]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/trans-mem.c
* gimple.h: Remove all includes.
[thirdparty/gcc.git] / gcc / trans-mem.c
1 /* Passes for transactional memory support.
2 Copyright (C) 2008-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tree.h"
25 #include "basic-block.h"
26 #include "tree-ssa-alias.h"
27 #include "internal-fn.h"
28 #include "tree-eh.h"
29 #include "gimple-expr.h"
30 #include "is-a.h"
31 #include "gimple.h"
32 #include "calls.h"
33 #include "function.h"
34 #include "rtl.h"
35 #include "emit-rtl.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-walk.h"
40 #include "gimple-ssa.h"
41 #include "cgraph.h"
42 #include "tree-cfg.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "tree-into-ssa.h"
46 #include "tree-pass.h"
47 #include "tree-inline.h"
48 #include "diagnostic-core.h"
49 #include "demangle.h"
50 #include "output.h"
51 #include "trans-mem.h"
52 #include "params.h"
53 #include "target.h"
54 #include "langhooks.h"
55 #include "gimple-pretty-print.h"
56 #include "cfgloop.h"
57 #include "tree-ssa-address.h"
58
59
60 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
61 #define PROB_VERY_LIKELY (PROB_ALWAYS - PROB_VERY_UNLIKELY)
62 #define PROB_UNLIKELY (REG_BR_PROB_BASE / 5 - 1)
63 #define PROB_LIKELY (PROB_ALWAYS - PROB_VERY_LIKELY)
64 #define PROB_ALWAYS (REG_BR_PROB_BASE)
65
66 #define A_RUNINSTRUMENTEDCODE 0x0001
67 #define A_RUNUNINSTRUMENTEDCODE 0x0002
68 #define A_SAVELIVEVARIABLES 0x0004
69 #define A_RESTORELIVEVARIABLES 0x0008
70 #define A_ABORTTRANSACTION 0x0010
71
72 #define AR_USERABORT 0x0001
73 #define AR_USERRETRY 0x0002
74 #define AR_TMCONFLICT 0x0004
75 #define AR_EXCEPTIONBLOCKABORT 0x0008
76 #define AR_OUTERABORT 0x0010
77
78 #define MODE_SERIALIRREVOCABLE 0x0000
79
80
81 /* The representation of a transaction changes several times during the
82 lowering process. In the beginning, in the front-end we have the
83 GENERIC tree TRANSACTION_EXPR. For example,
84
85 __transaction {
86 local++;
87 if (++global == 10)
88 __tm_abort;
89 }
90
91 During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
92 trivially replaced with a GIMPLE_TRANSACTION node.
93
94 During pass_lower_tm, we examine the body of transactions looking
95 for aborts. Transactions that do not contain an abort may be
96 merged into an outer transaction. We also add a TRY-FINALLY node
97 to arrange for the transaction to be committed on any exit.
98
99 [??? Think about how this arrangement affects throw-with-commit
100 and throw-with-abort operations. In this case we want the TRY to
101 handle gotos, but not to catch any exceptions because the transaction
102 will already be closed.]
103
104 GIMPLE_TRANSACTION [label=NULL] {
105 try {
106 local = local + 1;
107 t0 = global;
108 t1 = t0 + 1;
109 global = t1;
110 if (t1 == 10)
111 __builtin___tm_abort ();
112 } finally {
113 __builtin___tm_commit ();
114 }
115 }
116
117 During pass_lower_eh, we create EH regions for the transactions,
118 intermixed with the regular EH stuff. This gives us a nice persistent
119 mapping (all the way through rtl) from transactional memory operation
120 back to the transaction, which allows us to get the abnormal edges
121 correct to model transaction aborts and restarts:
122
123 GIMPLE_TRANSACTION [label=over]
124 local = local + 1;
125 t0 = global;
126 t1 = t0 + 1;
127 global = t1;
128 if (t1 == 10)
129 __builtin___tm_abort ();
130 __builtin___tm_commit ();
131 over:
132
133 This is the end of all_lowering_passes, and so is what is present
134 during the IPA passes, and through all of the optimization passes.
135
136 During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
137 functions and mark functions for cloning.
138
139 At the end of gimple optimization, before exiting SSA form,
140 pass_tm_edges replaces statements that perform transactional
141 memory operations with the appropriate TM builtins, and swap
142 out function calls with their transactional clones. At this
143 point we introduce the abnormal transaction restart edges and
144 complete lowering of the GIMPLE_TRANSACTION node.
145
146 x = __builtin___tm_start (MAY_ABORT);
147 eh_label:
148 if (x & abort_transaction)
149 goto over;
150 local = local + 1;
151 t0 = __builtin___tm_load (global);
152 t1 = t0 + 1;
153 __builtin___tm_store (&global, t1);
154 if (t1 == 10)
155 __builtin___tm_abort ();
156 __builtin___tm_commit ();
157 over:
158 */
159
160 static void *expand_regions (struct tm_region *,
161 void *(*callback)(struct tm_region *, void *),
162 void *, bool);
163
164 \f
165 /* Return the attributes we want to examine for X, or NULL if it's not
166 something we examine. We look at function types, but allow pointers
167 to function types and function decls and peek through. */
168
169 static tree
170 get_attrs_for (const_tree x)
171 {
172 switch (TREE_CODE (x))
173 {
174 case FUNCTION_DECL:
175 return TYPE_ATTRIBUTES (TREE_TYPE (x));
176 break;
177
178 default:
179 if (TYPE_P (x))
180 return NULL;
181 x = TREE_TYPE (x);
182 if (TREE_CODE (x) != POINTER_TYPE)
183 return NULL;
184 /* FALLTHRU */
185
186 case POINTER_TYPE:
187 x = TREE_TYPE (x);
188 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
189 return NULL;
190 /* FALLTHRU */
191
192 case FUNCTION_TYPE:
193 case METHOD_TYPE:
194 return TYPE_ATTRIBUTES (x);
195 }
196 }
197
198 /* Return true if X has been marked TM_PURE. */
199
200 bool
201 is_tm_pure (const_tree x)
202 {
203 unsigned flags;
204
205 switch (TREE_CODE (x))
206 {
207 case FUNCTION_DECL:
208 case FUNCTION_TYPE:
209 case METHOD_TYPE:
210 break;
211
212 default:
213 if (TYPE_P (x))
214 return false;
215 x = TREE_TYPE (x);
216 if (TREE_CODE (x) != POINTER_TYPE)
217 return false;
218 /* FALLTHRU */
219
220 case POINTER_TYPE:
221 x = TREE_TYPE (x);
222 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
223 return false;
224 break;
225 }
226
227 flags = flags_from_decl_or_type (x);
228 return (flags & ECF_TM_PURE) != 0;
229 }
230
231 /* Return true if X has been marked TM_IRREVOCABLE. */
232
233 static bool
234 is_tm_irrevocable (tree x)
235 {
236 tree attrs = get_attrs_for (x);
237
238 if (attrs && lookup_attribute ("transaction_unsafe", attrs))
239 return true;
240
241 /* A call to the irrevocable builtin is by definition,
242 irrevocable. */
243 if (TREE_CODE (x) == ADDR_EXPR)
244 x = TREE_OPERAND (x, 0);
245 if (TREE_CODE (x) == FUNCTION_DECL
246 && DECL_BUILT_IN_CLASS (x) == BUILT_IN_NORMAL
247 && DECL_FUNCTION_CODE (x) == BUILT_IN_TM_IRREVOCABLE)
248 return true;
249
250 return false;
251 }
252
253 /* Return true if X has been marked TM_SAFE. */
254
255 bool
256 is_tm_safe (const_tree x)
257 {
258 if (flag_tm)
259 {
260 tree attrs = get_attrs_for (x);
261 if (attrs)
262 {
263 if (lookup_attribute ("transaction_safe", attrs))
264 return true;
265 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
266 return true;
267 }
268 }
269 return false;
270 }
271
272 /* Return true if CALL is const, or tm_pure. */
273
274 static bool
275 is_tm_pure_call (gimple call)
276 {
277 tree fn = gimple_call_fn (call);
278
279 if (TREE_CODE (fn) == ADDR_EXPR)
280 {
281 fn = TREE_OPERAND (fn, 0);
282 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
283 }
284 else
285 fn = TREE_TYPE (fn);
286
287 return is_tm_pure (fn);
288 }
289
290 /* Return true if X has been marked TM_CALLABLE. */
291
292 static bool
293 is_tm_callable (tree x)
294 {
295 tree attrs = get_attrs_for (x);
296 if (attrs)
297 {
298 if (lookup_attribute ("transaction_callable", attrs))
299 return true;
300 if (lookup_attribute ("transaction_safe", attrs))
301 return true;
302 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
303 return true;
304 }
305 return false;
306 }
307
308 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
309
310 bool
311 is_tm_may_cancel_outer (tree x)
312 {
313 tree attrs = get_attrs_for (x);
314 if (attrs)
315 return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
316 return false;
317 }
318
319 /* Return true for built in functions that "end" a transaction. */
320
321 bool
322 is_tm_ending_fndecl (tree fndecl)
323 {
324 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
325 switch (DECL_FUNCTION_CODE (fndecl))
326 {
327 case BUILT_IN_TM_COMMIT:
328 case BUILT_IN_TM_COMMIT_EH:
329 case BUILT_IN_TM_ABORT:
330 case BUILT_IN_TM_IRREVOCABLE:
331 return true;
332 default:
333 break;
334 }
335
336 return false;
337 }
338
339 /* Return true if STMT is a built in function call that "ends" a
340 transaction. */
341
342 bool
343 is_tm_ending (gimple stmt)
344 {
345 tree fndecl;
346
347 if (gimple_code (stmt) != GIMPLE_CALL)
348 return false;
349
350 fndecl = gimple_call_fndecl (stmt);
351 return (fndecl != NULL_TREE
352 && is_tm_ending_fndecl (fndecl));
353 }
354
355 /* Return true if STMT is a TM load. */
356
357 static bool
358 is_tm_load (gimple stmt)
359 {
360 tree fndecl;
361
362 if (gimple_code (stmt) != GIMPLE_CALL)
363 return false;
364
365 fndecl = gimple_call_fndecl (stmt);
366 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
367 && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
368 }
369
370 /* Same as above, but for simple TM loads, that is, not the
371 after-write, after-read, etc optimized variants. */
372
373 static bool
374 is_tm_simple_load (gimple stmt)
375 {
376 tree fndecl;
377
378 if (gimple_code (stmt) != GIMPLE_CALL)
379 return false;
380
381 fndecl = gimple_call_fndecl (stmt);
382 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
383 {
384 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
385 return (fcode == BUILT_IN_TM_LOAD_1
386 || fcode == BUILT_IN_TM_LOAD_2
387 || fcode == BUILT_IN_TM_LOAD_4
388 || fcode == BUILT_IN_TM_LOAD_8
389 || fcode == BUILT_IN_TM_LOAD_FLOAT
390 || fcode == BUILT_IN_TM_LOAD_DOUBLE
391 || fcode == BUILT_IN_TM_LOAD_LDOUBLE
392 || fcode == BUILT_IN_TM_LOAD_M64
393 || fcode == BUILT_IN_TM_LOAD_M128
394 || fcode == BUILT_IN_TM_LOAD_M256);
395 }
396 return false;
397 }
398
399 /* Return true if STMT is a TM store. */
400
401 static bool
402 is_tm_store (gimple stmt)
403 {
404 tree fndecl;
405
406 if (gimple_code (stmt) != GIMPLE_CALL)
407 return false;
408
409 fndecl = gimple_call_fndecl (stmt);
410 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
411 && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
412 }
413
414 /* Same as above, but for simple TM stores, that is, not the
415 after-write, after-read, etc optimized variants. */
416
417 static bool
418 is_tm_simple_store (gimple stmt)
419 {
420 tree fndecl;
421
422 if (gimple_code (stmt) != GIMPLE_CALL)
423 return false;
424
425 fndecl = gimple_call_fndecl (stmt);
426 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
427 {
428 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
429 return (fcode == BUILT_IN_TM_STORE_1
430 || fcode == BUILT_IN_TM_STORE_2
431 || fcode == BUILT_IN_TM_STORE_4
432 || fcode == BUILT_IN_TM_STORE_8
433 || fcode == BUILT_IN_TM_STORE_FLOAT
434 || fcode == BUILT_IN_TM_STORE_DOUBLE
435 || fcode == BUILT_IN_TM_STORE_LDOUBLE
436 || fcode == BUILT_IN_TM_STORE_M64
437 || fcode == BUILT_IN_TM_STORE_M128
438 || fcode == BUILT_IN_TM_STORE_M256);
439 }
440 return false;
441 }
442
443 /* Return true if FNDECL is BUILT_IN_TM_ABORT. */
444
445 static bool
446 is_tm_abort (tree fndecl)
447 {
448 return (fndecl
449 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
450 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_TM_ABORT);
451 }
452
453 /* Build a GENERIC tree for a user abort. This is called by front ends
454 while transforming the __tm_abort statement. */
455
456 tree
457 build_tm_abort_call (location_t loc, bool is_outer)
458 {
459 return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
460 build_int_cst (integer_type_node,
461 AR_USERABORT
462 | (is_outer ? AR_OUTERABORT : 0)));
463 }
464
465 /* Common gateing function for several of the TM passes. */
466
467 static bool
468 gate_tm (void)
469 {
470 return flag_tm;
471 }
472 \f
473 /* Map for aribtrary function replacement under TM, as created
474 by the tm_wrap attribute. */
475
476 static GTY((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
477 htab_t tm_wrap_map;
478
479 void
480 record_tm_replacement (tree from, tree to)
481 {
482 struct tree_map **slot, *h;
483
484 /* Do not inline wrapper functions that will get replaced in the TM
485 pass.
486
487 Suppose you have foo() that will get replaced into tmfoo(). Make
488 sure the inliner doesn't try to outsmart us and inline foo()
489 before we get a chance to do the TM replacement. */
490 DECL_UNINLINABLE (from) = 1;
491
492 if (tm_wrap_map == NULL)
493 tm_wrap_map = htab_create_ggc (32, tree_map_hash, tree_map_eq, 0);
494
495 h = ggc_alloc_tree_map ();
496 h->hash = htab_hash_pointer (from);
497 h->base.from = from;
498 h->to = to;
499
500 slot = (struct tree_map **)
501 htab_find_slot_with_hash (tm_wrap_map, h, h->hash, INSERT);
502 *slot = h;
503 }
504
505 /* Return a TM-aware replacement function for DECL. */
506
507 static tree
508 find_tm_replacement_function (tree fndecl)
509 {
510 if (tm_wrap_map)
511 {
512 struct tree_map *h, in;
513
514 in.base.from = fndecl;
515 in.hash = htab_hash_pointer (fndecl);
516 h = (struct tree_map *) htab_find_with_hash (tm_wrap_map, &in, in.hash);
517 if (h)
518 return h->to;
519 }
520
521 /* ??? We may well want TM versions of most of the common <string.h>
522 functions. For now, we've already these two defined. */
523 /* Adjust expand_call_tm() attributes as necessary for the cases
524 handled here: */
525 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
526 switch (DECL_FUNCTION_CODE (fndecl))
527 {
528 case BUILT_IN_MEMCPY:
529 return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
530 case BUILT_IN_MEMMOVE:
531 return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
532 case BUILT_IN_MEMSET:
533 return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
534 default:
535 return NULL;
536 }
537
538 return NULL;
539 }
540
541 /* When appropriate, record TM replacement for memory allocation functions.
542
543 FROM is the FNDECL to wrap. */
544 void
545 tm_malloc_replacement (tree from)
546 {
547 const char *str;
548 tree to;
549
550 if (TREE_CODE (from) != FUNCTION_DECL)
551 return;
552
553 /* If we have a previous replacement, the user must be explicitly
554 wrapping malloc/calloc/free. They better know what they're
555 doing... */
556 if (find_tm_replacement_function (from))
557 return;
558
559 str = IDENTIFIER_POINTER (DECL_NAME (from));
560
561 if (!strcmp (str, "malloc"))
562 to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
563 else if (!strcmp (str, "calloc"))
564 to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
565 else if (!strcmp (str, "free"))
566 to = builtin_decl_explicit (BUILT_IN_TM_FREE);
567 else
568 return;
569
570 TREE_NOTHROW (to) = 0;
571
572 record_tm_replacement (from, to);
573 }
574 \f
575 /* Diagnostics for tm_safe functions/regions. Called by the front end
576 once we've lowered the function to high-gimple. */
577
578 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
579 Process exactly one statement. WI->INFO is set to non-null when in
580 the context of a tm_safe function, and null for a __transaction block. */
581
582 #define DIAG_TM_OUTER 1
583 #define DIAG_TM_SAFE 2
584 #define DIAG_TM_RELAXED 4
585
586 struct diagnose_tm
587 {
588 unsigned int summary_flags : 8;
589 unsigned int block_flags : 8;
590 unsigned int func_flags : 8;
591 unsigned int saw_volatile : 1;
592 gimple stmt;
593 };
594
595 /* Return true if T is a volatile variable of some kind. */
596
597 static bool
598 volatile_var_p (tree t)
599 {
600 return (SSA_VAR_P (t)
601 && TREE_THIS_VOLATILE (TREE_TYPE (t)));
602 }
603
604 /* Tree callback function for diagnose_tm pass. */
605
606 static tree
607 diagnose_tm_1_op (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
608 void *data)
609 {
610 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
611 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
612
613 if (volatile_var_p (*tp)
614 && d->block_flags & DIAG_TM_SAFE
615 && !d->saw_volatile)
616 {
617 d->saw_volatile = 1;
618 error_at (gimple_location (d->stmt),
619 "invalid volatile use of %qD inside transaction",
620 *tp);
621 }
622
623 return NULL_TREE;
624 }
625
626 static inline bool
627 is_tm_safe_or_pure (const_tree x)
628 {
629 return is_tm_safe (x) || is_tm_pure (x);
630 }
631
632 static tree
633 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
634 struct walk_stmt_info *wi)
635 {
636 gimple stmt = gsi_stmt (*gsi);
637 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
638
639 /* Save stmt for use in leaf analysis. */
640 d->stmt = stmt;
641
642 switch (gimple_code (stmt))
643 {
644 case GIMPLE_CALL:
645 {
646 tree fn = gimple_call_fn (stmt);
647
648 if ((d->summary_flags & DIAG_TM_OUTER) == 0
649 && is_tm_may_cancel_outer (fn))
650 error_at (gimple_location (stmt),
651 "%<transaction_may_cancel_outer%> function call not within"
652 " outer transaction or %<transaction_may_cancel_outer%>");
653
654 if (d->summary_flags & DIAG_TM_SAFE)
655 {
656 bool is_safe, direct_call_p;
657 tree replacement;
658
659 if (TREE_CODE (fn) == ADDR_EXPR
660 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
661 {
662 direct_call_p = true;
663 replacement = TREE_OPERAND (fn, 0);
664 replacement = find_tm_replacement_function (replacement);
665 if (replacement)
666 fn = replacement;
667 }
668 else
669 {
670 direct_call_p = false;
671 replacement = NULL_TREE;
672 }
673
674 if (is_tm_safe_or_pure (fn))
675 is_safe = true;
676 else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
677 {
678 /* A function explicitly marked transaction_callable as
679 opposed to transaction_safe is being defined to be
680 unsafe as part of its ABI, regardless of its contents. */
681 is_safe = false;
682 }
683 else if (direct_call_p)
684 {
685 if (flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
686 is_safe = true;
687 else if (replacement)
688 {
689 /* ??? At present we've been considering replacements
690 merely transaction_callable, and therefore might
691 enter irrevocable. The tm_wrap attribute has not
692 yet made it into the new language spec. */
693 is_safe = false;
694 }
695 else
696 {
697 /* ??? Diagnostics for unmarked direct calls moved into
698 the IPA pass. Section 3.2 of the spec details how
699 functions not marked should be considered "implicitly
700 safe" based on having examined the function body. */
701 is_safe = true;
702 }
703 }
704 else
705 {
706 /* An unmarked indirect call. Consider it unsafe even
707 though optimization may yet figure out how to inline. */
708 is_safe = false;
709 }
710
711 if (!is_safe)
712 {
713 if (TREE_CODE (fn) == ADDR_EXPR)
714 fn = TREE_OPERAND (fn, 0);
715 if (d->block_flags & DIAG_TM_SAFE)
716 {
717 if (direct_call_p)
718 error_at (gimple_location (stmt),
719 "unsafe function call %qD within "
720 "atomic transaction", fn);
721 else
722 {
723 if (!DECL_P (fn) || DECL_NAME (fn))
724 error_at (gimple_location (stmt),
725 "unsafe function call %qE within "
726 "atomic transaction", fn);
727 else
728 error_at (gimple_location (stmt),
729 "unsafe indirect function call within "
730 "atomic transaction");
731 }
732 }
733 else
734 {
735 if (direct_call_p)
736 error_at (gimple_location (stmt),
737 "unsafe function call %qD within "
738 "%<transaction_safe%> function", fn);
739 else
740 {
741 if (!DECL_P (fn) || DECL_NAME (fn))
742 error_at (gimple_location (stmt),
743 "unsafe function call %qE within "
744 "%<transaction_safe%> function", fn);
745 else
746 error_at (gimple_location (stmt),
747 "unsafe indirect function call within "
748 "%<transaction_safe%> function");
749 }
750 }
751 }
752 }
753 }
754 break;
755
756 case GIMPLE_ASM:
757 /* ??? We ought to come up with a way to add attributes to
758 asm statements, and then add "transaction_safe" to it.
