]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/trans-mem.c
Merge from transactional-memory branch.
[thirdparty/gcc.git] / gcc / trans-mem.c
1 /* Passes for transactional memory support.
2 Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tree.h"
24 #include "gimple.h"
25 #include "tree-flow.h"
26 #include "tree-pass.h"
27 #include "tree-inline.h"
28 #include "diagnostic-core.h"
29 #include "demangle.h"
30 #include "output.h"
31 #include "trans-mem.h"
32 #include "params.h"
33 #include "target.h"
34 #include "langhooks.h"
35 #include "tree-pretty-print.h"
36 #include "gimple-pretty-print.h"
37
38
39 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
40 #define PROB_ALWAYS (REG_BR_PROB_BASE)
41
42 #define A_RUNINSTRUMENTEDCODE 0x0001
43 #define A_RUNUNINSTRUMENTEDCODE 0x0002
44 #define A_SAVELIVEVARIABLES 0x0004
45 #define A_RESTORELIVEVARIABLES 0x0008
46 #define A_ABORTTRANSACTION 0x0010
47
48 #define AR_USERABORT 0x0001
49 #define AR_USERRETRY 0x0002
50 #define AR_TMCONFLICT 0x0004
51 #define AR_EXCEPTIONBLOCKABORT 0x0008
52 #define AR_OUTERABORT 0x0010
53
54 #define MODE_SERIALIRREVOCABLE 0x0000
55
56
57 /* The representation of a transaction changes several times during the
58 lowering process. In the beginning, in the front-end we have the
59 GENERIC tree TRANSACTION_EXPR. For example,
60
61 __transaction {
62 local++;
63 if (++global == 10)
64 __tm_abort;
65 }
66
67 During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
68 trivially replaced with a GIMPLE_TRANSACTION node.
69
70 During pass_lower_tm, we examine the body of transactions looking
71 for aborts. Transactions that do not contain an abort may be
72 merged into an outer transaction. We also add a TRY-FINALLY node
73 to arrange for the transaction to be committed on any exit.
74
75 [??? Think about how this arrangement affects throw-with-commit
76 and throw-with-abort operations. In this case we want the TRY to
77 handle gotos, but not to catch any exceptions because the transaction
78 will already be closed.]
79
80 GIMPLE_TRANSACTION [label=NULL] {
81 try {
82 local = local + 1;
83 t0 = global;
84 t1 = t0 + 1;
85 global = t1;
86 if (t1 == 10)
87 __builtin___tm_abort ();
88 } finally {
89 __builtin___tm_commit ();
90 }
91 }
92
93 During pass_lower_eh, we create EH regions for the transactions,
94 intermixed with the regular EH stuff. This gives us a nice persistent
95 mapping (all the way through rtl) from transactional memory operation
96 back to the transaction, which allows us to get the abnormal edges
97 correct to model transaction aborts and restarts:
98
99 GIMPLE_TRANSACTION [label=over]
100 local = local + 1;
101 t0 = global;
102 t1 = t0 + 1;
103 global = t1;
104 if (t1 == 10)
105 __builtin___tm_abort ();
106 __builtin___tm_commit ();
107 over:
108
109 This is the end of all_lowering_passes, and so is what is present
110 during the IPA passes, and through all of the optimization passes.
111
112 During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
113 functions and mark functions for cloning.
114
115 At the end of gimple optimization, before exiting SSA form,
116 pass_tm_edges replaces statements that perform transactional
117 memory operations with the appropriate TM builtins, and swap
118 out function calls with their transactional clones. At this
119 point we introduce the abnormal transaction restart edges and
120 complete lowering of the GIMPLE_TRANSACTION node.
121
122 x = __builtin___tm_start (MAY_ABORT);
123 eh_label:
124 if (x & abort_transaction)
125 goto over;
126 local = local + 1;
127 t0 = __builtin___tm_load (global);
128 t1 = t0 + 1;
129 __builtin___tm_store (&global, t1);
130 if (t1 == 10)
131 __builtin___tm_abort ();
132 __builtin___tm_commit ();
133 over:
134 */
135
136 \f
137 /* Return the attributes we want to examine for X, or NULL if it's not
138 something we examine. We look at function types, but allow pointers
139 to function types and function decls and peek through. */
140
141 static tree
142 get_attrs_for (const_tree x)
143 {
144 switch (TREE_CODE (x))
145 {
146 case FUNCTION_DECL:
147 return TYPE_ATTRIBUTES (TREE_TYPE (x));
148 break;
149
150 default:
151 if (TYPE_P (x))
152 return NULL;
153 x = TREE_TYPE (x);
154 if (TREE_CODE (x) != POINTER_TYPE)
155 return NULL;
156 /* FALLTHRU */
157
158 case POINTER_TYPE:
159 x = TREE_TYPE (x);
160 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
161 return NULL;
162 /* FALLTHRU */
163
164 case FUNCTION_TYPE:
165 case METHOD_TYPE:
166 return TYPE_ATTRIBUTES (x);
167 }
168 }
169
170 /* Return true if X has been marked TM_PURE. */
171
172 bool
173 is_tm_pure (const_tree x)
174 {
175 unsigned flags;
176
177 switch (TREE_CODE (x))
178 {
179 case FUNCTION_DECL:
180 case FUNCTION_TYPE:
181 case METHOD_TYPE:
182 break;
183
184 default:
185 if (TYPE_P (x))
186 return false;
187 x = TREE_TYPE (x);
188 if (TREE_CODE (x) != POINTER_TYPE)
189 return false;
190 /* FALLTHRU */
191
192 case POINTER_TYPE:
193 x = TREE_TYPE (x);
194 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
195 return false;
196 break;
197 }
198
199 flags = flags_from_decl_or_type (x);
200 return (flags & ECF_TM_PURE) != 0;
201 }
202
203 /* Return true if X has been marked TM_IRREVOCABLE. */
204
205 static bool
206 is_tm_irrevocable (tree x)
207 {
208 tree attrs = get_attrs_for (x);
209
210 if (attrs && lookup_attribute ("transaction_unsafe", attrs))
211 return true;
212
213 /* A call to the irrevocable builtin is by definition,
214 irrevocable. */
215 if (TREE_CODE (x) == ADDR_EXPR)
216 x = TREE_OPERAND (x, 0);
217 if (TREE_CODE (x) == FUNCTION_DECL
218 && DECL_BUILT_IN_CLASS (x) == BUILT_IN_NORMAL
219 && DECL_FUNCTION_CODE (x) == BUILT_IN_TM_IRREVOCABLE)
220 return true;
221
222 return false;
223 }
224
225 /* Return true if X has been marked TM_SAFE. */
226
227 bool
228 is_tm_safe (const_tree x)
229 {
230 if (flag_tm)
231 {
232 tree attrs = get_attrs_for (x);
233 if (attrs)
234 {
235 if (lookup_attribute ("transaction_safe", attrs))
236 return true;
237 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
238 return true;
239 }
240 }
241 return false;
242 }
243
244 /* Return true if CALL is const, or tm_pure. */
245
246 static bool
247 is_tm_pure_call (gimple call)
248 {
249 tree fn = gimple_call_fn (call);
250
251 if (TREE_CODE (fn) == ADDR_EXPR)
252 {
253 fn = TREE_OPERAND (fn, 0);
254 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
255 }
256 else
257 fn = TREE_TYPE (fn);
258
259 return is_tm_pure (fn);
260 }
261
262 /* Return true if X has been marked TM_CALLABLE. */
263
264 static bool
265 is_tm_callable (tree x)
266 {
267 tree attrs = get_attrs_for (x);
268 if (attrs)
269 {
270 if (lookup_attribute ("transaction_callable", attrs))
271 return true;
272 if (lookup_attribute ("transaction_safe", attrs))
273 return true;
274 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
275 return true;
276 }
277 return false;
278 }
279
280 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
281
282 bool
283 is_tm_may_cancel_outer (tree x)
284 {
285 tree attrs = get_attrs_for (x);
286 if (attrs)
287 return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
288 return false;
289 }
290
291 /* Return true for built in functions that "end" a transaction. */
292
293 bool
294 is_tm_ending_fndecl (tree fndecl)
295 {
296 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
297 switch (DECL_FUNCTION_CODE (fndecl))
298 {
299 case BUILT_IN_TM_COMMIT:
300 case BUILT_IN_TM_COMMIT_EH:
301 case BUILT_IN_TM_ABORT:
302 case BUILT_IN_TM_IRREVOCABLE:
303 return true;
304 default:
305 break;
306 }
307
308 return false;
309 }
310
311 /* Return true if STMT is a TM load. */
312
313 static bool
314 is_tm_load (gimple stmt)
315 {
316 tree fndecl;
317
318 if (gimple_code (stmt) != GIMPLE_CALL)
319 return false;
320
321 fndecl = gimple_call_fndecl (stmt);
322 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
323 && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
324 }
325
326 /* Same as above, but for simple TM loads, that is, not the
327 after-write, after-read, etc optimized variants. */
328
329 static bool
330 is_tm_simple_load (gimple stmt)
331 {
332 tree fndecl;
333
334 if (gimple_code (stmt) != GIMPLE_CALL)
335 return false;
336
337 fndecl = gimple_call_fndecl (stmt);
338 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
339 {
340 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
341 return (fcode == BUILT_IN_TM_LOAD_1
342 || fcode == BUILT_IN_TM_LOAD_2
343 || fcode == BUILT_IN_TM_LOAD_4
344 || fcode == BUILT_IN_TM_LOAD_8
345 || fcode == BUILT_IN_TM_LOAD_FLOAT
346 || fcode == BUILT_IN_TM_LOAD_DOUBLE
347 || fcode == BUILT_IN_TM_LOAD_LDOUBLE
348 || fcode == BUILT_IN_TM_LOAD_M64
349 || fcode == BUILT_IN_TM_LOAD_M128
350 || fcode == BUILT_IN_TM_LOAD_M256);
351 }
352 return false;
353 }
354
355 /* Return true if STMT is a TM store. */
356
357 static bool
358 is_tm_store (gimple stmt)
359 {
360 tree fndecl;
361
362 if (gimple_code (stmt) != GIMPLE_CALL)
363 return false;
364
365 fndecl = gimple_call_fndecl (stmt);
366 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
367 && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
368 }
369
370 /* Same as above, but for simple TM stores, that is, not the
371 after-write, after-read, etc optimized variants. */
372
373 static bool
374 is_tm_simple_store (gimple stmt)
375 {
376 tree fndecl;
377
378 if (gimple_code (stmt) != GIMPLE_CALL)
379 return false;
380
381 fndecl = gimple_call_fndecl (stmt);
382 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
383 {
384 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
385 return (fcode == BUILT_IN_TM_STORE_1
386 || fcode == BUILT_IN_TM_STORE_2
387 || fcode == BUILT_IN_TM_STORE_4
388 || fcode == BUILT_IN_TM_STORE_8
389 || fcode == BUILT_IN_TM_STORE_FLOAT
390 || fcode == BUILT_IN_TM_STORE_DOUBLE
391 || fcode == BUILT_IN_TM_STORE_LDOUBLE
392 || fcode == BUILT_IN_TM_STORE_M64
393 || fcode == BUILT_IN_TM_STORE_M128
394 || fcode == BUILT_IN_TM_STORE_M256);
395 }
396 return false;
397 }
398
399 /* Return true if FNDECL is BUILT_IN_TM_ABORT. */
400
401 static bool
402 is_tm_abort (tree fndecl)
403 {
404 return (fndecl
405 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
406 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_TM_ABORT);
407 }
408
409 /* Build a GENERIC tree for a user abort. This is called by front ends
410 while transforming the __tm_abort statement. */
411
412 tree
413 build_tm_abort_call (location_t loc, bool is_outer)
414 {
415 return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
416 build_int_cst (integer_type_node,
417 AR_USERABORT
418 | (is_outer ? AR_OUTERABORT : 0)));
419 }
420
421 /* Common gateing function for several of the TM passes. */
422
423 static bool
424 gate_tm (void)
425 {
426 return flag_tm;
427 }
428 \f
429 /* Map for aribtrary function replacement under TM, as created
430 by the tm_wrap attribute. */
431
432 static GTY((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
433 htab_t tm_wrap_map;
434
435 void
436 record_tm_replacement (tree from, tree to)
437 {
438 struct tree_map **slot, *h;
439
440 /* Do not inline wrapper functions that will get replaced in the TM
441 pass.
442
443 Suppose you have foo() that will get replaced into tmfoo(). Make
444 sure the inliner doesn't try to outsmart us and inline foo()
445 before we get a chance to do the TM replacement. */
446 DECL_UNINLINABLE (from) = 1;
447
448 if (tm_wrap_map == NULL)
449 tm_wrap_map = htab_create_ggc (32, tree_map_hash, tree_map_eq, 0);
450
451 h = ggc_alloc_tree_map ();
452 h->hash = htab_hash_pointer (from);
453 h->base.from = from;
454 h->to = to;
455
456 slot = (struct tree_map **)
457 htab_find_slot_with_hash (tm_wrap_map, h, h->hash, INSERT);
458 *slot = h;
459 }
460
461 /* Return a TM-aware replacement function for DECL. */
462
463 static tree
464 find_tm_replacement_function (tree fndecl)
465 {
466 if (tm_wrap_map)
467 {
468 struct tree_map *h, in;
469
470 in.base.from = fndecl;
471 in.hash = htab_hash_pointer (fndecl);
472 h = (struct tree_map *) htab_find_with_hash (tm_wrap_map, &in, in.hash);
473 if (h)
474 return h->to;
475 }
476
477 /* ??? We may well want TM versions of most of the common <string.h>
478 functions. For now, we've already these two defined. */
479 /* Adjust expand_call_tm() attributes as necessary for the cases
480 handled here: */
481 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
482 switch (DECL_FUNCTION_CODE (fndecl))
483 {
484 case BUILT_IN_MEMCPY:
485 return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
486 case BUILT_IN_MEMMOVE:
487 return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
488 case BUILT_IN_MEMSET:
489 return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
490 default:
491 return NULL;
492 }
493
494 return NULL;
495 }
496
497 /* When appropriate, record TM replacement for memory allocation functions.
498
499 FROM is the FNDECL to wrap. */
500 void
501 tm_malloc_replacement (tree from)
502 {
503 const char *str;
504 tree to;
505
506 if (TREE_CODE (from) != FUNCTION_DECL)
507 return;
508
509 /* If we have a previous replacement, the user must be explicitly
510 wrapping malloc/calloc/free. They better know what they're
511 doing... */
512 if (find_tm_replacement_function (from))
513 return;
514
515 str = IDENTIFIER_POINTER (DECL_NAME (from));
516
517 if (!strcmp (str, "malloc"))
518 to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
519 else if (!strcmp (str, "calloc"))
520 to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
521 else if (!strcmp (str, "free"))
522 to = builtin_decl_explicit (BUILT_IN_TM_FREE);
523 else
524 return;
525
526 TREE_NOTHROW (to) = 0;
527
528 record_tm_replacement (from, to);
529 }
530 \f
531 /* Diagnostics for tm_safe functions/regions. Called by the front end
532 once we've lowered the function to high-gimple. */
533
534 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
535 Process exactly one statement. WI->INFO is set to non-null when in
536 the context of a tm_safe function, and null for a __transaction block. */
537
538 #define DIAG_TM_OUTER 1
539 #define DIAG_TM_SAFE 2
540 #define DIAG_TM_RELAXED 4
541
542 struct diagnose_tm
543 {
544 unsigned int summary_flags : 8;
545 unsigned int block_flags : 8;
546 unsigned int func_flags : 8;
547 unsigned int saw_unsafe : 1;
548 unsigned int saw_volatile : 1;
549 gimple stmt;
550 };
551
552 /* Tree callback function for diagnose_tm pass. */
553
554 static tree
555 diagnose_tm_1_op (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
556 void *data)
557 {
558 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
559 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
560 enum tree_code code = TREE_CODE (*tp);
561
562 if ((code == VAR_DECL
563 || code == RESULT_DECL
564 || code == PARM_DECL)
565 && d->block_flags & (DIAG_TM_SAFE | DIAG_TM_RELAXED)
566 && TREE_THIS_VOLATILE (TREE_TYPE (*tp))
567 && !d->saw_volatile)
568 {
569 d->saw_volatile = 1;
570 error_at (gimple_location (d->stmt),
571 "invalid volatile use of %qD inside transaction",
572 *tp);
573 }
574
575 return NULL_TREE;
576 }
577
578 static tree
579 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
580 struct walk_stmt_info *wi)
581 {
582 gimple stmt = gsi_stmt (*gsi);
583 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
584
585 /* Save stmt for use in leaf analysis. */
586 d->stmt = stmt;
587
588 switch (gimple_code (stmt))
589 {
590 case GIMPLE_CALL:
591 {
592 tree fn = gimple_call_fn (stmt);
593
594 if ((d->summary_flags & DIAG_TM_OUTER) == 0
595 && is_tm_may_cancel_outer (fn))
596 error_at (gimple_location (stmt),
597 "%<transaction_may_cancel_outer%> function call not within"
598 " outer transaction or %<transaction_may_cancel_outer%>");
599
600 if (d->summary_flags & DIAG_TM_SAFE)
601 {
602 bool is_safe, direct_call_p;
603 tree replacement;
604
605 if (TREE_CODE (fn) == ADDR_EXPR
606 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
607 {
608 direct_call_p = true;
609 replacement = TREE_OPERAND (fn, 0);
610 replacement = find_tm_replacement_function (replacement);
611 if (replacement)
612 fn = replacement;
613 }
614 else
615 {
616 direct_call_p = false;
617 replacement = NULL_TREE;
618 }
619
620 if (is_tm_safe_or_pure (fn))
621 is_safe = true;
622 else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
623 {
624 /* A function explicitly marked transaction_callable as
625 opposed to transaction_safe is being defined to be
626 unsafe as part of its ABI, regardless of its contents. */
627 is_safe = false;
628 }
629 else if (direct_call_p)
630 {
631 if (flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
632 is_safe = true;
633 else if (replacement)
634 {
635 /* ??? At present we've been considering replacements
636 merely transaction_callable, and therefore might
637 enter irrevocable. The tm_wrap attribute has not
638 yet made it into the new language spec. */
639 is_safe = false;
640 }
641 else
642 {
643 /* ??? Diagnostics for unmarked direct calls moved into
644 the IPA pass. Section 3.2 of the spec details how
645 functions not marked should be considered "implicitly
646 safe" based on having examined the function body. */
647 is_safe = true;
648 }
649 }
650 else
651 {
652 /* An unmarked indirect call. Consider it unsafe even
653 though optimization may yet figure out how to inline. */
654 is_safe = false;
655 }
656
657 if (!is_safe)
658 {
659 if (TREE_CODE (fn) == ADDR_EXPR)
660 fn = TREE_OPERAND (fn, 0);
661 if (d->block_flags & DIAG_TM_SAFE)
662 error_at (gimple_location (stmt),
663 "unsafe function call %qD within "
664 "atomic transaction", fn);
665 else
666 error_at (gimple_location (stmt),
667 "unsafe function call %qD within "
668 "%<transaction_safe%> function", fn);
669 }
670 }
671 }
672 break;
673
674 case GIMPLE_ASM:
675 /* ??? We ought to come up with a way to add attributes to
676 asm statements, and then add "transaction_safe" to it.
