 0;
1071 }
1072
1073 if (default_edge)
1074 default_edge->probability = default_prob;
1075
1076 /* We have altered the probability of the default edge. So the probabilities
1077 of all other edges need to be adjusted so that it sums up to
1078 REG_BR_PROB_BASE. */
1079 if (base)
1080 {
1081 edge e;
1082 edge_iterator ei;
1083 FOR_EACH_EDGE (e, ei, stmt_bb->succs)
1084 e->probability = GCOV_COMPUTE_SCALE (e->probability, base);
1085 }
1086
1087 if (try_with_tablejump)
1088 {
1089 bool ok = try_tablejump (index_type, index_expr, minval, range,
1090 table_label, default_label, new_default_prob);
1091 gcc_assert (ok);
1092 }
1093 /* Output the table. */
1094 emit_label (table_label);
1095
1096 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
1097 emit_jump_table_data (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
1098 gen_rtx_LABEL_REF (Pmode,
1099 table_label),
1100 gen_rtvec_v (ncases, labelvec),
1101 const0_rtx, const0_rtx));
1102 else
1103 emit_jump_table_data (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
1104 gen_rtvec_v (ncases, labelvec)));
1105
1106 /* Record no drop-through after the table. */
1107 emit_barrier ();
1108 }
1109
1110 /* Reset the aux field of all outgoing edges of basic block BB. */
1111
1112 static inline void
1113 reset_out_edges_aux (basic_block bb)
1114 {
1115 edge e;
1116 edge_iterator ei;
1117 FOR_EACH_EDGE (e, ei, bb->succs)
1118 e->aux = (void *)0;
1119 }
1120
1121 /* Compute the number of case labels that correspond to each outgoing edge of
1122 STMT. Record this information in the aux field of the edge. */
1123
1124 static inline void
1125 compute_cases_per_edge (gimple stmt)
1126 {
1127 basic_block bb = gimple_bb (stmt);
1128 reset_out_edges_aux (bb);
1129 int ncases = gimple_switch_num_labels (stmt);
1130 for (int i = ncases - 1; i >= 1; --i)
1131 {
1132 tree elt = gimple_switch_label (stmt, i);
1133 tree lab = CASE_LABEL (elt);
1134 basic_block case_bb = label_to_block_fn (cfun, lab);
1135 edge case_edge = find_edge (bb, case_bb);
1136 case_edge->aux = (void *)((intptr_t)(case_edge->aux) + 1);
1137 }
1138 }
1139
1140 /* Terminate a case (Pascal/Ada) or switch (C) statement
1141 in which ORIG_INDEX is the expression to be tested.
1142 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
1143 type as given in the source before any compiler conversions.
1144 Generate the code to test it and jump to the right place. */
1145
1146 void
1147 expand_case (gimple stmt)
1148 {
1149 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
1150 rtx default_label = NULL_RTX;
1151 unsigned int count, uniq;
1152 int i;
1153 int ncases = gimple_switch_num_labels (stmt);
1154 tree index_expr = gimple_switch_index (stmt);
1155 tree index_type = TREE_TYPE (index_expr);
1156 tree elt;
1157 basic_block bb = gimple_bb (stmt);
1158
1159 /* A list of case labels; it is first built as a list and it may then
1160 be rearranged into a nearly balanced binary tree. */
1161 struct case_node *case_list = 0;
1162
1163 /* A pool for case nodes. */
1164 alloc_pool case_node_pool;
1165
1166 /* An ERROR_MARK occurs for various reasons including invalid data type.