759 Either that or get the language spec to resurrect __tm_waiver. */
760 if (d->block_flags & DIAG_TM_SAFE)
761 error_at (gimple_location (stmt),
762 "asm not allowed in atomic transaction");
763 else if (d->func_flags & DIAG_TM_SAFE)
764 error_at (gimple_location (stmt),
765 "asm not allowed in %<transaction_safe%> function");
766 break;
767
768 case GIMPLE_TRANSACTION:
769 {
770 unsigned char inner_flags = DIAG_TM_SAFE;
771
772 if (gimple_transaction_subcode (stmt) & GTMA_IS_RELAXED)
773 {
774 if (d->block_flags & DIAG_TM_SAFE)
775 error_at (gimple_location (stmt),
776 "relaxed transaction in atomic transaction");
777 else if (d->func_flags & DIAG_TM_SAFE)
778 error_at (gimple_location (stmt),
779 "relaxed transaction in %<transaction_safe%> function");
780 inner_flags = DIAG_TM_RELAXED;
781 }
782 else if (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER)
783 {
784 if (d->block_flags)
785 error_at (gimple_location (stmt),
786 "outer transaction in transaction");
787 else if (d->func_flags & DIAG_TM_OUTER)
788 error_at (gimple_location (stmt),
789 "outer transaction in "
790 "%<transaction_may_cancel_outer%> function");
791 else if (d->func_flags & DIAG_TM_SAFE)
792 error_at (gimple_location (stmt),
793 "outer transaction in %<transaction_safe%> function");
794 inner_flags |= DIAG_TM_OUTER;
795 }
796
797 *handled_ops_p = true;
798 if (gimple_transaction_body (stmt))
799 {
800 struct walk_stmt_info wi_inner;
801 struct diagnose_tm d_inner;
802
803 memset (&d_inner, 0, sizeof (d_inner));
804 d_inner.func_flags = d->func_flags;
805 d_inner.block_flags = d->block_flags | inner_flags;
806 d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
807
808 memset (&wi_inner, 0, sizeof (wi_inner));
809 wi_inner.info = &d_inner;
810
811 walk_gimple_seq (gimple_transaction_body (stmt),
812 diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
813 }
814 }
815 break;
816
817 default:
818 break;
819 }
820
821 return NULL_TREE;
822 }
823
824 static unsigned int
825 diagnose_tm_blocks (void)
826 {
827 struct walk_stmt_info wi;
828 struct diagnose_tm d;
829
830 memset (&d, 0, sizeof (d));
831 if (is_tm_may_cancel_outer (current_function_decl))
832 d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
833 else if (is_tm_safe (current_function_decl))
834 d.func_flags = DIAG_TM_SAFE;
835 d.summary_flags = d.func_flags;
836
837 memset (&wi, 0, sizeof (wi));
838 wi.info = &d;
839
840 walk_gimple_seq (gimple_body (current_function_decl),
841 diagnose_tm_1, diagnose_tm_1_op, &wi);
842
843 return 0;
844 }
845
846 namespace {
847
848 const pass_data pass_data_diagnose_tm_blocks =
849 {
850 GIMPLE_PASS, /* type */
851 "*diagnose_tm_blocks", /* name */
852 OPTGROUP_NONE, /* optinfo_flags */
853 true, /* has_gate */
854 true, /* has_execute */
855 TV_TRANS_MEM, /* tv_id */
856 PROP_gimple_any, /* properties_required */
857 0, /* properties_provided */
858 0, /* properties_destroyed */
859 0, /* todo_flags_start */
860 0, /* todo_flags_finish */
861 };
862
863 class pass_diagnose_tm_blocks : public gimple_opt_pass
864 {
865 public:
866 pass_diagnose_tm_blocks (gcc::context *ctxt)
867 : gimple_opt_pass (pass_data_diagnose_tm_blocks, ctxt)
868 {}
869
870 /* opt_pass methods: */
871 bool gate () { return gate_tm (); }
872 unsigned int execute () { return diagnose_tm_blocks (); }
873
874 }; // class pass_diagnose_tm_blocks
875
876 } // anon namespace
877
878 gimple_opt_pass *
879 make_pass_diagnose_tm_blocks (gcc::context *ctxt)
880 {
881 return new pass_diagnose_tm_blocks (ctxt);
882 }
883 \f
884 /* Instead of instrumenting thread private memory, we save the
885 addresses in a log which we later use to save/restore the addresses
886 upon transaction start/restart.
887
888 The log is keyed by address, where each element contains individual
889 statements among different code paths that perform the store.
890
891 This log is later used to generate either plain save/restore of the
892 addresses upon transaction start/restart, or calls to the ITM_L*
893 logging functions.
894
895 So for something like:
896
897 struct large { int x[1000]; };
898 struct large lala = { 0 };
899 __transaction {
900 lala.x[i] = 123;
901 ...
902 }
903
904 We can either save/restore:
905
906 lala = { 0 };
907 trxn = _ITM_startTransaction ();
908 if (trxn & a_saveLiveVariables)
909 tmp_lala1 = lala.x[i];
910 else if (a & a_restoreLiveVariables)
911 lala.x[i] = tmp_lala1;
912
913 or use the logging functions:
914
915 lala = { 0 };
916 trxn = _ITM_startTransaction ();
917 _ITM_LU4 (&lala.x[i]);
918
919 Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
920 far up the dominator tree to shadow all of the writes to a given
921 location (thus reducing the total number of logging calls), but not
922 so high as to be called on a path that does not perform a
923 write. */
924
925 /* One individual log entry. We may have multiple statements for the
926 same location if neither dominate each other (on different
927 execution paths). */
928 typedef struct tm_log_entry
929 {
930 /* Address to save. */
931 tree addr;
932 /* Entry block for the transaction this address occurs in. */
933 basic_block entry_block;
934 /* Dominating statements the store occurs in. */
935 gimple_vec stmts;
936 /* Initially, while we are building the log, we place a nonzero
937 value here to mean that this address *will* be saved with a
938 save/restore sequence. Later, when generating the save sequence
939 we place the SSA temp generated here. */
940 tree save_var;
941 } *tm_log_entry_t;
942
943
944 /* Log entry hashtable helpers. */
945
946 struct log_entry_hasher
947 {
948 typedef tm_log_entry value_type;
949 typedef tm_log_entry compare_type;
950 static inline hashval_t hash (const value_type *);
951 static inline bool equal (const value_type *, const compare_type *);
952 static inline void remove (value_type *);
953 };
954
955 /* Htab support. Return hash value for a `tm_log_entry'. */
956 inline hashval_t
957 log_entry_hasher::hash (const value_type *log)
958 {
959 return iterative_hash_expr (log->addr, 0);
960 }
961
962 /* Htab support. Return true if two log entries are the same. */
963 inline bool
964 log_entry_hasher::equal (const value_type *log1, const compare_type *log2)
965 {
966 /* FIXME:
967
968 rth: I suggest that we get rid of the component refs etc.
969 I.e. resolve the reference to base + offset.
970
971 We may need to actually finish a merge with mainline for this,
972 since we'd like to be presented with Richi's MEM_REF_EXPRs more
973 often than not. But in the meantime your tm_log_entry could save
974 the results of get_inner_reference.
975
976 See: g++.dg/tm/pr46653.C
977 */
978
979 /* Special case plain equality because operand_equal_p() below will
980 return FALSE if the addresses are equal but they have
981 side-effects (e.g. a volatile address). */
982 if (log1->addr == log2->addr)
983 return true;
984
985 return operand_equal_p (log1->addr, log2->addr, 0);
986 }
987
988 /* Htab support. Free one tm_log_entry. */
989 inline void
990 log_entry_hasher::remove (value_type *lp)
991 {
992 lp->stmts.release ();
993 free (lp);
994 }
995
996
997 /* The actual log. */
998 static hash_table <log_entry_hasher> tm_log;
999
1000 /* Addresses to log with a save/restore sequence. These should be in
1001 dominator order. */
1002 static vec<tree> tm_log_save_addresses;
1003
1004 enum thread_memory_type
1005 {
1006 mem_non_local = 0,
1007 mem_thread_local,
1008 mem_transaction_local,
1009 mem_max
1010 };
1011
1012 typedef struct tm_new_mem_map
1013 {
1014 /* SSA_NAME being dereferenced. */
1015 tree val;
1016 enum thread_memory_type local_new_memory;
1017 } tm_new_mem_map_t;
1018
1019 /* Hashtable helpers. */
1020
1021 struct tm_mem_map_hasher : typed_free_remove <tm_new_mem_map_t>
1022 {
1023 typedef tm_new_mem_map_t value_type;
1024 typedef tm_new_mem_map_t compare_type;
1025 static inline hashval_t hash (const value_type *);
1026 static inline bool equal (const value_type *, const compare_type *);
1027 };
1028
1029 inline hashval_t
1030 tm_mem_map_hasher::hash (const value_type *v)
1031 {
1032 return (intptr_t)v->val >> 4;
1033 }
1034
1035 inline bool
1036 tm_mem_map_hasher::equal (const value_type *v, const compare_type *c)
1037 {
1038 return v->val == c->val;
1039 }
1040
1041 /* Map for an SSA_NAME originally pointing to a non aliased new piece
1042 of memory (malloc, alloc, etc). */
1043 static hash_table <tm_mem_map_hasher> tm_new_mem_hash;
1044
1045 /* Initialize logging data structures. */
1046 static void
1047 tm_log_init (void)
1048 {
1049 tm_log.create (10);
1050 tm_new_mem_hash.create (5);
1051 tm_log_save_addresses.create (5);
1052 }
1053
1054 /* Free logging data structures. */
1055 static void
1056 tm_log_delete (void)
1057 {
1058 tm_log.dispose ();
1059 tm_new_mem_hash.dispose ();
1060 tm_log_save_addresses.release ();
1061 }
1062
1063 /* Return true if MEM is a transaction invariant memory for the TM
1064 region starting at REGION_ENTRY_BLOCK. */
1065 static bool
1066 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
1067 {
1068 if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
1069 && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
1070 {
1071 basic_block def_bb;
1072
1073 def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
1074 return def_bb != region_entry_block
1075 && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
1076 }
1077
1078 mem = strip_invariant_refs (mem);
1079 return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
1080 }
1081
1082 /* Given an address ADDR in STMT, find it in the memory log or add it,
1083 making sure to keep only the addresses highest in the dominator
1084 tree.
1085
1086 ENTRY_BLOCK is the entry_block for the transaction.
1087
1088 If we find the address in the log, make sure it's either the same
1089 address, or an equivalent one that dominates ADDR.
1090
1091 If we find the address, but neither ADDR dominates the found
1092 address, nor the found one dominates ADDR, we're on different
1093 execution paths. Add it.
1094
1095 If known, ENTRY_BLOCK is the entry block for the region, otherwise
1096 NULL. */
1097 static void
1098 tm_log_add (basic_block entry_block, tree addr, gimple stmt)
1099 {
1100 tm_log_entry **slot;
1101 struct tm_log_entry l, *lp;
1102
1103 l.addr = addr;
1104 slot = tm_log.find_slot (&l, INSERT);
1105 if (!*slot)
1106 {
1107 tree type = TREE_TYPE (addr);
1108
1109 lp = XNEW (struct tm_log_entry);
1110 lp->addr = addr;
1111 *slot = lp;
1112
1113 /* Small invariant addresses can be handled as save/restores. */
1114 if (entry_block
1115 && transaction_invariant_address_p (lp->addr, entry_block)
1116 && TYPE_SIZE_UNIT (type) != NULL
1117 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
1118 && ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE_UNIT (type))
1119 < PARAM_VALUE (PARAM_TM_MAX_AGGREGATE_SIZE))
1120 /* We must be able to copy this type normally. I.e., no
1121 special constructors and the like. */
1122 && !TREE_ADDRESSABLE (type))
1123 {
1124 lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
1125 lp->stmts.create (0);
1126 lp->entry_block = entry_block;
1127 /* Save addresses separately in dominator order so we don't
1128 get confused by overlapping addresses in the save/restore
1129 sequence. */
1130 tm_log_save_addresses.safe_push (lp->addr);
1131 }
1132 else
1133 {
1134 /* Use the logging functions. */
1135 lp->stmts.create (5);
1136 lp->stmts.quick_push (stmt);
1137 lp->save_var = NULL;
1138 }
1139 }
1140 else
1141 {
1142 size_t i;
1143 gimple oldstmt;
1144
1145 lp = *slot;
1146
1147 /* If we're generating a save/restore sequence, we don't care
1148 about statements. */
1149 if (lp->save_var)
1150 return;
1151
1152 for (i = 0; lp->stmts.iterate (i, &oldstmt); ++i)
1153 {
1154 if (stmt == oldstmt)
1155 return;
1156 /* We already have a store to the same address, higher up the
1157 dominator tree. Nothing to do. */
1158 if (dominated_by_p (CDI_DOMINATORS,
1159 gimple_bb (stmt), gimple_bb (oldstmt)))
1160 return;
1161 /* We should be processing blocks in dominator tree order. */
1162 gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1163 gimple_bb (oldstmt), gimple_bb (stmt)));
1164 }
1165 /* Store is on a different code path. */
1166 lp->stmts.safe_push (stmt);
1167 }
1168 }
1169
1170 /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
1171 result, insert the new statements before GSI. */
1172
1173 static tree
1174 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1175 {
1176 if (TREE_CODE (x) == TARGET_MEM_REF)
1177 x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1178 else
1179 x = build_fold_addr_expr (x);
1180 return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1181 }
1182
1183 /* Instrument one address with the logging functions.
1184 ADDR is the address to save.
1185 STMT is the statement before which to place it. */
1186 static void
1187 tm_log_emit_stmt (tree addr, gimple stmt)
1188 {
1189 tree type = TREE_TYPE (addr);
1190 tree size = TYPE_SIZE_UNIT (type);
1191 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1192 gimple log;
1193 enum built_in_function code = BUILT_IN_TM_LOG;
1194
1195 if (type == float_type_node)
1196 code = BUILT_IN_TM_LOG_FLOAT;
1197 else if (type == double_type_node)
1198 code = BUILT_IN_TM_LOG_DOUBLE;
1199 else if (type == long_double_type_node)
1200 code = BUILT_IN_TM_LOG_LDOUBLE;
1201 else if (tree_fits_uhwi_p (size))
1202 {
1203 unsigned int n = tree_to_uhwi (size);
1204 switch (n)
1205 {
1206 case 1:
1207 code = BUILT_IN_TM_LOG_1;
1208 break;
1209 case 2:
1210 code = BUILT_IN_TM_LOG_2;
1211 break;
1212 case 4:
1213 code = BUILT_IN_TM_LOG_4;
1214 break;
1215 case 8:
1216 code = BUILT_IN_TM_LOG_8;
1217 break;
1218 default:
1219 code = BUILT_IN_TM_LOG;
1220 if (TREE_CODE (type) == VECTOR_TYPE)
1221 {
1222 if (n == 8 && builtin_decl_explicit (BUILT_IN_TM_LOG_M64))
1223 code = BUILT_IN_TM_LOG_M64;
1224 else if (n == 16 && builtin_decl_explicit (BUILT_IN_TM_LOG_M128))
1225 code = BUILT_IN_TM_LOG_M128;
1226 else if (n == 32 && builtin_decl_explicit (BUILT_IN_TM_LOG_M256))
1227 code = BUILT_IN_TM_LOG_M256;
1228 }
1229 break;
1230 }
1231 }
1232
1233 addr = gimplify_addr (&gsi, addr);
1234 if (code == BUILT_IN_TM_LOG)
1235 log = gimple_build_call (builtin_decl_explicit (code), 2, addr, size);
1236 else
1237 log = gimple_build_call (builtin_decl_explicit (code), 1, addr);
1238 gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1239 }
1240
1241 /* Go through the log and instrument address that must be instrumented
1242 with the logging functions. Leave the save/restore addresses for
1243 later. */
1244 static void
1245 tm_log_emit (void)
1246 {
1247 hash_table <log_entry_hasher>::iterator hi;
1248 struct tm_log_entry *lp;
1249
1250 FOR_EACH_HASH_TABLE_ELEMENT (tm_log, lp, tm_log_entry_t, hi)
1251 {
1252 size_t i;
1253 gimple stmt;
1254
1255 if (dump_file)
1256 {
1257 fprintf (dump_file, "TM thread private mem logging: ");
1258 print_generic_expr (dump_file, lp->addr, 0);
1259 fprintf (dump_file, "\n");
1260 }
1261
1262 if (lp->save_var)
1263 {
1264 if (dump_file)
1265 fprintf (dump_file, "DUMPING to variable\n");
1266 continue;
1267 }
1268 else
1269 {
1270 if (dump_file)
1271 fprintf (dump_file, "DUMPING with logging functions\n");
1272 for (i = 0; lp->stmts.iterate (i, &stmt); ++i)
1273 tm_log_emit_stmt (lp->addr, stmt);
1274 }
1275 }
1276 }
1277
1278 /* Emit the save sequence for the corresponding addresses in the log.
1279 ENTRY_BLOCK is the entry block for the transaction.
1280 BB is the basic block to insert the code in. */
1281 static void
1282 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1283 {
1284 size_t i;
1285 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1286 gimple stmt;
1287 struct tm_log_entry l, *lp;
1288
1289 for (i = 0; i < tm_log_save_addresses.length (); ++i)
1290 {
1291 l.addr = tm_log_save_addresses[i];
1292 lp = *(tm_log.find_slot (&l, NO_INSERT));
1293 gcc_assert (lp->save_var != NULL);
1294
1295 /* We only care about variables in the current transaction. */
1296 if (lp->entry_block != entry_block)
1297 continue;
1298
1299 stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1300
1301 /* Make sure we can create an SSA_NAME for this type. For
1302 instance, aggregates aren't allowed, in which case the system
1303 will create a VOP for us and everything will just work. */
1304 if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1305 {
1306 lp->save_var = make_ssa_name (lp->save_var, stmt);
1307 gimple_assign_set_lhs (stmt, lp->save_var);
1308 }
1309
1310 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1311 }
1312 }
1313
1314 /* Emit the restore sequence for the corresponding addresses in the log.
1315 ENTRY_BLOCK is the entry block for the transaction.
1316 BB is the basic block to insert the code in. */
1317 static void
1318 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1319 {
1320 int i;
1321 struct tm_log_entry l, *lp;
1322 gimple_stmt_iterator gsi;
1323 gimple stmt;
1324
1325 for (i = tm_log_save_addresses.length () - 1; i >= 0; i--)
1326 {
1327 l.addr = tm_log_save_addresses[i];
1328 lp = *(tm_log.find_slot (&l, NO_INSERT));
1329 gcc_assert (lp->save_var != NULL);
1330
1331 /* We only care about variables in the current transaction. */
1332 if (lp->entry_block != entry_block)
1333 continue;
1334
1335 /* Restores are in LIFO order from the saves in case we have
1336 overlaps. */
1337 gsi = gsi_start_bb (bb);
1338
1339 stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1340 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1341 }
1342 }
1343
1344 \f
1345 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1346 struct walk_stmt_info *);
1347 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1348 struct walk_stmt_info *);
1349
1350 /* Evaluate an address X being dereferenced and determine if it
1351 originally points to a non aliased new chunk of memory (malloc,
1352 alloca, etc).
1353
1354 Return MEM_THREAD_LOCAL if it points to a thread-local address.
1355 Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1356 Return MEM_NON_LOCAL otherwise.
1357
1358 ENTRY_BLOCK is the entry block to the transaction containing the
1359 dereference of X. */
1360 static enum thread_memory_type
1361 thread_private_new_memory (basic_block entry_block, tree x)
1362 {
1363 gimple stmt = NULL;
1364 enum tree_code code;
1365 tm_new_mem_map_t **slot;
1366 tm_new_mem_map_t elt, *elt_p;
1367 tree val = x;
1368 enum thread_memory_type retval = mem_transaction_local;
1369
1370 if (!entry_block
1371 || TREE_CODE (x) != SSA_NAME
1372 /* Possible uninitialized use, or a function argument. In
1373 either case, we don't care. */
1374 || SSA_NAME_IS_DEFAULT_DEF (x))
1375 return mem_non_local;
1376
1377 /* Look in cache first. */
1378 elt.val = x;
1379 slot = tm_new_mem_hash.find_slot (&elt, INSERT);
1380 elt_p = *slot;
1381 if (elt_p)
1382 return elt_p->local_new_memory;
1383
1384 /* Optimistically assume the memory is transaction local during
1385 processing. This catches recursion into this variable. */
1386 *slot = elt_p = XNEW (tm_new_mem_map_t);
1387 elt_p->val = val;
1388 elt_p->local_new_memory = mem_transaction_local;
1389
1390 /* Search DEF chain to find the original definition of this address. */
1391 do
1392 {
1393 if (ptr_deref_may_alias_global_p (x))
1394 {
1395 /* Address escapes. This is not thread-private. */
1396 retval = mem_non_local;
1397 goto new_memory_ret;
1398 }
1399
1400 stmt = SSA_NAME_DEF_STMT (x);
1401
1402 /* If the malloc call is outside the transaction, this is
1403 thread-local. */
1404 if (retval != mem_thread_local
1405 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1406 retval = mem_thread_local;
1407
1408 if (is_gimple_assign (stmt))
1409 {
1410 code = gimple_assign_rhs_code (stmt);
1411 /* x = foo ==> foo */
1412 if (code == SSA_NAME)
1413 x = gimple_assign_rhs1 (stmt);
1414 /* x = foo + n ==> foo */
1415 else if (code == POINTER_PLUS_EXPR)
1416 x = gimple_assign_rhs1 (stmt);
1417 /* x = (cast*) foo ==> foo */
1418 else if (code == VIEW_CONVERT_EXPR || code == NOP_EXPR)
1419 x = gimple_assign_rhs1 (stmt);
1420 /* x = c ? op1 : op2 == > op1 or op2 just like a PHI */
1421 else if (code == COND_EXPR)
1422 {
1423 tree op1 = gimple_assign_rhs2 (stmt);
1424 tree op2 = gimple_assign_rhs3 (stmt);
1425 enum thread_memory_type mem;
1426 retval = thread_private_new_memory (entry_block, op1);
1427 if (retval == mem_non_local)
1428 goto new_memory_ret;
1429 mem = thread_private_new_memory (entry_block, op2);
1430 retval = MIN (retval, mem);
1431 goto new_memory_ret;
1432 }
1433 else
1434 {
1435 retval = mem_non_local;
1436 goto new_memory_ret;
1437 }
1438 }
1439 else
1440 {
1441 if (gimple_code (stmt) == GIMPLE_PHI)
1442 {
1443 unsigned int i;
1444 enum thread_memory_type mem;
1445 tree phi_result = gimple_phi_result (stmt);
1446
1447 /* If any of the ancestors are non-local, we are sure to
1448 be non-local. Otherwise we can avoid doing anything
1449 and inherit what has already been generated. */
1450 retval = mem_max;
1451 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1452 {
1453 tree op = PHI_ARG_DEF (stmt, i);
1454
1455 /* Exclude self-assignment. */
1456 if (phi_result == op)
1457 continue;
1458
1459 mem = thread_private_new_memory (entry_block, op);
1460 if (mem == mem_non_local)
1461 {
1462 retval = mem;
1463 goto new_memory_ret;
1464 }
1465 retval = MIN (retval, mem);
1466 }
1467 goto new_memory_ret;
1468 }
1469 break;
1470 }
1471 }
1472 while (TREE_CODE (x) == SSA_NAME);
1473
1474 if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1475 /* Thread-local or transaction-local. */
1476 ;
1477 else
1478 retval = mem_non_local;
1479
1480 new_memory_ret:
1481 elt_p->local_new_memory = retval;
1482 return retval;
1483 }
1484
1485 /* Determine whether X has to be instrumented using a read
1486 or write barrier.
