]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/trans-mem.c
Eliminate BASIC_BLOCK macro.
[thirdparty/gcc.git] / gcc / trans-mem.c
1 /* Passes for transactional memory support.
2 Copyright (C) 2008-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tree.h"
25 #include "basic-block.h"
26 #include "tree-ssa-alias.h"
27 #include "internal-fn.h"
28 #include "tree-eh.h"
29 #include "gimple-expr.h"
30 #include "is-a.h"
31 #include "gimple.h"
32 #include "calls.h"
33 #include "function.h"
34 #include "rtl.h"
35 #include "emit-rtl.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-walk.h"
40 #include "gimple-ssa.h"
41 #include "cgraph.h"
42 #include "tree-cfg.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "tree-into-ssa.h"
46 #include "tree-pass.h"
47 #include "tree-inline.h"
48 #include "diagnostic-core.h"
49 #include "demangle.h"
50 #include "output.h"
51 #include "trans-mem.h"
52 #include "params.h"
53 #include "target.h"
54 #include "langhooks.h"
55 #include "gimple-pretty-print.h"
56 #include "cfgloop.h"
57 #include "tree-ssa-address.h"
58 #include "predict.h"
59
60
61 #define A_RUNINSTRUMENTEDCODE 0x0001
62 #define A_RUNUNINSTRUMENTEDCODE 0x0002
63 #define A_SAVELIVEVARIABLES 0x0004
64 #define A_RESTORELIVEVARIABLES 0x0008
65 #define A_ABORTTRANSACTION 0x0010
66
67 #define AR_USERABORT 0x0001
68 #define AR_USERRETRY 0x0002
69 #define AR_TMCONFLICT 0x0004
70 #define AR_EXCEPTIONBLOCKABORT 0x0008
71 #define AR_OUTERABORT 0x0010
72
73 #define MODE_SERIALIRREVOCABLE 0x0000
74
75
76 /* The representation of a transaction changes several times during the
77 lowering process. In the beginning, in the front-end we have the
78 GENERIC tree TRANSACTION_EXPR. For example,
79
80 __transaction {
81 local++;
82 if (++global == 10)
83 __tm_abort;
84 }
85
86 During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
87 trivially replaced with a GIMPLE_TRANSACTION node.
88
89 During pass_lower_tm, we examine the body of transactions looking
90 for aborts. Transactions that do not contain an abort may be
91 merged into an outer transaction. We also add a TRY-FINALLY node
92 to arrange for the transaction to be committed on any exit.
93
94 [??? Think about how this arrangement affects throw-with-commit
95 and throw-with-abort operations. In this case we want the TRY to
96 handle gotos, but not to catch any exceptions because the transaction
97 will already be closed.]
98
99 GIMPLE_TRANSACTION [label=NULL] {
100 try {
101 local = local + 1;
102 t0 = global;
103 t1 = t0 + 1;
104 global = t1;
105 if (t1 == 10)
106 __builtin___tm_abort ();
107 } finally {
108 __builtin___tm_commit ();
109 }
110 }
111
112 During pass_lower_eh, we create EH regions for the transactions,
113 intermixed with the regular EH stuff. This gives us a nice persistent
114 mapping (all the way through rtl) from transactional memory operation
115 back to the transaction, which allows us to get the abnormal edges
116 correct to model transaction aborts and restarts:
117
118 GIMPLE_TRANSACTION [label=over]
119 local = local + 1;
120 t0 = global;
121 t1 = t0 + 1;
122 global = t1;
123 if (t1 == 10)
124 __builtin___tm_abort ();
125 __builtin___tm_commit ();
126 over:
127
128 This is the end of all_lowering_passes, and so is what is present
129 during the IPA passes, and through all of the optimization passes.
130
131 During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
132 functions and mark functions for cloning.
133
134 At the end of gimple optimization, before exiting SSA form,
135 pass_tm_edges replaces statements that perform transactional
136 memory operations with the appropriate TM builtins, and swap
137 out function calls with their transactional clones. At this
138 point we introduce the abnormal transaction restart edges and
139 complete lowering of the GIMPLE_TRANSACTION node.
140
141 x = __builtin___tm_start (MAY_ABORT);
142 eh_label:
143 if (x & abort_transaction)
144 goto over;
145 local = local + 1;
146 t0 = __builtin___tm_load (global);
147 t1 = t0 + 1;
148 __builtin___tm_store (&global, t1);
149 if (t1 == 10)
150 __builtin___tm_abort ();
151 __builtin___tm_commit ();
152 over:
153 */
154
155 static void *expand_regions (struct tm_region *,
156 void *(*callback)(struct tm_region *, void *),
157 void *, bool);
158
159 \f
160 /* Return the attributes we want to examine for X, or NULL if it's not
161 something we examine. We look at function types, but allow pointers
162 to function types and function decls and peek through. */
163
164 static tree
165 get_attrs_for (const_tree x)
166 {
167 switch (TREE_CODE (x))
168 {
169 case FUNCTION_DECL:
170 return TYPE_ATTRIBUTES (TREE_TYPE (x));
171 break;
172
173 default:
174 if (TYPE_P (x))
175 return NULL;
176 x = TREE_TYPE (x);
177 if (TREE_CODE (x) != POINTER_TYPE)
178 return NULL;
179 /* FALLTHRU */
180
181 case POINTER_TYPE:
182 x = TREE_TYPE (x);
183 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
184 return NULL;
185 /* FALLTHRU */
186
187 case FUNCTION_TYPE:
188 case METHOD_TYPE:
189 return TYPE_ATTRIBUTES (x);
190 }
191 }
192
193 /* Return true if X has been marked TM_PURE. */
194
195 bool
196 is_tm_pure (const_tree x)
197 {
198 unsigned flags;
199
200 switch (TREE_CODE (x))
201 {
202 case FUNCTION_DECL:
203 case FUNCTION_TYPE:
204 case METHOD_TYPE:
205 break;
206
207 default:
208 if (TYPE_P (x))
209 return false;
210 x = TREE_TYPE (x);
211 if (TREE_CODE (x) != POINTER_TYPE)
212 return false;
213 /* FALLTHRU */
214
215 case POINTER_TYPE:
216 x = TREE_TYPE (x);
217 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
218 return false;
219 break;
220 }
221
222 flags = flags_from_decl_or_type (x);
223 return (flags & ECF_TM_PURE) != 0;
224 }
225
226 /* Return true if X has been marked TM_IRREVOCABLE. */
227
228 static bool
229 is_tm_irrevocable (tree x)
230 {
231 tree attrs = get_attrs_for (x);
232
233 if (attrs && lookup_attribute ("transaction_unsafe", attrs))
234 return true;
235
236 /* A call to the irrevocable builtin is by definition,
237 irrevocable. */
238 if (TREE_CODE (x) == ADDR_EXPR)
239 x = TREE_OPERAND (x, 0);
240 if (TREE_CODE (x) == FUNCTION_DECL
241 && DECL_BUILT_IN_CLASS (x) == BUILT_IN_NORMAL
242 && DECL_FUNCTION_CODE (x) == BUILT_IN_TM_IRREVOCABLE)
243 return true;
244
245 return false;
246 }
247
248 /* Return true if X has been marked TM_SAFE. */
249
250 bool
251 is_tm_safe (const_tree x)
252 {
253 if (flag_tm)
254 {
255 tree attrs = get_attrs_for (x);
256 if (attrs)
257 {
258 if (lookup_attribute ("transaction_safe", attrs))
259 return true;
260 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
261 return true;
262 }
263 }
264 return false;
265 }
266
267 /* Return true if CALL is const, or tm_pure. */
268
269 static bool
270 is_tm_pure_call (gimple call)
271 {
272 tree fn = gimple_call_fn (call);
273
274 if (TREE_CODE (fn) == ADDR_EXPR)
275 {
276 fn = TREE_OPERAND (fn, 0);
277 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
278 }
279 else
280 fn = TREE_TYPE (fn);
281
282 return is_tm_pure (fn);
283 }
284
285 /* Return true if X has been marked TM_CALLABLE. */
286
287 static bool
288 is_tm_callable (tree x)
289 {
290 tree attrs = get_attrs_for (x);
291 if (attrs)
292 {
293 if (lookup_attribute ("transaction_callable", attrs))
294 return true;
295 if (lookup_attribute ("transaction_safe", attrs))
296 return true;
297 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
298 return true;
299 }
300 return false;
301 }
302
303 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
304
305 bool
306 is_tm_may_cancel_outer (tree x)
307 {
308 tree attrs = get_attrs_for (x);
309 if (attrs)
310 return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
311 return false;
312 }
313
314 /* Return true for built in functions that "end" a transaction. */
315
316 bool
317 is_tm_ending_fndecl (tree fndecl)
318 {
319 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
320 switch (DECL_FUNCTION_CODE (fndecl))
321 {
322 case BUILT_IN_TM_COMMIT:
323 case BUILT_IN_TM_COMMIT_EH:
324 case BUILT_IN_TM_ABORT:
325 case BUILT_IN_TM_IRREVOCABLE:
326 return true;
327 default:
328 break;
329 }
330
331 return false;
332 }
333
334 /* Return true if STMT is a built in function call that "ends" a
335 transaction. */
336
337 bool
338 is_tm_ending (gimple stmt)
339 {
340 tree fndecl;
341
342 if (gimple_code (stmt) != GIMPLE_CALL)
343 return false;
344
345 fndecl = gimple_call_fndecl (stmt);
346 return (fndecl != NULL_TREE
347 && is_tm_ending_fndecl (fndecl));
348 }
349
350 /* Return true if STMT is a TM load. */
351
352 static bool
353 is_tm_load (gimple stmt)
354 {
355 tree fndecl;
356
357 if (gimple_code (stmt) != GIMPLE_CALL)
358 return false;
359
360 fndecl = gimple_call_fndecl (stmt);
361 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
362 && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
363 }
364
365 /* Same as above, but for simple TM loads, that is, not the
366 after-write, after-read, etc optimized variants. */
367
368 static bool
369 is_tm_simple_load (gimple stmt)
370 {
371 tree fndecl;
372
373 if (gimple_code (stmt) != GIMPLE_CALL)
374 return false;
375
376 fndecl = gimple_call_fndecl (stmt);
377 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
378 {
379 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
380 return (fcode == BUILT_IN_TM_LOAD_1
381 || fcode == BUILT_IN_TM_LOAD_2
382 || fcode == BUILT_IN_TM_LOAD_4
383 || fcode == BUILT_IN_TM_LOAD_8
384 || fcode == BUILT_IN_TM_LOAD_FLOAT
385 || fcode == BUILT_IN_TM_LOAD_DOUBLE
386 || fcode == BUILT_IN_TM_LOAD_LDOUBLE
387 || fcode == BUILT_IN_TM_LOAD_M64
388 || fcode == BUILT_IN_TM_LOAD_M128
389 || fcode == BUILT_IN_TM_LOAD_M256);
390 }
391 return false;
392 }
393
394 /* Return true if STMT is a TM store. */
395
396 static bool
397 is_tm_store (gimple stmt)
398 {
399 tree fndecl;
400
401 if (gimple_code (stmt) != GIMPLE_CALL)
402 return false;
403
404 fndecl = gimple_call_fndecl (stmt);
405 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
406 && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
407 }
408
409 /* Same as above, but for simple TM stores, that is, not the
410 after-write, after-read, etc optimized variants. */
411
412 static bool
413 is_tm_simple_store (gimple stmt)
414 {
415 tree fndecl;
416
417 if (gimple_code (stmt) != GIMPLE_CALL)
418 return false;
419
420 fndecl = gimple_call_fndecl (stmt);
421 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
422 {
423 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
424 return (fcode == BUILT_IN_TM_STORE_1
425 || fcode == BUILT_IN_TM_STORE_2
426 || fcode == BUILT_IN_TM_STORE_4
427 || fcode == BUILT_IN_TM_STORE_8
428 || fcode == BUILT_IN_TM_STORE_FLOAT
429 || fcode == BUILT_IN_TM_STORE_DOUBLE
430 || fcode == BUILT_IN_TM_STORE_LDOUBLE
431 || fcode == BUILT_IN_TM_STORE_M64
432 || fcode == BUILT_IN_TM_STORE_M128
433 || fcode == BUILT_IN_TM_STORE_M256);
434 }
435 return false;
436 }
437
438 /* Return true if FNDECL is BUILT_IN_TM_ABORT. */
439
440 static bool
441 is_tm_abort (tree fndecl)
442 {
443 return (fndecl
444 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
445 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_TM_ABORT);
446 }
447
448 /* Build a GENERIC tree for a user abort. This is called by front ends
449 while transforming the __tm_abort statement. */
450
451 tree
452 build_tm_abort_call (location_t loc, bool is_outer)
453 {
454 return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
455 build_int_cst (integer_type_node,
456 AR_USERABORT
457 | (is_outer ? AR_OUTERABORT : 0)));
458 }
459
460 /* Common gateing function for several of the TM passes. */
461
462 static bool
463 gate_tm (void)
464 {
465 return flag_tm;
466 }
467 \f
468 /* Map for aribtrary function replacement under TM, as created
469 by the tm_wrap attribute. */
470
471 static GTY((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
472 htab_t tm_wrap_map;
473
474 void
475 record_tm_replacement (tree from, tree to)
476 {
477 struct tree_map **slot, *h;
478
479 /* Do not inline wrapper functions that will get replaced in the TM
480 pass.
481
482 Suppose you have foo() that will get replaced into tmfoo(). Make
483 sure the inliner doesn't try to outsmart us and inline foo()
484 before we get a chance to do the TM replacement. */
485 DECL_UNINLINABLE (from) = 1;
486
487 if (tm_wrap_map == NULL)
488 tm_wrap_map = htab_create_ggc (32, tree_map_hash, tree_map_eq, 0);
489
490 h = ggc_alloc_tree_map ();
491 h->hash = htab_hash_pointer (from);
492 h->base.from = from;
493 h->to = to;
494
495 slot = (struct tree_map **)
496 htab_find_slot_with_hash (tm_wrap_map, h, h->hash, INSERT);
497 *slot = h;
498 }
499
500 /* Return a TM-aware replacement function for DECL. */
501
502 static tree
503 find_tm_replacement_function (tree fndecl)
504 {
505 if (tm_wrap_map)
506 {
507 struct tree_map *h, in;
508
509 in.base.from = fndecl;
510 in.hash = htab_hash_pointer (fndecl);
511 h = (struct tree_map *) htab_find_with_hash (tm_wrap_map, &in, in.hash);
512 if (h)
513 return h->to;
514 }
515
516 /* ??? We may well want TM versions of most of the common <string.h>
517 functions. For now, we've already these two defined. */
518 /* Adjust expand_call_tm() attributes as necessary for the cases
519 handled here: */
520 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
521 switch (DECL_FUNCTION_CODE (fndecl))
522 {
523 case BUILT_IN_MEMCPY:
524 return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
525 case BUILT_IN_MEMMOVE:
526 return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
527 case BUILT_IN_MEMSET:
528 return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
529 default:
530 return NULL;
531 }
532
533 return NULL;
534 }
535
536 /* When appropriate, record TM replacement for memory allocation functions.
537
538 FROM is the FNDECL to wrap. */
539 void
540 tm_malloc_replacement (tree from)
541 {
542 const char *str;
543 tree to;
544
545 if (TREE_CODE (from) != FUNCTION_DECL)
546 return;
547
548 /* If we have a previous replacement, the user must be explicitly
549 wrapping malloc/calloc/free. They better know what they're
550 doing... */
551 if (find_tm_replacement_function (from))
552 return;
553
554 str = IDENTIFIER_POINTER (DECL_NAME (from));
555
556 if (!strcmp (str, "malloc"))
557 to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
558 else if (!strcmp (str, "calloc"))
559 to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
560 else if (!strcmp (str, "free"))
561 to = builtin_decl_explicit (BUILT_IN_TM_FREE);
562 else
563 return;
564
565 TREE_NOTHROW (to) = 0;
566
567 record_tm_replacement (from, to);
568 }
569 \f
570 /* Diagnostics for tm_safe functions/regions. Called by the front end
571 once we've lowered the function to high-gimple. */
572
573 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
574 Process exactly one statement. WI->INFO is set to non-null when in
575 the context of a tm_safe function, and null for a __transaction block. */
576
577 #define DIAG_TM_OUTER 1
578 #define DIAG_TM_SAFE 2
579 #define DIAG_TM_RELAXED 4
580
581 struct diagnose_tm
582 {
583 unsigned int summary_flags : 8;
584 unsigned int block_flags : 8;
585 unsigned int func_flags : 8;
586 unsigned int saw_volatile : 1;
587 gimple stmt;
588 };
589
590 /* Return true if T is a volatile variable of some kind. */
591
592 static bool
593 volatile_var_p (tree t)
594 {
595 return (SSA_VAR_P (t)
596 && TREE_THIS_VOLATILE (TREE_TYPE (t)));
597 }
598
599 /* Tree callback function for diagnose_tm pass. */
600
601 static tree
602 diagnose_tm_1_op (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
603 void *data)
604 {
605 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
606 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
607
608 if (volatile_var_p (*tp)
609 && d->block_flags & DIAG_TM_SAFE
610 && !d->saw_volatile)
611 {
612 d->saw_volatile = 1;
613 error_at (gimple_location (d->stmt),
614 "invalid volatile use of %qD inside transaction",
615 *tp);
616 }
617
618 return NULL_TREE;
619 }
620
621 static inline bool
622 is_tm_safe_or_pure (const_tree x)
623 {
624 return is_tm_safe (x) || is_tm_pure (x);
625 }
626
627 static tree
628 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
629 struct walk_stmt_info *wi)
630 {
631 gimple stmt = gsi_stmt (*gsi);
632 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
633
634 /* Save stmt for use in leaf analysis. */
635 d->stmt = stmt;
636
637 switch (gimple_code (stmt))
638 {
639 case GIMPLE_CALL:
640 {
641 tree fn = gimple_call_fn (stmt);
642
643 if ((d->summary_flags & DIAG_TM_OUTER) == 0
644 && is_tm_may_cancel_outer (fn))
645 error_at (gimple_location (stmt),
646 "%<transaction_may_cancel_outer%> function call not within"
647 " outer transaction or %<transaction_may_cancel_outer%>");
648
649 if (d->summary_flags & DIAG_TM_SAFE)
650 {
651 bool is_safe, direct_call_p;
652 tree replacement;
653
654 if (TREE_CODE (fn) == ADDR_EXPR
655 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
656 {
657 direct_call_p = true;
658 replacement = TREE_OPERAND (fn, 0);
659 replacement = find_tm_replacement_function (replacement);
660 if (replacement)
661 fn = replacement;
662 }
663 else
664 {
665 direct_call_p = false;
666 replacement = NULL_TREE;
667 }
668
669 if (is_tm_safe_or_pure (fn))
670 is_safe = true;
671 else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
672 {
673 /* A function explicitly marked transaction_callable as
674 opposed to transaction_safe is being defined to be
675 unsafe as part of its ABI, regardless of its contents. */
676 is_safe = false;
677 }
678 else if (direct_call_p)
679 {
680 if (flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
681 is_safe = true;
682 else if (replacement)
683 {
684 /* ??? At present we've been considering replacements
685 merely transaction_callable, and therefore might
686 enter irrevocable. The tm_wrap attribute has not
687 yet made it into the new language spec. */
688 is_safe = false;
689 }
690 else
691 {
692 /* ??? Diagnostics for unmarked direct calls moved into
693 the IPA pass. Section 3.2 of the spec details how
694 functions not marked should be considered "implicitly
695 safe" based on having examined the function body. */
696 is_safe = true;
697 }
698 }
699 else
700 {
701 /* An unmarked indirect call. Consider it unsafe even
702 though optimization may yet figure out how to inline. */
703 is_safe = false;
704 }
705
706 if (!is_safe)
707 {
708 if (TREE_CODE (fn) == ADDR_EXPR)
709 fn = TREE_OPERAND (fn, 0);
710 if (d->block_flags & DIAG_TM_SAFE)
711 {
712 if (direct_call_p)
713 error_at (gimple_location (stmt),
714 "unsafe function call %qD within "
715 "atomic transaction", fn);
716 else
717 {
718 if (!DECL_P (fn) || DECL_NAME (fn))
719 error_at (gimple_location (stmt),
720 "unsafe function call %qE within "
721 "atomic transaction", fn);
722 else
723 error_at (gimple_location (stmt),
724 "unsafe indirect function call within "
725 "atomic transaction");
726 }
727 }
728 else
729 {
730 if (direct_call_p)
731 error_at (gimple_location (stmt),
732 "unsafe function call %qD within "
733 "%<transaction_safe%> function", fn);
734 else
735 {
736 if (!DECL_P (fn) || DECL_NAME (fn))
737 error_at (gimple_location (stmt),
738 "unsafe function call %qE within "
739 "%<transaction_safe%> function", fn);
740 else
741 error_at (gimple_location (stmt),
742 "unsafe indirect function call within "
743 "%<transaction_safe%> function");
744 }
745 }
746 }
747 }
748 }
749 break;
750
751 case GIMPLE_ASM:
752 /* ??? We ought to come up with a way to add attributes to
753 asm statements, and then add "transaction_safe" to it.