677 Either that or get the language spec to resurrect __tm_waiver. */
678 if (d->block_flags & DIAG_TM_SAFE)
679 error_at (gimple_location (stmt),
680 "asm not allowed in atomic transaction");
681 else if (d->func_flags & DIAG_TM_SAFE)
682 error_at (gimple_location (stmt),
683 "asm not allowed in %<transaction_safe%> function");
684 else
685 d->saw_unsafe = true;
686 break;
687
688 case GIMPLE_TRANSACTION:
689 {
690 unsigned char inner_flags = DIAG_TM_SAFE;
691
692 if (gimple_transaction_subcode (stmt) & GTMA_IS_RELAXED)
693 {
694 if (d->block_flags & DIAG_TM_SAFE)
695 error_at (gimple_location (stmt),
696 "relaxed transaction in atomic transaction");
697 else if (d->func_flags & DIAG_TM_SAFE)
698 error_at (gimple_location (stmt),
699 "relaxed transaction in %<transaction_safe%> function");
700 else
701 d->saw_unsafe = true;
702 inner_flags = DIAG_TM_RELAXED;
703 }
704 else if (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER)
705 {
706 if (d->block_flags)
707 error_at (gimple_location (stmt),
708 "outer transaction in transaction");
709 else if (d->func_flags & DIAG_TM_OUTER)
710 error_at (gimple_location (stmt),
711 "outer transaction in "
712 "%<transaction_may_cancel_outer%> function");
713 else if (d->func_flags & DIAG_TM_SAFE)
714 error_at (gimple_location (stmt),
715 "outer transaction in %<transaction_safe%> function");
716 else
717 d->saw_unsafe = true;
718 inner_flags |= DIAG_TM_OUTER;
719 }
720
721 *handled_ops_p = true;
722 if (gimple_transaction_body (stmt))
723 {
724 struct walk_stmt_info wi_inner;
725 struct diagnose_tm d_inner;
726
727 memset (&d_inner, 0, sizeof (d_inner));
728 d_inner.func_flags = d->func_flags;
729 d_inner.block_flags = d->block_flags | inner_flags;
730 d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
731
732 memset (&wi_inner, 0, sizeof (wi_inner));
733 wi_inner.info = &d_inner;
734
735 walk_gimple_seq (gimple_transaction_body (stmt),
736 diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
737
738 d->saw_unsafe |= d_inner.saw_unsafe;
739 }
740 }
741 break;
742
743 default:
744 break;
745 }
746
747 return NULL_TREE;
748 }
749
750 static unsigned int
751 diagnose_tm_blocks (void)
752 {
753 struct walk_stmt_info wi;
754 struct diagnose_tm d;
755
756 memset (&d, 0, sizeof (d));
757 if (is_tm_may_cancel_outer (current_function_decl))
758 d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
759 else if (is_tm_safe (current_function_decl))
760 d.func_flags = DIAG_TM_SAFE;
761 d.summary_flags = d.func_flags;
762
763 memset (&wi, 0, sizeof (wi));
764 wi.info = &d;
765
766 walk_gimple_seq (gimple_body (current_function_decl),
767 diagnose_tm_1, diagnose_tm_1_op, &wi);
768
769 /* If we saw something other than a call that makes this function
770 unsafe, remember it so that the IPA pass only needs to scan calls. */
771 if (d.saw_unsafe && !is_tm_safe_or_pure (current_function_decl))
772 cgraph_local_info (current_function_decl)->tm_may_enter_irr = 1;
773
774 return 0;
775 }
776
777 struct gimple_opt_pass pass_diagnose_tm_blocks =
778 {
779 {
780 GIMPLE_PASS,
781 "*diagnose_tm_blocks", /* name */
782 gate_tm, /* gate */
783 diagnose_tm_blocks, /* execute */
784 NULL, /* sub */
785 NULL, /* next */
786 0, /* static_pass_number */
787 TV_TRANS_MEM, /* tv_id */
788 PROP_gimple_any, /* properties_required */
789 0, /* properties_provided */
790 0, /* properties_destroyed */
791 0, /* todo_flags_start */
792 0, /* todo_flags_finish */
793 }
794 };
795 \f
796 /* Instead of instrumenting thread private memory, we save the
797 addresses in a log which we later use to save/restore the addresses
798 upon transaction start/restart.
799
800 The log is keyed by address, where each element contains individual
801 statements among different code paths that perform the store.
802
803 This log is later used to generate either plain save/restore of the
804 addresses upon transaction start/restart, or calls to the ITM_L*
805 logging functions.
806
807 So for something like:
808
809 struct large { int x[1000]; };
810 struct large lala = { 0 };
811 __transaction {
812 lala.x[i] = 123;
813 ...
814 }
815
816 We can either save/restore:
817
818 lala = { 0 };
819 trxn = _ITM_startTransaction ();
820 if (trxn & a_saveLiveVariables)
821 tmp_lala1 = lala.x[i];
822 else if (a & a_restoreLiveVariables)
823 lala.x[i] = tmp_lala1;
824
825 or use the logging functions:
826
827 lala = { 0 };
828 trxn = _ITM_startTransaction ();
829 _ITM_LU4 (&lala.x[i]);
830
831 Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
832 far up the dominator tree to shadow all of the writes to a given
833 location (thus reducing the total number of logging calls), but not
834 so high as to be called on a path that does not perform a
835 write. */
836
837 /* One individual log entry. We may have multiple statements for the
838 same location if neither dominate each other (on different
839 execution paths). */
840 typedef struct tm_log_entry
841 {
842 /* Address to save. */
843 tree addr;
844 /* Entry block for the transaction this address occurs in. */
845 basic_block entry_block;
846 /* Dominating statements the store occurs in. */
847 gimple_vec stmts;
848 /* Initially, while we are building the log, we place a nonzero
849 value here to mean that this address *will* be saved with a
850 save/restore sequence. Later, when generating the save sequence
851 we place the SSA temp generated here. */
852 tree save_var;
853 } *tm_log_entry_t;
854
855 /* The actual log. */
856 static htab_t tm_log;
857
858 /* Addresses to log with a save/restore sequence. These should be in
859 dominator order. */
860 static VEC(tree,heap) *tm_log_save_addresses;
861
862 /* Map for an SSA_NAME originally pointing to a non aliased new piece
863 of memory (malloc, alloc, etc). */
864 static htab_t tm_new_mem_hash;
865
866 enum thread_memory_type
867 {
868 mem_non_local = 0,
869 mem_thread_local,
870 mem_transaction_local,
871 mem_max
872 };
873
874 typedef struct tm_new_mem_map
875 {
876 /* SSA_NAME being dereferenced. */
877 tree val;
878 enum thread_memory_type local_new_memory;
879 } tm_new_mem_map_t;
880
881 /* Htab support. Return hash value for a `tm_log_entry'. */
882 static hashval_t
883 tm_log_hash (const void *p)
884 {
885 const struct tm_log_entry *log = (const struct tm_log_entry *) p;
886 return iterative_hash_expr (log->addr, 0);
887 }
888
889 /* Htab support. Return true if two log entries are the same. */
890 static int
891 tm_log_eq (const void *p1, const void *p2)
892 {
893 const struct tm_log_entry *log1 = (const struct tm_log_entry *) p1;
894 const struct tm_log_entry *log2 = (const struct tm_log_entry *) p2;
895
896 /* FIXME:
897
898 rth: I suggest that we get rid of the component refs etc.
899 I.e. resolve the reference to base + offset.
900
901 We may need to actually finish a merge with mainline for this,
902 since we'd like to be presented with Richi's MEM_REF_EXPRs more
903 often than not. But in the meantime your tm_log_entry could save
904 the results of get_inner_reference.
905
906 See: g++.dg/tm/pr46653.C
907 */
908
909 /* Special case plain equality because operand_equal_p() below will
910 return FALSE if the addresses are equal but they have
911 side-effects (e.g. a volatile address). */
912 if (log1->addr == log2->addr)
913 return true;
914
915 return operand_equal_p (log1->addr, log2->addr, 0);
916 }
917
918 /* Htab support. Free one tm_log_entry. */
919 static void
920 tm_log_free (void *p)
921 {
922 struct tm_log_entry *lp = (struct tm_log_entry *) p;
923 VEC_free (gimple, heap, lp->stmts);
924 free (lp);
925 }
926
927 /* Initialize logging data structures. */
928 static void
929 tm_log_init (void)
930 {
931 tm_log = htab_create (10, tm_log_hash, tm_log_eq, tm_log_free);
932 tm_new_mem_hash = htab_create (5, struct_ptr_hash, struct_ptr_eq, free);
933 tm_log_save_addresses = VEC_alloc (tree, heap, 5);
934 }
935
936 /* Free logging data structures. */
937 static void
938 tm_log_delete (void)
939 {
940 htab_delete (tm_log);
941 htab_delete (tm_new_mem_hash);
942 VEC_free (tree, heap, tm_log_save_addresses);
943 }
944
945 /* Return true if MEM is a transaction invariant memory for the TM
946 region starting at REGION_ENTRY_BLOCK. */
947 static bool
948 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
949 {
950 if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
951 && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
952 {
953 basic_block def_bb;
954
955 def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
956 return def_bb != region_entry_block
957 && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
958 }
959
960 mem = strip_invariant_refs (mem);
961 return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
962 }
963
964 /* Given an address ADDR in STMT, find it in the memory log or add it,
965 making sure to keep only the addresses highest in the dominator
966 tree.
967
968 ENTRY_BLOCK is the entry_block for the transaction.
969
970 If we find the address in the log, make sure it's either the same
971 address, or an equivalent one that dominates ADDR.
972
973 If we find the address, but neither ADDR dominates the found
974 address, nor the found one dominates ADDR, we're on different
975 execution paths. Add it.
976
977 If known, ENTRY_BLOCK is the entry block for the region, otherwise
978 NULL. */
979 static void
980 tm_log_add (basic_block entry_block, tree addr, gimple stmt)
981 {
982 void **slot;
983 struct tm_log_entry l, *lp;
984
985 l.addr = addr;
986 slot = htab_find_slot (tm_log, &l, INSERT);
987 if (!*slot)
988 {
989 tree type = TREE_TYPE (addr);
990
991 lp = XNEW (struct tm_log_entry);
992 lp->addr = addr;
993 *slot = lp;
994
995 /* Small invariant addresses can be handled as save/restores. */
996 if (entry_block
997 && transaction_invariant_address_p (lp->addr, entry_block)
998 && TYPE_SIZE_UNIT (type) != NULL
999 && host_integerp (TYPE_SIZE_UNIT (type), 1)
1000 && (tree_low_cst (TYPE_SIZE_UNIT (type), 1)
1001 < PARAM_VALUE (PARAM_TM_MAX_AGGREGATE_SIZE))
1002 /* We must be able to copy this type normally. I.e., no
1003 special constructors and the like. */
1004 && !TREE_ADDRESSABLE (type))
1005 {
1006 lp->save_var = create_tmp_var (TREE_TYPE (lp->addr), "tm_save");
1007 add_referenced_var (lp->save_var);
1008 lp->stmts = NULL;
1009 lp->entry_block = entry_block;
1010 /* Save addresses separately in dominator order so we don't
1011 get confused by overlapping addresses in the save/restore
1012 sequence. */
1013 VEC_safe_push (tree, heap, tm_log_save_addresses, lp->addr);
1014 }
1015 else
1016 {
1017 /* Use the logging functions. */
1018 lp->stmts = VEC_alloc (gimple, heap, 5);
1019 VEC_quick_push (gimple, lp->stmts, stmt);
1020 lp->save_var = NULL;
1021 }
1022 }
1023 else
1024 {
1025 size_t i;
1026 gimple oldstmt;
1027
1028 lp = (struct tm_log_entry *) *slot;
1029
1030 /* If we're generating a save/restore sequence, we don't care
1031 about statements. */
1032 if (lp->save_var)
1033 return;
1034
1035 for (i = 0; VEC_iterate (gimple, lp->stmts, i, oldstmt); ++i)
1036 {
1037 if (stmt == oldstmt)
1038 return;
1039 /* We already have a store to the same address, higher up the
1040 dominator tree. Nothing to do. */
1041 if (dominated_by_p (CDI_DOMINATORS,
1042 gimple_bb (stmt), gimple_bb (oldstmt)))
1043 return;
1044 /* We should be processing blocks in dominator tree order. */
1045 gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1046 gimple_bb (oldstmt), gimple_bb (stmt)));
1047 }
1048 /* Store is on a different code path. */
1049 VEC_safe_push (gimple, heap, lp->stmts, stmt);
1050 }
1051 }
1052
1053 /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
1054 result, insert the new statements before GSI. */
1055
1056 static tree
1057 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1058 {
1059 if (TREE_CODE (x) == TARGET_MEM_REF)
1060 x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1061 else
1062 x = build_fold_addr_expr (x);
1063 return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1064 }
1065
1066 /* Instrument one address with the logging functions.
1067 ADDR is the address to save.
1068 STMT is the statement before which to place it. */
1069 static void
1070 tm_log_emit_stmt (tree addr, gimple stmt)
1071 {
1072 tree type = TREE_TYPE (addr);
1073 tree size = TYPE_SIZE_UNIT (type);
1074 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1075 gimple log;
1076 enum built_in_function code = BUILT_IN_TM_LOG;
1077
1078 if (type == float_type_node)
1079 code = BUILT_IN_TM_LOG_FLOAT;
1080 else if (type == double_type_node)
1081 code = BUILT_IN_TM_LOG_DOUBLE;
1082 else if (type == long_double_type_node)
1083 code = BUILT_IN_TM_LOG_LDOUBLE;
1084 else if (host_integerp (size, 1))
1085 {
1086 unsigned int n = tree_low_cst (size, 1);
1087 switch (n)
1088 {
1089 case 1:
1090 code = BUILT_IN_TM_LOG_1;
1091 break;
1092 case 2:
1093 code = BUILT_IN_TM_LOG_2;
1094 break;
1095 case 4:
1096 code = BUILT_IN_TM_LOG_4;
1097 break;
1098 case 8:
1099 code = BUILT_IN_TM_LOG_8;
1100 break;
1101 default:
1102 code = BUILT_IN_TM_LOG;
1103 if (TREE_CODE (type) == VECTOR_TYPE)
1104 {
1105 if (n == 8 && builtin_decl_explicit (BUILT_IN_TM_LOG_M64))
1106 code = BUILT_IN_TM_LOG_M64;
1107 else if (n == 16 && builtin_decl_explicit (BUILT_IN_TM_LOG_M128))
1108 code = BUILT_IN_TM_LOG_M128;
1109 else if (n == 32 && builtin_decl_explicit (BUILT_IN_TM_LOG_M256))
1110 code = BUILT_IN_TM_LOG_M256;
1111 }
1112 break;
1113 }
1114 }
1115
1116 addr = gimplify_addr (&gsi, addr);
1117 if (code == BUILT_IN_TM_LOG)
1118 log = gimple_build_call (builtin_decl_explicit (code), 2, addr, size);
1119 else
1120 log = gimple_build_call (builtin_decl_explicit (code), 1, addr);
1121 gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1122 }
1123
1124 /* Go through the log and instrument address that must be instrumented
1125 with the logging functions. Leave the save/restore addresses for
1126 later. */
1127 static void
1128 tm_log_emit (void)
1129 {
1130 htab_iterator hi;
1131 struct tm_log_entry *lp;
1132
1133 FOR_EACH_HTAB_ELEMENT (tm_log, lp, tm_log_entry_t, hi)
1134 {
1135 size_t i;
1136 gimple stmt;
1137
1138 if (dump_file)
1139 {
1140 fprintf (dump_file, "TM thread private mem logging: ");
1141 print_generic_expr (dump_file, lp->addr, 0);
1142 fprintf (dump_file, "\n");
1143 }
1144
1145 if (lp->save_var)
1146 {
1147 if (dump_file)
1148 fprintf (dump_file, "DUMPING to variable\n");
1149 continue;
1150 }
1151 else
1152 {
1153 if (dump_file)
1154 fprintf (dump_file, "DUMPING with logging functions\n");
1155 for (i = 0; VEC_iterate (gimple, lp->stmts, i, stmt); ++i)
1156 tm_log_emit_stmt (lp->addr, stmt);
1157 }
1158 }
1159 }
1160
1161 /* Emit the save sequence for the corresponding addresses in the log.
1162 ENTRY_BLOCK is the entry block for the transaction.
1163 BB is the basic block to insert the code in. */
1164 static void
1165 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1166 {
1167 size_t i;
1168 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1169 gimple stmt;
1170 struct tm_log_entry l, *lp;
1171
1172 for (i = 0; i < VEC_length (tree, tm_log_save_addresses); ++i)
1173 {
1174 l.addr = VEC_index (tree, tm_log_save_addresses, i);
1175 lp = (struct tm_log_entry *) *htab_find_slot (tm_log, &l, NO_INSERT);
1176 gcc_assert (lp->save_var != NULL);
1177
1178 /* We only care about variables in the current transaction. */
1179 if (lp->entry_block != entry_block)
1180 continue;
1181
1182 stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1183
1184 /* Make sure we can create an SSA_NAME for this type. For
1185 instance, aggregates aren't allowed, in which case the system
1186 will create a VOP for us and everything will just work. */
1187 if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1188 {
1189 lp->save_var = make_ssa_name (lp->save_var, stmt);
1190 gimple_assign_set_lhs (stmt, lp->save_var);
1191 }
1192
1193 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1194 }
1195 }
1196
1197 /* Emit the restore sequence for the corresponding addresses in the log.
1198 ENTRY_BLOCK is the entry block for the transaction.
1199 BB is the basic block to insert the code in. */
1200 static void
1201 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1202 {
1203 int i;
1204 struct tm_log_entry l, *lp;
1205 gimple_stmt_iterator gsi;
1206 gimple stmt;
1207
1208 for (i = VEC_length (tree, tm_log_save_addresses) - 1; i >= 0; i--)
1209 {
1210 l.addr = VEC_index (tree, tm_log_save_addresses, i);
1211 lp = (struct tm_log_entry *) *htab_find_slot (tm_log, &l, NO_INSERT);
1212 gcc_assert (lp->save_var != NULL);
1213
1214 /* We only care about variables in the current transaction. */
1215 if (lp->entry_block != entry_block)
1216 continue;
1217
1218 /* Restores are in LIFO order from the saves in case we have
1219 overlaps. */
1220 gsi = gsi_start_bb (bb);
1221
1222 stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1223 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1224 }
1225 }
1226
1227 /* Emit the checks for performing either a save or a restore sequence.
1228
1229 TRXN_PROP is either A_SAVELIVEVARIABLES or A_RESTORELIVEVARIABLES.
1230
1231 The code sequence is inserted in a new basic block created in
1232 END_BB which is inserted between BEFORE_BB and the destination of
1233 FALLTHRU_EDGE.
1234
1235 STATUS is the return value from _ITM_beginTransaction.
1236 ENTRY_BLOCK is the entry block for the transaction.
1237 EMITF is a callback to emit the actual save/restore code.
1238
1239 The basic block containing the conditional checking for TRXN_PROP
1240 is returned. */
1241 static basic_block
1242 tm_log_emit_save_or_restores (basic_block entry_block,
1243 unsigned trxn_prop,
1244 tree status,
1245 void (*emitf)(basic_block, basic_block),
1246 basic_block before_bb,
1247 edge fallthru_edge,
1248 basic_block *end_bb)
1249 {
1250 basic_block cond_bb, code_bb;
1251 gimple cond_stmt, stmt;
1252 gimple_stmt_iterator gsi;
1253 tree t1, t2;
1254 int old_flags = fallthru_edge->flags;
1255
1256 cond_bb = create_empty_bb (before_bb);
1257 code_bb = create_empty_bb (cond_bb);
1258 *end_bb = create_empty_bb (code_bb);
1259 redirect_edge_pred (fallthru_edge, *end_bb);
1260 fallthru_edge->flags = EDGE_FALLTHRU;
1261 make_edge (before_bb, cond_bb, old_flags);
1262
1263 set_immediate_dominator (CDI_DOMINATORS, cond_bb, before_bb);
1264 set_immediate_dominator (CDI_DOMINATORS, code_bb, cond_bb);
1265
1266 gsi = gsi_last_bb (cond_bb);
1267
1268 /* t1 = status & A_{property}. */
1269 t1 = make_rename_temp (TREE_TYPE (status), NULL);
1270 t2 = build_int_cst (TREE_TYPE (status), trxn_prop);
1271 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1, status, t2);
1272 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1273
1274 /* if (t1). */
1275 t2 = build_int_cst (TREE_TYPE (status), 0);
1276 cond_stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
1277 gsi_insert_after (&gsi, cond_stmt, GSI_CONTINUE_LINKING);
1278
1279 emitf (entry_block, code_bb);
1280
1281 make_edge (cond_bb, code_bb, EDGE_TRUE_VALUE);
1282 make_edge (cond_bb, *end_bb, EDGE_FALSE_VALUE);
1283 make_edge (code_bb, *end_bb, EDGE_FALLTHRU);
1284
1285 return cond_bb;
1286 }
1287 \f
1288 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1289 struct walk_stmt_info *);
1290 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1291 struct walk_stmt_info *);
1292
1293 /* Evaluate an address X being dereferenced and determine if it
1294 originally points to a non aliased new chunk of memory (malloc,
1295 alloca, etc).
