]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/stmt.c
gcc/java/
[thirdparty/gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
24 The functions whose names start with `expand_' are called by the
25 expander to generate RTL instructions for various kinds of constructs. */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31
32 #include "rtl.h"
33 #include "hard-reg-set.h"
34 #include "tree.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "except.h"
38 #include "function.h"
39 #include "insn-config.h"
40 #include "expr.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "machmode.h"
44 #include "toplev.h"
45 #include "output.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "predict.h"
49 #include "optabs.h"
50 #include "target.h"
51 #include "regs.h"
52 #include "alloc-pool.h"
53 #include "pretty-print.h"
54 \f
55 /* Functions and data structures for expanding case statements. */
56
57 /* Case label structure, used to hold info on labels within case
58 statements. We handle "range" labels; for a single-value label
59 as in C, the high and low limits are the same.
60
61 We start with a vector of case nodes sorted in ascending order, and
62 the default label as the last element in the vector. Before expanding
63 to RTL, we transform this vector into a list linked via the RIGHT
64 fields in the case_node struct. Nodes with higher case values are
65 later in the list.
66
67 Switch statements can be output in three forms. A branch table is
68 used if there are more than a few labels and the labels are dense
69 within the range between the smallest and largest case value. If a
70 branch table is used, no further manipulations are done with the case
71 node chain.
72
73 The alternative to the use of a branch table is to generate a series
74 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
75 and PARENT fields to hold a binary tree. Initially the tree is
76 totally unbalanced, with everything on the right. We balance the tree
77 with nodes on the left having lower case values than the parent
78 and nodes on the right having higher values. We then output the tree
79 in order.
80
81 For very small, suitable switch statements, we can generate a series
82 of simple bit test and branches instead. */
83
84 struct case_node
85 {
86 struct case_node *left; /* Left son in binary tree */
87 struct case_node *right; /* Right son in binary tree; also node chain */
88 struct case_node *parent; /* Parent of node in binary tree */
89 tree low; /* Lowest index value for this label */
90 tree high; /* Highest index value for this label */
91 tree code_label; /* Label to jump to when node matches */
92 };
93
94 typedef struct case_node case_node;
95 typedef struct case_node *case_node_ptr;
96
97 /* These are used by estimate_case_costs and balance_case_nodes. */
98
99 /* This must be a signed type, and non-ANSI compilers lack signed char. */
100 static short cost_table_[129];
101 static int use_cost_table;
102 static int cost_table_initialized;
103
104 /* Special care is needed because we allow -1, but TREE_INT_CST_LOW
105 is unsigned. */
106 #define COST_TABLE(I) cost_table_[(unsigned HOST_WIDE_INT) ((I) + 1)]
107 \f
108 static int n_occurrences (int, const char *);
109 static bool tree_conflicts_with_clobbers_p (tree, HARD_REG_SET *);
110 static void expand_nl_goto_receiver (void);
111 static bool check_operand_nalternatives (tree, tree);
112 static bool check_unique_operand_names (tree, tree);
113 static char *resolve_operand_name_1 (char *, tree, tree);
114 static void expand_null_return_1 (void);
115 static void expand_value_return (rtx);
116 static int estimate_case_costs (case_node_ptr);
117 static bool lshift_cheap_p (void);
118 static int case_bit_test_cmp (const void *, const void *);
119 static void emit_case_bit_tests (tree, tree, tree, tree, case_node_ptr, rtx);
120 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
121 static int node_has_low_bound (case_node_ptr, tree);
122 static int node_has_high_bound (case_node_ptr, tree);
123 static int node_is_bounded (case_node_ptr, tree);
124 static void emit_case_nodes (rtx, case_node_ptr, rtx, tree);
125 static struct case_node *add_case_node (struct case_node *, tree,
126 tree, tree, tree, alloc_pool);
127
128 \f
129 /* Return the rtx-label that corresponds to a LABEL_DECL,
130 creating it if necessary. */
131
132 rtx
133 label_rtx (tree label)
134 {
135 gcc_assert (TREE_CODE (label) == LABEL_DECL);
136
137 if (!DECL_RTL_SET_P (label))
138 {
139 rtx r = gen_label_rtx ();
140 SET_DECL_RTL (label, r);
141 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
142 LABEL_PRESERVE_P (r) = 1;
143 }
144
145 return DECL_RTL (label);
146 }
147
148 /* As above, but also put it on the forced-reference list of the
149 function that contains it. */
150 rtx
151 force_label_rtx (tree label)
152 {
153 rtx ref = label_rtx (label);
154 tree function = decl_function_context (label);
155
156 gcc_assert (function);
157
158 forced_labels = gen_rtx_EXPR_LIST (VOIDmode, ref, forced_labels);
159 return ref;
160 }
161
162 /* Add an unconditional jump to LABEL as the next sequential instruction. */
163
164 void
165 emit_jump (rtx label)
166 {
167 do_pending_stack_adjust ();
168 emit_jump_insn (gen_jump (label));
169 emit_barrier ();
170 }
171
172 /* Emit code to jump to the address
173 specified by the pointer expression EXP. */
174
175 void
176 expand_computed_goto (tree exp)
177 {
178 rtx x = expand_normal (exp);
179
180 x = convert_memory_address (Pmode, x);
181
182 do_pending_stack_adjust ();
183 emit_indirect_jump (x);
184 }
185 \f
186 /* Handle goto statements and the labels that they can go to. */
187
188 /* Specify the location in the RTL code of a label LABEL,
189 which is a LABEL_DECL tree node.
190
191 This is used for the kind of label that the user can jump to with a
192 goto statement, and for alternatives of a switch or case statement.
193 RTL labels generated for loops and conditionals don't go through here;
194 they are generated directly at the RTL level, by other functions below.
195
196 Note that this has nothing to do with defining label *names*.
197 Languages vary in how they do that and what that even means. */
198
199 void
200 expand_label (tree label)
201 {
202 rtx label_r = label_rtx (label);
203
204 do_pending_stack_adjust ();
205 emit_label (label_r);
206 if (DECL_NAME (label))
207 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
208
209 if (DECL_NONLOCAL (label))
210 {
211 expand_nl_goto_receiver ();
212 nonlocal_goto_handler_labels
213 = gen_rtx_EXPR_LIST (VOIDmode, label_r,
214 nonlocal_goto_handler_labels);
215 }
216
217 if (FORCED_LABEL (label))
218 forced_labels = gen_rtx_EXPR_LIST (VOIDmode, label_r, forced_labels);
219
220 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
221 maybe_set_first_label_num (label_r);
222 }
223
224 /* Generate RTL code for a `goto' statement with target label LABEL.
225 LABEL should be a LABEL_DECL tree node that was or will later be
226 defined with `expand_label'. */
227
228 void
229 expand_goto (tree label)
230 {
231 #ifdef ENABLE_CHECKING
232 /* Check for a nonlocal goto to a containing function. Should have
233 gotten translated to __builtin_nonlocal_goto. */
234 tree context = decl_function_context (label);
235 gcc_assert (!context || context == current_function_decl);
236 #endif
237
238 emit_jump (label_rtx (label));
239 }
240 \f
241 /* Return the number of times character C occurs in string S. */
242 static int
243 n_occurrences (int c, const char *s)
244 {
245 int n = 0;
246 while (*s)
247 n += (*s++ == c);
248 return n;
249 }
250 \f
251 /* Generate RTL for an asm statement (explicit assembler code).
252 STRING is a STRING_CST node containing the assembler code text,
253 or an ADDR_EXPR containing a STRING_CST. VOL nonzero means the
254 insn is volatile; don't optimize it. */
255
256 static void
257 expand_asm_loc (tree string, int vol, location_t locus)
258 {
259 rtx body;
260
261 if (TREE_CODE (string) == ADDR_EXPR)
262 string = TREE_OPERAND (string, 0);
263
264 body = gen_rtx_ASM_INPUT_loc (VOIDmode,
265 ggc_strdup (TREE_STRING_POINTER (string)),
266 locus);
267
268 MEM_VOLATILE_P (body) = vol;
269
270 emit_insn (body);
271 }
272
273 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
274 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
275 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
276 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
277 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
278 constraint allows the use of a register operand. And, *IS_INOUT
279 will be true if the operand is read-write, i.e., if it is used as
280 an input as well as an output. If *CONSTRAINT_P is not in
281 canonical form, it will be made canonical. (Note that `+' will be
282 replaced with `=' as part of this process.)
283
284 Returns TRUE if all went well; FALSE if an error occurred. */
285
286 bool
287 parse_output_constraint (const char **constraint_p, int operand_num,
288 int ninputs, int noutputs, bool *allows_mem,
289 bool *allows_reg, bool *is_inout)
290 {
291 const char *constraint = *constraint_p;
292 const char *p;
293
294 /* Assume the constraint doesn't allow the use of either a register
295 or memory. */
296 *allows_mem = false;
297 *allows_reg = false;
298
299 /* Allow the `=' or `+' to not be at the beginning of the string,
300 since it wasn't explicitly documented that way, and there is a
301 large body of code that puts it last. Swap the character to
302 the front, so as not to uglify any place else. */
303 p = strchr (constraint, '=');
304 if (!p)
305 p = strchr (constraint, '+');
306
307 /* If the string doesn't contain an `=', issue an error
308 message. */
309 if (!p)
310 {
311 error ("output operand constraint lacks %<=%>");
312 return false;
313 }
314
315 /* If the constraint begins with `+', then the operand is both read
316 from and written to. */
317 *is_inout = (*p == '+');
318
319 /* Canonicalize the output constraint so that it begins with `='. */
320 if (p != constraint || *is_inout)
321 {
322 char *buf;
323 size_t c_len = strlen (constraint);
324
325 if (p != constraint)
326 warning (0, "output constraint %qc for operand %d "
327 "is not at the beginning",
328 *p, operand_num);
329
330 /* Make a copy of the constraint. */
331 buf = XALLOCAVEC (char, c_len + 1);
332 strcpy (buf, constraint);
333 /* Swap the first character and the `=' or `+'. */
334 buf[p - constraint] = buf[0];
335 /* Make sure the first character is an `='. (Until we do this,
336 it might be a `+'.) */
337 buf[0] = '=';
338 /* Replace the constraint with the canonicalized string. */
339 *constraint_p = ggc_alloc_string (buf, c_len);
340 constraint = *constraint_p;
341 }
342
343 /* Loop through the constraint string. */
344 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
345 switch (*p)
346 {
347 case '+':
348 case '=':
349 error ("operand constraint contains incorrectly positioned "
350 "%<+%> or %<=%>");
351 return false;
352
353 case '%':
354 if (operand_num + 1 == ninputs + noutputs)
355 {
356 error ("%<%%%> constraint used with last operand");
357 return false;
358 }
359 break;
360
361 case 'V': case TARGET_MEM_CONSTRAINT: case 'o':
362 *allows_mem = true;
363 break;
364
365 case '?': case '!': case '*': case '&': case '#':
366 case 'E': case 'F': case 'G': case 'H':
367 case 's': case 'i': case 'n':
368 case 'I': case 'J': case 'K': case 'L': case 'M':
369 case 'N': case 'O': case 'P': case ',':
370 break;
371
372 case '0': case '1': case '2': case '3': case '4':
373 case '5': case '6': case '7': case '8': case '9':
374 case '[':
375 error ("matching constraint not valid in output operand");
376 return false;
377
378 case '<': case '>':
379 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
380 excepting those that expand_call created. So match memory
381 and hope. */
382 *allows_mem = true;
383 break;
384
385 case 'g': case 'X':
386 *allows_reg = true;
387 *allows_mem = true;
388 break;
389
390 case 'p': case 'r':
391 *allows_reg = true;
392 break;
393
394 default:
395 if (!ISALPHA (*p))
396 break;
397 if (REG_CLASS_FROM_CONSTRAINT (*p, p) != NO_REGS)
398 *allows_reg = true;
399 #ifdef EXTRA_CONSTRAINT_STR
400 else if (EXTRA_ADDRESS_CONSTRAINT (*p, p))
401 *allows_reg = true;
402 else if (EXTRA_MEMORY_CONSTRAINT (*p, p))
403 *allows_mem = true;
404 else
405 {
406 /* Otherwise we can't assume anything about the nature of
407 the constraint except that it isn't purely registers.