754 Either that or get the language spec to resurrect __tm_waiver. */
755 if (d->block_flags & DIAG_TM_SAFE)
756 error_at (gimple_location (stmt),
757 "asm not allowed in atomic transaction");
758 else if (d->func_flags & DIAG_TM_SAFE)
759 error_at (gimple_location (stmt),
760 "asm not allowed in %<transaction_safe%> function");
761 break;
762
763 case GIMPLE_TRANSACTION:
764 {
765 unsigned char inner_flags = DIAG_TM_SAFE;
766
767 if (gimple_transaction_subcode (stmt) & GTMA_IS_RELAXED)
768 {
769 if (d->block_flags & DIAG_TM_SAFE)
770 error_at (gimple_location (stmt),
771 "relaxed transaction in atomic transaction");
772 else if (d->func_flags & DIAG_TM_SAFE)
773 error_at (gimple_location (stmt),
774 "relaxed transaction in %<transaction_safe%> function");
775 inner_flags = DIAG_TM_RELAXED;
776 }
777 else if (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER)
778 {
779 if (d->block_flags)
780 error_at (gimple_location (stmt),
781 "outer transaction in transaction");
782 else if (d->func_flags & DIAG_TM_OUTER)
783 error_at (gimple_location (stmt),
784 "outer transaction in "
785 "%<transaction_may_cancel_outer%> function");
786 else if (d->func_flags & DIAG_TM_SAFE)
787 error_at (gimple_location (stmt),
788 "outer transaction in %<transaction_safe%> function");
789 inner_flags |= DIAG_TM_OUTER;
790 }
791
792 *handled_ops_p = true;
793 if (gimple_transaction_body (stmt))
794 {
795 struct walk_stmt_info wi_inner;
796 struct diagnose_tm d_inner;
797
798 memset (&d_inner, 0, sizeof (d_inner));
799 d_inner.func_flags = d->func_flags;
800 d_inner.block_flags = d->block_flags | inner_flags;
801 d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
802
803 memset (&wi_inner, 0, sizeof (wi_inner));
804 wi_inner.info = &d_inner;
805
806 walk_gimple_seq (gimple_transaction_body (stmt),
807 diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
808 }
809 }
810 break;
811
812 default:
813 break;
814 }
815
816 return NULL_TREE;
817 }
818
819 static unsigned int
820 diagnose_tm_blocks (void)
821 {
822 struct walk_stmt_info wi;
823 struct diagnose_tm d;
824
825 memset (&d, 0, sizeof (d));
826 if (is_tm_may_cancel_outer (current_function_decl))
827 d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
828 else if (is_tm_safe (current_function_decl))
829 d.func_flags = DIAG_TM_SAFE;
830 d.summary_flags = d.func_flags;
831
832 memset (&wi, 0, sizeof (wi));
833 wi.info = &d;
834
835 walk_gimple_seq (gimple_body (current_function_decl),
836 diagnose_tm_1, diagnose_tm_1_op, &wi);
837
838 return 0;
839 }
840
841 namespace {
842
843 const pass_data pass_data_diagnose_tm_blocks =
844 {
845 GIMPLE_PASS, /* type */
846 "*diagnose_tm_blocks", /* name */
847 OPTGROUP_NONE, /* optinfo_flags */
848 true, /* has_gate */
849 true, /* has_execute */
850 TV_TRANS_MEM, /* tv_id */
851 PROP_gimple_any, /* properties_required */
852 0, /* properties_provided */
853 0, /* properties_destroyed */
854 0, /* todo_flags_start */
855 0, /* todo_flags_finish */
856 };
857
858 class pass_diagnose_tm_blocks : public gimple_opt_pass
859 {
860 public:
861 pass_diagnose_tm_blocks (gcc::context *ctxt)
862 : gimple_opt_pass (pass_data_diagnose_tm_blocks, ctxt)
863 {}
864
865 /* opt_pass methods: */
866 bool gate () { return gate_tm (); }
867 unsigned int execute () { return diagnose_tm_blocks (); }
868
869 }; // class pass_diagnose_tm_blocks
870
871 } // anon namespace
872
873 gimple_opt_pass *
874 make_pass_diagnose_tm_blocks (gcc::context *ctxt)
875 {
876 return new pass_diagnose_tm_blocks (ctxt);
877 }
878 \f
879 /* Instead of instrumenting thread private memory, we save the
880 addresses in a log which we later use to save/restore the addresses
881 upon transaction start/restart.
882
883 The log is keyed by address, where each element contains individual
884 statements among different code paths that perform the store.
885
886 This log is later used to generate either plain save/restore of the
887 addresses upon transaction start/restart, or calls to the ITM_L*
888 logging functions.
889
890 So for something like:
891
892 struct large { int x[1000]; };
893 struct large lala = { 0 };
894 __transaction {
895 lala.x[i] = 123;
896 ...
897 }
898
899 We can either save/restore:
900
901 lala = { 0 };
902 trxn = _ITM_startTransaction ();
903 if (trxn & a_saveLiveVariables)
904 tmp_lala1 = lala.x[i];
905 else if (a & a_restoreLiveVariables)
906 lala.x[i] = tmp_lala1;
907
908 or use the logging functions:
909
910 lala = { 0 };
911 trxn = _ITM_startTransaction ();
912 _ITM_LU4 (&lala.x[i]);
913
914 Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
915 far up the dominator tree to shadow all of the writes to a given
916 location (thus reducing the total number of logging calls), but not
917 so high as to be called on a path that does not perform a
918 write. */
919
920 /* One individual log entry. We may have multiple statements for the
921 same location if neither dominate each other (on different
922 execution paths). */
923 typedef struct tm_log_entry
924 {
925 /* Address to save. */
926 tree addr;
927 /* Entry block for the transaction this address occurs in. */
928 basic_block entry_block;
929 /* Dominating statements the store occurs in. */
930 gimple_vec stmts;
931 /* Initially, while we are building the log, we place a nonzero
932 value here to mean that this address *will* be saved with a
933 save/restore sequence. Later, when generating the save sequence
934 we place the SSA temp generated here. */
935 tree save_var;
936 } *tm_log_entry_t;
937
938
939 /* Log entry hashtable helpers. */
940
941 struct log_entry_hasher
942 {
943 typedef tm_log_entry value_type;
944 typedef tm_log_entry compare_type;
945 static inline hashval_t hash (const value_type *);
946 static inline bool equal (const value_type *, const compare_type *);
947 static inline void remove (value_type *);
948 };
949
950 /* Htab support. Return hash value for a `tm_log_entry'. */
951 inline hashval_t
952 log_entry_hasher::hash (const value_type *log)
953 {
954 return iterative_hash_expr (log->addr, 0);
955 }
956
957 /* Htab support. Return true if two log entries are the same. */
958 inline bool
959 log_entry_hasher::equal (const value_type *log1, const compare_type *log2)
960 {
961 /* FIXME:
962
963 rth: I suggest that we get rid of the component refs etc.
964 I.e. resolve the reference to base + offset.
965
966 We may need to actually finish a merge with mainline for this,
967 since we'd like to be presented with Richi's MEM_REF_EXPRs more
968 often than not. But in the meantime your tm_log_entry could save
969 the results of get_inner_reference.
970
971 See: g++.dg/tm/pr46653.C
972 */
973
974 /* Special case plain equality because operand_equal_p() below will
975 return FALSE if the addresses are equal but they have
976 side-effects (e.g. a volatile address). */
977 if (log1->addr == log2->addr)
978 return true;
979
980 return operand_equal_p (log1->addr, log2->addr, 0);
981 }
982
983 /* Htab support. Free one tm_log_entry. */
984 inline void
985 log_entry_hasher::remove (value_type *lp)
986 {
987 lp->stmts.release ();
988 free (lp);
989 }
990
991
992 /* The actual log. */
993 static hash_table <log_entry_hasher> tm_log;
994
995 /* Addresses to log with a save/restore sequence. These should be in
996 dominator order. */
997 static vec<tree> tm_log_save_addresses;
998
999 enum thread_memory_type
1000 {
1001 mem_non_local = 0,
1002 mem_thread_local,
1003 mem_transaction_local,
1004 mem_max
1005 };
1006
1007 typedef struct tm_new_mem_map
1008 {
1009 /* SSA_NAME being dereferenced. */
1010 tree val;
1011 enum thread_memory_type local_new_memory;
1012 } tm_new_mem_map_t;
1013
1014 /* Hashtable helpers. */
1015
1016 struct tm_mem_map_hasher : typed_free_remove <tm_new_mem_map_t>
1017 {
1018 typedef tm_new_mem_map_t value_type;
1019 typedef tm_new_mem_map_t compare_type;
1020 static inline hashval_t hash (const value_type *);
1021 static inline bool equal (const value_type *, const compare_type *);
1022 };
1023
1024 inline hashval_t
1025 tm_mem_map_hasher::hash (const value_type *v)
1026 {
1027 return (intptr_t)v->val >> 4;
1028 }
1029
1030 inline bool
1031 tm_mem_map_hasher::equal (const value_type *v, const compare_type *c)
1032 {
1033 return v->val == c->val;
1034 }
1035
1036 /* Map for an SSA_NAME originally pointing to a non aliased new piece
1037 of memory (malloc, alloc, etc). */
1038 static hash_table <tm_mem_map_hasher> tm_new_mem_hash;
1039
1040 /* Initialize logging data structures. */
1041 static void
1042 tm_log_init (void)
1043 {
1044 tm_log.create (10);
1045 tm_new_mem_hash.create (5);
1046 tm_log_save_addresses.create (5);
1047 }
1048
1049 /* Free logging data structures. */
1050 static void
1051 tm_log_delete (void)
1052 {
1053 tm_log.dispose ();
1054 tm_new_mem_hash.dispose ();
1055 tm_log_save_addresses.release ();
1056 }
1057
1058 /* Return true if MEM is a transaction invariant memory for the TM
1059 region starting at REGION_ENTRY_BLOCK. */
1060 static bool
1061 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
1062 {
1063 if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
1064 && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
1065 {
1066 basic_block def_bb;
1067
1068 def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
1069 return def_bb != region_entry_block
1070 && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
1071 }
1072
1073 mem = strip_invariant_refs (mem);
1074 return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
1075 }
1076
1077 /* Given an address ADDR in STMT, find it in the memory log or add it,
1078 making sure to keep only the addresses highest in the dominator
1079 tree.
1080
1081 ENTRY_BLOCK is the entry_block for the transaction.
1082
1083 If we find the address in the log, make sure it's either the same
1084 address, or an equivalent one that dominates ADDR.
1085
1086 If we find the address, but neither ADDR dominates the found
1087 address, nor the found one dominates ADDR, we're on different
1088 execution paths. Add it.
1089
1090 If known, ENTRY_BLOCK is the entry block for the region, otherwise
1091 NULL. */
1092 static void
1093 tm_log_add (basic_block entry_block, tree addr, gimple stmt)
1094 {
1095 tm_log_entry **slot;
1096 struct tm_log_entry l, *lp;
1097
1098 l.addr = addr;
1099 slot = tm_log.find_slot (&l, INSERT);
1100 if (!*slot)
1101 {
1102 tree type = TREE_TYPE (addr);
1103
1104 lp = XNEW (struct tm_log_entry);
1105 lp->addr = addr;
1106 *slot = lp;
1107
1108 /* Small invariant addresses can be handled as save/restores. */
1109 if (entry_block
1110 && transaction_invariant_address_p (lp->addr, entry_block)
1111 && TYPE_SIZE_UNIT (type) != NULL
1112 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
1113 && ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE_UNIT (type))
1114 < PARAM_VALUE (PARAM_TM_MAX_AGGREGATE_SIZE))
1115 /* We must be able to copy this type normally. I.e., no
1116 special constructors and the like. */
1117 && !TREE_ADDRESSABLE (type))
1118 {
1119 lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
1120 lp->stmts.create (0);
1121 lp->entry_block = entry_block;
1122 /* Save addresses separately in dominator order so we don't
1123 get confused by overlapping addresses in the save/restore
1124 sequence. */
1125 tm_log_save_addresses.safe_push (lp->addr);
1126 }
1127 else
1128 {
1129 /* Use the logging functions. */
1130 lp->stmts.create (5);
1131 lp->stmts.quick_push (stmt);
1132 lp->save_var = NULL;
1133 }
1134 }
1135 else
1136 {
1137 size_t i;
1138 gimple oldstmt;
1139
1140 lp = *slot;
1141
1142 /* If we're generating a save/restore sequence, we don't care
1143 about statements. */
1144 if (lp->save_var)
1145 return;
1146
1147 for (i = 0; lp->stmts.iterate (i, &oldstmt); ++i)
1148 {
1149 if (stmt == oldstmt)
1150 return;
1151 /* We already have a store to the same address, higher up the
1152 dominator tree. Nothing to do. */
1153 if (dominated_by_p (CDI_DOMINATORS,
1154 gimple_bb (stmt), gimple_bb (oldstmt)))
1155 return;
1156 /* We should be processing blocks in dominator tree order. */
1157 gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1158 gimple_bb (oldstmt), gimple_bb (stmt)));
1159 }
1160 /* Store is on a different code path. */
1161 lp->stmts.safe_push (stmt);
1162 }
1163 }
1164
1165 /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
1166 result, insert the new statements before GSI. */
1167
1168 static tree
1169 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1170 {
1171 if (TREE_CODE (x) == TARGET_MEM_REF)
1172 x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1173 else
1174 x = build_fold_addr_expr (x);
1175 return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1176 }
1177
1178 /* Instrument one address with the logging functions.
1179 ADDR is the address to save.
1180 STMT is the statement before which to place it. */
1181 static void
1182 tm_log_emit_stmt (tree addr, gimple stmt)
1183 {
1184 tree type = TREE_TYPE (addr);
1185 tree size = TYPE_SIZE_UNIT (type);
1186 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1187 gimple log;
1188 enum built_in_function code = BUILT_IN_TM_LOG;
1189
1190 if (type == float_type_node)
1191 code = BUILT_IN_TM_LOG_FLOAT;
1192 else if (type == double_type_node)
1193 code = BUILT_IN_TM_LOG_DOUBLE;
1194 else if (type == long_double_type_node)
1195 code = BUILT_IN_TM_LOG_LDOUBLE;
1196 else if (tree_fits_uhwi_p (size))
1197 {
1198 unsigned int n = tree_to_uhwi (size);
1199 switch (n)
1200 {
1201 case 1:
1202 code = BUILT_IN_TM_LOG_1;
1203 break;
1204 case 2:
1205 code = BUILT_IN_TM_LOG_2;
1206 break;
1207 case 4:
1208 code = BUILT_IN_TM_LOG_4;
1209 break;
1210 case 8:
1211 code = BUILT_IN_TM_LOG_8;
1212 break;
1213 default:
1214 code = BUILT_IN_TM_LOG;
1215 if (TREE_CODE (type) == VECTOR_TYPE)
1216 {
1217 if (n == 8 && builtin_decl_explicit (BUILT_IN_TM_LOG_M64))
1218 code = BUILT_IN_TM_LOG_M64;
1219 else if (n == 16 && builtin_decl_explicit (BUILT_IN_TM_LOG_M128))
1220 code = BUILT_IN_TM_LOG_M128;
1221 else if (n == 32 && builtin_decl_explicit (BUILT_IN_TM_LOG_M256))
1222 code = BUILT_IN_TM_LOG_M256;
1223 }
1224 break;
1225 }
1226 }
1227
1228 addr = gimplify_addr (&gsi, addr);
1229 if (code == BUILT_IN_TM_LOG)
1230 log = gimple_build_call (builtin_decl_explicit (code), 2, addr, size);
1231 else
1232 log = gimple_build_call (builtin_decl_explicit (code), 1, addr);
1233 gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1234 }
1235
1236 /* Go through the log and instrument address that must be instrumented
1237 with the logging functions. Leave the save/restore addresses for
1238 later. */
1239 static void
1240 tm_log_emit (void)
1241 {
1242 hash_table <log_entry_hasher>::iterator hi;
1243 struct tm_log_entry *lp;
1244
1245 FOR_EACH_HASH_TABLE_ELEMENT (tm_log, lp, tm_log_entry_t, hi)
1246 {
1247 size_t i;
1248 gimple stmt;
1249
1250 if (dump_file)
1251 {
1252 fprintf (dump_file, "TM thread private mem logging: ");
1253 print_generic_expr (dump_file, lp->addr, 0);
1254 fprintf (dump_file, "\n");
1255 }
1256
1257 if (lp->save_var)
1258 {
1259 if (dump_file)
1260 fprintf (dump_file, "DUMPING to variable\n");
1261 continue;
1262 }
1263 else
1264 {
1265 if (dump_file)
1266 fprintf (dump_file, "DUMPING with logging functions\n");
1267 for (i = 0; lp->stmts.iterate (i, &stmt); ++i)
1268 tm_log_emit_stmt (lp->addr, stmt);
1269 }
1270 }
1271 }
1272
1273 /* Emit the save sequence for the corresponding addresses in the log.
1274 ENTRY_BLOCK is the entry block for the transaction.
1275 BB is the basic block to insert the code in. */
1276 static void
1277 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1278 {
1279 size_t i;
1280 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1281 gimple stmt;
1282 struct tm_log_entry l, *lp;
1283
1284 for (i = 0; i < tm_log_save_addresses.length (); ++i)
1285 {
1286 l.addr = tm_log_save_addresses[i];
1287 lp = *(tm_log.find_slot (&l, NO_INSERT));
1288 gcc_assert (lp->save_var != NULL);
1289
1290 /* We only care about variables in the current transaction. */
1291 if (lp->entry_block != entry_block)
1292 continue;
1293
1294 stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1295
1296 /* Make sure we can create an SSA_NAME for this type. For
1297 instance, aggregates aren't allowed, in which case the system
1298 will create a VOP for us and everything will just work. */
1299 if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1300 {
1301 lp->save_var = make_ssa_name (lp->save_var, stmt);
1302 gimple_assign_set_lhs (stmt, lp->save_var);
1303 }
1304
1305 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1306 }
1307 }
1308
1309 /* Emit the restore sequence for the corresponding addresses in the log.
1310 ENTRY_BLOCK is the entry block for the transaction.
1311 BB is the basic block to insert the code in. */
1312 static void
1313 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1314 {
1315 int i;
1316 struct tm_log_entry l, *lp;
1317 gimple_stmt_iterator gsi;
1318 gimple stmt;
1319
1320 for (i = tm_log_save_addresses.length () - 1; i >= 0; i--)
1321 {
1322 l.addr = tm_log_save_addresses[i];
1323 lp = *(tm_log.find_slot (&l, NO_INSERT));
1324 gcc_assert (lp->save_var != NULL);
1325
1326 /* We only care about variables in the current transaction. */
1327 if (lp->entry_block != entry_block)
1328 continue;
1329
1330 /* Restores are in LIFO order from the saves in case we have
1331 overlaps. */
1332 gsi = gsi_start_bb (bb);
1333
1334 stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1335 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1336 }
1337 }
1338
1339 \f
1340 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1341 struct walk_stmt_info *);
1342 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1343 struct walk_stmt_info *);
1344
1345 /* Evaluate an address X being dereferenced and determine if it
1346 originally points to a non aliased new chunk of memory (malloc,
1347 alloca, etc).
1348
1349 Return MEM_THREAD_LOCAL if it points to a thread-local address.
1350 Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1351 Return MEM_NON_LOCAL otherwise.
1352
1353 ENTRY_BLOCK is the entry block to the transaction containing the
1354 dereference of X. */
1355 static enum thread_memory_type
1356 thread_private_new_memory (basic_block entry_block, tree x)
1357 {
1358 gimple stmt = NULL;
1359 enum tree_code code;
1360 tm_new_mem_map_t **slot;
1361 tm_new_mem_map_t elt, *elt_p;
1362 tree val = x;
1363 enum thread_memory_type retval = mem_transaction_local;
1364
1365 if (!entry_block
1366 || TREE_CODE (x) != SSA_NAME
1367 /* Possible uninitialized use, or a function argument. In
1368 either case, we don't care. */
1369 || SSA_NAME_IS_DEFAULT_DEF (x))
1370 return mem_non_local;
1371
1372 /* Look in cache first. */
1373 elt.val = x;
1374 slot = tm_new_mem_hash.find_slot (&elt, INSERT);
1375 elt_p = *slot;
1376 if (elt_p)
1377 return elt_p->local_new_memory;
1378
1379 /* Optimistically assume the memory is transaction local during
1380 processing. This catches recursion into this variable. */
1381 *slot = elt_p = XNEW (tm_new_mem_map_t);
1382 elt_p->val = val;
1383 elt_p->local_new_memory = mem_transaction_local;
1384
1385 /* Search DEF chain to find the original definition of this address. */
1386 do
1387 {
1388 if (ptr_deref_may_alias_global_p (x))
1389 {
1390 /* Address escapes. This is not thread-private. */
1391 retval = mem_non_local;
1392 goto new_memory_ret;
1393 }
1394
1395 stmt = SSA_NAME_DEF_STMT (x);
1396
1397 /* If the malloc call is outside the transaction, this is
1398 thread-local. */
1399 if (retval != mem_thread_local
1400 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1401 retval = mem_thread_local;
1402
1403 if (is_gimple_assign (stmt))
1404 {
1405 code = gimple_assign_rhs_code (stmt);
1406 /* x = foo ==> foo */
1407 if (code == SSA_NAME)
1408 x = gimple_assign_rhs1 (stmt);
1409 /* x = foo + n ==> foo */
1410 else if (code == POINTER_PLUS_EXPR)
1411 x = gimple_assign_rhs1 (stmt);
1412 /* x = (cast*) foo ==> foo */
1413 else if (code == VIEW_CONVERT_EXPR || code == NOP_EXPR)
1414 x = gimple_assign_rhs1 (stmt);
1415 /* x = c ? op1 : op2 == > op1 or op2 just like a PHI */
1416 else if (code == COND_EXPR)
1417 {
1418 tree op1 = gimple_assign_rhs2 (stmt);
1419 tree op2 = gimple_assign_rhs3 (stmt);
1420 enum thread_memory_type mem;
1421 retval = thread_private_new_memory (entry_block, op1);
1422 if (retval == mem_non_local)
1423 goto new_memory_ret;
1424 mem = thread_private_new_memory (entry_block, op2);
1425 retval = MIN (retval, mem);
1426 goto new_memory_ret;
1427 }
1428 else
1429 {
1430 retval = mem_non_local;
1431 goto new_memory_ret;
1432 }
1433 }
1434 else
1435 {
1436 if (gimple_code (stmt) == GIMPLE_PHI)
1437 {
1438 unsigned int i;
1439 enum thread_memory_type mem;
1440 tree phi_result = gimple_phi_result (stmt);
1441
1442 /* If any of the ancestors are non-local, we are sure to
1443 be non-local. Otherwise we can avoid doing anything
1444 and inherit what has already been generated. */
1445 retval = mem_max;
1446 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1447 {
1448 tree op = PHI_ARG_DEF (stmt, i);
1449
1450 /* Exclude self-assignment. */
1451 if (phi_result == op)
1452 continue;
1453
1454 mem = thread_private_new_memory (entry_block, op);
1455 if (mem == mem_non_local)
1456 {
1457 retval = mem;
1458 goto new_memory_ret;
1459 }
1460 retval = MIN (retval, mem);
1461 }
1462 goto new_memory_ret;
1463 }
1464 break;
1465 }
1466 }
1467 while (TREE_CODE (x) == SSA_NAME);
1468
1469 if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1470 /* Thread-local or transaction-local. */
1471 ;
1472 else
1473 retval = mem_non_local;
1474
1475 new_memory_ret:
1476 elt_p->local_new_memory = retval;
1477 return retval;
1478 }
1479
1480 /* Determine whether X has to be instrumented using a read
1481 or write barrier.
1482
1483 ENTRY_BLOCK is the entry block for the region where stmt resides
1484 in. NULL if unknown.