1296
1297 Return MEM_THREAD_LOCAL if it points to a thread-local address.
1298 Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1299 Return MEM_NON_LOCAL otherwise.
1300
1301 ENTRY_BLOCK is the entry block to the transaction containing the
1302 dereference of X. */
1303 static enum thread_memory_type
1304 thread_private_new_memory (basic_block entry_block, tree x)
1305 {
1306 gimple stmt = NULL;
1307 enum tree_code code;
1308 void **slot;
1309 tm_new_mem_map_t elt, *elt_p;
1310 tree val = x;
1311 enum thread_memory_type retval = mem_transaction_local;
1312
1313 if (!entry_block
1314 || TREE_CODE (x) != SSA_NAME
1315 /* Possible uninitialized use, or a function argument. In
1316 either case, we don't care. */
1317 || SSA_NAME_IS_DEFAULT_DEF (x))
1318 return mem_non_local;
1319
1320 /* Look in cache first. */
1321 elt.val = x;
1322 slot = htab_find_slot (tm_new_mem_hash, &elt, INSERT);
1323 elt_p = (tm_new_mem_map_t *) *slot;
1324 if (elt_p)
1325 return elt_p->local_new_memory;
1326
1327 /* Optimistically assume the memory is transaction local during
1328 processing. This catches recursion into this variable. */
1329 *slot = elt_p = XNEW (tm_new_mem_map_t);
1330 elt_p->val = val;
1331 elt_p->local_new_memory = mem_transaction_local;
1332
1333 /* Search DEF chain to find the original definition of this address. */
1334 do
1335 {
1336 if (ptr_deref_may_alias_global_p (x))
1337 {
1338 /* Address escapes. This is not thread-private. */
1339 retval = mem_non_local;
1340 goto new_memory_ret;
1341 }
1342
1343 stmt = SSA_NAME_DEF_STMT (x);
1344
1345 /* If the malloc call is outside the transaction, this is
1346 thread-local. */
1347 if (retval != mem_thread_local
1348 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1349 retval = mem_thread_local;
1350
1351 if (is_gimple_assign (stmt))
1352 {
1353 code = gimple_assign_rhs_code (stmt);
1354 /* x = foo ==> foo */
1355 if (code == SSA_NAME)
1356 x = gimple_assign_rhs1 (stmt);
1357 /* x = foo + n ==> foo */
1358 else if (code == POINTER_PLUS_EXPR)
1359 x = gimple_assign_rhs1 (stmt);
1360 /* x = (cast*) foo ==> foo */
1361 else if (code == VIEW_CONVERT_EXPR || code == NOP_EXPR)
1362 x = gimple_assign_rhs1 (stmt);
1363 else
1364 {
1365 retval = mem_non_local;
1366 goto new_memory_ret;
1367 }
1368 }
1369 else
1370 {
1371 if (gimple_code (stmt) == GIMPLE_PHI)
1372 {
1373 unsigned int i;
1374 enum thread_memory_type mem;
1375 tree phi_result = gimple_phi_result (stmt);
1376
1377 /* If any of the ancestors are non-local, we are sure to
1378 be non-local. Otherwise we can avoid doing anything
1379 and inherit what has already been generated. */
1380 retval = mem_max;
1381 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1382 {
1383 tree op = PHI_ARG_DEF (stmt, i);
1384
1385 /* Exclude self-assignment. */
1386 if (phi_result == op)
1387 continue;
1388
1389 mem = thread_private_new_memory (entry_block, op);
1390 if (mem == mem_non_local)
1391 {
1392 retval = mem;
1393 goto new_memory_ret;
1394 }
1395 retval = MIN (retval, mem);
1396 }
1397 goto new_memory_ret;
1398 }
1399 break;
1400 }
1401 }
1402 while (TREE_CODE (x) == SSA_NAME);
1403
1404 if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1405 /* Thread-local or transaction-local. */
1406 ;
1407 else
1408 retval = mem_non_local;
1409
1410 new_memory_ret:
1411 elt_p->local_new_memory = retval;
1412 return retval;
1413 }
1414
1415 /* Determine whether X has to be instrumented using a read
1416 or write barrier.
1417
1418 ENTRY_BLOCK is the entry block for the region where stmt resides
1419 in. NULL if unknown.
1420
1421 STMT is the statement in which X occurs in. It is used for thread
1422 private memory instrumentation. If no TPM instrumentation is
1423 desired, STMT should be null. */
1424 static bool
1425 requires_barrier (basic_block entry_block, tree x, gimple stmt)
1426 {
1427 tree orig = x;
1428 while (handled_component_p (x))
1429 x = TREE_OPERAND (x, 0);
1430
1431 switch (TREE_CODE (x))
1432 {
1433 case INDIRECT_REF:
1434 case MEM_REF:
1435 {
1436 enum thread_memory_type ret;
1437
1438 ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1439 if (ret == mem_non_local)
1440 return true;
1441 if (stmt && ret == mem_thread_local)
1442 /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
1443 tm_log_add (entry_block, orig, stmt);
1444
1445 /* Transaction-locals require nothing at all. For malloc, a
1446 transaction restart frees the memory and we reallocate.
1447 For alloca, the stack pointer gets reset by the retry and
1448 we reallocate. */
1449 return false;
1450 }
1451
1452 case TARGET_MEM_REF:
1453 if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1454 return true;
1455 x = TREE_OPERAND (TMR_BASE (x), 0);
1456 if (TREE_CODE (x) == PARM_DECL)
1457 return false;
1458 gcc_assert (TREE_CODE (x) == VAR_DECL);
1459 /* FALLTHRU */
1460
1461 case PARM_DECL:
1462 case RESULT_DECL:
1463 case VAR_DECL:
1464 if (DECL_BY_REFERENCE (x))
1465 {
1466 /* ??? This value is a pointer, but aggregate_value_p has been
1467 jigged to return true which confuses needs_to_live_in_memory.
1468 This ought to be cleaned up generically.
1469
1470 FIXME: Verify this still happens after the next mainline
1471 merge. Testcase ie g++.dg/tm/pr47554.C.
1472 */
1473 return false;
1474 }
1475
1476 if (is_global_var (x))
1477 return !TREE_READONLY (x);
1478 if (/* FIXME: This condition should actually go below in the
1479 tm_log_add() call, however is_call_clobbered() depends on
1480 aliasing info which is not available during
1481 gimplification. Since requires_barrier() gets called
1482 during lower_sequence_tm/gimplification, leave the call
1483 to needs_to_live_in_memory until we eliminate
1484 lower_sequence_tm altogether. */
1485 needs_to_live_in_memory (x)
1486 /* X escapes. */
1487 || ptr_deref_may_alias_global_p (x))
1488 return true;
1489 else
1490 {
1491 /* For local memory that doesn't escape (aka thread private
1492 memory), we can either save the value at the beginning of
1493 the transaction and restore on restart, or call a tm
1494 function to dynamically save and restore on restart
1495 (ITM_L*). */
1496 if (stmt)
1497 tm_log_add (entry_block, orig, stmt);
1498 return false;
1499 }
1500
1501 default:
1502 return false;
1503 }
1504 }
1505
1506 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1507 a transaction region. */
1508
1509 static void
1510 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1511 {
1512 gimple stmt = gsi_stmt (*gsi);
1513
1514 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1515 *state |= GTMA_HAVE_LOAD;
1516 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1517 *state |= GTMA_HAVE_STORE;
1518 }
1519
1520 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
1521
1522 static void
1523 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1524 {
1525 gimple stmt = gsi_stmt (*gsi);
1526 tree fn;
1527
1528 if (is_tm_pure_call (stmt))
1529 return;
1530
1531 /* Check if this call is a transaction abort. */
1532 fn = gimple_call_fndecl (stmt);
1533 if (is_tm_abort (fn))
1534 *state |= GTMA_HAVE_ABORT;
1535
1536 /* Note that something may happen. */
1537 *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1538 }
1539
1540 /* Lower a GIMPLE_TRANSACTION statement. */
1541
1542 static void
1543 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1544 {
1545 gimple g, stmt = gsi_stmt (*gsi);
1546 unsigned int *outer_state = (unsigned int *) wi->info;
1547 unsigned int this_state = 0;
1548 struct walk_stmt_info this_wi;
1549
1550 /* First, lower the body. The scanning that we do inside gives
1551 us some idea of what we're dealing with. */
1552 memset (&this_wi, 0, sizeof (this_wi));
1553 this_wi.info = (void *) &this_state;
1554 walk_gimple_seq (gimple_transaction_body (stmt),
1555 lower_sequence_tm, NULL, &this_wi);
1556
1557 /* If there was absolutely nothing transaction related inside the
1558 transaction, we may elide it. Likewise if this is a nested
1559 transaction and does not contain an abort. */
1560 if (this_state == 0
1561 || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1562 {
1563 if (outer_state)
1564 *outer_state |= this_state;
1565
1566 gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1567 GSI_SAME_STMT);
1568 gimple_transaction_set_body (stmt, NULL);
1569
1570 gsi_remove (gsi, true);
1571 wi->removed_stmt = true;
1572 return;
1573 }
1574
1575 /* Wrap the body of the transaction in a try-finally node so that
1576 the commit call is always properly called. */
1577 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1578 if (flag_exceptions)
1579 {
1580 tree ptr;
1581 gimple_seq n_seq, e_seq;
1582
1583 n_seq = gimple_seq_alloc_with_stmt (g);
1584 e_seq = gimple_seq_alloc ();
1585
1586 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1587 1, integer_zero_node);
1588 ptr = create_tmp_var (ptr_type_node, NULL);
1589 gimple_call_set_lhs (g, ptr);
1590 gimple_seq_add_stmt (&e_seq, g);
1591
1592 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1593 1, ptr);
1594 gimple_seq_add_stmt (&e_seq, g);
1595
1596 g = gimple_build_eh_else (n_seq, e_seq);
1597 }
1598
1599 g = gimple_build_try (gimple_transaction_body (stmt),
1600 gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1601 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1602
1603 gimple_transaction_set_body (stmt, NULL);
1604
1605 /* If the transaction calls abort or if this is an outer transaction,
1606 add an "over" label afterwards. */
1607 if ((this_state & (GTMA_HAVE_ABORT))
1608 || (gimple_transaction_subcode(stmt) & GTMA_IS_OUTER))
1609 {
1610 tree label = create_artificial_label (UNKNOWN_LOCATION);
1611 gimple_transaction_set_label (stmt, label);
1612 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
1613 }
1614
1615 /* Record the set of operations found for use later. */
1616 this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1617 gimple_transaction_set_subcode (stmt, this_state);
1618 }
1619
1620 /* Iterate through the statements in the sequence, lowering them all
1621 as appropriate for being in a transaction. */
1622
1623 static tree
1624 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1625 struct walk_stmt_info *wi)
1626 {
1627 unsigned int *state = (unsigned int *) wi->info;
1628 gimple stmt = gsi_stmt (*gsi);
1629
1630 *handled_ops_p = true;
1631 switch (gimple_code (stmt))
1632 {
1633 case GIMPLE_ASSIGN:
1634 /* Only memory reads/writes need to be instrumented. */
1635 if (gimple_assign_single_p (stmt))
1636 examine_assign_tm (state, gsi);
1637 break;
1638
1639 case GIMPLE_CALL:
1640 examine_call_tm (state, gsi);
1641 break;
1642
1643 case GIMPLE_ASM:
1644 *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1645 break;
1646
1647 case GIMPLE_TRANSACTION:
1648 lower_transaction (gsi, wi);
1649 break;
1650
1651 default:
1652 *handled_ops_p = !gimple_has_substatements (stmt);
1653 break;
1654 }
1655
1656 return NULL_TREE;
1657 }
1658
1659 /* Iterate through the statements in the sequence, lowering them all
1660 as appropriate for being outside of a transaction. */
1661
1662 static tree
1663 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1664 struct walk_stmt_info * wi)
1665 {
1666 gimple stmt = gsi_stmt (*gsi);
1667
1668 if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1669 {
1670 *handled_ops_p = true;
1671 lower_transaction (gsi, wi);
1672 }
1673 else
1674 *handled_ops_p = !gimple_has_substatements (stmt);
1675
1676 return NULL_TREE;
1677 }
1678
1679 /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
1680 this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1681 been moved out, and all the data required for constructing a proper
1682 CFG has been recorded. */
1683
1684 static unsigned int
1685 execute_lower_tm (void)
1686 {
1687 struct walk_stmt_info wi;
1688
1689 /* Transactional clones aren't created until a later pass. */
1690 gcc_assert (!decl_is_tm_clone (current_function_decl));
1691
1692 memset (&wi, 0, sizeof (wi));
1693 walk_gimple_seq (gimple_body (current_function_decl),
1694 lower_sequence_no_tm, NULL, &wi);
1695
1696 return 0;
1697 }
1698
1699 struct gimple_opt_pass pass_lower_tm =
1700 {
1701 {
1702 GIMPLE_PASS,
1703 "tmlower", /* name */
1704 gate_tm, /* gate */
1705 execute_lower_tm, /* execute */
1706 NULL, /* sub */
1707 NULL, /* next */
1708 0, /* static_pass_number */
1709 TV_TRANS_MEM, /* tv_id */
1710 PROP_gimple_lcf, /* properties_required */
1711 0, /* properties_provided */
1712 0, /* properties_destroyed */
1713 0, /* todo_flags_start */
1714 TODO_dump_func /* todo_flags_finish */
1715 }
1716 };
1717 \f
1718 /* Collect region information for each transaction. */
1719
1720 struct tm_region
1721 {
1722 /* Link to the next unnested transaction. */
1723 struct tm_region *next;
1724
1725 /* Link to the next inner transaction. */
1726 struct tm_region *inner;
1727
1728 /* Link to the next outer transaction. */
1729 struct tm_region *outer;
1730
1731 /* The GIMPLE_TRANSACTION statement beginning this transaction. */
1732 gimple transaction_stmt;
1733
1734 /* The entry block to this region. */
1735 basic_block entry_block;
1736
1737 /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1738 These blocks are still a part of the region (i.e., the border is
1739 inclusive). Note that this set is only complete for paths in the CFG
1740 starting at ENTRY_BLOCK, and that there is no exit block recorded for
1741 the edge to the "over" label. */
1742 bitmap exit_blocks;
1743
1744 /* The set of all blocks that have an TM_IRREVOCABLE call. */
1745 bitmap irr_blocks;
1746 };
1747
1748 /* True if there are pending edge statements to be committed for the
1749 current function being scanned in the tmmark pass. */
1750 bool pending_edge_inserts_p;
1751
1752 static struct tm_region *all_tm_regions;
1753 static bitmap_obstack tm_obstack;
1754
1755
1756 /* A subroutine of tm_region_init. Record the existance of the
1757 GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
1758
1759 static struct tm_region *
1760 tm_region_init_0 (struct tm_region *outer, basic_block bb, gimple stmt)
1761 {
1762 struct tm_region *region;
1763
1764 region = (struct tm_region *)
1765 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1766
1767 if (outer)
1768 {
1769 region->next = outer->inner;
1770 outer->inner = region;
1771 }
1772 else
1773 {
1774 region->next = all_tm_regions;
1775 all_tm_regions = region;
1776 }
1777 region->inner = NULL;
1778 region->outer = outer;
1779
1780 region->transaction_stmt = stmt;
1781
1782 /* There are either one or two edges out of the block containing
1783 the GIMPLE_TRANSACTION, one to the actual region and one to the
1784 "over" label if the region contains an abort. The former will
1785 always be the one marked FALLTHRU. */
1786 region->entry_block = FALLTHRU_EDGE (bb)->dest;
1787
1788 region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1789 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1790
1791 return region;
1792 }
1793
1794 /* A subroutine of tm_region_init. Record all the exit and
1795 irrevocable blocks in BB into the region's exit_blocks and
1796 irr_blocks bitmaps. Returns the new region being scanned. */
1797
1798 static struct tm_region *
1799 tm_region_init_1 (struct tm_region *region, basic_block bb)
1800 {
1801 gimple_stmt_iterator gsi;
1802 gimple g;
1803
1804 if (!region
1805 || (!region->irr_blocks && !region->exit_blocks))
1806 return region;
1807
1808 /* Check to see if this is the end of a region by seeing if it
1809 contains a call to __builtin_tm_commit{,_eh}. Note that the
1810 outermost region for DECL_IS_TM_CLONE need not collect this. */
1811 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1812 {
1813 g = gsi_stmt (gsi);
1814 if (gimple_code (g) == GIMPLE_CALL)
1815 {
1816 tree fn = gimple_call_fndecl (g);
1817 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
1818 {
1819 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
1820 || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
1821 && region->exit_blocks)
1822 {
1823 bitmap_set_bit (region->exit_blocks, bb->index);
1824 region = region->outer;
1825 break;
1826 }
1827 if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
1828 bitmap_set_bit (region->irr_blocks, bb->index);
1829 }
1830 }
1831 }
1832 return region;
1833 }
1834
1835 /* Collect all of the transaction regions within the current function
1836 and record them in ALL_TM_REGIONS. The REGION parameter may specify
1837 an "outermost" region for use by tm clones. */
1838
1839 static void
1840 tm_region_init (struct tm_region *region)
1841 {
1842 gimple g;
1843 edge_iterator ei;
1844 edge e;
1845 basic_block bb;
1846 VEC(basic_block, heap) *queue = NULL;
1847 bitmap visited_blocks = BITMAP_ALLOC (NULL);
1848 struct tm_region *old_region;
1849
1850 all_tm_regions = region;
1851 bb = single_succ (ENTRY_BLOCK_PTR);
1852
1853 VEC_safe_push (basic_block, heap, queue, bb);
1854 gcc_assert (!bb->aux); /* FIXME: Remove me. */
1855 bb->aux = region;
1856 do
1857 {
1858 bb = VEC_pop (basic_block, queue);
1859 region = (struct tm_region *)bb->aux;
1860 bb->aux = NULL;
1861
1862 /* Record exit and irrevocable blocks. */
1863 region = tm_region_init_1 (region, bb);
1864
1865 /* Check for the last statement in the block beginning a new region. */
1866 g = last_stmt (bb);
1867 old_region = region;
1868 if (g && gimple_code (g) == GIMPLE_TRANSACTION)
1869 region = tm_region_init_0 (region, bb, g);
1870
1871 /* Process subsequent blocks. */
1872 FOR_EACH_EDGE (e, ei, bb->succs)
1873 if (!bitmap_bit_p (visited_blocks, e->dest->index))
1874 {
1875 bitmap_set_bit (visited_blocks, e->dest->index);
1876 VEC_safe_push (basic_block, heap, queue, e->dest);
1877 gcc_assert (!e->dest->aux); /* FIXME: Remove me. */
1878
1879 /* If the current block started a new region, make sure that only
1880 the entry block of the new region is associated with this region.