1487
1488 ENTRY_BLOCK is the entry block for the region where stmt resides
1489 in. NULL if unknown.
1490
1491 STMT is the statement in which X occurs in. It is used for thread
1492 private memory instrumentation. If no TPM instrumentation is
1493 desired, STMT should be null. */
1494 static bool
1495 requires_barrier (basic_block entry_block, tree x, gimple stmt)
1496 {
1497 tree orig = x;
1498 while (handled_component_p (x))
1499 x = TREE_OPERAND (x, 0);
1500
1501 switch (TREE_CODE (x))
1502 {
1503 case INDIRECT_REF:
1504 case MEM_REF:
1505 {
1506 enum thread_memory_type ret;
1507
1508 ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1509 if (ret == mem_non_local)
1510 return true;
1511 if (stmt && ret == mem_thread_local)
1512 /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
1513 tm_log_add (entry_block, orig, stmt);
1514
1515 /* Transaction-locals require nothing at all. For malloc, a
1516 transaction restart frees the memory and we reallocate.
1517 For alloca, the stack pointer gets reset by the retry and
1518 we reallocate. */
1519 return false;
1520 }
1521
1522 case TARGET_MEM_REF:
1523 if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1524 return true;
1525 x = TREE_OPERAND (TMR_BASE (x), 0);
1526 if (TREE_CODE (x) == PARM_DECL)
1527 return false;
1528 gcc_assert (TREE_CODE (x) == VAR_DECL);
1529 /* FALLTHRU */
1530
1531 case PARM_DECL:
1532 case RESULT_DECL:
1533 case VAR_DECL:
1534 if (DECL_BY_REFERENCE (x))
1535 {
1536 /* ??? This value is a pointer, but aggregate_value_p has been
1537 jigged to return true which confuses needs_to_live_in_memory.
1538 This ought to be cleaned up generically.
1539
1540 FIXME: Verify this still happens after the next mainline
1541 merge. Testcase ie g++.dg/tm/pr47554.C.
1542 */
1543 return false;
1544 }
1545
1546 if (is_global_var (x))
1547 return !TREE_READONLY (x);
1548 if (/* FIXME: This condition should actually go below in the
1549 tm_log_add() call, however is_call_clobbered() depends on
1550 aliasing info which is not available during
1551 gimplification. Since requires_barrier() gets called
1552 during lower_sequence_tm/gimplification, leave the call
1553 to needs_to_live_in_memory until we eliminate
1554 lower_sequence_tm altogether. */
1555 needs_to_live_in_memory (x))
1556 return true;
1557 else
1558 {
1559 /* For local memory that doesn't escape (aka thread private
1560 memory), we can either save the value at the beginning of
1561 the transaction and restore on restart, or call a tm
1562 function to dynamically save and restore on restart
1563 (ITM_L*). */
1564 if (stmt)
1565 tm_log_add (entry_block, orig, stmt);
1566 return false;
1567 }
1568
1569 default:
1570 return false;
1571 }
1572 }
1573
1574 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1575 a transaction region. */
1576
1577 static void
1578 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1579 {
1580 gimple stmt = gsi_stmt (*gsi);
1581
1582 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1583 *state |= GTMA_HAVE_LOAD;
1584 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1585 *state |= GTMA_HAVE_STORE;
1586 }
1587
1588 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
1589
1590 static void
1591 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1592 {
1593 gimple stmt = gsi_stmt (*gsi);
1594 tree fn;
1595
1596 if (is_tm_pure_call (stmt))
1597 return;
1598
1599 /* Check if this call is a transaction abort. */
1600 fn = gimple_call_fndecl (stmt);
1601 if (is_tm_abort (fn))
1602 *state |= GTMA_HAVE_ABORT;
1603
1604 /* Note that something may happen. */
1605 *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1606 }
1607
1608 /* Lower a GIMPLE_TRANSACTION statement. */
1609
1610 static void
1611 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1612 {
1613 gimple g, stmt = gsi_stmt (*gsi);
1614 unsigned int *outer_state = (unsigned int *) wi->info;
1615 unsigned int this_state = 0;
1616 struct walk_stmt_info this_wi;
1617
1618 /* First, lower the body. The scanning that we do inside gives
1619 us some idea of what we're dealing with. */
1620 memset (&this_wi, 0, sizeof (this_wi));
1621 this_wi.info = (void *) &this_state;
1622 walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
1623 lower_sequence_tm, NULL, &this_wi);
1624
1625 /* If there was absolutely nothing transaction related inside the
1626 transaction, we may elide it. Likewise if this is a nested
1627 transaction and does not contain an abort. */
1628 if (this_state == 0
1629 || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1630 {
1631 if (outer_state)
1632 *outer_state |= this_state;
1633
1634 gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1635 GSI_SAME_STMT);
1636 gimple_transaction_set_body (stmt, NULL);
1637
1638 gsi_remove (gsi, true);
1639 wi->removed_stmt = true;
1640 return;
1641 }
1642
1643 /* Wrap the body of the transaction in a try-finally node so that
1644 the commit call is always properly called. */
1645 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1646 if (flag_exceptions)
1647 {
1648 tree ptr;
1649 gimple_seq n_seq, e_seq;
1650
1651 n_seq = gimple_seq_alloc_with_stmt (g);
1652 e_seq = NULL;
1653
1654 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1655 1, integer_zero_node);
1656 ptr = create_tmp_var (ptr_type_node, NULL);
1657 gimple_call_set_lhs (g, ptr);
1658 gimple_seq_add_stmt (&e_seq, g);
1659
1660 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1661 1, ptr);
1662 gimple_seq_add_stmt (&e_seq, g);
1663
1664 g = gimple_build_eh_else (n_seq, e_seq);
1665 }
1666
1667 g = gimple_build_try (gimple_transaction_body (stmt),
1668 gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1669 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1670
1671 gimple_transaction_set_body (stmt, NULL);
1672
1673 /* If the transaction calls abort or if this is an outer transaction,
1674 add an "over" label afterwards. */
1675 if ((this_state & (GTMA_HAVE_ABORT))
1676 || (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER))
1677 {
1678 tree label = create_artificial_label (UNKNOWN_LOCATION);
1679 gimple_transaction_set_label (stmt, label);
1680 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
1681 }
1682
1683 /* Record the set of operations found for use later. */
1684 this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1685 gimple_transaction_set_subcode (stmt, this_state);
1686 }
1687
1688 /* Iterate through the statements in the sequence, lowering them all
1689 as appropriate for being in a transaction. */
1690
1691 static tree
1692 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1693 struct walk_stmt_info *wi)
1694 {
1695 unsigned int *state = (unsigned int *) wi->info;
1696 gimple stmt = gsi_stmt (*gsi);
1697
1698 *handled_ops_p = true;
1699 switch (gimple_code (stmt))
1700 {
1701 case GIMPLE_ASSIGN:
1702 /* Only memory reads/writes need to be instrumented. */
1703 if (gimple_assign_single_p (stmt))
1704 examine_assign_tm (state, gsi);
1705 break;
1706
1707 case GIMPLE_CALL:
1708 examine_call_tm (state, gsi);
1709 break;
1710
1711 case GIMPLE_ASM:
1712 *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1713 break;
1714
1715 case GIMPLE_TRANSACTION:
1716 lower_transaction (gsi, wi);
1717 break;
1718
1719 default:
1720 *handled_ops_p = !gimple_has_substatements (stmt);
1721 break;
1722 }
1723
1724 return NULL_TREE;
1725 }
1726
1727 /* Iterate through the statements in the sequence, lowering them all
1728 as appropriate for being outside of a transaction. */
1729
1730 static tree
1731 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1732 struct walk_stmt_info * wi)
1733 {
1734 gimple stmt = gsi_stmt (*gsi);
1735
1736 if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1737 {
1738 *handled_ops_p = true;
1739 lower_transaction (gsi, wi);
1740 }
1741 else
1742 *handled_ops_p = !gimple_has_substatements (stmt);
1743
1744 return NULL_TREE;
1745 }
1746
1747 /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
1748 this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1749 been moved out, and all the data required for constructing a proper
1750 CFG has been recorded. */
1751
1752 static unsigned int
1753 execute_lower_tm (void)
1754 {
1755 struct walk_stmt_info wi;
1756 gimple_seq body;
1757
1758 /* Transactional clones aren't created until a later pass. */
1759 gcc_assert (!decl_is_tm_clone (current_function_decl));
1760
1761 body = gimple_body (current_function_decl);
1762 memset (&wi, 0, sizeof (wi));
1763 walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi);
1764 gimple_set_body (current_function_decl, body);
1765
1766 return 0;
1767 }
1768
1769 namespace {
1770
1771 const pass_data pass_data_lower_tm =
1772 {
1773 GIMPLE_PASS, /* type */
1774 "tmlower", /* name */
1775 OPTGROUP_NONE, /* optinfo_flags */
1776 true, /* has_gate */
1777 true, /* has_execute */
1778 TV_TRANS_MEM, /* tv_id */
1779 PROP_gimple_lcf, /* properties_required */
1780 0, /* properties_provided */
1781 0, /* properties_destroyed */
1782 0, /* todo_flags_start */
1783 0, /* todo_flags_finish */
1784 };
1785
1786 class pass_lower_tm : public gimple_opt_pass
1787 {
1788 public:
1789 pass_lower_tm (gcc::context *ctxt)
1790 : gimple_opt_pass (pass_data_lower_tm, ctxt)
1791 {}
1792
1793 /* opt_pass methods: */
1794 bool gate () { return gate_tm (); }
1795 unsigned int execute () { return execute_lower_tm (); }
1796
1797 }; // class pass_lower_tm
1798
1799 } // anon namespace
1800
1801 gimple_opt_pass *
1802 make_pass_lower_tm (gcc::context *ctxt)
1803 {
1804 return new pass_lower_tm (ctxt);
1805 }
1806 \f
1807 /* Collect region information for each transaction. */
1808
1809 struct tm_region
1810 {
1811 /* Link to the next unnested transaction. */
1812 struct tm_region *next;
1813
1814 /* Link to the next inner transaction. */
1815 struct tm_region *inner;
1816
1817 /* Link to the next outer transaction. */
1818 struct tm_region *outer;
1819
1820 /* The GIMPLE_TRANSACTION statement beginning this transaction.
1821 After TM_MARK, this gets replaced by a call to
1822 BUILT_IN_TM_START. */
1823 gimple transaction_stmt;
1824
1825 /* After TM_MARK expands the GIMPLE_TRANSACTION into a call to
1826 BUILT_IN_TM_START, this field is true if the transaction is an
1827 outer transaction. */
1828 bool original_transaction_was_outer;
1829
1830 /* Return value from BUILT_IN_TM_START. */
1831 tree tm_state;
1832
1833 /* The entry block to this region. This will always be the first
1834 block of the body of the transaction. */
1835 basic_block entry_block;
1836
1837 /* The first block after an expanded call to _ITM_beginTransaction. */
1838 basic_block restart_block;
1839
1840 /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1841 These blocks are still a part of the region (i.e., the border is
1842 inclusive). Note that this set is only complete for paths in the CFG
1843 starting at ENTRY_BLOCK, and that there is no exit block recorded for
1844 the edge to the "over" label. */
1845 bitmap exit_blocks;
1846
1847 /* The set of all blocks that have an TM_IRREVOCABLE call. */
1848 bitmap irr_blocks;
1849 };
1850
1851 typedef struct tm_region *tm_region_p;
1852
1853 /* True if there are pending edge statements to be committed for the
1854 current function being scanned in the tmmark pass. */
1855 bool pending_edge_inserts_p;
1856
1857 static struct tm_region *all_tm_regions;
1858 static bitmap_obstack tm_obstack;
1859
1860
1861 /* A subroutine of tm_region_init. Record the existence of the
1862 GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
1863
1864 static struct tm_region *
1865 tm_region_init_0 (struct tm_region *outer, basic_block bb, gimple stmt)
1866 {
1867 struct tm_region *region;
1868
1869 region = (struct tm_region *)
1870 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1871
1872 if (outer)
1873 {
1874 region->next = outer->inner;
1875 outer->inner = region;
1876 }
1877 else
1878 {
1879 region->next = all_tm_regions;
1880 all_tm_regions = region;
1881 }
1882 region->inner = NULL;
1883 region->outer = outer;
1884
1885 region->transaction_stmt = stmt;
1886 region->original_transaction_was_outer = false;
1887 region->tm_state = NULL;
1888
1889 /* There are either one or two edges out of the block containing
1890 the GIMPLE_TRANSACTION, one to the actual region and one to the
1891 "over" label if the region contains an abort. The former will
1892 always be the one marked FALLTHRU. */
1893 region->entry_block = FALLTHRU_EDGE (bb)->dest;
1894
1895 region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1896 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1897
1898 return region;
1899 }
1900
1901 /* A subroutine of tm_region_init. Record all the exit and
1902 irrevocable blocks in BB into the region's exit_blocks and
1903 irr_blocks bitmaps. Returns the new region being scanned. */
1904
1905 static struct tm_region *
1906 tm_region_init_1 (struct tm_region *region, basic_block bb)
1907 {
1908 gimple_stmt_iterator gsi;
1909 gimple g;
1910
1911 if (!region
1912 || (!region->irr_blocks && !region->exit_blocks))
1913 return region;
1914
1915 /* Check to see if this is the end of a region by seeing if it
1916 contains a call to __builtin_tm_commit{,_eh}. Note that the
1917 outermost region for DECL_IS_TM_CLONE need not collect this. */
1918 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1919 {
1920 g = gsi_stmt (gsi);
1921 if (gimple_code (g) == GIMPLE_CALL)
1922 {
1923 tree fn = gimple_call_fndecl (g);
1924 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
1925 {
1926 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
1927 || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
1928 && region->exit_blocks)
1929 {
1930 bitmap_set_bit (region->exit_blocks, bb->index);
1931 region = region->outer;
1932 break;
1933 }
1934 if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
1935 bitmap_set_bit (region->irr_blocks, bb->index);
1936 }
1937 }
1938 }
1939 return region;
1940 }
1941
1942 /* Collect all of the transaction regions within the current function
1943 and record them in ALL_TM_REGIONS. The REGION parameter may specify
1944 an "outermost" region for use by tm clones. */
1945
1946 static void
1947 tm_region_init (struct tm_region *region)
1948 {
1949 gimple g;
1950 edge_iterator ei;
1951 edge e;
1952 basic_block bb;
1953 auto_vec<basic_block> queue;
1954 bitmap visited_blocks = BITMAP_ALLOC (NULL);
1955 struct tm_region *old_region;
1956 auto_vec<tm_region_p> bb_regions;
1957
1958 all_tm_regions = region;
1959 bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1960
1961 /* We could store this information in bb->aux, but we may get called
1962 through get_all_tm_blocks() from another pass that may be already
1963 using bb->aux. */
1964 bb_regions.safe_grow_cleared (last_basic_block);
1965
1966 queue.safe_push (bb);
1967 bb_regions[bb->index] = region;
1968 do
1969 {
1970 bb = queue.pop ();
1971 region = bb_regions[bb->index];
1972 bb_regions[bb->index] = NULL;
1973
1974 /* Record exit and irrevocable blocks. */
1975 region = tm_region_init_1 (region, bb);
1976
1977 /* Check for the last statement in the block beginning a new region. */
1978 g = last_stmt (bb);
1979 old_region = region;
1980 if (g && gimple_code (g) == GIMPLE_TRANSACTION)
1981 region = tm_region_init_0 (region, bb, g);
1982
1983 /* Process subsequent blocks. */
1984 FOR_EACH_EDGE (e, ei, bb->succs)
1985 if (!bitmap_bit_p (visited_blocks, e->dest->index))
1986 {
1987 bitmap_set_bit (visited_blocks, e->dest->index);
1988 queue.safe_push (e->dest);
1989
1990 /* If the current block started a new region, make sure that only
1991 the entry block of the new region is associated with this region.
1992 Other successors are still part of the old region. */
1993 if (old_region != region && e->dest != region->entry_block)
1994 bb_regions[e->dest->index] = old_region;
1995 else
1996 bb_regions[e->dest->index] = region;
1997 }
1998 }
1999 while (!queue.is_empty ());
2000 BITMAP_FREE (visited_blocks);
2001 }
2002
2003 /* The "gate" function for all transactional memory expansion and optimization
2004 passes. We collect region information for each top-level transaction, and
2005 if we don't find any, we skip all of the TM passes. Each region will have
2006 all of the exit blocks recorded, and the originating statement. */
2007
2008 static bool
2009 gate_tm_init (void)
2010 {
2011 if (!flag_tm)
2012 return false;
2013
2014 calculate_dominance_info (CDI_DOMINATORS);
2015 bitmap_obstack_initialize (&tm_obstack);
2016
2017 /* If the function is a TM_CLONE, then the entire function is the region. */
2018 if (decl_is_tm_clone (current_function_decl))
2019 {
2020 struct tm_region *region = (struct tm_region *)
2021 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
2022 memset (region, 0, sizeof (*region));
2023 region->entry_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2024 /* For a clone, the entire function is the region. But even if
2025 we don't need to record any exit blocks, we may need to
2026 record irrevocable blocks. */
2027 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
2028
2029 tm_region_init (region);
2030 }
2031 else
2032 {
2033 tm_region_init (NULL);
2034
2035 /* If we didn't find any regions, cleanup and skip the whole tree
2036 of tm-related optimizations. */
2037 if (all_tm_regions == NULL)
2038 {
2039 bitmap_obstack_release (&tm_obstack);
2040 return false;
2041 }
2042 }
2043
2044 return true;
2045 }
2046
2047 namespace {
2048
2049 const pass_data pass_data_tm_init =
2050 {
2051 GIMPLE_PASS, /* type */
2052 "*tminit", /* name */
2053 OPTGROUP_NONE, /* optinfo_flags */
2054 true, /* has_gate */
2055 false, /* has_execute */
2056 TV_TRANS_MEM, /* tv_id */
2057 ( PROP_ssa | PROP_cfg ), /* properties_required */
2058 0, /* properties_provided */
2059 0, /* properties_destroyed */
2060 0, /* todo_flags_start */
2061 0, /* todo_flags_finish */
2062 };
2063
2064 class pass_tm_init : public gimple_opt_pass
2065 {
2066 public:
2067 pass_tm_init (gcc::context *ctxt)
2068 : gimple_opt_pass (pass_data_tm_init, ctxt)
2069 {}
2070
2071 /* opt_pass methods: */
2072 bool gate () { return gate_tm_init (); }
2073
2074 }; // class pass_tm_init
2075
2076 } // anon namespace
2077
2078 gimple_opt_pass *
2079 make_pass_tm_init (gcc::context *ctxt)
2080 {
2081 return new pass_tm_init (ctxt);
2082 }
2083 \f
2084 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
2085 represented by STATE. */
2086
2087 static inline void
2088 transaction_subcode_ior (struct tm_region *region, unsigned flags)
2089 {
2090 if (region && region->transaction_stmt)
2091 {
2092 flags |= gimple_transaction_subcode (region->transaction_stmt);
2093 gimple_transaction_set_subcode (region->transaction_stmt, flags);
2094 }
2095 }
2096
2097 /* Construct a memory load in a transactional context. Return the
2098 gimple statement performing the load, or NULL if there is no
2099 TM_LOAD builtin of the appropriate size to do the load.
2100
2101 LOC is the location to use for the new statement(s). */
2102
2103 static gimple
2104 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2105 {
2106 enum built_in_function code = END_BUILTINS;
2107 tree t, type = TREE_TYPE (rhs), decl;
2108 gimple gcall;
2109
2110 if (type == float_type_node)
2111 code = BUILT_IN_TM_LOAD_FLOAT;
2112 else if (type == double_type_node)
2113 code = BUILT_IN_TM_LOAD_DOUBLE;
2114 else if (type == long_double_type_node)
2115 code = BUILT_IN_TM_LOAD_LDOUBLE;
2116 else if (TYPE_SIZE_UNIT (type) != NULL
2117 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2118 {
2119 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2120 {
2121 case 1:
2122 code = BUILT_IN_TM_LOAD_1;
2123 break;
2124 case 2:
2125 code = BUILT_IN_TM_LOAD_2;
2126 break;
2127 case 4:
2128 code = BUILT_IN_TM_LOAD_4;
2129 break;
2130 case 8:
2131 code = BUILT_IN_TM_LOAD_8;
2132 break;
2133 }
2134 }
2135
2136 if (code == END_BUILTINS)
2137 {
2138 decl = targetm.vectorize.builtin_tm_load (type);
2139 if (!decl)
2140 return NULL;
2141 }
2142 else
2143 decl = builtin_decl_explicit (code);
2144
2145 t = gimplify_addr (gsi, rhs);
2146 gcall = gimple_build_call (decl, 1, t);
2147 gimple_set_location (gcall, loc);
2148
2149 t = TREE_TYPE (TREE_TYPE (decl));
2150 if (useless_type_conversion_p (type, t))
2151 {
2152 gimple_call_set_lhs (gcall, lhs);
2153 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2154 }
2155 else
2156 {
2157 gimple g;
2158 tree temp;
2159
2160 temp = create_tmp_reg (t, NULL);
2161 gimple_call_set_lhs (gcall, temp);
2162 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2163
2164 t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2165 g = gimple_build_assign (lhs, t);
2166 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2167 }
2168
2169 return gcall;
2170 }
2171
2172
2173 /* Similarly for storing TYPE in a transactional context. */
2174
2175 static gimple
2176 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2177 {
2178 enum built_in_function code = END_BUILTINS;
2179 tree t, fn, type = TREE_TYPE (rhs), simple_type;
2180 gimple gcall;
2181
2182 if (type == float_type_node)
2183 code = BUILT_IN_TM_STORE_FLOAT;
2184 else if (type == double_type_node)
2185 code = BUILT_IN_TM_STORE_DOUBLE;
2186 else if (type == long_double_type_node)
2187 code = BUILT_IN_TM_STORE_LDOUBLE;
2188 else if (TYPE_SIZE_UNIT (type) != NULL
2189 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2190 {
2191 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2192 {
2193 case 1:
2194 code = BUILT_IN_TM_STORE_1;
2195 break;
2196 case 2:
2197 code = BUILT_IN_TM_STORE_2;
2198 break;
2199 case 4:
2200 code = BUILT_IN_TM_STORE_4;
2201 break;
2202 case 8:
2203 code = BUILT_IN_TM_STORE_8;
2204 break;
2205 }
2206 }
2207
2208 if (code == END_BUILTINS)
2209 {
2210 fn = targetm.vectorize.builtin_tm_store (type);
2211 if (!fn)
2212 return NULL;
2213 }
2214 else
2215 fn = builtin_decl_explicit (code);
2216
2217 simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2218
2219 if (TREE_CODE (rhs) == CONSTRUCTOR)
2220 {
2221 /* Handle the easy initialization to zero. */
2222 if (!CONSTRUCTOR_ELTS (rhs))
2223 rhs = build_int_cst (simple_type, 0);
2224 else
2225 {
2226 /* ...otherwise punt to the caller and probably use
2227 BUILT_IN_TM_MEMMOVE, because we can't wrap a
2228 VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2229 valid gimple. */
2230 return NULL;
2231 }
2232 }
2233 else if (!useless_type_conversion_p (simple_type, type))
2234 {
2235 gimple g;
2236 tree temp;
2237
2238 temp = create_tmp_reg (simple_type, NULL);
2239 t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2240 g = gimple_build_assign (temp, t);
2241 gimple_set_location (g, loc);
2242 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2243
2244 rhs = temp;
2245 }
2246
2247 t = gimplify_addr (gsi, lhs);
2248 gcall = gimple_build_call (fn, 2, t, rhs);
2249 gimple_set_location (gcall, loc);
2250 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2251
2252 return gcall;
2253 }
2254
2255
2256 /* Expand an assignment statement into transactional builtins. */
2257
2258 static void
2259 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2260 {
2261 gimple stmt = gsi_stmt (*gsi);
2262 location_t loc = gimple_location (stmt);
2263 tree lhs = gimple_assign_lhs (stmt);
2264 tree rhs = gimple_assign_rhs1 (stmt);
2265 bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2266 bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2267 gimple gcall = NULL;
2268
2269 if (!load_p && !store_p)
2270 {
2271 /* Add thread private addresses to log if applicable. */
2272 requires_barrier (region->entry_block, lhs, stmt);
2273 gsi_next (gsi);
2274 return;
2275 }
2276
2277 // Remove original load/store statement.