1485
1486 STMT is the statement in which X occurs in. It is used for thread
1487 private memory instrumentation. If no TPM instrumentation is
1488 desired, STMT should be null. */
1489 static bool
1490 requires_barrier (basic_block entry_block, tree x, gimple stmt)
1491 {
1492 tree orig = x;
1493 while (handled_component_p (x))
1494 x = TREE_OPERAND (x, 0);
1495
1496 switch (TREE_CODE (x))
1497 {
1498 case INDIRECT_REF:
1499 case MEM_REF:
1500 {
1501 enum thread_memory_type ret;
1502
1503 ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1504 if (ret == mem_non_local)
1505 return true;
1506 if (stmt && ret == mem_thread_local)
1507 /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
1508 tm_log_add (entry_block, orig, stmt);
1509
1510 /* Transaction-locals require nothing at all. For malloc, a
1511 transaction restart frees the memory and we reallocate.
1512 For alloca, the stack pointer gets reset by the retry and
1513 we reallocate. */
1514 return false;
1515 }
1516
1517 case TARGET_MEM_REF:
1518 if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1519 return true;
1520 x = TREE_OPERAND (TMR_BASE (x), 0);
1521 if (TREE_CODE (x) == PARM_DECL)
1522 return false;
1523 gcc_assert (TREE_CODE (x) == VAR_DECL);
1524 /* FALLTHRU */
1525
1526 case PARM_DECL:
1527 case RESULT_DECL:
1528 case VAR_DECL:
1529 if (DECL_BY_REFERENCE (x))
1530 {
1531 /* ??? This value is a pointer, but aggregate_value_p has been
1532 jigged to return true which confuses needs_to_live_in_memory.
1533 This ought to be cleaned up generically.
1534
1535 FIXME: Verify this still happens after the next mainline
1536 merge. Testcase ie g++.dg/tm/pr47554.C.
1537 */
1538 return false;
1539 }
1540
1541 if (is_global_var (x))
1542 return !TREE_READONLY (x);
1543 if (/* FIXME: This condition should actually go below in the
1544 tm_log_add() call, however is_call_clobbered() depends on
1545 aliasing info which is not available during
1546 gimplification. Since requires_barrier() gets called
1547 during lower_sequence_tm/gimplification, leave the call
1548 to needs_to_live_in_memory until we eliminate
1549 lower_sequence_tm altogether. */
1550 needs_to_live_in_memory (x))
1551 return true;
1552 else
1553 {
1554 /* For local memory that doesn't escape (aka thread private
1555 memory), we can either save the value at the beginning of
1556 the transaction and restore on restart, or call a tm
1557 function to dynamically save and restore on restart
1558 (ITM_L*). */
1559 if (stmt)
1560 tm_log_add (entry_block, orig, stmt);
1561 return false;
1562 }
1563
1564 default:
1565 return false;
1566 }
1567 }
1568
1569 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1570 a transaction region. */
1571
1572 static void
1573 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1574 {
1575 gimple stmt = gsi_stmt (*gsi);
1576
1577 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1578 *state |= GTMA_HAVE_LOAD;
1579 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1580 *state |= GTMA_HAVE_STORE;
1581 }
1582
1583 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
1584
1585 static void
1586 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1587 {
1588 gimple stmt = gsi_stmt (*gsi);
1589 tree fn;
1590
1591 if (is_tm_pure_call (stmt))
1592 return;
1593
1594 /* Check if this call is a transaction abort. */
1595 fn = gimple_call_fndecl (stmt);
1596 if (is_tm_abort (fn))
1597 *state |= GTMA_HAVE_ABORT;
1598
1599 /* Note that something may happen. */
1600 *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1601 }
1602
1603 /* Lower a GIMPLE_TRANSACTION statement. */
1604
1605 static void
1606 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1607 {
1608 gimple g, stmt = gsi_stmt (*gsi);
1609 unsigned int *outer_state = (unsigned int *) wi->info;
1610 unsigned int this_state = 0;
1611 struct walk_stmt_info this_wi;
1612
1613 /* First, lower the body. The scanning that we do inside gives
1614 us some idea of what we're dealing with. */
1615 memset (&this_wi, 0, sizeof (this_wi));
1616 this_wi.info = (void *) &this_state;
1617 walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
1618 lower_sequence_tm, NULL, &this_wi);
1619
1620 /* If there was absolutely nothing transaction related inside the
1621 transaction, we may elide it. Likewise if this is a nested
1622 transaction and does not contain an abort. */
1623 if (this_state == 0
1624 || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1625 {
1626 if (outer_state)
1627 *outer_state |= this_state;
1628
1629 gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1630 GSI_SAME_STMT);
1631 gimple_transaction_set_body (stmt, NULL);
1632
1633 gsi_remove (gsi, true);
1634 wi->removed_stmt = true;
1635 return;
1636 }
1637
1638 /* Wrap the body of the transaction in a try-finally node so that
1639 the commit call is always properly called. */
1640 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1641 if (flag_exceptions)
1642 {
1643 tree ptr;
1644 gimple_seq n_seq, e_seq;
1645
1646 n_seq = gimple_seq_alloc_with_stmt (g);
1647 e_seq = NULL;
1648
1649 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1650 1, integer_zero_node);
1651 ptr = create_tmp_var (ptr_type_node, NULL);
1652 gimple_call_set_lhs (g, ptr);
1653 gimple_seq_add_stmt (&e_seq, g);
1654
1655 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1656 1, ptr);
1657 gimple_seq_add_stmt (&e_seq, g);
1658
1659 g = gimple_build_eh_else (n_seq, e_seq);
1660 }
1661
1662 g = gimple_build_try (gimple_transaction_body (stmt),
1663 gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1664 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1665
1666 gimple_transaction_set_body (stmt, NULL);
1667
1668 /* If the transaction calls abort or if this is an outer transaction,
1669 add an "over" label afterwards. */
1670 if ((this_state & (GTMA_HAVE_ABORT))
1671 || (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER))
1672 {
1673 tree label = create_artificial_label (UNKNOWN_LOCATION);
1674 gimple_transaction_set_label (stmt, label);
1675 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
1676 }
1677
1678 /* Record the set of operations found for use later. */
1679 this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1680 gimple_transaction_set_subcode (stmt, this_state);
1681 }
1682
1683 /* Iterate through the statements in the sequence, lowering them all
1684 as appropriate for being in a transaction. */
1685
1686 static tree
1687 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1688 struct walk_stmt_info *wi)
1689 {
1690 unsigned int *state = (unsigned int *) wi->info;
1691 gimple stmt = gsi_stmt (*gsi);
1692
1693 *handled_ops_p = true;
1694 switch (gimple_code (stmt))
1695 {
1696 case GIMPLE_ASSIGN:
1697 /* Only memory reads/writes need to be instrumented. */
1698 if (gimple_assign_single_p (stmt))
1699 examine_assign_tm (state, gsi);
1700 break;
1701
1702 case GIMPLE_CALL:
1703 examine_call_tm (state, gsi);
1704 break;
1705
1706 case GIMPLE_ASM:
1707 *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1708 break;
1709
1710 case GIMPLE_TRANSACTION:
1711 lower_transaction (gsi, wi);
1712 break;
1713
1714 default:
1715 *handled_ops_p = !gimple_has_substatements (stmt);
1716 break;
1717 }
1718
1719 return NULL_TREE;
1720 }
1721
1722 /* Iterate through the statements in the sequence, lowering them all
1723 as appropriate for being outside of a transaction. */
1724
1725 static tree
1726 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1727 struct walk_stmt_info * wi)
1728 {
1729 gimple stmt = gsi_stmt (*gsi);
1730
1731 if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1732 {
1733 *handled_ops_p = true;
1734 lower_transaction (gsi, wi);
1735 }
1736 else
1737 *handled_ops_p = !gimple_has_substatements (stmt);
1738
1739 return NULL_TREE;
1740 }
1741
1742 /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
1743 this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1744 been moved out, and all the data required for constructing a proper
1745 CFG has been recorded. */
1746
1747 static unsigned int
1748 execute_lower_tm (void)
1749 {
1750 struct walk_stmt_info wi;
1751 gimple_seq body;
1752
1753 /* Transactional clones aren't created until a later pass. */
1754 gcc_assert (!decl_is_tm_clone (current_function_decl));
1755
1756 body = gimple_body (current_function_decl);
1757 memset (&wi, 0, sizeof (wi));
1758 walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi);
1759 gimple_set_body (current_function_decl, body);
1760
1761 return 0;
1762 }
1763
1764 namespace {
1765
1766 const pass_data pass_data_lower_tm =
1767 {
1768 GIMPLE_PASS, /* type */
1769 "tmlower", /* name */
1770 OPTGROUP_NONE, /* optinfo_flags */
1771 true, /* has_gate */
1772 true, /* has_execute */
1773 TV_TRANS_MEM, /* tv_id */
1774 PROP_gimple_lcf, /* properties_required */
1775 0, /* properties_provided */
1776 0, /* properties_destroyed */
1777 0, /* todo_flags_start */
1778 0, /* todo_flags_finish */
1779 };
1780
1781 class pass_lower_tm : public gimple_opt_pass
1782 {
1783 public:
1784 pass_lower_tm (gcc::context *ctxt)
1785 : gimple_opt_pass (pass_data_lower_tm, ctxt)
1786 {}
1787
1788 /* opt_pass methods: */
1789 bool gate () { return gate_tm (); }
1790 unsigned int execute () { return execute_lower_tm (); }
1791
1792 }; // class pass_lower_tm
1793
1794 } // anon namespace
1795
1796 gimple_opt_pass *
1797 make_pass_lower_tm (gcc::context *ctxt)
1798 {
1799 return new pass_lower_tm (ctxt);
1800 }
1801 \f
1802 /* Collect region information for each transaction. */
1803
1804 struct tm_region
1805 {
1806 /* Link to the next unnested transaction. */
1807 struct tm_region *next;
1808
1809 /* Link to the next inner transaction. */
1810 struct tm_region *inner;
1811
1812 /* Link to the next outer transaction. */
1813 struct tm_region *outer;
1814
1815 /* The GIMPLE_TRANSACTION statement beginning this transaction.
1816 After TM_MARK, this gets replaced by a call to
1817 BUILT_IN_TM_START. */
1818 gimple transaction_stmt;
1819
1820 /* After TM_MARK expands the GIMPLE_TRANSACTION into a call to
1821 BUILT_IN_TM_START, this field is true if the transaction is an
1822 outer transaction. */
1823 bool original_transaction_was_outer;
1824
1825 /* Return value from BUILT_IN_TM_START. */
1826 tree tm_state;
1827
1828 /* The entry block to this region. This will always be the first
1829 block of the body of the transaction. */
1830 basic_block entry_block;
1831
1832 /* The first block after an expanded call to _ITM_beginTransaction. */
1833 basic_block restart_block;
1834
1835 /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1836 These blocks are still a part of the region (i.e., the border is
1837 inclusive). Note that this set is only complete for paths in the CFG
1838 starting at ENTRY_BLOCK, and that there is no exit block recorded for
1839 the edge to the "over" label. */
1840 bitmap exit_blocks;
1841
1842 /* The set of all blocks that have an TM_IRREVOCABLE call. */
1843 bitmap irr_blocks;
1844 };
1845
1846 typedef struct tm_region *tm_region_p;
1847
1848 /* True if there are pending edge statements to be committed for the
1849 current function being scanned in the tmmark pass. */
1850 bool pending_edge_inserts_p;
1851
1852 static struct tm_region *all_tm_regions;
1853 static bitmap_obstack tm_obstack;
1854
1855
1856 /* A subroutine of tm_region_init. Record the existence of the
1857 GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
1858
1859 static struct tm_region *
1860 tm_region_init_0 (struct tm_region *outer, basic_block bb, gimple stmt)
1861 {
1862 struct tm_region *region;
1863
1864 region = (struct tm_region *)
1865 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1866
1867 if (outer)
1868 {
1869 region->next = outer->inner;
1870 outer->inner = region;
1871 }
1872 else
1873 {
1874 region->next = all_tm_regions;
1875 all_tm_regions = region;
1876 }
1877 region->inner = NULL;
1878 region->outer = outer;
1879
1880 region->transaction_stmt = stmt;
1881 region->original_transaction_was_outer = false;
1882 region->tm_state = NULL;
1883
1884 /* There are either one or two edges out of the block containing
1885 the GIMPLE_TRANSACTION, one to the actual region and one to the
1886 "over" label if the region contains an abort. The former will
1887 always be the one marked FALLTHRU. */
1888 region->entry_block = FALLTHRU_EDGE (bb)->dest;
1889
1890 region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1891 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1892
1893 return region;
1894 }
1895
1896 /* A subroutine of tm_region_init. Record all the exit and
1897 irrevocable blocks in BB into the region's exit_blocks and
1898 irr_blocks bitmaps. Returns the new region being scanned. */
1899
1900 static struct tm_region *
1901 tm_region_init_1 (struct tm_region *region, basic_block bb)
1902 {
1903 gimple_stmt_iterator gsi;
1904 gimple g;
1905
1906 if (!region
1907 || (!region->irr_blocks && !region->exit_blocks))
1908 return region;
1909
1910 /* Check to see if this is the end of a region by seeing if it
1911 contains a call to __builtin_tm_commit{,_eh}. Note that the
1912 outermost region for DECL_IS_TM_CLONE need not collect this. */
1913 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1914 {
1915 g = gsi_stmt (gsi);
1916 if (gimple_code (g) == GIMPLE_CALL)
1917 {
1918 tree fn = gimple_call_fndecl (g);
1919 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
1920 {
1921 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
1922 || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
1923 && region->exit_blocks)
1924 {
1925 bitmap_set_bit (region->exit_blocks, bb->index);
1926 region = region->outer;
1927 break;
1928 }
1929 if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
1930 bitmap_set_bit (region->irr_blocks, bb->index);
1931 }
1932 }
1933 }
1934 return region;
1935 }
1936
1937 /* Collect all of the transaction regions within the current function
1938 and record them in ALL_TM_REGIONS. The REGION parameter may specify
1939 an "outermost" region for use by tm clones. */
1940
1941 static void
1942 tm_region_init (struct tm_region *region)
1943 {
1944 gimple g;
1945 edge_iterator ei;
1946 edge e;
1947 basic_block bb;
1948 auto_vec<basic_block> queue;
1949 bitmap visited_blocks = BITMAP_ALLOC (NULL);
1950 struct tm_region *old_region;
1951 auto_vec<tm_region_p> bb_regions;
1952
1953 all_tm_regions = region;
1954 bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1955
1956 /* We could store this information in bb->aux, but we may get called
1957 through get_all_tm_blocks() from another pass that may be already
1958 using bb->aux. */
1959 bb_regions.safe_grow_cleared (last_basic_block);
1960
1961 queue.safe_push (bb);
1962 bb_regions[bb->index] = region;
1963 do
1964 {
1965 bb = queue.pop ();
1966 region = bb_regions[bb->index];
1967 bb_regions[bb->index] = NULL;
1968
1969 /* Record exit and irrevocable blocks. */
1970 region = tm_region_init_1 (region, bb);
1971
1972 /* Check for the last statement in the block beginning a new region. */
1973 g = last_stmt (bb);
1974 old_region = region;
1975 if (g && gimple_code (g) == GIMPLE_TRANSACTION)
1976 region = tm_region_init_0 (region, bb, g);
1977
1978 /* Process subsequent blocks. */
1979 FOR_EACH_EDGE (e, ei, bb->succs)
1980 if (!bitmap_bit_p (visited_blocks, e->dest->index))
1981 {
1982 bitmap_set_bit (visited_blocks, e->dest->index);
1983 queue.safe_push (e->dest);
1984
1985 /* If the current block started a new region, make sure that only
1986 the entry block of the new region is associated with this region.
1987 Other successors are still part of the old region. */
1988 if (old_region != region && e->dest != region->entry_block)
1989 bb_regions[e->dest->index] = old_region;
1990 else
1991 bb_regions[e->dest->index] = region;
1992 }
1993 }
1994 while (!queue.is_empty ());
1995 BITMAP_FREE (visited_blocks);
1996 }
1997
1998 /* The "gate" function for all transactional memory expansion and optimization
1999 passes. We collect region information for each top-level transaction, and
2000 if we don't find any, we skip all of the TM passes. Each region will have
2001 all of the exit blocks recorded, and the originating statement. */
2002
2003 static bool
2004 gate_tm_init (void)
2005 {
2006 if (!flag_tm)
2007 return false;
2008
2009 calculate_dominance_info (CDI_DOMINATORS);
2010 bitmap_obstack_initialize (&tm_obstack);
2011
2012 /* If the function is a TM_CLONE, then the entire function is the region. */
2013 if (decl_is_tm_clone (current_function_decl))
2014 {
2015 struct tm_region *region = (struct tm_region *)
2016 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
2017 memset (region, 0, sizeof (*region));
2018 region->entry_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2019 /* For a clone, the entire function is the region. But even if
2020 we don't need to record any exit blocks, we may need to
2021 record irrevocable blocks. */
2022 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
2023
2024 tm_region_init (region);
2025 }
2026 else
2027 {
2028 tm_region_init (NULL);
2029
2030 /* If we didn't find any regions, cleanup and skip the whole tree
2031 of tm-related optimizations. */
2032 if (all_tm_regions == NULL)
2033 {
2034 bitmap_obstack_release (&tm_obstack);
2035 return false;
2036 }
2037 }
2038
2039 return true;
2040 }
2041
2042 namespace {
2043
2044 const pass_data pass_data_tm_init =
2045 {
2046 GIMPLE_PASS, /* type */
2047 "*tminit", /* name */
2048 OPTGROUP_NONE, /* optinfo_flags */
2049 true, /* has_gate */
2050 false, /* has_execute */
2051 TV_TRANS_MEM, /* tv_id */
2052 ( PROP_ssa | PROP_cfg ), /* properties_required */
2053 0, /* properties_provided */
2054 0, /* properties_destroyed */
2055 0, /* todo_flags_start */
2056 0, /* todo_flags_finish */
2057 };
2058
2059 class pass_tm_init : public gimple_opt_pass
2060 {
2061 public:
2062 pass_tm_init (gcc::context *ctxt)
2063 : gimple_opt_pass (pass_data_tm_init, ctxt)
2064 {}
2065
2066 /* opt_pass methods: */
2067 bool gate () { return gate_tm_init (); }
2068
2069 }; // class pass_tm_init
2070
2071 } // anon namespace
2072
2073 gimple_opt_pass *
2074 make_pass_tm_init (gcc::context *ctxt)
2075 {
2076 return new pass_tm_init (ctxt);
2077 }
2078 \f
2079 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
2080 represented by STATE. */
2081
2082 static inline void
2083 transaction_subcode_ior (struct tm_region *region, unsigned flags)
2084 {
2085 if (region && region->transaction_stmt)
2086 {
2087 flags |= gimple_transaction_subcode (region->transaction_stmt);
2088 gimple_transaction_set_subcode (region->transaction_stmt, flags);
2089 }
2090 }
2091
2092 /* Construct a memory load in a transactional context. Return the
2093 gimple statement performing the load, or NULL if there is no
2094 TM_LOAD builtin of the appropriate size to do the load.
2095
2096 LOC is the location to use for the new statement(s). */
2097
2098 static gimple
2099 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2100 {
2101 enum built_in_function code = END_BUILTINS;
2102 tree t, type = TREE_TYPE (rhs), decl;
2103 gimple gcall;
2104
2105 if (type == float_type_node)
2106 code = BUILT_IN_TM_LOAD_FLOAT;
2107 else if (type == double_type_node)
2108 code = BUILT_IN_TM_LOAD_DOUBLE;
2109 else if (type == long_double_type_node)
2110 code = BUILT_IN_TM_LOAD_LDOUBLE;
2111 else if (TYPE_SIZE_UNIT (type) != NULL
2112 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2113 {
2114 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2115 {
2116 case 1:
2117 code = BUILT_IN_TM_LOAD_1;
2118 break;
2119 case 2:
2120 code = BUILT_IN_TM_LOAD_2;
2121 break;
2122 case 4:
2123 code = BUILT_IN_TM_LOAD_4;
2124 break;
2125 case 8:
2126 code = BUILT_IN_TM_LOAD_8;
2127 break;
2128 }
2129 }
2130
2131 if (code == END_BUILTINS)
2132 {
2133 decl = targetm.vectorize.builtin_tm_load (type);
2134 if (!decl)
2135 return NULL;
2136 }
2137 else
2138 decl = builtin_decl_explicit (code);
2139
2140 t = gimplify_addr (gsi, rhs);
2141 gcall = gimple_build_call (decl, 1, t);
2142 gimple_set_location (gcall, loc);
2143
2144 t = TREE_TYPE (TREE_TYPE (decl));
2145 if (useless_type_conversion_p (type, t))
2146 {
2147 gimple_call_set_lhs (gcall, lhs);
2148 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2149 }
2150 else
2151 {
2152 gimple g;
2153 tree temp;
2154
2155 temp = create_tmp_reg (t, NULL);
2156 gimple_call_set_lhs (gcall, temp);
2157 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2158
2159 t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2160 g = gimple_build_assign (lhs, t);
2161 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2162 }
2163
2164 return gcall;
2165 }
2166
2167
2168 /* Similarly for storing TYPE in a transactional context. */
2169
2170 static gimple
2171 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2172 {
2173 enum built_in_function code = END_BUILTINS;
2174 tree t, fn, type = TREE_TYPE (rhs), simple_type;
2175 gimple gcall;
2176
2177 if (type == float_type_node)
2178 code = BUILT_IN_TM_STORE_FLOAT;
2179 else if (type == double_type_node)
2180 code = BUILT_IN_TM_STORE_DOUBLE;
2181 else if (type == long_double_type_node)
2182 code = BUILT_IN_TM_STORE_LDOUBLE;
2183 else if (TYPE_SIZE_UNIT (type) != NULL
2184 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2185 {
2186 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2187 {
2188 case 1:
2189 code = BUILT_IN_TM_STORE_1;
2190 break;
2191 case 2:
2192 code = BUILT_IN_TM_STORE_2;
2193 break;
2194 case 4:
2195 code = BUILT_IN_TM_STORE_4;
2196 break;
2197 case 8:
2198 code = BUILT_IN_TM_STORE_8;
2199 break;
2200 }
2201 }
2202
2203 if (code == END_BUILTINS)
2204 {
2205 fn = targetm.vectorize.builtin_tm_store (type);
2206 if (!fn)
2207 return NULL;
2208 }
2209 else
2210 fn = builtin_decl_explicit (code);
2211
2212 simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2213
2214 if (TREE_CODE (rhs) == CONSTRUCTOR)
2215 {
2216 /* Handle the easy initialization to zero. */
2217 if (!CONSTRUCTOR_ELTS (rhs))
2218 rhs = build_int_cst (simple_type, 0);
2219 else
2220 {
2221 /* ...otherwise punt to the caller and probably use
2222 BUILT_IN_TM_MEMMOVE, because we can't wrap a
2223 VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2224 valid gimple. */
2225 return NULL;
2226 }
2227 }
2228 else if (!useless_type_conversion_p (simple_type, type))
2229 {
2230 gimple g;
2231 tree temp;
2232
2233 temp = create_tmp_reg (simple_type, NULL);
2234 t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2235 g = gimple_build_assign (temp, t);
2236 gimple_set_location (g, loc);
2237 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2238
2239 rhs = temp;
2240 }
2241
2242 t = gimplify_addr (gsi, lhs);
2243 gcall = gimple_build_call (fn, 2, t, rhs);
2244 gimple_set_location (gcall, loc);
2245 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2246
2247 return gcall;
2248 }
2249
2250
2251 /* Expand an assignment statement into transactional builtins. */
2252
2253 static void
2254 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2255 {
2256 gimple stmt = gsi_stmt (*gsi);
2257 location_t loc = gimple_location (stmt);
2258 tree lhs = gimple_assign_lhs (stmt);
2259 tree rhs = gimple_assign_rhs1 (stmt);
2260 bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2261 bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2262 gimple gcall = NULL;
2263
2264 if (!load_p && !store_p)
2265 {
2266 /* Add thread private addresses to log if applicable. */
2267 requires_barrier (region->entry_block, lhs, stmt);
2268 gsi_next (gsi);
2269 return;
2270 }
2271
2272 // Remove original load/store statement.