1881 Other successors are still part of the old region. */
1882 if (old_region != region && e->dest != region->entry_block)
1883 e->dest->aux = old_region;
1884 else
1885 e->dest->aux = region;
1886 }
1887 }
1888 while (!VEC_empty (basic_block, queue));
1889 VEC_free (basic_block, heap, queue);
1890 BITMAP_FREE (visited_blocks);
1891 }
1892
1893 /* The "gate" function for all transactional memory expansion and optimization
1894 passes. We collect region information for each top-level transaction, and
1895 if we don't find any, we skip all of the TM passes. Each region will have
1896 all of the exit blocks recorded, and the originating statement. */
1897
1898 static bool
1899 gate_tm_init (void)
1900 {
1901 if (!flag_tm)
1902 return false;
1903
1904 calculate_dominance_info (CDI_DOMINATORS);
1905 bitmap_obstack_initialize (&tm_obstack);
1906
1907 /* If the function is a TM_CLONE, then the entire function is the region. */
1908 if (decl_is_tm_clone (current_function_decl))
1909 {
1910 struct tm_region *region = (struct tm_region *)
1911 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1912 memset (region, 0, sizeof (*region));
1913 region->entry_block = single_succ (ENTRY_BLOCK_PTR);
1914 /* For a clone, the entire function is the region. But even if
1915 we don't need to record any exit blocks, we may need to
1916 record irrevocable blocks. */
1917 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1918
1919 tm_region_init (region);
1920 }
1921 else
1922 {
1923 tm_region_init (NULL);
1924
1925 /* If we didn't find any regions, cleanup and skip the whole tree
1926 of tm-related optimizations. */
1927 if (all_tm_regions == NULL)
1928 {
1929 bitmap_obstack_release (&tm_obstack);
1930 return false;
1931 }
1932 }
1933
1934 return true;
1935 }
1936
1937 struct gimple_opt_pass pass_tm_init =
1938 {
1939 {
1940 GIMPLE_PASS,
1941 "*tminit", /* name */
1942 gate_tm_init, /* gate */
1943 NULL, /* execute */
1944 NULL, /* sub */
1945 NULL, /* next */
1946 0, /* static_pass_number */
1947 TV_TRANS_MEM, /* tv_id */
1948 PROP_ssa | PROP_cfg, /* properties_required */
1949 0, /* properties_provided */
1950 0, /* properties_destroyed */
1951 0, /* todo_flags_start */
1952 0, /* todo_flags_finish */
1953 }
1954 };
1955 \f
1956 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
1957 represented by STATE. */
1958
1959 static inline void
1960 transaction_subcode_ior (struct tm_region *region, unsigned flags)
1961 {
1962 if (region && region->transaction_stmt)
1963 {
1964 flags |= gimple_transaction_subcode (region->transaction_stmt);
1965 gimple_transaction_set_subcode (region->transaction_stmt, flags);
1966 }
1967 }
1968
1969 /* Construct a memory load in a transactional context. Return the
1970 gimple statement performing the load, or NULL if there is no
1971 TM_LOAD builtin of the appropriate size to do the load.
1972
1973 LOC is the location to use for the new statement(s). */
1974
1975 static gimple
1976 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
1977 {
1978 enum built_in_function code = END_BUILTINS;
1979 tree t, type = TREE_TYPE (rhs), decl;
1980 gimple gcall;
1981
1982 if (type == float_type_node)
1983 code = BUILT_IN_TM_LOAD_FLOAT;
1984 else if (type == double_type_node)
1985 code = BUILT_IN_TM_LOAD_DOUBLE;
1986 else if (type == long_double_type_node)
1987 code = BUILT_IN_TM_LOAD_LDOUBLE;
1988 else if (TYPE_SIZE_UNIT (type) != NULL
1989 && host_integerp (TYPE_SIZE_UNIT (type), 1))
1990 {
1991 switch (tree_low_cst (TYPE_SIZE_UNIT (type), 1))
1992 {
1993 case 1:
1994 code = BUILT_IN_TM_LOAD_1;
1995 break;
1996 case 2:
1997 code = BUILT_IN_TM_LOAD_2;
1998 break;
1999 case 4:
2000 code = BUILT_IN_TM_LOAD_4;
2001 break;
2002 case 8:
2003 code = BUILT_IN_TM_LOAD_8;
2004 break;
2005 }
2006 }
2007
2008 if (code == END_BUILTINS)
2009 {
2010 decl = targetm.vectorize.builtin_tm_load (type);
2011 if (!decl)
2012 return NULL;
2013 }
2014 else
2015 decl = builtin_decl_explicit (code);
2016
2017 t = gimplify_addr (gsi, rhs);
2018 gcall = gimple_build_call (decl, 1, t);
2019 gimple_set_location (gcall, loc);
2020
2021 t = TREE_TYPE (TREE_TYPE (decl));
2022 if (useless_type_conversion_p (type, t))
2023 {
2024 gimple_call_set_lhs (gcall, lhs);
2025 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2026 }
2027 else
2028 {
2029 gimple g;
2030 tree temp;
2031
2032 temp = make_rename_temp (t, NULL);
2033 gimple_call_set_lhs (gcall, temp);
2034 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2035
2036 t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2037 g = gimple_build_assign (lhs, t);
2038 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2039 }
2040
2041 return gcall;
2042 }
2043
2044
2045 /* Similarly for storing TYPE in a transactional context. */
2046
2047 static gimple
2048 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2049 {
2050 enum built_in_function code = END_BUILTINS;
2051 tree t, fn, type = TREE_TYPE (rhs), simple_type;
2052 gimple gcall;
2053
2054 if (type == float_type_node)
2055 code = BUILT_IN_TM_STORE_FLOAT;
2056 else if (type == double_type_node)
2057 code = BUILT_IN_TM_STORE_DOUBLE;
2058 else if (type == long_double_type_node)
2059 code = BUILT_IN_TM_STORE_LDOUBLE;
2060 else if (TYPE_SIZE_UNIT (type) != NULL
2061 && host_integerp (TYPE_SIZE_UNIT (type), 1))
2062 {
2063 switch (tree_low_cst (TYPE_SIZE_UNIT (type), 1))
2064 {
2065 case 1:
2066 code = BUILT_IN_TM_STORE_1;
2067 break;
2068 case 2:
2069 code = BUILT_IN_TM_STORE_2;
2070 break;
2071 case 4:
2072 code = BUILT_IN_TM_STORE_4;
2073 break;
2074 case 8:
2075 code = BUILT_IN_TM_STORE_8;
2076 break;
2077 }
2078 }
2079
2080 if (code == END_BUILTINS)
2081 {
2082 fn = targetm.vectorize.builtin_tm_store (type);
2083 if (!fn)
2084 return NULL;
2085 }
2086 else
2087 fn = builtin_decl_explicit (code);
2088
2089 simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2090
2091 if (TREE_CODE (rhs) == CONSTRUCTOR)
2092 {
2093 /* Handle the easy initialization to zero. */
2094 if (CONSTRUCTOR_ELTS (rhs) == 0)
2095 rhs = build_int_cst (simple_type, 0);
2096 else
2097 {
2098 /* ...otherwise punt to the caller and probably use
2099 BUILT_IN_TM_MEMMOVE, because we can't wrap a
2100 VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2101 valid gimple. */
2102 return NULL;
2103 }
2104 }
2105 else if (!useless_type_conversion_p (simple_type, type))
2106 {
2107 gimple g;
2108 tree temp;
2109
2110 temp = make_rename_temp (simple_type, NULL);
2111 t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2112 g = gimple_build_assign (temp, t);
2113 gimple_set_location (g, loc);
2114 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2115
2116 rhs = temp;
2117 }
2118
2119 t = gimplify_addr (gsi, lhs);
2120 gcall = gimple_build_call (fn, 2, t, rhs);
2121 gimple_set_location (gcall, loc);
2122 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2123
2124 return gcall;
2125 }
2126
2127
2128 /* Expand an assignment statement into transactional builtins. */
2129
2130 static void
2131 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2132 {
2133 gimple stmt = gsi_stmt (*gsi);
2134 location_t loc = gimple_location (stmt);
2135 tree lhs = gimple_assign_lhs (stmt);
2136 tree rhs = gimple_assign_rhs1 (stmt);
2137 bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2138 bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2139 gimple gcall = NULL;
2140
2141 if (!load_p && !store_p)
2142 {
2143 /* Add thread private addresses to log if applicable. */
2144 requires_barrier (region->entry_block, lhs, stmt);
2145 gsi_next (gsi);
2146 return;
2147 }
2148
2149 gsi_remove (gsi, true);
2150
2151 if (load_p && !store_p)
2152 {
2153 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2154 gcall = build_tm_load (loc, lhs, rhs, gsi);
2155 }
2156 else if (store_p && !load_p)
2157 {
2158 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2159 gcall = build_tm_store (loc, lhs, rhs, gsi);
2160 }
2161 if (!gcall)
2162 {
2163 tree lhs_addr, rhs_addr;
2164
2165 if (load_p)
2166 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2167 if (store_p)
2168 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2169
2170 /* ??? Figure out if there's any possible overlap between the LHS
2171 and the RHS and if not, use MEMCPY. */
2172 lhs_addr = gimplify_addr (gsi, lhs);
2173 rhs_addr = gimplify_addr (gsi, rhs);
2174 gcall = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_MEMMOVE),
2175 3, lhs_addr, rhs_addr,
2176 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2177 gimple_set_location (gcall, loc);
2178 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2179 }
2180
2181 /* Now that we have the load/store in its instrumented form, add
2182 thread private addresses to the log if applicable. */
2183 if (!store_p)
2184 requires_barrier (region->entry_block, lhs, gcall);
2185
2186 /* add_stmt_to_tm_region (region, gcall); */
2187 }
2188
2189
2190 /* Expand a call statement as appropriate for a transaction. That is,
2191 either verify that the call does not affect the transaction, or
2192 redirect the call to a clone that handles transactions, or change
2193 the transaction state to IRREVOCABLE. Return true if the call is
2194 one of the builtins that end a transaction. */
2195
2196 static bool
2197 expand_call_tm (struct tm_region *region,
2198 gimple_stmt_iterator *gsi)
2199 {
2200 gimple stmt = gsi_stmt (*gsi);
2201 tree lhs = gimple_call_lhs (stmt);
2202 tree fn_decl;
2203 struct cgraph_node *node;
2204 bool retval = false;
2205
2206 fn_decl = gimple_call_fndecl (stmt);
2207
2208 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2209 || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2210 transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2211 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2212 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2213
2214 if (is_tm_pure_call (stmt))
2215 return false;
2216
2217 if (fn_decl)
2218 retval = is_tm_ending_fndecl (fn_decl);
2219 if (!retval)
2220 {
2221 /* Assume all non-const/pure calls write to memory, except
2222 transaction ending builtins. */
2223 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2224 }
2225
2226 /* For indirect calls, we already generated a call into the runtime. */
2227 if (!fn_decl)
2228 {
2229 tree fn = gimple_call_fn (stmt);
2230
2231 /* We are guaranteed never to go irrevocable on a safe or pure
2232 call, and the pure call was handled above. */
2233 if (is_tm_safe (fn))
2234 return false;
2235 else
2236 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2237
2238 return false;
2239 }
2240
2241 node = cgraph_get_node (fn_decl);
2242 if (node->local.tm_may_enter_irr)
2243 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2244
2245 if (is_tm_abort (fn_decl))
2246 {
2247 transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2248 return true;
2249 }
2250
2251 /* Instrument the store if needed.
2252
2253 If the assignment happens inside the function call (return slot
2254 optimization), there is no instrumentation to be done, since
2255 the callee should have done the right thing. */
2256 if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2257 && !gimple_call_return_slot_opt_p (stmt))
2258 {
2259 tree tmp = make_rename_temp (TREE_TYPE (lhs), NULL);
2260 location_t loc = gimple_location (stmt);
2261 edge fallthru_edge = NULL;
2262
2263 /* Remember if the call was going to throw. */
2264 if (stmt_can_throw_internal (stmt))
2265 {
2266 edge_iterator ei;
2267 edge e;
2268 basic_block bb = gimple_bb (stmt);
2269
2270 FOR_EACH_EDGE (e, ei, bb->succs)
2271 if (e->flags & EDGE_FALLTHRU)
2272 {
2273 fallthru_edge = e;
2274 break;
2275 }
2276 }
2277
2278 gimple_call_set_lhs (stmt, tmp);
2279 update_stmt (stmt);
2280 stmt = gimple_build_assign (lhs, tmp);
2281 gimple_set_location (stmt, loc);
2282
2283 /* We cannot throw in the middle of a BB. If the call was going
2284 to throw, place the instrumentation on the fallthru edge, so
2285 the call remains the last statement in the block. */
2286 if (fallthru_edge)
2287 {
2288 gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (stmt);
2289 gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2290 expand_assign_tm (region, &fallthru_gsi);
2291 gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2292 pending_edge_inserts_p = true;
2293 }
2294 else
2295 {
2296 gsi_insert_after (gsi, stmt, GSI_CONTINUE_LINKING);
2297 expand_assign_tm (region, gsi);
2298 }
2299
2300 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2301 }
2302
2303 return retval;
2304 }
2305
2306
2307 /* Expand all statements in BB as appropriate for being inside
2308 a transaction. */
2309
2310 static void
2311 expand_block_tm (struct tm_region *region, basic_block bb)
2312 {
2313 gimple_stmt_iterator gsi;
2314
2315 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2316 {
2317 gimple stmt = gsi_stmt (gsi);
2318 switch (gimple_code (stmt))
2319 {
2320 case GIMPLE_ASSIGN:
2321 /* Only memory reads/writes need to be instrumented. */
2322 if (gimple_assign_single_p (stmt))
2323 {
2324 expand_assign_tm (region, &gsi);
2325 continue;
2326 }
2327 break;
2328
2329 case GIMPLE_CALL:
2330 if (expand_call_tm (region, &gsi))
2331 return;
2332 break;
2333
2334 case GIMPLE_ASM:
2335 gcc_unreachable ();
2336
2337 default:
2338 break;
2339 }
2340 if (!gsi_end_p (gsi))
2341 gsi_next (&gsi);
2342 }
2343 }
2344
2345 /* Return the list of basic-blocks in REGION.
2346
2347 STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2348 following a TM_IRREVOCABLE call. */
2349
2350 static VEC (basic_block, heap) *
2351 get_tm_region_blocks (basic_block entry_block,
2352 bitmap exit_blocks,
2353 bitmap irr_blocks,
2354 bitmap all_region_blocks,
2355 bool stop_at_irrevocable_p)
2356 {
2357 VEC(basic_block, heap) *bbs = NULL;
2358 unsigned i;
2359 edge e;
2360 edge_iterator ei;
2361 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2362
2363 i = 0;
2364 VEC_safe_push (basic_block, heap, bbs, entry_block);
2365 bitmap_set_bit (visited_blocks, entry_block->index);
2366
2367 do
2368 {
2369 basic_block bb = VEC_index (basic_block, bbs, i++);
2370
2371 if (exit_blocks &&
2372 bitmap_bit_p (exit_blocks, bb->index))
2373 continue;
2374
2375 if (stop_at_irrevocable_p
2376 && irr_blocks
2377 && bitmap_bit_p (irr_blocks, bb->index))
2378 continue;
2379
2380 FOR_EACH_EDGE (e, ei, bb->succs)
2381 if (!bitmap_bit_p (visited_blocks, e->dest->index))
2382 {
2383 bitmap_set_bit (visited_blocks, e->dest->index);
2384 VEC_safe_push (basic_block, heap, bbs, e->dest);
2385 }
2386 }
2387 while (i < VEC_length (basic_block, bbs));
2388
2389 if (all_region_blocks)
2390 bitmap_ior_into (all_region_blocks, visited_blocks);
2391
2392 BITMAP_FREE (visited_blocks);
2393 return bbs;
2394 }
2395
2396 /* Entry point to the MARK phase of TM expansion. Here we replace
2397 transactional memory statements with calls to builtins, and function
2398 calls with their transactional clones (if available). But we don't
2399 yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
2400
2401 static unsigned int
2402 execute_tm_mark (void)
2403 {
2404 struct tm_region *region;
2405 basic_block bb;
2406 VEC (basic_block, heap) *queue;
2407 size_t i;
2408
2409 queue = VEC_alloc (basic_block, heap, 10);
2410 pending_edge_inserts_p = false;
2411
2412 for (region = all_tm_regions; region ; region = region->next)
2413 {
2414 tm_log_init ();
2415 /* If we have a transaction... */
2416 if (region->exit_blocks)
2417 {
2418 unsigned int subcode
2419 = gimple_transaction_subcode (region->transaction_stmt);
2420
2421 /* Collect a new SUBCODE set, now that optimizations are done... */
2422 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2423 subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
2424 | GTMA_MAY_ENTER_IRREVOCABLE);
2425 else
2426 subcode &= GTMA_DECLARATION_MASK;
2427 gimple_transaction_set_subcode (region->transaction_stmt, subcode);
2428 }
2429
2430 queue = get_tm_region_blocks (region->entry_block,
2431 region->exit_blocks,
2432 region->irr_blocks,
2433 NULL,
2434 /*stop_at_irr_p=*/true);
2435 for (i = 0; VEC_iterate (basic_block, queue, i, bb); ++i)
2436 expand_block_tm (region, bb);
2437 VEC_free (basic_block, heap, queue);
2438
2439 tm_log_emit ();
2440 }
2441
2442 if (pending_edge_inserts_p)
2443 gsi_commit_edge_inserts ();
2444 return 0;
2445 }
2446
2447 struct gimple_opt_pass pass_tm_mark =
2448 {
2449 {
2450 GIMPLE_PASS,
2451 "tmmark", /* name */
2452 NULL, /* gate */
2453 execute_tm_mark, /* execute */
2454 NULL, /* sub */
2455 NULL, /* next */
2456 0, /* static_pass_number */
2457 TV_TRANS_MEM, /* tv_id */
2458 PROP_ssa | PROP_cfg, /* properties_required */
2459 0, /* properties_provided */
2460 0, /* properties_destroyed */
2461 0, /* todo_flags_start */
2462 TODO_update_ssa
2463 | TODO_verify_ssa
2464 | TODO_dump_func, /* todo_flags_finish */
2465 }
2466 };
2467 \f
2468 /* Create an abnormal call edge from BB to the first block of the region
2469 represented by STATE. Also record the edge in the TM_RESTART map. */
2470
2471 static inline void
2472 make_tm_edge (gimple stmt, basic_block bb, struct tm_region *region)
2473 {
2474 void **slot;
2475 struct tm_restart_node *n, dummy;
2476
2477 if (cfun->gimple_df->tm_restart == NULL)
2478 cfun->gimple_df->tm_restart = htab_create_ggc (31, struct_ptr_hash,
2479 struct_ptr_eq, ggc_free);
2480
2481 dummy.stmt = stmt;
2482 dummy.label_or_list = gimple_block_label (region->entry_block);
2483 slot = htab_find_slot (cfun->gimple_df->tm_restart, &dummy, INSERT);
2484 n = (struct tm_restart_node *) *slot;
2485 if (n == NULL)
2486 {
2487 n = ggc_alloc_tm_restart_node ();
2488 *n = dummy;
2489 }
2490 else
2491 {
2492 tree old = n->label_or_list;
2493 if (TREE_CODE (old) == LABEL_DECL)
2494 old = tree_cons (NULL, old, NULL);
2495 n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
2496 }
2497
2498 make_edge (bb, region->entry_block, EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
2499 }
2500
2501
2502 /* Split block BB as necessary for every builtin function we added, and
2503 wire up the abnormal back edges implied by the transaction restart. */
2504
2505 static void
2506 expand_block_edges (struct tm_region *region, basic_block bb)
2507 {
2508 gimple_stmt_iterator gsi;
2509
2510 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2511 {
2512 gimple stmt = gsi_stmt (gsi);
2513
2514 /* ??? TM_COMMIT (and any other tm builtin function) in a nested
2515 transaction has an abnormal edge back to the outer-most transaction
2516 (there are no nested retries), while a TM_ABORT also has an abnormal
2517 backedge to the inner-most transaction. We haven't actually saved
2518 the inner-most transaction here. We should be able to get to it
2519 via the region_nr saved on STMT, and read the transaction_stmt from
2520 that, and find the first region block from there. */
2521 /* ??? Shouldn't we split for any non-pure, non-irrevocable function? */
2522 if (gimple_code (stmt) == GIMPLE_CALL
2523 && (gimple_call_flags (stmt) & ECF_TM_BUILTIN) != 0)
2524 {
2525 if (gsi_one_before_end_p (gsi))
2526 make_tm_edge (stmt, bb, region);
2527 else
2528 {
2529 edge e = split_block (bb, stmt);
2530 make_tm_edge (stmt, bb, region);
2531 bb = e->dest;
2532 gsi = gsi_start_bb (bb);
2533 }
2534
2535 /* Delete any tail-call annotation that may have been added.