408 Treat it like "g" and hope for the best. */
409 *allows_reg = true;
410 *allows_mem = true;
411 }
412 #endif
413 break;
414 }
415
416 return true;
417 }
418
419 /* Similar, but for input constraints. */
420
421 bool
422 parse_input_constraint (const char **constraint_p, int input_num,
423 int ninputs, int noutputs, int ninout,
424 const char * const * constraints,
425 bool *allows_mem, bool *allows_reg)
426 {
427 const char *constraint = *constraint_p;
428 const char *orig_constraint = constraint;
429 size_t c_len = strlen (constraint);
430 size_t j;
431 bool saw_match = false;
432
433 /* Assume the constraint doesn't allow the use of either
434 a register or memory. */
435 *allows_mem = false;
436 *allows_reg = false;
437
438 /* Make sure constraint has neither `=', `+', nor '&'. */
439
440 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
441 switch (constraint[j])
442 {
443 case '+': case '=': case '&':
444 if (constraint == orig_constraint)
445 {
446 error ("input operand constraint contains %qc", constraint[j]);
447 return false;
448 }
449 break;
450
451 case '%':
452 if (constraint == orig_constraint
453 && input_num + 1 == ninputs - ninout)
454 {
455 error ("%<%%%> constraint used with last operand");
456 return false;
457 }
458 break;
459
460 case 'V': case TARGET_MEM_CONSTRAINT: case 'o':
461 *allows_mem = true;
462 break;
463
464 case '<': case '>':
465 case '?': case '!': case '*': case '#':
466 case 'E': case 'F': case 'G': case 'H':
467 case 's': case 'i': case 'n':
468 case 'I': case 'J': case 'K': case 'L': case 'M':
469 case 'N': case 'O': case 'P': case ',':
470 break;
471
472 /* Whether or not a numeric constraint allows a register is
473 decided by the matching constraint, and so there is no need
474 to do anything special with them. We must handle them in
475 the default case, so that we don't unnecessarily force
476 operands to memory. */
477 case '0': case '1': case '2': case '3': case '4':
478 case '5': case '6': case '7': case '8': case '9':
479 {
480 char *end;
481 unsigned long match;
482
483 saw_match = true;
484
485 match = strtoul (constraint + j, &end, 10);
486 if (match >= (unsigned long) noutputs)
487 {
488 error ("matching constraint references invalid operand number");
489 return false;
490 }
491
492 /* Try and find the real constraint for this dup. Only do this
493 if the matching constraint is the only alternative. */
494 if (*end == '\0'
495 && (j == 0 || (j == 1 && constraint[0] == '%')))
496 {
497 constraint = constraints[match];
498 *constraint_p = constraint;
499 c_len = strlen (constraint);
500 j = 0;
501 /* ??? At the end of the loop, we will skip the first part of
502 the matched constraint. This assumes not only that the
503 other constraint is an output constraint, but also that
504 the '=' or '+' come first. */
505 break;
506 }
507 else
508 j = end - constraint;
509 /* Anticipate increment at end of loop. */
510 j--;
511 }
512 /* Fall through. */
513
514 case 'p': case 'r':
515 *allows_reg = true;
516 break;
517
518 case 'g': case 'X':
519 *allows_reg = true;
520 *allows_mem = true;
521 break;
522
523 default:
524 if (! ISALPHA (constraint[j]))
525 {
526 error ("invalid punctuation %qc in constraint", constraint[j]);
527 return false;
528 }
529 if (REG_CLASS_FROM_CONSTRAINT (constraint[j], constraint + j)
530 != NO_REGS)
531 *allows_reg = true;
532 #ifdef EXTRA_CONSTRAINT_STR
533 else if (EXTRA_ADDRESS_CONSTRAINT (constraint[j], constraint + j))
534 *allows_reg = true;
535 else if (EXTRA_MEMORY_CONSTRAINT (constraint[j], constraint + j))
536 *allows_mem = true;
537 else
538 {
539 /* Otherwise we can't assume anything about the nature of
540 the constraint except that it isn't purely registers.
541 Treat it like "g" and hope for the best. */
542 *allows_reg = true;
543 *allows_mem = true;
544 }
545 #endif
546 break;
547 }
548
549 if (saw_match && !*allows_reg)
550 warning (0, "matching constraint does not allow a register");
551
552 return true;
553 }
554
555 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
556 can be an asm-declared register. Called via walk_tree. */
557
558 static tree
559 decl_overlaps_hard_reg_set_p (tree *declp, int *walk_subtrees ATTRIBUTE_UNUSED,
560 void *data)
561 {
562 tree decl = *declp;
563 const HARD_REG_SET *const regs = (const HARD_REG_SET *) data;
564
565 if (TREE_CODE (decl) == VAR_DECL)
566 {
567 if (DECL_HARD_REGISTER (decl)
568 && REG_P (DECL_RTL (decl))
569 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
570 {
571 rtx reg = DECL_RTL (decl);
572
573 if (overlaps_hard_reg_set_p (*regs, GET_MODE (reg), REGNO (reg)))
574 return decl;
575 }
576 walk_subtrees = 0;
577 }
578 else if (TYPE_P (decl) || TREE_CODE (decl) == PARM_DECL)
579 walk_subtrees = 0;
580 return NULL_TREE;
581 }
582
583 /* If there is an overlap between *REGS and DECL, return the first overlap
584 found. */
585 tree
586 tree_overlaps_hard_reg_set (tree decl, HARD_REG_SET *regs)
587 {
588 return walk_tree (&decl, decl_overlaps_hard_reg_set_p, regs, NULL);
589 }
590
591 /* Check for overlap between registers marked in CLOBBERED_REGS and
592 anything inappropriate in T. Emit error and return the register
593 variable definition for error, NULL_TREE for ok. */
594
595 static bool
596 tree_conflicts_with_clobbers_p (tree t, HARD_REG_SET *clobbered_regs)
597 {
598 /* Conflicts between asm-declared register variables and the clobber
599 list are not allowed. */
600 tree overlap = tree_overlaps_hard_reg_set (t, clobbered_regs);
601
602 if (overlap)
603 {
604 error ("asm-specifier for variable %qE conflicts with asm clobber list",
605 DECL_NAME (overlap));
606
607 /* Reset registerness to stop multiple errors emitted for a single
608 variable. */
609 DECL_REGISTER (overlap) = 0;
610 return true;
611 }
612
613 return false;
614 }
615
616 /* Generate RTL for an asm statement with arguments.
617 STRING is the instruction template.
618 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
619 Each output or input has an expression in the TREE_VALUE and
620 a tree list in TREE_PURPOSE which in turn contains a constraint
621 name in TREE_VALUE (or NULL_TREE) and a constraint string
622 in TREE_PURPOSE.
623 CLOBBERS is a list of STRING_CST nodes each naming a hard register
624 that is clobbered by this insn.
625
626 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
627 Some elements of OUTPUTS may be replaced with trees representing temporary
628 values. The caller should copy those temporary values to the originally
629 specified lvalues.
630
631 VOL nonzero means the insn is volatile; don't optimize it. */
632
633 static void
634 expand_asm_operands (tree string, tree outputs, tree inputs,
635 tree clobbers, int vol, location_t locus)
636 {
637 rtvec argvec, constraintvec;
638 rtx body;
639 int ninputs = list_length (inputs);
640 int noutputs = list_length (outputs);
641 int ninout;
642 int nclobbers;
643 HARD_REG_SET clobbered_regs;
644 int clobber_conflict_found = 0;
645 tree tail;
646 tree t;
647 int i;
648 /* Vector of RTX's of evaluated output operands. */
649 rtx *output_rtx = XALLOCAVEC (rtx, noutputs);
650 int *inout_opnum = XALLOCAVEC (int, noutputs);
651 rtx *real_output_rtx = XALLOCAVEC (rtx, noutputs);
652 enum machine_mode *inout_mode = XALLOCAVEC (enum machine_mode, noutputs);
653 const char **constraints = XALLOCAVEC (const char *, noutputs + ninputs);
654 int old_generating_concat_p = generating_concat_p;
655
656 /* An ASM with no outputs needs to be treated as volatile, for now. */
657 if (noutputs == 0)
658 vol = 1;
659
660 if (! check_operand_nalternatives (outputs, inputs))
661 return;
662
663 string = resolve_asm_operand_names (string, outputs, inputs);
664
665 /* Collect constraints. */
666 i = 0;
667 for (t = outputs; t ; t = TREE_CHAIN (t), i++)
668 constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
669 for (t = inputs; t ; t = TREE_CHAIN (t), i++)
670 constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
671
672 /* Sometimes we wish to automatically clobber registers across an asm.
673 Case in point is when the i386 backend moved from cc0 to a hard reg --
674 maintaining source-level compatibility means automatically clobbering
675 the flags register. */
676 clobbers = targetm.md_asm_clobbers (outputs, inputs, clobbers);
677
678 /* Count the number of meaningful clobbered registers, ignoring what
679 we would ignore later. */
680 nclobbers = 0;
681 CLEAR_HARD_REG_SET (clobbered_regs);
682 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
683 {
684 const char *regname;
685
686 if (TREE_VALUE (tail) == error_mark_node)
687 return;
688 regname = TREE_STRING_POINTER (TREE_VALUE (tail));
689
690 i = decode_reg_name (regname);
691 if (i >= 0 || i == -4)
692 ++nclobbers;
693 else if (i == -2)
694 error ("unknown register name %qs in %<asm%>", regname);
695
696 /* Mark clobbered registers. */
697 if (i >= 0)
698 {
699 /* Clobbering the PIC register is an error. */
700 if (i == (int) PIC_OFFSET_TABLE_REGNUM)
701 {
702 error ("PIC register %qs clobbered in %<asm%>", regname);
703 return;
704 }
705
706 SET_HARD_REG_BIT (clobbered_regs, i);
707 }
708 }
709
710 /* First pass over inputs and outputs checks validity and sets
711 mark_addressable if needed. */
712
713 ninout = 0;
714 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
715 {
716 tree val = TREE_VALUE (tail);
717 tree type = TREE_TYPE (val);
718 const char *constraint;
719 bool is_inout;
720 bool allows_reg;
721 bool allows_mem;
722
723 /* If there's an erroneous arg, emit no insn. */
724 if (type == error_mark_node)
725 return;
726
727 /* Try to parse the output constraint. If that fails, there's
728 no point in going further. */
729 constraint = constraints[i];
730 if (!parse_output_constraint (&constraint, i, ninputs, noutputs,
731 &allows_mem, &allows_reg, &is_inout))
732 return;
733
734 if (! allows_reg
735 && (allows_mem
736 || is_inout
737 || (DECL_P (val)
738 && REG_P (DECL_RTL (val))
739 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type))))
740 lang_hooks.mark_addressable (val);
741
742 if (is_inout)
743 ninout++;
744 }
745
746 ninputs += ninout;
747 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
748 {
749 error ("more than %d operands in %<asm%>", MAX_RECOG_OPERANDS);
750 return;
751 }
752
753 for (i = 0, tail = inputs; tail; i++, tail = TREE_CHAIN (tail))
754 {
755 bool allows_reg, allows_mem;
756 const char *constraint;
757
758 /* If there's an erroneous arg, emit no insn, because the ASM_INPUT
759 would get VOIDmode and that could cause a crash in reload. */
760 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
761 return;
762
763 constraint = constraints[i + noutputs];
764 if (! parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
765 constraints, &allows_mem, &allows_reg))
766 return;
767
768 if (! allows_reg && allows_mem)
769 lang_hooks.mark_addressable (TREE_VALUE (tail));
770 }
771
772 /* Second pass evaluates arguments. */
773
774 ninout = 0;
775 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
776 {
777 tree val = TREE_VALUE (tail);
778 tree type = TREE_TYPE (val);
779 bool is_inout;
780 bool allows_reg;
781 bool allows_mem;
782 rtx op;
783 bool ok;
784
785 ok = parse_output_constraint (&constraints[i], i, ninputs,
786 noutputs, &allows_mem, &allows_reg,
787 &is_inout);
788 gcc_assert (ok);
789
790 /* If an output operand is not a decl or indirect ref and our constraint
791 allows a register, make a temporary to act as an intermediate.
792 Make the asm insn write into that, then our caller will copy it to
793 the real output operand. Likewise for promoted variables. */
794
795 generating_concat_p = 0;
796
797 real_output_rtx[i] = NULL_RTX;
798 if ((TREE_CODE (val) == INDIRECT_REF
799 && allows_mem)
800 || (DECL_P (val)
801 && (allows_mem || REG_P (DECL_RTL (val)))
802 && ! (REG_P (DECL_RTL (val))
803 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))
804 || ! allows_reg
805 || is_inout)
806 {
807 op = expand_expr (val, NULL_RTX, VOIDmode, EXPAND_WRITE);
808 if (MEM_P (op))
809 op = validize_mem (op);
810
811 if (! allows_reg && !MEM_P (op))
812 error ("output number %d not directly addressable", i);
813 if ((! allows_mem && MEM_P (op))
814 || GET_CODE (op) == CONCAT)
815 {
816 real_output_rtx[i] = op;
817 op = gen_reg_rtx (GET_MODE (op));
818 if (is_inout)
819 emit_move_insn (op, real_output_rtx[i]);
820 }
821 }
822 else
823 {
824 op = assign_temp (type, 0, 0, 1);
825 op = validize_mem (op);
826 TREE_VALUE (tail) = make_tree (type, op);
827 }
828 output_rtx[i] = op;
829
830 generating_concat_p = old_generating_concat_p;
831
832 if (is_inout)
833 {
834 inout_mode[ninout] = TYPE_MODE (type);
835 inout_opnum[ninout++] = i;
836 }
837
838 if (tree_conflicts_with_clobbers_p (val, &clobbered_regs))
839 clobber_conflict_found = 1;
840 }
841
842 /* Make vectors for the expression-rtx, constraint strings,
843 and named operands. */
844
845 argvec = rtvec_alloc (ninputs);
846 constraintvec = rtvec_alloc (ninputs);
847
848 body = gen_rtx_ASM_OPERANDS ((noutputs == 0 ? VOIDmode
849 : GET_MODE (output_rtx[0])),
850 ggc_strdup (TREE_STRING_POINTER (string)),
851 empty_string, 0, argvec, constraintvec,
852 locus);
853
854 MEM_VOLATILE_P (body) = vol;
855
856 /* Eval the inputs and put them into ARGVEC.