2273 gsi_remove (gsi, true);
2274
2275 if (load_p && !store_p)
2276 {
2277 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2278 gcall = build_tm_load (loc, lhs, rhs, gsi);
2279 }
2280 else if (store_p && !load_p)
2281 {
2282 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2283 gcall = build_tm_store (loc, lhs, rhs, gsi);
2284 }
2285 if (!gcall)
2286 {
2287 tree lhs_addr, rhs_addr, tmp;
2288
2289 if (load_p)
2290 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2291 if (store_p)
2292 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2293
2294 /* ??? Figure out if there's any possible overlap between the LHS
2295 and the RHS and if not, use MEMCPY. */
2296
2297 if (load_p && is_gimple_reg (lhs))
2298 {
2299 tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2300 lhs_addr = build_fold_addr_expr (tmp);
2301 }
2302 else
2303 {
2304 tmp = NULL_TREE;
2305 lhs_addr = gimplify_addr (gsi, lhs);
2306 }
2307 rhs_addr = gimplify_addr (gsi, rhs);
2308 gcall = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_MEMMOVE),
2309 3, lhs_addr, rhs_addr,
2310 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2311 gimple_set_location (gcall, loc);
2312 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2313
2314 if (tmp)
2315 {
2316 gcall = gimple_build_assign (lhs, tmp);
2317 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2318 }
2319 }
2320
2321 /* Now that we have the load/store in its instrumented form, add
2322 thread private addresses to the log if applicable. */
2323 if (!store_p)
2324 requires_barrier (region->entry_block, lhs, gcall);
2325
2326 // The calls to build_tm_{store,load} above inserted the instrumented
2327 // call into the stream.
2328 // gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2329 }
2330
2331
2332 /* Expand a call statement as appropriate for a transaction. That is,
2333 either verify that the call does not affect the transaction, or
2334 redirect the call to a clone that handles transactions, or change
2335 the transaction state to IRREVOCABLE. Return true if the call is
2336 one of the builtins that end a transaction. */
2337
2338 static bool
2339 expand_call_tm (struct tm_region *region,
2340 gimple_stmt_iterator *gsi)
2341 {
2342 gimple stmt = gsi_stmt (*gsi);
2343 tree lhs = gimple_call_lhs (stmt);
2344 tree fn_decl;
2345 struct cgraph_node *node;
2346 bool retval = false;
2347
2348 fn_decl = gimple_call_fndecl (stmt);
2349
2350 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2351 || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2352 transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2353 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2354 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2355
2356 if (is_tm_pure_call (stmt))
2357 return false;
2358
2359 if (fn_decl)
2360 retval = is_tm_ending_fndecl (fn_decl);
2361 if (!retval)
2362 {
2363 /* Assume all non-const/pure calls write to memory, except
2364 transaction ending builtins. */
2365 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2366 }
2367
2368 /* For indirect calls, we already generated a call into the runtime. */
2369 if (!fn_decl)
2370 {
2371 tree fn = gimple_call_fn (stmt);
2372
2373 /* We are guaranteed never to go irrevocable on a safe or pure
2374 call, and the pure call was handled above. */
2375 if (is_tm_safe (fn))
2376 return false;
2377 else
2378 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2379
2380 return false;
2381 }
2382
2383 node = cgraph_get_node (fn_decl);
2384 /* All calls should have cgraph here. */
2385 if (!node)
2386 {
2387 /* We can have a nodeless call here if some pass after IPA-tm
2388 added uninstrumented calls. For example, loop distribution
2389 can transform certain loop constructs into __builtin_mem*
2390 calls. In this case, see if we have a suitable TM
2391 replacement and fill in the gaps. */
2392 gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL);
2393 enum built_in_function code = DECL_FUNCTION_CODE (fn_decl);
2394 gcc_assert (code == BUILT_IN_MEMCPY
2395 || code == BUILT_IN_MEMMOVE
2396 || code == BUILT_IN_MEMSET);
2397
2398 tree repl = find_tm_replacement_function (fn_decl);
2399 if (repl)
2400 {
2401 gimple_call_set_fndecl (stmt, repl);
2402 update_stmt (stmt);
2403 node = cgraph_create_node (repl);
2404 node->local.tm_may_enter_irr = false;
2405 return expand_call_tm (region, gsi);
2406 }
2407 gcc_unreachable ();
2408 }
2409 if (node->local.tm_may_enter_irr)
2410 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2411
2412 if (is_tm_abort (fn_decl))
2413 {
2414 transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2415 return true;
2416 }
2417
2418 /* Instrument the store if needed.
2419
2420 If the assignment happens inside the function call (return slot
2421 optimization), there is no instrumentation to be done, since
2422 the callee should have done the right thing. */
2423 if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2424 && !gimple_call_return_slot_opt_p (stmt))
2425 {
2426 tree tmp = create_tmp_reg (TREE_TYPE (lhs), NULL);
2427 location_t loc = gimple_location (stmt);
2428 edge fallthru_edge = NULL;
2429
2430 /* Remember if the call was going to throw. */
2431 if (stmt_can_throw_internal (stmt))
2432 {
2433 edge_iterator ei;
2434 edge e;
2435 basic_block bb = gimple_bb (stmt);
2436
2437 FOR_EACH_EDGE (e, ei, bb->succs)
2438 if (e->flags & EDGE_FALLTHRU)
2439 {
2440 fallthru_edge = e;
2441 break;
2442 }
2443 }
2444
2445 gimple_call_set_lhs (stmt, tmp);
2446 update_stmt (stmt);
2447 stmt = gimple_build_assign (lhs, tmp);
2448 gimple_set_location (stmt, loc);
2449
2450 /* We cannot throw in the middle of a BB. If the call was going
2451 to throw, place the instrumentation on the fallthru edge, so
2452 the call remains the last statement in the block. */
2453 if (fallthru_edge)
2454 {
2455 gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (stmt);
2456 gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2457 expand_assign_tm (region, &fallthru_gsi);
2458 gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2459 pending_edge_inserts_p = true;
2460 }
2461 else
2462 {
2463 gsi_insert_after (gsi, stmt, GSI_CONTINUE_LINKING);
2464 expand_assign_tm (region, gsi);
2465 }
2466
2467 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2468 }
2469
2470 return retval;
2471 }
2472
2473
2474 /* Expand all statements in BB as appropriate for being inside
2475 a transaction. */
2476
2477 static void
2478 expand_block_tm (struct tm_region *region, basic_block bb)
2479 {
2480 gimple_stmt_iterator gsi;
2481
2482 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2483 {
2484 gimple stmt = gsi_stmt (gsi);
2485 switch (gimple_code (stmt))
2486 {
2487 case GIMPLE_ASSIGN:
2488 /* Only memory reads/writes need to be instrumented. */
2489 if (gimple_assign_single_p (stmt)
2490 && !gimple_clobber_p (stmt))
2491 {
2492 expand_assign_tm (region, &gsi);
2493 continue;
2494 }
2495 break;
2496
2497 case GIMPLE_CALL:
2498 if (expand_call_tm (region, &gsi))
2499 return;
2500 break;
2501
2502 case GIMPLE_ASM:
2503 gcc_unreachable ();
2504
2505 default:
2506 break;
2507 }
2508 if (!gsi_end_p (gsi))
2509 gsi_next (&gsi);
2510 }
2511 }
2512
2513 /* Return the list of basic-blocks in REGION.
2514
2515 STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2516 following a TM_IRREVOCABLE call.
2517
2518 INCLUDE_UNINSTRUMENTED_P is TRUE if we should include the
2519 uninstrumented code path blocks in the list of basic blocks
2520 returned, false otherwise. */
2521
2522 static vec<basic_block>
2523 get_tm_region_blocks (basic_block entry_block,
2524 bitmap exit_blocks,
2525 bitmap irr_blocks,
2526 bitmap all_region_blocks,
2527 bool stop_at_irrevocable_p,
2528 bool include_uninstrumented_p = true)
2529 {
2530 vec<basic_block> bbs = vNULL;
2531 unsigned i;
2532 edge e;
2533 edge_iterator ei;
2534 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2535
2536 i = 0;
2537 bbs.safe_push (entry_block);
2538 bitmap_set_bit (visited_blocks, entry_block->index);
2539
2540 do
2541 {
2542 basic_block bb = bbs[i++];
2543
2544 if (exit_blocks &&
2545 bitmap_bit_p (exit_blocks, bb->index))
2546 continue;
2547
2548 if (stop_at_irrevocable_p
2549 && irr_blocks
2550 && bitmap_bit_p (irr_blocks, bb->index))
2551 continue;
2552
2553 FOR_EACH_EDGE (e, ei, bb->succs)
2554 if ((include_uninstrumented_p
2555 || !(e->flags & EDGE_TM_UNINSTRUMENTED))
2556 && !bitmap_bit_p (visited_blocks, e->dest->index))
2557 {
2558 bitmap_set_bit (visited_blocks, e->dest->index);
2559 bbs.safe_push (e->dest);
2560 }
2561 }
2562 while (i < bbs.length ());
2563
2564 if (all_region_blocks)
2565 bitmap_ior_into (all_region_blocks, visited_blocks);
2566
2567 BITMAP_FREE (visited_blocks);
2568 return bbs;
2569 }
2570
2571 // Callback data for collect_bb2reg.
2572 struct bb2reg_stuff
2573 {
2574 vec<tm_region_p> *bb2reg;
2575 bool include_uninstrumented_p;
2576 };
2577
2578 // Callback for expand_regions, collect innermost region data for each bb.
2579 static void *
2580 collect_bb2reg (struct tm_region *region, void *data)
2581 {
2582 struct bb2reg_stuff *stuff = (struct bb2reg_stuff *)data;
2583 vec<tm_region_p> *bb2reg = stuff->bb2reg;
2584 vec<basic_block> queue;
2585 unsigned int i;
2586 basic_block bb;
2587
2588 queue = get_tm_region_blocks (region->entry_block,
2589 region->exit_blocks,
2590 region->irr_blocks,
2591 NULL,
2592 /*stop_at_irr_p=*/true,
2593 stuff->include_uninstrumented_p);
2594
2595 // We expect expand_region to perform a post-order traversal of the region
2596 // tree. Therefore the last region seen for any bb is the innermost.
2597 FOR_EACH_VEC_ELT (queue, i, bb)
2598 (*bb2reg)[bb->index] = region;
2599
2600 queue.release ();
2601 return NULL;
2602 }
2603
2604 // Returns a vector, indexed by BB->INDEX, of the innermost tm_region to
2605 // which a basic block belongs. Note that we only consider the instrumented
2606 // code paths for the region; the uninstrumented code paths are ignored if
2607 // INCLUDE_UNINSTRUMENTED_P is false.
2608 //
2609 // ??? This data is very similar to the bb_regions array that is collected
2610 // during tm_region_init. Or, rather, this data is similar to what could
2611 // be used within tm_region_init. The actual computation in tm_region_init
2612 // begins and ends with bb_regions entirely full of NULL pointers, due to
2613 // the way in which pointers are swapped in and out of the array.
2614 //
2615 // ??? Our callers expect that blocks are not shared between transactions.
2616 // When the optimizers get too smart, and blocks are shared, then during
2617 // the tm_mark phase we'll add log entries to only one of the two transactions,
2618 // and in the tm_edge phase we'll add edges to the CFG that create invalid
2619 // cycles. The symptom being SSA defs that do not dominate their uses.
2620 // Note that the optimizers were locally correct with their transformation,
2621 // as we have no info within the program that suggests that the blocks cannot
2622 // be shared.
2623 //
2624 // ??? There is currently a hack inside tree-ssa-pre.c to work around the
2625 // only known instance of this block sharing.
2626
2627 static vec<tm_region_p>
2628 get_bb_regions_instrumented (bool traverse_clones,
2629 bool include_uninstrumented_p)
2630 {
2631 unsigned n = last_basic_block;
2632 struct bb2reg_stuff stuff;
2633 vec<tm_region_p> ret;
2634
2635 ret.create (n);
2636 ret.safe_grow_cleared (n);
2637 stuff.bb2reg = &ret;
2638 stuff.include_uninstrumented_p = include_uninstrumented_p;
2639 expand_regions (all_tm_regions, collect_bb2reg, &stuff, traverse_clones);
2640
2641 return ret;
2642 }
2643
2644 /* Set the IN_TRANSACTION for all gimple statements that appear in a
2645 transaction. */
2646
2647 void
2648 compute_transaction_bits (void)
2649 {
2650 struct tm_region *region;
2651 vec<basic_block> queue;
2652 unsigned int i;
2653 basic_block bb;
2654
2655 /* ?? Perhaps we need to abstract gate_tm_init further, because we
2656 certainly don't need it to calculate CDI_DOMINATOR info. */
2657 gate_tm_init ();
2658
2659 FOR_EACH_BB (bb)
2660 bb->flags &= ~BB_IN_TRANSACTION;
2661
2662 for (region = all_tm_regions; region; region = region->next)
2663 {
2664 queue = get_tm_region_blocks (region->entry_block,
2665 region->exit_blocks,
2666 region->irr_blocks,
2667 NULL,
2668 /*stop_at_irr_p=*/true);
2669 for (i = 0; queue.iterate (i, &bb); ++i)
2670 bb->flags |= BB_IN_TRANSACTION;
2671 queue.release ();
2672 }
2673
2674 if (all_tm_regions)
2675 bitmap_obstack_release (&tm_obstack);
2676 }
2677
2678 /* Replace the GIMPLE_TRANSACTION in this region with the corresponding
2679 call to BUILT_IN_TM_START. */
2680
2681 static void *
2682 expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2683 {
2684 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2685 basic_block transaction_bb = gimple_bb (region->transaction_stmt);
2686 tree tm_state = region->tm_state;
2687 tree tm_state_type = TREE_TYPE (tm_state);
2688 edge abort_edge = NULL;
2689 edge inst_edge = NULL;
2690 edge uninst_edge = NULL;
2691 edge fallthru_edge = NULL;
2692
2693 // Identify the various successors of the transaction start.
2694 {
2695 edge_iterator i;
2696 edge e;
2697 FOR_EACH_EDGE (e, i, transaction_bb->succs)
2698 {
2699 if (e->flags & EDGE_TM_ABORT)
2700 abort_edge = e;
2701 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
2702 uninst_edge = e;
2703 else
2704 inst_edge = e;
2705 if (e->flags & EDGE_FALLTHRU)
2706 fallthru_edge = e;
2707 }
2708 }
2709
2710 /* ??? There are plenty of bits here we're not computing. */
2711 {
2712 int subcode = gimple_transaction_subcode (region->transaction_stmt);
2713 int flags = 0;
2714 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2715 flags |= PR_DOESGOIRREVOCABLE;
2716 if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2717 flags |= PR_HASNOIRREVOCABLE;
2718 /* If the transaction does not have an abort in lexical scope and is not
2719 marked as an outer transaction, then it will never abort. */
2720 if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0)
2721 flags |= PR_HASNOABORT;
2722 if ((subcode & GTMA_HAVE_STORE) == 0)
2723 flags |= PR_READONLY;
2724 if (inst_edge && !(subcode & GTMA_HAS_NO_INSTRUMENTATION))
2725 flags |= PR_INSTRUMENTEDCODE;
2726 if (uninst_edge)
2727 flags |= PR_UNINSTRUMENTEDCODE;
2728 if (subcode & GTMA_IS_OUTER)
2729 region->original_transaction_was_outer = true;
2730 tree t = build_int_cst (tm_state_type, flags);
2731 gimple call = gimple_build_call (tm_start, 1, t);
2732 gimple_call_set_lhs (call, tm_state);
2733 gimple_set_location (call, gimple_location (region->transaction_stmt));
2734
2735 // Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START.
2736 gimple_stmt_iterator gsi = gsi_last_bb (transaction_bb);
2737 gcc_assert (gsi_stmt (gsi) == region->transaction_stmt);
2738 gsi_insert_before (&gsi, call, GSI_SAME_STMT);
2739 gsi_remove (&gsi, true);
2740 region->transaction_stmt = call;
2741 }
2742
2743 // Generate log saves.
2744 if (!tm_log_save_addresses.is_empty ())
2745 tm_log_emit_saves (region->entry_block, transaction_bb);
2746
2747 // In the beginning, we've no tests to perform on transaction restart.
2748 // Note that after this point, transaction_bb becomes the "most recent
2749 // block containing tests for the transaction".
2750 region->restart_block = region->entry_block;
2751
2752 // Generate log restores.
2753 if (!tm_log_save_addresses.is_empty ())
2754 {
2755 basic_block test_bb = create_empty_bb (transaction_bb);
2756 basic_block code_bb = create_empty_bb (test_bb);
2757 basic_block join_bb = create_empty_bb (code_bb);
2758 if (current_loops && transaction_bb->loop_father)
2759 {
2760 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2761 add_bb_to_loop (code_bb, transaction_bb->loop_father);
2762 add_bb_to_loop (join_bb, transaction_bb->loop_father);
2763 }
2764 if (region->restart_block == region->entry_block)
2765 region->restart_block = test_bb;
2766
2767 tree t1 = create_tmp_reg (tm_state_type, NULL);
2768 tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES);
2769 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2770 tm_state, t2);
2771 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2772 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2773
2774 t2 = build_int_cst (tm_state_type, 0);
2775 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2776 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2777
2778 tm_log_emit_restores (region->entry_block, code_bb);
2779
2780 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2781 edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE);
2782 edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE);
2783 redirect_edge_pred (fallthru_edge, join_bb);
2784
2785 join_bb->frequency = test_bb->frequency = transaction_bb->frequency;
2786 join_bb->count = test_bb->count = transaction_bb->count;
2787
2788 ei->probability = PROB_ALWAYS;
2789 et->probability = PROB_LIKELY;
2790 ef->probability = PROB_UNLIKELY;
2791 et->count = apply_probability (test_bb->count, et->probability);
2792 ef->count = apply_probability (test_bb->count, ef->probability);
2793
2794 code_bb->count = et->count;
2795 code_bb->frequency = EDGE_FREQUENCY (et);
2796
2797 transaction_bb = join_bb;
2798 }
2799
2800 // If we have an ABORT edge, create a test to perform the abort.
2801 if (abort_edge)
2802 {
2803 basic_block test_bb = create_empty_bb (transaction_bb);
2804 if (current_loops && transaction_bb->loop_father)
2805 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2806 if (region->restart_block == region->entry_block)
2807 region->restart_block = test_bb;
2808
2809 tree t1 = create_tmp_reg (tm_state_type, NULL);
2810 tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION);
2811 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2812 tm_state, t2);
2813 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2814 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2815
2816 t2 = build_int_cst (tm_state_type, 0);
2817 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2818 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2819
2820 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2821 test_bb->frequency = transaction_bb->frequency;
2822 test_bb->count = transaction_bb->count;
2823 ei->probability = PROB_ALWAYS;
2824
2825 // Not abort edge. If both are live, chose one at random as we'll
2826 // we'll be fixing that up below.
2827 redirect_edge_pred (fallthru_edge, test_bb);
2828 fallthru_edge->flags = EDGE_FALSE_VALUE;
2829 fallthru_edge->probability = PROB_VERY_LIKELY;
2830 fallthru_edge->count
2831 = apply_probability (test_bb->count, fallthru_edge->probability);
2832
2833 // Abort/over edge.
2834 redirect_edge_pred (abort_edge, test_bb);
2835 abort_edge->flags = EDGE_TRUE_VALUE;
2836 abort_edge->probability = PROB_VERY_UNLIKELY;
2837 abort_edge->count
2838 = apply_probability (test_bb->count, abort_edge->probability);
2839
2840 transaction_bb = test_bb;
2841 }
2842
2843 // If we have both instrumented and uninstrumented code paths, select one.
2844 if (inst_edge && uninst_edge)
2845 {
2846 basic_block test_bb = create_empty_bb (transaction_bb);
2847 if (current_loops && transaction_bb->loop_father)
2848 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2849 if (region->restart_block == region->entry_block)
2850 region->restart_block = test_bb;
2851
2852 tree t1 = create_tmp_reg (tm_state_type, NULL);
2853 tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE);
2854
2855 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2856 tm_state, t2);
2857 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2858 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2859
2860 t2 = build_int_cst (tm_state_type, 0);
2861 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2862 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2863
2864 // Create the edge into test_bb first, as we want to copy values
2865 // out of the fallthru edge.
2866 edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags);
2867 e->probability = fallthru_edge->probability;
2868 test_bb->count = e->count = fallthru_edge->count;
2869 test_bb->frequency = EDGE_FREQUENCY (e);
2870
2871 // Now update the edges to the inst/uninist implementations.
2872 // For now assume that the paths are equally likely. When using HTM,
2873 // we'll try the uninst path first and fallback to inst path if htm
2874 // buffers are exceeded. Without HTM we start with the inst path and
2875 // use the uninst path when falling back to serial mode.
