]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/trans-mem.c
This patch rewrites the old VEC macro-based interface into a new one
[thirdparty/gcc.git] / gcc / trans-mem.c
1 /* Passes for transactional memory support.
2 Copyright (C) 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tree.h"
24 #include "gimple.h"
25 #include "tree-flow.h"
26 #include "tree-pass.h"
27 #include "tree-inline.h"
28 #include "diagnostic-core.h"
29 #include "demangle.h"
30 #include "output.h"
31 #include "trans-mem.h"
32 #include "params.h"
33 #include "target.h"
34 #include "langhooks.h"
35 #include "gimple-pretty-print.h"
36 #include "cfgloop.h"
37
38
39 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
40 #define PROB_VERY_LIKELY (PROB_ALWAYS - PROB_VERY_UNLIKELY)
41 #define PROB_UNLIKELY (REG_BR_PROB_BASE / 5 - 1)
42 #define PROB_LIKELY (PROB_ALWAYS - PROB_VERY_LIKELY)
43 #define PROB_ALWAYS (REG_BR_PROB_BASE)
44
45 #define A_RUNINSTRUMENTEDCODE 0x0001
46 #define A_RUNUNINSTRUMENTEDCODE 0x0002
47 #define A_SAVELIVEVARIABLES 0x0004
48 #define A_RESTORELIVEVARIABLES 0x0008
49 #define A_ABORTTRANSACTION 0x0010
50
51 #define AR_USERABORT 0x0001
52 #define AR_USERRETRY 0x0002
53 #define AR_TMCONFLICT 0x0004
54 #define AR_EXCEPTIONBLOCKABORT 0x0008
55 #define AR_OUTERABORT 0x0010
56
57 #define MODE_SERIALIRREVOCABLE 0x0000
58
59
60 /* The representation of a transaction changes several times during the
61 lowering process. In the beginning, in the front-end we have the
62 GENERIC tree TRANSACTION_EXPR. For example,
63
64 __transaction {
65 local++;
66 if (++global == 10)
67 __tm_abort;
68 }
69
70 During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
71 trivially replaced with a GIMPLE_TRANSACTION node.
72
73 During pass_lower_tm, we examine the body of transactions looking
74 for aborts. Transactions that do not contain an abort may be
75 merged into an outer transaction. We also add a TRY-FINALLY node
76 to arrange for the transaction to be committed on any exit.
77
78 [??? Think about how this arrangement affects throw-with-commit
79 and throw-with-abort operations. In this case we want the TRY to
80 handle gotos, but not to catch any exceptions because the transaction
81 will already be closed.]
82
83 GIMPLE_TRANSACTION [label=NULL] {
84 try {
85 local = local + 1;
86 t0 = global;
87 t1 = t0 + 1;
88 global = t1;
89 if (t1 == 10)
90 __builtin___tm_abort ();
91 } finally {
92 __builtin___tm_commit ();
93 }
94 }
95
96 During pass_lower_eh, we create EH regions for the transactions,
97 intermixed with the regular EH stuff. This gives us a nice persistent
98 mapping (all the way through rtl) from transactional memory operation
99 back to the transaction, which allows us to get the abnormal edges
100 correct to model transaction aborts and restarts:
101
102 GIMPLE_TRANSACTION [label=over]
103 local = local + 1;
104 t0 = global;
105 t1 = t0 + 1;
106 global = t1;
107 if (t1 == 10)
108 __builtin___tm_abort ();
109 __builtin___tm_commit ();
110 over:
111
112 This is the end of all_lowering_passes, and so is what is present
113 during the IPA passes, and through all of the optimization passes.
114
115 During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
116 functions and mark functions for cloning.
117
118 At the end of gimple optimization, before exiting SSA form,
119 pass_tm_edges replaces statements that perform transactional
120 memory operations with the appropriate TM builtins, and swap
121 out function calls with their transactional clones. At this
122 point we introduce the abnormal transaction restart edges and
123 complete lowering of the GIMPLE_TRANSACTION node.