857 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
858
859 for (i = 0, tail = inputs; tail; tail = TREE_CHAIN (tail), ++i)
860 {
861 bool allows_reg, allows_mem;
862 const char *constraint;
863 tree val, type;
864 rtx op;
865 bool ok;
866
867 constraint = constraints[i + noutputs];
868 ok = parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
869 constraints, &allows_mem, &allows_reg);
870 gcc_assert (ok);
871
872 generating_concat_p = 0;
873
874 val = TREE_VALUE (tail);
875 type = TREE_TYPE (val);
876 /* EXPAND_INITIALIZER will not generate code for valid initializer
877 constants, but will still generate code for other types of operand.
878 This is the behavior we want for constant constraints. */
879 op = expand_expr (val, NULL_RTX, VOIDmode,
880 allows_reg ? EXPAND_NORMAL
881 : allows_mem ? EXPAND_MEMORY
882 : EXPAND_INITIALIZER);
883
884 /* Never pass a CONCAT to an ASM. */
885 if (GET_CODE (op) == CONCAT)
886 op = force_reg (GET_MODE (op), op);
887 else if (MEM_P (op))
888 op = validize_mem (op);
889
890 if (asm_operand_ok (op, constraint, NULL) <= 0)
891 {
892 if (allows_reg && TYPE_MODE (type) != BLKmode)
893 op = force_reg (TYPE_MODE (type), op);
894 else if (!allows_mem)
895 warning (0, "asm operand %d probably doesn%'t match constraints",
896 i + noutputs);
897 else if (MEM_P (op))
898 {
899 /* We won't recognize either volatile memory or memory
900 with a queued address as available a memory_operand
901 at this point. Ignore it: clearly this *is* a memory. */
902 }
903 else
904 {
905 warning (0, "use of memory input without lvalue in "
906 "asm operand %d is deprecated", i + noutputs);
907
908 if (CONSTANT_P (op))
909 {
910 rtx mem = force_const_mem (TYPE_MODE (type), op);
911 if (mem)
912 op = validize_mem (mem);
913 else
914 op = force_reg (TYPE_MODE (type), op);
915 }
916 if (REG_P (op)
917 || GET_CODE (op) == SUBREG
918 || GET_CODE (op) == CONCAT)
919 {
920 tree qual_type = build_qualified_type (type,
921 (TYPE_QUALS (type)
922 | TYPE_QUAL_CONST));
923 rtx memloc = assign_temp (qual_type, 1, 1, 1);
924 memloc = validize_mem (memloc);
925 emit_move_insn (memloc, op);
926 op = memloc;
927 }
928 }
929 }
930
931 generating_concat_p = old_generating_concat_p;
932 ASM_OPERANDS_INPUT (body, i) = op;
933
934 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, i)
935 = gen_rtx_ASM_INPUT (TYPE_MODE (type),
936 ggc_strdup (constraints[i + noutputs]));
937
938 if (tree_conflicts_with_clobbers_p (val, &clobbered_regs))
939 clobber_conflict_found = 1;
940 }
941
942 /* Protect all the operands from the queue now that they have all been
943 evaluated. */
944
945 generating_concat_p = 0;
946
947 /* For in-out operands, copy output rtx to input rtx. */
948 for (i = 0; i < ninout; i++)
949 {
950 int j = inout_opnum[i];
951 char buffer[16];
952
953 ASM_OPERANDS_INPUT (body, ninputs - ninout + i)
954 = output_rtx[j];
955
956 sprintf (buffer, "%d", j);
957 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, ninputs - ninout + i)
958 = gen_rtx_ASM_INPUT (inout_mode[i], ggc_strdup (buffer));
959 }
960
961 generating_concat_p = old_generating_concat_p;
962
963 /* Now, for each output, construct an rtx
964 (set OUTPUT (asm_operands INSN OUTPUTCONSTRAINT OUTPUTNUMBER
965 ARGVEC CONSTRAINTS OPNAMES))
966 If there is more than one, put them inside a PARALLEL. */
967
968 if (noutputs == 1 && nclobbers == 0)
969 {
970 ASM_OPERANDS_OUTPUT_CONSTRAINT (body) = ggc_strdup (constraints[0]);
971 emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body));
972 }
973
974 else if (noutputs == 0 && nclobbers == 0)
975 {
976 /* No output operands: put in a raw ASM_OPERANDS rtx. */
977 emit_insn (body);
978 }
979
980 else
981 {
982 rtx obody = body;
983 int num = noutputs;
984
985 if (num == 0)
986 num = 1;
987
988 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers));
989
990 /* For each output operand, store a SET. */
991 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
992 {
993 XVECEXP (body, 0, i)
994 = gen_rtx_SET (VOIDmode,
995 output_rtx[i],
996 gen_rtx_ASM_OPERANDS
997 (GET_MODE (output_rtx[i]),
998 ggc_strdup (TREE_STRING_POINTER (string)),
999 ggc_strdup (constraints[i]),
1000 i, argvec, constraintvec, locus));
1001
1002 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1003 }
1004
1005 /* If there are no outputs (but there are some clobbers)
1006 store the bare ASM_OPERANDS into the PARALLEL. */
1007
1008 if (i == 0)
1009 XVECEXP (body, 0, i++) = obody;
1010
1011 /* Store (clobber REG) for each clobbered register specified. */
1012
1013 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1014 {
1015 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1016 int j = decode_reg_name (regname);
1017 rtx clobbered_reg;
1018
1019 if (j < 0)
1020 {
1021 if (j == -3) /* `cc', which is not a register */
1022 continue;
1023
1024 if (j == -4) /* `memory', don't cache memory across asm */
1025 {
1026 XVECEXP (body, 0, i++)
1027 = gen_rtx_CLOBBER (VOIDmode,
1028 gen_rtx_MEM
1029 (BLKmode,
1030 gen_rtx_SCRATCH (VOIDmode)));
1031 continue;
1032 }
1033
1034 /* Ignore unknown register, error already signaled. */
1035 continue;
1036 }
1037
1038 /* Use QImode since that's guaranteed to clobber just one reg. */
1039 clobbered_reg = gen_rtx_REG (QImode, j);
1040
1041 /* Do sanity check for overlap between clobbers and respectively
1042 input and outputs that hasn't been handled. Such overlap
1043 should have been detected and reported above. */
1044 if (!clobber_conflict_found)
1045 {
1046 int opno;
1047
1048 /* We test the old body (obody) contents to avoid tripping
1049 over the under-construction body. */
1050 for (opno = 0; opno < noutputs; opno++)
1051 if (reg_overlap_mentioned_p (clobbered_reg, output_rtx[opno]))
1052 internal_error ("asm clobber conflict with output operand");
1053
1054 for (opno = 0; opno < ninputs - ninout; opno++)
1055 if (reg_overlap_mentioned_p (clobbered_reg,
1056 ASM_OPERANDS_INPUT (obody, opno)))
1057 internal_error ("asm clobber conflict with input operand");
1058 }
1059
1060 XVECEXP (body, 0, i++)
1061 = gen_rtx_CLOBBER (VOIDmode, clobbered_reg);
1062 }
1063
1064 emit_insn (body);
1065 }
1066
1067 /* For any outputs that needed reloading into registers, spill them
1068 back to where they belong. */
1069 for (i = 0; i < noutputs; ++i)
1070 if (real_output_rtx[i])
1071 emit_move_insn (real_output_rtx[i], output_rtx[i]);
1072
1073 crtl->has_asm_statement = 1;
1074 free_temp_slots ();
1075 }
1076
1077 void
1078 expand_asm_expr (tree exp)
1079 {
1080 int noutputs, i;
1081 tree outputs, tail;
1082 tree *o;
1083
1084 if (ASM_INPUT_P (exp))
1085 {
1086 expand_asm_loc (ASM_STRING (exp), ASM_VOLATILE_P (exp), input_location);
1087 return;
1088 }
1089
1090 outputs = ASM_OUTPUTS (exp);
1091 noutputs = list_length (outputs);
1092 /* o[I] is the place that output number I should be written. */
1093 o = (tree *) alloca (noutputs * sizeof (tree));
1094
1095 /* Record the contents of OUTPUTS before it is modified. */
1096 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1097 o[i] = TREE_VALUE (tail);
1098
1099 /* Generate the ASM_OPERANDS insn; store into the TREE_VALUEs of
1100 OUTPUTS some trees for where the values were actually stored. */
1101 expand_asm_operands (ASM_STRING (exp), outputs, ASM_INPUTS (exp),
1102 ASM_CLOBBERS (exp), ASM_VOLATILE_P (exp),
1103 input_location);
1104
1105 /* Copy all the intermediate outputs into the specified outputs. */
1106 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1107 {
1108 if (o[i] != TREE_VALUE (tail))
1109 {
1110 expand_assignment (o[i], TREE_VALUE (tail), false);
1111 free_temp_slots ();
1112
1113 /* Restore the original value so that it's correct the next
1114 time we expand this function. */
1115 TREE_VALUE (tail) = o[i];
1116 }
1117 }
1118 }
1119
1120 /* A subroutine of expand_asm_operands. Check that all operands have
1121 the same number of alternatives. Return true if so. */
1122
1123 static bool
1124 check_operand_nalternatives (tree outputs, tree inputs)
1125 {
1126 if (outputs || inputs)
1127 {
1128 tree tmp = TREE_PURPOSE (outputs ? outputs : inputs);
1129 int nalternatives
1130 = n_occurrences (',', TREE_STRING_POINTER (TREE_VALUE (tmp)));
1131 tree next = inputs;
1132
1133 if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
1134 {
1135 error ("too many alternatives in %<asm%>");
1136 return false;
1137 }
1138
1139 tmp = outputs;
1140 while (tmp)
1141 {
1142 const char *constraint
1143 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tmp)));
1144
1145 if (n_occurrences (',', constraint) != nalternatives)
1146 {
1147 error ("operand constraints for %<asm%> differ "
1148 "in number of alternatives");
1149 return false;
1150 }
1151
1152 if (TREE_CHAIN (tmp))
1153 tmp = TREE_CHAIN (tmp);
1154 else
1155 tmp = next, next = 0;
1156 }
1157 }
1158
1159 return true;
1160 }
1161
1162 /* A subroutine of expand_asm_operands. Check that all operand names
1163 are unique. Return true if so. We rely on the fact that these names
1164 are identifiers, and so have been canonicalized by get_identifier,
1165 so all we need are pointer comparisons. */
1166
1167 static bool
1168 check_unique_operand_names (tree outputs, tree inputs)
1169 {
1170 tree i, j;
1171
1172 for (i = outputs; i ; i = TREE_CHAIN (i))
1173 {
1174 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1175 if (! i_name)
1176 continue;
1177
1178 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1179 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1180 goto failure;
1181 }
1182
1183 for (i = inputs; i ; i = TREE_CHAIN (i))
1184 {
1185 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1186 if (! i_name)
1187 continue;
1188
1189 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1190 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1191 goto failure;
1192 for (j = outputs; j ; j = TREE_CHAIN (j))
1193 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1194 goto failure;
1195 }
1196
1197 return true;
1198
1199 failure:
1200 error ("duplicate asm operand name %qs",
1201 TREE_STRING_POINTER (TREE_PURPOSE (TREE_PURPOSE (i))));
1202 return false;
1203 }
1204
1205 /* A subroutine of expand_asm_operands. Resolve the names of the operands
1206 in *POUTPUTS and *PINPUTS to numbers, and replace the name expansions in
1207 STRING and in the constraints to those numbers. */
1208
1209 tree
1210 resolve_asm_operand_names (tree string, tree outputs, tree inputs)
1211 {
1212 char *buffer;
1213 char *p;
1214 const char *c;
1215 tree t;
1216
1217 check_unique_operand_names (outputs, inputs);
1218
1219 /* Substitute [<name>] in input constraint strings. There should be no
1220 named operands in output constraints. */
1221 for (t = inputs; t ; t = TREE_CHAIN (t))
1222 {
1223 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1224 if (strchr (c, '[') != NULL)
1225 {
1226 p = buffer = xstrdup (c);
1227 while ((p = strchr (p, '[')) != NULL)
1228 p = resolve_operand_name_1 (p, outputs, inputs);
1229 TREE_VALUE (TREE_PURPOSE (t))
1230 = build_string (strlen (buffer), buffer);
1231 free (buffer);
1232 }
1233 }
1234
1235 /* Now check for any needed substitutions in the template. */
1236 c = TREE_STRING_POINTER (string);
1237 while ((c = strchr (c, '%')) != NULL)
1238 {
1239 if (c[1] == '[')
1240 break;
1241 else if (ISALPHA (c[1]) && c[2] == '[')
1242 break;
1243 else
1244 {
1245 c += 1;
1246 continue;
1247 }
1248 }
1249
1250 if (c)
1251 {
1252 /* OK, we need to make a copy so we can perform the substitutions.