2876 redirect_edge_pred (inst_edge, test_bb);
2877 inst_edge->flags = EDGE_FALSE_VALUE;
2878 inst_edge->probability = REG_BR_PROB_BASE / 2;
2879 inst_edge->count
2880 = apply_probability (test_bb->count, inst_edge->probability);
2881
2882 redirect_edge_pred (uninst_edge, test_bb);
2883 uninst_edge->flags = EDGE_TRUE_VALUE;
2884 uninst_edge->probability = REG_BR_PROB_BASE / 2;
2885 uninst_edge->count
2886 = apply_probability (test_bb->count, uninst_edge->probability);
2887 }
2888
2889 // If we have no previous special cases, and we have PHIs at the beginning
2890 // of the atomic region, this means we have a loop at the beginning of the
2891 // atomic region that shares the first block. This can cause problems with
2892 // the transaction restart abnormal edges to be added in the tm_edges pass.
2893 // Solve this by adding a new empty block to receive the abnormal edges.
2894 if (region->restart_block == region->entry_block
2895 && phi_nodes (region->entry_block))
2896 {
2897 basic_block empty_bb = create_empty_bb (transaction_bb);
2898 region->restart_block = empty_bb;
2899 if (current_loops && transaction_bb->loop_father)
2900 add_bb_to_loop (empty_bb, transaction_bb->loop_father);
2901
2902 redirect_edge_pred (fallthru_edge, empty_bb);
2903 make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU);
2904 }
2905
2906 return NULL;
2907 }
2908
2909 /* Generate the temporary to be used for the return value of
2910 BUILT_IN_TM_START. */
2911
2912 static void *
2913 generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2914 {
2915 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2916 region->tm_state =
2917 create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
2918
2919 // Reset the subcode, post optimizations. We'll fill this in
2920 // again as we process blocks.
2921 if (region->exit_blocks)
2922 {
2923 unsigned int subcode
2924 = gimple_transaction_subcode (region->transaction_stmt);
2925
2926 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2927 subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
2928 | GTMA_MAY_ENTER_IRREVOCABLE
2929 | GTMA_HAS_NO_INSTRUMENTATION);
2930 else
2931 subcode &= GTMA_DECLARATION_MASK;
2932 gimple_transaction_set_subcode (region->transaction_stmt, subcode);
2933 }
2934
2935 return NULL;
2936 }
2937
2938 // Propagate flags from inner transactions outwards.
2939 static void
2940 propagate_tm_flags_out (struct tm_region *region)
2941 {
2942 if (region == NULL)
2943 return;
2944 propagate_tm_flags_out (region->inner);
2945
2946 if (region->outer && region->outer->transaction_stmt)
2947 {
2948 unsigned s = gimple_transaction_subcode (region->transaction_stmt);
2949 s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE
2950 | GTMA_MAY_ENTER_IRREVOCABLE);
2951 s |= gimple_transaction_subcode (region->outer->transaction_stmt);
2952 gimple_transaction_set_subcode (region->outer->transaction_stmt, s);
2953 }
2954
2955 propagate_tm_flags_out (region->next);
2956 }
2957
2958 /* Entry point to the MARK phase of TM expansion. Here we replace
2959 transactional memory statements with calls to builtins, and function
2960 calls with their transactional clones (if available). But we don't
2961 yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
2962
2963 static unsigned int
2964 execute_tm_mark (void)
2965 {
2966 pending_edge_inserts_p = false;
2967
2968 expand_regions (all_tm_regions, generate_tm_state, NULL,
2969 /*traverse_clones=*/true);
2970
2971 tm_log_init ();
2972
2973 vec<tm_region_p> bb_regions
2974 = get_bb_regions_instrumented (/*traverse_clones=*/true,
2975 /*include_uninstrumented_p=*/false);
2976 struct tm_region *r;
2977 unsigned i;
2978
2979 // Expand memory operations into calls into the runtime.
2980 // This collects log entries as well.
2981 FOR_EACH_VEC_ELT (bb_regions, i, r)
2982 {
2983 if (r != NULL)
2984 {
2985 if (r->transaction_stmt)
2986 {
2987 unsigned sub = gimple_transaction_subcode (r->transaction_stmt);
2988
2989 /* If we're sure to go irrevocable, there won't be
2990 anything to expand, since the run-time will go
2991 irrevocable right away. */
2992 if (sub & GTMA_DOES_GO_IRREVOCABLE
2993 && sub & GTMA_MAY_ENTER_IRREVOCABLE)
2994 continue;
2995 }
2996 expand_block_tm (r, BASIC_BLOCK_FOR_FN (cfun, i));
2997 }
2998 }
2999
3000 bb_regions.release ();
3001
3002 // Propagate flags from inner transactions outwards.
3003 propagate_tm_flags_out (all_tm_regions);
3004
3005 // Expand GIMPLE_TRANSACTIONs into calls into the runtime.
3006 expand_regions (all_tm_regions, expand_transaction, NULL,
3007 /*traverse_clones=*/false);
3008
3009 tm_log_emit ();
3010 tm_log_delete ();
3011
3012 if (pending_edge_inserts_p)
3013 gsi_commit_edge_inserts ();
3014 free_dominance_info (CDI_DOMINATORS);
3015 return 0;
3016 }
3017
3018 namespace {
3019
3020 const pass_data pass_data_tm_mark =
3021 {
3022 GIMPLE_PASS, /* type */
3023 "tmmark", /* name */
3024 OPTGROUP_NONE, /* optinfo_flags */
3025 false, /* has_gate */
3026 true, /* has_execute */
3027 TV_TRANS_MEM, /* tv_id */
3028 ( PROP_ssa | PROP_cfg ), /* properties_required */
3029 0, /* properties_provided */
3030 0, /* properties_destroyed */
3031 0, /* todo_flags_start */
3032 ( TODO_update_ssa | TODO_verify_ssa ), /* todo_flags_finish */
3033 };
3034
3035 class pass_tm_mark : public gimple_opt_pass
3036 {
3037 public:
3038 pass_tm_mark (gcc::context *ctxt)
3039 : gimple_opt_pass (pass_data_tm_mark, ctxt)
3040 {}
3041
3042 /* opt_pass methods: */
3043 unsigned int execute () { return execute_tm_mark (); }
3044
3045 }; // class pass_tm_mark
3046
3047 } // anon namespace
3048
3049 gimple_opt_pass *
3050 make_pass_tm_mark (gcc::context *ctxt)
3051 {
3052 return new pass_tm_mark (ctxt);
3053 }
3054 \f
3055
3056 /* Create an abnormal edge from STMT at iter, splitting the block
3057 as necessary. Adjust *PNEXT as needed for the split block. */
3058
3059 static inline void
3060 split_bb_make_tm_edge (gimple stmt, basic_block dest_bb,
3061 gimple_stmt_iterator iter, gimple_stmt_iterator *pnext)
3062 {
3063 basic_block bb = gimple_bb (stmt);
3064 if (!gsi_one_before_end_p (iter))
3065 {
3066 edge e = split_block (bb, stmt);
3067 *pnext = gsi_start_bb (e->dest);
3068 }
3069 make_edge (bb, dest_bb, EDGE_ABNORMAL);
3070
3071 // Record the need for the edge for the benefit of the rtl passes.
3072 if (cfun->gimple_df->tm_restart == NULL)
3073 cfun->gimple_df->tm_restart = htab_create_ggc (31, struct_ptr_hash,
3074 struct_ptr_eq, ggc_free);
3075
3076 struct tm_restart_node dummy;
3077 dummy.stmt = stmt;
3078 dummy.label_or_list = gimple_block_label (dest_bb);
3079
3080 void **slot = htab_find_slot (cfun->gimple_df->tm_restart, &dummy, INSERT);
3081 struct tm_restart_node *n = (struct tm_restart_node *) *slot;
3082 if (n == NULL)
3083 {
3084 n = ggc_alloc_tm_restart_node ();
3085 *n = dummy;
3086 }
3087 else
3088 {
3089 tree old = n->label_or_list;
3090 if (TREE_CODE (old) == LABEL_DECL)
3091 old = tree_cons (NULL, old, NULL);
3092 n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
3093 }
3094 }
3095
3096 /* Split block BB as necessary for every builtin function we added, and
3097 wire up the abnormal back edges implied by the transaction restart. */
3098
3099 static void
3100 expand_block_edges (struct tm_region *const region, basic_block bb)
3101 {
3102 gimple_stmt_iterator gsi, next_gsi;
3103
3104 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi = next_gsi)
3105 {
3106 gimple stmt = gsi_stmt (gsi);
3107
3108 next_gsi = gsi;
3109 gsi_next (&next_gsi);
3110
3111 // ??? Shouldn't we split for any non-pure, non-irrevocable function?
3112 if (gimple_code (stmt) != GIMPLE_CALL
3113 || (gimple_call_flags (stmt) & ECF_TM_BUILTIN) == 0)
3114 continue;
3115
3116 if (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)) == BUILT_IN_TM_ABORT)
3117 {
3118 // If we have a ``_transaction_cancel [[outer]]'', there is only
3119 // one abnormal edge: to the transaction marked OUTER.
3120 // All compiler-generated instances of BUILT_IN_TM_ABORT have a
3121 // constant argument, which we can examine here. Users invoking
3122 // TM_ABORT directly get what they deserve.
3123 tree arg = gimple_call_arg (stmt, 0);
3124 if (TREE_CODE (arg) == INTEGER_CST
3125 && (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0
3126 && !decl_is_tm_clone (current_function_decl))
3127 {
3128 // Find the GTMA_IS_OUTER transaction.
3129 for (struct tm_region *o = region; o; o = o->outer)
3130 if (o->original_transaction_was_outer)
3131 {
3132 split_bb_make_tm_edge (stmt, o->restart_block,
3133 gsi, &next_gsi);
3134 break;
3135 }
3136
3137 // Otherwise, the front-end should have semantically checked
3138 // outer aborts, but in either case the target region is not
3139 // within this function.
3140 continue;
3141 }
3142
3143 // Non-outer, TM aborts have an abnormal edge to the inner-most
3144 // transaction, the one being aborted;
3145 split_bb_make_tm_edge (stmt, region->restart_block, gsi, &next_gsi);
3146 }
3147
3148 // All TM builtins have an abnormal edge to the outer-most transaction.
3149 // We never restart inner transactions. For tm clones, we know a-priori
3150 // that the outer-most transaction is outside the function.
3151 if (decl_is_tm_clone (current_function_decl))
3152 continue;
3153
3154 if (cfun->gimple_df->tm_restart == NULL)
3155 cfun->gimple_df->tm_restart
3156 = htab_create_ggc (31, struct_ptr_hash, struct_ptr_eq, ggc_free);
3157
3158 // All TM builtins have an abnormal edge to the outer-most transaction.
3159 // We never restart inner transactions.
3160 for (struct tm_region *o = region; o; o = o->outer)
3161 if (!o->outer)
3162 {
3163 split_bb_make_tm_edge (stmt, o->restart_block, gsi, &next_gsi);
3164 break;
3165 }
3166
3167 // Delete any tail-call annotation that may have been added.
3168 // The tail-call pass may have mis-identified the commit as being
3169 // a candidate because we had not yet added this restart edge.
3170 gimple_call_set_tail (stmt, false);
3171 }
3172 }
3173
3174 /* Entry point to the final expansion of transactional nodes. */
3175
3176 static unsigned int
3177 execute_tm_edges (void)
3178 {
3179 vec<tm_region_p> bb_regions
3180 = get_bb_regions_instrumented (/*traverse_clones=*/false,
3181 /*include_uninstrumented_p=*/true);
3182 struct tm_region *r;
3183 unsigned i;
3184
3185 FOR_EACH_VEC_ELT (bb_regions, i, r)
3186 if (r != NULL)
3187 expand_block_edges (r, BASIC_BLOCK_FOR_FN (cfun, i));
3188
3189 bb_regions.release ();
3190
3191 /* We've got to release the dominance info now, to indicate that it
3192 must be rebuilt completely. Otherwise we'll crash trying to update
3193 the SSA web in the TODO section following this pass. */
3194 free_dominance_info (CDI_DOMINATORS);
3195 bitmap_obstack_release (&tm_obstack);
3196 all_tm_regions = NULL;
3197
3198 return 0;
3199 }
3200
3201 namespace {
3202
3203 const pass_data pass_data_tm_edges =
3204 {
3205 GIMPLE_PASS, /* type */
3206 "tmedge", /* name */
3207 OPTGROUP_NONE, /* optinfo_flags */
3208 false, /* has_gate */
3209 true, /* has_execute */
3210 TV_TRANS_MEM, /* tv_id */
3211 ( PROP_ssa | PROP_cfg ), /* properties_required */
3212 0, /* properties_provided */
3213 0, /* properties_destroyed */
3214 0, /* todo_flags_start */
3215 ( TODO_update_ssa | TODO_verify_ssa ), /* todo_flags_finish */
3216 };
3217
3218 class pass_tm_edges : public gimple_opt_pass
3219 {
3220 public:
3221 pass_tm_edges (gcc::context *ctxt)
3222 : gimple_opt_pass (pass_data_tm_edges, ctxt)
3223 {}
3224
3225 /* opt_pass methods: */
3226 unsigned int execute () { return execute_tm_edges (); }
3227
3228 }; // class pass_tm_edges
3229
3230 } // anon namespace
3231
3232 gimple_opt_pass *
3233 make_pass_tm_edges (gcc::context *ctxt)
3234 {
3235 return new pass_tm_edges (ctxt);
3236 }
3237 \f
3238 /* Helper function for expand_regions. Expand REGION and recurse to
3239 the inner region. Call CALLBACK on each region. CALLBACK returns
3240 NULL to continue the traversal, otherwise a non-null value which
3241 this function will return as well. TRAVERSE_CLONES is true if we
3242 should traverse transactional clones. */
3243
3244 static void *
3245 expand_regions_1 (struct tm_region *region,
3246 void *(*callback)(struct tm_region *, void *),
3247 void *data,
3248 bool traverse_clones)
3249 {
3250 void *retval = NULL;
3251 if (region->exit_blocks
3252 || (traverse_clones && decl_is_tm_clone (current_function_decl)))
3253 {
3254 retval = callback (region, data);
3255 if (retval)
3256 return retval;
3257 }
3258 if (region->inner)
3259 {
3260 retval = expand_regions (region->inner, callback, data, traverse_clones);
3261 if (retval)
3262 return retval;
3263 }
3264 return retval;
3265 }
3266
3267 /* Traverse the regions enclosed and including REGION. Execute
3268 CALLBACK for each region, passing DATA. CALLBACK returns NULL to
3269 continue the traversal, otherwise a non-null value which this
3270 function will return as well. TRAVERSE_CLONES is true if we should
3271 traverse transactional clones. */
3272
3273 static void *
3274 expand_regions (struct tm_region *region,
3275 void *(*callback)(struct tm_region *, void *),
3276 void *data,
3277 bool traverse_clones)
3278 {
3279 void *retval = NULL;
3280 while (region)
3281 {
3282 retval = expand_regions_1 (region, callback, data, traverse_clones);
3283 if (retval)
3284 return retval;
3285 region = region->next;
3286 }
3287 return retval;
3288 }
3289
3290 \f
3291 /* A unique TM memory operation. */
3292 typedef struct tm_memop
3293 {
3294 /* Unique ID that all memory operations to the same location have. */
3295 unsigned int value_id;
3296 /* Address of load/store. */
3297 tree addr;
3298 } *tm_memop_t;
3299
3300 /* TM memory operation hashtable helpers. */
3301
3302 struct tm_memop_hasher : typed_free_remove <tm_memop>
3303 {
3304 typedef tm_memop value_type;
3305 typedef tm_memop compare_type;
3306 static inline hashval_t hash (const value_type *);
3307 static inline bool equal (const value_type *, const compare_type *);
3308 };
3309
3310 /* Htab support. Return a hash value for a `tm_memop'. */
3311 inline hashval_t
3312 tm_memop_hasher::hash (const value_type *mem)
3313 {
3314 tree addr = mem->addr;
3315 /* We drill down to the SSA_NAME/DECL for the hash, but equality is
3316 actually done with operand_equal_p (see tm_memop_eq). */
3317 if (TREE_CODE (addr) == ADDR_EXPR)
3318 addr = TREE_OPERAND (addr, 0);
3319 return iterative_hash_expr (addr, 0);
3320 }
3321
3322 /* Htab support. Return true if two tm_memop's are the same. */
3323 inline bool
3324 tm_memop_hasher::equal (const value_type *mem1, const compare_type *mem2)
3325 {
3326 return operand_equal_p (mem1->addr, mem2->addr, 0);
3327 }
3328
3329 /* Sets for solving data flow equations in the memory optimization pass. */
3330 struct tm_memopt_bitmaps
3331 {
3332 /* Stores available to this BB upon entry. Basically, stores that
3333 dominate this BB. */
3334 bitmap store_avail_in;
3335 /* Stores available at the end of this BB. */
3336 bitmap store_avail_out;
3337 bitmap store_antic_in;
3338 bitmap store_antic_out;
3339 /* Reads available to this BB upon entry. Basically, reads that
3340 dominate this BB. */
3341 bitmap read_avail_in;
3342 /* Reads available at the end of this BB. */
3343 bitmap read_avail_out;
3344 /* Reads performed in this BB. */
3345 bitmap read_local;
3346 /* Writes performed in this BB. */
3347 bitmap store_local;
3348
3349 /* Temporary storage for pass. */
3350 /* Is the current BB in the worklist? */
3351 bool avail_in_worklist_p;
3352 /* Have we visited this BB? */
3353 bool visited_p;
3354 };
3355
3356 static bitmap_obstack tm_memopt_obstack;
3357
3358 /* Unique counter for TM loads and stores. Loads and stores of the
3359 same address get the same ID. */
3360 static unsigned int tm_memopt_value_id;
3361 static hash_table <tm_memop_hasher> tm_memopt_value_numbers;
3362
3363 #define STORE_AVAIL_IN(BB) \
3364 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
3365 #define STORE_AVAIL_OUT(BB) \
3366 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
3367 #define STORE_ANTIC_IN(BB) \
3368 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
3369 #define STORE_ANTIC_OUT(BB) \
3370 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
3371 #define READ_AVAIL_IN(BB) \
3372 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
3373 #define READ_AVAIL_OUT(BB) \
3374 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
3375 #define READ_LOCAL(BB) \
3376 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
3377 #define STORE_LOCAL(BB) \
3378 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
3379 #define AVAIL_IN_WORKLIST_P(BB) \
3380 ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
3381 #define BB_VISITED_P(BB) \
3382 ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
3383
3384 /* Given a TM load/store in STMT, return the value number for the address
3385 it accesses. */
3386
3387 static unsigned int
3388 tm_memopt_value_number (gimple stmt, enum insert_option op)
3389 {
3390 struct tm_memop tmpmem, *mem;
3391 tm_memop **slot;
3392
3393 gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
3394 tmpmem.addr = gimple_call_arg (stmt, 0);
3395 slot = tm_memopt_value_numbers.find_slot (&tmpmem, op);
3396 if (*slot)
3397 mem = *slot;
3398 else if (op == INSERT)
3399 {
3400 mem = XNEW (struct tm_memop);
3401 *slot = mem;
3402 mem->value_id = tm_memopt_value_id++;
3403 mem->addr = tmpmem.addr;
3404 }
3405 else
3406 gcc_unreachable ();
3407 return mem->value_id;
3408 }
3409
3410 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
3411
3412 static void
3413 tm_memopt_accumulate_memops (basic_block bb)
3414 {
3415 gimple_stmt_iterator gsi;
3416
3417 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3418 {
3419 gimple stmt = gsi_stmt (gsi);
3420 bitmap bits;
3421 unsigned int loc;
3422
3423 if (is_tm_store (stmt))
3424 bits = STORE_LOCAL (bb);
3425 else if (is_tm_load (stmt))
3426 bits = READ_LOCAL (bb);
3427 else
3428 continue;
3429
3430 loc = tm_memopt_value_number (stmt, INSERT);
3431 bitmap_set_bit (bits, loc);
3432 if (dump_file)
3433 {
3434 fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
3435 is_tm_load (stmt) ? "LOAD" : "STORE", loc,
3436 gimple_bb (stmt)->index);
3437 print_generic_expr (dump_file, gimple_call_arg (stmt, 0), 0);
3438 fprintf (dump_file, "\n");
3439 }
3440 }
3441 }
3442
3443 /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
3444
3445 static void
3446 dump_tm_memopt_set (const char *set_name, bitmap bits)
3447 {
3448 unsigned i;
3449 bitmap_iterator bi;
3450 const char *comma = "";
3451
3452 fprintf (dump_file, "TM memopt: %s: [", set_name);
3453 EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
3454 {
3455 hash_table <tm_memop_hasher>::iterator hi;
3456 struct tm_memop *mem = NULL;
3457
3458 /* Yeah, yeah, yeah. Whatever. This is just for debugging. */
3459 FOR_EACH_HASH_TABLE_ELEMENT (tm_memopt_value_numbers, mem, tm_memop_t, hi)
3460 if (mem->value_id == i)
3461 break;
3462 gcc_assert (mem->value_id == i);
3463 fprintf (dump_file, "%s", comma);
3464 comma = ", ";
3465 print_generic_expr (dump_file, mem->addr, 0);
3466 }
3467 fprintf (dump_file, "]\n");
3468 }
3469
3470 /* Prettily dump all of the memopt sets in BLOCKS. */
3471
3472 static void
3473 dump_tm_memopt_sets (vec<basic_block> blocks)
3474 {
3475 size_t i;
3476 basic_block bb;
3477
3478 for (i = 0; blocks.iterate (i, &bb); ++i)
3479 {
3480 fprintf (dump_file, "------------BB %d---------\n", bb->index);
3481 dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
3482 dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
3483 dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
3484 dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
3485 dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
3486 dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
3487 }
3488 }
3489
3490 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
3491
3492 static void
3493 tm_memopt_compute_avin (basic_block bb)
3494 {
3495 edge e;
3496 unsigned ix;
3497
3498 /* Seed with the AVOUT of any predecessor. */
3499 for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
3500 {
3501 e = EDGE_PRED (bb, ix);
3502 /* Make sure we have already visited this BB, and is thus
3503 initialized.
3504
3505 If e->src->aux is NULL, this predecessor is actually on an
3506 enclosing transaction. We only care about the current
3507 transaction, so ignore it. */
3508 if (e->src->aux && BB_VISITED_P (e->src))
3509 {
3510 bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3511 bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3512 break;
3513 }
3514 }
3515
3516 for (; ix < EDGE_COUNT (bb->preds); ix++)
3517 {
3518 e = EDGE_PRED (bb, ix);
3519 if (e->src->aux && BB_VISITED_P (e->src))
3520 {
3521 bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3522 bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3523 }
3524 }
3525
3526 BB_VISITED_P (bb) = true;
3527 }
3528
3529 /* Compute the STORE_ANTIC_IN for the basic block BB. */
3530
3531 static void
3532 tm_memopt_compute_antin (basic_block bb)
3533 {
3534 edge e;
3535 unsigned ix;
3536
3537 /* Seed with the ANTIC_OUT of any successor. */
3538 for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
3539 {
3540 e = EDGE_SUCC (bb, ix);
3541 /* Make sure we have already visited this BB, and is thus
3542 initialized. */
3543 if (BB_VISITED_P (e->dest))
3544 {
3545 bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3546 break;
3547 }
3548 }
3549
3550 for (; ix < EDGE_COUNT (bb->succs); ix++)
3551 {
3552 e = EDGE_SUCC (bb, ix);
3553 if (BB_VISITED_P (e->dest))
3554 bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3555 }
3556
3557 BB_VISITED_P (bb) = true;
3558 }
3559
3560 /* Compute the AVAIL sets for every basic block in BLOCKS.