1167 ??? Can this still happen, with GIMPLE and all? */
1168 if (index_type == error_mark_node)
1169 return;
1170
1171 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
1172 expressions being INTEGER_CST. */
1173 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
1174
1175 case_node_pool = create_alloc_pool ("struct case_node pool",
1176 sizeof (struct case_node),
1177 100);
1178
1179 do_pending_stack_adjust ();
1180
1181 /* Find the default case target label. */
1182 default_label = label_rtx (CASE_LABEL (gimple_switch_default_label (stmt)));
1183 edge default_edge = EDGE_SUCC (bb, 0);
1184 int default_prob = default_edge->probability;
1185
1186 /* Get upper and lower bounds of case values. */
1187 elt = gimple_switch_label (stmt, 1);
1188 minval = fold_convert (index_type, CASE_LOW (elt));
1189 elt = gimple_switch_label (stmt, ncases - 1);
1190 if (CASE_HIGH (elt))
1191 maxval = fold_convert (index_type, CASE_HIGH (elt));
1192 else
1193 maxval = fold_convert (index_type, CASE_LOW (elt));
1194
1195 /* Compute span of values. */
1196 range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
1197
1198 /* Listify the labels queue and gather some numbers to decide
1199 how to expand this switch(). */
1200 uniq = 0;
1201 count = 0;
1202 struct pointer_set_t *seen_labels = pointer_set_create ();
1203 compute_cases_per_edge (stmt);
1204
1205 for (i = ncases - 1; i >= 1; --i)
1206 {
1207 elt = gimple_switch_label (stmt, i);
1208 tree low = CASE_LOW (elt);
1209 gcc_assert (low);
1210 tree high = CASE_HIGH (elt);
1211 gcc_assert (! high || tree_int_cst_lt (low, high));
1212 tree lab = CASE_LABEL (elt);
1213
1214 /* Count the elements.
1215 A range counts double, since it requires two compares. */
1216 count++;
1217 if (high)
1218 count++;
1219
1220 /* If we have not seen this label yet, then increase the
1221 number of unique case node targets seen. */
1222 if (!pointer_set_insert (seen_labels, lab))
1223 uniq++;
1224
1225 /* The bounds on the case range, LOW and HIGH, have to be converted
1226 to case's index type TYPE. Note that the original type of the
1227 case index in the source code is usually "lost" during
1228 gimplification due to type promotion, but the case labels retain the
1229 original type. Make sure to drop overflow flags. */
1230 low = fold_convert (index_type, low);
1231 if (TREE_OVERFLOW (low))
1232 low = wide_int_to_tree (index_type, low);
1233
1234 /* The canonical from of a case label in GIMPLE is that a simple case
1235 has an empty CASE_HIGH. For the casesi and tablejump expanders,
1236 the back ends want simple cases to have high == low. */
1237 if (! high)
1238 high = low;
1239 high = fold_convert (index_type, high);
1240 if (TREE_OVERFLOW (high))
1241 high = wide_int_to_tree (index_type, high);
1242
1243 basic_block case_bb = label_to_block_fn (cfun, lab);
1244 edge case_edge = find_edge (bb, case_bb);
1245 case_list = add_case_node (
1246 case_list, low, high, lab,
1247 case_edge->probability / (intptr_t)(case_edge->aux),
1248 case_node_pool);
1249 }
1250 pointer_set_destroy (seen_labels);
1251 reset_out_edges_aux (bb);
1252
1253 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
1254 destination, such as one with a default case only.
1255 It also removes cases that are out of range for the switch
1256 type, so we should never get a zero here. */
1257 gcc_assert (count > 0);
1258
1259 rtx before_case = get_last_insn ();
1260
1261 /* Decide how to expand this switch.
1262 The two options at this point are a dispatch table (casesi or
1263 tablejump) or a decision tree. */
1264
1265 if (expand_switch_as_decision_tree_p (range, uniq, count))
1266 emit_case_decision_tree (index_expr, index_type,
1267 case_list, default_label,
1268 default_prob);
1269 else
1270 emit_case_dispatch_table (index_expr, index_type,
1271 case_list, default_label,
1272 minval, maxval, range, bb);
1273
1274 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1275
1276 free_temp_slots ();
1277 free_alloc_pool (case_node_pool);
1278 }
1279
1280 /* Expand the dispatch to a short decrement chain if there are few cases
1281 to dispatch to. Likewise if neither casesi nor tablejump is available,
1282 or if flag_jump_tables is set. Otherwise, expand as a casesi or a
1283 tablejump. The index mode is always the mode of integer_type_node.
1284 Trap if no case matches the index.
1285
1286 DISPATCH_INDEX is the index expression to switch on. It should be a
1287 memory or register operand.