124
125 x = __builtin___tm_start (MAY_ABORT);
126 eh_label:
127 if (x & abort_transaction)
128 goto over;
129 local = local + 1;
130 t0 = __builtin___tm_load (global);
131 t1 = t0 + 1;
132 __builtin___tm_store (&global, t1);
133 if (t1 == 10)
134 __builtin___tm_abort ();
135 __builtin___tm_commit ();
136 over:
137 */
138
139 static void *expand_regions (struct tm_region *,
140 void *(*callback)(struct tm_region *, void *),
141 void *);
142
143 \f
144 /* Return the attributes we want to examine for X, or NULL if it's not
145 something we examine. We look at function types, but allow pointers
146 to function types and function decls and peek through. */
147
148 static tree
149 get_attrs_for (const_tree x)
150 {
151 switch (TREE_CODE (x))
152 {
153 case FUNCTION_DECL:
154 return TYPE_ATTRIBUTES (TREE_TYPE (x));
155 break;
156
157 default:
158 if (TYPE_P (x))
159 return NULL;
160 x = TREE_TYPE (x);
161 if (TREE_CODE (x) != POINTER_TYPE)
162 return NULL;
163 /* FALLTHRU */
164
165 case POINTER_TYPE:
166 x = TREE_TYPE (x);
167 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
168 return NULL;
169 /* FALLTHRU */
170
171 case FUNCTION_TYPE:
172 case METHOD_TYPE:
173 return TYPE_ATTRIBUTES (x);
174 }
175 }
176
177 /* Return true if X has been marked TM_PURE. */
178
179 bool
180 is_tm_pure (const_tree x)
181 {
182 unsigned flags;
183
184 switch (TREE_CODE (x))
185 {
186 case FUNCTION_DECL:
187 case FUNCTION_TYPE:
188 case METHOD_TYPE:
189 break;
190
191 default:
192 if (TYPE_P (x))
193 return false;
194 x = TREE_TYPE (x);
195 if (TREE_CODE (x) != POINTER_TYPE)
196 return false;
197 /* FALLTHRU */
198
199 case POINTER_TYPE:
200 x = TREE_TYPE (x);
201 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
202 return false;
203 break;
204 }
205
206 flags = flags_from_decl_or_type (x);
207 return (flags & ECF_TM_PURE) != 0;
208 }
209
210 /* Return true if X has been marked TM_IRREVOCABLE. */
211
212 static bool
213 is_tm_irrevocable (tree x)
214 {
215 tree attrs = get_attrs_for (x);
216
217 if (attrs && lookup_attribute ("transaction_unsafe", attrs))
218 return true;
219
220 /* A call to the irrevocable builtin is by definition,
221 irrevocable. */
222 if (TREE_CODE (x) == ADDR_EXPR)
223 x = TREE_OPERAND (x, 0);
224 if (TREE_CODE (x) == FUNCTION_DECL
225 && DECL_BUILT_IN_CLASS (x) == BUILT_IN_NORMAL
226 && DECL_FUNCTION_CODE (x) == BUILT_IN_TM_IRREVOCABLE)
227 return true;
228
229 return false;
230 }
231
232 /* Return true if X has been marked TM_SAFE. */
233
234 bool
235 is_tm_safe (const_tree x)
236 {
237 if (flag_tm)
238 {
239 tree attrs = get_attrs_for (x);
240 if (attrs)
241 {
242 if (lookup_attribute ("transaction_safe", attrs))
243 return true;
244 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
245 return true;
246 }
247 }
248 return false;
249 }
250
251 /* Return true if CALL is const, or tm_pure. */
252
253 static bool
254 is_tm_pure_call (gimple call)
255 {
256 tree fn = gimple_call_fn (call);
257
258 if (TREE_CODE (fn) == ADDR_EXPR)
259 {
260 fn = TREE_OPERAND (fn, 0);
261 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
262 }
263 else
264 fn = TREE_TYPE (fn);
265
266 return is_tm_pure (fn);
267 }
268
269 /* Return true if X has been marked TM_CALLABLE. */
270
271 static bool
272 is_tm_callable (tree x)
273 {
274 tree attrs = get_attrs_for (x);
275 if (attrs)
276 {
277 if (lookup_attribute ("transaction_callable", attrs))
278 return true;
279 if (lookup_attribute ("transaction_safe", attrs))
280 return true;
281 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
282 return true;
283 }
284 return false;
285 }
286
287 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
288
289 bool
290 is_tm_may_cancel_outer (tree x)
291 {
292 tree attrs = get_attrs_for (x);
293 if (attrs)
294 return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
295 return false;
296 }
297
298 /* Return true for built in functions that "end" a transaction. */
299
300 bool
301 is_tm_ending_fndecl (tree fndecl)
302 {
303 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
304 switch (DECL_FUNCTION_CODE (fndecl))
305 {
306 case BUILT_IN_TM_COMMIT:
307 case BUILT_IN_TM_COMMIT_EH:
308 case BUILT_IN_TM_ABORT:
309 case BUILT_IN_TM_IRREVOCABLE:
310 return true;
311 default:
312 break;
313 }
314
315 return false;
316 }
317
318 /* Return true if STMT is a TM load. */
319
320 static bool
321 is_tm_load (gimple stmt)
322 {
323 tree fndecl;
324
325 if (gimple_code (stmt) != GIMPLE_CALL)
326 return false;
327
328 fndecl = gimple_call_fndecl (stmt);
329 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
330 && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
331 }
332
333 /* Same as above, but for simple TM loads, that is, not the
334 after-write, after-read, etc optimized variants. */
335
336 static bool