3561
3562 We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3563
3564 AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3565 AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
3566
3567 This is basically what we do in lcm's compute_available(), but here
3568 we calculate two sets of sets (one for STOREs and one for READs),
3569 and we work on a region instead of the entire CFG.
3570
3571 REGION is the TM region.
3572 BLOCKS are the basic blocks in the region. */
3573
3574 static void
3575 tm_memopt_compute_available (struct tm_region *region,
3576 vec<basic_block> blocks)
3577 {
3578 edge e;
3579 basic_block *worklist, *qin, *qout, *qend, bb;
3580 unsigned int qlen, i;
3581 edge_iterator ei;
3582 bool changed;
3583
3584 /* Allocate a worklist array/queue. Entries are only added to the
3585 list if they were not already on the list. So the size is
3586 bounded by the number of basic blocks in the region. */
3587 qlen = blocks.length () - 1;
3588 qin = qout = worklist =
3589 XNEWVEC (basic_block, qlen);
3590
3591 /* Put every block in the region on the worklist. */
3592 for (i = 0; blocks.iterate (i, &bb); ++i)
3593 {
3594 /* Seed AVAIL_OUT with the LOCAL set. */
3595 bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3596 bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3597
3598 AVAIL_IN_WORKLIST_P (bb) = true;
3599 /* No need to insert the entry block, since it has an AVIN of
3600 null, and an AVOUT that has already been seeded in. */
3601 if (bb != region->entry_block)
3602 *qin++ = bb;
3603 }
3604
3605 /* The entry block has been initialized with the local sets. */
3606 BB_VISITED_P (region->entry_block) = true;
3607
3608 qin = worklist;
3609 qend = &worklist[qlen];
3610
3611 /* Iterate until the worklist is empty. */
3612 while (qlen)
3613 {
3614 /* Take the first entry off the worklist. */
3615 bb = *qout++;
3616 qlen--;
3617
3618 if (qout >= qend)
3619 qout = worklist;
3620
3621 /* This block can be added to the worklist again if necessary. */
3622 AVAIL_IN_WORKLIST_P (bb) = false;
3623 tm_memopt_compute_avin (bb);
3624
3625 /* Note: We do not add the LOCAL sets here because we already
3626 seeded the AVAIL_OUT sets with them. */
3627 changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3628 changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3629 if (changed
3630 && (region->exit_blocks == NULL
3631 || !bitmap_bit_p (region->exit_blocks, bb->index)))
3632 /* If the out state of this block changed, then we need to add
3633 its successors to the worklist if they are not already in. */
3634 FOR_EACH_EDGE (e, ei, bb->succs)
3635 if (!AVAIL_IN_WORKLIST_P (e->dest)
3636 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
3637 {
3638 *qin++ = e->dest;
3639 AVAIL_IN_WORKLIST_P (e->dest) = true;
3640 qlen++;
3641
3642 if (qin >= qend)
3643 qin = worklist;
3644 }
3645 }
3646
3647 free (worklist);
3648
3649 if (dump_file)
3650 dump_tm_memopt_sets (blocks);
3651 }
3652
3653 /* Compute ANTIC sets for every basic block in BLOCKS.
3654
3655 We compute STORE_ANTIC_OUT as follows:
3656
3657 STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3658 STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
3659
3660 REGION is the TM region.
3661 BLOCKS are the basic blocks in the region. */
3662
3663 static void
3664 tm_memopt_compute_antic (struct tm_region *region,
3665 vec<basic_block> blocks)
3666 {
3667 edge e;
3668 basic_block *worklist, *qin, *qout, *qend, bb;
3669 unsigned int qlen;
3670 int i;
3671 edge_iterator ei;
3672
3673 /* Allocate a worklist array/queue. Entries are only added to the
3674 list if they were not already on the list. So the size is
3675 bounded by the number of basic blocks in the region. */
3676 qin = qout = worklist = XNEWVEC (basic_block, blocks.length ());
3677
3678 for (qlen = 0, i = blocks.length () - 1; i >= 0; --i)
3679 {
3680 bb = blocks[i];
3681
3682 /* Seed ANTIC_OUT with the LOCAL set. */
3683 bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3684
3685 /* Put every block in the region on the worklist. */
3686 AVAIL_IN_WORKLIST_P (bb) = true;
3687 /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3688 and their ANTIC_OUT has already been seeded in. */
3689 if (region->exit_blocks
3690 && !bitmap_bit_p (region->exit_blocks, bb->index))
3691 {
3692 qlen++;
3693 *qin++ = bb;
3694 }
3695 }
3696
3697 /* The exit blocks have been initialized with the local sets. */
3698 if (region->exit_blocks)
3699 {
3700 unsigned int i;
3701 bitmap_iterator bi;
3702 EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3703 BB_VISITED_P (BASIC_BLOCK_FOR_FN (cfun, i)) = true;
3704 }
3705
3706 qin = worklist;
3707 qend = &worklist[qlen];
3708
3709 /* Iterate until the worklist is empty. */
3710 while (qlen)
3711 {
3712 /* Take the first entry off the worklist. */
3713 bb = *qout++;
3714 qlen--;
3715
3716 if (qout >= qend)
3717 qout = worklist;
3718
3719 /* This block can be added to the worklist again if necessary. */
3720 AVAIL_IN_WORKLIST_P (bb) = false;
3721 tm_memopt_compute_antin (bb);
3722
3723 /* Note: We do not add the LOCAL sets here because we already
3724 seeded the ANTIC_OUT sets with them. */
3725 if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3726 && bb != region->entry_block)
3727 /* If the out state of this block changed, then we need to add
3728 its predecessors to the worklist if they are not already in. */
3729 FOR_EACH_EDGE (e, ei, bb->preds)
3730 if (!AVAIL_IN_WORKLIST_P (e->src))
3731 {
3732 *qin++ = e->src;
3733 AVAIL_IN_WORKLIST_P (e->src) = true;
3734 qlen++;
3735
3736 if (qin >= qend)
3737 qin = worklist;
3738 }
3739 }
3740
3741 free (worklist);
3742
3743 if (dump_file)
3744 dump_tm_memopt_sets (blocks);
3745 }
3746
3747 /* Offsets of load variants from TM_LOAD. For example,
3748 BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3749 See gtm-builtins.def. */
3750 #define TRANSFORM_RAR 1
3751 #define TRANSFORM_RAW 2
3752 #define TRANSFORM_RFW 3
3753 /* Offsets of store variants from TM_STORE. */
3754 #define TRANSFORM_WAR 1
3755 #define TRANSFORM_WAW 2
3756
3757 /* Inform about a load/store optimization. */
3758
3759 static void
3760 dump_tm_memopt_transform (gimple stmt)
3761 {
3762 if (dump_file)
3763 {
3764 fprintf (dump_file, "TM memopt: transforming: ");
3765 print_gimple_stmt (dump_file, stmt, 0, 0);
3766 fprintf (dump_file, "\n");
3767 }
3768 }
3769
3770 /* Perform a read/write optimization. Replaces the TM builtin in STMT
3771 by a builtin that is OFFSET entries down in the builtins table in
3772 gtm-builtins.def. */
3773
3774 static void
3775 tm_memopt_transform_stmt (unsigned int offset,
3776 gimple stmt,
3777 gimple_stmt_iterator *gsi)
3778 {
3779 tree fn = gimple_call_fn (stmt);
3780 gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3781 TREE_OPERAND (fn, 0)
3782 = builtin_decl_explicit ((enum built_in_function)
3783 (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3784 + offset));
3785 gimple_call_set_fn (stmt, fn);
3786 gsi_replace (gsi, stmt, true);
3787 dump_tm_memopt_transform (stmt);
3788 }
3789
3790 /* Perform the actual TM memory optimization transformations in the
3791 basic blocks in BLOCKS. */
3792
3793 static void
3794 tm_memopt_transform_blocks (vec<basic_block> blocks)
3795 {
3796 size_t i;
3797 basic_block bb;
3798 gimple_stmt_iterator gsi;
3799
3800 for (i = 0; blocks.iterate (i, &bb); ++i)
3801 {
3802 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3803 {
3804 gimple stmt = gsi_stmt (gsi);
3805 bitmap read_avail = READ_AVAIL_IN (bb);
3806 bitmap store_avail = STORE_AVAIL_IN (bb);
3807 bitmap store_antic = STORE_ANTIC_OUT (bb);
3808 unsigned int loc;
3809
3810 if (is_tm_simple_load (stmt))
3811 {
3812 loc = tm_memopt_value_number (stmt, NO_INSERT);
3813 if (store_avail && bitmap_bit_p (store_avail, loc))
3814 tm_memopt_transform_stmt (TRANSFORM_RAW, stmt, &gsi);
3815 else if (store_antic && bitmap_bit_p (store_antic, loc))
3816 {
3817 tm_memopt_transform_stmt (TRANSFORM_RFW, stmt, &gsi);
3818 bitmap_set_bit (store_avail, loc);
3819 }
3820 else if (read_avail && bitmap_bit_p (read_avail, loc))
3821 tm_memopt_transform_stmt (TRANSFORM_RAR, stmt, &gsi);
3822 else
3823 bitmap_set_bit (read_avail, loc);
3824 }
3825 else if (is_tm_simple_store (stmt))
3826 {
3827 loc = tm_memopt_value_number (stmt, NO_INSERT);
3828 if (store_avail && bitmap_bit_p (store_avail, loc))
3829 tm_memopt_transform_stmt (TRANSFORM_WAW, stmt, &gsi);
3830 else
3831 {
3832 if (read_avail && bitmap_bit_p (read_avail, loc))
3833 tm_memopt_transform_stmt (TRANSFORM_WAR, stmt, &gsi);
3834 bitmap_set_bit (store_avail, loc);
3835 }
3836 }
3837 }
3838 }
3839 }
3840
3841 /* Return a new set of bitmaps for a BB. */
3842
3843 static struct tm_memopt_bitmaps *
3844 tm_memopt_init_sets (void)
3845 {
3846 struct tm_memopt_bitmaps *b
3847 = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3848 b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3849 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3850 b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
3851 b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
3852 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3853 b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3854 b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3855 b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
3856 b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
3857 return b;
3858 }
3859
3860 /* Free sets computed for each BB. */
3861
3862 static void
3863 tm_memopt_free_sets (vec<basic_block> blocks)
3864 {
3865 size_t i;
3866 basic_block bb;
3867
3868 for (i = 0; blocks.iterate (i, &bb); ++i)
3869 bb->aux = NULL;
3870 }
3871
3872 /* Clear the visited bit for every basic block in BLOCKS. */
3873
3874 static void
3875 tm_memopt_clear_visited (vec<basic_block> blocks)
3876 {
3877 size_t i;
3878 basic_block bb;
3879
3880 for (i = 0; blocks.iterate (i, &bb); ++i)
3881 BB_VISITED_P (bb) = false;
3882 }
3883
3884 /* Replace TM load/stores with hints for the runtime. We handle
3885 things like read-after-write, write-after-read, read-after-read,
3886 read-for-write, etc. */
3887
3888 static unsigned int
3889 execute_tm_memopt (void)
3890 {
3891 struct tm_region *region;
3892 vec<basic_block> bbs;
3893
3894 tm_memopt_value_id = 0;
3895 tm_memopt_value_numbers.create (10);
3896
3897 for (region = all_tm_regions; region; region = region->next)
3898 {
3899 /* All the TM stores/loads in the current region. */
3900 size_t i;
3901 basic_block bb;
3902
3903 bitmap_obstack_initialize (&tm_memopt_obstack);
3904
3905 /* Save all BBs for the current region. */
3906 bbs = get_tm_region_blocks (region->entry_block,
3907 region->exit_blocks,
3908 region->irr_blocks,
3909 NULL,
3910 false);
3911
3912 /* Collect all the memory operations. */
3913 for (i = 0; bbs.iterate (i, &bb); ++i)
3914 {
3915 bb->aux = tm_memopt_init_sets ();
3916 tm_memopt_accumulate_memops (bb);
3917 }
3918
3919 /* Solve data flow equations and transform each block accordingly. */
3920 tm_memopt_clear_visited (bbs);
3921 tm_memopt_compute_available (region, bbs);
3922 tm_memopt_clear_visited (bbs);
3923 tm_memopt_compute_antic (region, bbs);
3924 tm_memopt_transform_blocks (bbs);
3925
3926 tm_memopt_free_sets (bbs);
3927 bbs.release ();
3928 bitmap_obstack_release (&tm_memopt_obstack);
3929 tm_memopt_value_numbers.empty ();
3930 }
3931
3932 tm_memopt_value_numbers.dispose ();
3933 return 0;
3934 }
3935
3936 static bool
3937 gate_tm_memopt (void)
3938 {
3939 return flag_tm && optimize > 0;
3940 }
3941
3942 namespace {
3943
3944 const pass_data pass_data_tm_memopt =
3945 {
3946 GIMPLE_PASS, /* type */
3947 "tmmemopt", /* name */
3948 OPTGROUP_NONE, /* optinfo_flags */
3949 true, /* has_gate */
3950 true, /* has_execute */
3951 TV_TRANS_MEM, /* tv_id */
3952 ( PROP_ssa | PROP_cfg ), /* properties_required */
3953 0, /* properties_provided */
3954 0, /* properties_destroyed */
3955 0, /* todo_flags_start */
3956 0, /* todo_flags_finish */
3957 };
3958
3959 class pass_tm_memopt : public gimple_opt_pass
3960 {
3961 public:
3962 pass_tm_memopt (gcc::context *ctxt)
3963 : gimple_opt_pass (pass_data_tm_memopt, ctxt)
3964 {}
3965
3966 /* opt_pass methods: */
3967 bool gate () { return gate_tm_memopt (); }
3968 unsigned int execute () { return execute_tm_memopt (); }
3969
3970 }; // class pass_tm_memopt
3971
3972 } // anon namespace
3973
3974 gimple_opt_pass *
3975 make_pass_tm_memopt (gcc::context *ctxt)
3976 {
3977 return new pass_tm_memopt (ctxt);
3978 }
3979
3980 \f
3981 /* Interprocedual analysis for the creation of transactional clones.
3982 The aim of this pass is to find which functions are referenced in
3983 a non-irrevocable transaction context, and for those over which
3984 we have control (or user directive), create a version of the
3985 function which uses only the transactional interface to reference
3986 protected memories. This analysis proceeds in several steps:
3987
3988 (1) Collect the set of all possible transactional clones:
3989
3990 (a) For all local public functions marked tm_callable, push
3991 it onto the tm_callee queue.
3992
3993 (b) For all local functions, scan for calls in transaction blocks.
3994 Push the caller and callee onto the tm_caller and tm_callee
3995 queues. Count the number of callers for each callee.
3996
3997 (c) For each local function on the callee list, assume we will
3998 create a transactional clone. Push *all* calls onto the
3999 callee queues; count the number of clone callers separately
4000 to the number of original callers.
4001
4002 (2) Propagate irrevocable status up the dominator tree:
4003
4004 (a) Any external function on the callee list that is not marked
4005 tm_callable is irrevocable. Push all callers of such onto
4006 a worklist.
4007
4008 (b) For each function on the worklist, mark each block that
4009 contains an irrevocable call. Use the AND operator to
4010 propagate that mark up the dominator tree.
4011
4012 (c) If we reach the entry block for a possible transactional
4013 clone, then the transactional clone is irrevocable, and
4014 we should not create the clone after all. Push all
4015 callers onto the worklist.
4016
4017 (d) Place tm_irrevocable calls at the beginning of the relevant
4018 blocks. Special case here is the entry block for the entire
4019 transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
4020 the library to begin the region in serial mode. Decrement
4021 the call count for all callees in the irrevocable region.
4022
4023 (3) Create the transactional clones:
4024
4025 Any tm_callee that still has a non-zero call count is cloned.
4026 */
4027
4028 /* This structure is stored in the AUX field of each cgraph_node. */
4029 struct tm_ipa_cg_data
4030 {
4031 /* The clone of the function that got created. */
4032 struct cgraph_node *clone;
4033
4034 /* The tm regions in the normal function. */
4035 struct tm_region *all_tm_regions;
4036
4037 /* The blocks of the normal/clone functions that contain irrevocable
4038 calls, or blocks that are post-dominated by irrevocable calls. */
4039 bitmap irrevocable_blocks_normal;
4040 bitmap irrevocable_blocks_clone;
4041
4042 /* The blocks of the normal function that are involved in transactions. */
4043 bitmap transaction_blocks_normal;
4044
4045 /* The number of callers to the transactional clone of this function
4046 from normal and transactional clones respectively. */
4047 unsigned tm_callers_normal;
4048 unsigned tm_callers_clone;
4049
4050 /* True if all calls to this function's transactional clone
4051 are irrevocable. Also automatically true if the function
4052 has no transactional clone. */
4053 bool is_irrevocable;
4054
4055 /* Flags indicating the presence of this function in various queues. */
4056 bool in_callee_queue;
4057 bool in_worklist;
4058
4059 /* Flags indicating the kind of scan desired while in the worklist. */
4060 bool want_irr_scan_normal;
4061 };
4062
4063 typedef vec<cgraph_node_ptr> cgraph_node_queue;
4064
4065 /* Return the ipa data associated with NODE, allocating zeroed memory
4066 if necessary. TRAVERSE_ALIASES is true if we must traverse aliases
4067 and set *NODE accordingly. */
4068
4069 static struct tm_ipa_cg_data *
4070 get_cg_data (struct cgraph_node **node, bool traverse_aliases)
4071 {
4072 struct tm_ipa_cg_data *d;
4073
4074 if (traverse_aliases && (*node)->alias)
4075 *node = cgraph_alias_target (*node);
4076
4077 d = (struct tm_ipa_cg_data *) (*node)->aux;
4078
4079 if (d == NULL)
4080 {
4081 d = (struct tm_ipa_cg_data *)
4082 obstack_alloc (&tm_obstack.obstack, sizeof (*d));
4083 (*node)->aux = (void *) d;
4084 memset (d, 0, sizeof (*d));
4085 }
4086
4087 return d;
4088 }
4089
4090 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
4091 it is already present. */
4092
4093 static void
4094 maybe_push_queue (struct cgraph_node *node,
4095 cgraph_node_queue *queue_p, bool *in_queue_p)
4096 {
4097 if (!*in_queue_p)
4098 {
4099 *in_queue_p = true;
4100 queue_p->safe_push (node);
4101 }
4102 }
4103
4104 /* Duplicate the basic blocks in QUEUE for use in the uninstrumented
4105 code path. QUEUE are the basic blocks inside the transaction
4106 represented in REGION.
4107
4108 Later in split_code_paths() we will add the conditional to choose
4109 between the two alternatives. */
4110
4111 static void
4112 ipa_uninstrument_transaction (struct tm_region *region,
4113 vec<basic_block> queue)
4114 {
4115 gimple transaction = region->transaction_stmt;
4116 basic_block transaction_bb = gimple_bb (transaction);
4117 int n = queue.length ();
4118 basic_block *new_bbs = XNEWVEC (basic_block, n);
4119
4120 copy_bbs (queue.address (), n, new_bbs, NULL, 0, NULL, NULL, transaction_bb,
4121 true);
4122 edge e = make_edge (transaction_bb, new_bbs[0], EDGE_TM_UNINSTRUMENTED);
4123 add_phi_args_after_copy (new_bbs, n, e);
4124
4125 // Now we will have a GIMPLE_ATOMIC with 3 possible edges out of it.
4126 // a) EDGE_FALLTHRU into the transaction
4127 // b) EDGE_TM_ABORT out of the transaction
4128 // c) EDGE_TM_UNINSTRUMENTED into the uninstrumented blocks.
4129
4130 free (new_bbs);
4131 }
4132
4133 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
4134 Queue all callees within block BB. */
4135
4136 static void
4137 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
4138 basic_block bb, bool for_clone)
4139 {
4140 gimple_stmt_iterator gsi;
4141
4142 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4143 {
4144 gimple stmt = gsi_stmt (gsi);
4145 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4146 {
4147 tree fndecl = gimple_call_fndecl (stmt);
4148 if (fndecl)
4149 {
4150 struct tm_ipa_cg_data *d;
4151 unsigned *pcallers;
4152 struct cgraph_node *node;
4153
4154 if (is_tm_ending_fndecl (fndecl))
4155 continue;
4156 if (find_tm_replacement_function (fndecl))
4157 continue;
4158
4159 node = cgraph_get_node (fndecl);
4160 gcc_assert (node != NULL);
4161 d = get_cg_data (&node, true);
4162
4163 pcallers = (for_clone ? &d->tm_callers_clone
4164 : &d->tm_callers_normal);
4165 *pcallers += 1;
4166
4167 maybe_push_queue (node, callees_p, &d->in_callee_queue);
4168 }
4169 }
4170 }
4171 }
4172
4173 /* Scan all calls in NODE that are within a transaction region,
4174 and push the resulting nodes into the callee queue. */
4175
4176 static void
4177 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
4178 cgraph_node_queue *callees_p)
4179 {
4180 struct tm_region *r;
4181
4182 d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
4183 d->all_tm_regions = all_tm_regions;
4184
4185 for (r = all_tm_regions; r; r = r->next)
4186 {
4187 vec<basic_block> bbs;
4188 basic_block bb;
4189 unsigned i;
4190
4191 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
4192 d->transaction_blocks_normal, false);
4193
4194 // Generate the uninstrumented code path for this transaction.
4195 ipa_uninstrument_transaction (r, bbs);
4196
4197 FOR_EACH_VEC_ELT (bbs, i, bb)
4198 ipa_tm_scan_calls_block (callees_p, bb, false);
4199
4200 bbs.release ();
4201 }
4202
4203 // ??? copy_bbs should maintain cgraph edges for the blocks as it is
4204 // copying them, rather than forcing us to do this externally.
4205 rebuild_cgraph_edges ();
4206
4207 // ??? In ipa_uninstrument_transaction we don't try to update dominators
4208 // because copy_bbs doesn't return a VEC like iterate_fix_dominators expects.