2278 gsi_remove (gsi, true);
2279
2280 if (load_p && !store_p)
2281 {
2282 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2283 gcall = build_tm_load (loc, lhs, rhs, gsi);
2284 }
2285 else if (store_p && !load_p)
2286 {
2287 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2288 gcall = build_tm_store (loc, lhs, rhs, gsi);
2289 }
2290 if (!gcall)
2291 {
2292 tree lhs_addr, rhs_addr, tmp;
2293
2294 if (load_p)
2295 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2296 if (store_p)
2297 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2298
2299 /* ??? Figure out if there's any possible overlap between the LHS
2300 and the RHS and if not, use MEMCPY. */
2301
2302 if (load_p && is_gimple_reg (lhs))
2303 {
2304 tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2305 lhs_addr = build_fold_addr_expr (tmp);
2306 }
2307 else
2308 {
2309 tmp = NULL_TREE;
2310 lhs_addr = gimplify_addr (gsi, lhs);
2311 }
2312 rhs_addr = gimplify_addr (gsi, rhs);
2313 gcall = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_MEMMOVE),
2314 3, lhs_addr, rhs_addr,
2315 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2316 gimple_set_location (gcall, loc);
2317 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2318
2319 if (tmp)
2320 {
2321 gcall = gimple_build_assign (lhs, tmp);
2322 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2323 }
2324 }
2325
2326 /* Now that we have the load/store in its instrumented form, add
2327 thread private addresses to the log if applicable. */
2328 if (!store_p)
2329 requires_barrier (region->entry_block, lhs, gcall);
2330
2331 // The calls to build_tm_{store,load} above inserted the instrumented
2332 // call into the stream.
2333 // gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2334 }
2335
2336
2337 /* Expand a call statement as appropriate for a transaction. That is,
2338 either verify that the call does not affect the transaction, or
2339 redirect the call to a clone that handles transactions, or change
2340 the transaction state to IRREVOCABLE. Return true if the call is
2341 one of the builtins that end a transaction. */
2342
2343 static bool
2344 expand_call_tm (struct tm_region *region,
2345 gimple_stmt_iterator *gsi)
2346 {
2347 gimple stmt = gsi_stmt (*gsi);
2348 tree lhs = gimple_call_lhs (stmt);
2349 tree fn_decl;
2350 struct cgraph_node *node;
2351 bool retval = false;
2352
2353 fn_decl = gimple_call_fndecl (stmt);
2354
2355 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2356 || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2357 transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2358 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2359 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2360
2361 if (is_tm_pure_call (stmt))
2362 return false;
2363
2364 if (fn_decl)
2365 retval = is_tm_ending_fndecl (fn_decl);
2366 if (!retval)
2367 {
2368 /* Assume all non-const/pure calls write to memory, except
2369 transaction ending builtins. */
2370 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2371 }
2372
2373 /* For indirect calls, we already generated a call into the runtime. */
2374 if (!fn_decl)
2375 {
2376 tree fn = gimple_call_fn (stmt);
2377
2378 /* We are guaranteed never to go irrevocable on a safe or pure
2379 call, and the pure call was handled above. */
2380 if (is_tm_safe (fn))
2381 return false;
2382 else
2383 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2384
2385 return false;
2386 }
2387
2388 node = cgraph_get_node (fn_decl);
2389 /* All calls should have cgraph here. */
2390 if (!node)
2391 {
2392 /* We can have a nodeless call here if some pass after IPA-tm
2393 added uninstrumented calls. For example, loop distribution
2394 can transform certain loop constructs into __builtin_mem*
2395 calls. In this case, see if we have a suitable TM
2396 replacement and fill in the gaps. */
2397 gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL);
2398 enum built_in_function code = DECL_FUNCTION_CODE (fn_decl);
2399 gcc_assert (code == BUILT_IN_MEMCPY
2400 || code == BUILT_IN_MEMMOVE
2401 || code == BUILT_IN_MEMSET);
2402
2403 tree repl = find_tm_replacement_function (fn_decl);
2404 if (repl)
2405 {
2406 gimple_call_set_fndecl (stmt, repl);
2407 update_stmt (stmt);
2408 node = cgraph_create_node (repl);
2409 node->local.tm_may_enter_irr = false;
2410 return expand_call_tm (region, gsi);
2411 }
2412 gcc_unreachable ();
2413 }
2414 if (node->local.tm_may_enter_irr)
2415 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2416
2417 if (is_tm_abort (fn_decl))
2418 {
2419 transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2420 return true;
2421 }
2422
2423 /* Instrument the store if needed.
2424
2425 If the assignment happens inside the function call (return slot
2426 optimization), there is no instrumentation to be done, since
2427 the callee should have done the right thing. */
2428 if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2429 && !gimple_call_return_slot_opt_p (stmt))
2430 {
2431 tree tmp = create_tmp_reg (TREE_TYPE (lhs), NULL);
2432 location_t loc = gimple_location (stmt);
2433 edge fallthru_edge = NULL;
2434
2435 /* Remember if the call was going to throw. */
2436 if (stmt_can_throw_internal (stmt))
2437 {
2438 edge_iterator ei;
2439 edge e;
2440 basic_block bb = gimple_bb (stmt);
2441
2442 FOR_EACH_EDGE (e, ei, bb->succs)
2443 if (e->flags & EDGE_FALLTHRU)
2444 {
2445 fallthru_edge = e;
2446 break;
2447 }
2448 }
2449
2450 gimple_call_set_lhs (stmt, tmp);
2451 update_stmt (stmt);
2452 stmt = gimple_build_assign (lhs, tmp);
2453 gimple_set_location (stmt, loc);
2454
2455 /* We cannot throw in the middle of a BB. If the call was going
2456 to throw, place the instrumentation on the fallthru edge, so
2457 the call remains the last statement in the block. */
2458 if (fallthru_edge)
2459 {
2460 gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (stmt);
2461 gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2462 expand_assign_tm (region, &fallthru_gsi);
2463 gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2464 pending_edge_inserts_p = true;
2465 }
2466 else
2467 {
2468 gsi_insert_after (gsi, stmt, GSI_CONTINUE_LINKING);
2469 expand_assign_tm (region, gsi);
2470 }
2471
2472 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2473 }
2474
2475 return retval;
2476 }
2477
2478
2479 /* Expand all statements in BB as appropriate for being inside
2480 a transaction. */
2481
2482 static void
2483 expand_block_tm (struct tm_region *region, basic_block bb)
2484 {
2485 gimple_stmt_iterator gsi;
2486
2487 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2488 {
2489 gimple stmt = gsi_stmt (gsi);
2490 switch (gimple_code (stmt))
2491 {
2492 case GIMPLE_ASSIGN:
2493 /* Only memory reads/writes need to be instrumented. */
2494 if (gimple_assign_single_p (stmt)
2495 && !gimple_clobber_p (stmt))
2496 {
2497 expand_assign_tm (region, &gsi);
2498 continue;
2499 }
2500 break;
2501
2502 case GIMPLE_CALL:
2503 if (expand_call_tm (region, &gsi))
2504 return;
2505 break;
2506
2507 case GIMPLE_ASM:
2508 gcc_unreachable ();
2509
2510 default:
2511 break;
2512 }
2513 if (!gsi_end_p (gsi))
2514 gsi_next (&gsi);
2515 }
2516 }
2517
2518 /* Return the list of basic-blocks in REGION.
2519
2520 STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2521 following a TM_IRREVOCABLE call.
2522
2523 INCLUDE_UNINSTRUMENTED_P is TRUE if we should include the
2524 uninstrumented code path blocks in the list of basic blocks
2525 returned, false otherwise. */
2526
2527 static vec<basic_block>
2528 get_tm_region_blocks (basic_block entry_block,
2529 bitmap exit_blocks,
2530 bitmap irr_blocks,
2531 bitmap all_region_blocks,
2532 bool stop_at_irrevocable_p,
2533 bool include_uninstrumented_p = true)
2534 {
2535 vec<basic_block> bbs = vNULL;
2536 unsigned i;
2537 edge e;
2538 edge_iterator ei;
2539 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2540
2541 i = 0;
2542 bbs.safe_push (entry_block);
2543 bitmap_set_bit (visited_blocks, entry_block->index);
2544
2545 do
2546 {
2547 basic_block bb = bbs[i++];
2548
2549 if (exit_blocks &&
2550 bitmap_bit_p (exit_blocks, bb->index))
2551 continue;
2552
2553 if (stop_at_irrevocable_p
2554 && irr_blocks
2555 && bitmap_bit_p (irr_blocks, bb->index))
2556 continue;
2557
2558 FOR_EACH_EDGE (e, ei, bb->succs)
2559 if ((include_uninstrumented_p
2560 || !(e->flags & EDGE_TM_UNINSTRUMENTED))
2561 && !bitmap_bit_p (visited_blocks, e->dest->index))
2562 {
2563 bitmap_set_bit (visited_blocks, e->dest->index);
2564 bbs.safe_push (e->dest);
2565 }
2566 }
2567 while (i < bbs.length ());
2568
2569 if (all_region_blocks)
2570 bitmap_ior_into (all_region_blocks, visited_blocks);
2571
2572 BITMAP_FREE (visited_blocks);
2573 return bbs;
2574 }
2575
2576 // Callback data for collect_bb2reg.
2577 struct bb2reg_stuff
2578 {
2579 vec<tm_region_p> *bb2reg;
2580 bool include_uninstrumented_p;
2581 };
2582
2583 // Callback for expand_regions, collect innermost region data for each bb.
2584 static void *
2585 collect_bb2reg (struct tm_region *region, void *data)
2586 {
2587 struct bb2reg_stuff *stuff = (struct bb2reg_stuff *)data;
2588 vec<tm_region_p> *bb2reg = stuff->bb2reg;
2589 vec<basic_block> queue;
2590 unsigned int i;
2591 basic_block bb;
2592
2593 queue = get_tm_region_blocks (region->entry_block,
2594 region->exit_blocks,
2595 region->irr_blocks,
2596 NULL,
2597 /*stop_at_irr_p=*/true,
2598 stuff->include_uninstrumented_p);
2599
2600 // We expect expand_region to perform a post-order traversal of the region
2601 // tree. Therefore the last region seen for any bb is the innermost.
2602 FOR_EACH_VEC_ELT (queue, i, bb)
2603 (*bb2reg)[bb->index] = region;
2604
2605 queue.release ();
2606 return NULL;
2607 }
2608
2609 // Returns a vector, indexed by BB->INDEX, of the innermost tm_region to
2610 // which a basic block belongs. Note that we only consider the instrumented
2611 // code paths for the region; the uninstrumented code paths are ignored if
2612 // INCLUDE_UNINSTRUMENTED_P is false.
2613 //
2614 // ??? This data is very similar to the bb_regions array that is collected
2615 // during tm_region_init. Or, rather, this data is similar to what could
2616 // be used within tm_region_init. The actual computation in tm_region_init
2617 // begins and ends with bb_regions entirely full of NULL pointers, due to
2618 // the way in which pointers are swapped in and out of the array.
2619 //
2620 // ??? Our callers expect that blocks are not shared between transactions.
2621 // When the optimizers get too smart, and blocks are shared, then during
2622 // the tm_mark phase we'll add log entries to only one of the two transactions,
2623 // and in the tm_edge phase we'll add edges to the CFG that create invalid
2624 // cycles. The symptom being SSA defs that do not dominate their uses.
2625 // Note that the optimizers were locally correct with their transformation,
2626 // as we have no info within the program that suggests that the blocks cannot
2627 // be shared.
2628 //
2629 // ??? There is currently a hack inside tree-ssa-pre.c to work around the
2630 // only known instance of this block sharing.
2631
2632 static vec<tm_region_p>
2633 get_bb_regions_instrumented (bool traverse_clones,
2634 bool include_uninstrumented_p)
2635 {
2636 unsigned n = last_basic_block;
2637 struct bb2reg_stuff stuff;
2638 vec<tm_region_p> ret;
2639
2640 ret.create (n);
2641 ret.safe_grow_cleared (n);
2642 stuff.bb2reg = &ret;
2643 stuff.include_uninstrumented_p = include_uninstrumented_p;
2644 expand_regions (all_tm_regions, collect_bb2reg, &stuff, traverse_clones);
2645
2646 return ret;
2647 }
2648
2649 /* Set the IN_TRANSACTION for all gimple statements that appear in a
2650 transaction. */
2651
2652 void
2653 compute_transaction_bits (void)
2654 {
2655 struct tm_region *region;
2656 vec<basic_block> queue;
2657 unsigned int i;
2658 basic_block bb;
2659
2660 /* ?? Perhaps we need to abstract gate_tm_init further, because we
2661 certainly don't need it to calculate CDI_DOMINATOR info. */
2662 gate_tm_init ();
2663
2664 FOR_EACH_BB (bb)
2665 bb->flags &= ~BB_IN_TRANSACTION;
2666
2667 for (region = all_tm_regions; region; region = region->next)
2668 {
2669 queue = get_tm_region_blocks (region->entry_block,
2670 region->exit_blocks,
2671 region->irr_blocks,
2672 NULL,
2673 /*stop_at_irr_p=*/true);
2674 for (i = 0; queue.iterate (i, &bb); ++i)
2675 bb->flags |= BB_IN_TRANSACTION;
2676 queue.release ();
2677 }
2678
2679 if (all_tm_regions)
2680 bitmap_obstack_release (&tm_obstack);
2681 }
2682
2683 /* Replace the GIMPLE_TRANSACTION in this region with the corresponding
2684 call to BUILT_IN_TM_START. */
2685
2686 static void *
2687 expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2688 {
2689 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2690 basic_block transaction_bb = gimple_bb (region->transaction_stmt);
2691 tree tm_state = region->tm_state;
2692 tree tm_state_type = TREE_TYPE (tm_state);
2693 edge abort_edge = NULL;
2694 edge inst_edge = NULL;
2695 edge uninst_edge = NULL;
2696 edge fallthru_edge = NULL;
2697
2698 // Identify the various successors of the transaction start.
2699 {
2700 edge_iterator i;
2701 edge e;
2702 FOR_EACH_EDGE (e, i, transaction_bb->succs)
2703 {
2704 if (e->flags & EDGE_TM_ABORT)
2705 abort_edge = e;
2706 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
2707 uninst_edge = e;
2708 else
2709 inst_edge = e;
2710 if (e->flags & EDGE_FALLTHRU)
2711 fallthru_edge = e;
2712 }
2713 }
2714
2715 /* ??? There are plenty of bits here we're not computing. */
2716 {
2717 int subcode = gimple_transaction_subcode (region->transaction_stmt);
2718 int flags = 0;
2719 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2720 flags |= PR_DOESGOIRREVOCABLE;
2721 if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2722 flags |= PR_HASNOIRREVOCABLE;
2723 /* If the transaction does not have an abort in lexical scope and is not
2724 marked as an outer transaction, then it will never abort. */
2725 if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0)
2726 flags |= PR_HASNOABORT;
2727 if ((subcode & GTMA_HAVE_STORE) == 0)
2728 flags |= PR_READONLY;
2729 if (inst_edge && !(subcode & GTMA_HAS_NO_INSTRUMENTATION))
2730 flags |= PR_INSTRUMENTEDCODE;
2731 if (uninst_edge)
2732 flags |= PR_UNINSTRUMENTEDCODE;
2733 if (subcode & GTMA_IS_OUTER)
2734 region->original_transaction_was_outer = true;
2735 tree t = build_int_cst (tm_state_type, flags);
2736 gimple call = gimple_build_call (tm_start, 1, t);
2737 gimple_call_set_lhs (call, tm_state);
2738 gimple_set_location (call, gimple_location (region->transaction_stmt));
2739
2740 // Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START.
2741 gimple_stmt_iterator gsi = gsi_last_bb (transaction_bb);
2742 gcc_assert (gsi_stmt (gsi) == region->transaction_stmt);
2743 gsi_insert_before (&gsi, call, GSI_SAME_STMT);
2744 gsi_remove (&gsi, true);
2745 region->transaction_stmt = call;
2746 }
2747
2748 // Generate log saves.
2749 if (!tm_log_save_addresses.is_empty ())
2750 tm_log_emit_saves (region->entry_block, transaction_bb);
2751
2752 // In the beginning, we've no tests to perform on transaction restart.
2753 // Note that after this point, transaction_bb becomes the "most recent
2754 // block containing tests for the transaction".
2755 region->restart_block = region->entry_block;
2756
2757 // Generate log restores.
2758 if (!tm_log_save_addresses.is_empty ())
2759 {
2760 basic_block test_bb = create_empty_bb (transaction_bb);
2761 basic_block code_bb = create_empty_bb (test_bb);
2762 basic_block join_bb = create_empty_bb (code_bb);
2763 if (current_loops && transaction_bb->loop_father)
2764 {
2765 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2766 add_bb_to_loop (code_bb, transaction_bb->loop_father);
2767 add_bb_to_loop (join_bb, transaction_bb->loop_father);
2768 }
2769 if (region->restart_block == region->entry_block)
2770 region->restart_block = test_bb;
2771
2772 tree t1 = create_tmp_reg (tm_state_type, NULL);
2773 tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES);
2774 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2775 tm_state, t2);
2776 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2777 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2778
2779 t2 = build_int_cst (tm_state_type, 0);
2780 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2781 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2782
2783 tm_log_emit_restores (region->entry_block, code_bb);
2784
2785 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2786 edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE);
2787 edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE);
2788 redirect_edge_pred (fallthru_edge, join_bb);
2789
2790 join_bb->frequency = test_bb->frequency = transaction_bb->frequency;
2791 join_bb->count = test_bb->count = transaction_bb->count;
2792
2793 ei->probability = PROB_ALWAYS;
2794 et->probability = PROB_LIKELY;
2795 ef->probability = PROB_UNLIKELY;
2796 et->count = apply_probability (test_bb->count, et->probability);
2797 ef->count = apply_probability (test_bb->count, ef->probability);
2798
2799 code_bb->count = et->count;
2800 code_bb->frequency = EDGE_FREQUENCY (et);
2801
2802 transaction_bb = join_bb;
2803 }
2804
2805 // If we have an ABORT edge, create a test to perform the abort.
2806 if (abort_edge)
2807 {
2808 basic_block test_bb = create_empty_bb (transaction_bb);
2809 if (current_loops && transaction_bb->loop_father)
2810 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2811 if (region->restart_block == region->entry_block)
2812 region->restart_block = test_bb;
2813
2814 tree t1 = create_tmp_reg (tm_state_type, NULL);
2815 tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION);
2816 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2817 tm_state, t2);
2818 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2819 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2820
2821 t2 = build_int_cst (tm_state_type, 0);
2822 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2823 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2824
2825 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2826 test_bb->frequency = transaction_bb->frequency;
2827 test_bb->count = transaction_bb->count;
2828 ei->probability = PROB_ALWAYS;
2829
2830 // Not abort edge. If both are live, chose one at random as we'll
2831 // we'll be fixing that up below.
2832 redirect_edge_pred (fallthru_edge, test_bb);
2833 fallthru_edge->flags = EDGE_FALSE_VALUE;
2834 fallthru_edge->probability = PROB_VERY_LIKELY;
2835 fallthru_edge->count
2836 = apply_probability (test_bb->count, fallthru_edge->probability);
2837
2838 // Abort/over edge.
2839 redirect_edge_pred (abort_edge, test_bb);
2840 abort_edge->flags = EDGE_TRUE_VALUE;
2841 abort_edge->probability = PROB_VERY_UNLIKELY;
2842 abort_edge->count
2843 = apply_probability (test_bb->count, abort_edge->probability);
2844
2845 transaction_bb = test_bb;
2846 }
2847
2848 // If we have both instrumented and uninstrumented code paths, select one.
2849 if (inst_edge && uninst_edge)
2850 {
2851 basic_block test_bb = create_empty_bb (transaction_bb);
2852 if (current_loops && transaction_bb->loop_father)
2853 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2854 if (region->restart_block == region->entry_block)
2855 region->restart_block = test_bb;
2856
2857 tree t1 = create_tmp_reg (tm_state_type, NULL);
2858 tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE);
2859
2860 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2861 tm_state, t2);
2862 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2863 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2864
2865 t2 = build_int_cst (tm_state_type, 0);
2866 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2867 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2868
2869 // Create the edge into test_bb first, as we want to copy values
2870 // out of the fallthru edge.
2871 edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags);
2872 e->probability = fallthru_edge->probability;
2873 test_bb->count = e->count = fallthru_edge->count;
2874 test_bb->frequency = EDGE_FREQUENCY (e);
2875
2876 // Now update the edges to the inst/uninist implementations.
2877 // For now assume that the paths are equally likely. When using HTM,
2878 // we'll try the uninst path first and fallback to inst path if htm
2879 // buffers are exceeded. Without HTM we start with the inst path and
2880 // use the uninst path when falling back to serial mode.