337 is_tm_simple_load (gimple stmt)
338 {
339 tree fndecl;
340
341 if (gimple_code (stmt) != GIMPLE_CALL)
342 return false;
343
344 fndecl = gimple_call_fndecl (stmt);
345 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
346 {
347 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
348 return (fcode == BUILT_IN_TM_LOAD_1
349 || fcode == BUILT_IN_TM_LOAD_2
350 || fcode == BUILT_IN_TM_LOAD_4
351 || fcode == BUILT_IN_TM_LOAD_8
352 || fcode == BUILT_IN_TM_LOAD_FLOAT
353 || fcode == BUILT_IN_TM_LOAD_DOUBLE
354 || fcode == BUILT_IN_TM_LOAD_LDOUBLE
355 || fcode == BUILT_IN_TM_LOAD_M64
356 || fcode == BUILT_IN_TM_LOAD_M128
357 || fcode == BUILT_IN_TM_LOAD_M256);
358 }
359 return false;
360 }
361
362 /* Return true if STMT is a TM store. */
363
364 static bool
365 is_tm_store (gimple stmt)
366 {
367 tree fndecl;
368
369 if (gimple_code (stmt) != GIMPLE_CALL)
370 return false;
371
372 fndecl = gimple_call_fndecl (stmt);
373 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
374 && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
375 }
376
377 /* Same as above, but for simple TM stores, that is, not the
378 after-write, after-read, etc optimized variants. */
379
380 static bool
381 is_tm_simple_store (gimple stmt)
382 {
383 tree fndecl;
384
385 if (gimple_code (stmt) != GIMPLE_CALL)
386 return false;
387
388 fndecl = gimple_call_fndecl (stmt);
389 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
390 {
391 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
392 return (fcode == BUILT_IN_TM_STORE_1
393 || fcode == BUILT_IN_TM_STORE_2
394 || fcode == BUILT_IN_TM_STORE_4
395 || fcode == BUILT_IN_TM_STORE_8
396 || fcode == BUILT_IN_TM_STORE_FLOAT
397 || fcode == BUILT_IN_TM_STORE_DOUBLE
398 || fcode == BUILT_IN_TM_STORE_LDOUBLE
399 || fcode == BUILT_IN_TM_STORE_M64
400 || fcode == BUILT_IN_TM_STORE_M128
401 || fcode == BUILT_IN_TM_STORE_M256);
402 }
403 return false;
404 }
405
406 /* Return true if FNDECL is BUILT_IN_TM_ABORT. */
407
408 static bool
409 is_tm_abort (tree fndecl)
410 {
411 return (fndecl
412 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
413 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_TM_ABORT);
414 }
415
416 /* Build a GENERIC tree for a user abort. This is called by front ends
417 while transforming the __tm_abort statement. */
418
419 tree
420 build_tm_abort_call (location_t loc, bool is_outer)
421 {
422 return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
423 build_int_cst (integer_type_node,
424 AR_USERABORT
425 | (is_outer ? AR_OUTERABORT : 0)));
426 }
427
428 /* Common gateing function for several of the TM passes. */
429
430 static bool
431 gate_tm (void)
432 {
433 return flag_tm;
434 }
435 \f
436 /* Map for aribtrary function replacement under TM, as created
437 by the tm_wrap attribute. */
438
439 static GTY((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
440 htab_t tm_wrap_map;
441
442 void
443 record_tm_replacement (tree from, tree to)
444 {
445 struct tree_map **slot, *h;
446
447 /* Do not inline wrapper functions that will get replaced in the TM
448 pass.
449
450 Suppose you have foo() that will get replaced into tmfoo(). Make
451 sure the inliner doesn't try to outsmart us and inline foo()
452 before we get a chance to do the TM replacement. */
453 DECL_UNINLINABLE (from) = 1;
454
455 if (tm_wrap_map == NULL)
456 tm_wrap_map = htab_create_ggc (32, tree_map_hash, tree_map_eq, 0);
457
458 h = ggc_alloc_tree_map ();
459 h->hash = htab_hash_pointer (from);
460 h->base.from = from;
461 h->to = to;
462
463 slot = (struct tree_map **)
464 htab_find_slot_with_hash (tm_wrap_map, h, h->hash, INSERT);
465 *slot = h;
466 }
467
468 /* Return a TM-aware replacement function for DECL. */
469
470 static tree
471 find_tm_replacement_function (tree fndecl)
472 {
473 if (tm_wrap_map)
474 {
475 struct tree_map *h, in;
476
477 in.base.from = fndecl;
478 in.hash = htab_hash_pointer (fndecl);
479 h = (struct tree_map *) htab_find_with_hash (tm_wrap_map, &in, in.hash);
480 if (h)
481 return h->to;
482 }
483
484 /* ??? We may well want TM versions of most of the common <string.h>
485 functions. For now, we've already these two defined. */
486 /* Adjust expand_call_tm() attributes as necessary for the cases
487 handled here: */
488 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
489 switch (DECL_FUNCTION_CODE (fndecl))
490 {
491 case BUILT_IN_MEMCPY:
492 return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
493 case BUILT_IN_MEMMOVE:
494 return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
495 case BUILT_IN_MEMSET:
496 return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
497 default:
498 return NULL;
499 }
500
501 return NULL;
502 }
503
504 /* When appropriate, record TM replacement for memory allocation functions.