2536 The tail-call pass may have mis-identified the commit as being
2537 a candidate because we had not yet added this restart edge. */
2538 gimple_call_set_tail (stmt, false);
2539 }
2540
2541 gsi_next (&gsi);
2542 }
2543 }
2544
2545 /* Expand the GIMPLE_TRANSACTION statement into the STM library call. */
2546
2547 static void
2548 expand_transaction (struct tm_region *region)
2549 {
2550 tree status, tm_start;
2551 basic_block atomic_bb, slice_bb;
2552 gimple_stmt_iterator gsi;
2553 tree t1, t2;
2554 gimple g;
2555 int flags, subcode;
2556
2557 tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2558 status = make_rename_temp (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
2559
2560 /* ??? There are plenty of bits here we're not computing. */
2561 subcode = gimple_transaction_subcode (region->transaction_stmt);
2562 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2563 flags = PR_DOESGOIRREVOCABLE | PR_UNINSTRUMENTEDCODE;
2564 else
2565 flags = PR_INSTRUMENTEDCODE;
2566 if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2567 flags |= PR_HASNOIRREVOCABLE;
2568 /* If the transaction does not have an abort in lexical scope and is not
2569 marked as an outer transaction, then it will never abort. */
2570 if ((subcode & GTMA_HAVE_ABORT) == 0
2571 && (subcode & GTMA_IS_OUTER) == 0)
2572 flags |= PR_HASNOABORT;
2573 if ((subcode & GTMA_HAVE_STORE) == 0)
2574 flags |= PR_READONLY;
2575 t2 = build_int_cst (TREE_TYPE (status), flags);
2576 g = gimple_build_call (tm_start, 1, t2);
2577 gimple_call_set_lhs (g, status);
2578 gimple_set_location (g, gimple_location (region->transaction_stmt));
2579
2580 atomic_bb = gimple_bb (region->transaction_stmt);
2581
2582 if (!VEC_empty (tree, tm_log_save_addresses))
2583 tm_log_emit_saves (region->entry_block, atomic_bb);
2584
2585 gsi = gsi_last_bb (atomic_bb);
2586 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2587 gsi_remove (&gsi, true);
2588
2589 if (!VEC_empty (tree, tm_log_save_addresses))
2590 region->entry_block =
2591 tm_log_emit_save_or_restores (region->entry_block,
2592 A_RESTORELIVEVARIABLES,
2593 status,
2594 tm_log_emit_restores,
2595 atomic_bb,
2596 FALLTHRU_EDGE (atomic_bb),
2597 &slice_bb);
2598 else
2599 slice_bb = atomic_bb;
2600
2601 /* If we have an ABORT statement, create a test following the start
2602 call to perform the abort. */
2603 if (gimple_transaction_label (region->transaction_stmt))
2604 {
2605 edge e;
2606 basic_block test_bb;
2607
2608 test_bb = create_empty_bb (slice_bb);
2609 if (VEC_empty (tree, tm_log_save_addresses))
2610 region->entry_block = test_bb;
2611 gsi = gsi_last_bb (test_bb);
2612
2613 t1 = make_rename_temp (TREE_TYPE (status), NULL);
2614 t2 = build_int_cst (TREE_TYPE (status), A_ABORTTRANSACTION);
2615 g = gimple_build_assign_with_ops (BIT_AND_EXPR, t1, status, t2);
2616 gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING);
2617
2618 t2 = build_int_cst (TREE_TYPE (status), 0);
2619 g = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2620 gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING);
2621
2622 e = FALLTHRU_EDGE (slice_bb);
2623 redirect_edge_pred (e, test_bb);
2624 e->flags = EDGE_FALSE_VALUE;
2625 e->probability = PROB_ALWAYS - PROB_VERY_UNLIKELY;
2626
2627 e = BRANCH_EDGE (atomic_bb);
2628 redirect_edge_pred (e, test_bb);
2629 e->flags = EDGE_TRUE_VALUE;
2630 e->probability = PROB_VERY_UNLIKELY;
2631
2632 e = make_edge (slice_bb, test_bb, EDGE_FALLTHRU);
2633 }
2634
2635 /* If we've no abort, but we do have PHIs at the beginning of the atomic
2636 region, that means we've a loop at the beginning of the atomic region
2637 that shares the first block. This can cause problems with the abnormal
2638 edges we're about to add for the transaction restart. Solve this by
2639 adding a new empty block to receive the abnormal edges. */
2640 else if (phi_nodes (region->entry_block))
2641 {
2642 edge e;
2643 basic_block empty_bb;
2644
2645 region->entry_block = empty_bb = create_empty_bb (atomic_bb);
2646
2647 e = FALLTHRU_EDGE (atomic_bb);
2648 redirect_edge_pred (e, empty_bb);
2649
2650 e = make_edge (atomic_bb, empty_bb, EDGE_FALLTHRU);
2651 }
2652
2653 /* The GIMPLE_TRANSACTION statement no longer exists. */
2654 region->transaction_stmt = NULL;
2655 }
2656
2657 static void expand_regions (struct tm_region *);
2658
2659 /* Helper function for expand_regions. Expand REGION and recurse to
2660 the inner region. */
2661
2662 static void
2663 expand_regions_1 (struct tm_region *region)
2664 {
2665 if (region->exit_blocks)
2666 {
2667 unsigned int i;
2668 basic_block bb;
2669 VEC (basic_block, heap) *queue;
2670
2671 /* Collect the set of blocks in this region. Do this before
2672 splitting edges, so that we don't have to play with the
2673 dominator tree in the middle. */
2674 queue = get_tm_region_blocks (region->entry_block,
2675 region->exit_blocks,
2676 region->irr_blocks,
2677 NULL,
2678 /*stop_at_irr_p=*/false);
2679 expand_transaction (region);
2680 for (i = 0; VEC_iterate (basic_block, queue, i, bb); ++i)
2681 expand_block_edges (region, bb);
2682 VEC_free (basic_block, heap, queue);
2683 }
2684 if (region->inner)
2685 expand_regions (region->inner);
2686 }
2687
2688 /* Expand regions starting at REGION. */
2689
2690 static void
2691 expand_regions (struct tm_region *region)
2692 {
2693 while (region)
2694 {
2695 expand_regions_1 (region);
2696 region = region->next;
2697 }
2698 }
2699
2700 /* Entry point to the final expansion of transactional nodes. */
2701
2702 static unsigned int
2703 execute_tm_edges (void)
2704 {
2705 expand_regions (all_tm_regions);
2706 tm_log_delete ();
2707
2708 /* We've got to release the dominance info now, to indicate that it
2709 must be rebuilt completely. Otherwise we'll crash trying to update
2710 the SSA web in the TODO section following this pass. */
2711 free_dominance_info (CDI_DOMINATORS);
2712 bitmap_obstack_release (&tm_obstack);
2713 all_tm_regions = NULL;
2714
2715 return 0;
2716 }
2717
2718 struct gimple_opt_pass pass_tm_edges =
2719 {
2720 {
2721 GIMPLE_PASS,
2722 "tmedge", /* name */
2723 NULL, /* gate */
2724 execute_tm_edges, /* execute */
2725 NULL, /* sub */
2726 NULL, /* next */
2727 0, /* static_pass_number */
2728 TV_TRANS_MEM, /* tv_id */
2729 PROP_ssa | PROP_cfg, /* properties_required */
2730 0, /* properties_provided */
2731 0, /* properties_destroyed */
2732 0, /* todo_flags_start */
2733 TODO_update_ssa
2734 | TODO_verify_ssa
2735 | TODO_dump_func, /* todo_flags_finish */
2736 }
2737 };
2738 \f
2739 /* A unique TM memory operation. */
2740 typedef struct tm_memop
2741 {
2742 /* Unique ID that all memory operations to the same location have. */
2743 unsigned int value_id;
2744 /* Address of load/store. */
2745 tree addr;
2746 } *tm_memop_t;
2747
2748 /* Sets for solving data flow equations in the memory optimization pass. */
2749 struct tm_memopt_bitmaps
2750 {
2751 /* Stores available to this BB upon entry. Basically, stores that
2752 dominate this BB. */
2753 bitmap store_avail_in;
2754 /* Stores available at the end of this BB. */
2755 bitmap store_avail_out;
2756 bitmap store_antic_in;
2757 bitmap store_antic_out;
2758 /* Reads available to this BB upon entry. Basically, reads that
2759 dominate this BB. */
2760 bitmap read_avail_in;
2761 /* Reads available at the end of this BB. */
2762 bitmap read_avail_out;
2763 /* Reads performed in this BB. */
2764 bitmap read_local;
2765 /* Writes performed in this BB. */
2766 bitmap store_local;
2767
2768 /* Temporary storage for pass. */
2769 /* Is the current BB in the worklist? */
2770 bool avail_in_worklist_p;
2771 /* Have we visited this BB? */
2772 bool visited_p;
2773 };
2774
2775 static bitmap_obstack tm_memopt_obstack;
2776
2777 /* Unique counter for TM loads and stores. Loads and stores of the
2778 same address get the same ID. */
2779 static unsigned int tm_memopt_value_id;
2780 static htab_t tm_memopt_value_numbers;
2781
2782 #define STORE_AVAIL_IN(BB) \
2783 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
2784 #define STORE_AVAIL_OUT(BB) \
2785 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
2786 #define STORE_ANTIC_IN(BB) \
2787 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
2788 #define STORE_ANTIC_OUT(BB) \
2789 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
2790 #define READ_AVAIL_IN(BB) \
2791 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
2792 #define READ_AVAIL_OUT(BB) \
2793 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
2794 #define READ_LOCAL(BB) \
2795 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
2796 #define STORE_LOCAL(BB) \
2797 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
2798 #define AVAIL_IN_WORKLIST_P(BB) \
2799 ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
2800 #define BB_VISITED_P(BB) \
2801 ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
2802
2803 /* Htab support. Return a hash value for a `tm_memop'. */
2804 static hashval_t
2805 tm_memop_hash (const void *p)
2806 {
2807 const struct tm_memop *mem = (const struct tm_memop *) p;
2808 tree addr = mem->addr;
2809 /* We drill down to the SSA_NAME/DECL for the hash, but equality is
2810 actually done with operand_equal_p (see tm_memop_eq). */
2811 if (TREE_CODE (addr) == ADDR_EXPR)
2812 addr = TREE_OPERAND (addr, 0);
2813 return iterative_hash_expr (addr, 0);
2814 }
2815
2816 /* Htab support. Return true if two tm_memop's are the same. */
2817 static int
2818 tm_memop_eq (const void *p1, const void *p2)
2819 {
2820 const struct tm_memop *mem1 = (const struct tm_memop *) p1;
2821 const struct tm_memop *mem2 = (const struct tm_memop *) p2;
2822
2823 return operand_equal_p (mem1->addr, mem2->addr, 0);
2824 }
2825
2826 /* Given a TM load/store in STMT, return the value number for the address
2827 it accesses. */
2828
2829 static unsigned int
2830 tm_memopt_value_number (gimple stmt, enum insert_option op)
2831 {
2832 struct tm_memop tmpmem, *mem;
2833 void **slot;
2834
2835 gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
2836 tmpmem.addr = gimple_call_arg (stmt, 0);
2837 slot = htab_find_slot (tm_memopt_value_numbers, &tmpmem, op);
2838 if (*slot)
2839 mem = (struct tm_memop *) *slot;
2840 else if (op == INSERT)
2841 {
2842 mem = XNEW (struct tm_memop);
2843 *slot = mem;
2844 mem->value_id = tm_memopt_value_id++;
2845 mem->addr = tmpmem.addr;
2846 }
2847 else
2848 gcc_unreachable ();
2849 return mem->value_id;
2850 }
2851
2852 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
2853
2854 static void
2855 tm_memopt_accumulate_memops (basic_block bb)
2856 {
2857 gimple_stmt_iterator gsi;
2858
2859 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2860 {
2861 gimple stmt = gsi_stmt (gsi);
2862 bitmap bits;
2863 unsigned int loc;
2864
2865 if (is_tm_store (stmt))
2866 bits = STORE_LOCAL (bb);
2867 else if (is_tm_load (stmt))
2868 bits = READ_LOCAL (bb);
2869 else
2870 continue;
2871
2872 loc = tm_memopt_value_number (stmt, INSERT);
2873 bitmap_set_bit (bits, loc);
2874 if (dump_file)
2875 {
2876 fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
2877 is_tm_load (stmt) ? "LOAD" : "STORE", loc,
2878 gimple_bb (stmt)->index);
2879 print_generic_expr (dump_file, gimple_call_arg (stmt, 0), 0);
2880 fprintf (dump_file, "\n");
2881 }
2882 }
2883 }
2884
2885 /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
2886
2887 static void
2888 dump_tm_memopt_set (const char *set_name, bitmap bits)
2889 {
2890 unsigned i;
2891 bitmap_iterator bi;
2892 const char *comma = "";
2893
2894 fprintf (dump_file, "TM memopt: %s: [", set_name);
2895 EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
2896 {
2897 htab_iterator hi;
2898 struct tm_memop *mem;
2899
2900 /* Yeah, yeah, yeah. Whatever. This is just for debugging. */
2901 FOR_EACH_HTAB_ELEMENT (tm_memopt_value_numbers, mem, tm_memop_t, hi)
2902 if (mem->value_id == i)
2903 break;
2904 gcc_assert (mem->value_id == i);
2905 fprintf (dump_file, "%s", comma);
2906 comma = ", ";
2907 print_generic_expr (dump_file, mem->addr, 0);
2908 }
2909 fprintf (dump_file, "]\n");
2910 }
2911
2912 /* Prettily dump all of the memopt sets in BLOCKS. */
2913
2914 static void
2915 dump_tm_memopt_sets (VEC (basic_block, heap) *blocks)
2916 {
2917 size_t i;
2918 basic_block bb;
2919
2920 for (i = 0; VEC_iterate (basic_block, blocks, i, bb); ++i)
2921 {
2922 fprintf (dump_file, "------------BB %d---------\n", bb->index);
2923 dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
2924 dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
2925 dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
2926 dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
2927 dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
2928 dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
2929 }
2930 }
2931
2932 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
2933
2934 static void
2935 tm_memopt_compute_avin (basic_block bb)
2936 {
2937 edge e;
2938 unsigned ix;
2939
2940 /* Seed with the AVOUT of any predecessor. */
2941 for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
2942 {
2943 e = EDGE_PRED (bb, ix);
2944 /* Make sure we have already visited this BB, and is thus
2945 initialized.
2946
2947 If e->src->aux is NULL, this predecessor is actually on an
2948 enclosing transaction. We only care about the current
2949 transaction, so ignore it. */
2950 if (e->src->aux && BB_VISITED_P (e->src))
2951 {
2952 bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
2953 bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
2954 break;
2955 }
2956 }
2957
2958 for (; ix < EDGE_COUNT (bb->preds); ix++)
2959 {
2960 e = EDGE_PRED (bb, ix);
2961 if (e->src->aux && BB_VISITED_P (e->src))
2962 {
2963 bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
2964 bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
2965 }
2966 }
2967
2968 BB_VISITED_P (bb) = true;
2969 }
2970
2971 /* Compute the STORE_ANTIC_IN for the basic block BB. */
2972
2973 static void
2974 tm_memopt_compute_antin (basic_block bb)
2975 {
2976 edge e;
2977 unsigned ix;
2978
2979 /* Seed with the ANTIC_OUT of any successor. */
2980 for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
2981 {
2982 e = EDGE_SUCC (bb, ix);
2983 /* Make sure we have already visited this BB, and is thus
2984 initialized. */
2985 if (BB_VISITED_P (e->dest))
2986 {
2987 bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
2988 break;
2989 }
2990 }
2991
2992 for (; ix < EDGE_COUNT (bb->succs); ix++)
2993 {
2994 e = EDGE_SUCC (bb, ix);
2995 if (BB_VISITED_P (e->dest))
2996 bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
2997 }
2998
2999 BB_VISITED_P (bb) = true;
3000 }
3001
3002 /* Compute the AVAIL sets for every basic block in BLOCKS.
3003
3004 We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3005
3006 AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3007 AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
3008
3009 This is basically what we do in lcm's compute_available(), but here
3010 we calculate two sets of sets (one for STOREs and one for READs),
3011 and we work on a region instead of the entire CFG.
3012
3013 REGION is the TM region.
3014 BLOCKS are the basic blocks in the region. */
3015
3016 static void
3017 tm_memopt_compute_available (struct tm_region *region,
3018 VEC (basic_block, heap) *blocks)
3019 {
3020 edge e;
3021 basic_block *worklist, *qin, *qout, *qend, bb;
3022 unsigned int qlen, i;
3023 edge_iterator ei;
3024 bool changed;
3025
3026 /* Allocate a worklist array/queue. Entries are only added to the
3027 list if they were not already on the list. So the size is
3028 bounded by the number of basic blocks in the region. */
3029 qlen = VEC_length (basic_block, blocks) - 1;
3030 qin = qout = worklist =
3031 XNEWVEC (basic_block, qlen);
3032
3033 /* Put every block in the region on the worklist. */
3034 for (i = 0; VEC_iterate (basic_block, blocks, i, bb); ++i)
3035 {
3036 /* Seed AVAIL_OUT with the LOCAL set. */
3037 bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3038 bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3039
3040 AVAIL_IN_WORKLIST_P (bb) = true;
3041 /* No need to insert the entry block, since it has an AVIN of
3042 null, and an AVOUT that has already been seeded in. */
3043 if (bb != region->entry_block)
3044 *qin++ = bb;
3045 }
3046
3047 /* The entry block has been initialized with the local sets. */
3048 BB_VISITED_P (region->entry_block) = true;
3049
3050 qin = worklist;
3051 qend = &worklist[qlen];
3052
3053 /* Iterate until the worklist is empty. */
3054 while (qlen)
3055 {
3056 /* Take the first entry off the worklist. */
3057 bb = *qout++;
3058 qlen--;
3059
3060 if (qout >= qend)
3061 qout = worklist;
3062
3063 /* This block can be added to the worklist again if necessary. */
3064 AVAIL_IN_WORKLIST_P (bb) = false;
3065 tm_memopt_compute_avin (bb);
3066
3067 /* Note: We do not add the LOCAL sets here because we already
3068 seeded the AVAIL_OUT sets with them. */
3069 changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3070 changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3071 if (changed
3072 && (region->exit_blocks == NULL
3073 || !bitmap_bit_p (region->exit_blocks, bb->index)))
3074 /* If the out state of this block changed, then we need to add
3075 its successors to the worklist if they are not already in. */
3076 FOR_EACH_EDGE (e, ei, bb->succs)
3077 if (!AVAIL_IN_WORKLIST_P (e->dest) && e->dest != EXIT_BLOCK_PTR)
3078 {
3079 *qin++ = e->dest;
3080 AVAIL_IN_WORKLIST_P (e->dest) = true;
3081 qlen++;
3082
3083 if (qin >= qend)
3084 qin = worklist;
3085 }
3086 }
3087
3088 free (worklist);
3089
3090 if (dump_file)
3091 dump_tm_memopt_sets (blocks);
3092 }
3093
3094 /* Compute ANTIC sets for every basic block in BLOCKS.