1253 Assume that we will not need extra space--we get to remove '['
1254 and ']', which means we cannot have a problem until we have more
1255 than 999 operands. */
1256 buffer = xstrdup (TREE_STRING_POINTER (string));
1257 p = buffer + (c - TREE_STRING_POINTER (string));
1258
1259 while ((p = strchr (p, '%')) != NULL)
1260 {
1261 if (p[1] == '[')
1262 p += 1;
1263 else if (ISALPHA (p[1]) && p[2] == '[')
1264 p += 2;
1265 else
1266 {
1267 p += 1;
1268 continue;
1269 }
1270
1271 p = resolve_operand_name_1 (p, outputs, inputs);
1272 }
1273
1274 string = build_string (strlen (buffer), buffer);
1275 free (buffer);
1276 }
1277
1278 return string;
1279 }
1280
1281 /* A subroutine of resolve_operand_names. P points to the '[' for a
1282 potential named operand of the form [<name>]. In place, replace
1283 the name and brackets with a number. Return a pointer to the
1284 balance of the string after substitution. */
1285
1286 static char *
1287 resolve_operand_name_1 (char *p, tree outputs, tree inputs)
1288 {
1289 char *q;
1290 int op;
1291 tree t;
1292 size_t len;
1293
1294 /* Collect the operand name. */
1295 q = strchr (p, ']');
1296 if (!q)
1297 {
1298 error ("missing close brace for named operand");
1299 return strchr (p, '\0');
1300 }
1301 len = q - p - 1;
1302
1303 /* Resolve the name to a number. */
1304 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
1305 {
1306 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
1307 if (name)
1308 {
1309 const char *c = TREE_STRING_POINTER (name);
1310 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
1311 goto found;
1312 }
1313 }
1314 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
1315 {
1316 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
1317 if (name)
1318 {
1319 const char *c = TREE_STRING_POINTER (name);
1320 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
1321 goto found;
1322 }
1323 }
1324
1325 *q = '\0';
1326 error ("undefined named operand %qs", identifier_to_locale (p + 1));
1327 op = 0;
1328 found:
1329
1330 /* Replace the name with the number. Unfortunately, not all libraries
1331 get the return value of sprintf correct, so search for the end of the
1332 generated string by hand. */
1333 sprintf (p, "%d", op);
1334 p = strchr (p, '\0');
1335
1336 /* Verify the no extra buffer space assumption. */
1337 gcc_assert (p <= q);
1338
1339 /* Shift the rest of the buffer down to fill the gap. */
1340 memmove (p, q + 1, strlen (q + 1) + 1);
1341
1342 return p;
1343 }
1344 \f
1345 /* Generate RTL to evaluate the expression EXP. */
1346
1347 void
1348 expand_expr_stmt (tree exp)
1349 {
1350 rtx value;
1351 tree type;
1352
1353 value = expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
1354 type = TREE_TYPE (exp);
1355
1356 /* If all we do is reference a volatile value in memory,
1357 copy it to a register to be sure it is actually touched. */
1358 if (value && MEM_P (value) && TREE_THIS_VOLATILE (exp))
1359 {
1360 if (TYPE_MODE (type) == VOIDmode)
1361 ;
1362 else if (TYPE_MODE (type) != BLKmode)
1363 value = copy_to_reg (value);
1364 else
1365 {
1366 rtx lab = gen_label_rtx ();
1367
1368 /* Compare the value with itself to reference it. */
1369 emit_cmp_and_jump_insns (value, value, EQ,
1370 expand_normal (TYPE_SIZE (type)),
1371 BLKmode, 0, lab);
1372 emit_label (lab);
1373 }
1374 }
1375
1376 /* Free any temporaries used to evaluate this expression. */
1377 free_temp_slots ();
1378 }
1379
1380 /* Warn if EXP contains any computations whose results are not used.
1381 Return 1 if a warning is printed; 0 otherwise. LOCUS is the
1382 (potential) location of the expression. */
1383
1384 int
1385 warn_if_unused_value (const_tree exp, location_t locus)
1386 {
1387 restart:
1388 if (TREE_USED (exp) || TREE_NO_WARNING (exp))
1389 return 0;
1390
1391 /* Don't warn about void constructs. This includes casting to void,
1392 void function calls, and statement expressions with a final cast
1393 to void. */
1394 if (VOID_TYPE_P (TREE_TYPE (exp)))
1395 return 0;
1396
1397 if (EXPR_HAS_LOCATION (exp))
1398 locus = EXPR_LOCATION (exp);
1399
1400 switch (TREE_CODE (exp))
1401 {
1402 case PREINCREMENT_EXPR:
1403 case POSTINCREMENT_EXPR:
1404 case PREDECREMENT_EXPR:
1405 case POSTDECREMENT_EXPR:
1406 case MODIFY_EXPR:
1407 case INIT_EXPR:
1408 case TARGET_EXPR:
1409 case CALL_EXPR:
1410 case TRY_CATCH_EXPR:
1411 case WITH_CLEANUP_EXPR:
1412 case EXIT_EXPR:
1413 case VA_ARG_EXPR:
1414 return 0;
1415
1416 case BIND_EXPR:
1417 /* For a binding, warn if no side effect within it. */
1418 exp = BIND_EXPR_BODY (exp);
1419 goto restart;
1420
1421 case SAVE_EXPR:
1422 case NON_LVALUE_EXPR:
1423 exp = TREE_OPERAND (exp, 0);
1424 goto restart;
1425
1426 case TRUTH_ORIF_EXPR:
1427 case TRUTH_ANDIF_EXPR:
1428 /* In && or ||, warn if 2nd operand has no side effect. */
1429 exp = TREE_OPERAND (exp, 1);
1430 goto restart;
1431
1432 case COMPOUND_EXPR:
1433 if (warn_if_unused_value (TREE_OPERAND (exp, 0), locus))
1434 return 1;
1435 /* Let people do `(foo (), 0)' without a warning. */
1436 if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
1437 return 0;
1438 exp = TREE_OPERAND (exp, 1);
1439 goto restart;
1440
1441 case COND_EXPR:
1442 /* If this is an expression with side effects, don't warn; this
1443 case commonly appears in macro expansions. */
1444 if (TREE_SIDE_EFFECTS (exp))
1445 return 0;
1446 goto warn;
1447
1448 case INDIRECT_REF:
1449 /* Don't warn about automatic dereferencing of references, since
1450 the user cannot control it. */
1451 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE)
1452 {
1453 exp = TREE_OPERAND (exp, 0);
1454 goto restart;
1455 }
1456 /* Fall through. */
1457
1458 default:
1459 /* Referencing a volatile value is a side effect, so don't warn. */
1460 if ((DECL_P (exp) || REFERENCE_CLASS_P (exp))
1461 && TREE_THIS_VOLATILE (exp))
1462 return 0;
1463
1464 /* If this is an expression which has no operands, there is no value
1465 to be unused. There are no such language-independent codes,
1466 but front ends may define such. */
1467 if (EXPRESSION_CLASS_P (exp) && TREE_OPERAND_LENGTH (exp) == 0)
1468 return 0;
1469
1470 warn:
1471 warning (OPT_Wunused_value, "%Hvalue computed is not used", &locus);
1472 return 1;
1473 }
1474 }
1475
1476 \f
1477 /* Generate RTL to return from the current function, with no value.
1478 (That is, we do not do anything about returning any value.) */
1479
1480 void
1481 expand_null_return (void)
1482 {
1483 /* If this function was declared to return a value, but we
1484 didn't, clobber the return registers so that they are not
1485 propagated live to the rest of the function. */
1486 clobber_return_register ();
1487
1488 expand_null_return_1 ();
1489 }
1490
1491 /* Generate RTL to return directly from the current function.
1492 (That is, we bypass any return value.) */
1493
1494 void
1495 expand_naked_return (void)
1496 {
1497 rtx end_label;
1498
1499 clear_pending_stack_adjust ();
1500 do_pending_stack_adjust ();
1501
1502 end_label = naked_return_label;
1503 if (end_label == 0)
1504 end_label = naked_return_label = gen_label_rtx ();
1505
1506 emit_jump (end_label);
1507 }
1508
1509 /* Generate RTL to return from the current function, with value VAL. */
1510
1511 static void
1512 expand_value_return (rtx val)
1513 {
1514 /* Copy the value to the return location
1515 unless it's already there. */
1516
1517 rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
1518 if (return_reg != val)
1519 {
1520 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
1521 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
1522 {
1523 int unsignedp = TYPE_UNSIGNED (type);
1524 enum machine_mode old_mode
1525 = DECL_MODE (DECL_RESULT (current_function_decl));
1526 enum machine_mode mode
1527 = promote_mode (type, old_mode, &unsignedp, 1);
1528
1529 if (mode != old_mode)
1530 val = convert_modes (mode, old_mode, val, unsignedp);
1531 }
1532 if (GET_CODE (return_reg) == PARALLEL)
1533 emit_group_load (return_reg, val, type, int_size_in_bytes (type));
1534 else
1535 emit_move_insn (return_reg, val);
1536 }
1537
1538 expand_null_return_1 ();
1539 }
1540
1541 /* Output a return with no value. */
1542
1543 static void
1544 expand_null_return_1 (void)
1545 {
1546 clear_pending_stack_adjust ();
1547 do_pending_stack_adjust ();
1548 emit_jump (return_label);
1549 }
1550 \f
1551 /* Generate RTL to evaluate the expression RETVAL and return it
1552 from the current function. */
1553
1554 void
1555 expand_return (tree retval)
1556 {
1557 rtx result_rtl;
1558 rtx val = 0;
1559 tree retval_rhs;
1560
1561 /* If function wants no value, give it none. */
1562 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
1563 {
1564 expand_normal (retval);
1565 expand_null_return ();
1566 return;
1567 }
1568
1569 if (retval == error_mark_node)
1570 {
1571 /* Treat this like a return of no value from a function that
1572 returns a value. */
1573 expand_null_return ();
1574 return;
1575 }
1576 else if ((TREE_CODE (retval) == MODIFY_EXPR
1577 || TREE_CODE (retval) == INIT_EXPR)
1578 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
1579 retval_rhs = TREE_OPERAND (retval, 1);
1580 else
1581 retval_rhs = retval;
1582
1583 result_rtl = DECL_RTL (DECL_RESULT (current_function_decl));
1584
1585 /* If we are returning the RESULT_DECL, then the value has already
1586 been stored into it, so we don't have to do anything special. */
1587 if (TREE_CODE (retval_rhs) == RESULT_DECL)
1588 expand_value_return (result_rtl);
1589
1590 /* If the result is an aggregate that is being returned in one (or more)
1591 registers, load the registers here. The compiler currently can't handle
1592 copying a BLKmode value into registers. We could put this code in a
1593 more general area (for use by everyone instead of just function
1594 call/return), but until this feature is generally usable it is kept here
1595 (and in expand_call). */
1596
1597 else if (retval_rhs != 0
1598 && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode
1599 && REG_P (result_rtl))
1600 {
1601 int i;
1602 unsigned HOST_WIDE_INT bitpos, xbitpos;
1603 unsigned HOST_WIDE_INT padding_correction = 0;
1604 unsigned HOST_WIDE_INT bytes
1605 = int_size_in_bytes (TREE_TYPE (retval_rhs));
1606 int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1607 unsigned int bitsize
1608 = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)), BITS_PER_WORD);
1609 rtx *result_pseudos = XALLOCAVEC (rtx, n_regs);
1610 rtx result_reg, src = NULL_RTX, dst = NULL_RTX;
1611 rtx result_val = expand_normal (retval_rhs);
1612 enum machine_mode tmpmode, result_reg_mode;
1613
1614 if (bytes == 0)
1615 {
1616 expand_null_return ();
1617 return;
1618 }
1619
1620 /* If the structure doesn't take up a whole number of words, see
1621 whether the register value should be padded on the left or on
1622 the right. Set PADDING_CORRECTION to the number of padding
1623 bits needed on the left side.