1288
1289 DISPATCH_TABLE is a set of case labels. The set should be sorted in
1290 ascending order, be contiguous, starting with value 0, and contain only
1291 single-valued case labels. */
1292
1293 void
1294 expand_sjlj_dispatch_table (rtx dispatch_index,
1295 vec<tree> dispatch_table)
1296 {
1297 tree index_type = integer_type_node;
1298 enum machine_mode index_mode = TYPE_MODE (index_type);
1299
1300 int ncases = dispatch_table.length ();
1301
1302 do_pending_stack_adjust ();
1303 rtx before_case = get_last_insn ();
1304
1305 /* Expand as a decrement-chain if there are 5 or fewer dispatch
1306 labels. This covers more than 98% of the cases in libjava,
1307 and seems to be a reasonable compromise between the "old way"
1308 of expanding as a decision tree or dispatch table vs. the "new
1309 way" with decrement chain or dispatch table. */
1310 if (dispatch_table.length () <= 5
1311 || (!HAVE_casesi && !HAVE_tablejump)
1312 || !flag_jump_tables)
1313 {
1314 /* Expand the dispatch as a decrement chain:
1315
1316 "switch(index) {case 0: do_0; case 1: do_1; ...; case N: do_N;}"
1317
1318 ==>
1319
1320 if (index == 0) do_0; else index--;
1321 if (index == 0) do_1; else index--;
1322 ...
1323 if (index == 0) do_N; else index--;
1324
1325 This is more efficient than a dispatch table on most machines.
1326 The last "index--" is redundant but the code is trivially dead
1327 and will be cleaned up by later passes. */
1328 rtx index = copy_to_mode_reg (index_mode, dispatch_index);
1329 rtx zero = CONST0_RTX (index_mode);
1330 for (int i = 0; i < ncases; i++)
1331 {
1332 tree elt = dispatch_table[i];
1333 rtx lab = label_rtx (CASE_LABEL (elt));
1334 do_jump_if_equal (index_mode, index, zero, lab, 0, -1);
1335 force_expand_binop (index_mode, sub_optab,
1336 index, CONST1_RTX (index_mode),
1337 index, 0, OPTAB_DIRECT);
1338 }
1339 }
1340 else
1341 {
1342 /* Similar to expand_case, but much simpler. */
1343 struct case_node *case_list = 0;
1344 alloc_pool case_node_pool = create_alloc_pool ("struct sjlj_case pool",
1345 sizeof (struct case_node),
1346 ncases);
1347 tree index_expr = make_tree (index_type, dispatch_index);
1348 tree minval = build_int_cst (index_type, 0);
1349 tree maxval = CASE_LOW (dispatch_table.last ());
1350 tree range = maxval;
1351 rtx default_label = gen_label_rtx ();
1352
1353 for (int i = ncases - 1; i >= 0; --i)
1354 {
1355 tree elt = dispatch_table[i];
1356 tree low = CASE_LOW (elt);
1357 tree lab = CASE_LABEL (elt);
1358 case_list = add_case_node (case_list, low, low, lab, 0, case_node_pool);
1359 }
1360
1361 emit_case_dispatch_table (index_expr, index_type,
1362 case_list, default_label,
1363 minval, maxval, range,
1364 BLOCK_FOR_INSN (before_case));
1365 emit_label (default_label);
1366 free_alloc_pool (case_node_pool);
1367 }
1368
1369 /* Dispatching something not handled? Trap! */
1370 expand_builtin_trap ();
1371
1372 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1373
1374 free_temp_slots ();
1375 }
1376
1377 \f
1378 /* Take an ordered list of case nodes
1379 and transform them into a near optimal binary tree,
1380 on the assumption that any target code selection value is as
1381 likely as any other.
1382
1383 The transformation is performed by splitting the ordered
1384 list into two equal sections plus a pivot. The parts are
1385 then attached to the pivot as left and right branches. Each
1386 branch is then transformed recursively. */
1387
1388 static void
1389 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
1390 {
1391 case_node_ptr np;
1392
1393 np = *head;
1394 if (np)
1395 {
1396 int i = 0;
1397 int ranges = 0;
1398 case_node_ptr *npp;
1399 case_node_ptr left;
1400
1401 /* Count the number of entries on branch. Also count the ranges. */
1402
1403 while (np)
1404 {
1405 if (!tree_int_cst_equal (np->low, np->high))
1406 ranges++;
1407
1408 i++;
1409 np = np->right;
1410 }
1411
1412 if (i > 2)
1413 {
1414 /* Split this list if it is long enough for that to help. */
1415 npp = head;
1416 left = *npp;
1417
1418 /* If there are just three nodes, split at the middle one. */
1419 if (i == 3)
1420 npp = &(*npp)->right;
1421 else
1422 {
1423 /* Find the place in the list that bisects the list's total cost,
1424 where ranges count as 2.