3095
3096 We compute STORE_ANTIC_OUT as follows:
3097
3098 STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3099 STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
3100
3101 REGION is the TM region.
3102 BLOCKS are the basic blocks in the region. */
3103
3104 static void
3105 tm_memopt_compute_antic (struct tm_region *region,
3106 VEC (basic_block, heap) *blocks)
3107 {
3108 edge e;
3109 basic_block *worklist, *qin, *qout, *qend, bb;
3110 unsigned int qlen;
3111 int i;
3112 edge_iterator ei;
3113
3114 /* Allocate a worklist array/queue. Entries are only added to the
3115 list if they were not already on the list. So the size is
3116 bounded by the number of basic blocks in the region. */
3117 qin = qout = worklist =
3118 XNEWVEC (basic_block, VEC_length (basic_block, blocks));
3119
3120 for (qlen = 0, i = VEC_length (basic_block, blocks) - 1; i >= 0; --i)
3121 {
3122 bb = VEC_index (basic_block, blocks, i);
3123
3124 /* Seed ANTIC_OUT with the LOCAL set. */
3125 bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3126
3127 /* Put every block in the region on the worklist. */
3128 AVAIL_IN_WORKLIST_P (bb) = true;
3129 /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3130 and their ANTIC_OUT has already been seeded in. */
3131 if (region->exit_blocks
3132 && !bitmap_bit_p (region->exit_blocks, bb->index))
3133 {
3134 qlen++;
3135 *qin++ = bb;
3136 }
3137 }
3138
3139 /* The exit blocks have been initialized with the local sets. */
3140 if (region->exit_blocks)
3141 {
3142 unsigned int i;
3143 bitmap_iterator bi;
3144 EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3145 BB_VISITED_P (BASIC_BLOCK (i)) = true;
3146 }
3147
3148 qin = worklist;
3149 qend = &worklist[qlen];
3150
3151 /* Iterate until the worklist is empty. */
3152 while (qlen)
3153 {
3154 /* Take the first entry off the worklist. */
3155 bb = *qout++;
3156 qlen--;
3157
3158 if (qout >= qend)
3159 qout = worklist;
3160
3161 /* This block can be added to the worklist again if necessary. */
3162 AVAIL_IN_WORKLIST_P (bb) = false;
3163 tm_memopt_compute_antin (bb);
3164
3165 /* Note: We do not add the LOCAL sets here because we already
3166 seeded the ANTIC_OUT sets with them. */
3167 if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3168 && bb != region->entry_block)
3169 /* If the out state of this block changed, then we need to add
3170 its predecessors to the worklist if they are not already in. */
3171 FOR_EACH_EDGE (e, ei, bb->preds)
3172 if (!AVAIL_IN_WORKLIST_P (e->src))
3173 {
3174 *qin++ = e->src;
3175 AVAIL_IN_WORKLIST_P (e->src) = true;
3176 qlen++;
3177
3178 if (qin >= qend)
3179 qin = worklist;
3180 }
3181 }
3182
3183 free (worklist);
3184
3185 if (dump_file)
3186 dump_tm_memopt_sets (blocks);
3187 }
3188
3189 /* Offsets of load variants from TM_LOAD. For example,
3190 BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3191 See gtm-builtins.def. */
3192 #define TRANSFORM_RAR 1
3193 #define TRANSFORM_RAW 2
3194 #define TRANSFORM_RFW 3
3195 /* Offsets of store variants from TM_STORE. */
3196 #define TRANSFORM_WAR 1
3197 #define TRANSFORM_WAW 2
3198
3199 /* Inform about a load/store optimization. */
3200
3201 static void
3202 dump_tm_memopt_transform (gimple stmt)
3203 {
3204 if (dump_file)
3205 {
3206 fprintf (dump_file, "TM memopt: transforming: ");
3207 print_gimple_stmt (dump_file, stmt, 0, 0);
3208 fprintf (dump_file, "\n");
3209 }
3210 }
3211
3212 /* Perform a read/write optimization. Replaces the TM builtin in STMT
3213 by a builtin that is OFFSET entries down in the builtins table in
3214 gtm-builtins.def. */
3215
3216 static void
3217 tm_memopt_transform_stmt (unsigned int offset,
3218 gimple stmt,
3219 gimple_stmt_iterator *gsi)
3220 {
3221 tree fn = gimple_call_fn (stmt);
3222 gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3223 TREE_OPERAND (fn, 0)
3224 = builtin_decl_explicit ((enum built_in_function)
3225 (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3226 + offset));
3227 gimple_call_set_fn (stmt, fn);
3228 gsi_replace (gsi, stmt, true);
3229 dump_tm_memopt_transform (stmt);
3230 }
3231
3232 /* Perform the actual TM memory optimization transformations in the
3233 basic blocks in BLOCKS. */
3234
3235 static void
3236 tm_memopt_transform_blocks (VEC (basic_block, heap) *blocks)
3237 {
3238 size_t i;
3239 basic_block bb;
3240 gimple_stmt_iterator gsi;
3241
3242 for (i = 0; VEC_iterate (basic_block, blocks, i, bb); ++i)
3243 {
3244 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3245 {
3246 gimple stmt = gsi_stmt (gsi);
3247 bitmap read_avail = READ_AVAIL_IN (bb);
3248 bitmap store_avail = STORE_AVAIL_IN (bb);
3249 bitmap store_antic = STORE_ANTIC_OUT (bb);
3250 unsigned int loc;
3251
3252 if (is_tm_simple_load (stmt))
3253 {
3254 loc = tm_memopt_value_number (stmt, NO_INSERT);
3255 if (store_avail && bitmap_bit_p (store_avail, loc))
3256 tm_memopt_transform_stmt (TRANSFORM_RAW, stmt, &gsi);
3257 else if (store_antic && bitmap_bit_p (store_antic, loc))
3258 {
3259 tm_memopt_transform_stmt (TRANSFORM_RFW, stmt, &gsi);
3260 bitmap_set_bit (store_avail, loc);
3261 }
3262 else if (read_avail && bitmap_bit_p (read_avail, loc))
3263 tm_memopt_transform_stmt (TRANSFORM_RAR, stmt, &gsi);
3264 else
3265 bitmap_set_bit (read_avail, loc);
3266 }
3267 else if (is_tm_simple_store (stmt))
3268 {
3269 loc = tm_memopt_value_number (stmt, NO_INSERT);
3270 if (store_avail && bitmap_bit_p (store_avail, loc))
3271 tm_memopt_transform_stmt (TRANSFORM_WAW, stmt, &gsi);
3272 else
3273 {
3274 if (read_avail && bitmap_bit_p (read_avail, loc))
3275 tm_memopt_transform_stmt (TRANSFORM_WAR, stmt, &gsi);
3276 bitmap_set_bit (store_avail, loc);
3277 }
3278 }
3279 }
3280 }
3281 }
3282
3283 /* Return a new set of bitmaps for a BB. */
3284
3285 static struct tm_memopt_bitmaps *
3286 tm_memopt_init_sets (void)
3287 {
3288 struct tm_memopt_bitmaps *b
3289 = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3290 b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3291 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3292 b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
3293 b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
3294 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3295 b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3296 b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3297 b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
3298 b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
3299 return b;
3300 }
3301
3302 /* Free sets computed for each BB. */
3303
3304 static void
3305 tm_memopt_free_sets (VEC (basic_block, heap) *blocks)
3306 {
3307 size_t i;
3308 basic_block bb;
3309
3310 for (i = 0; VEC_iterate (basic_block, blocks, i, bb); ++i)
3311 bb->aux = NULL;
3312 }
3313
3314 /* Clear the visited bit for every basic block in BLOCKS. */
3315
3316 static void
3317 tm_memopt_clear_visited (VEC (basic_block, heap) *blocks)
3318 {
3319 size_t i;
3320 basic_block bb;
3321
3322 for (i = 0; VEC_iterate (basic_block, blocks, i, bb); ++i)
3323 BB_VISITED_P (bb) = false;
3324 }
3325
3326 /* Replace TM load/stores with hints for the runtime. We handle
3327 things like read-after-write, write-after-read, read-after-read,
3328 read-for-write, etc. */
3329
3330 static unsigned int
3331 execute_tm_memopt (void)
3332 {
3333 struct tm_region *region;
3334 VEC (basic_block, heap) *bbs;
3335
3336 tm_memopt_value_id = 0;
3337 tm_memopt_value_numbers = htab_create (10, tm_memop_hash, tm_memop_eq, free);
3338
3339 for (region = all_tm_regions; region; region = region->next)
3340 {
3341 /* All the TM stores/loads in the current region. */
3342 size_t i;
3343 basic_block bb;
3344
3345 bitmap_obstack_initialize (&tm_memopt_obstack);
3346
3347 /* Save all BBs for the current region. */
3348 bbs = get_tm_region_blocks (region->entry_block,
3349 region->exit_blocks,
3350 region->irr_blocks,
3351 NULL,
3352 false);
3353
3354 /* Collect all the memory operations. */
3355 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); ++i)
3356 {
3357 bb->aux = tm_memopt_init_sets ();
3358 tm_memopt_accumulate_memops (bb);
3359 }
3360
3361 /* Solve data flow equations and transform each block accordingly. */
3362 tm_memopt_clear_visited (bbs);
3363 tm_memopt_compute_available (region, bbs);
3364 tm_memopt_clear_visited (bbs);
3365 tm_memopt_compute_antic (region, bbs);
3366 tm_memopt_transform_blocks (bbs);
3367
3368 tm_memopt_free_sets (bbs);
3369 VEC_free (basic_block, heap, bbs);
3370 bitmap_obstack_release (&tm_memopt_obstack);
3371 htab_empty (tm_memopt_value_numbers);
3372 }
3373
3374 htab_delete (tm_memopt_value_numbers);
3375 return 0;
3376 }
3377
3378 static bool
3379 gate_tm_memopt (void)
3380 {
3381 return flag_tm && optimize > 0;
3382 }
3383
3384 struct gimple_opt_pass pass_tm_memopt =
3385 {
3386 {
3387 GIMPLE_PASS,
3388 "tmmemopt", /* name */
3389 gate_tm_memopt, /* gate */
3390 execute_tm_memopt, /* execute */
3391 NULL, /* sub */
3392 NULL, /* next */
3393 0, /* static_pass_number */
3394 TV_TRANS_MEM, /* tv_id */
3395 PROP_ssa | PROP_cfg, /* properties_required */
3396 0, /* properties_provided */
3397 0, /* properties_destroyed */
3398 0, /* todo_flags_start */
3399 TODO_dump_func, /* todo_flags_finish */
3400 }
3401 };
3402
3403 \f
3404 /* Interprocedual analysis for the creation of transactional clones.
3405 The aim of this pass is to find which functions are referenced in
3406 a non-irrevocable transaction context, and for those over which
3407 we have control (or user directive), create a version of the
3408 function which uses only the transactional interface to reference
3409 protected memories. This analysis proceeds in several steps:
3410
3411 (1) Collect the set of all possible transactional clones:
3412
3413 (a) For all local public functions marked tm_callable, push
3414 it onto the tm_callee queue.
3415
3416 (b) For all local functions, scan for calls in transaction blocks.
3417 Push the caller and callee onto the tm_caller and tm_callee
3418 queues. Count the number of callers for each callee.
3419
3420 (c) For each local function on the callee list, assume we will
3421 create a transactional clone. Push *all* calls onto the
3422 callee queues; count the number of clone callers separately
3423 to the number of original callers.
3424
3425 (2) Propagate irrevocable status up the dominator tree:
3426
3427 (a) Any external function on the callee list that is not marked
3428 tm_callable is irrevocable. Push all callers of such onto
3429 a worklist.
3430
3431 (b) For each function on the worklist, mark each block that
3432 contains an irrevocable call. Use the AND operator to
3433 propagate that mark up the dominator tree.
3434
3435 (c) If we reach the entry block for a possible transactional
3436 clone, then the transactional clone is irrevocable, and
3437 we should not create the clone after all. Push all
3438 callers onto the worklist.
3439
3440 (d) Place tm_irrevocable calls at the beginning of the relevant
3441 blocks. Special case here is the entry block for the entire
3442 transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
3443 the library to begin the region in serial mode. Decrement
3444 the call count for all callees in the irrevocable region.
3445
3446 (3) Create the transactional clones:
3447
3448 Any tm_callee that still has a non-zero call count is cloned.
3449 */
3450
3451 /* This structure is stored in the AUX field of each cgraph_node. */
3452 struct tm_ipa_cg_data
3453 {
3454 /* The clone of the function that got created. */
3455 struct cgraph_node *clone;
3456
3457 /* The tm regions in the normal function. */
3458 struct tm_region *all_tm_regions;
3459
3460 /* The blocks of the normal/clone functions that contain irrevocable
3461 calls, or blocks that are post-dominated by irrevocable calls. */
3462 bitmap irrevocable_blocks_normal;
3463 bitmap irrevocable_blocks_clone;
3464
3465 /* The blocks of the normal function that are involved in transactions. */
3466 bitmap transaction_blocks_normal;
3467
3468 /* The number of callers to the transactional clone of this function
3469 from normal and transactional clones respectively. */
3470 unsigned tm_callers_normal;
3471 unsigned tm_callers_clone;
3472
3473 /* True if all calls to this function's transactional clone
3474 are irrevocable. Also automatically true if the function
3475 has no transactional clone. */
3476 bool is_irrevocable;
3477
3478 /* Flags indicating the presence of this function in various queues. */
3479 bool in_callee_queue;
3480 bool in_worklist;
3481
3482 /* Flags indicating the kind of scan desired while in the worklist. */
3483 bool want_irr_scan_normal;
3484 };
3485
3486 typedef struct cgraph_node *cgraph_node_p;
3487
3488 DEF_VEC_P (cgraph_node_p);
3489 DEF_VEC_ALLOC_P (cgraph_node_p, heap);
3490
3491 typedef VEC (cgraph_node_p, heap) *cgraph_node_queue;
3492
3493 /* Return the ipa data associated with NODE, allocating zeroed memory
3494 if necessary. */
3495
3496 static struct tm_ipa_cg_data *
3497 get_cg_data (struct cgraph_node *node)
3498 {
3499 struct tm_ipa_cg_data *d = (struct tm_ipa_cg_data *) node->aux;
3500
3501 if (d == NULL)
3502 {
3503 d = (struct tm_ipa_cg_data *)
3504 obstack_alloc (&tm_obstack.obstack, sizeof (*d));
3505 node->aux = (void *) d;
3506 memset (d, 0, sizeof (*d));
3507 }
3508
3509 return d;
3510 }
3511
3512 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
3513 it is already present. */
3514
3515 static void
3516 maybe_push_queue (struct cgraph_node *node,
3517 cgraph_node_queue *queue_p, bool *in_queue_p)
3518 {
3519 if (!*in_queue_p)
3520 {
3521 *in_queue_p = true;
3522 VEC_safe_push (cgraph_node_p, heap, *queue_p, node);
3523 }
3524 }
3525
3526 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
3527 Queue all callees within block BB. */
3528
3529 static void
3530 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
3531 basic_block bb, bool for_clone)
3532 {
3533 gimple_stmt_iterator gsi;
3534
3535 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3536 {
3537 gimple stmt = gsi_stmt (gsi);
3538 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
3539 {
3540 tree fndecl = gimple_call_fndecl (stmt);
3541 if (fndecl)
3542 {
3543 struct tm_ipa_cg_data *d;
3544 unsigned *pcallers;
3545 struct cgraph_node *node;
3546
3547 if (is_tm_ending_fndecl (fndecl))
3548 continue;
3549 if (find_tm_replacement_function (fndecl))
3550 continue;
3551
3552 node = cgraph_get_node (fndecl);
3553 gcc_assert (node != NULL);
3554 d = get_cg_data (node);
3555
3556 pcallers = (for_clone ? &d->tm_callers_clone
3557 : &d->tm_callers_normal);
3558 *pcallers += 1;
3559
3560 maybe_push_queue (node, callees_p, &d->in_callee_queue);
3561 }
3562 }
3563 }
3564 }
3565
3566 /* Scan all calls in NODE that are within a transaction region,
3567 and push the resulting nodes into the callee queue. */
3568
3569 static void
3570 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
3571 cgraph_node_queue *callees_p)
3572 {
3573 struct tm_region *r;
3574
3575 d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
3576 d->all_tm_regions = all_tm_regions;
3577
3578 for (r = all_tm_regions; r; r = r->next)
3579 {
3580 VEC (basic_block, heap) *bbs;
3581 basic_block bb;
3582 unsigned i;
3583
3584 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
3585 d->transaction_blocks_normal, false);
3586
3587 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
3588 ipa_tm_scan_calls_block (callees_p, bb, false);
3589
3590 VEC_free (basic_block, heap, bbs);
3591 }
3592 }
3593
3594 /* Scan all calls in NODE as if this is the transactional clone,
3595 and push the destinations into the callee queue. */
3596
3597 static void
3598 ipa_tm_scan_calls_clone (struct cgraph_node *node,
3599 cgraph_node_queue *callees_p)
3600 {
3601 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3602 basic_block bb;
3603
3604 FOR_EACH_BB_FN (bb, fn)
3605 ipa_tm_scan_calls_block (callees_p, bb, true);
3606 }
3607
3608 /* The function NODE has been detected to be irrevocable. Push all
3609 of its callers onto WORKLIST for the purpose of re-scanning them. */
3610
3611 static void
3612 ipa_tm_note_irrevocable (struct cgraph_node *node,
3613 cgraph_node_queue *worklist_p)
3614 {
3615 struct tm_ipa_cg_data *d = get_cg_data (node);
3616 struct cgraph_edge *e;
3617
3618 d->is_irrevocable = true;
3619
3620 for (e = node->callers; e ; e = e->next_caller)
3621 {
3622 basic_block bb;
3623
3624 /* Don't examine recursive calls. */
3625 if (e->caller == node)
3626 continue;
3627 /* Even if we think we can go irrevocable, believe the user
3628 above all. */
3629 if (is_tm_safe_or_pure (e->caller->decl))
3630 continue;
3631
3632 d = get_cg_data (e->caller);
3633
3634 /* Check if the callee is in a transactional region. If so,
3635 schedule the function for normal re-scan as well. */
3636 bb = gimple_bb (e->call_stmt);
3637 gcc_assert (bb != NULL);
3638 if (d->transaction_blocks_normal
3639 && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
3640 d->want_irr_scan_normal = true;
3641
3642 maybe_push_queue (e->caller, worklist_p, &d->in_worklist);
3643 }
3644 }
3645
3646 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
3647 within the block is irrevocable. */
3648
3649 static bool
3650 ipa_tm_scan_irr_block (basic_block bb)
3651 {
3652 gimple_stmt_iterator gsi;
3653 tree fn;
3654
3655 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3656 {
3657 gimple stmt = gsi_stmt (gsi);
3658 switch (gimple_code (stmt))
3659 {
3660 case GIMPLE_CALL:
3661 if (is_tm_pure_call (stmt))
3662 break;
3663
3664 fn = gimple_call_fn (stmt);
3665
3666 /* Functions with the attribute are by definition irrevocable. */
3667 if (is_tm_irrevocable (fn))
3668 return true;
3669
3670 /* For direct function calls, go ahead and check for replacement
3671 functions, or transitive irrevocable functions. For indirect
3672 functions, we'll ask the runtime. */
3673 if (TREE_CODE (fn) == ADDR_EXPR)
3674 {
3675 struct tm_ipa_cg_data *d;
3676
3677 fn = TREE_OPERAND (fn, 0);
3678 if (is_tm_ending_fndecl (fn))
3679 break;
3680 if (find_tm_replacement_function (fn))
3681 break;
3682
3683 d = get_cg_data (cgraph_get_node (fn));
3684 if (d->is_irrevocable)
3685 return true;
3686 }
3687 break;
3688
3689 case GIMPLE_ASM:
3690 /* ??? The Approved Method of indicating that an inline
3691 assembly statement is not relevant to the transaction
3692 is to wrap it in a __tm_waiver block. This is not
3693 yet implemented, so we can't check for it. */
3694 return true;
3695
3696 default:
3697 break;
3698 }
3699 }
3700
3701 return false;
3702 }
3703
3704 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
3705 for new irrevocable blocks, marking them in NEW_IRR. Don't bother
3706 scanning past OLD_IRR or EXIT_BLOCKS. */
3707
3708 static bool
3709 ipa_tm_scan_irr_blocks (VEC (basic_block, heap) **pqueue, bitmap new_irr,
3710 bitmap old_irr, bitmap exit_blocks)
3711 {
3712 bool any_new_irr = false;
3713 edge e;
3714 edge_iterator ei;
3715 bitmap visited_blocks = BITMAP_ALLOC (NULL);
3716
3717 do
3718 {
3719 basic_block bb = VEC_pop (basic_block, *pqueue);
3720
3721 /* Don't re-scan blocks we know already are irrevocable. */
3722 if (old_irr && bitmap_bit_p (old_irr, bb->index))
3723 continue;
3724
3725 if (ipa_tm_scan_irr_block (bb))
3726 {
3727 bitmap_set_bit (new_irr, bb->index);
3728 any_new_irr = true;
3729 }
3730 else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
3731 {
3732 FOR_EACH_EDGE (e, ei, bb->succs)
3733 if (!bitmap_bit_p (visited_blocks, e->dest->index))
3734 {
3735 bitmap_set_bit (visited_blocks, e->dest->index);
3736 VEC_safe_push (basic_block, heap, *pqueue, e->dest);
3737 }
3738 }
3739 }
3740 while (!VEC_empty (basic_block, *pqueue));
3741
3742 BITMAP_FREE (visited_blocks);
3743
3744 return any_new_irr;
3745 }
3746
3747 /* Propagate the irrevocable property both up and down the dominator tree.