4209 // Instead, just release dominators here so update_ssa recomputes them.
4210 free_dominance_info (CDI_DOMINATORS);
4211
4212 // When building the uninstrumented code path, copy_bbs will have invoked
4213 // create_new_def_for starting an "ssa update context". There is only one
4214 // instance of this context, so resolve ssa updates before moving on to
4215 // the next function.
4216 update_ssa (TODO_update_ssa);
4217 }
4218
4219 /* Scan all calls in NODE as if this is the transactional clone,
4220 and push the destinations into the callee queue. */
4221
4222 static void
4223 ipa_tm_scan_calls_clone (struct cgraph_node *node,
4224 cgraph_node_queue *callees_p)
4225 {
4226 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
4227 basic_block bb;
4228
4229 FOR_EACH_BB_FN (bb, fn)
4230 ipa_tm_scan_calls_block (callees_p, bb, true);
4231 }
4232
4233 /* The function NODE has been detected to be irrevocable. Push all
4234 of its callers onto WORKLIST for the purpose of re-scanning them. */
4235
4236 static void
4237 ipa_tm_note_irrevocable (struct cgraph_node *node,
4238 cgraph_node_queue *worklist_p)
4239 {
4240 struct tm_ipa_cg_data *d = get_cg_data (&node, true);
4241 struct cgraph_edge *e;
4242
4243 d->is_irrevocable = true;
4244
4245 for (e = node->callers; e ; e = e->next_caller)
4246 {
4247 basic_block bb;
4248 struct cgraph_node *caller;
4249
4250 /* Don't examine recursive calls. */
4251 if (e->caller == node)
4252 continue;
4253 /* Even if we think we can go irrevocable, believe the user
4254 above all. */
4255 if (is_tm_safe_or_pure (e->caller->decl))
4256 continue;
4257
4258 caller = e->caller;
4259 d = get_cg_data (&caller, true);
4260
4261 /* Check if the callee is in a transactional region. If so,
4262 schedule the function for normal re-scan as well. */
4263 bb = gimple_bb (e->call_stmt);
4264 gcc_assert (bb != NULL);
4265 if (d->transaction_blocks_normal
4266 && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
4267 d->want_irr_scan_normal = true;
4268
4269 maybe_push_queue (caller, worklist_p, &d->in_worklist);
4270 }
4271 }
4272
4273 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
4274 within the block is irrevocable. */
4275
4276 static bool
4277 ipa_tm_scan_irr_block (basic_block bb)
4278 {
4279 gimple_stmt_iterator gsi;
4280 tree fn;
4281
4282 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4283 {
4284 gimple stmt = gsi_stmt (gsi);
4285 switch (gimple_code (stmt))
4286 {
4287 case GIMPLE_ASSIGN:
4288 if (gimple_assign_single_p (stmt))
4289 {
4290 tree lhs = gimple_assign_lhs (stmt);
4291 tree rhs = gimple_assign_rhs1 (stmt);
4292 if (volatile_var_p (lhs) || volatile_var_p (rhs))
4293 return true;
4294 }
4295 break;
4296
4297 case GIMPLE_CALL:
4298 {
4299 tree lhs = gimple_call_lhs (stmt);
4300 if (lhs && volatile_var_p (lhs))
4301 return true;
4302
4303 if (is_tm_pure_call (stmt))
4304 break;
4305
4306 fn = gimple_call_fn (stmt);
4307
4308 /* Functions with the attribute are by definition irrevocable. */
4309 if (is_tm_irrevocable (fn))
4310 return true;
4311
4312 /* For direct function calls, go ahead and check for replacement
4313 functions, or transitive irrevocable functions. For indirect
4314 functions, we'll ask the runtime. */
4315 if (TREE_CODE (fn) == ADDR_EXPR)
4316 {
4317 struct tm_ipa_cg_data *d;
4318 struct cgraph_node *node;
4319
4320 fn = TREE_OPERAND (fn, 0);
4321 if (is_tm_ending_fndecl (fn))
4322 break;
4323 if (find_tm_replacement_function (fn))
4324 break;
4325
4326 node = cgraph_get_node (fn);
4327 d = get_cg_data (&node, true);
4328
4329 /* Return true if irrevocable, but above all, believe
4330 the user. */
4331 if (d->is_irrevocable
4332 && !is_tm_safe_or_pure (fn))
4333 return true;
4334 }
4335 break;
4336 }
4337
4338 case GIMPLE_ASM:
4339 /* ??? The Approved Method of indicating that an inline
4340 assembly statement is not relevant to the transaction
4341 is to wrap it in a __tm_waiver block. This is not
4342 yet implemented, so we can't check for it. */
4343 if (is_tm_safe (current_function_decl))
4344 {
4345 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
4346 SET_EXPR_LOCATION (t, gimple_location (stmt));
4347 error ("%Kasm not allowed in %<transaction_safe%> function", t);
4348 }
4349 return true;
4350
4351 default:
4352 break;
4353 }
4354 }
4355
4356 return false;
4357 }
4358
4359 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
4360 for new irrevocable blocks, marking them in NEW_IRR. Don't bother
4361 scanning past OLD_IRR or EXIT_BLOCKS. */
4362
4363 static bool
4364 ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr,
4365 bitmap old_irr, bitmap exit_blocks)
4366 {
4367 bool any_new_irr = false;
4368 edge e;
4369 edge_iterator ei;
4370 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4371
4372 do
4373 {
4374 basic_block bb = pqueue->pop ();
4375
4376 /* Don't re-scan blocks we know already are irrevocable. */
4377 if (old_irr && bitmap_bit_p (old_irr, bb->index))
4378 continue;
4379
4380 if (ipa_tm_scan_irr_block (bb))
4381 {
4382 bitmap_set_bit (new_irr, bb->index);
4383 any_new_irr = true;
4384 }
4385 else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
4386 {
4387 FOR_EACH_EDGE (e, ei, bb->succs)
4388 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4389 {
4390 bitmap_set_bit (visited_blocks, e->dest->index);
4391 pqueue->safe_push (e->dest);
4392 }
4393 }
4394 }
4395 while (!pqueue->is_empty ());
4396
4397 BITMAP_FREE (visited_blocks);
4398
4399 return any_new_irr;
4400 }
4401
4402 /* Propagate the irrevocable property both up and down the dominator tree.
4403 BB is the current block being scanned; EXIT_BLOCKS are the edges of the
4404 TM regions; OLD_IRR are the results of a previous scan of the dominator
4405 tree which has been fully propagated; NEW_IRR is the set of new blocks
4406 which are gaining the irrevocable property during the current scan. */
4407
4408 static void
4409 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
4410 bitmap old_irr, bitmap exit_blocks)
4411 {
4412 vec<basic_block> bbs;
4413 bitmap all_region_blocks;
4414
4415 /* If this block is in the old set, no need to rescan. */
4416 if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
4417 return;
4418
4419 all_region_blocks = BITMAP_ALLOC (&tm_obstack);
4420 bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
4421 all_region_blocks, false);
4422 do
4423 {
4424 basic_block bb = bbs.pop ();
4425 bool this_irr = bitmap_bit_p (new_irr, bb->index);
4426 bool all_son_irr = false;
4427 edge_iterator ei;
4428 edge e;
4429
4430 /* Propagate up. If my children are, I am too, but we must have
4431 at least one child that is. */
4432 if (!this_irr)
4433 {
4434 FOR_EACH_EDGE (e, ei, bb->succs)
4435 {
4436 if (!bitmap_bit_p (new_irr, e->dest->index))
4437 {
4438 all_son_irr = false;
4439 break;
4440 }
4441 else
4442 all_son_irr = true;
4443 }
4444 if (all_son_irr)
4445 {
4446 /* Add block to new_irr if it hasn't already been processed. */
4447 if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
4448 {
4449 bitmap_set_bit (new_irr, bb->index);
4450 this_irr = true;
4451 }
4452 }
4453 }
4454
4455 /* Propagate down to everyone we immediately dominate. */
4456 if (this_irr)
4457 {
4458 basic_block son;
4459 for (son = first_dom_son (CDI_DOMINATORS, bb);
4460 son;
4461 son = next_dom_son (CDI_DOMINATORS, son))
4462 {
4463 /* Make sure block is actually in a TM region, and it
4464 isn't already in old_irr. */
4465 if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
4466 && bitmap_bit_p (all_region_blocks, son->index))
4467 bitmap_set_bit (new_irr, son->index);
4468 }
4469 }
4470 }
4471 while (!bbs.is_empty ());
4472
4473 BITMAP_FREE (all_region_blocks);
4474 bbs.release ();
4475 }
4476
4477 static void
4478 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
4479 {
4480 gimple_stmt_iterator gsi;
4481
4482 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4483 {
4484 gimple stmt = gsi_stmt (gsi);
4485 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4486 {
4487 tree fndecl = gimple_call_fndecl (stmt);
4488 if (fndecl)
4489 {
4490 struct tm_ipa_cg_data *d;
4491 unsigned *pcallers;
4492 struct cgraph_node *tnode;
4493
4494 if (is_tm_ending_fndecl (fndecl))
4495 continue;
4496 if (find_tm_replacement_function (fndecl))
4497 continue;
4498
4499 tnode = cgraph_get_node (fndecl);
4500 d = get_cg_data (&tnode, true);
4501
4502 pcallers = (for_clone ? &d->tm_callers_clone
4503 : &d->tm_callers_normal);
4504
4505 gcc_assert (*pcallers > 0);
4506 *pcallers -= 1;
4507 }
4508 }
4509 }
4510 }
4511
4512 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
4513 as well as other irrevocable actions such as inline assembly. Mark all
4514 such blocks as irrevocable and decrement the number of calls to
4515 transactional clones. Return true if, for the transactional clone, the
4516 entire function is irrevocable. */
4517
4518 static bool
4519 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
4520 {
4521 struct tm_ipa_cg_data *d;
4522 bitmap new_irr, old_irr;
4523 bool ret = false;
4524
4525 /* Builtin operators (operator new, and such). */
4526 if (DECL_STRUCT_FUNCTION (node->decl) == NULL
4527 || DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL)
4528 return false;
4529
4530 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4531 calculate_dominance_info (CDI_DOMINATORS);
4532
4533 d = get_cg_data (&node, true);
4534 stack_vec<basic_block, 10> queue;
4535 new_irr = BITMAP_ALLOC (&tm_obstack);
4536
4537 /* Scan each tm region, propagating irrevocable status through the tree. */
4538 if (for_clone)
4539 {
4540 old_irr = d->irrevocable_blocks_clone;
4541 queue.quick_push (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4542 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
4543 {
4544 ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4545 new_irr,
4546 old_irr, NULL);
4547 ret = bitmap_bit_p (new_irr,
4548 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->index);
4549 }
4550 }
4551 else
4552 {
4553 struct tm_region *region;
4554
4555 old_irr = d->irrevocable_blocks_normal;
4556 for (region = d->all_tm_regions; region; region = region->next)
4557 {
4558 queue.quick_push (region->entry_block);
4559 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
4560 region->exit_blocks))
4561 ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
4562 region->exit_blocks);
4563 }
4564 }
4565
4566 /* If we found any new irrevocable blocks, reduce the call count for
4567 transactional clones within the irrevocable blocks. Save the new
4568 set of irrevocable blocks for next time. */
4569 if (!bitmap_empty_p (new_irr))
4570 {
4571 bitmap_iterator bmi;
4572 unsigned i;
4573
4574 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4575 ipa_tm_decrement_clone_counts (BASIC_BLOCK_FOR_FN (cfun, i),
4576 for_clone);
4577
4578 if (old_irr)
4579 {
4580 bitmap_ior_into (old_irr, new_irr);
4581 BITMAP_FREE (new_irr);
4582 }
4583 else if (for_clone)
4584 d->irrevocable_blocks_clone = new_irr;
4585 else
4586 d->irrevocable_blocks_normal = new_irr;
4587
4588 if (dump_file && new_irr)
4589 {
4590 const char *dname;
4591 bitmap_iterator bmi;
4592 unsigned i;
4593
4594 dname = lang_hooks.decl_printable_name (current_function_decl, 2);
4595 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4596 fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
4597 }
4598 }
4599 else
4600 BITMAP_FREE (new_irr);
4601
4602 pop_cfun ();
4603
4604 return ret;
4605 }
4606
4607 /* Return true if, for the transactional clone of NODE, any call
4608 may enter irrevocable mode. */
4609
4610 static bool
4611 ipa_tm_mayenterirr_function (struct cgraph_node *node)
4612 {
4613 struct tm_ipa_cg_data *d;
4614 tree decl;
4615 unsigned flags;
4616
4617 d = get_cg_data (&node, true);
4618 decl = node->decl;
4619 flags = flags_from_decl_or_type (decl);
4620
4621 /* Handle some TM builtins. Ordinarily these aren't actually generated
4622 at this point, but handling these functions when written in by the
4623 user makes it easier to build unit tests. */
4624 if (flags & ECF_TM_BUILTIN)
4625 return false;
4626
4627 /* Filter out all functions that are marked. */
4628 if (flags & ECF_TM_PURE)
4629 return false;
4630 if (is_tm_safe (decl))
4631 return false;
4632 if (is_tm_irrevocable (decl))
4633 return true;
4634 if (is_tm_callable (decl))
4635 return true;
4636 if (find_tm_replacement_function (decl))
4637 return true;
4638
4639 /* If we aren't seeing the final version of the function we don't
4640 know what it will contain at runtime. */
4641 if (cgraph_function_body_availability (node) < AVAIL_AVAILABLE)
4642 return true;
4643
4644 /* If the function must go irrevocable, then of course true. */
4645 if (d->is_irrevocable)
4646 return true;
4647
4648 /* If there are any blocks marked irrevocable, then the function
4649 as a whole may enter irrevocable. */
4650 if (d->irrevocable_blocks_clone)
4651 return true;
4652
4653 /* We may have previously marked this function as tm_may_enter_irr;
4654 see pass_diagnose_tm_blocks. */
4655 if (node->local.tm_may_enter_irr)
4656 return true;
4657
4658 /* Recurse on the main body for aliases. In general, this will
4659 result in one of the bits above being set so that we will not
4660 have to recurse next time. */
4661 if (node->alias)
4662 return ipa_tm_mayenterirr_function (cgraph_get_node (node->thunk.alias));
4663
4664 /* What remains is unmarked local functions without items that force
4665 the function to go irrevocable. */
4666 return false;
4667 }
4668
4669 /* Diagnose calls from transaction_safe functions to unmarked
4670 functions that are determined to not be safe. */
4671
4672 static void
4673 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4674 {
4675 struct cgraph_edge *e;
4676
4677 for (e = node->callees; e ; e = e->next_callee)
4678 if (!is_tm_callable (e->callee->decl)
4679 && e->callee->local.tm_may_enter_irr)
4680 error_at (gimple_location (e->call_stmt),
4681 "unsafe function call %qD within "
4682 "%<transaction_safe%> function", e->callee->decl);
4683 }
4684
4685 /* Diagnose call from atomic transactions to unmarked functions
4686 that are determined to not be safe. */
4687
4688 static void
4689 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4690 struct tm_region *all_tm_regions)
4691 {
4692 struct tm_region *r;
4693
4694 for (r = all_tm_regions; r ; r = r->next)
4695 if (gimple_transaction_subcode (r->transaction_stmt) & GTMA_IS_RELAXED)
4696 {
4697 /* Atomic transactions can be nested inside relaxed. */
4698 if (r->inner)
4699 ipa_tm_diagnose_transaction (node, r->inner);
4700 }
4701 else
4702 {
4703 vec<basic_block> bbs;
4704 gimple_stmt_iterator gsi;
4705 basic_block bb;
4706 size_t i;
4707
4708 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4709 r->irr_blocks, NULL, false);
4710
4711 for (i = 0; bbs.iterate (i, &bb); ++i)
4712 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4713 {
4714 gimple stmt = gsi_stmt (gsi);
4715 tree fndecl;
4716
4717 if (gimple_code (stmt) == GIMPLE_ASM)
4718 {
4719 error_at (gimple_location (stmt),
4720 "asm not allowed in atomic transaction");
4721 continue;
4722 }
4723
4724 if (!is_gimple_call (stmt))
4725 continue;
4726 fndecl = gimple_call_fndecl (stmt);
4727
4728 /* Indirect function calls have been diagnosed already. */
4729 if (!fndecl)
4730 continue;
4731
4732 /* Stop at the end of the transaction. */
4733 if (is_tm_ending_fndecl (fndecl))
4734 {
4735 if (bitmap_bit_p (r->exit_blocks, bb->index))
4736 break;
4737 continue;
4738 }
4739
4740 /* Marked functions have been diagnosed already. */
4741 if (is_tm_pure_call (stmt))
4742 continue;
4743 if (is_tm_callable (fndecl))
4744 continue;
4745
4746 if (cgraph_local_info (fndecl)->tm_may_enter_irr)
4747 error_at (gimple_location (stmt),
4748 "unsafe function call %qD within "
4749 "atomic transaction", fndecl);
4750 }
4751
4752 bbs.release ();
4753 }
4754 }
4755
4756 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4757 OLD_DECL. The returned value is a freshly malloced pointer that
4758 should be freed by the caller. */
4759
4760 static tree
4761 tm_mangle (tree old_asm_id)
4762 {
4763 const char *old_asm_name;
4764 char *tm_name;
4765 void *alloc = NULL;
4766 struct demangle_component *dc;
4767 tree new_asm_id;
4768
4769 /* Determine if the symbol is already a valid C++ mangled name. Do this
4770 even for C, which might be interfacing with C++ code via appropriately
4771 ugly identifiers. */
4772 /* ??? We could probably do just as well checking for "_Z" and be done. */
4773 old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4774 dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4775
4776 if (dc == NULL)
4777 {
4778 char length[8];
4779
4780 do_unencoded:
4781 sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4782 tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4783 }
4784 else
4785 {
4786 old_asm_name += 2; /* Skip _Z */
4787
4788 switch (dc->type)
4789 {
4790 case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4791 case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4792 /* Don't play silly games, you! */
4793 goto do_unencoded;
4794
4795 case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4796 /* I'd really like to know if we can ever be passed one of
4797 these from the C++ front end. The Logical Thing would
4798 seem that hidden-alias should be outer-most, so that we
4799 get hidden-alias of a transaction-clone and not vice-versa. */
4800 old_asm_name += 2;
4801 break;
4802
4803 default:
4804 break;
4805 }
4806
4807 tm_name = concat ("_ZGTt", old_asm_name, NULL);
4808 }
4809 free (alloc);
4810
4811 new_asm_id = get_identifier (tm_name);
4812 free (tm_name);
4813
4814 return new_asm_id;
4815 }
4816
4817 static inline void
4818 ipa_tm_mark_force_output_node (struct cgraph_node *node)
4819 {
4820 cgraph_mark_force_output_node (node);
4821 node->analyzed = true;
4822 }
4823
4824 static inline void
4825 ipa_tm_mark_forced_by_abi_node (struct cgraph_node *node)
4826 {
4827 node->forced_by_abi = true;
4828 node->analyzed = true;
4829 }
4830
4831 /* Callback data for ipa_tm_create_version_alias. */
4832 struct create_version_alias_info
4833 {
4834 struct cgraph_node *old_node;
4835 tree new_decl;
4836 };
4837
4838 /* A subroutine of ipa_tm_create_version, called via
4839 cgraph_for_node_and_aliases. Create new tm clones for each of
4840 the existing aliases. */
4841 static bool
4842 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4843 {
4844 struct create_version_alias_info *info
4845 = (struct create_version_alias_info *)data;
4846 tree old_decl, new_decl, tm_name;
4847 struct cgraph_node *new_node;
4848
4849 if (!node->cpp_implicit_alias)
4850 return false;
4851
4852 old_decl = node->decl;
4853 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4854 new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4855 TREE_CODE (old_decl), tm_name,
4856 TREE_TYPE (old_decl));
4857
4858 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4859 SET_DECL_RTL (new_decl, NULL);
4860
4861 /* Based loosely on C++'s make_alias_for(). */
4862 TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4863 DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
4864 DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
4865 TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4866 DECL_EXTERNAL (new_decl) = 0;
4867 DECL_ARTIFICIAL (new_decl) = 1;
4868 TREE_ADDRESSABLE (new_decl) = 1;
4869 TREE_USED (new_decl) = 1;
4870 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4871
4872 /* Perform the same remapping to the comdat group. */
4873 if (DECL_ONE_ONLY (new_decl))
4874 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4875
4876 new_node = cgraph_same_body_alias (NULL, new_decl, info->new_decl);
4877 new_node->tm_clone = true;
4878 new_node->externally_visible = info->old_node->externally_visible;
4879 /* ?? Do not traverse aliases here. */
4880 get_cg_data (&node, false)->clone = new_node;
4881
4882 record_tm_clone_pair (old_decl, new_decl);
4883
4884 if (info->old_node->force_output
4885 || ipa_ref_list_first_referring (&info->old_node->ref_list))
4886 ipa_tm_mark_force_output_node (new_node);
4887 if (info->old_node->forced_by_abi)
4888 ipa_tm_mark_forced_by_abi_node (new_node);
4889 return false;
4890 }
4891
4892 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4893 appropriate for the transactional clone. */
4894
4895 static void
4896 ipa_tm_create_version (struct cgraph_node *old_node)
4897 {
4898 tree new_decl, old_decl, tm_name;
4899 struct cgraph_node *new_node;
4900
4901 old_decl = old_node->decl;
4902 new_decl = copy_node (old_decl);
4903
4904 /* DECL_ASSEMBLER_NAME needs to be set before we call
4905 cgraph_copy_node_for_versioning below, because cgraph_node will
4906 fill the assembler_name_hash. */
4907 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4908 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4909 SET_DECL_RTL (new_decl, NULL);
4910 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4911
4912 /* Perform the same remapping to the comdat group. */
4913 if (DECL_ONE_ONLY (new_decl))
4914 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4915
4916 new_node = cgraph_copy_node_for_versioning (old_node, new_decl, vNULL, NULL);
4917 new_node->local.local = false;
4918 new_node->externally_visible = old_node->externally_visible;
4919 new_node->lowered = true;
4920 new_node->tm_clone = 1;
4921 get_cg_data (&old_node, true)->clone = new_node;
4922
4923 if (cgraph_function_body_availability (old_node) >= AVAIL_OVERWRITABLE)
4924 {
4925 /* Remap extern inline to static inline. */
4926 /* ??? Is it worth trying to use make_decl_one_only? */
4927 if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
4928 {
4929 DECL_EXTERNAL (new_decl) = 0;
4930 TREE_PUBLIC (new_decl) = 0;
4931 DECL_WEAK (new_decl) = 0;
4932 }
4933
4934 tree_function_versioning (old_decl, new_decl,
4935 NULL, false, NULL,
4936 false, NULL, NULL);
4937 }
4938
4939 record_tm_clone_pair (old_decl, new_decl);
4940
4941 cgraph_call_function_insertion_hooks (new_node);
4942 if (old_node->force_output
4943 || ipa_ref_list_first_referring (&old_node->ref_list))
4944 ipa_tm_mark_force_output_node (new_node);
4945 if (old_node->forced_by_abi)
4946 ipa_tm_mark_forced_by_abi_node (new_node);
4947
4948 /* Do the same thing, but for any aliases of the original node. */
4949 {
4950 struct create_version_alias_info data;
4951 data.old_node = old_node;
4952 data.new_decl = new_decl;
4953 cgraph_for_node_and_aliases (old_node, ipa_tm_create_version_alias,
4954 &data, true);
4955 }
4956 }
4957
4958 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
4959
4960 static void
4961 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
4962 basic_block bb)
4963 {
4964 gimple_stmt_iterator gsi;
4965 gimple g;
4966
4967 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4968
4969 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
4970 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
4971
4972 split_block_after_labels (bb);
4973 gsi = gsi_after_labels (bb);
4974 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
4975
4976 cgraph_create_edge (node,
4977 cgraph_get_create_node
4978 (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
4979 g, 0,
4980 compute_call_stmt_bb_frequency (node->decl,
4981 gimple_bb (g)));
4982 }
4983
4984 /* Construct a call to TM_GETTMCLONE and insert it before GSI. */
4985
4986 static bool
4987 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
4988 struct tm_region *region,
4989 gimple_stmt_iterator *gsi, gimple stmt)
4990 {
4991 tree gettm_fn, ret, old_fn, callfn;
4992 gimple g, g2;
4993 bool safe;
4994
4995 old_fn = gimple_call_fn (stmt);
4996
4997 if (TREE_CODE (old_fn) == ADDR_EXPR)
4998 {
4999 tree fndecl = TREE_OPERAND (old_fn, 0);
5000 tree clone = get_tm_clone_pair (fndecl);
5001
5002 /* By transforming the call into a TM_GETTMCLONE, we are
5003 technically taking the address of the original function and
5004 its clone. Explain this so inlining will know this function
5005 is needed. */
5006 cgraph_mark_address_taken_node (cgraph_get_node (fndecl));
5007 if (clone)
5008 cgraph_mark_address_taken_node (cgraph_get_node (clone));
5009 }
5010
5011 safe = is_tm_safe (TREE_TYPE (old_fn));
5012 gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
5013 : BUILT_IN_TM_GETTMCLONE_IRR);
5014 ret = create_tmp_var (ptr_type_node, NULL);
5015
5016 if (!safe)
5017 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5018
5019 /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
5020 if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
5021 old_fn = OBJ_TYPE_REF_EXPR (old_fn);
5022
5023 g = gimple_build_call (gettm_fn, 1, old_fn);
5024 ret = make_ssa_name (ret, g);
5025 gimple_call_set_lhs (g, ret);
5026
5027 gsi_insert_before (gsi, g, GSI_SAME_STMT);
5028
5029 cgraph_create_edge (node, cgraph_get_create_node (gettm_fn), g, 0,
5030 compute_call_stmt_bb_frequency (node->decl,
5031 gimple_bb (g)));
5032
5033 /* Cast return value from tm_gettmclone* into appropriate function
5034 pointer. */
5035 callfn = create_tmp_var (TREE_TYPE (old_fn), NULL);
5036 g2 = gimple_build_assign (callfn,
5037 fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
5038 callfn = make_ssa_name (callfn, g2);
5039 gimple_assign_set_lhs (g2, callfn);
5040 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
5041
5042 /* ??? This is a hack to preserve the NOTHROW bit on the call,
5043 which we would have derived from the decl. Failure to save
5044 this bit means we might have to split the basic block. */
5045 if (gimple_call_nothrow_p (stmt))
5046 gimple_call_set_nothrow (stmt, true);
5047
5048 gimple_call_set_fn (stmt, callfn);
5049
5050 /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
5051 for a call statement. Fix it. */
5052 {
5053 tree lhs = gimple_call_lhs (stmt);
5054 tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
5055 if (lhs
5056 && !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
5057 {
5058 tree temp;
5059
5060 temp = create_tmp_reg (rettype, 0);
5061 gimple_call_set_lhs (stmt, temp);
5062
5063 g2 = gimple_build_assign (lhs,
5064 fold_build1 (VIEW_CONVERT_EXPR,
5065 TREE_TYPE (lhs), temp));
5066 gsi_insert_after (gsi, g2, GSI_SAME_STMT);
5067 }
5068 }
5069
5070 update_stmt (stmt);
5071
5072 return true;
5073 }
5074
5075 /* Helper function for ipa_tm_transform_calls*. Given a call
5076 statement in GSI which resides inside transaction REGION, redirect
5077 the call to either its wrapper function, or its clone. */
5078
5079 static void
5080 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
5081 struct tm_region *region,
5082 gimple_stmt_iterator *gsi,
5083 bool *need_ssa_rename_p)
5084 {
5085 gimple stmt = gsi_stmt (*gsi);
5086 struct cgraph_node *new_node;
5087 struct cgraph_edge *e = cgraph_edge (node, stmt);
5088 tree fndecl = gimple_call_fndecl (stmt);
5089
5090 /* For indirect calls, pass the address through the runtime. */
5091 if (fndecl == NULL)
5092 {
5093 *need_ssa_rename_p |=
5094 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5095 return;
5096 }
5097
5098 /* Handle some TM builtins. Ordinarily these aren't actually generated
5099 at this point, but handling these functions when written in by the
5100 user makes it easier to build unit tests. */
5101 if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
5102 return;
5103
5104 /* Fixup recursive calls inside clones. */
5105 /* ??? Why did cgraph_copy_node_for_versioning update the call edges
5106 for recursion but not update the call statements themselves? */
5107 if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
5108 {
5109 gimple_call_set_fndecl (stmt, current_function_decl);
5110 return;
5111 }
5112
5113 /* If there is a replacement, use it. */
5114 fndecl = find_tm_replacement_function (fndecl);
5115 if (fndecl)
5116 {
5117 new_node = cgraph_get_create_node (fndecl);
5118
5119 /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
5120
5121 We can't do this earlier in record_tm_replacement because
5122 cgraph_remove_unreachable_nodes is called before we inject
5123 references to the node. Further, we can't do this in some
5124 nice central place in ipa_tm_execute because we don't have
5125 the exact list of wrapper functions that would be used.