1624
1625 In most ABIs, the structure will be returned at the least end of
1626 the register, which translates to right padding on little-endian
1627 targets and left padding on big-endian targets. The opposite
1628 holds if the structure is returned at the most significant
1629 end of the register. */
1630 if (bytes % UNITS_PER_WORD != 0
1631 && (targetm.calls.return_in_msb (TREE_TYPE (retval_rhs))
1632 ? !BYTES_BIG_ENDIAN
1633 : BYTES_BIG_ENDIAN))
1634 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
1635 * BITS_PER_UNIT));
1636
1637 /* Copy the structure BITSIZE bits at a time. */
1638 for (bitpos = 0, xbitpos = padding_correction;
1639 bitpos < bytes * BITS_PER_UNIT;
1640 bitpos += bitsize, xbitpos += bitsize)
1641 {
1642 /* We need a new destination pseudo each time xbitpos is
1643 on a word boundary and when xbitpos == padding_correction
1644 (the first time through). */
1645 if (xbitpos % BITS_PER_WORD == 0
1646 || xbitpos == padding_correction)
1647 {
1648 /* Generate an appropriate register. */
1649 dst = gen_reg_rtx (word_mode);
1650 result_pseudos[xbitpos / BITS_PER_WORD] = dst;
1651
1652 /* Clear the destination before we move anything into it. */
1653 emit_move_insn (dst, CONST0_RTX (GET_MODE (dst)));
1654 }
1655
1656 /* We need a new source operand each time bitpos is on a word
1657 boundary. */
1658 if (bitpos % BITS_PER_WORD == 0)
1659 src = operand_subword_force (result_val,
1660 bitpos / BITS_PER_WORD,
1661 BLKmode);
1662
1663 /* Use bitpos for the source extraction (left justified) and
1664 xbitpos for the destination store (right justified). */
1665 store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode,
1666 extract_bit_field (src, bitsize,
1667 bitpos % BITS_PER_WORD, 1,
1668 NULL_RTX, word_mode, word_mode));
1669 }
1670
1671 tmpmode = GET_MODE (result_rtl);
1672 if (tmpmode == BLKmode)
1673 {
1674 /* Find the smallest integer mode large enough to hold the
1675 entire structure and use that mode instead of BLKmode
1676 on the USE insn for the return register. */
1677 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1678 tmpmode != VOIDmode;
1679 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1680 /* Have we found a large enough mode? */
1681 if (GET_MODE_SIZE (tmpmode) >= bytes)
1682 break;
1683
1684 /* A suitable mode should have been found. */
1685 gcc_assert (tmpmode != VOIDmode);
1686
1687 PUT_MODE (result_rtl, tmpmode);
1688 }
1689
1690 if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode))
1691 result_reg_mode = word_mode;
1692 else
1693 result_reg_mode = tmpmode;
1694 result_reg = gen_reg_rtx (result_reg_mode);
1695
1696 for (i = 0; i < n_regs; i++)
1697 emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode),
1698 result_pseudos[i]);
1699
1700 if (tmpmode != result_reg_mode)
1701 result_reg = gen_lowpart (tmpmode, result_reg);
1702
1703 expand_value_return (result_reg);
1704 }
1705 else if (retval_rhs != 0
1706 && !VOID_TYPE_P (TREE_TYPE (retval_rhs))
1707 && (REG_P (result_rtl)
1708 || (GET_CODE (result_rtl) == PARALLEL)))
1709 {
1710 /* Calculate the return value into a temporary (usually a pseudo
1711 reg). */
1712 tree ot = TREE_TYPE (DECL_RESULT (current_function_decl));
1713 tree nt = build_qualified_type (ot, TYPE_QUALS (ot) | TYPE_QUAL_CONST);
1714
1715 val = assign_temp (nt, 0, 0, 1);
1716 val = expand_expr (retval_rhs, val, GET_MODE (val), EXPAND_NORMAL);
1717 val = force_not_mem (val);
1718 /* Return the calculated value. */
1719 expand_value_return (val);
1720 }
1721 else
1722 {
1723 /* No hard reg used; calculate value into hard return reg. */
1724 expand_expr (retval, const0_rtx, VOIDmode, EXPAND_NORMAL);
1725 expand_value_return (result_rtl);
1726 }
1727 }
1728 \f
1729 /* Emit code to restore vital registers at the beginning of a nonlocal goto
1730 handler. */
1731 static void
1732 expand_nl_goto_receiver (void)
1733 {
1734 /* Clobber the FP when we get here, so we have to make sure it's
1735 marked as used by this function. */
1736 emit_use (hard_frame_pointer_rtx);
1737
1738 /* Mark the static chain as clobbered here so life information
1739 doesn't get messed up for it. */
1740 emit_clobber (static_chain_rtx);
1741
1742 #ifdef HAVE_nonlocal_goto
1743 if (! HAVE_nonlocal_goto)
1744 #endif
1745 /* First adjust our frame pointer to its actual value. It was
1746 previously set to the start of the virtual area corresponding to
1747 the stacked variables when we branched here and now needs to be
1748 adjusted to the actual hardware fp value.
1749
1750 Assignments are to virtual registers are converted by
1751 instantiate_virtual_regs into the corresponding assignment
1752 to the underlying register (fp in this case) that makes
1753 the original assignment true.
1754 So the following insn will actually be
1755 decrementing fp by STARTING_FRAME_OFFSET. */
1756 emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
1757
1758 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1759 if (fixed_regs[ARG_POINTER_REGNUM])
1760 {
1761 #ifdef ELIMINABLE_REGS
1762 /* If the argument pointer can be eliminated in favor of the
1763 frame pointer, we don't need to restore it. We assume here
1764 that if such an elimination is present, it can always be used.
1765 This is the case on all known machines; if we don't make this
1766 assumption, we do unnecessary saving on many machines. */
1767 static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
1768 size_t i;
1769
1770 for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
1771 if (elim_regs[i].from == ARG_POINTER_REGNUM
1772 && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
1773 break;
1774
1775 if (i == ARRAY_SIZE (elim_regs))
1776 #endif
1777 {
1778 /* Now restore our arg pointer from the address at which it
1779 was saved in our stack frame. */
1780 emit_move_insn (crtl->args.internal_arg_pointer,
1781 copy_to_reg (get_arg_pointer_save_area ()));
1782 }
1783 }
1784 #endif
1785
1786 #ifdef HAVE_nonlocal_goto_receiver
1787 if (HAVE_nonlocal_goto_receiver)
1788 emit_insn (gen_nonlocal_goto_receiver ());
1789 #endif
1790
1791 /* We must not allow the code we just generated to be reordered by
1792 scheduling. Specifically, the update of the frame pointer must
1793 happen immediately, not later. */
1794 emit_insn (gen_blockage ());
1795 }
1796 \f
1797 /* Generate RTL for the automatic variable declaration DECL.
1798 (Other kinds of declarations are simply ignored if seen here.) */
1799
1800 void
1801 expand_decl (tree decl)
1802 {
1803 tree type;
1804
1805 type = TREE_TYPE (decl);
1806
1807 /* For a CONST_DECL, set mode, alignment, and sizes from those of the
1808 type in case this node is used in a reference. */
1809 if (TREE_CODE (decl) == CONST_DECL)
1810 {
1811 DECL_MODE (decl) = TYPE_MODE (type);
1812 DECL_ALIGN (decl) = TYPE_ALIGN (type);
1813 DECL_SIZE (decl) = TYPE_SIZE (type);
1814 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
1815 return;
1816 }
1817
1818 /* Otherwise, only automatic variables need any expansion done. Static and
1819 external variables, and external functions, will be handled by
1820 `assemble_variable' (called from finish_decl). TYPE_DECL requires
1821 nothing. PARM_DECLs are handled in `assign_parms'. */
1822 if (TREE_CODE (decl) != VAR_DECL)
1823 return;
1824
1825 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
1826 return;
1827
1828 /* Create the RTL representation for the variable. */
1829
1830 if (type == error_mark_node)
1831 SET_DECL_RTL (decl, gen_rtx_MEM (BLKmode, const0_rtx));
1832
1833 else if (DECL_SIZE (decl) == 0)
1834 {
1835 /* Variable with incomplete type. */
1836 rtx x;
1837 if (DECL_INITIAL (decl) == 0)
1838 /* Error message was already done; now avoid a crash. */
1839 x = gen_rtx_MEM (BLKmode, const0_rtx);
1840 else
1841 /* An initializer is going to decide the size of this array.
1842 Until we know the size, represent its address with a reg. */
1843 x = gen_rtx_MEM (BLKmode, gen_reg_rtx (Pmode));
1844
1845 set_mem_attributes (x, decl, 1);
1846 SET_DECL_RTL (decl, x);
1847 }
1848 else if (use_register_for_decl (decl))
1849 {
1850 /* Automatic variable that can go in a register. */
1851 int unsignedp = TYPE_UNSIGNED (type);
1852 enum machine_mode reg_mode
1853 = promote_mode (type, DECL_MODE (decl), &unsignedp, 0);
1854
1855 SET_DECL_RTL (decl, gen_reg_rtx (reg_mode));
1856
1857 /* Note if the object is a user variable. */
1858 if (!DECL_ARTIFICIAL (decl))
1859 mark_user_reg (DECL_RTL (decl));
1860
1861 if (POINTER_TYPE_P (type))
1862 mark_reg_pointer (DECL_RTL (decl),
1863 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))));
1864 }
1865
1866 else
1867 {
1868 rtx oldaddr = 0;
1869 rtx addr;
1870 rtx x;
1871
1872 /* Variable-sized decls are dealt with in the gimplifier. */
1873 gcc_assert (TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST);
1874
1875 /* If we previously made RTL for this decl, it must be an array
1876 whose size was determined by the initializer.
1877 The old address was a register; set that register now
1878 to the proper address. */
1879 if (DECL_RTL_SET_P (decl))
1880 {
1881 gcc_assert (MEM_P (DECL_RTL (decl)));
1882 gcc_assert (REG_P (XEXP (DECL_RTL (decl), 0)));
1883 oldaddr = XEXP (DECL_RTL (decl), 0);
1884 }
1885
1886 /* Set alignment we actually gave this decl. */
1887 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
1888 : GET_MODE_BITSIZE (DECL_MODE (decl)));
1889 DECL_USER_ALIGN (decl) = 0;
1890
1891 x = assign_temp (decl, 1, 1, 1);
1892 set_mem_attributes (x, decl, 1);
1893 SET_DECL_RTL (decl, x);
1894
1895 if (oldaddr)
1896 {
1897 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
1898 if (addr != oldaddr)
1899 emit_move_insn (oldaddr, addr);
1900 }
1901 }
1902 }
1903 \f
1904 /* Emit code to save the current value of stack. */
1905 rtx
1906 expand_stack_save (void)
1907 {
1908 rtx ret = NULL_RTX;
1909
1910 do_pending_stack_adjust ();
1911 emit_stack_save (SAVE_BLOCK, &ret, NULL_RTX);
1912 return ret;
1913 }
1914
1915 /* Emit code to restore the current value of stack. */
1916 void
1917 expand_stack_restore (tree var)
1918 {
1919 rtx sa = expand_normal (var);
1920
1921 sa = convert_memory_address (Pmode, sa);
1922 emit_stack_restore (SAVE_BLOCK, sa, NULL_RTX);
1923 }
1924 \f
1925 /* Do the insertion of a case label into case_list. The labels are
1926 fed to us in descending order from the sorted vector of case labels used
1927 in the tree part of the middle end. So the list we construct is
1928 sorted in ascending order. The bounds on the case range, LOW and HIGH,
1929 are converted to case's index type TYPE. */
1930
1931 static struct case_node *
1932 add_case_node (struct case_node *head, tree type, tree low, tree high,
1933 tree label, alloc_pool case_node_pool)
1934 {
1935 tree min_value, max_value;
1936 struct case_node *r;
1937
1938 gcc_assert (TREE_CODE (low) == INTEGER_CST);
1939 gcc_assert (!high || TREE_CODE (high) == INTEGER_CST);
1940
1941 min_value = TYPE_MIN_VALUE (type);
1942 max_value = TYPE_MAX_VALUE (type);
1943
1944 /* If there's no HIGH value, then this is not a case range; it's
1945 just a simple case label. But that's just a degenerate case
1946 range.
1947 If the bounds are equal, turn this into the one-value case. */
1948 if (!high || tree_int_cst_equal (low, high))
1949 {
1950 /* If the simple case value is unreachable, ignore it. */
1951 if ((TREE_CODE (min_value) == INTEGER_CST
1952 && tree_int_cst_compare (low, min_value) < 0)
1953 || (TREE_CODE (max_value) == INTEGER_CST
1954 && tree_int_cst_compare (low, max_value) > 0))
1955 return head;
1956 low = fold_convert (type, low);
1957 high = low;
1958 }
1959 else
1960 {
1961 /* If the entire case range is unreachable, ignore it. */
1962 if ((TREE_CODE (min_value) == INTEGER_CST
1963 && tree_int_cst_compare (high, min_value) < 0)
1964 || (TREE_CODE (max_value) == INTEGER_CST
1965 && tree_int_cst_compare (low, max_value) > 0))
1966 return head;
1967
1968 /* If the lower bound is less than the index type's minimum
1969 value, truncate the range bounds. */
1970 if (TREE_CODE (min_value) == INTEGER_CST
1971 && tree_int_cst_compare (low, min_value) < 0)
1972 low = min_value;
1973 low = fold_convert (type, low);
1974
1975 /* If the upper bound is greater than the index type's maximum
1976 value, truncate the range bounds. */
1977 if (TREE_CODE (max_value) == INTEGER_CST
1978 && tree_int_cst_compare (high, max_value) > 0)
1979 high = max_value;
1980 high = fold_convert (type, high);
1981 }
1982
1983
1984 /* Add this label to the chain. Make sure to drop overflow flags. */
1985 r = (struct case_node *) pool_alloc (case_node_pool);
1986 r->low = build_int_cst_wide (TREE_TYPE (low), TREE_INT_CST_LOW (low),
1987 TREE_INT_CST_HIGH (low));
1988 r->high = build_int_cst_wide (TREE_TYPE (high), TREE_INT_CST_LOW (high),
1989 TREE_INT_CST_HIGH (high));
1990 r->code_label = label;
1991 r->parent = r->left = NULL;
1992 r->right = head;
1993 return r;
1994 }
1995 \f
1996 /* Maximum number of case bit tests. */
1997 #define MAX_CASE_BIT_TESTS 3
1998
1999 /* By default, enable case bit tests on targets with ashlsi3. */
2000 #ifndef CASE_USE_BIT_TESTS
2001 #define CASE_USE_BIT_TESTS (optab_handler (ashl_optab, word_mode)->insn_code \
2002 != CODE_FOR_nothing)
2003 #endif
2004
2005
2006 /* A case_bit_test represents a set of case nodes that may be
2007 selected from using a bit-wise comparison. HI and LO hold
2008 the integer to be tested against, LABEL contains the label
2009 to jump to upon success and BITS counts the number of case
2010 nodes handled by this test, typically the number of bits
2011 set in HI:LO. */
2012
2013 struct case_bit_test
2014 {
2015 HOST_WIDE_INT hi;
2016 HOST_WIDE_INT lo;
2017 rtx label;
2018 int bits;
2019 };
2020
2021 /* Determine whether "1 << x" is relatively cheap in word_mode. */
2022
2023 static
2024 bool lshift_cheap_p (void)
2025 {
2026 static bool init = false;
2027 static bool cheap = true;
2028
2029 if (!init)
2030 {
2031 rtx reg = gen_rtx_REG (word_mode, 10000);
2032 int cost = rtx_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg), SET,
2033 optimize_insn_for_speed_p ());
2034 cheap = cost < COSTS_N_INSNS (3);
2035 init = true;
2036 }
2037
2038 return cheap;
2039 }
2040
2041 /* Comparison function for qsort to order bit tests by decreasing
2042 number of case nodes, i.e. the node with the most cases gets
2043 tested first. */
2044
2045 static int
2046 case_bit_test_cmp (const void *p1, const void *p2)
2047 {
2048 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
2049 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
2050
2051 if (d2->bits != d1->bits)
2052 return d2->bits - d1->bits;
2053
2054 /* Stabilize the sort. */
2055 return CODE_LABEL_NUMBER (d2->label) - CODE_LABEL_NUMBER (d1->label);
2056 }
2057
2058 /* Expand a switch statement by a short sequence of bit-wise
2059 comparisons. "switch(x)" is effectively converted into
2060 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
2061 integer constants.