3748 BB is the current block being scanned; EXIT_BLOCKS are the edges of the
3749 TM regions; OLD_IRR are the results of a previous scan of the dominator
3750 tree which has been fully propagated; NEW_IRR is the set of new blocks
3751 which are gaining the irrevocable property during the current scan. */
3752
3753 static void
3754 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
3755 bitmap old_irr, bitmap exit_blocks)
3756 {
3757 VEC (basic_block, heap) *bbs;
3758 bitmap all_region_blocks;
3759
3760 /* If this block is in the old set, no need to rescan. */
3761 if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
3762 return;
3763
3764 all_region_blocks = BITMAP_ALLOC (&tm_obstack);
3765 bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
3766 all_region_blocks, false);
3767 do
3768 {
3769 basic_block bb = VEC_pop (basic_block, bbs);
3770 bool this_irr = bitmap_bit_p (new_irr, bb->index);
3771 bool all_son_irr = false;
3772 edge_iterator ei;
3773 edge e;
3774
3775 /* Propagate up. If my children are, I am too, but we must have
3776 at least one child that is. */
3777 if (!this_irr)
3778 {
3779 FOR_EACH_EDGE (e, ei, bb->succs)
3780 {
3781 if (!bitmap_bit_p (new_irr, e->dest->index))
3782 {
3783 all_son_irr = false;
3784 break;
3785 }
3786 else
3787 all_son_irr = true;
3788 }
3789 if (all_son_irr)
3790 {
3791 /* Add block to new_irr if it hasn't already been processed. */
3792 if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
3793 {
3794 bitmap_set_bit (new_irr, bb->index);
3795 this_irr = true;
3796 }
3797 }
3798 }
3799
3800 /* Propagate down to everyone we immediately dominate. */
3801 if (this_irr)
3802 {
3803 basic_block son;
3804 for (son = first_dom_son (CDI_DOMINATORS, bb);
3805 son;
3806 son = next_dom_son (CDI_DOMINATORS, son))
3807 {
3808 /* Make sure block is actually in a TM region, and it
3809 isn't already in old_irr. */
3810 if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
3811 && bitmap_bit_p (all_region_blocks, son->index))
3812 bitmap_set_bit (new_irr, son->index);
3813 }
3814 }
3815 }
3816 while (!VEC_empty (basic_block, bbs));
3817
3818 BITMAP_FREE (all_region_blocks);
3819 VEC_free (basic_block, heap, bbs);
3820 }
3821
3822 static void
3823 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
3824 {
3825 gimple_stmt_iterator gsi;
3826
3827 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3828 {
3829 gimple stmt = gsi_stmt (gsi);
3830 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
3831 {
3832 tree fndecl = gimple_call_fndecl (stmt);
3833 if (fndecl)
3834 {
3835 struct tm_ipa_cg_data *d;
3836 unsigned *pcallers;
3837
3838 if (is_tm_ending_fndecl (fndecl))
3839 continue;
3840 if (find_tm_replacement_function (fndecl))
3841 continue;
3842
3843 d = get_cg_data (cgraph_get_node (fndecl));
3844 pcallers = (for_clone ? &d->tm_callers_clone
3845 : &d->tm_callers_normal);
3846
3847 gcc_assert (*pcallers > 0);
3848 *pcallers -= 1;
3849 }
3850 }
3851 }
3852 }
3853
3854 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
3855 as well as other irrevocable actions such as inline assembly. Mark all
3856 such blocks as irrevocable and decrement the number of calls to
3857 transactional clones. Return true if, for the transactional clone, the
3858 entire function is irrevocable. */
3859
3860 static bool
3861 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
3862 {
3863 struct tm_ipa_cg_data *d;
3864 bitmap new_irr, old_irr;
3865 VEC (basic_block, heap) *queue;
3866 bool ret = false;
3867
3868 current_function_decl = node->decl;
3869 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3870 calculate_dominance_info (CDI_DOMINATORS);
3871
3872 d = get_cg_data (node);
3873 queue = VEC_alloc (basic_block, heap, 10);
3874 new_irr = BITMAP_ALLOC (&tm_obstack);
3875
3876 /* Scan each tm region, propagating irrevocable status through the tree. */
3877 if (for_clone)
3878 {
3879 old_irr = d->irrevocable_blocks_clone;
3880 VEC_quick_push (basic_block, queue, single_succ (ENTRY_BLOCK_PTR));
3881 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
3882 {
3883 ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR), new_irr,
3884 old_irr, NULL);
3885 ret = bitmap_bit_p (new_irr, single_succ (ENTRY_BLOCK_PTR)->index);
3886 }
3887 }
3888 else
3889 {
3890 struct tm_region *region;
3891
3892 old_irr = d->irrevocable_blocks_normal;
3893 for (region = d->all_tm_regions; region; region = region->next)
3894 {
3895 VEC_quick_push (basic_block, queue, region->entry_block);
3896 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
3897 region->exit_blocks))
3898 ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
3899 region->exit_blocks);
3900 }
3901 }
3902
3903 /* If we found any new irrevocable blocks, reduce the call count for
3904 transactional clones within the irrevocable blocks. Save the new
3905 set of irrevocable blocks for next time. */
3906 if (!bitmap_empty_p (new_irr))
3907 {
3908 bitmap_iterator bmi;
3909 unsigned i;
3910
3911 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
3912 ipa_tm_decrement_clone_counts (BASIC_BLOCK (i), for_clone);
3913
3914 if (old_irr)
3915 {
3916 bitmap_ior_into (old_irr, new_irr);
3917 BITMAP_FREE (new_irr);
3918 }
3919 else if (for_clone)
3920 d->irrevocable_blocks_clone = new_irr;
3921 else
3922 d->irrevocable_blocks_normal = new_irr;
3923
3924 if (dump_file && new_irr)
3925 {
3926 const char *dname;
3927 bitmap_iterator bmi;
3928 unsigned i;
3929
3930 dname = lang_hooks.decl_printable_name (current_function_decl, 2);
3931 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
3932 fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
3933 }
3934 }
3935 else
3936 BITMAP_FREE (new_irr);
3937
3938 VEC_free (basic_block, heap, queue);
3939 pop_cfun ();
3940 current_function_decl = NULL;
3941
3942 return ret;
3943 }
3944
3945 /* Return true if, for the transactional clone of NODE, any call
3946 may enter irrevocable mode. */
3947
3948 static bool
3949 ipa_tm_mayenterirr_function (struct cgraph_node *node)
3950 {
3951 struct tm_ipa_cg_data *d = get_cg_data (node);
3952 tree decl = node->decl;
3953 unsigned flags = flags_from_decl_or_type (decl);
3954
3955 /* Handle some TM builtins. Ordinarily these aren't actually generated
3956 at this point, but handling these functions when written in by the
3957 user makes it easier to build unit tests. */
3958 if (flags & ECF_TM_BUILTIN)
3959 return false;
3960
3961 /* Filter out all functions that are marked. */
3962 if (flags & ECF_TM_PURE)
3963 return false;
3964 if (is_tm_safe (decl))
3965 return false;
3966 if (is_tm_irrevocable (decl))
3967 return true;
3968 if (is_tm_callable (decl))
3969 return true;
3970 if (find_tm_replacement_function (decl))
3971 return true;
3972
3973 /* If we aren't seeing the final version of the function we don't
3974 know what it will contain at runtime. */
3975 if (cgraph_function_body_availability (node) < AVAIL_AVAILABLE)
3976 return true;
3977
3978 /* If the function must go irrevocable, then of course true. */
3979 if (d->is_irrevocable)
3980 return true;
3981
3982 /* If there are any blocks marked irrevocable, then the function
3983 as a whole may enter irrevocable. */
3984 if (d->irrevocable_blocks_clone)
3985 return true;
3986
3987 /* We may have previously marked this function as tm_may_enter_irr;
3988 see pass_diagnose_tm_blocks. */
3989 if (node->local.tm_may_enter_irr)
3990 return true;
3991
3992 /* Recurse on the main body for aliases. In general, this will
3993 result in one of the bits above being set so that we will not
3994 have to recurse next time. */
3995 if (node->alias)
3996 return ipa_tm_mayenterirr_function (cgraph_get_node (node->thunk.alias));
3997
3998 /* What remains is unmarked local functions without items that force
3999 the function to go irrevocable. */
4000 return false;
4001 }
4002
4003 /* Diagnose calls from transaction_safe functions to unmarked
4004 functions that are determined to not be safe. */
4005
4006 static void
4007 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4008 {
4009 struct cgraph_edge *e;
4010
4011 for (e = node->callees; e ; e = e->next_callee)
4012 if (!is_tm_callable (e->callee->decl)
4013 && e->callee->local.tm_may_enter_irr)
4014 error_at (gimple_location (e->call_stmt),
4015 "unsafe function call %qD within "
4016 "%<transaction_safe%> function", e->callee->decl);
4017 }
4018
4019 /* Diagnose call from atomic transactions to unmarked functions
4020 that are determined to not be safe. */
4021
4022 static void
4023 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4024 struct tm_region *all_tm_regions)
4025 {
4026 struct tm_region *r;
4027
4028 for (r = all_tm_regions; r ; r = r->next)
4029 if (gimple_transaction_subcode (r->transaction_stmt) & GTMA_IS_RELAXED)
4030 {
4031 /* Atomic transactions can be nested inside relaxed. */
4032 if (r->inner)
4033 ipa_tm_diagnose_transaction (node, r->inner);
4034 }
4035 else
4036 {
4037 VEC (basic_block, heap) *bbs;
4038 gimple_stmt_iterator gsi;
4039 basic_block bb;
4040 size_t i;
4041
4042 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4043 r->irr_blocks, NULL, false);
4044
4045 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); ++i)
4046 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4047 {
4048 gimple stmt = gsi_stmt (gsi);
4049 tree fndecl;
4050
4051 if (gimple_code (stmt) == GIMPLE_ASM)
4052 {
4053 error_at (gimple_location (stmt),
4054 "asm not allowed in atomic transaction");
4055 continue;
4056 }
4057
4058 if (!is_gimple_call (stmt))
4059 continue;
4060 fndecl = gimple_call_fndecl (stmt);
4061
4062 /* Indirect function calls have been diagnosed already. */
4063 if (!fndecl)
4064 continue;
4065
4066 /* Stop at the end of the transaction. */
4067 if (is_tm_ending_fndecl (fndecl))
4068 {
4069 if (bitmap_bit_p (r->exit_blocks, bb->index))
4070 break;
4071 continue;
4072 }
4073
4074 /* Marked functions have been diagnosed already. */
4075 if (is_tm_pure_call (stmt))
4076 continue;
4077 if (is_tm_callable (fndecl))
4078 continue;
4079
4080 if (cgraph_local_info (fndecl)->tm_may_enter_irr)
4081 error_at (gimple_location (stmt),
4082 "unsafe function call %qD within "
4083 "atomic transaction", fndecl);
4084 }
4085
4086 VEC_free (basic_block, heap, bbs);
4087 }
4088 }
4089
4090 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4091 OLD_DECL. The returned value is a freshly malloced pointer that
4092 should be freed by the caller. */
4093
4094 static tree
4095 tm_mangle (tree old_asm_id)
4096 {
4097 const char *old_asm_name;
4098 char *tm_name;
4099 void *alloc = NULL;
4100 struct demangle_component *dc;
4101 tree new_asm_id;
4102
4103 /* Determine if the symbol is already a valid C++ mangled name. Do this
4104 even for C, which might be interfacing with C++ code via appropriately
4105 ugly identifiers. */
4106 /* ??? We could probably do just as well checking for "_Z" and be done. */
4107 old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4108 dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4109
4110 if (dc == NULL)
4111 {
4112 char length[8];
4113
4114 do_unencoded:
4115 sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4116 tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4117 }
4118 else
4119 {
4120 old_asm_name += 2; /* Skip _Z */
4121
4122 switch (dc->type)
4123 {
4124 case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4125 case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4126 /* Don't play silly games, you! */
4127 goto do_unencoded;
4128
4129 case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4130 /* I'd really like to know if we can ever be passed one of
4131 these from the C++ front end. The Logical Thing would
4132 seem that hidden-alias should be outer-most, so that we
4133 get hidden-alias of a transaction-clone and not vice-versa. */
4134 old_asm_name += 2;
4135 break;
4136
4137 default:
4138 break;
4139 }
4140
4141 tm_name = concat ("_ZGTt", old_asm_name, NULL);
4142 }
4143 free (alloc);
4144
4145 new_asm_id = get_identifier (tm_name);
4146 free (tm_name);
4147
4148 return new_asm_id;
4149 }
4150
4151 static inline void
4152 ipa_tm_mark_needed_node (struct cgraph_node *node)
4153 {
4154 cgraph_mark_needed_node (node);
4155 /* ??? function_and_variable_visibility will reset
4156 the needed bit, without actually checking. */
4157 node->analyzed = 1;
4158 }
4159
4160 /* Callback data for ipa_tm_create_version_alias. */
4161 struct create_version_alias_info
4162 {
4163 struct cgraph_node *old_node;
4164 tree new_decl;
4165 };
4166
4167 /* A subrontine of ipa_tm_create_version, called via
4168 cgraph_for_node_and_aliases. Create new tm clones for each of
4169 the existing aliases. */
4170 static bool
4171 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4172 {
4173 struct create_version_alias_info *info
4174 = (struct create_version_alias_info *)data;
4175 tree old_decl, new_decl, tm_name;
4176 struct cgraph_node *new_node;
4177
4178 if (!node->same_body_alias)
4179 return false;
4180
4181 old_decl = node->decl;
4182 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4183 new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4184 TREE_CODE (old_decl), tm_name,
4185 TREE_TYPE (old_decl));
4186
4187 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4188 SET_DECL_RTL (new_decl, NULL);
4189
4190 /* Based loosely on C++'s make_alias_for(). */
4191 TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4192 DECL_CONTEXT (new_decl) = NULL;
4193 TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4194 DECL_EXTERNAL (new_decl) = 0;
4195 DECL_ARTIFICIAL (new_decl) = 1;
4196 TREE_ADDRESSABLE (new_decl) = 1;
4197 TREE_USED (new_decl) = 1;
4198 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4199
4200 /* Perform the same remapping to the comdat group. */
4201 if (DECL_COMDAT (new_decl))
4202 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4203
4204 new_node = cgraph_same_body_alias (NULL, new_decl, info->new_decl);
4205 new_node->tm_clone = true;
4206 get_cg_data (node)->clone = new_node;
4207
4208 record_tm_clone_pair (old_decl, new_decl);
4209
4210 if (info->old_node->needed)
4211 ipa_tm_mark_needed_node (new_node);
4212 return false;
4213 }
4214
4215 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4216 appropriate for the transactional clone. */
4217
4218 static void
4219 ipa_tm_create_version (struct cgraph_node *old_node)
4220 {
4221 tree new_decl, old_decl, tm_name;
4222 struct cgraph_node *new_node;
4223
4224 old_decl = old_node->decl;
4225 new_decl = copy_node (old_decl);
4226
4227 /* DECL_ASSEMBLER_NAME needs to be set before we call
4228 cgraph_copy_node_for_versioning below, because cgraph_node will
4229 fill the assembler_name_hash. */
4230 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4231 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4232 SET_DECL_RTL (new_decl, NULL);
4233 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4234
4235 /* Perform the same remapping to the comdat group. */
4236 if (DECL_COMDAT (new_decl))
4237 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4238
4239 new_node = cgraph_copy_node_for_versioning (old_node, new_decl, NULL, NULL);
4240 new_node->lowered = true;
4241 new_node->tm_clone = 1;
4242 get_cg_data (old_node)->clone = new_node;
4243
4244 if (cgraph_function_body_availability (old_node) >= AVAIL_OVERWRITABLE)
4245 {
4246 /* Remap extern inline to static inline. */
4247 /* ??? Is it worth trying to use make_decl_one_only? */
4248 if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
4249 {
4250 DECL_EXTERNAL (new_decl) = 0;
4251 TREE_PUBLIC (new_decl) = 0;
4252 }
4253
4254 tree_function_versioning (old_decl, new_decl, NULL, false, NULL,
4255 NULL, NULL);
4256 }
4257
4258 record_tm_clone_pair (old_decl, new_decl);
4259
4260 cgraph_call_function_insertion_hooks (new_node);
4261 if (old_node->needed)
4262 ipa_tm_mark_needed_node (new_node);
4263
4264 /* Do the same thing, but for any aliases of the original node. */
4265 {
4266 struct create_version_alias_info data;
4267 data.old_node = old_node;
4268 data.new_decl = new_decl;
4269 cgraph_for_node_and_aliases (old_node, ipa_tm_create_version_alias,
4270 &data, true);
4271 }
4272 }
4273
4274 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
4275
4276 static void
4277 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
4278 basic_block bb)
4279 {
4280 gimple_stmt_iterator gsi;
4281 gimple g;
4282
4283 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4284
4285 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
4286 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
4287
4288 split_block_after_labels (bb);
4289 gsi = gsi_after_labels (bb);
4290 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
4291
4292 cgraph_create_edge (node,
4293 cgraph_get_create_node
4294 (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
4295 g, 0,
4296 compute_call_stmt_bb_frequency (node->decl,
4297 gimple_bb (g)));
4298 }
4299
4300 /* Construct a call to TM_GETTMCLONE and insert it before GSI. */
4301
4302 static bool
4303 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
4304 struct tm_region *region,
4305 gimple_stmt_iterator *gsi, gimple stmt)
4306 {
4307 tree gettm_fn, ret, old_fn, callfn;
4308 gimple g, g2;
4309 bool safe;
4310
4311 old_fn = gimple_call_fn (stmt);
4312
4313 if (TREE_CODE (old_fn) == ADDR_EXPR)
4314 {
4315 tree fndecl = TREE_OPERAND (old_fn, 0);
4316 tree clone = get_tm_clone_pair (fndecl);
4317
4318 /* By transforming the call into a TM_GETTMCLONE, we are
4319 technically taking the address of the original function and
4320 its clone. Explain this so inlining will know this function
4321 is needed. */
4322 cgraph_mark_address_taken_node (cgraph_get_node (fndecl));
4323 if (clone)
4324 cgraph_mark_address_taken_node (cgraph_get_node (clone));
4325 }
4326
4327 safe = is_tm_safe (TREE_TYPE (old_fn));
4328 gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
4329 : BUILT_IN_TM_GETTMCLONE_IRR);
4330 ret = create_tmp_var (ptr_type_node, NULL);
4331 add_referenced_var (ret);
4332
4333 if (!safe)
4334 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4335
4336 /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
4337 if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
4338 old_fn = OBJ_TYPE_REF_EXPR (old_fn);
4339
4340 g = gimple_build_call (gettm_fn, 1, old_fn);
4341 ret = make_ssa_name (ret, g);
4342 gimple_call_set_lhs (g, ret);
4343
4344 gsi_insert_before (gsi, g, GSI_SAME_STMT);
4345
4346 cgraph_create_edge (node, cgraph_get_create_node (gettm_fn), g, 0,
4347 compute_call_stmt_bb_frequency (node->decl,
4348 gimple_bb(g)));
4349
4350 /* Cast return value from tm_gettmclone* into appropriate function
4351 pointer. */
4352 callfn = create_tmp_var (TREE_TYPE (old_fn), NULL);
4353 add_referenced_var (callfn);
4354 g2 = gimple_build_assign (callfn,
4355 fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
4356 callfn = make_ssa_name (callfn, g2);
4357 gimple_assign_set_lhs (g2, callfn);
4358 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
4359
4360 /* ??? This is a hack to preserve the NOTHROW bit on the call,
4361 which we would have derived from the decl. Failure to save
4362 this bit means we might have to split the basic block. */
4363 if (gimple_call_nothrow_p (stmt))
4364 gimple_call_set_nothrow (stmt, true);
4365
4366 gimple_call_set_fn (stmt, callfn);
4367
4368 /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
4369 for a call statement. Fix it. */
4370 {
4371 tree lhs = gimple_call_lhs (stmt);
4372 tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
4373 if (lhs
4374 && !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
4375 {
4376 tree temp;
4377
4378 temp = make_rename_temp (rettype, 0);
4379 gimple_call_set_lhs (stmt, temp);
4380
4381 g2 = gimple_build_assign (lhs,
4382 fold_build1 (VIEW_CONVERT_EXPR,
4383 TREE_TYPE (lhs), temp));
4384 gsi_insert_after (gsi, g2, GSI_SAME_STMT);
4385 }
4386 }
4387
4388 update_stmt (stmt);
4389
4390 return true;
4391 }
4392
4393 /* Helper function for ipa_tm_transform_calls*. Given a call
4394 statement in GSI which resides inside transaction REGION, redirect
4395 the call to either its wrapper function, or its clone. */
4396
4397 static void
4398 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
4399 struct tm_region *region,
4400 gimple_stmt_iterator *gsi,
4401 bool *need_ssa_rename_p)
4402 {
4403 gimple stmt = gsi_stmt (*gsi);
4404 struct cgraph_node *new_node;
4405 struct cgraph_edge *e = cgraph_edge (node, stmt);
4406 tree fndecl = gimple_call_fndecl (stmt);
4407
4408 /* For indirect calls, pass the address through the runtime. */
4409 if (fndecl == NULL)
4410 {
4411 *need_ssa_rename_p |=
4412 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
4413 return;
4414 }
4415
4416 /* Handle some TM builtins. Ordinarily these aren't actually generated
4417 at this point, but handling these functions when written in by the
4418 user makes it easier to build unit tests. */
4419 if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
4420 return;
4421
4422 /* Fixup recursive calls inside clones. */
4423 /* ??? Why did cgraph_copy_node_for_versioning update the call edges
4424 for recursion but not update the call statements themselves? */
4425 if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
4426 {
4427 gimple_call_set_fndecl (stmt, current_function_decl);
4428 return;
4429 }
4430
4431 /* If there is a replacement, use it. */
4432 fndecl = find_tm_replacement_function (fndecl);
4433 if (fndecl)
4434 {
4435 new_node = cgraph_get_create_node (fndecl);
4436
4437 /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
4438
4439 We can't do this earlier in record_tm_replacement because
4440 cgraph_remove_unreachable_nodes is called before we inject
4441 references to the node. Further, we can't do this in some
4442 nice central place in ipa_tm_execute because we don't have
4443 the exact list of wrapper functions that would be used.