1425 Here I gets half the total cost. */
1426 i = (i + ranges + 1) / 2;
1427 while (1)
1428 {
1429 /* Skip nodes while their cost does not reach that amount. */
1430 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
1431 i--;
1432 i--;
1433 if (i <= 0)
1434 break;
1435 npp = &(*npp)->right;
1436 }
1437 }
1438 *head = np = *npp;
1439 *npp = 0;
1440 np->parent = parent;
1441 np->left = left;
1442
1443 /* Optimize each of the two split parts. */
1444 balance_case_nodes (&np->left, np);
1445 balance_case_nodes (&np->right, np);
1446 np->subtree_prob = np->prob;
1447 np->subtree_prob += np->left->subtree_prob;
1448 np->subtree_prob += np->right->subtree_prob;
1449 }
1450 else
1451 {
1452 /* Else leave this branch as one level,
1453 but fill in `parent' fields. */
1454 np = *head;
1455 np->parent = parent;
1456 np->subtree_prob = np->prob;
1457 for (; np->right; np = np->right)
1458 {
1459 np->right->parent = np;
1460 (*head)->subtree_prob += np->right->subtree_prob;
1461 }
1462 }
1463 }
1464 }
1465 \f
1466 /* Search the parent sections of the case node tree
1467 to see if a test for the lower bound of NODE would be redundant.
1468 INDEX_TYPE is the type of the index expression.
1469
1470 The instructions to generate the case decision tree are
1471 output in the same order as nodes are processed so it is
1472 known that if a parent node checks the range of the current
1473 node minus one that the current node is bounded at its lower
1474 span. Thus the test would be redundant. */
1475
1476 static int
1477 node_has_low_bound (case_node_ptr node, tree index_type)
1478 {
1479 tree low_minus_one;
1480 case_node_ptr pnode;
1481
1482 /* If the lower bound of this node is the lowest value in the index type,
1483 we need not test it. */
1484
1485 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
1486 return 1;
1487
1488 /* If this node has a left branch, the value at the left must be less
1489 than that at this node, so it cannot be bounded at the bottom and
1490 we need not bother testing any further. */
1491
1492 if (node->left)
1493 return 0;
1494
1495 low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low),
1496 node->low,
1497 build_int_cst (TREE_TYPE (node->low), 1));
1498
1499 /* If the subtraction above overflowed, we can't verify anything.
1500 Otherwise, look for a parent that tests our value - 1. */
1501
1502 if (! tree_int_cst_lt (low_minus_one, node->low))
1503 return 0;
1504
1505 for (pnode = node->parent; pnode; pnode = pnode->parent)
1506 if (tree_int_cst_equal (low_minus_one, pnode->high))
1507 return 1;
1508
1509 return 0;
1510 }
1511
1512 /* Search the parent sections of the case node tree
1513 to see if a test for the upper bound of NODE would be redundant.
1514 INDEX_TYPE is the type of the index expression.
1515
1516 The instructions to generate the case decision tree are
1517 output in the same order as nodes are processed so it is
1518 known that if a parent node checks the range of the current
1519 node plus one that the current node is bounded at its upper
1520 span. Thus the test would be redundant. */
1521
1522 static int
1523 node_has_high_bound (case_node_ptr node, tree index_type)
1524 {
1525 tree high_plus_one;
1526 case_node_ptr pnode;
1527
1528 /* If there is no upper bound, obviously no test is needed. */
1529
1530 if (TYPE_MAX_VALUE (index_type) == NULL)
1531 return 1;
1532
1533 /* If the upper bound of this node is the highest value in the type
1534 of the index expression, we need not test against it. */
1535
1536 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
1537 return 1;
1538
1539 /* If this node has a right branch, the value at the right must be greater
1540 than that at this node, so it cannot be bounded at the top and
1541 we need not bother testing any further. */
1542
1543 if (node->right)
1544 return 0;
1545
1546 high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high),
1547 node->high,
1548 build_int_cst (TREE_TYPE (node->high), 1));
1549
1550 /* If the addition above overflowed, we can't verify anything.