2881 redirect_edge_pred (inst_edge, test_bb);
2882 inst_edge->flags = EDGE_FALSE_VALUE;
2883 inst_edge->probability = REG_BR_PROB_BASE / 2;
2884 inst_edge->count
2885 = apply_probability (test_bb->count, inst_edge->probability);
2886
2887 redirect_edge_pred (uninst_edge, test_bb);
2888 uninst_edge->flags = EDGE_TRUE_VALUE;
2889 uninst_edge->probability = REG_BR_PROB_BASE / 2;
2890 uninst_edge->count
2891 = apply_probability (test_bb->count, uninst_edge->probability);
2892 }
2893
2894 // If we have no previous special cases, and we have PHIs at the beginning
2895 // of the atomic region, this means we have a loop at the beginning of the
2896 // atomic region that shares the first block. This can cause problems with
2897 // the transaction restart abnormal edges to be added in the tm_edges pass.
2898 // Solve this by adding a new empty block to receive the abnormal edges.
2899 if (region->restart_block == region->entry_block
2900 && phi_nodes (region->entry_block))
2901 {
2902 basic_block empty_bb = create_empty_bb (transaction_bb);
2903 region->restart_block = empty_bb;
2904 if (current_loops && transaction_bb->loop_father)
2905 add_bb_to_loop (empty_bb, transaction_bb->loop_father);
2906
2907 redirect_edge_pred (fallthru_edge, empty_bb);
2908 make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU);
2909 }
2910
2911 return NULL;
2912 }
2913
2914 /* Generate the temporary to be used for the return value of
2915 BUILT_IN_TM_START. */
2916
2917 static void *
2918 generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2919 {
2920 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2921 region->tm_state =
2922 create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
2923
2924 // Reset the subcode, post optimizations. We'll fill this in
2925 // again as we process blocks.
2926 if (region->exit_blocks)
2927 {
2928 unsigned int subcode
2929 = gimple_transaction_subcode (region->transaction_stmt);
2930
2931 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2932 subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
2933 | GTMA_MAY_ENTER_IRREVOCABLE
2934 | GTMA_HAS_NO_INSTRUMENTATION);
2935 else
2936 subcode &= GTMA_DECLARATION_MASK;
2937 gimple_transaction_set_subcode (region->transaction_stmt, subcode);
2938 }
2939
2940 return NULL;
2941 }
2942
2943 // Propagate flags from inner transactions outwards.
2944 static void
2945 propagate_tm_flags_out (struct tm_region *region)
2946 {
2947 if (region == NULL)
2948 return;
2949 propagate_tm_flags_out (region->inner);
2950
2951 if (region->outer && region->outer->transaction_stmt)
2952 {
2953 unsigned s = gimple_transaction_subcode (region->transaction_stmt);
2954 s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE
2955 | GTMA_MAY_ENTER_IRREVOCABLE);
2956 s |= gimple_transaction_subcode (region->outer->transaction_stmt);
2957 gimple_transaction_set_subcode (region->outer->transaction_stmt, s);
2958 }
2959
2960 propagate_tm_flags_out (region->next);
2961 }
2962
2963 /* Entry point to the MARK phase of TM expansion. Here we replace
2964 transactional memory statements with calls to builtins, and function
2965 calls with their transactional clones (if available). But we don't
2966 yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
2967
2968 static unsigned int
2969 execute_tm_mark (void)
2970 {
2971 pending_edge_inserts_p = false;
2972
2973 expand_regions (all_tm_regions, generate_tm_state, NULL,
2974 /*traverse_clones=*/true);
2975
2976 tm_log_init ();
2977
2978 vec<tm_region_p> bb_regions
2979 = get_bb_regions_instrumented (/*traverse_clones=*/true,
2980 /*include_uninstrumented_p=*/false);
2981 struct tm_region *r;
2982 unsigned i;
2983
2984 // Expand memory operations into calls into the runtime.
2985 // This collects log entries as well.
2986 FOR_EACH_VEC_ELT (bb_regions, i, r)
2987 {
2988 if (r != NULL)
2989 {
2990 if (r->transaction_stmt)
2991 {
2992 unsigned sub = gimple_transaction_subcode (r->transaction_stmt);
2993
2994 /* If we're sure to go irrevocable, there won't be
2995 anything to expand, since the run-time will go
2996 irrevocable right away. */
2997 if (sub & GTMA_DOES_GO_IRREVOCABLE
2998 && sub & GTMA_MAY_ENTER_IRREVOCABLE)
2999 continue;
3000 }
3001 expand_block_tm (r, BASIC_BLOCK (i));
3002 }
3003 }
3004
3005 bb_regions.release ();
3006
3007 // Propagate flags from inner transactions outwards.
3008 propagate_tm_flags_out (all_tm_regions);
3009
3010 // Expand GIMPLE_TRANSACTIONs into calls into the runtime.
3011 expand_regions (all_tm_regions, expand_transaction, NULL,
3012 /*traverse_clones=*/false);
3013
3014 tm_log_emit ();
3015 tm_log_delete ();
3016
3017 if (pending_edge_inserts_p)
3018 gsi_commit_edge_inserts ();
3019 free_dominance_info (CDI_DOMINATORS);
3020 return 0;
3021 }
3022
3023 namespace {
3024
3025 const pass_data pass_data_tm_mark =
3026 {
3027 GIMPLE_PASS, /* type */
3028 "tmmark", /* name */
3029 OPTGROUP_NONE, /* optinfo_flags */
3030 false, /* has_gate */
3031 true, /* has_execute */
3032 TV_TRANS_MEM, /* tv_id */
3033 ( PROP_ssa | PROP_cfg ), /* properties_required */
3034 0, /* properties_provided */
3035 0, /* properties_destroyed */
3036 0, /* todo_flags_start */
3037 ( TODO_update_ssa | TODO_verify_ssa ), /* todo_flags_finish */
3038 };
3039
3040 class pass_tm_mark : public gimple_opt_pass
3041 {
3042 public:
3043 pass_tm_mark (gcc::context *ctxt)
3044 : gimple_opt_pass (pass_data_tm_mark, ctxt)
3045 {}
3046
3047 /* opt_pass methods: */
3048 unsigned int execute () { return execute_tm_mark (); }
3049
3050 }; // class pass_tm_mark
3051
3052 } // anon namespace
3053
3054 gimple_opt_pass *
3055 make_pass_tm_mark (gcc::context *ctxt)
3056 {
3057 return new pass_tm_mark (ctxt);
3058 }
3059 \f
3060
3061 /* Create an abnormal edge from STMT at iter, splitting the block
3062 as necessary. Adjust *PNEXT as needed for the split block. */
3063
3064 static inline void
3065 split_bb_make_tm_edge (gimple stmt, basic_block dest_bb,
3066 gimple_stmt_iterator iter, gimple_stmt_iterator *pnext)
3067 {
3068 basic_block bb = gimple_bb (stmt);
3069 if (!gsi_one_before_end_p (iter))
3070 {
3071 edge e = split_block (bb, stmt);
3072 *pnext = gsi_start_bb (e->dest);
3073 }
3074 make_edge (bb, dest_bb, EDGE_ABNORMAL);
3075
3076 // Record the need for the edge for the benefit of the rtl passes.
3077 if (cfun->gimple_df->tm_restart == NULL)
3078 cfun->gimple_df->tm_restart = htab_create_ggc (31, struct_ptr_hash,
3079 struct_ptr_eq, ggc_free);
3080
3081 struct tm_restart_node dummy;
3082 dummy.stmt = stmt;
3083 dummy.label_or_list = gimple_block_label (dest_bb);
3084
3085 void **slot = htab_find_slot (cfun->gimple_df->tm_restart, &dummy, INSERT);
3086 struct tm_restart_node *n = (struct tm_restart_node *) *slot;
3087 if (n == NULL)
3088 {
3089 n = ggc_alloc_tm_restart_node ();
3090 *n = dummy;
3091 }
3092 else
3093 {
3094 tree old = n->label_or_list;
3095 if (TREE_CODE (old) == LABEL_DECL)
3096 old = tree_cons (NULL, old, NULL);
3097 n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
3098 }
3099 }
3100
3101 /* Split block BB as necessary for every builtin function we added, and
3102 wire up the abnormal back edges implied by the transaction restart. */
3103
3104 static void
3105 expand_block_edges (struct tm_region *const region, basic_block bb)
3106 {
3107 gimple_stmt_iterator gsi, next_gsi;
3108
3109 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi = next_gsi)
3110 {
3111 gimple stmt = gsi_stmt (gsi);
3112
3113 next_gsi = gsi;
3114 gsi_next (&next_gsi);
3115
3116 // ??? Shouldn't we split for any non-pure, non-irrevocable function?
3117 if (gimple_code (stmt) != GIMPLE_CALL
3118 || (gimple_call_flags (stmt) & ECF_TM_BUILTIN) == 0)
3119 continue;
3120
3121 if (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)) == BUILT_IN_TM_ABORT)
3122 {
3123 // If we have a ``_transaction_cancel [[outer]]'', there is only
3124 // one abnormal edge: to the transaction marked OUTER.
3125 // All compiler-generated instances of BUILT_IN_TM_ABORT have a
3126 // constant argument, which we can examine here. Users invoking
3127 // TM_ABORT directly get what they deserve.
3128 tree arg = gimple_call_arg (stmt, 0);
3129 if (TREE_CODE (arg) == INTEGER_CST
3130 && (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0
3131 && !decl_is_tm_clone (current_function_decl))
3132 {
3133 // Find the GTMA_IS_OUTER transaction.
3134 for (struct tm_region *o = region; o; o = o->outer)
3135 if (o->original_transaction_was_outer)
3136 {
3137 split_bb_make_tm_edge (stmt, o->restart_block,
3138 gsi, &next_gsi);
3139 break;
3140 }
3141
3142 // Otherwise, the front-end should have semantically checked
3143 // outer aborts, but in either case the target region is not
3144 // within this function.
3145 continue;
3146 }
3147
3148 // Non-outer, TM aborts have an abnormal edge to the inner-most
3149 // transaction, the one being aborted;
3150 split_bb_make_tm_edge (stmt, region->restart_block, gsi, &next_gsi);
3151 }
3152
3153 // All TM builtins have an abnormal edge to the outer-most transaction.
3154 // We never restart inner transactions. For tm clones, we know a-priori
3155 // that the outer-most transaction is outside the function.
3156 if (decl_is_tm_clone (current_function_decl))
3157 continue;
3158
3159 if (cfun->gimple_df->tm_restart == NULL)
3160 cfun->gimple_df->tm_restart
3161 = htab_create_ggc (31, struct_ptr_hash, struct_ptr_eq, ggc_free);
3162
3163 // All TM builtins have an abnormal edge to the outer-most transaction.
3164 // We never restart inner transactions.
3165 for (struct tm_region *o = region; o; o = o->outer)
3166 if (!o->outer)
3167 {
3168 split_bb_make_tm_edge (stmt, o->restart_block, gsi, &next_gsi);
3169 break;
3170 }
3171
3172 // Delete any tail-call annotation that may have been added.
3173 // The tail-call pass may have mis-identified the commit as being
3174 // a candidate because we had not yet added this restart edge.
3175 gimple_call_set_tail (stmt, false);
3176 }
3177 }
3178
3179 /* Entry point to the final expansion of transactional nodes. */
3180
3181 static unsigned int
3182 execute_tm_edges (void)
3183 {
3184 vec<tm_region_p> bb_regions
3185 = get_bb_regions_instrumented (/*traverse_clones=*/false,
3186 /*include_uninstrumented_p=*/true);
3187 struct tm_region *r;
3188 unsigned i;
3189
3190 FOR_EACH_VEC_ELT (bb_regions, i, r)
3191 if (r != NULL)
3192 expand_block_edges (r, BASIC_BLOCK (i));
3193
3194 bb_regions.release ();
3195
3196 /* We've got to release the dominance info now, to indicate that it
3197 must be rebuilt completely. Otherwise we'll crash trying to update
3198 the SSA web in the TODO section following this pass. */
3199 free_dominance_info (CDI_DOMINATORS);
3200 bitmap_obstack_release (&tm_obstack);
3201 all_tm_regions = NULL;
3202
3203 return 0;
3204 }
3205
3206 namespace {
3207
3208 const pass_data pass_data_tm_edges =
3209 {
3210 GIMPLE_PASS, /* type */
3211 "tmedge", /* name */
3212 OPTGROUP_NONE, /* optinfo_flags */
3213 false, /* has_gate */
3214 true, /* has_execute */
3215 TV_TRANS_MEM, /* tv_id */
3216 ( PROP_ssa | PROP_cfg ), /* properties_required */
3217 0, /* properties_provided */
3218 0, /* properties_destroyed */
3219 0, /* todo_flags_start */
3220 ( TODO_update_ssa | TODO_verify_ssa ), /* todo_flags_finish */
3221 };
3222
3223 class pass_tm_edges : public gimple_opt_pass
3224 {
3225 public:
3226 pass_tm_edges (gcc::context *ctxt)
3227 : gimple_opt_pass (pass_data_tm_edges, ctxt)
3228 {}
3229
3230 /* opt_pass methods: */
3231 unsigned int execute () { return execute_tm_edges (); }
3232
3233 }; // class pass_tm_edges
3234
3235 } // anon namespace
3236
3237 gimple_opt_pass *
3238 make_pass_tm_edges (gcc::context *ctxt)
3239 {
3240 return new pass_tm_edges (ctxt);
3241 }
3242 \f
3243 /* Helper function for expand_regions. Expand REGION and recurse to
3244 the inner region. Call CALLBACK on each region. CALLBACK returns
3245 NULL to continue the traversal, otherwise a non-null value which
3246 this function will return as well. TRAVERSE_CLONES is true if we
3247 should traverse transactional clones. */
3248
3249 static void *
3250 expand_regions_1 (struct tm_region *region,
3251 void *(*callback)(struct tm_region *, void *),
3252 void *data,
3253 bool traverse_clones)
3254 {
3255 void *retval = NULL;
3256 if (region->exit_blocks
3257 || (traverse_clones && decl_is_tm_clone (current_function_decl)))
3258 {
3259 retval = callback (region, data);
3260 if (retval)
3261 return retval;
3262 }
3263 if (region->inner)
3264 {
3265 retval = expand_regions (region->inner, callback, data, traverse_clones);
3266 if (retval)
3267 return retval;
3268 }
3269 return retval;
3270 }
3271
3272 /* Traverse the regions enclosed and including REGION. Execute
3273 CALLBACK for each region, passing DATA. CALLBACK returns NULL to
3274 continue the traversal, otherwise a non-null value which this
3275 function will return as well. TRAVERSE_CLONES is true if we should
3276 traverse transactional clones. */
3277
3278 static void *
3279 expand_regions (struct tm_region *region,
3280 void *(*callback)(struct tm_region *, void *),
3281 void *data,
3282 bool traverse_clones)
3283 {
3284 void *retval = NULL;
3285 while (region)
3286 {
3287 retval = expand_regions_1 (region, callback, data, traverse_clones);
3288 if (retval)
3289 return retval;
3290 region = region->next;
3291 }
3292 return retval;
3293 }
3294
3295 \f
3296 /* A unique TM memory operation. */
3297 typedef struct tm_memop
3298 {
3299 /* Unique ID that all memory operations to the same location have. */
3300 unsigned int value_id;
3301 /* Address of load/store. */
3302 tree addr;
3303 } *tm_memop_t;
3304
3305 /* TM memory operation hashtable helpers. */
3306
3307 struct tm_memop_hasher : typed_free_remove <tm_memop>
3308 {
3309 typedef tm_memop value_type;
3310 typedef tm_memop compare_type;
3311 static inline hashval_t hash (const value_type *);
3312 static inline bool equal (const value_type *, const compare_type *);
3313 };
3314
3315 /* Htab support. Return a hash value for a `tm_memop'. */
3316 inline hashval_t
3317 tm_memop_hasher::hash (const value_type *mem)
3318 {
3319 tree addr = mem->addr;
3320 /* We drill down to the SSA_NAME/DECL for the hash, but equality is
3321 actually done with operand_equal_p (see tm_memop_eq). */
3322 if (TREE_CODE (addr) == ADDR_EXPR)
3323 addr = TREE_OPERAND (addr, 0);
3324 return iterative_hash_expr (addr, 0);
3325 }
3326
3327 /* Htab support. Return true if two tm_memop's are the same. */
3328 inline bool
3329 tm_memop_hasher::equal (const value_type *mem1, const compare_type *mem2)
3330 {
3331 return operand_equal_p (mem1->addr, mem2->addr, 0);
3332 }
3333
3334 /* Sets for solving data flow equations in the memory optimization pass. */
3335 struct tm_memopt_bitmaps
3336 {
3337 /* Stores available to this BB upon entry. Basically, stores that
3338 dominate this BB. */
3339 bitmap store_avail_in;
3340 /* Stores available at the end of this BB. */
3341 bitmap store_avail_out;
3342 bitmap store_antic_in;
3343 bitmap store_antic_out;
3344 /* Reads available to this BB upon entry. Basically, reads that
3345 dominate this BB. */
3346 bitmap read_avail_in;
3347 /* Reads available at the end of this BB. */
3348 bitmap read_avail_out;
3349 /* Reads performed in this BB. */
3350 bitmap read_local;
3351 /* Writes performed in this BB. */
3352 bitmap store_local;
3353
3354 /* Temporary storage for pass. */
3355 /* Is the current BB in the worklist? */
3356 bool avail_in_worklist_p;
3357 /* Have we visited this BB? */
3358 bool visited_p;
3359 };
3360
3361 static bitmap_obstack tm_memopt_obstack;
3362
3363 /* Unique counter for TM loads and stores. Loads and stores of the
3364 same address get the same ID. */
3365 static unsigned int tm_memopt_value_id;
3366 static hash_table <tm_memop_hasher> tm_memopt_value_numbers;
3367
3368 #define STORE_AVAIL_IN(BB) \
3369 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
3370 #define STORE_AVAIL_OUT(BB) \
3371 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
3372 #define STORE_ANTIC_IN(BB) \
3373 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
3374 #define STORE_ANTIC_OUT(BB) \
3375 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
3376 #define READ_AVAIL_IN(BB) \
3377 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
3378 #define READ_AVAIL_OUT(BB) \
3379 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
3380 #define READ_LOCAL(BB) \
3381 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
3382 #define STORE_LOCAL(BB) \
3383 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
3384 #define AVAIL_IN_WORKLIST_P(BB) \
3385 ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
3386 #define BB_VISITED_P(BB) \
3387 ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
3388
3389 /* Given a TM load/store in STMT, return the value number for the address
3390 it accesses. */
3391
3392 static unsigned int
3393 tm_memopt_value_number (gimple stmt, enum insert_option op)
3394 {
3395 struct tm_memop tmpmem, *mem;
3396 tm_memop **slot;
3397
3398 gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
3399 tmpmem.addr = gimple_call_arg (stmt, 0);
3400 slot = tm_memopt_value_numbers.find_slot (&tmpmem, op);
3401 if (*slot)
3402 mem = *slot;
3403 else if (op == INSERT)
3404 {
3405 mem = XNEW (struct tm_memop);
3406 *slot = mem;
3407 mem->value_id = tm_memopt_value_id++;
3408 mem->addr = tmpmem.addr;
3409 }
3410 else
3411 gcc_unreachable ();
3412 return mem->value_id;
3413 }
3414
3415 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
3416
3417 static void
3418 tm_memopt_accumulate_memops (basic_block bb)
3419 {
3420 gimple_stmt_iterator gsi;
3421
3422 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3423 {
3424 gimple stmt = gsi_stmt (gsi);
3425 bitmap bits;
3426 unsigned int loc;
3427
3428 if (is_tm_store (stmt))
3429 bits = STORE_LOCAL (bb);
3430 else if (is_tm_load (stmt))
3431 bits = READ_LOCAL (bb);
3432 else
3433 continue;
3434
3435 loc = tm_memopt_value_number (stmt, INSERT);
3436 bitmap_set_bit (bits, loc);
3437 if (dump_file)
3438 {
3439 fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
3440 is_tm_load (stmt) ? "LOAD" : "STORE", loc,
3441 gimple_bb (stmt)->index);
3442 print_generic_expr (dump_file, gimple_call_arg (stmt, 0), 0);
3443 fprintf (dump_file, "\n");
3444 }
3445 }
3446 }
3447
3448 /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
3449
3450 static void
3451 dump_tm_memopt_set (const char *set_name, bitmap bits)
3452 {
3453 unsigned i;
3454 bitmap_iterator bi;
3455 const char *comma = "";
3456
3457 fprintf (dump_file, "TM memopt: %s: [", set_name);
3458 EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
3459 {
3460 hash_table <tm_memop_hasher>::iterator hi;
3461 struct tm_memop *mem = NULL;
3462
3463 /* Yeah, yeah, yeah. Whatever. This is just for debugging. */
3464 FOR_EACH_HASH_TABLE_ELEMENT (tm_memopt_value_numbers, mem, tm_memop_t, hi)
3465 if (mem->value_id == i)
3466 break;
3467 gcc_assert (mem->value_id == i);
3468 fprintf (dump_file, "%s", comma);
3469 comma = ", ";
3470 print_generic_expr (dump_file, mem->addr, 0);
3471 }
3472 fprintf (dump_file, "]\n");
3473 }
3474
3475 /* Prettily dump all of the memopt sets in BLOCKS. */
3476
3477 static void
3478 dump_tm_memopt_sets (vec<basic_block> blocks)
3479 {
3480 size_t i;
3481 basic_block bb;
3482
3483 for (i = 0; blocks.iterate (i, &bb); ++i)
3484 {
3485 fprintf (dump_file, "------------BB %d---------\n", bb->index);
3486 dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
3487 dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
3488 dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
3489 dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
3490 dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
3491 dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
3492 }
3493 }
3494
3495 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
3496
3497 static void
3498 tm_memopt_compute_avin (basic_block bb)
3499 {
3500 edge e;
3501 unsigned ix;
3502
3503 /* Seed with the AVOUT of any predecessor. */
3504 for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
3505 {
3506 e = EDGE_PRED (bb, ix);
3507 /* Make sure we have already visited this BB, and is thus
3508 initialized.