5126 Marking more wrappers than necessary results in the creation
5127 of unnecessary cgraph_nodes, which can cause some of the
5128 other IPA passes to crash.
5129
5130 We do need to mark these nodes so that we get the proper
5131 result in expand_call_tm. */
5132 /* ??? This seems broken. How is it that we're marking the
5133 CALLEE as may_enter_irr? Surely we should be marking the
5134 CALLER. Also note that find_tm_replacement_function also
5135 contains mappings into the TM runtime, e.g. memcpy. These
5136 we know won't go irrevocable. */
5137 new_node->local.tm_may_enter_irr = 1;
5138 }
5139 else
5140 {
5141 struct tm_ipa_cg_data *d;
5142 struct cgraph_node *tnode = e->callee;
5143
5144 d = get_cg_data (&tnode, true);
5145 new_node = d->clone;
5146
5147 /* As we've already skipped pure calls and appropriate builtins,
5148 and we've already marked irrevocable blocks, if we can't come
5149 up with a static replacement, then ask the runtime. */
5150 if (new_node == NULL)
5151 {
5152 *need_ssa_rename_p |=
5153 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5154 return;
5155 }
5156
5157 fndecl = new_node->decl;
5158 }
5159
5160 cgraph_redirect_edge_callee (e, new_node);
5161 gimple_call_set_fndecl (stmt, fndecl);
5162 }
5163
5164 /* Helper function for ipa_tm_transform_calls. For a given BB,
5165 install calls to tm_irrevocable when IRR_BLOCKS are reached,
5166 redirect other calls to the generated transactional clone. */
5167
5168 static bool
5169 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
5170 basic_block bb, bitmap irr_blocks)
5171 {
5172 gimple_stmt_iterator gsi;
5173 bool need_ssa_rename = false;
5174
5175 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5176 {
5177 ipa_tm_insert_irr_call (node, region, bb);
5178 return true;
5179 }
5180
5181 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5182 {
5183 gimple stmt = gsi_stmt (gsi);
5184
5185 if (!is_gimple_call (stmt))
5186 continue;
5187 if (is_tm_pure_call (stmt))
5188 continue;
5189
5190 /* Redirect edges to the appropriate replacement or clone. */
5191 ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
5192 }
5193
5194 return need_ssa_rename;
5195 }
5196
5197 /* Walk the CFG for REGION, beginning at BB. Install calls to
5198 tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
5199 the generated transactional clone. */
5200
5201 static bool
5202 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
5203 basic_block bb, bitmap irr_blocks)
5204 {
5205 bool need_ssa_rename = false;
5206 edge e;
5207 edge_iterator ei;
5208 auto_vec<basic_block> queue;
5209 bitmap visited_blocks = BITMAP_ALLOC (NULL);
5210
5211 queue.safe_push (bb);
5212 do
5213 {
5214 bb = queue.pop ();
5215
5216 need_ssa_rename |=
5217 ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
5218
5219 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5220 continue;
5221
5222 if (region && bitmap_bit_p (region->exit_blocks, bb->index))
5223 continue;
5224
5225 FOR_EACH_EDGE (e, ei, bb->succs)
5226 if (!bitmap_bit_p (visited_blocks, e->dest->index))
5227 {
5228 bitmap_set_bit (visited_blocks, e->dest->index);
5229 queue.safe_push (e->dest);
5230 }
5231 }
5232 while (!queue.is_empty ());
5233
5234 BITMAP_FREE (visited_blocks);
5235
5236 return need_ssa_rename;
5237 }
5238
5239 /* Transform the calls within the TM regions within NODE. */
5240
5241 static void
5242 ipa_tm_transform_transaction (struct cgraph_node *node)
5243 {
5244 struct tm_ipa_cg_data *d;
5245 struct tm_region *region;
5246 bool need_ssa_rename = false;
5247
5248 d = get_cg_data (&node, true);
5249
5250 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5251 calculate_dominance_info (CDI_DOMINATORS);
5252
5253 for (region = d->all_tm_regions; region; region = region->next)
5254 {
5255 /* If we're sure to go irrevocable, don't transform anything. */
5256 if (d->irrevocable_blocks_normal
5257 && bitmap_bit_p (d->irrevocable_blocks_normal,
5258 region->entry_block->index))
5259 {
5260 transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE
5261 | GTMA_MAY_ENTER_IRREVOCABLE
5262 | GTMA_HAS_NO_INSTRUMENTATION);
5263 continue;
5264 }
5265
5266 need_ssa_rename |=
5267 ipa_tm_transform_calls (node, region, region->entry_block,
5268 d->irrevocable_blocks_normal);
5269 }
5270
5271 if (need_ssa_rename)
5272 update_ssa (TODO_update_ssa_only_virtuals);
5273
5274 pop_cfun ();
5275 }
5276
5277 /* Transform the calls within the transactional clone of NODE. */
5278
5279 static void
5280 ipa_tm_transform_clone (struct cgraph_node *node)
5281 {
5282 struct tm_ipa_cg_data *d;
5283 bool need_ssa_rename;
5284
5285 d = get_cg_data (&node, true);
5286
5287 /* If this function makes no calls and has no irrevocable blocks,
5288 then there's nothing to do. */
5289 /* ??? Remove non-aborting top-level transactions. */
5290 if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone)
5291 return;
5292
5293 push_cfun (DECL_STRUCT_FUNCTION (d->clone->decl));
5294 calculate_dominance_info (CDI_DOMINATORS);
5295
5296 need_ssa_rename =
5297 ipa_tm_transform_calls (d->clone, NULL,
5298 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
5299 d->irrevocable_blocks_clone);
5300
5301 if (need_ssa_rename)
5302 update_ssa (TODO_update_ssa_only_virtuals);
5303
5304 pop_cfun ();
5305 }
5306
5307 /* Main entry point for the transactional memory IPA pass. */
5308
5309 static unsigned int
5310 ipa_tm_execute (void)
5311 {
5312 cgraph_node_queue tm_callees = cgraph_node_queue ();
5313 /* List of functions that will go irrevocable. */
5314 cgraph_node_queue irr_worklist = cgraph_node_queue ();
5315
5316 struct cgraph_node *node;
5317 struct tm_ipa_cg_data *d;
5318 enum availability a;
5319 unsigned int i;
5320
5321 #ifdef ENABLE_CHECKING
5322 verify_cgraph ();
5323 #endif
5324
5325 bitmap_obstack_initialize (&tm_obstack);
5326 initialize_original_copy_tables ();
5327
5328 /* For all local functions marked tm_callable, queue them. */
5329 FOR_EACH_DEFINED_FUNCTION (node)
5330 if (is_tm_callable (node->decl)
5331 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5332 {
5333 d = get_cg_data (&node, true);
5334 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5335 }
5336
5337 /* For all local reachable functions... */
5338 FOR_EACH_DEFINED_FUNCTION (node)
5339 if (node->lowered
5340 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5341 {
5342 /* ... marked tm_pure, record that fact for the runtime by
5343 indicating that the pure function is its own tm_callable.
5344 No need to do this if the function's address can't be taken. */
5345 if (is_tm_pure (node->decl))
5346 {
5347 if (!node->local.local)
5348 record_tm_clone_pair (node->decl, node->decl);
5349 continue;
5350 }
5351
5352 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5353 calculate_dominance_info (CDI_DOMINATORS);
5354
5355 tm_region_init (NULL);
5356 if (all_tm_regions)
5357 {
5358 d = get_cg_data (&node, true);
5359
5360 /* Scan for calls that are in each transaction, and
5361 generate the uninstrumented code path. */
5362 ipa_tm_scan_calls_transaction (d, &tm_callees);
5363
5364 /* Put it in the worklist so we can scan the function
5365 later (ipa_tm_scan_irr_function) and mark the
5366 irrevocable blocks. */
5367 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5368 d->want_irr_scan_normal = true;
5369 }
5370
5371 pop_cfun ();
5372 }
5373
5374 /* For every local function on the callee list, scan as if we will be
5375 creating a transactional clone, queueing all new functions we find
5376 along the way. */
5377 for (i = 0; i < tm_callees.length (); ++i)
5378 {
5379 node = tm_callees[i];
5380 a = cgraph_function_body_availability (node);
5381 d = get_cg_data (&node, true);
5382
5383 /* Put it in the worklist so we can scan the function later
5384 (ipa_tm_scan_irr_function) and mark the irrevocable
5385 blocks. */
5386 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5387
5388 /* Some callees cannot be arbitrarily cloned. These will always be
5389 irrevocable. Mark these now, so that we need not scan them. */
5390 if (is_tm_irrevocable (node->decl))
5391 ipa_tm_note_irrevocable (node, &irr_worklist);
5392 else if (a <= AVAIL_NOT_AVAILABLE
5393 && !is_tm_safe_or_pure (node->decl))
5394 ipa_tm_note_irrevocable (node, &irr_worklist);
5395 else if (a >= AVAIL_OVERWRITABLE)
5396 {
5397 if (!tree_versionable_function_p (node->decl))
5398 ipa_tm_note_irrevocable (node, &irr_worklist);
5399 else if (!d->is_irrevocable)
5400 {
5401 /* If this is an alias, make sure its base is queued as well.
5402 we need not scan the callees now, as the base will do. */
5403 if (node->alias)
5404 {
5405 node = cgraph_get_node (node->thunk.alias);
5406 d = get_cg_data (&node, true);
5407 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5408 continue;
5409 }
5410
5411 /* Add all nodes called by this function into
5412 tm_callees as well. */
5413 ipa_tm_scan_calls_clone (node, &tm_callees);
5414 }
5415 }
5416 }
5417
5418 /* Iterate scans until no more work to be done. Prefer not to use
5419 vec::pop because the worklist tends to follow a breadth-first
5420 search of the callgraph, which should allow convergance with a
5421 minimum number of scans. But we also don't want the worklist
5422 array to grow without bound, so we shift the array up periodically. */
5423 for (i = 0; i < irr_worklist.length (); ++i)
5424 {
5425 if (i > 256 && i == irr_worklist.length () / 8)
5426 {
5427 irr_worklist.block_remove (0, i);
5428 i = 0;
5429 }
5430
5431 node = irr_worklist[i];
5432 d = get_cg_data (&node, true);
5433 d->in_worklist = false;
5434
5435 if (d->want_irr_scan_normal)
5436 {
5437 d->want_irr_scan_normal = false;
5438 ipa_tm_scan_irr_function (node, false);
5439 }
5440 if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
5441 ipa_tm_note_irrevocable (node, &irr_worklist);
5442 }
5443
5444 /* For every function on the callee list, collect the tm_may_enter_irr
5445 bit on the node. */
5446 irr_worklist.truncate (0);
5447 for (i = 0; i < tm_callees.length (); ++i)
5448 {
5449 node = tm_callees[i];
5450 if (ipa_tm_mayenterirr_function (node))
5451 {
5452 d = get_cg_data (&node, true);
5453 gcc_assert (d->in_worklist == false);
5454 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5455 }
5456 }
5457
5458 /* Propagate the tm_may_enter_irr bit to callers until stable. */
5459 for (i = 0; i < irr_worklist.length (); ++i)
5460 {
5461 struct cgraph_node *caller;
5462 struct cgraph_edge *e;
5463 struct ipa_ref *ref;
5464 unsigned j;
5465
5466 if (i > 256 && i == irr_worklist.length () / 8)
5467 {
5468 irr_worklist.block_remove (0, i);
5469 i = 0;
5470 }
5471
5472 node = irr_worklist[i];
5473 d = get_cg_data (&node, true);
5474 d->in_worklist = false;
5475 node->local.tm_may_enter_irr = true;
5476
5477 /* Propagate back to normal callers. */
5478 for (e = node->callers; e ; e = e->next_caller)
5479 {
5480 caller = e->caller;
5481 if (!is_tm_safe_or_pure (caller->decl)
5482 && !caller->local.tm_may_enter_irr)
5483 {
5484 d = get_cg_data (&caller, true);
5485 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5486 }
5487 }
5488
5489 /* Propagate back to referring aliases as well. */
5490 for (j = 0; ipa_ref_list_referring_iterate (&node->ref_list, j, ref); j++)
5491 {
5492 caller = cgraph (ref->referring);
5493 if (ref->use == IPA_REF_ALIAS
5494 && !caller->local.tm_may_enter_irr)
5495 {
5496 /* ?? Do not traverse aliases here. */
5497 d = get_cg_data (&caller, false);
5498 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5499 }
5500 }
5501 }
5502
5503 /* Now validate all tm_safe functions, and all atomic regions in
5504 other functions. */
5505 FOR_EACH_DEFINED_FUNCTION (node)
5506 if (node->lowered
5507 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5508 {
5509 d = get_cg_data (&node, true);
5510 if (is_tm_safe (node->decl))
5511 ipa_tm_diagnose_tm_safe (node);
5512 else if (d->all_tm_regions)
5513 ipa_tm_diagnose_transaction (node, d->all_tm_regions);
5514 }
5515
5516 /* Create clones. Do those that are not irrevocable and have a
5517 positive call count. Do those publicly visible functions that
5518 the user directed us to clone. */
5519 for (i = 0; i < tm_callees.length (); ++i)
5520 {
5521 bool doit = false;
5522
5523 node = tm_callees[i];
5524 if (node->cpp_implicit_alias)
5525 continue;
5526
5527 a = cgraph_function_body_availability (node);
5528 d = get_cg_data (&node, true);
5529
5530 if (a <= AVAIL_NOT_AVAILABLE)
5531 doit = is_tm_callable (node->decl);
5532 else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
5533 doit = true;
5534 else if (!d->is_irrevocable
5535 && d->tm_callers_normal + d->tm_callers_clone > 0)
5536 doit = true;
5537
5538 if (doit)
5539 ipa_tm_create_version (node);
5540 }
5541
5542 /* Redirect calls to the new clones, and insert irrevocable marks. */
5543 for (i = 0; i < tm_callees.length (); ++i)
5544 {
5545 node = tm_callees[i];
5546 if (node->analyzed)
5547 {
5548 d = get_cg_data (&node, true);
5549 if (d->clone)
5550 ipa_tm_transform_clone (node);
5551 }
5552 }
5553 FOR_EACH_DEFINED_FUNCTION (node)
5554 if (node->lowered
5555 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5556 {
5557 d = get_cg_data (&node, true);
5558 if (d->all_tm_regions)
5559 ipa_tm_transform_transaction (node);
5560 }
5561
5562 /* Free and clear all data structures. */
5563 tm_callees.release ();
5564 irr_worklist.release ();
5565 bitmap_obstack_release (&tm_obstack);
5566 free_original_copy_tables ();
5567
5568 FOR_EACH_FUNCTION (node)
5569 node->aux = NULL;
5570
5571 #ifdef ENABLE_CHECKING
5572 verify_cgraph ();
5573 #endif
5574
5575 return 0;
5576 }
5577
5578 namespace {
5579
5580 const pass_data pass_data_ipa_tm =
5581 {
5582 SIMPLE_IPA_PASS, /* type */
5583 "tmipa", /* name */
5584 OPTGROUP_NONE, /* optinfo_flags */
5585 true, /* has_gate */
5586 true, /* has_execute */
5587 TV_TRANS_MEM, /* tv_id */
5588 ( PROP_ssa | PROP_cfg ), /* properties_required */
5589 0, /* properties_provided */
5590 0, /* properties_destroyed */
5591 0, /* todo_flags_start */
5592 0, /* todo_flags_finish */
5593 };
5594
5595 class pass_ipa_tm : public simple_ipa_opt_pass
5596 {
5597 public:
5598 pass_ipa_tm (gcc::context *ctxt)
5599 : simple_ipa_opt_pass (pass_data_ipa_tm, ctxt)
5600 {}
5601
5602 /* opt_pass methods: */
5603 bool gate () { return gate_tm (); }
5604 unsigned int execute () { return ipa_tm_execute (); }
5605
5606 }; // class pass_ipa_tm
5607
5608 } // anon namespace
5609
5610 simple_ipa_opt_pass *
5611 make_pass_ipa_tm (gcc::context *ctxt)
5612 {
5613 return new pass_ipa_tm (ctxt);
5614 }
5615
5616 #include "gt-trans-mem.h"