1551 Otherwise, look for a parent that tests our value + 1. */
1552
1553 if (! tree_int_cst_lt (node->high, high_plus_one))
1554 return 0;
1555
1556 for (pnode = node->parent; pnode; pnode = pnode->parent)
1557 if (tree_int_cst_equal (high_plus_one, pnode->low))
1558 return 1;
1559
1560 return 0;
1561 }
1562
1563 /* Search the parent sections of the
1564 case node tree to see if both tests for the upper and lower
1565 bounds of NODE would be redundant. */
1566
1567 static int
1568 node_is_bounded (case_node_ptr node, tree index_type)
1569 {
1570 return (node_has_low_bound (node, index_type)
1571 && node_has_high_bound (node, index_type));
1572 }
1573 \f
1574
1575 /* Emit step-by-step code to select a case for the value of INDEX.
1576 The thus generated decision tree follows the form of the
1577 case-node binary tree NODE, whose nodes represent test conditions.
1578 INDEX_TYPE is the type of the index of the switch.
1579
1580 Care is taken to prune redundant tests from the decision tree
1581 by detecting any boundary conditions already checked by
1582 emitted rtx. (See node_has_high_bound, node_has_low_bound
1583 and node_is_bounded, above.)
1584
1585 Where the test conditions can be shown to be redundant we emit
1586 an unconditional jump to the target code. As a further
1587 optimization, the subordinates of a tree node are examined to
1588 check for bounded nodes. In this case conditional and/or
1589 unconditional jumps as a result of the boundary check for the
1590 current node are arranged to target the subordinates associated
1591 code for out of bound conditions on the current node.
1592
1593 We can assume that when control reaches the code generated here,
1594 the index value has already been compared with the parents
1595 of this node, and determined to be on the same side of each parent
1596 as this node is. Thus, if this node tests for the value 51,
1597 and a parent tested for 52, we don't need to consider
1598 the possibility of a value greater than 51. If another parent
1599 tests for the value 50, then this node need not test anything. */
1600
1601 static void
1602 emit_case_nodes (rtx index, case_node_ptr node, rtx default_label,
1603 int default_prob, tree index_type)
1604 {
1605 /* If INDEX has an unsigned type, we must make unsigned branches. */
1606 int unsignedp = TYPE_UNSIGNED (index_type);
1607 int probability;
1608 int prob = node->prob, subtree_prob = node->subtree_prob;
1609 enum machine_mode mode = GET_MODE (index);
1610 enum machine_mode imode = TYPE_MODE (index_type);
1611
1612 /* Handle indices detected as constant during RTL expansion. */
1613 if (mode == VOIDmode)
1614 mode = imode;
1615
1616 /* See if our parents have already tested everything for us.
1617 If they have, emit an unconditional jump for this node. */
1618 if (node_is_bounded (node, index_type))
1619 emit_jump (label_rtx (node->code_label));
1620
1621 else if (tree_int_cst_equal (node->low, node->high))
1622 {
1623 probability = conditional_probability (prob, subtree_prob + default_prob);
1624 /* Node is single valued. First see if the index expression matches
1625 this node and then check our children, if any. */
1626 do_jump_if_equal (mode, index,
1627 convert_modes (mode, imode,
1628 expand_normal (node->low),
1629 unsignedp),
1630 label_rtx (node->code_label), unsignedp, probability);
1631 /* Since this case is taken at this point, reduce its weight from
1632 subtree_weight. */
1633 subtree_prob -= prob;
1634 if (node->right != 0 && node->left != 0)
1635 {
1636 /* This node has children on both sides.
1637 Dispatch to one side or the other
1638 by comparing the index value with this node's value.