2062
2063 INDEX_EXPR is the value being switched on, which is of
2064 type INDEX_TYPE. MINVAL is the lowest case value of in
2065 the case nodes, of INDEX_TYPE type, and RANGE is highest
2066 value minus MINVAL, also of type INDEX_TYPE. NODES is
2067 the set of case nodes, and DEFAULT_LABEL is the label to
2068 branch to should none of the cases match.
2069
2070 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
2071 node targets. */
2072
2073 static void
2074 emit_case_bit_tests (tree index_type, tree index_expr, tree minval,
2075 tree range, case_node_ptr nodes, rtx default_label)
2076 {
2077 struct case_bit_test test[MAX_CASE_BIT_TESTS];
2078 enum machine_mode mode;
2079 rtx expr, index, label;
2080 unsigned int i,j,lo,hi;
2081 struct case_node *n;
2082 unsigned int count;
2083
2084 count = 0;
2085 for (n = nodes; n; n = n->right)
2086 {
2087 label = label_rtx (n->code_label);
2088 for (i = 0; i < count; i++)
2089 if (label == test[i].label)
2090 break;
2091
2092 if (i == count)
2093 {
2094 gcc_assert (count < MAX_CASE_BIT_TESTS);
2095 test[i].hi = 0;
2096 test[i].lo = 0;
2097 test[i].label = label;
2098 test[i].bits = 1;
2099 count++;
2100 }
2101 else
2102 test[i].bits++;
2103
2104 lo = tree_low_cst (fold_build2 (MINUS_EXPR, index_type,
2105 n->low, minval), 1);
2106 hi = tree_low_cst (fold_build2 (MINUS_EXPR, index_type,
2107 n->high, minval), 1);
2108 for (j = lo; j <= hi; j++)
2109 if (j >= HOST_BITS_PER_WIDE_INT)
2110 test[i].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
2111 else
2112 test[i].lo |= (HOST_WIDE_INT) 1 << j;
2113 }
2114
2115 qsort (test, count, sizeof(*test), case_bit_test_cmp);
2116
2117 index_expr = fold_build2 (MINUS_EXPR, index_type,
2118 fold_convert (index_type, index_expr),
2119 fold_convert (index_type, minval));
2120 index = expand_normal (index_expr);
2121 do_pending_stack_adjust ();
2122
2123 mode = TYPE_MODE (index_type);
2124 expr = expand_normal (range);
2125 if (default_label)
2126 emit_cmp_and_jump_insns (index, expr, GTU, NULL_RTX, mode, 1,
2127 default_label);
2128
2129 index = convert_to_mode (word_mode, index, 0);
2130 index = expand_binop (word_mode, ashl_optab, const1_rtx,
2131 index, NULL_RTX, 1, OPTAB_WIDEN);
2132
2133 for (i = 0; i < count; i++)
2134 {
2135 expr = immed_double_const (test[i].lo, test[i].hi, word_mode);
2136 expr = expand_binop (word_mode, and_optab, index, expr,
2137 NULL_RTX, 1, OPTAB_WIDEN);
2138 emit_cmp_and_jump_insns (expr, const0_rtx, NE, NULL_RTX,
2139 word_mode, 1, test[i].label);
2140 }
2141
2142 if (default_label)
2143 emit_jump (default_label);
2144 }
2145
2146 #ifndef HAVE_casesi
2147 #define HAVE_casesi 0
2148 #endif
2149
2150 #ifndef HAVE_tablejump
2151 #define HAVE_tablejump 0
2152 #endif
2153
2154 /* Terminate a case (Pascal/Ada) or switch (C) statement
2155 in which ORIG_INDEX is the expression to be tested.
2156 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
2157 type as given in the source before any compiler conversions.
2158 Generate the code to test it and jump to the right place. */
2159
2160 void
2161 expand_case (tree exp)
2162 {
2163 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
2164 rtx default_label = 0;
2165 struct case_node *n;
2166 unsigned int count, uniq;
2167 rtx index;
2168 rtx table_label;
2169 int ncases;
2170 rtx *labelvec;
2171 int i;
2172 rtx before_case, end, lab;
2173
2174 tree vec = SWITCH_LABELS (exp);
2175 tree orig_type = TREE_TYPE (exp);
2176 tree index_expr = SWITCH_COND (exp);
2177 tree index_type = TREE_TYPE (index_expr);
2178 int unsignedp = TYPE_UNSIGNED (index_type);
2179
2180 /* The insn after which the case dispatch should finally
2181 be emitted. Zero for a dummy. */
2182 rtx start;
2183
2184 /* A list of case labels; it is first built as a list and it may then
2185 be rearranged into a nearly balanced binary tree. */
2186 struct case_node *case_list = 0;
2187
2188 /* Label to jump to if no case matches. */
2189 tree default_label_decl = NULL_TREE;
2190
2191 alloc_pool case_node_pool = create_alloc_pool ("struct case_node pool",
2192 sizeof (struct case_node),
2193 100);
2194
2195 /* The switch body is lowered in gimplify.c, we should never have
2196 switches with a non-NULL SWITCH_BODY here. */
2197 gcc_assert (!SWITCH_BODY (exp));
2198 gcc_assert (SWITCH_LABELS (exp));
2199
2200 do_pending_stack_adjust ();
2201
2202 /* An ERROR_MARK occurs for various reasons including invalid data type. */
2203 if (index_type != error_mark_node)
2204 {
2205 tree elt;
2206 bitmap label_bitmap;
2207 int vl = TREE_VEC_LENGTH (vec);
2208
2209 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
2210 expressions being INTEGER_CST. */
2211 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
2212
2213 /* The default case, if ever taken, is at the end of TREE_VEC. */
2214 elt = TREE_VEC_ELT (vec, vl - 1);
2215 if (!CASE_LOW (elt) && !CASE_HIGH (elt))
2216 {
2217 default_label_decl = CASE_LABEL (elt);
2218 --vl;
2219 }
2220
2221 for (i = vl - 1; i >= 0; --i)
2222 {
2223 tree low, high;
2224 elt = TREE_VEC_ELT (vec, i);
2225
2226 low = CASE_LOW (elt);
2227 gcc_assert (low);
2228 high = CASE_HIGH (elt);
2229
2230 /* Discard empty ranges. */
2231 if (high && tree_int_cst_lt (high, low))
2232 continue;
2233
2234 case_list = add_case_node (case_list, index_type, low, high,
2235 CASE_LABEL (elt), case_node_pool);
2236 }
2237
2238
2239 before_case = start = get_last_insn ();
2240 if (default_label_decl)
2241 default_label = label_rtx (default_label_decl);
2242
2243 /* Get upper and lower bounds of case values. */
2244
2245 uniq = 0;
2246 count = 0;
2247 label_bitmap = BITMAP_ALLOC (NULL);
2248 for (n = case_list; n; n = n->right)
2249 {
2250 /* Count the elements and track the largest and smallest
2251 of them (treating them as signed even if they are not). */
2252 if (count++ == 0)
2253 {
2254 minval = n->low;
2255 maxval = n->high;
2256 }
2257 else
2258 {
2259 if (tree_int_cst_lt (n->low, minval))
2260 minval = n->low;
2261 if (tree_int_cst_lt (maxval, n->high))
2262 maxval = n->high;
2263 }
2264 /* A range counts double, since it requires two compares. */
2265 if (! tree_int_cst_equal (n->low, n->high))
2266 count++;
2267
2268 /* If we have not seen this label yet, then increase the
2269 number of unique case node targets seen. */
2270 lab = label_rtx (n->code_label);
2271 if (!bitmap_bit_p (label_bitmap, CODE_LABEL_NUMBER (lab)))
2272 {
2273 bitmap_set_bit (label_bitmap, CODE_LABEL_NUMBER (lab));
2274 uniq++;
2275 }
2276 }
2277
2278 BITMAP_FREE (label_bitmap);
2279
2280 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
2281 destination, such as one with a default case only. However,
2282 it doesn't remove cases that are out of range for the switch
2283 type, so we may still get a zero here. */
2284 if (count == 0)
2285 {
2286 if (default_label)
2287 emit_jump (default_label);
2288 free_alloc_pool (case_node_pool);
2289 return;
2290 }
2291
2292 /* Compute span of values. */
2293 range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
2294
2295 /* Try implementing this switch statement by a short sequence of
2296 bit-wise comparisons. However, we let the binary-tree case
2297 below handle constant index expressions. */
2298 if (CASE_USE_BIT_TESTS
2299 && ! TREE_CONSTANT (index_expr)
2300 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
2301 && compare_tree_int (range, 0) > 0
2302 && lshift_cheap_p ()
2303 && ((uniq == 1 && count >= 3)
2304 || (uniq == 2 && count >= 5)
2305 || (uniq == 3 && count >= 6)))
2306 {
2307 /* Optimize the case where all the case values fit in a
2308 word without having to subtract MINVAL. In this case,
2309 we can optimize away the subtraction. */
2310 if (compare_tree_int (minval, 0) > 0
2311 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
2312 {
2313 minval = build_int_cst (index_type, 0);
2314 range = maxval;
2315 }
2316 emit_case_bit_tests (index_type, index_expr, minval, range,
2317 case_list, default_label);
2318 }
2319
2320 /* If range of values is much bigger than number of values,
2321 make a sequence of conditional branches instead of a dispatch.
2322 If the switch-index is a constant, do it this way
2323 because we can optimize it. */
2324
2325 else if (count < targetm.case_values_threshold ()
2326 || compare_tree_int (range,
2327 (optimize_insn_for_size_p () ? 3 : 10) * count) > 0
2328 /* RANGE may be signed, and really large ranges will show up
2329 as negative numbers. */
2330 || compare_tree_int (range, 0) < 0
2331 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
2332 || flag_pic
2333 #endif
2334 || !flag_jump_tables
2335 || TREE_CONSTANT (index_expr)
2336 /* If neither casesi or tablejump is available, we can
2337 only go this way. */
2338 || (!HAVE_casesi && !HAVE_tablejump))
2339 {
2340 index = expand_normal (index_expr);
2341
2342 /* If the index is a short or char that we do not have
2343 an insn to handle comparisons directly, convert it to
2344 a full integer now, rather than letting each comparison
2345 generate the conversion. */
2346
2347 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
2348 && ! have_insn_for (COMPARE, GET_MODE (index)))
2349 {
2350 enum machine_mode wider_mode;
2351 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
2352 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2353 if (have_insn_for (COMPARE, wider_mode))
2354 {
2355 index = convert_to_mode (wider_mode, index, unsignedp);
2356 break;
2357 }
2358 }
2359
2360 do_pending_stack_adjust ();
2361
2362 if (MEM_P (index))
2363 index = copy_to_reg (index);
2364
2365 /* We generate a binary decision tree to select the
2366 appropriate target code. This is done as follows:
2367
2368 The list of cases is rearranged into a binary tree,
2369 nearly optimal assuming equal probability for each case.
2370
2371 The tree is transformed into RTL, eliminating
2372 redundant test conditions at the same time.