3509
3510 If e->src->aux is NULL, this predecessor is actually on an
3511 enclosing transaction. We only care about the current
3512 transaction, so ignore it. */
3513 if (e->src->aux && BB_VISITED_P (e->src))
3514 {
3515 bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3516 bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3517 break;
3518 }
3519 }
3520
3521 for (; ix < EDGE_COUNT (bb->preds); ix++)
3522 {
3523 e = EDGE_PRED (bb, ix);
3524 if (e->src->aux && BB_VISITED_P (e->src))
3525 {
3526 bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3527 bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3528 }
3529 }
3530
3531 BB_VISITED_P (bb) = true;
3532 }
3533
3534 /* Compute the STORE_ANTIC_IN for the basic block BB. */
3535
3536 static void
3537 tm_memopt_compute_antin (basic_block bb)
3538 {
3539 edge e;
3540 unsigned ix;
3541
3542 /* Seed with the ANTIC_OUT of any successor. */
3543 for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
3544 {
3545 e = EDGE_SUCC (bb, ix);
3546 /* Make sure we have already visited this BB, and is thus
3547 initialized. */
3548 if (BB_VISITED_P (e->dest))
3549 {
3550 bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3551 break;
3552 }
3553 }
3554
3555 for (; ix < EDGE_COUNT (bb->succs); ix++)
3556 {
3557 e = EDGE_SUCC (bb, ix);
3558 if (BB_VISITED_P (e->dest))
3559 bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3560 }
3561
3562 BB_VISITED_P (bb) = true;
3563 }
3564
3565 /* Compute the AVAIL sets for every basic block in BLOCKS.
3566
3567 We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3568
3569 AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3570 AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
3571
3572 This is basically what we do in lcm's compute_available(), but here
3573 we calculate two sets of sets (one for STOREs and one for READs),
3574 and we work on a region instead of the entire CFG.
3575
3576 REGION is the TM region.
3577 BLOCKS are the basic blocks in the region. */
3578
3579 static void
3580 tm_memopt_compute_available (struct tm_region *region,
3581 vec<basic_block> blocks)
3582 {
3583 edge e;
3584 basic_block *worklist, *qin, *qout, *qend, bb;
3585 unsigned int qlen, i;
3586 edge_iterator ei;
3587 bool changed;
3588
3589 /* Allocate a worklist array/queue. Entries are only added to the
3590 list if they were not already on the list. So the size is
3591 bounded by the number of basic blocks in the region. */
3592 qlen = blocks.length () - 1;
3593 qin = qout = worklist =
3594 XNEWVEC (basic_block, qlen);
3595
3596 /* Put every block in the region on the worklist. */
3597 for (i = 0; blocks.iterate (i, &bb); ++i)
3598 {
3599 /* Seed AVAIL_OUT with the LOCAL set. */
3600 bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3601 bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3602
3603 AVAIL_IN_WORKLIST_P (bb) = true;
3604 /* No need to insert the entry block, since it has an AVIN of
3605 null, and an AVOUT that has already been seeded in. */
3606 if (bb != region->entry_block)
3607 *qin++ = bb;
3608 }
3609
3610 /* The entry block has been initialized with the local sets. */
3611 BB_VISITED_P (region->entry_block) = true;
3612
3613 qin = worklist;
3614 qend = &worklist[qlen];
3615
3616 /* Iterate until the worklist is empty. */
3617 while (qlen)
3618 {
3619 /* Take the first entry off the worklist. */
3620 bb = *qout++;
3621 qlen--;
3622
3623 if (qout >= qend)
3624 qout = worklist;
3625
3626 /* This block can be added to the worklist again if necessary. */
3627 AVAIL_IN_WORKLIST_P (bb) = false;
3628 tm_memopt_compute_avin (bb);
3629
3630 /* Note: We do not add the LOCAL sets here because we already
3631 seeded the AVAIL_OUT sets with them. */
3632 changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3633 changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3634 if (changed
3635 && (region->exit_blocks == NULL
3636 || !bitmap_bit_p (region->exit_blocks, bb->index)))
3637 /* If the out state of this block changed, then we need to add
3638 its successors to the worklist if they are not already in. */
3639 FOR_EACH_EDGE (e, ei, bb->succs)
3640 if (!AVAIL_IN_WORKLIST_P (e->dest)
3641 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
3642 {
3643 *qin++ = e->dest;
3644 AVAIL_IN_WORKLIST_P (e->dest) = true;
3645 qlen++;
3646
3647 if (qin >= qend)
3648 qin = worklist;
3649 }
3650 }
3651
3652 free (worklist);
3653
3654 if (dump_file)
3655 dump_tm_memopt_sets (blocks);
3656 }
3657
3658 /* Compute ANTIC sets for every basic block in BLOCKS.
3659
3660 We compute STORE_ANTIC_OUT as follows:
3661
3662 STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3663 STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
3664
3665 REGION is the TM region.
3666 BLOCKS are the basic blocks in the region. */
3667
3668 static void
3669 tm_memopt_compute_antic (struct tm_region *region,
3670 vec<basic_block> blocks)
3671 {
3672 edge e;
3673 basic_block *worklist, *qin, *qout, *qend, bb;
3674 unsigned int qlen;
3675 int i;
3676 edge_iterator ei;
3677
3678 /* Allocate a worklist array/queue. Entries are only added to the
3679 list if they were not already on the list. So the size is
3680 bounded by the number of basic blocks in the region. */
3681 qin = qout = worklist = XNEWVEC (basic_block, blocks.length ());
3682
3683 for (qlen = 0, i = blocks.length () - 1; i >= 0; --i)
3684 {
3685 bb = blocks[i];
3686
3687 /* Seed ANTIC_OUT with the LOCAL set. */
3688 bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3689
3690 /* Put every block in the region on the worklist. */
3691 AVAIL_IN_WORKLIST_P (bb) = true;
3692 /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3693 and their ANTIC_OUT has already been seeded in. */
3694 if (region->exit_blocks
3695 && !bitmap_bit_p (region->exit_blocks, bb->index))
3696 {
3697 qlen++;
3698 *qin++ = bb;
3699 }
3700 }
3701
3702 /* The exit blocks have been initialized with the local sets. */
3703 if (region->exit_blocks)
3704 {
3705 unsigned int i;
3706 bitmap_iterator bi;
3707 EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3708 BB_VISITED_P (BASIC_BLOCK (i)) = true;
3709 }
3710
3711 qin = worklist;
3712 qend = &worklist[qlen];
3713
3714 /* Iterate until the worklist is empty. */
3715 while (qlen)
3716 {
3717 /* Take the first entry off the worklist. */
3718 bb = *qout++;
3719 qlen--;
3720
3721 if (qout >= qend)
3722 qout = worklist;
3723
3724 /* This block can be added to the worklist again if necessary. */
3725 AVAIL_IN_WORKLIST_P (bb) = false;
3726 tm_memopt_compute_antin (bb);
3727
3728 /* Note: We do not add the LOCAL sets here because we already
3729 seeded the ANTIC_OUT sets with them. */
3730 if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3731 && bb != region->entry_block)
3732 /* If the out state of this block changed, then we need to add
3733 its predecessors to the worklist if they are not already in. */
3734 FOR_EACH_EDGE (e, ei, bb->preds)
3735 if (!AVAIL_IN_WORKLIST_P (e->src))
3736 {
3737 *qin++ = e->src;
3738 AVAIL_IN_WORKLIST_P (e->src) = true;
3739 qlen++;
3740
3741 if (qin >= qend)
3742 qin = worklist;
3743 }
3744 }
3745
3746 free (worklist);
3747
3748 if (dump_file)
3749 dump_tm_memopt_sets (blocks);
3750 }
3751
3752 /* Offsets of load variants from TM_LOAD. For example,
3753 BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3754 See gtm-builtins.def. */
3755 #define TRANSFORM_RAR 1
3756 #define TRANSFORM_RAW 2
3757 #define TRANSFORM_RFW 3
3758 /* Offsets of store variants from TM_STORE. */
3759 #define TRANSFORM_WAR 1
3760 #define TRANSFORM_WAW 2
3761
3762 /* Inform about a load/store optimization. */
3763
3764 static void
3765 dump_tm_memopt_transform (gimple stmt)
3766 {
3767 if (dump_file)
3768 {
3769 fprintf (dump_file, "TM memopt: transforming: ");
3770 print_gimple_stmt (dump_file, stmt, 0, 0);
3771 fprintf (dump_file, "\n");
3772 }
3773 }
3774
3775 /* Perform a read/write optimization. Replaces the TM builtin in STMT
3776 by a builtin that is OFFSET entries down in the builtins table in
3777 gtm-builtins.def. */
3778
3779 static void
3780 tm_memopt_transform_stmt (unsigned int offset,
3781 gimple stmt,
3782 gimple_stmt_iterator *gsi)
3783 {
3784 tree fn = gimple_call_fn (stmt);
3785 gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3786 TREE_OPERAND (fn, 0)
3787 = builtin_decl_explicit ((enum built_in_function)
3788 (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3789 + offset));
3790 gimple_call_set_fn (stmt, fn);
3791 gsi_replace (gsi, stmt, true);
3792 dump_tm_memopt_transform (stmt);
3793 }
3794
3795 /* Perform the actual TM memory optimization transformations in the
3796 basic blocks in BLOCKS. */
3797
3798 static void
3799 tm_memopt_transform_blocks (vec<basic_block> blocks)
3800 {
3801 size_t i;
3802 basic_block bb;
3803 gimple_stmt_iterator gsi;
3804
3805 for (i = 0; blocks.iterate (i, &bb); ++i)
3806 {
3807 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3808 {
3809 gimple stmt = gsi_stmt (gsi);
3810 bitmap read_avail = READ_AVAIL_IN (bb);
3811 bitmap store_avail = STORE_AVAIL_IN (bb);
3812 bitmap store_antic = STORE_ANTIC_OUT (bb);
3813 unsigned int loc;
3814
3815 if (is_tm_simple_load (stmt))
3816 {
3817 loc = tm_memopt_value_number (stmt, NO_INSERT);
3818 if (store_avail && bitmap_bit_p (store_avail, loc))
3819 tm_memopt_transform_stmt (TRANSFORM_RAW, stmt, &gsi);
3820 else if (store_antic && bitmap_bit_p (store_antic, loc))
3821 {
3822 tm_memopt_transform_stmt (TRANSFORM_RFW, stmt, &gsi);
3823 bitmap_set_bit (store_avail, loc);
3824 }
3825 else if (read_avail && bitmap_bit_p (read_avail, loc))
3826 tm_memopt_transform_stmt (TRANSFORM_RAR, stmt, &gsi);
3827 else
3828 bitmap_set_bit (read_avail, loc);
3829 }
3830 else if (is_tm_simple_store (stmt))
3831 {
3832 loc = tm_memopt_value_number (stmt, NO_INSERT);
3833 if (store_avail && bitmap_bit_p (store_avail, loc))
3834 tm_memopt_transform_stmt (TRANSFORM_WAW, stmt, &gsi);
3835 else
3836 {
3837 if (read_avail && bitmap_bit_p (read_avail, loc))
3838 tm_memopt_transform_stmt (TRANSFORM_WAR, stmt, &gsi);
3839 bitmap_set_bit (store_avail, loc);
3840 }
3841 }
3842 }
3843 }
3844 }
3845
3846 /* Return a new set of bitmaps for a BB. */
3847
3848 static struct tm_memopt_bitmaps *
3849 tm_memopt_init_sets (void)
3850 {
3851 struct tm_memopt_bitmaps *b
3852 = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3853 b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3854 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3855 b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
3856 b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
3857 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3858 b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3859 b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3860 b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
3861 b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
3862 return b;
3863 }
3864
3865 /* Free sets computed for each BB. */
3866
3867 static void
3868 tm_memopt_free_sets (vec<basic_block> blocks)
3869 {
3870 size_t i;
3871 basic_block bb;
3872
3873 for (i = 0; blocks.iterate (i, &bb); ++i)
3874 bb->aux = NULL;
3875 }
3876
3877 /* Clear the visited bit for every basic block in BLOCKS. */
3878
3879 static void
3880 tm_memopt_clear_visited (vec<basic_block> blocks)
3881 {
3882 size_t i;
3883 basic_block bb;
3884
3885 for (i = 0; blocks.iterate (i, &bb); ++i)
3886 BB_VISITED_P (bb) = false;
3887 }
3888
3889 /* Replace TM load/stores with hints for the runtime. We handle
3890 things like read-after-write, write-after-read, read-after-read,
3891 read-for-write, etc. */
3892
3893 static unsigned int
3894 execute_tm_memopt (void)
3895 {
3896 struct tm_region *region;
3897 vec<basic_block> bbs;
3898
3899 tm_memopt_value_id = 0;
3900 tm_memopt_value_numbers.create (10);
3901
3902 for (region = all_tm_regions; region; region = region->next)
3903 {
3904 /* All the TM stores/loads in the current region. */
3905 size_t i;
3906 basic_block bb;
3907
3908 bitmap_obstack_initialize (&tm_memopt_obstack);
3909
3910 /* Save all BBs for the current region. */
3911 bbs = get_tm_region_blocks (region->entry_block,
3912 region->exit_blocks,
3913 region->irr_blocks,
3914 NULL,
3915 false);
3916
3917 /* Collect all the memory operations. */
3918 for (i = 0; bbs.iterate (i, &bb); ++i)
3919 {
3920 bb->aux = tm_memopt_init_sets ();
3921 tm_memopt_accumulate_memops (bb);
3922 }
3923
3924 /* Solve data flow equations and transform each block accordingly. */
3925 tm_memopt_clear_visited (bbs);
3926 tm_memopt_compute_available (region, bbs);
3927 tm_memopt_clear_visited (bbs);
3928 tm_memopt_compute_antic (region, bbs);
3929 tm_memopt_transform_blocks (bbs);
3930
3931 tm_memopt_free_sets (bbs);
3932 bbs.release ();
3933 bitmap_obstack_release (&tm_memopt_obstack);
3934 tm_memopt_value_numbers.empty ();
3935 }
3936
3937 tm_memopt_value_numbers.dispose ();
3938 return 0;
3939 }
3940
3941 static bool
3942 gate_tm_memopt (void)
3943 {
3944 return flag_tm && optimize > 0;
3945 }
3946
3947 namespace {
3948
3949 const pass_data pass_data_tm_memopt =
3950 {
3951 GIMPLE_PASS, /* type */
3952 "tmmemopt", /* name */
3953 OPTGROUP_NONE, /* optinfo_flags */
3954 true, /* has_gate */
3955 true, /* has_execute */
3956 TV_TRANS_MEM, /* tv_id */
3957 ( PROP_ssa | PROP_cfg ), /* properties_required */
3958 0, /* properties_provided */
3959 0, /* properties_destroyed */
3960 0, /* todo_flags_start */
3961 0, /* todo_flags_finish */
3962 };
3963
3964 class pass_tm_memopt : public gimple_opt_pass
3965 {
3966 public:
3967 pass_tm_memopt (gcc::context *ctxt)
3968 : gimple_opt_pass (pass_data_tm_memopt, ctxt)
3969 {}
3970
3971 /* opt_pass methods: */
3972 bool gate () { return gate_tm_memopt (); }
3973 unsigned int execute () { return execute_tm_memopt (); }
3974
3975 }; // class pass_tm_memopt
3976
3977 } // anon namespace
3978
3979 gimple_opt_pass *
3980 make_pass_tm_memopt (gcc::context *ctxt)
3981 {
3982 return new pass_tm_memopt (ctxt);
3983 }
3984
3985 \f
3986 /* Interprocedual analysis for the creation of transactional clones.
3987 The aim of this pass is to find which functions are referenced in
3988 a non-irrevocable transaction context, and for those over which
3989 we have control (or user directive), create a version of the
3990 function which uses only the transactional interface to reference
3991 protected memories. This analysis proceeds in several steps:
3992
3993 (1) Collect the set of all possible transactional clones:
3994
3995 (a) For all local public functions marked tm_callable, push
3996 it onto the tm_callee queue.
3997
3998 (b) For all local functions, scan for calls in transaction blocks.
3999 Push the caller and callee onto the tm_caller and tm_callee
4000 queues. Count the number of callers for each callee.
4001
4002 (c) For each local function on the callee list, assume we will
4003 create a transactional clone. Push *all* calls onto the
4004 callee queues; count the number of clone callers separately
4005 to the number of original callers.
4006
4007 (2) Propagate irrevocable status up the dominator tree:
4008
4009 (a) Any external function on the callee list that is not marked
4010 tm_callable is irrevocable. Push all callers of such onto
4011 a worklist.
4012
4013 (b) For each function on the worklist, mark each block that
4014 contains an irrevocable call. Use the AND operator to
4015 propagate that mark up the dominator tree.
4016
4017 (c) If we reach the entry block for a possible transactional
4018 clone, then the transactional clone is irrevocable, and
4019 we should not create the clone after all. Push all
4020 callers onto the worklist.
4021
4022 (d) Place tm_irrevocable calls at the beginning of the relevant
4023 blocks. Special case here is the entry block for the entire
4024 transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
4025 the library to begin the region in serial mode. Decrement
4026 the call count for all callees in the irrevocable region.
4027
4028 (3) Create the transactional clones:
4029
4030 Any tm_callee that still has a non-zero call count is cloned.
4031 */
4032
4033 /* This structure is stored in the AUX field of each cgraph_node. */
4034 struct tm_ipa_cg_data
4035 {
4036 /* The clone of the function that got created. */
4037 struct cgraph_node *clone;
4038
4039 /* The tm regions in the normal function. */
4040 struct tm_region *all_tm_regions;
4041
4042 /* The blocks of the normal/clone functions that contain irrevocable
4043 calls, or blocks that are post-dominated by irrevocable calls. */
4044 bitmap irrevocable_blocks_normal;
4045 bitmap irrevocable_blocks_clone;
4046
4047 /* The blocks of the normal function that are involved in transactions. */
4048 bitmap transaction_blocks_normal;
4049
4050 /* The number of callers to the transactional clone of this function
4051 from normal and transactional clones respectively. */
4052 unsigned tm_callers_normal;
4053 unsigned tm_callers_clone;
4054
4055 /* True if all calls to this function's transactional clone
4056 are irrevocable. Also automatically true if the function
4057 has no transactional clone. */
4058 bool is_irrevocable;
4059
4060 /* Flags indicating the presence of this function in various queues. */
4061 bool in_callee_queue;
4062 bool in_worklist;
4063
4064 /* Flags indicating the kind of scan desired while in the worklist. */
4065 bool want_irr_scan_normal;
4066 };
4067
4068 typedef vec<cgraph_node_ptr> cgraph_node_queue;
4069
4070 /* Return the ipa data associated with NODE, allocating zeroed memory
4071 if necessary. TRAVERSE_ALIASES is true if we must traverse aliases
4072 and set *NODE accordingly. */
4073
4074 static struct tm_ipa_cg_data *
4075 get_cg_data (struct cgraph_node **node, bool traverse_aliases)
4076 {
4077 struct tm_ipa_cg_data *d;
4078
4079 if (traverse_aliases && (*node)->alias)
4080 *node = cgraph_alias_target (*node);
4081
4082 d = (struct tm_ipa_cg_data *) (*node)->aux;
4083
4084 if (d == NULL)
4085 {
4086 d = (struct tm_ipa_cg_data *)
4087 obstack_alloc (&tm_obstack.obstack, sizeof (*d));
4088 (*node)->aux = (void *) d;
4089 memset (d, 0, sizeof (*d));
4090 }
4091
4092 return d;
4093 }
4094
4095 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
4096 it is already present. */
4097
4098 static void
4099 maybe_push_queue (struct cgraph_node *node,
4100 cgraph_node_queue *queue_p, bool *in_queue_p)
4101 {
4102 if (!*in_queue_p)
4103 {
4104 *in_queue_p = true;
4105 queue_p->safe_push (node);
4106 }
4107 }
4108
4109 /* Duplicate the basic blocks in QUEUE for use in the uninstrumented
4110 code path. QUEUE are the basic blocks inside the transaction
4111 represented in REGION.
4112
4113 Later in split_code_paths() we will add the conditional to choose
4114 between the two alternatives. */
4115
4116 static void
4117 ipa_uninstrument_transaction (struct tm_region *region,
4118 vec<basic_block> queue)
4119 {
4120 gimple transaction = region->transaction_stmt;
4121 basic_block transaction_bb = gimple_bb (transaction);
4122 int n = queue.length ();
4123 basic_block *new_bbs = XNEWVEC (basic_block, n);
4124
4125 copy_bbs (queue.address (), n, new_bbs, NULL, 0, NULL, NULL, transaction_bb,
4126 true);
4127 edge e = make_edge (transaction_bb, new_bbs[0], EDGE_TM_UNINSTRUMENTED);
4128 add_phi_args_after_copy (new_bbs, n, e);
4129
4130 // Now we will have a GIMPLE_ATOMIC with 3 possible edges out of it.
4131 // a) EDGE_FALLTHRU into the transaction
4132 // b) EDGE_TM_ABORT out of the transaction
4133 // c) EDGE_TM_UNINSTRUMENTED into the uninstrumented blocks.
4134
4135 free (new_bbs);
4136 }
4137
4138 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
4139 Queue all callees within block BB. */
4140
4141 static void
4142 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
4143 basic_block bb, bool for_clone)
4144 {
4145 gimple_stmt_iterator gsi;
4146
4147 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4148 {
4149 gimple stmt = gsi_stmt (gsi);
4150 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4151 {
4152 tree fndecl = gimple_call_fndecl (stmt);
4153 if (fndecl)
4154 {
4155 struct tm_ipa_cg_data *d;
4156 unsigned *pcallers;
4157 struct cgraph_node *node;
4158
4159 if (is_tm_ending_fndecl (fndecl))
4160 continue;
4161 if (find_tm_replacement_function (fndecl))
4162 continue;
4163
4164 node = cgraph_get_node (fndecl);
4165 gcc_assert (node != NULL);
4166 d = get_cg_data (&node, true);
4167
4168 pcallers = (for_clone ? &d->tm_callers_clone
4169 : &d->tm_callers_normal);
4170 *pcallers += 1;
4171
4172 maybe_push_queue (node, callees_p, &d->in_callee_queue);
4173 }
4174 }
4175 }
4176 }
4177
4178 /* Scan all calls in NODE that are within a transaction region,
4179 and push the resulting nodes into the callee queue. */
4180
4181 static void
4182 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
4183 cgraph_node_queue *callees_p)
4184 {
4185 struct tm_region *r;
4186
4187 d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
4188 d->all_tm_regions = all_tm_regions;
4189
4190 for (r = all_tm_regions; r; r = r->next)
4191 {
4192 vec<basic_block> bbs;
4193 basic_block bb;
4194 unsigned i;
4195
4196 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
4197 d->transaction_blocks_normal, false);
4198
4199 // Generate the uninstrumented code path for this transaction.
4200 ipa_uninstrument_transaction (r, bbs);
4201
4202 FOR_EACH_VEC_ELT (bbs, i, bb)
4203 ipa_tm_scan_calls_block (callees_p, bb, false);
4204
4205 bbs.release ();
4206 }
4207
4208 // ??? copy_bbs should maintain cgraph edges for the blocks as it is
4209 // copying them, rather than forcing us to do this externally.