1639 If one subtree is bounded, check that one first,
1640 so we can avoid real branches in the tree. */
1641
1642 if (node_is_bounded (node->right, index_type))
1643 {
1644 probability = conditional_probability (
1645 node->right->prob,
1646 subtree_prob + default_prob);
1647 emit_cmp_and_jump_insns (index,
1648 convert_modes
1649 (mode, imode,
1650 expand_normal (node->high),
1651 unsignedp),
1652 GT, NULL_RTX, mode, unsignedp,
1653 label_rtx (node->right->code_label),
1654 probability);
1655 emit_case_nodes (index, node->left, default_label, default_prob,
1656 index_type);
1657 }
1658
1659 else if (node_is_bounded (node->left, index_type))
1660 {
1661 probability = conditional_probability (
1662 node->left->prob,
1663 subtree_prob + default_prob);
1664 emit_cmp_and_jump_insns (index,
1665 convert_modes
1666 (mode, imode,
1667 expand_normal (node->high),
1668 unsignedp),
1669 LT, NULL_RTX, mode, unsignedp,
1670 label_rtx (node->left->code_label),
1671 probability);
1672 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1673 }
1674
1675 /* If both children are single-valued cases with no
1676 children, finish up all the work. This way, we can save
1677 one ordered comparison. */
1678 else if (tree_int_cst_equal (node->right->low, node->right->high)
1679 && node->right->left == 0
1680 && node->right->right == 0
1681 && tree_int_cst_equal (node->left->low, node->left->high)
1682 && node->left->left == 0
1683 && node->left->right == 0)
1684 {
1685 /* Neither node is bounded. First distinguish the two sides;
1686 then emit the code for one side at a time. */
1687
1688 /* See if the value matches what the right hand side
1689 wants. */
1690 probability = conditional_probability (
1691 node->right->prob,
1692 subtree_prob + default_prob);
1693 do_jump_if_equal (mode, index,
1694 convert_modes (mode, imode,
1695 expand_normal (node->right->low),
1696 unsignedp),
1697 label_rtx (node->right->code_label),
1698 unsignedp, probability);
1699
1700 /* See if the value matches what the left hand side
1701 wants. */
1702 probability = conditional_probability (
1703 node->left->prob,
1704 subtree_prob + default_prob);
1705 do_jump_if_equal (mode, index,
1706 convert_modes (mode, imode,
1707 expand_normal (node->left->low),
1708 unsignedp),
1709 label_rtx (node->left->code_label),
1710 unsignedp, probability);
1711 }
1712
1713 else
1714 {
1715 /* Neither node is bounded. First distinguish the two sides;
1716 then emit the code for one side at a time. */
1717
1718 tree test_label
1719 = build_decl (curr_insn_location (),
1720 LABEL_DECL, NULL_TREE, NULL_TREE);
1721
1722 /* The default label could be reached either through the right
1723 subtree or the left subtree. Divide the probability
1724 equally. */
1725 probability = conditional_probability (
1726 node->right->subtree_prob + default_prob/2,
1727 subtree_prob + default_prob);
1728 /* See if the value is on the right. */
1729 emit_cmp_and_jump_insns (index,
1730 convert_modes
1731 (mode, imode,
1732 expand_normal (node->high),
1733 unsignedp),
1734 GT, NULL_RTX, mode, unsignedp,
1735 label_rtx (test_label),
1736 probability);
1737 default_prob /= 2;
1738
1739 /* Value must be on the left.
1740 Handle the left-hand subtree. */
1741 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1742 /* If left-hand subtree does nothing,
1743 go to default. */
1744 if (default_label)
1745 emit_jump (default_label);
1746
1747 /* Code branches here for the right-hand subtree. */
1748 expand_label (test_label);
1749 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1750 }
1751 }
1752
1753 else if (node->right != 0 && node->left == 0)
1754 {
1755 /* Here we have a right child but no left so we issue a conditional
1756 branch to default and process the right child.