4444 Marking more wrappers than necessary results in the creation
4445 of unnecessary cgraph_nodes, which can cause some of the
4446 other IPA passes to crash.
4447
4448 We do need to mark these nodes so that we get the proper
4449 result in expand_call_tm. */
4450 /* ??? This seems broken. How is it that we're marking the
4451 CALLEE as may_enter_irr? Surely we should be marking the
4452 CALLER. Also note that find_tm_replacement_function also
4453 contains mappings into the TM runtime, e.g. memcpy. These
4454 we know won't go irrevocable. */
4455 new_node->local.tm_may_enter_irr = 1;
4456 }
4457 else
4458 {
4459 struct tm_ipa_cg_data *d = get_cg_data (e->callee);
4460 new_node = d->clone;
4461
4462 /* As we've already skipped pure calls and appropriate builtins,
4463 and we've already marked irrevocable blocks, if we can't come
4464 up with a static replacement, then ask the runtime. */
4465 if (new_node == NULL)
4466 {
4467 *need_ssa_rename_p |=
4468 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
4469 cgraph_remove_edge (e);
4470 return;
4471 }
4472
4473 fndecl = new_node->decl;
4474 }
4475
4476 cgraph_redirect_edge_callee (e, new_node);
4477 gimple_call_set_fndecl (stmt, fndecl);
4478 }
4479
4480 /* Helper function for ipa_tm_transform_calls. For a given BB,
4481 install calls to tm_irrevocable when IRR_BLOCKS are reached,
4482 redirect other calls to the generated transactional clone. */
4483
4484 static bool
4485 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
4486 basic_block bb, bitmap irr_blocks)
4487 {
4488 gimple_stmt_iterator gsi;
4489 bool need_ssa_rename = false;
4490
4491 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
4492 {
4493 ipa_tm_insert_irr_call (node, region, bb);
4494 return true;
4495 }
4496
4497 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4498 {
4499 gimple stmt = gsi_stmt (gsi);
4500
4501 if (!is_gimple_call (stmt))
4502 continue;
4503 if (is_tm_pure_call (stmt))
4504 continue;
4505
4506 /* Redirect edges to the appropriate replacement or clone. */
4507 ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
4508 }
4509
4510 return need_ssa_rename;
4511 }
4512
4513 /* Walk the CFG for REGION, beginning at BB. Install calls to
4514 tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
4515 the generated transactional clone. */
4516
4517 static bool
4518 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
4519 basic_block bb, bitmap irr_blocks)
4520 {
4521 bool need_ssa_rename = false;
4522 edge e;
4523 edge_iterator ei;
4524 VEC(basic_block, heap) *queue = NULL;
4525 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4526
4527 VEC_safe_push (basic_block, heap, queue, bb);
4528 do
4529 {
4530 bb = VEC_pop (basic_block, queue);
4531
4532 need_ssa_rename |=
4533 ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
4534
4535 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
4536 continue;
4537
4538 if (region && bitmap_bit_p (region->exit_blocks, bb->index))
4539 continue;
4540
4541 FOR_EACH_EDGE (e, ei, bb->succs)
4542 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4543 {
4544 bitmap_set_bit (visited_blocks, e->dest->index);
4545 VEC_safe_push (basic_block, heap, queue, e->dest);
4546 }
4547 }
4548 while (!VEC_empty (basic_block, queue));
4549
4550 VEC_free (basic_block, heap, queue);
4551 BITMAP_FREE (visited_blocks);
4552
4553 return need_ssa_rename;
4554 }
4555
4556 /* Transform the calls within the TM regions within NODE. */
4557
4558 static void
4559 ipa_tm_transform_transaction (struct cgraph_node *node)
4560 {
4561 struct tm_ipa_cg_data *d = get_cg_data (node);
4562 struct tm_region *region;
4563 bool need_ssa_rename = false;
4564
4565 current_function_decl = node->decl;
4566 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4567 calculate_dominance_info (CDI_DOMINATORS);
4568
4569 for (region = d->all_tm_regions; region; region = region->next)
4570 {
4571 /* If we're sure to go irrevocable, don't transform anything. */
4572 if (d->irrevocable_blocks_normal
4573 && bitmap_bit_p (d->irrevocable_blocks_normal,
4574 region->entry_block->index))
4575 {
4576 transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE);
4577 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4578 continue;
4579 }
4580
4581 need_ssa_rename |=
4582 ipa_tm_transform_calls (node, region, region->entry_block,
4583 d->irrevocable_blocks_normal);
4584 }
4585
4586 if (need_ssa_rename)
4587 update_ssa (TODO_update_ssa_only_virtuals);
4588
4589 pop_cfun ();
4590 current_function_decl = NULL;
4591 }
4592
4593 /* Transform the calls within the transactional clone of NODE. */
4594
4595 static void
4596 ipa_tm_transform_clone (struct cgraph_node *node)
4597 {
4598 struct tm_ipa_cg_data *d = get_cg_data (node);
4599 bool need_ssa_rename;
4600
4601 /* If this function makes no calls and has no irrevocable blocks,
4602 then there's nothing to do. */
4603 /* ??? Remove non-aborting top-level transactions. */
4604 if (!node->callees && !d->irrevocable_blocks_clone)
4605 return;
4606
4607 current_function_decl = d->clone->decl;
4608 push_cfun (DECL_STRUCT_FUNCTION (current_function_decl));
4609 calculate_dominance_info (CDI_DOMINATORS);
4610
4611 need_ssa_rename =
4612 ipa_tm_transform_calls (d->clone, NULL, single_succ (ENTRY_BLOCK_PTR),
4613 d->irrevocable_blocks_clone);
4614
4615 if (need_ssa_rename)
4616 update_ssa (TODO_update_ssa_only_virtuals);
4617
4618 pop_cfun ();
4619 current_function_decl = NULL;
4620 }
4621
4622 /* Main entry point for the transactional memory IPA pass. */
4623
4624 static unsigned int
4625 ipa_tm_execute (void)
4626 {
4627 cgraph_node_queue tm_callees = NULL;
4628 /* List of functions that will go irrevocable. */
4629 cgraph_node_queue irr_worklist = NULL;
4630
4631 struct cgraph_node *node;
4632 struct tm_ipa_cg_data *d;
4633 enum availability a;
4634 unsigned int i;
4635
4636 #ifdef ENABLE_CHECKING
4637 verify_cgraph ();
4638 #endif
4639
4640 bitmap_obstack_initialize (&tm_obstack);
4641
4642 /* For all local functions marked tm_callable, queue them. */
4643 for (node = cgraph_nodes; node; node = node->next)
4644 if (is_tm_callable (node->decl)
4645 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
4646 {
4647 d = get_cg_data (node);
4648 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
4649 }
4650
4651 /* For all local reachable functions... */
4652 for (node = cgraph_nodes; node; node = node->next)
4653 if (node->reachable && node->lowered
4654 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
4655 {
4656 /* ... marked tm_pure, record that fact for the runtime by
4657 indicating that the pure function is its own tm_callable.
4658 No need to do this if the function's address can't be taken. */
4659 if (is_tm_pure (node->decl))
4660 {
4661 if (!node->local.local)
4662 record_tm_clone_pair (node->decl, node->decl);
4663 continue;
4664 }
4665
4666 current_function_decl = node->decl;
4667 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4668 calculate_dominance_info (CDI_DOMINATORS);
4669
4670 tm_region_init (NULL);
4671 if (all_tm_regions)
4672 {
4673 d = get_cg_data (node);
4674
4675 /* Scan for calls that are in each transaction. */
4676 ipa_tm_scan_calls_transaction (d, &tm_callees);
4677
4678 /* If we saw something that will make us go irrevocable, put it
4679 in the worklist so we can scan the function later
4680 (ipa_tm_scan_irr_function) and mark the irrevocable blocks. */
4681 if (node->local.tm_may_enter_irr)
4682 {
4683 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
4684 d->want_irr_scan_normal = true;
4685 }
4686 }
4687
4688 pop_cfun ();
4689 current_function_decl = NULL;
4690 }
4691
4692 /* For every local function on the callee list, scan as if we will be
4693 creating a transactional clone, queueing all new functions we find
4694 along the way. */
4695 for (i = 0; i < VEC_length (cgraph_node_p, tm_callees); ++i)
4696 {
4697 node = VEC_index (cgraph_node_p, tm_callees, i);
4698 a = cgraph_function_body_availability (node);
4699 d = get_cg_data (node);
4700
4701 /* If we saw something that will make us go irrevocable, put it
4702 in the worklist so we can scan the function later
4703 (ipa_tm_scan_irr_function) and mark the irrevocable blocks. */
4704 if (node->local.tm_may_enter_irr)
4705 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
4706
4707 /* Some callees cannot be arbitrarily cloned. These will always be
4708 irrevocable. Mark these now, so that we need not scan them. */
4709 if (is_tm_irrevocable (node->decl))
4710 ipa_tm_note_irrevocable (node, &irr_worklist);
4711 else if (a <= AVAIL_NOT_AVAILABLE
4712 && !is_tm_safe_or_pure (node->decl))
4713 ipa_tm_note_irrevocable (node, &irr_worklist);
4714 else if (a >= AVAIL_OVERWRITABLE)
4715 {
4716 if (!tree_versionable_function_p (node->decl))
4717 ipa_tm_note_irrevocable (node, &irr_worklist);
4718 else if (!d->is_irrevocable)
4719 {
4720 /* If this is an alias, make sure its base is queued as well.
4721 we need not scan the callees now, as the base will do. */
4722 if (node->alias)
4723 {
4724 node = cgraph_get_node (node->thunk.alias);
4725 d = get_cg_data (node);
4726 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
4727 continue;
4728 }
4729
4730 /* Add all nodes called by this function into
4731 tm_callees as well. */
4732 ipa_tm_scan_calls_clone (node, &tm_callees);
4733 }
4734 }
4735 }
4736
4737 /* Iterate scans until no more work to be done. Prefer not to use
4738 VEC_pop because the worklist tends to follow a breadth-first
4739 search of the callgraph, which should allow convergance with a
4740 minimum number of scans. But we also don't want the worklist
4741 array to grow without bound, so we shift the array up periodically. */
4742 for (i = 0; i < VEC_length (cgraph_node_p, irr_worklist); ++i)
4743 {
4744 if (i > 256 && i == VEC_length (cgraph_node_p, irr_worklist) / 8)
4745 {
4746 VEC_block_remove (cgraph_node_p, irr_worklist, 0, i);
4747 i = 0;
4748 }
4749
4750 node = VEC_index (cgraph_node_p, irr_worklist, i);
4751 d = get_cg_data (node);
4752 d->in_worklist = false;
4753
4754 if (d->want_irr_scan_normal)
4755 {
4756 d->want_irr_scan_normal = false;
4757 ipa_tm_scan_irr_function (node, false);
4758 }
4759 if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
4760 ipa_tm_note_irrevocable (node, &irr_worklist);
4761 }
4762
4763 /* For every function on the callee list, collect the tm_may_enter_irr
4764 bit on the node. */
4765 VEC_truncate (cgraph_node_p, irr_worklist, 0);
4766 for (i = 0; i < VEC_length (cgraph_node_p, tm_callees); ++i)
4767 {
4768 node = VEC_index (cgraph_node_p, tm_callees, i);
4769 if (ipa_tm_mayenterirr_function (node))
4770 {
4771 d = get_cg_data (node);
4772 gcc_assert (d->in_worklist == false);
4773 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
4774 }
4775 }
4776
4777 /* Propagate the tm_may_enter_irr bit to callers until stable. */
4778 for (i = 0; i < VEC_length (cgraph_node_p, irr_worklist); ++i)
4779 {
4780 struct cgraph_node *caller;
4781 struct cgraph_edge *e;
4782 struct ipa_ref *ref;
4783 unsigned j;
4784
4785 if (i > 256 && i == VEC_length (cgraph_node_p, irr_worklist) / 8)
4786 {
4787 VEC_block_remove (cgraph_node_p, irr_worklist, 0, i);
4788 i = 0;
4789 }
4790
4791 node = VEC_index (cgraph_node_p, irr_worklist, i);
4792 d = get_cg_data (node);
4793 d->in_worklist = false;
4794 node->local.tm_may_enter_irr = true;
4795
4796 /* Propagate back to normal callers. */
4797 for (e = node->callers; e ; e = e->next_caller)
4798 {
4799 caller = e->caller;
4800 if (!is_tm_safe_or_pure (caller->decl)
4801 && !caller->local.tm_may_enter_irr)
4802 {
4803 d = get_cg_data (caller);
4804 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
4805 }
4806 }
4807
4808 /* Propagate back to referring aliases as well. */
4809 for (j = 0; ipa_ref_list_refering_iterate (&node->ref_list, j, ref); j++)
4810 {
4811 caller = ref->refering.cgraph_node;
4812 if (ref->use == IPA_REF_ALIAS
4813 && !caller->local.tm_may_enter_irr)
4814 {
4815 d = get_cg_data (caller);
4816 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
4817 }
4818 }
4819 }
4820
4821 /* Now validate all tm_safe functions, and all atomic regions in
4822 other functions. */
4823 for (node = cgraph_nodes; node; node = node->next)
4824 if (node->reachable && node->lowered
4825 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
4826 {
4827 d = get_cg_data (node);
4828 if (is_tm_safe (node->decl))
4829 ipa_tm_diagnose_tm_safe (node);
4830 else if (d->all_tm_regions)
4831 ipa_tm_diagnose_transaction (node, d->all_tm_regions);
4832 }
4833
4834 /* Create clones. Do those that are not irrevocable and have a
4835 positive call count. Do those publicly visible functions that
4836 the user directed us to clone. */
4837 for (i = 0; i < VEC_length (cgraph_node_p, tm_callees); ++i)
4838 {
4839 bool doit = false;
4840
4841 node = VEC_index (cgraph_node_p, tm_callees, i);
4842 if (node->same_body_alias)
4843 continue;
4844
4845 a = cgraph_function_body_availability (node);
4846 d = get_cg_data (node);
4847
4848 if (a <= AVAIL_NOT_AVAILABLE)
4849 doit = is_tm_callable (node->decl);
4850 else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
4851 doit = true;
4852 else if (!d->is_irrevocable
4853 && d->tm_callers_normal + d->tm_callers_clone > 0)
4854 doit = true;
4855
4856 if (doit)
4857 ipa_tm_create_version (node);
4858 }
4859
4860 /* Redirect calls to the new clones, and insert irrevocable marks. */
4861 for (i = 0; i < VEC_length (cgraph_node_p, tm_callees); ++i)
4862 {
4863 node = VEC_index (cgraph_node_p, tm_callees, i);
4864 if (node->analyzed)
4865 {
4866 d = get_cg_data (node);
4867 if (d->clone)
4868 ipa_tm_transform_clone (node);
4869 }
4870 }
4871 for (node = cgraph_nodes; node; node = node->next)
4872 if (node->reachable && node->lowered
4873 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
4874 {
4875 d = get_cg_data (node);
4876 if (d->all_tm_regions)
4877 ipa_tm_transform_transaction (node);
4878 }
4879
4880 /* Free and clear all data structures. */
4881 VEC_free (cgraph_node_p, heap, tm_callees);
4882 VEC_free (cgraph_node_p, heap, irr_worklist);
4883 bitmap_obstack_release (&tm_obstack);
4884
4885 for (node = cgraph_nodes; node; node = node->next)
4886 node->aux = NULL;
4887
4888 #ifdef ENABLE_CHECKING
4889 verify_cgraph ();
4890 #endif
4891
4892 return 0;
4893 }
4894
4895 struct simple_ipa_opt_pass pass_ipa_tm =
4896 {
4897 {
4898 SIMPLE_IPA_PASS,
4899 "tmipa", /* name */
4900 gate_tm, /* gate */
4901 ipa_tm_execute, /* execute */
4902 NULL, /* sub */
4903 NULL, /* next */
4904 0, /* static_pass_number */
4905 TV_TRANS_MEM, /* tv_id */
4906 PROP_ssa | PROP_cfg, /* properties_required */
4907 0, /* properties_provided */
4908 0, /* properties_destroyed */
4909 0, /* todo_flags_start */
4910 TODO_dump_func, /* todo_flags_finish */
4911 },
4912 };
4913
4914 #include "gt-trans-mem.h"