2373
2374 If program flow could reach the end of the
2375 decision tree an unconditional jump to the
2376 default code is emitted. */
2377
2378 use_cost_table
2379 = (TREE_CODE (orig_type) != ENUMERAL_TYPE
2380 && estimate_case_costs (case_list));
2381 balance_case_nodes (&case_list, NULL);
2382 emit_case_nodes (index, case_list, default_label, index_type);
2383 if (default_label)
2384 emit_jump (default_label);
2385 }
2386 else
2387 {
2388 rtx fallback_label = label_rtx (case_list->code_label);
2389 table_label = gen_label_rtx ();
2390 if (! try_casesi (index_type, index_expr, minval, range,
2391 table_label, default_label, fallback_label))
2392 {
2393 bool ok;
2394
2395 /* Index jumptables from zero for suitable values of
2396 minval to avoid a subtraction. */
2397 if (optimize_insn_for_speed_p ()
2398 && compare_tree_int (minval, 0) > 0
2399 && compare_tree_int (minval, 3) < 0)
2400 {
2401 minval = build_int_cst (index_type, 0);
2402 range = maxval;
2403 }
2404
2405 ok = try_tablejump (index_type, index_expr, minval, range,
2406 table_label, default_label);
2407 gcc_assert (ok);
2408 }
2409
2410 /* Get table of labels to jump to, in order of case index. */
2411
2412 ncases = tree_low_cst (range, 0) + 1;
2413 labelvec = XALLOCAVEC (rtx, ncases);
2414 memset (labelvec, 0, ncases * sizeof (rtx));
2415
2416 for (n = case_list; n; n = n->right)
2417 {
2418 /* Compute the low and high bounds relative to the minimum
2419 value since that should fit in a HOST_WIDE_INT while the
2420 actual values may not. */
2421 HOST_WIDE_INT i_low
2422 = tree_low_cst (fold_build2 (MINUS_EXPR, index_type,
2423 n->low, minval), 1);
2424 HOST_WIDE_INT i_high
2425 = tree_low_cst (fold_build2 (MINUS_EXPR, index_type,
2426 n->high, minval), 1);
2427 HOST_WIDE_INT i;
2428
2429 for (i = i_low; i <= i_high; i ++)
2430 labelvec[i]
2431 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
2432 }
2433
2434 /* Fill in the gaps with the default. We may have gaps at
2435 the beginning if we tried to avoid the minval subtraction,
2436 so substitute some label even if the default label was
2437 deemed unreachable. */
2438 if (!default_label)
2439 default_label = fallback_label;
2440 for (i = 0; i < ncases; i++)
2441 if (labelvec[i] == 0)
2442 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
2443
2444 /* Output the table. */
2445 emit_label (table_label);
2446
2447 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
2448 emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
2449 gen_rtx_LABEL_REF (Pmode, table_label),
2450 gen_rtvec_v (ncases, labelvec),
2451 const0_rtx, const0_rtx));
2452 else
2453 emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
2454 gen_rtvec_v (ncases, labelvec)));
2455
2456 /* Record no drop-through after the table. */
2457 emit_barrier ();
2458 }
2459
2460 before_case = NEXT_INSN (before_case);
2461 end = get_last_insn ();
2462 reorder_insns (before_case, end, start);
2463 }
2464
2465 free_temp_slots ();
2466 free_alloc_pool (case_node_pool);
2467 }
2468
2469 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. */
2470
2471 static void
2472 do_jump_if_equal (enum machine_mode mode, rtx op0, rtx op1, rtx label,
2473 int unsignedp)
2474 {
2475 do_compare_rtx_and_jump (op0, op1, EQ, unsignedp, mode,
2476 NULL_RTX, NULL_RTX, label);
2477 }
2478 \f
2479 /* Not all case values are encountered equally. This function
2480 uses a heuristic to weight case labels, in cases where that
2481 looks like a reasonable thing to do.
2482
2483 Right now, all we try to guess is text, and we establish the
2484 following weights:
2485
2486 chars above space: 16
2487 digits: 16
2488 default: 12
2489 space, punct: 8
2490 tab: 4
2491 newline: 2
2492 other "\" chars: 1
2493 remaining chars: 0
2494
2495 If we find any cases in the switch that are not either -1 or in the range
2496 of valid ASCII characters, or are control characters other than those
2497 commonly used with "\", don't treat this switch scanning text.
2498
2499 Return 1 if these nodes are suitable for cost estimation, otherwise
2500 return 0. */
2501
2502 static int
2503 estimate_case_costs (case_node_ptr node)
2504 {
2505 tree min_ascii = integer_minus_one_node;
2506 tree max_ascii = build_int_cst (TREE_TYPE (node->high), 127);
2507 case_node_ptr n;
2508 int i;
2509
2510 /* If we haven't already made the cost table, make it now. Note that the
2511 lower bound of the table is -1, not zero. */
2512
2513 if (! cost_table_initialized)
2514 {
2515 cost_table_initialized = 1;
2516
2517 for (i = 0; i < 128; i++)
2518 {
2519 if (ISALNUM (i))
2520 COST_TABLE (i) = 16;
2521 else if (ISPUNCT (i))
2522 COST_TABLE (i) = 8;
2523 else if (ISCNTRL (i))
2524 COST_TABLE (i) = -1;
2525 }
2526
2527 COST_TABLE (' ') = 8;
2528 COST_TABLE ('\t') = 4;
2529 COST_TABLE ('\0') = 4;
2530 COST_TABLE ('\n') = 2;
2531 COST_TABLE ('\f') = 1;
2532 COST_TABLE ('\v') = 1;
2533 COST_TABLE ('\b') = 1;
2534 }
2535
2536 /* See if all the case expressions look like text. It is text if the
2537 constant is >= -1 and the highest constant is <= 127. Do all comparisons
2538 as signed arithmetic since we don't want to ever access cost_table with a
2539 value less than -1. Also check that none of the constants in a range
2540 are strange control characters. */
2541
2542 for (n = node; n; n = n->right)
2543 {
2544 if (tree_int_cst_lt (n->low, min_ascii)
2545 || tree_int_cst_lt (max_ascii, n->high))
2546 return 0;
2547
2548 for (i = (HOST_WIDE_INT) TREE_INT_CST_LOW (n->low);
2549 i <= (HOST_WIDE_INT) TREE_INT_CST_LOW (n->high); i++)
2550 if (COST_TABLE (i) < 0)
2551 return 0;
2552 }
2553
2554 /* All interesting values are within the range of interesting
2555 ASCII characters. */
2556 return 1;
2557 }
2558
2559 /* Take an ordered list of case nodes
2560 and transform them into a near optimal binary tree,
2561 on the assumption that any target code selection value is as
2562 likely as any other.
2563
2564 The transformation is performed by splitting the ordered
2565 list into two equal sections plus a pivot. The parts are
2566 then attached to the pivot as left and right branches. Each
2567 branch is then transformed recursively. */
2568
2569 static void
2570 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
2571 {
2572 case_node_ptr np;
2573
2574 np = *head;
2575 if (np)
2576 {
2577 int cost = 0;
2578 int i = 0;
2579 int ranges = 0;
2580 case_node_ptr *npp;
2581 case_node_ptr left;
2582
2583 /* Count the number of entries on branch. Also count the ranges. */
2584
2585 while (np)
2586 {
2587 if (!tree_int_cst_equal (np->low, np->high))
2588 {
2589 ranges++;
2590 if (use_cost_table)
2591 cost += COST_TABLE (TREE_INT_CST_LOW (np->high));
2592 }
2593
2594 if (use_cost_table)
2595 cost += COST_TABLE (TREE_INT_CST_LOW (np->low));
2596
2597 i++;
2598 np = np->right;
2599 }
2600
2601 if (i > 2)
2602 {
2603 /* Split this list if it is long enough for that to help. */
2604 npp = head;
2605 left = *npp;
2606 if (use_cost_table)
2607 {
2608 /* Find the place in the list that bisects the list's total cost,
2609 Here I gets half the total cost. */
2610 int n_moved = 0;
2611 i = (cost + 1) / 2;
2612 while (1)
2613 {
2614 /* Skip nodes while their cost does not reach that amount. */
2615 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
2616 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->high));
2617 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->low));
2618 if (i <= 0)
2619 break;
2620 npp = &(*npp)->right;
2621 n_moved += 1;
2622 }
2623 if (n_moved == 0)
2624 {
2625 /* Leave this branch lopsided, but optimize left-hand
2626 side and fill in `parent' fields for right-hand side. */
2627 np = *head;
2628 np->parent = parent;
2629 balance_case_nodes (&np->left, np);
2630 for (; np->right; np = np->right)
2631 np->right->parent = np;
2632 return;
2633 }
2634 }
2635 /* If there are just three nodes, split at the middle one. */
2636 else if (i == 3)
2637 npp = &(*npp)->right;
2638 else
2639 {
2640 /* Find the place in the list that bisects the list's total cost,
2641 where ranges count as 2.
2642 Here I gets half the total cost. */
2643 i = (i + ranges + 1) / 2;
2644 while (1)
2645 {
2646 /* Skip nodes while their cost does not reach that amount. */
2647 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
2648 i--;
2649 i--;
2650 if (i <= 0)
2651 break;
2652 npp = &(*npp)->right;
2653 }
2654 }
2655 *head = np = *npp;
2656 *npp = 0;
2657 np->parent = parent;
2658 np->left = left;
2659
2660 /* Optimize each of the two split parts. */
2661 balance_case_nodes (&np->left, np);
2662 balance_case_nodes (&np->right, np);
2663 }
2664 else
2665 {
2666 /* Else leave this branch as one level,
2667 but fill in `parent' fields. */
2668 np = *head;
2669 np->parent = parent;
2670 for (; np->right; np = np->right)
2671 np->right->parent = np;
2672 }
2673 }
2674 }
2675 \f
2676 /* Search the parent sections of the case node tree
2677 to see if a test for the lower bound of NODE would be redundant.
2678 INDEX_TYPE is the type of the index expression.
2679
2680 The instructions to generate the case decision tree are
2681 output in the same order as nodes are processed so it is
2682 known that if a parent node checks the range of the current
2683 node minus one that the current node is bounded at its lower
2684 span. Thus the test would be redundant. */
2685
2686 static int
2687 node_has_low_bound (case_node_ptr node, tree index_type)
2688 {
2689 tree low_minus_one;
2690 case_node_ptr pnode;
2691
2692 /* If the lower bound of this node is the lowest value in the index type,
2693 we need not test it. */
2694
2695 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
2696 return 1;
2697
2698 /* If this node has a left branch, the value at the left must be less
2699 than that at this node, so it cannot be bounded at the bottom and
2700 we need not bother testing any further. */
2701
2702 if (node->left)
2703 return 0;
2704
2705 low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low),
2706 node->low,
2707 build_int_cst (TREE_TYPE (node->low), 1));
2708
2709 /* If the subtraction above overflowed, we can't verify anything.
2710 Otherwise, look for a parent that tests our value - 1. */
2711
2712 if (! tree_int_cst_lt (low_minus_one, node->low))
2713 return 0;
2714
2715 for (pnode = node->parent; pnode; pnode = pnode->parent)
2716 if (tree_int_cst_equal (low_minus_one, pnode->high))
2717 return 1;
2718
2719 return 0;
2720 }
2721
2722 /* Search the parent sections of the case node tree
2723 to see if a test for the upper bound of NODE would be redundant.
2724 INDEX_TYPE is the type of the index expression.
2725
2726 The instructions to generate the case decision tree are
2727 output in the same order as nodes are processed so it is
2728 known that if a parent node checks the range of the current
2729 node plus one that the current node is bounded at its upper
2730 span. Thus the test would be redundant. */
2731
2732 static int
2733 node_has_high_bound (case_node_ptr node, tree index_type)
2734 {
2735 tree high_plus_one;
2736 case_node_ptr pnode;
2737
2738 /* If there is no upper bound, obviously no test is needed. */
2739
2740 if (TYPE_MAX_VALUE (index_type) == NULL)
2741 return 1;
2742
2743 /* If the upper bound of this node is the highest value in the type
2744 of the index expression, we need not test against it. */
2745
2746 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
2747 return 1;
2748
2749 /* If this node has a right branch, the value at the right must be greater
2750 than that at this node, so it cannot be bounded at the top and
2751 we need not bother testing any further. */
2752
2753 if (node->right)
2754 return 0;
2755
2756 high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high),
2757 node->high,
2758 build_int_cst (TREE_TYPE (node->high), 1));
2759
2760 /* If the addition above overflowed, we can't verify anything.
2761 Otherwise, look for a parent that tests our value + 1. */
2762
2763 if (! tree_int_cst_lt (node->high, high_plus_one))
2764 return 0;
2765
2766 for (pnode = node->parent; pnode; pnode = pnode->parent)
2767 if (tree_int_cst_equal (high_plus_one, pnode->low))
2768 return 1;
2769
2770 return 0;
2771 }
2772
2773 /* Search the parent sections of the
2774 case node tree to see if both tests for the upper and lower
2775 bounds of NODE would be redundant. */
2776
2777 static int
2778 node_is_bounded (case_node_ptr node, tree index_type)
2779 {
2780 return (node_has_low_bound (node, index_type)
2781 && node_has_high_bound (node, index_type));
2782 }
2783 \f
2784 /* Emit step-by-step code to select a case for the value of INDEX.
2785 The thus generated decision tree follows the form of the
2786 case-node binary tree NODE, whose nodes represent test conditions.
2787 INDEX_TYPE is the type of the index of the switch.
2788
2789 Care is taken to prune redundant tests from the decision tree
2790 by detecting any boundary conditions already checked by
2791 emitted rtx. (See node_has_high_bound, node_has_low_bound
2792 and node_is_bounded, above.)