1757
1758 Omit the conditional branch to default if the right child
1759 does not have any children and is single valued; it would
1760 cost too much space to save so little time. */
1761
1762 if (node->right->right || node->right->left
1763 || !tree_int_cst_equal (node->right->low, node->right->high))
1764 {
1765 if (!node_has_low_bound (node, index_type))
1766 {
1767 probability = conditional_probability (
1768 default_prob/2,
1769 subtree_prob + default_prob);
1770 emit_cmp_and_jump_insns (index,
1771 convert_modes
1772 (mode, imode,
1773 expand_normal (node->high),
1774 unsignedp),
1775 LT, NULL_RTX, mode, unsignedp,
1776 default_label,
1777 probability);
1778 default_prob /= 2;
1779 }
1780
1781 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1782 }
1783 else
1784 {
1785 probability = conditional_probability (
1786 node->right->subtree_prob,
1787 subtree_prob + default_prob);
1788 /* We cannot process node->right normally
1789 since we haven't ruled out the numbers less than
1790 this node's value. So handle node->right explicitly. */
1791 do_jump_if_equal (mode, index,
1792 convert_modes
1793 (mode, imode,
1794 expand_normal (node->right->low),
1795 unsignedp),
1796 label_rtx (node->right->code_label), unsignedp, probability);
1797 }
1798 }
1799
1800 else if (node->right == 0 && node->left != 0)
1801 {
1802 /* Just one subtree, on the left. */
1803 if (node->left->left || node->left->right
1804 || !tree_int_cst_equal (node->left->low, node->left->high))
1805 {
1806 if (!node_has_high_bound (node, index_type))
1807 {
1808 probability = conditional_probability (
1809 default_prob/2,
1810 subtree_prob + default_prob);
1811 emit_cmp_and_jump_insns (index,
1812 convert_modes
1813 (mode, imode,
1814 expand_normal (node->high),
1815 unsignedp),
1816 GT, NULL_RTX, mode, unsignedp,
1817 default_label,
1818 probability);
1819 default_prob /= 2;
1820 }
1821
1822 emit_case_nodes (index, node->left, default_label,
1823 default_prob, index_type);
1824 }
1825 else
1826 {
1827 probability = conditional_probability (
1828 node->left->subtree_prob,
1829 subtree_prob + default_prob);
1830 /* We cannot process node->left normally
1831 since we haven't ruled out the numbers less than
1832 this node's value. So handle node->left explicitly. */
1833 do_jump_if_equal (mode, index,
1834 convert_modes
1835 (mode, imode,
1836 expand_normal (node->left->low),
1837 unsignedp),
1838 label_rtx (node->left->code_label), unsignedp, probability);
1839 }
1840 }
1841 }
1842 else
1843 {
1844 /* Node is a range. These cases are very similar to those for a single
1845 value, except that we do not start by testing whether this node
1846 is the one to branch to. */
1847
1848 if (node->right != 0 && node->left != 0)
1849 {
1850 /* Node has subtrees on both sides.
1851 If the right-hand subtree is bounded,
1852 test for it first, since we can go straight there.
1853 Otherwise, we need to make a branch in the control structure,
1854 then handle the two subtrees. */
1855 tree test_label = 0;
1856
1857 if (node_is_bounded (node->right, index_type))
1858 {
1859 /* Right hand node is fully bounded so we can eliminate any
1860 testing and branch directly to the target code. */
1861 probability = conditional_probability (
1862 node->right->subtree_prob,
1863 subtree_prob + default_prob);
1864 emit_cmp_and_jump_insns (index,
1865 convert_modes
1866 (mode, imode,
1867 expand_normal (node->high),
1868 unsignedp),
1869 GT, NULL_RTX, mode, unsignedp,
1870 label_rtx (node->right->code_label),
1871 probability);
1872 }
1873 else
1874 {
1875 /* Right hand node requires testing.
1876 Branch to a label where we will handle it later. */
1877
1878 test_label = build_decl (curr_insn_location (),
1879 LABEL_DECL, NULL_TREE, NULL_TREE);
1880 probability = conditional_probability (
1881 node->right->subtree_prob + default_prob/2,
1882 subtree_prob + default_prob);
1883 emit_cmp_and_jump_insns (index,
1884 convert_modes
1885 (mode, imode,
1886 expand_normal (node->high),
1887 unsignedp),
1888 GT, NULL_RTX, mode, unsignedp,
1889 label_rtx (test_label),
1890 probability);
1891 default_prob /= 2;
1892 }
1893
1894 /* Value belongs to this node or to the left-hand subtree. */
1895
1896 probability = conditional_probability (
1897 prob,
1898 subtree_prob + default_prob);
1899 emit_cmp_and_jump_insns (index,
1900 convert_modes
1901 (mode, imode,
1902 expand_normal (node->low),
1903 unsignedp),
1904 GE, NULL_RTX, mode, unsignedp,
1905 label_rtx (node->code_label),
1906 probability);