4210 rebuild_cgraph_edges ();
4211
4212 // ??? In ipa_uninstrument_transaction we don't try to update dominators
4213 // because copy_bbs doesn't return a VEC like iterate_fix_dominators expects.
4214 // Instead, just release dominators here so update_ssa recomputes them.
4215 free_dominance_info (CDI_DOMINATORS);
4216
4217 // When building the uninstrumented code path, copy_bbs will have invoked
4218 // create_new_def_for starting an "ssa update context". There is only one
4219 // instance of this context, so resolve ssa updates before moving on to
4220 // the next function.
4221 update_ssa (TODO_update_ssa);
4222 }
4223
4224 /* Scan all calls in NODE as if this is the transactional clone,
4225 and push the destinations into the callee queue. */
4226
4227 static void
4228 ipa_tm_scan_calls_clone (struct cgraph_node *node,
4229 cgraph_node_queue *callees_p)
4230 {
4231 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
4232 basic_block bb;
4233
4234 FOR_EACH_BB_FN (bb, fn)
4235 ipa_tm_scan_calls_block (callees_p, bb, true);
4236 }
4237
4238 /* The function NODE has been detected to be irrevocable. Push all
4239 of its callers onto WORKLIST for the purpose of re-scanning them. */
4240
4241 static void
4242 ipa_tm_note_irrevocable (struct cgraph_node *node,
4243 cgraph_node_queue *worklist_p)
4244 {
4245 struct tm_ipa_cg_data *d = get_cg_data (&node, true);
4246 struct cgraph_edge *e;
4247
4248 d->is_irrevocable = true;
4249
4250 for (e = node->callers; e ; e = e->next_caller)
4251 {
4252 basic_block bb;
4253 struct cgraph_node *caller;
4254
4255 /* Don't examine recursive calls. */
4256 if (e->caller == node)
4257 continue;
4258 /* Even if we think we can go irrevocable, believe the user
4259 above all. */
4260 if (is_tm_safe_or_pure (e->caller->decl))
4261 continue;
4262
4263 caller = e->caller;
4264 d = get_cg_data (&caller, true);
4265
4266 /* Check if the callee is in a transactional region. If so,
4267 schedule the function for normal re-scan as well. */
4268 bb = gimple_bb (e->call_stmt);
4269 gcc_assert (bb != NULL);
4270 if (d->transaction_blocks_normal
4271 && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
4272 d->want_irr_scan_normal = true;
4273
4274 maybe_push_queue (caller, worklist_p, &d->in_worklist);
4275 }
4276 }
4277
4278 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
4279 within the block is irrevocable. */
4280
4281 static bool
4282 ipa_tm_scan_irr_block (basic_block bb)
4283 {
4284 gimple_stmt_iterator gsi;
4285 tree fn;
4286
4287 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4288 {
4289 gimple stmt = gsi_stmt (gsi);
4290 switch (gimple_code (stmt))
4291 {
4292 case GIMPLE_ASSIGN:
4293 if (gimple_assign_single_p (stmt))
4294 {
4295 tree lhs = gimple_assign_lhs (stmt);
4296 tree rhs = gimple_assign_rhs1 (stmt);
4297 if (volatile_var_p (lhs) || volatile_var_p (rhs))
4298 return true;
4299 }
4300 break;
4301
4302 case GIMPLE_CALL:
4303 {
4304 tree lhs = gimple_call_lhs (stmt);
4305 if (lhs && volatile_var_p (lhs))
4306 return true;
4307
4308 if (is_tm_pure_call (stmt))
4309 break;
4310
4311 fn = gimple_call_fn (stmt);
4312
4313 /* Functions with the attribute are by definition irrevocable. */
4314 if (is_tm_irrevocable (fn))
4315 return true;
4316
4317 /* For direct function calls, go ahead and check for replacement
4318 functions, or transitive irrevocable functions. For indirect
4319 functions, we'll ask the runtime. */
4320 if (TREE_CODE (fn) == ADDR_EXPR)
4321 {
4322 struct tm_ipa_cg_data *d;
4323 struct cgraph_node *node;
4324
4325 fn = TREE_OPERAND (fn, 0);
4326 if (is_tm_ending_fndecl (fn))
4327 break;
4328 if (find_tm_replacement_function (fn))
4329 break;
4330
4331 node = cgraph_get_node (fn);
4332 d = get_cg_data (&node, true);
4333
4334 /* Return true if irrevocable, but above all, believe
4335 the user. */
4336 if (d->is_irrevocable
4337 && !is_tm_safe_or_pure (fn))
4338 return true;
4339 }
4340 break;
4341 }
4342
4343 case GIMPLE_ASM:
4344 /* ??? The Approved Method of indicating that an inline
4345 assembly statement is not relevant to the transaction
4346 is to wrap it in a __tm_waiver block. This is not
4347 yet implemented, so we can't check for it. */
4348 if (is_tm_safe (current_function_decl))
4349 {
4350 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
4351 SET_EXPR_LOCATION (t, gimple_location (stmt));
4352 error ("%Kasm not allowed in %<transaction_safe%> function", t);
4353 }
4354 return true;
4355
4356 default:
4357 break;
4358 }
4359 }
4360
4361 return false;
4362 }
4363
4364 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
4365 for new irrevocable blocks, marking them in NEW_IRR. Don't bother
4366 scanning past OLD_IRR or EXIT_BLOCKS. */
4367
4368 static bool
4369 ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr,
4370 bitmap old_irr, bitmap exit_blocks)
4371 {
4372 bool any_new_irr = false;
4373 edge e;
4374 edge_iterator ei;
4375 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4376
4377 do
4378 {
4379 basic_block bb = pqueue->pop ();
4380
4381 /* Don't re-scan blocks we know already are irrevocable. */
4382 if (old_irr && bitmap_bit_p (old_irr, bb->index))
4383 continue;
4384
4385 if (ipa_tm_scan_irr_block (bb))
4386 {
4387 bitmap_set_bit (new_irr, bb->index);
4388 any_new_irr = true;
4389 }
4390 else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
4391 {
4392 FOR_EACH_EDGE (e, ei, bb->succs)
4393 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4394 {
4395 bitmap_set_bit (visited_blocks, e->dest->index);
4396 pqueue->safe_push (e->dest);
4397 }
4398 }
4399 }
4400 while (!pqueue->is_empty ());
4401
4402 BITMAP_FREE (visited_blocks);
4403
4404 return any_new_irr;
4405 }
4406
4407 /* Propagate the irrevocable property both up and down the dominator tree.
4408 BB is the current block being scanned; EXIT_BLOCKS are the edges of the
4409 TM regions; OLD_IRR are the results of a previous scan of the dominator
4410 tree which has been fully propagated; NEW_IRR is the set of new blocks
4411 which are gaining the irrevocable property during the current scan. */
4412
4413 static void
4414 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
4415 bitmap old_irr, bitmap exit_blocks)
4416 {
4417 vec<basic_block> bbs;
4418 bitmap all_region_blocks;
4419
4420 /* If this block is in the old set, no need to rescan. */
4421 if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
4422 return;
4423
4424 all_region_blocks = BITMAP_ALLOC (&tm_obstack);
4425 bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
4426 all_region_blocks, false);
4427 do
4428 {
4429 basic_block bb = bbs.pop ();
4430 bool this_irr = bitmap_bit_p (new_irr, bb->index);
4431 bool all_son_irr = false;
4432 edge_iterator ei;
4433 edge e;
4434
4435 /* Propagate up. If my children are, I am too, but we must have
4436 at least one child that is. */
4437 if (!this_irr)
4438 {
4439 FOR_EACH_EDGE (e, ei, bb->succs)
4440 {
4441 if (!bitmap_bit_p (new_irr, e->dest->index))
4442 {
4443 all_son_irr = false;
4444 break;
4445 }
4446 else
4447 all_son_irr = true;
4448 }
4449 if (all_son_irr)
4450 {
4451 /* Add block to new_irr if it hasn't already been processed. */
4452 if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
4453 {
4454 bitmap_set_bit (new_irr, bb->index);
4455 this_irr = true;
4456 }
4457 }
4458 }
4459
4460 /* Propagate down to everyone we immediately dominate. */
4461 if (this_irr)
4462 {
4463 basic_block son;
4464 for (son = first_dom_son (CDI_DOMINATORS, bb);
4465 son;
4466 son = next_dom_son (CDI_DOMINATORS, son))
4467 {
4468 /* Make sure block is actually in a TM region, and it
4469 isn't already in old_irr. */
4470 if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
4471 && bitmap_bit_p (all_region_blocks, son->index))
4472 bitmap_set_bit (new_irr, son->index);
4473 }
4474 }
4475 }
4476 while (!bbs.is_empty ());
4477
4478 BITMAP_FREE (all_region_blocks);
4479 bbs.release ();
4480 }
4481
4482 static void
4483 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
4484 {
4485 gimple_stmt_iterator gsi;
4486
4487 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4488 {
4489 gimple stmt = gsi_stmt (gsi);
4490 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4491 {
4492 tree fndecl = gimple_call_fndecl (stmt);
4493 if (fndecl)
4494 {
4495 struct tm_ipa_cg_data *d;
4496 unsigned *pcallers;
4497 struct cgraph_node *tnode;
4498
4499 if (is_tm_ending_fndecl (fndecl))
4500 continue;
4501 if (find_tm_replacement_function (fndecl))
4502 continue;
4503
4504 tnode = cgraph_get_node (fndecl);
4505 d = get_cg_data (&tnode, true);
4506
4507 pcallers = (for_clone ? &d->tm_callers_clone
4508 : &d->tm_callers_normal);
4509
4510 gcc_assert (*pcallers > 0);
4511 *pcallers -= 1;
4512 }
4513 }
4514 }
4515 }
4516
4517 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
4518 as well as other irrevocable actions such as inline assembly. Mark all
4519 such blocks as irrevocable and decrement the number of calls to
4520 transactional clones. Return true if, for the transactional clone, the
4521 entire function is irrevocable. */
4522
4523 static bool
4524 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
4525 {
4526 struct tm_ipa_cg_data *d;
4527 bitmap new_irr, old_irr;
4528 bool ret = false;
4529
4530 /* Builtin operators (operator new, and such). */
4531 if (DECL_STRUCT_FUNCTION (node->decl) == NULL
4532 || DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL)
4533 return false;
4534
4535 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4536 calculate_dominance_info (CDI_DOMINATORS);
4537
4538 d = get_cg_data (&node, true);
4539 stack_vec<basic_block, 10> queue;
4540 new_irr = BITMAP_ALLOC (&tm_obstack);
4541
4542 /* Scan each tm region, propagating irrevocable status through the tree. */
4543 if (for_clone)
4544 {
4545 old_irr = d->irrevocable_blocks_clone;
4546 queue.quick_push (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4547 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
4548 {
4549 ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4550 new_irr,
4551 old_irr, NULL);
4552 ret = bitmap_bit_p (new_irr,
4553 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->index);
4554 }
4555 }
4556 else
4557 {
4558 struct tm_region *region;
4559
4560 old_irr = d->irrevocable_blocks_normal;
4561 for (region = d->all_tm_regions; region; region = region->next)
4562 {
4563 queue.quick_push (region->entry_block);
4564 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
4565 region->exit_blocks))
4566 ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
4567 region->exit_blocks);
4568 }
4569 }
4570
4571 /* If we found any new irrevocable blocks, reduce the call count for
4572 transactional clones within the irrevocable blocks. Save the new
4573 set of irrevocable blocks for next time. */
4574 if (!bitmap_empty_p (new_irr))
4575 {
4576 bitmap_iterator bmi;
4577 unsigned i;
4578
4579 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4580 ipa_tm_decrement_clone_counts (BASIC_BLOCK (i), for_clone);
4581
4582 if (old_irr)
4583 {
4584 bitmap_ior_into (old_irr, new_irr);
4585 BITMAP_FREE (new_irr);
4586 }
4587 else if (for_clone)
4588 d->irrevocable_blocks_clone = new_irr;
4589 else
4590 d->irrevocable_blocks_normal = new_irr;
4591
4592 if (dump_file && new_irr)
4593 {
4594 const char *dname;
4595 bitmap_iterator bmi;
4596 unsigned i;
4597
4598 dname = lang_hooks.decl_printable_name (current_function_decl, 2);
4599 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4600 fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
4601 }
4602 }
4603 else
4604 BITMAP_FREE (new_irr);
4605
4606 pop_cfun ();
4607
4608 return ret;
4609 }
4610
4611 /* Return true if, for the transactional clone of NODE, any call
4612 may enter irrevocable mode. */
4613
4614 static bool
4615 ipa_tm_mayenterirr_function (struct cgraph_node *node)
4616 {
4617 struct tm_ipa_cg_data *d;
4618 tree decl;
4619 unsigned flags;
4620
4621 d = get_cg_data (&node, true);
4622 decl = node->decl;
4623 flags = flags_from_decl_or_type (decl);
4624
4625 /* Handle some TM builtins. Ordinarily these aren't actually generated
4626 at this point, but handling these functions when written in by the
4627 user makes it easier to build unit tests. */
4628 if (flags & ECF_TM_BUILTIN)
4629 return false;
4630
4631 /* Filter out all functions that are marked. */
4632 if (flags & ECF_TM_PURE)
4633 return false;
4634 if (is_tm_safe (decl))
4635 return false;
4636 if (is_tm_irrevocable (decl))
4637 return true;
4638 if (is_tm_callable (decl))
4639 return true;
4640 if (find_tm_replacement_function (decl))
4641 return true;
4642
4643 /* If we aren't seeing the final version of the function we don't
4644 know what it will contain at runtime. */
4645 if (cgraph_function_body_availability (node) < AVAIL_AVAILABLE)
4646 return true;
4647
4648 /* If the function must go irrevocable, then of course true. */
4649 if (d->is_irrevocable)
4650 return true;
4651
4652 /* If there are any blocks marked irrevocable, then the function
4653 as a whole may enter irrevocable. */
4654 if (d->irrevocable_blocks_clone)
4655 return true;
4656
4657 /* We may have previously marked this function as tm_may_enter_irr;
4658 see pass_diagnose_tm_blocks. */
4659 if (node->local.tm_may_enter_irr)
4660 return true;
4661
4662 /* Recurse on the main body for aliases. In general, this will
4663 result in one of the bits above being set so that we will not
4664 have to recurse next time. */
4665 if (node->alias)
4666 return ipa_tm_mayenterirr_function (cgraph_get_node (node->thunk.alias));
4667
4668 /* What remains is unmarked local functions without items that force
4669 the function to go irrevocable. */
4670 return false;
4671 }
4672
4673 /* Diagnose calls from transaction_safe functions to unmarked
4674 functions that are determined to not be safe. */
4675
4676 static void
4677 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4678 {
4679 struct cgraph_edge *e;
4680
4681 for (e = node->callees; e ; e = e->next_callee)
4682 if (!is_tm_callable (e->callee->decl)
4683 && e->callee->local.tm_may_enter_irr)
4684 error_at (gimple_location (e->call_stmt),
4685 "unsafe function call %qD within "
4686 "%<transaction_safe%> function", e->callee->decl);
4687 }
4688
4689 /* Diagnose call from atomic transactions to unmarked functions
4690 that are determined to not be safe. */
4691
4692 static void
4693 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4694 struct tm_region *all_tm_regions)
4695 {
4696 struct tm_region *r;
4697
4698 for (r = all_tm_regions; r ; r = r->next)
4699 if (gimple_transaction_subcode (r->transaction_stmt) & GTMA_IS_RELAXED)
4700 {
4701 /* Atomic transactions can be nested inside relaxed. */
4702 if (r->inner)
4703 ipa_tm_diagnose_transaction (node, r->inner);
4704 }
4705 else
4706 {
4707 vec<basic_block> bbs;
4708 gimple_stmt_iterator gsi;
4709 basic_block bb;
4710 size_t i;
4711
4712 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4713 r->irr_blocks, NULL, false);
4714
4715 for (i = 0; bbs.iterate (i, &bb); ++i)
4716 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4717 {
4718 gimple stmt = gsi_stmt (gsi);
4719 tree fndecl;
4720
4721 if (gimple_code (stmt) == GIMPLE_ASM)
4722 {
4723 error_at (gimple_location (stmt),
4724 "asm not allowed in atomic transaction");
4725 continue;
4726 }
4727
4728 if (!is_gimple_call (stmt))
4729 continue;
4730 fndecl = gimple_call_fndecl (stmt);
4731
4732 /* Indirect function calls have been diagnosed already. */
4733 if (!fndecl)
4734 continue;
4735
4736 /* Stop at the end of the transaction. */
4737 if (is_tm_ending_fndecl (fndecl))
4738 {
4739 if (bitmap_bit_p (r->exit_blocks, bb->index))
4740 break;
4741 continue;
4742 }
4743
4744 /* Marked functions have been diagnosed already. */
4745 if (is_tm_pure_call (stmt))
4746 continue;
4747 if (is_tm_callable (fndecl))
4748 continue;
4749
4750 if (cgraph_local_info (fndecl)->tm_may_enter_irr)
4751 error_at (gimple_location (stmt),
4752 "unsafe function call %qD within "
4753 "atomic transaction", fndecl);
4754 }
4755
4756 bbs.release ();
4757 }
4758 }
4759
4760 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4761 OLD_DECL. The returned value is a freshly malloced pointer that
4762 should be freed by the caller. */
4763
4764 static tree
4765 tm_mangle (tree old_asm_id)
4766 {
4767 const char *old_asm_name;
4768 char *tm_name;
4769 void *alloc = NULL;
4770 struct demangle_component *dc;
4771 tree new_asm_id;
4772
4773 /* Determine if the symbol is already a valid C++ mangled name. Do this
4774 even for C, which might be interfacing with C++ code via appropriately
4775 ugly identifiers. */
4776 /* ??? We could probably do just as well checking for "_Z" and be done. */
4777 old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4778 dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4779
4780 if (dc == NULL)
4781 {
4782 char length[8];
4783
4784 do_unencoded:
4785 sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4786 tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4787 }
4788 else
4789 {
4790 old_asm_name += 2; /* Skip _Z */
4791
4792 switch (dc->type)
4793 {
4794 case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4795 case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4796 /* Don't play silly games, you! */
4797 goto do_unencoded;
4798
4799 case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4800 /* I'd really like to know if we can ever be passed one of
4801 these from the C++ front end. The Logical Thing would
4802 seem that hidden-alias should be outer-most, so that we
4803 get hidden-alias of a transaction-clone and not vice-versa. */
4804 old_asm_name += 2;
4805 break;
4806
4807 default:
4808 break;
4809 }
4810
4811 tm_name = concat ("_ZGTt", old_asm_name, NULL);
4812 }
4813 free (alloc);
4814
4815 new_asm_id = get_identifier (tm_name);
4816 free (tm_name);
4817
4818 return new_asm_id;
4819 }
4820
4821 static inline void
4822 ipa_tm_mark_force_output_node (struct cgraph_node *node)
4823 {
4824 cgraph_mark_force_output_node (node);
4825 node->analyzed = true;
4826 }
4827
4828 static inline void
4829 ipa_tm_mark_forced_by_abi_node (struct cgraph_node *node)
4830 {
4831 node->forced_by_abi = true;
4832 node->analyzed = true;
4833 }
4834
4835 /* Callback data for ipa_tm_create_version_alias. */
4836 struct create_version_alias_info
4837 {
4838 struct cgraph_node *old_node;
4839 tree new_decl;
4840 };
4841
4842 /* A subroutine of ipa_tm_create_version, called via
4843 cgraph_for_node_and_aliases. Create new tm clones for each of
4844 the existing aliases. */
4845 static bool
4846 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4847 {
4848 struct create_version_alias_info *info
4849 = (struct create_version_alias_info *)data;
4850 tree old_decl, new_decl, tm_name;
4851 struct cgraph_node *new_node;
4852
4853 if (!node->cpp_implicit_alias)
4854 return false;
4855
4856 old_decl = node->decl;
4857 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4858 new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4859 TREE_CODE (old_decl), tm_name,
4860 TREE_TYPE (old_decl));
4861
4862 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4863 SET_DECL_RTL (new_decl, NULL);
4864
4865 /* Based loosely on C++'s make_alias_for(). */
4866 TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4867 DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
4868 DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
4869 TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4870 DECL_EXTERNAL (new_decl) = 0;
4871 DECL_ARTIFICIAL (new_decl) = 1;
4872 TREE_ADDRESSABLE (new_decl) = 1;
4873 TREE_USED (new_decl) = 1;
4874 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4875
4876 /* Perform the same remapping to the comdat group. */
4877 if (DECL_ONE_ONLY (new_decl))
4878 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4879
4880 new_node = cgraph_same_body_alias (NULL, new_decl, info->new_decl);
4881 new_node->tm_clone = true;
4882 new_node->externally_visible = info->old_node->externally_visible;
4883 /* ?? Do not traverse aliases here. */
4884 get_cg_data (&node, false)->clone = new_node;
4885
4886 record_tm_clone_pair (old_decl, new_decl);
4887
4888 if (info->old_node->force_output
4889 || ipa_ref_list_first_referring (&info->old_node->ref_list))
4890 ipa_tm_mark_force_output_node (new_node);
4891 if (info->old_node->forced_by_abi)
4892 ipa_tm_mark_forced_by_abi_node (new_node);
4893 return false;
4894 }
4895
4896 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4897 appropriate for the transactional clone. */
4898
4899 static void
4900 ipa_tm_create_version (struct cgraph_node *old_node)
4901 {
4902 tree new_decl, old_decl, tm_name;
4903 struct cgraph_node *new_node;
4904
4905 old_decl = old_node->decl;
4906 new_decl = copy_node (old_decl);
4907
4908 /* DECL_ASSEMBLER_NAME needs to be set before we call
4909 cgraph_copy_node_for_versioning below, because cgraph_node will
4910 fill the assembler_name_hash. */
4911 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4912 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4913 SET_DECL_RTL (new_decl, NULL);
4914 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4915
4916 /* Perform the same remapping to the comdat group. */
4917 if (DECL_ONE_ONLY (new_decl))
4918 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4919
4920 new_node = cgraph_copy_node_for_versioning (old_node, new_decl, vNULL, NULL);
4921 new_node->local.local = false;
4922 new_node->externally_visible = old_node->externally_visible;
4923 new_node->lowered = true;
4924 new_node->tm_clone = 1;
4925 get_cg_data (&old_node, true)->clone = new_node;
4926
4927 if (cgraph_function_body_availability (old_node) >= AVAIL_OVERWRITABLE)
4928 {
4929 /* Remap extern inline to static inline. */
4930 /* ??? Is it worth trying to use make_decl_one_only? */
4931 if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
4932 {
4933 DECL_EXTERNAL (new_decl) = 0;
4934 TREE_PUBLIC (new_decl) = 0;
4935 DECL_WEAK (new_decl) = 0;
4936 }
4937
4938 tree_function_versioning (old_decl, new_decl,
4939 NULL, false, NULL,
4940 false, NULL, NULL);
4941 }
4942
4943 record_tm_clone_pair (old_decl, new_decl);
4944
4945 cgraph_call_function_insertion_hooks (new_node);
4946 if (old_node->force_output
4947 || ipa_ref_list_first_referring (&old_node->ref_list))
4948 ipa_tm_mark_force_output_node (new_node);
4949 if (old_node->forced_by_abi)
4950 ipa_tm_mark_forced_by_abi_node (new_node);
4951
4952 /* Do the same thing, but for any aliases of the original node. */
4953 {
4954 struct create_version_alias_info data;
4955 data.old_node = old_node;
4956 data.new_decl = new_decl;
4957 cgraph_for_node_and_aliases (old_node, ipa_tm_create_version_alias,
4958 &data, true);
4959 }
4960 }
4961
4962 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
4963
4964 static void
4965 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
4966 basic_block bb)
4967 {
4968 gimple_stmt_iterator gsi;
4969 gimple g;
4970
4971 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4972
4973 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
4974 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
4975
4976 split_block_after_labels (bb);
4977 gsi = gsi_after_labels (bb);
4978 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
4979
4980 cgraph_create_edge (node,
4981 cgraph_get_create_node
4982 (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
4983 g, 0,
4984 compute_call_stmt_bb_frequency (node->decl,
4985 gimple_bb (g)));
4986 }
4987
4988 /* Construct a call to TM_GETTMCLONE and insert it before GSI. */
4989
4990 static bool
4991 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
4992 struct tm_region *region,
4993 gimple_stmt_iterator *gsi, gimple stmt)
4994 {
4995 tree gettm_fn, ret, old_fn, callfn;
4996 gimple g, g2;
4997 bool safe;
4998
4999 old_fn = gimple_call_fn (stmt);
5000
5001 if (TREE_CODE (old_fn) == ADDR_EXPR)
5002 {
5003 tree fndecl = TREE_OPERAND (old_fn, 0);
5004 tree clone = get_tm_clone_pair (fndecl);
5005
5006 /* By transforming the call into a TM_GETTMCLONE, we are
5007 technically taking the address of the original function and
5008 its clone. Explain this so inlining will know this function
5009 is needed. */
5010 cgraph_mark_address_taken_node (cgraph_get_node (fndecl));
5011 if (clone)
5012 cgraph_mark_address_taken_node (cgraph_get_node (clone));
5013 }
5014
5015 safe = is_tm_safe (TREE_TYPE (old_fn));
5016 gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
5017 : BUILT_IN_TM_GETTMCLONE_IRR);
5018 ret = create_tmp_var (ptr_type_node, NULL);
5019
5020 if (!safe)
5021 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5022
5023 /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
5024 if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
5025 old_fn = OBJ_TYPE_REF_EXPR (old_fn);
5026
5027 g = gimple_build_call (gettm_fn, 1, old_fn);
5028 ret = make_ssa_name (ret, g);
5029 gimple_call_set_lhs (g, ret);
5030
5031 gsi_insert_before (gsi, g, GSI_SAME_STMT);
5032
5033 cgraph_create_edge (node, cgraph_get_create_node (gettm_fn), g, 0,
5034 compute_call_stmt_bb_frequency (node->decl,
5035 gimple_bb (g)));
5036
5037 /* Cast return value from tm_gettmclone* into appropriate function
5038 pointer. */
5039 callfn = create_tmp_var (TREE_TYPE (old_fn), NULL);
5040 g2 = gimple_build_assign (callfn,
5041 fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
5042 callfn = make_ssa_name (callfn, g2);
5043 gimple_assign_set_lhs (g2, callfn);
5044 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
5045
5046 /* ??? This is a hack to preserve the NOTHROW bit on the call,
5047 which we would have derived from the decl. Failure to save
5048 this bit means we might have to split the basic block. */
5049 if (gimple_call_nothrow_p (stmt))
5050 gimple_call_set_nothrow (stmt, true);
5051
5052 gimple_call_set_fn (stmt, callfn);
5053
5054 /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
5055 for a call statement. Fix it. */
5056 {
5057 tree lhs = gimple_call_lhs (stmt);
5058 tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
5059 if (lhs
5060 && !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
5061 {
5062 tree temp;
5063
5064 temp = create_tmp_reg (rettype, 0);
5065 gimple_call_set_lhs (stmt, temp);
5066
5067 g2 = gimple_build_assign (lhs,
5068 fold_build1 (VIEW_CONVERT_EXPR,
5069 TREE_TYPE (lhs), temp));
5070 gsi_insert_after (gsi, g2, GSI_SAME_STMT);
5071 }
5072 }
5073
5074 update_stmt (stmt);
5075
5076 return true;
5077 }
5078
5079 /* Helper function for ipa_tm_transform_calls*. Given a call
5080 statement in GSI which resides inside transaction REGION, redirect
5081 the call to either its wrapper function, or its clone. */
5082
5083 static void
5084 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
5085 struct tm_region *region,
5086 gimple_stmt_iterator *gsi,
5087 bool *need_ssa_rename_p)
5088 {
5089 gimple stmt = gsi_stmt (*gsi);
5090 struct cgraph_node *new_node;
5091 struct cgraph_edge *e = cgraph_edge (node, stmt);
5092 tree fndecl = gimple_call_fndecl (stmt);
5093
5094 /* For indirect calls, pass the address through the runtime. */
5095 if (fndecl == NULL)
5096 {
5097 *need_ssa_rename_p |=
5098 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5099 return;
5100 }
5101
5102 /* Handle some TM builtins. Ordinarily these aren't actually generated
5103 at this point, but handling these functions when written in by the
5104 user makes it easier to build unit tests. */
5105 if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
5106 return;
5107
5108 /* Fixup recursive calls inside clones. */
5109 /* ??? Why did cgraph_copy_node_for_versioning update the call edges
5110 for recursion but not update the call statements themselves? */
5111 if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
5112 {
5113 gimple_call_set_fndecl (stmt, current_function_decl);
5114 return;
5115 }
5116
5117 /* If there is a replacement, use it. */
5118 fndecl = find_tm_replacement_function (fndecl);
5119 if (fndecl)
5120 {
5121 new_node = cgraph_get_create_node (fndecl);
5122
5123 /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
5124
5125 We can't do this earlier in record_tm_replacement because
5126 cgraph_remove_unreachable_nodes is called before we inject
5127 references to the node. Further, we can't do this in some
5128 nice central place in ipa_tm_execute because we don't have
5129 the exact list of wrapper functions that would be used.