2793
2794 Where the test conditions can be shown to be redundant we emit
2795 an unconditional jump to the target code. As a further
2796 optimization, the subordinates of a tree node are examined to
2797 check for bounded nodes. In this case conditional and/or
2798 unconditional jumps as a result of the boundary check for the
2799 current node are arranged to target the subordinates associated
2800 code for out of bound conditions on the current node.
2801
2802 We can assume that when control reaches the code generated here,
2803 the index value has already been compared with the parents
2804 of this node, and determined to be on the same side of each parent
2805 as this node is. Thus, if this node tests for the value 51,
2806 and a parent tested for 52, we don't need to consider
2807 the possibility of a value greater than 51. If another parent
2808 tests for the value 50, then this node need not test anything. */
2809
2810 static void
2811 emit_case_nodes (rtx index, case_node_ptr node, rtx default_label,
2812 tree index_type)
2813 {
2814 /* If INDEX has an unsigned type, we must make unsigned branches. */
2815 int unsignedp = TYPE_UNSIGNED (index_type);
2816 enum machine_mode mode = GET_MODE (index);
2817 enum machine_mode imode = TYPE_MODE (index_type);
2818
2819 /* Handle indices detected as constant during RTL expansion. */
2820 if (mode == VOIDmode)
2821 mode = imode;
2822
2823 /* See if our parents have already tested everything for us.
2824 If they have, emit an unconditional jump for this node. */
2825 if (node_is_bounded (node, index_type))
2826 emit_jump (label_rtx (node->code_label));
2827
2828 else if (tree_int_cst_equal (node->low, node->high))
2829 {
2830 /* Node is single valued. First see if the index expression matches
2831 this node and then check our children, if any. */
2832
2833 do_jump_if_equal (mode, index,
2834 convert_modes (mode, imode,
2835 expand_normal (node->low),
2836 unsignedp),
2837 label_rtx (node->code_label), unsignedp);
2838
2839 if (node->right != 0 && node->left != 0)
2840 {
2841 /* This node has children on both sides.
2842 Dispatch to one side or the other
2843 by comparing the index value with this node's value.
2844 If one subtree is bounded, check that one first,
2845 so we can avoid real branches in the tree. */
2846
2847 if (node_is_bounded (node->right, index_type))
2848 {
2849 emit_cmp_and_jump_insns (index,
2850 convert_modes
2851 (mode, imode,
2852 expand_normal (node->high),
2853 unsignedp),
2854 GT, NULL_RTX, mode, unsignedp,
2855 label_rtx (node->right->code_label));
2856 emit_case_nodes (index, node->left, default_label, index_type);
2857 }
2858
2859 else if (node_is_bounded (node->left, index_type))
2860 {
2861 emit_cmp_and_jump_insns (index,
2862 convert_modes
2863 (mode, imode,
2864 expand_normal (node->high),
2865 unsignedp),
2866 LT, NULL_RTX, mode, unsignedp,
2867 label_rtx (node->left->code_label));
2868 emit_case_nodes (index, node->right, default_label, index_type);
2869 }
2870
2871 /* If both children are single-valued cases with no
2872 children, finish up all the work. This way, we can save
2873 one ordered comparison. */
2874 else if (tree_int_cst_equal (node->right->low, node->right->high)
2875 && node->right->left == 0
2876 && node->right->right == 0
2877 && tree_int_cst_equal (node->left->low, node->left->high)
2878 && node->left->left == 0
2879 && node->left->right == 0)
2880 {
2881 /* Neither node is bounded. First distinguish the two sides;
2882 then emit the code for one side at a time. */
2883
2884 /* See if the value matches what the right hand side
2885 wants. */
2886 do_jump_if_equal (mode, index,
2887 convert_modes (mode, imode,
2888 expand_normal (node->right->low),
2889 unsignedp),
2890 label_rtx (node->right->code_label),
2891 unsignedp);
2892
2893 /* See if the value matches what the left hand side
2894 wants. */
2895 do_jump_if_equal (mode, index,
2896 convert_modes (mode, imode,
2897 expand_normal (node->left->low),
2898 unsignedp),
2899 label_rtx (node->left->code_label),
2900 unsignedp);
2901 }
2902
2903 else
2904 {
2905 /* Neither node is bounded. First distinguish the two sides;
2906 then emit the code for one side at a time. */
2907
2908 tree test_label
2909 = build_decl (CURR_INSN_LOCATION,
2910 LABEL_DECL, NULL_TREE, NULL_TREE);
2911
2912 /* See if the value is on the right. */
2913 emit_cmp_and_jump_insns (index,
2914 convert_modes
2915 (mode, imode,
2916 expand_normal (node->high),
2917 unsignedp),
2918 GT, NULL_RTX, mode, unsignedp,
2919 label_rtx (test_label));
2920
2921 /* Value must be on the left.
2922 Handle the left-hand subtree. */
2923 emit_case_nodes (index, node->left, default_label, index_type);
2924 /* If left-hand subtree does nothing,
2925 go to default. */
2926 if (default_label)
2927 emit_jump (default_label);
2928
2929 /* Code branches here for the right-hand subtree. */
2930 expand_label (test_label);
2931 emit_case_nodes (index, node->right, default_label, index_type);
2932 }
2933 }
2934
2935 else if (node->right != 0 && node->left == 0)
2936 {
2937 /* Here we have a right child but no left so we issue a conditional
2938 branch to default and process the right child.
2939
2940 Omit the conditional branch to default if the right child
2941 does not have any children and is single valued; it would
2942 cost too much space to save so little time. */
2943
2944 if (node->right->right || node->right->left
2945 || !tree_int_cst_equal (node->right->low, node->right->high))
2946 {
2947 if (!node_has_low_bound (node, index_type))
2948 {
2949 emit_cmp_and_jump_insns (index,
2950 convert_modes
2951 (mode, imode,
2952 expand_normal (node->high),
2953 unsignedp),
2954 LT, NULL_RTX, mode, unsignedp,
2955 default_label);
2956 }
2957
2958 emit_case_nodes (index, node->right, default_label, index_type);
2959 }
2960 else
2961 /* We cannot process node->right normally
2962 since we haven't ruled out the numbers less than
2963 this node's value. So handle node->right explicitly. */
2964 do_jump_if_equal (mode, index,
2965 convert_modes
2966 (mode, imode,
2967 expand_normal (node->right->low),
2968 unsignedp),
2969 label_rtx (node->right->code_label), unsignedp);
2970 }
2971
2972 else if (node->right == 0 && node->left != 0)
2973 {
2974 /* Just one subtree, on the left. */
2975 if (node->left->left || node->left->right
2976 || !tree_int_cst_equal (node->left->low, node->left->high))
2977 {
2978 if (!node_has_high_bound (node, index_type))
2979 {
2980 emit_cmp_and_jump_insns (index,
2981 convert_modes
2982 (mode, imode,
2983 expand_normal (node->high),
2984 unsignedp),
2985 GT, NULL_RTX, mode, unsignedp,
2986 default_label);
2987 }
2988
2989 emit_case_nodes (index, node->left, default_label, index_type);
2990 }
2991 else
2992 /* We cannot process node->left normally
2993 since we haven't ruled out the numbers less than
2994 this node's value. So handle node->left explicitly. */
2995 do_jump_if_equal (mode, index,
2996 convert_modes
2997 (mode, imode,
2998 expand_normal (node->left->low),
2999 unsignedp),
3000 label_rtx (node->left->code_label), unsignedp);
3001 }
3002 }
3003 else
3004 {
3005 /* Node is a range. These cases are very similar to those for a single
3006 value, except that we do not start by testing whether this node
3007 is the one to branch to. */
3008
3009 if (node->right != 0 && node->left != 0)
3010 {
3011 /* Node has subtrees on both sides.
3012 If the right-hand subtree is bounded,
3013 test for it first, since we can go straight there.
3014 Otherwise, we need to make a branch in the control structure,
3015 then handle the two subtrees. */
3016 tree test_label = 0;
3017
3018 if (node_is_bounded (node->right, index_type))
3019 /* Right hand node is fully bounded so we can eliminate any
3020 testing and branch directly to the target code. */
3021 emit_cmp_and_jump_insns (index,
3022 convert_modes
3023 (mode, imode,
3024 expand_normal (node->high),
3025 unsignedp),
3026 GT, NULL_RTX, mode, unsignedp,
3027 label_rtx (node->right->code_label));
3028 else
3029 {
3030 /* Right hand node requires testing.
3031 Branch to a label where we will handle it later. */
3032
3033 test_label = build_decl (CURR_INSN_LOCATION,
3034 LABEL_DECL, NULL_TREE, NULL_TREE);
3035 emit_cmp_and_jump_insns (index,
3036 convert_modes
3037 (mode, imode,
3038 expand_normal (node->high),
3039 unsignedp),
3040 GT, NULL_RTX, mode, unsignedp,
3041 label_rtx (test_label));
3042 }
3043
3044 /* Value belongs to this node or to the left-hand subtree. */
3045
3046 emit_cmp_and_jump_insns (index,
3047 convert_modes
3048 (mode, imode,
3049 expand_normal (node->low),
3050 unsignedp),
3051 GE, NULL_RTX, mode, unsignedp,
3052 label_rtx (node->code_label));
3053
3054 /* Handle the left-hand subtree. */
3055 emit_case_nodes (index, node->left, default_label, index_type);
3056
3057 /* If right node had to be handled later, do that now. */
3058
3059 if (test_label)
3060 {
3061 /* If the left-hand subtree fell through,
3062 don't let it fall into the right-hand subtree. */
3063 if (default_label)
3064 emit_jump (default_label);
3065
3066 expand_label (test_label);
3067 emit_case_nodes (index, node->right, default_label, index_type);
3068 }
3069 }
3070
3071 else if (node->right != 0 && node->left == 0)
3072 {
3073 /* Deal with values to the left of this node,
3074 if they are possible. */
3075 if (!node_has_low_bound (node, index_type))
3076 {
3077 emit_cmp_and_jump_insns (index,
3078 convert_modes
3079 (mode, imode,
3080 expand_normal (node->low),
3081 unsignedp),
3082 LT, NULL_RTX, mode, unsignedp,
3083 default_label);
3084 }
3085
3086 /* Value belongs to this node or to the right-hand subtree. */
3087
3088 emit_cmp_and_jump_insns (index,
3089 convert_modes
3090 (mode, imode,
3091 expand_normal (node->high),
3092 unsignedp),
3093 LE, NULL_RTX, mode, unsignedp,
3094 label_rtx (node->code_label));
3095
3096 emit_case_nodes (index, node->right, default_label, index_type);
3097 }
3098
3099 else if (node->right == 0 && node->left != 0)
3100 {
3101 /* Deal with values to the right of this node,
3102 if they are possible. */
3103 if (!node_has_high_bound (node, index_type))
3104 {
3105 emit_cmp_and_jump_insns (index,
3106 convert_modes
3107 (mode, imode,
3108 expand_normal (node->high),
3109 unsignedp),
3110 GT, NULL_RTX, mode, unsignedp,
3111 default_label);
3112 }
3113
3114 /* Value belongs to this node or to the left-hand subtree. */
3115
3116 emit_cmp_and_jump_insns (index,
3117 convert_modes
3118 (mode, imode,
3119 expand_normal (node->low),
3120 unsignedp),
3121 GE, NULL_RTX, mode, unsignedp,
3122 label_rtx (node->code_label));
3123
3124 emit_case_nodes (index, node->left, default_label, index_type);
3125 }
3126
3127 else
3128 {
3129 /* Node has no children so we check low and high bounds to remove
3130 redundant tests. Only one of the bounds can exist,
3131 since otherwise this node is bounded--a case tested already. */
3132 int high_bound = node_has_high_bound (node, index_type);
3133 int low_bound = node_has_low_bound (node, index_type);
3134
3135 if (!high_bound && low_bound)
3136 {
3137 emit_cmp_and_jump_insns (index,
3138 convert_modes
3139 (mode, imode,
3140 expand_normal (node->high),
3141 unsignedp),
3142 GT, NULL_RTX, mode, unsignedp,
3143 default_label);
3144 }
3145
3146 else if (!low_bound && high_bound)
3147 {
3148 emit_cmp_and_jump_insns (index,
3149 convert_modes
3150 (mode, imode,
3151 expand_normal (node->low),
3152 unsignedp),
3153 LT, NULL_RTX, mode, unsignedp,
3154 default_label);
3155 }
3156 else if (!low_bound && !high_bound)
3157 {
3158 /* Widen LOW and HIGH to the same width as INDEX. */
3159 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
3160 tree low = build1 (CONVERT_EXPR, type, node->low);
3161 tree high = build1 (CONVERT_EXPR, type, node->high);
3162 rtx low_rtx, new_index, new_bound;
3163
3164 /* Instead of doing two branches, emit one unsigned branch for
3165 (index-low) > (high-low). */
3166 low_rtx = expand_expr (low, NULL_RTX, mode, EXPAND_NORMAL);
3167 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
3168 NULL_RTX, unsignedp,
3169 OPTAB_WIDEN);
3170 new_bound = expand_expr (fold_build2 (MINUS_EXPR, type,
3171 high, low),
3172 NULL_RTX, mode, EXPAND_NORMAL);
3173
3174 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
3175 mode, 1, default_label);
3176 }
3177
3178 emit_jump (label_rtx (node->code_label));
3179 }
3180 }
3181 }