1907
1908 /* Handle the left-hand subtree. */
1909 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1910
1911 /* If right node had to be handled later, do that now. */
1912
1913 if (test_label)
1914 {
1915 /* If the left-hand subtree fell through,
1916 don't let it fall into the right-hand subtree. */
1917 if (default_label)
1918 emit_jump (default_label);
1919
1920 expand_label (test_label);
1921 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1922 }
1923 }
1924
1925 else if (node->right != 0 && node->left == 0)
1926 {
1927 /* Deal with values to the left of this node,
1928 if they are possible. */
1929 if (!node_has_low_bound (node, index_type))
1930 {
1931 probability = conditional_probability (
1932 default_prob/2,
1933 subtree_prob + default_prob);
1934 emit_cmp_and_jump_insns (index,
1935 convert_modes
1936 (mode, imode,
1937 expand_normal (node->low),
1938 unsignedp),
1939 LT, NULL_RTX, mode, unsignedp,
1940 default_label,
1941 probability);
1942 default_prob /= 2;
1943 }
1944
1945 /* Value belongs to this node or to the right-hand subtree. */
1946
1947 probability = conditional_probability (
1948 prob,
1949 subtree_prob + default_prob);
1950 emit_cmp_and_jump_insns (index,
1951 convert_modes
1952 (mode, imode,
1953 expand_normal (node->high),
1954 unsignedp),
1955 LE, NULL_RTX, mode, unsignedp,
1956 label_rtx (node->code_label),
1957 probability);
1958
1959 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1960 }
1961
1962 else if (node->right == 0 && node->left != 0)
1963 {
1964 /* Deal with values to the right of this node,
1965 if they are possible. */
1966 if (!node_has_high_bound (node, index_type))
1967 {
1968 probability = conditional_probability (
1969 default_prob/2,
1970 subtree_prob + default_prob);
1971 emit_cmp_and_jump_insns (index,
1972 convert_modes
1973 (mode, imode,
1974 expand_normal (node->high),
1975 unsignedp),
1976 GT, NULL_RTX, mode, unsignedp,
1977 default_label,
1978 probability);
1979 default_prob /= 2;
1980 }
1981
1982 /* Value belongs to this node or to the left-hand subtree. */
1983
1984 probability = conditional_probability (
1985 prob,
1986 subtree_prob + default_prob);
1987 emit_cmp_and_jump_insns (index,
1988 convert_modes
1989 (mode, imode,
1990 expand_normal (node->low),
1991 unsignedp),
1992 GE, NULL_RTX, mode, unsignedp,
1993 label_rtx (node->code_label),
1994 probability);
1995
1996 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1997 }
1998
1999 else
2000 {
2001 /* Node has no children so we check low and high bounds to remove
2002 redundant tests. Only one of the bounds can exist,
2003 since otherwise this node is bounded--a case tested already. */
2004 int high_bound = node_has_high_bound (node, index_type);
2005 int low_bound = node_has_low_bound (node, index_type);
2006
2007 if (!high_bound && low_bound)
2008 {
2009 probability = conditional_probability (
2010 default_prob,
2011 subtree_prob + default_prob);
2012 emit_cmp_and_jump_insns (index,
2013 convert_modes
2014 (mode, imode,
2015 expand_normal (node->high),
2016 unsignedp),
2017 GT, NULL_RTX, mode, unsignedp,
2018 default_label,
2019 probability);
2020 }
2021
2022 else if (!low_bound && high_bound)
2023 {
2024 probability = conditional_probability (
2025 default_prob,
2026 subtree_prob + default_prob);
2027 emit_cmp_and_jump_insns (index,
2028 convert_modes
2029 (mode, imode,
2030 expand_normal (node->low),
2031 unsignedp),
2032 LT, NULL_RTX, mode, unsignedp,
2033 default_label,
2034 probability);
2035 }
2036 else if (!low_bound && !high_bound)
2037 {
2038 /* Widen LOW and HIGH to the same width as INDEX. */
2039 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
2040 tree low = build1 (CONVERT_EXPR, type, node->low);
2041 tree high = build1 (CONVERT_EXPR, type, node->high);
2042 rtx low_rtx, new_index, new_bound;
2043
2044 /* Instead of doing two branches, emit one unsigned branch for
2045 (index-low) > (high-low). */
2046 low_rtx = expand_expr (low, NULL_RTX, mode, EXPAND_NORMAL);
2047 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
2048 NULL_RTX, unsignedp,
2049 OPTAB_WIDEN);
2050 new_bound = expand_expr (fold_build2 (MINUS_EXPR, type,
2051 high, low),
2052 NULL_RTX, mode, EXPAND_NORMAL);
2053
2054 probability = conditional_probability (
2055 default_prob,
2056 subtree_prob + default_prob);
2057 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
2058 mode, 1, default_label, probability);
2059 }
2060
2061 emit_jump (label_rtx (node->code_label));
2062 }
2063 }
2064 }