5130 Marking more wrappers than necessary results in the creation
5131 of unnecessary cgraph_nodes, which can cause some of the
5132 other IPA passes to crash.
5133
5134 We do need to mark these nodes so that we get the proper
5135 result in expand_call_tm. */
5136 /* ??? This seems broken. How is it that we're marking the
5137 CALLEE as may_enter_irr? Surely we should be marking the
5138 CALLER. Also note that find_tm_replacement_function also
5139 contains mappings into the TM runtime, e.g. memcpy. These
5140 we know won't go irrevocable. */
5141 new_node->local.tm_may_enter_irr = 1;
5142 }
5143 else
5144 {
5145 struct tm_ipa_cg_data *d;
5146 struct cgraph_node *tnode = e->callee;
5147
5148 d = get_cg_data (&tnode, true);
5149 new_node = d->clone;
5150
5151 /* As we've already skipped pure calls and appropriate builtins,
5152 and we've already marked irrevocable blocks, if we can't come
5153 up with a static replacement, then ask the runtime. */
5154 if (new_node == NULL)
5155 {
5156 *need_ssa_rename_p |=
5157 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5158 return;
5159 }
5160
5161 fndecl = new_node->decl;
5162 }
5163
5164 cgraph_redirect_edge_callee (e, new_node);
5165 gimple_call_set_fndecl (stmt, fndecl);
5166 }
5167
5168 /* Helper function for ipa_tm_transform_calls. For a given BB,
5169 install calls to tm_irrevocable when IRR_BLOCKS are reached,
5170 redirect other calls to the generated transactional clone. */
5171
5172 static bool
5173 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
5174 basic_block bb, bitmap irr_blocks)
5175 {
5176 gimple_stmt_iterator gsi;
5177 bool need_ssa_rename = false;
5178
5179 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5180 {
5181 ipa_tm_insert_irr_call (node, region, bb);
5182 return true;
5183 }
5184
5185 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5186 {
5187 gimple stmt = gsi_stmt (gsi);
5188
5189 if (!is_gimple_call (stmt))
5190 continue;
5191 if (is_tm_pure_call (stmt))
5192 continue;
5193
5194 /* Redirect edges to the appropriate replacement or clone. */
5195 ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
5196 }
5197
5198 return need_ssa_rename;
5199 }
5200
5201 /* Walk the CFG for REGION, beginning at BB. Install calls to
5202 tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
5203 the generated transactional clone. */
5204
5205 static bool
5206 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
5207 basic_block bb, bitmap irr_blocks)
5208 {
5209 bool need_ssa_rename = false;
5210 edge e;
5211 edge_iterator ei;
5212 auto_vec<basic_block> queue;
5213 bitmap visited_blocks = BITMAP_ALLOC (NULL);
5214
5215 queue.safe_push (bb);
5216 do
5217 {
5218 bb = queue.pop ();
5219
5220 need_ssa_rename |=
5221 ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
5222
5223 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5224 continue;
5225
5226 if (region && bitmap_bit_p (region->exit_blocks, bb->index))
5227 continue;
5228
5229 FOR_EACH_EDGE (e, ei, bb->succs)
5230 if (!bitmap_bit_p (visited_blocks, e->dest->index))
5231 {
5232 bitmap_set_bit (visited_blocks, e->dest->index);
5233 queue.safe_push (e->dest);
5234 }
5235 }
5236 while (!queue.is_empty ());
5237
5238 BITMAP_FREE (visited_blocks);
5239
5240 return need_ssa_rename;
5241 }
5242
5243 /* Transform the calls within the TM regions within NODE. */
5244
5245 static void
5246 ipa_tm_transform_transaction (struct cgraph_node *node)
5247 {
5248 struct tm_ipa_cg_data *d;
5249 struct tm_region *region;
5250 bool need_ssa_rename = false;
5251
5252 d = get_cg_data (&node, true);
5253
5254 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5255 calculate_dominance_info (CDI_DOMINATORS);
5256
5257 for (region = d->all_tm_regions; region; region = region->next)
5258 {
5259 /* If we're sure to go irrevocable, don't transform anything. */
5260 if (d->irrevocable_blocks_normal
5261 && bitmap_bit_p (d->irrevocable_blocks_normal,
5262 region->entry_block->index))
5263 {
5264 transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE
5265 | GTMA_MAY_ENTER_IRREVOCABLE
5266 | GTMA_HAS_NO_INSTRUMENTATION);
5267 continue;
5268 }
5269
5270 need_ssa_rename |=
5271 ipa_tm_transform_calls (node, region, region->entry_block,
5272 d->irrevocable_blocks_normal);
5273 }
5274
5275 if (need_ssa_rename)
5276 update_ssa (TODO_update_ssa_only_virtuals);
5277
5278 pop_cfun ();
5279 }
5280
5281 /* Transform the calls within the transactional clone of NODE. */
5282
5283 static void
5284 ipa_tm_transform_clone (struct cgraph_node *node)
5285 {
5286 struct tm_ipa_cg_data *d;
5287 bool need_ssa_rename;
5288
5289 d = get_cg_data (&node, true);
5290
5291 /* If this function makes no calls and has no irrevocable blocks,
5292 then there's nothing to do. */
5293 /* ??? Remove non-aborting top-level transactions. */
5294 if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone)
5295 return;
5296
5297 push_cfun (DECL_STRUCT_FUNCTION (d->clone->decl));
5298 calculate_dominance_info (CDI_DOMINATORS);
5299
5300 need_ssa_rename =
5301 ipa_tm_transform_calls (d->clone, NULL,
5302 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
5303 d->irrevocable_blocks_clone);
5304
5305 if (need_ssa_rename)
5306 update_ssa (TODO_update_ssa_only_virtuals);
5307
5308 pop_cfun ();
5309 }
5310
5311 /* Main entry point for the transactional memory IPA pass. */
5312
5313 static unsigned int
5314 ipa_tm_execute (void)
5315 {
5316 cgraph_node_queue tm_callees = cgraph_node_queue ();
5317 /* List of functions that will go irrevocable. */
5318 cgraph_node_queue irr_worklist = cgraph_node_queue ();
5319
5320 struct cgraph_node *node;
5321 struct tm_ipa_cg_data *d;
5322 enum availability a;
5323 unsigned int i;
5324
5325 #ifdef ENABLE_CHECKING
5326 verify_cgraph ();
5327 #endif
5328
5329 bitmap_obstack_initialize (&tm_obstack);
5330 initialize_original_copy_tables ();
5331
5332 /* For all local functions marked tm_callable, queue them. */
5333 FOR_EACH_DEFINED_FUNCTION (node)
5334 if (is_tm_callable (node->decl)
5335 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5336 {
5337 d = get_cg_data (&node, true);
5338 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5339 }
5340
5341 /* For all local reachable functions... */
5342 FOR_EACH_DEFINED_FUNCTION (node)
5343 if (node->lowered
5344 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5345 {
5346 /* ... marked tm_pure, record that fact for the runtime by
5347 indicating that the pure function is its own tm_callable.
5348 No need to do this if the function's address can't be taken. */
5349 if (is_tm_pure (node->decl))
5350 {
5351 if (!node->local.local)
5352 record_tm_clone_pair (node->decl, node->decl);
5353 continue;
5354 }
5355
5356 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5357 calculate_dominance_info (CDI_DOMINATORS);
5358
5359 tm_region_init (NULL);
5360 if (all_tm_regions)
5361 {
5362 d = get_cg_data (&node, true);
5363
5364 /* Scan for calls that are in each transaction, and
5365 generate the uninstrumented code path. */
5366 ipa_tm_scan_calls_transaction (d, &tm_callees);
5367
5368 /* Put it in the worklist so we can scan the function
5369 later (ipa_tm_scan_irr_function) and mark the
5370 irrevocable blocks. */
5371 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5372 d->want_irr_scan_normal = true;
5373 }
5374
5375 pop_cfun ();
5376 }
5377
5378 /* For every local function on the callee list, scan as if we will be
5379 creating a transactional clone, queueing all new functions we find
5380 along the way. */
5381 for (i = 0; i < tm_callees.length (); ++i)
5382 {
5383 node = tm_callees[i];
5384 a = cgraph_function_body_availability (node);
5385 d = get_cg_data (&node, true);
5386
5387 /* Put it in the worklist so we can scan the function later
5388 (ipa_tm_scan_irr_function) and mark the irrevocable
5389 blocks. */
5390 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5391
5392 /* Some callees cannot be arbitrarily cloned. These will always be
5393 irrevocable. Mark these now, so that we need not scan them. */
5394 if (is_tm_irrevocable (node->decl))
5395 ipa_tm_note_irrevocable (node, &irr_worklist);
5396 else if (a <= AVAIL_NOT_AVAILABLE
5397 && !is_tm_safe_or_pure (node->decl))
5398 ipa_tm_note_irrevocable (node, &irr_worklist);
5399 else if (a >= AVAIL_OVERWRITABLE)
5400 {
5401 if (!tree_versionable_function_p (node->decl))
5402 ipa_tm_note_irrevocable (node, &irr_worklist);
5403 else if (!d->is_irrevocable)
5404 {
5405 /* If this is an alias, make sure its base is queued as well.
5406 we need not scan the callees now, as the base will do. */
5407 if (node->alias)
5408 {
5409 node = cgraph_get_node (node->thunk.alias);
5410 d = get_cg_data (&node, true);
5411 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5412 continue;
5413 }
5414
5415 /* Add all nodes called by this function into
5416 tm_callees as well. */
5417 ipa_tm_scan_calls_clone (node, &tm_callees);
5418 }
5419 }
5420 }
5421
5422 /* Iterate scans until no more work to be done. Prefer not to use
5423 vec::pop because the worklist tends to follow a breadth-first
5424 search of the callgraph, which should allow convergance with a
5425 minimum number of scans. But we also don't want the worklist
5426 array to grow without bound, so we shift the array up periodically. */
5427 for (i = 0; i < irr_worklist.length (); ++i)
5428 {
5429 if (i > 256 && i == irr_worklist.length () / 8)
5430 {
5431 irr_worklist.block_remove (0, i);
5432 i = 0;
5433 }
5434
5435 node = irr_worklist[i];
5436 d = get_cg_data (&node, true);
5437 d->in_worklist = false;
5438
5439 if (d->want_irr_scan_normal)
5440 {
5441 d->want_irr_scan_normal = false;
5442 ipa_tm_scan_irr_function (node, false);
5443 }
5444 if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
5445 ipa_tm_note_irrevocable (node, &irr_worklist);
5446 }
5447
5448 /* For every function on the callee list, collect the tm_may_enter_irr
5449 bit on the node. */
5450 irr_worklist.truncate (0);
5451 for (i = 0; i < tm_callees.length (); ++i)
5452 {
5453 node = tm_callees[i];
5454 if (ipa_tm_mayenterirr_function (node))
5455 {
5456 d = get_cg_data (&node, true);
5457 gcc_assert (d->in_worklist == false);
5458 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5459 }
5460 }
5461
5462 /* Propagate the tm_may_enter_irr bit to callers until stable. */
5463 for (i = 0; i < irr_worklist.length (); ++i)
5464 {
5465 struct cgraph_node *caller;
5466 struct cgraph_edge *e;
5467 struct ipa_ref *ref;
5468 unsigned j;
5469
5470 if (i > 256 && i == irr_worklist.length () / 8)
5471 {
5472 irr_worklist.block_remove (0, i);
5473 i = 0;
5474 }
5475
5476 node = irr_worklist[i];
5477 d = get_cg_data (&node, true);
5478 d->in_worklist = false;
5479 node->local.tm_may_enter_irr = true;
5480
5481 /* Propagate back to normal callers. */
5482 for (e = node->callers; e ; e = e->next_caller)
5483 {
5484 caller = e->caller;
5485 if (!is_tm_safe_or_pure (caller->decl)
5486 && !caller->local.tm_may_enter_irr)
5487 {
5488 d = get_cg_data (&caller, true);
5489 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5490 }
5491 }
5492
5493 /* Propagate back to referring aliases as well. */
5494 for (j = 0; ipa_ref_list_referring_iterate (&node->ref_list, j, ref); j++)
5495 {
5496 caller = cgraph (ref->referring);
5497 if (ref->use == IPA_REF_ALIAS
5498 && !caller->local.tm_may_enter_irr)
5499 {
5500 /* ?? Do not traverse aliases here. */
5501 d = get_cg_data (&caller, false);
5502 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5503 }
5504 }
5505 }
5506
5507 /* Now validate all tm_safe functions, and all atomic regions in
5508 other functions. */
5509 FOR_EACH_DEFINED_FUNCTION (node)
5510 if (node->lowered
5511 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5512 {
5513 d = get_cg_data (&node, true);
5514 if (is_tm_safe (node->decl))
5515 ipa_tm_diagnose_tm_safe (node);
5516 else if (d->all_tm_regions)
5517 ipa_tm_diagnose_transaction (node, d->all_tm_regions);
5518 }
5519
5520 /* Create clones. Do those that are not irrevocable and have a
5521 positive call count. Do those publicly visible functions that
5522 the user directed us to clone. */
5523 for (i = 0; i < tm_callees.length (); ++i)
5524 {
5525 bool doit = false;
5526
5527 node = tm_callees[i];
5528 if (node->cpp_implicit_alias)
5529 continue;
5530
5531 a = cgraph_function_body_availability (node);
5532 d = get_cg_data (&node, true);
5533
5534 if (a <= AVAIL_NOT_AVAILABLE)
5535 doit = is_tm_callable (node->decl);
5536 else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
5537 doit = true;
5538 else if (!d->is_irrevocable
5539 && d->tm_callers_normal + d->tm_callers_clone > 0)
5540 doit = true;
5541
5542 if (doit)
5543 ipa_tm_create_version (node);
5544 }
5545
5546 /* Redirect calls to the new clones, and insert irrevocable marks. */
5547 for (i = 0; i < tm_callees.length (); ++i)
5548 {
5549 node = tm_callees[i];
5550 if (node->analyzed)
5551 {
5552 d = get_cg_data (&node, true);
5553 if (d->clone)
5554 ipa_tm_transform_clone (node);
5555 }
5556 }
5557 FOR_EACH_DEFINED_FUNCTION (node)
5558 if (node->lowered
5559 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5560 {
5561 d = get_cg_data (&node, true);
5562 if (d->all_tm_regions)
5563 ipa_tm_transform_transaction (node);
5564 }
5565
5566 /* Free and clear all data structures. */
5567 tm_callees.release ();
5568 irr_worklist.release ();
5569 bitmap_obstack_release (&tm_obstack);
5570 free_original_copy_tables ();
5571
5572 FOR_EACH_FUNCTION (node)
5573 node->aux = NULL;
5574
5575 #ifdef ENABLE_CHECKING
5576 verify_cgraph ();
5577 #endif
5578
5579 return 0;
5580 }
5581
5582 namespace {
5583
5584 const pass_data pass_data_ipa_tm =
5585 {
5586 SIMPLE_IPA_PASS, /* type */
5587 "tmipa", /* name */
5588 OPTGROUP_NONE, /* optinfo_flags */
5589 true, /* has_gate */
5590 true, /* has_execute */
5591 TV_TRANS_MEM, /* tv_id */
5592 ( PROP_ssa | PROP_cfg ), /* properties_required */
5593 0, /* properties_provided */
5594 0, /* properties_destroyed */
5595 0, /* todo_flags_start */
5596 0, /* todo_flags_finish */
5597 };
5598
5599 class pass_ipa_tm : public simple_ipa_opt_pass
5600 {
5601 public:
5602 pass_ipa_tm (gcc::context *ctxt)
5603 : simple_ipa_opt_pass (pass_data_ipa_tm, ctxt)
5604 {}
5605
5606 /* opt_pass methods: */
5607 bool gate () { return gate_tm (); }
5608 unsigned int execute () { return ipa_tm_execute (); }
5609
5610 }; // class pass_ipa_tm
5611
5612 } // anon namespace
5613
5614 simple_ipa_opt_pass *
5615 make_pass_ipa_tm (gcc::context *ctxt)
5616 {
5617 return new pass_ipa_tm (ctxt);
5618 }
5619
5620 #include "gt-trans-mem.h"