505
506 FROM is the FNDECL to wrap. */
507 void
508 tm_malloc_replacement (tree from)
509 {
510 const char *str;
511 tree to;
512
513 if (TREE_CODE (from) != FUNCTION_DECL)
514 return;
515
516 /* If we have a previous replacement, the user must be explicitly
517 wrapping malloc/calloc/free. They better know what they're
518 doing... */
519 if (find_tm_replacement_function (from))
520 return;
521
522 str = IDENTIFIER_POINTER (DECL_NAME (from));
523
524 if (!strcmp (str, "malloc"))
525 to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
526 else if (!strcmp (str, "calloc"))
527 to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
528 else if (!strcmp (str, "free"))
529 to = builtin_decl_explicit (BUILT_IN_TM_FREE);
530 else
531 return;
532
533 TREE_NOTHROW (to) = 0;
534
535 record_tm_replacement (from, to);
536 }
537 \f
538 /* Diagnostics for tm_safe functions/regions. Called by the front end
539 once we've lowered the function to high-gimple. */
540
541 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
542 Process exactly one statement. WI->INFO is set to non-null when in
543 the context of a tm_safe function, and null for a __transaction block. */
544
545 #define DIAG_TM_OUTER 1
546 #define DIAG_TM_SAFE 2
547 #define DIAG_TM_RELAXED 4
548
549 struct diagnose_tm
550 {
551 unsigned int summary_flags : 8;
552 unsigned int block_flags : 8;
553 unsigned int func_flags : 8;
554 unsigned int saw_volatile : 1;
555 gimple stmt;
556 };
557
558 /* Return true if T is a volatile variable of some kind. */
559
560 static bool
561 volatile_var_p (tree t)
562 {
563 return (SSA_VAR_P (t)
564 && TREE_THIS_VOLATILE (TREE_TYPE (t)));
565 }
566
567 /* Tree callback function for diagnose_tm pass. */
568
569 static tree
570 diagnose_tm_1_op (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
571 void *data)
572 {
573 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
574 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
575
576 if (volatile_var_p (*tp)
577 && d->block_flags & DIAG_TM_SAFE
578 && !d->saw_volatile)
579 {
580 d->saw_volatile = 1;
581 error_at (gimple_location (d->stmt),
582 "invalid volatile use of %qD inside transaction",
583 *tp);
584 }
585
586 return NULL_TREE;
587 }
588
589 static tree
590 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
591 struct walk_stmt_info *wi)
592 {
593 gimple stmt = gsi_stmt (*gsi);
594 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
595
596 /* Save stmt for use in leaf analysis. */
597 d->stmt = stmt;
598
599 switch (gimple_code (stmt))
600 {
601 case GIMPLE_CALL:
602 {
603 tree fn = gimple_call_fn (stmt);
604
605 if ((d->summary_flags & DIAG_TM_OUTER) == 0
606 && is_tm_may_cancel_outer (fn))
607 error_at (gimple_location (stmt),
608 "%<transaction_may_cancel_outer%> function call not within"
609 " outer transaction or %<transaction_may_cancel_outer%>");
610
611 if (d->summary_flags & DIAG_TM_SAFE)
612 {
613 bool is_safe, direct_call_p;
614 tree replacement;
615
616 if (TREE_CODE (fn) == ADDR_EXPR
617 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
618 {
619 direct_call_p = true;
620 replacement = TREE_OPERAND (fn, 0);
621 replacement = find_tm_replacement_function (replacement);
622 if (replacement)
623 fn = replacement;
624 }
625 else
626 {
627 direct_call_p = false;
628 replacement = NULL_TREE;
629 }
630
631 if (is_tm_safe_or_pure (fn))
632 is_safe = true;
633 else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
634 {
635 /* A function explicitly marked transaction_callable as
636 opposed to transaction_safe is being defined to be
637 unsafe as part of its ABI, regardless of its contents. */
638 is_safe = false;
639 }
640 else if (direct_call_p)
641 {
642 if (flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
643 is_safe = true;
644 else if (replacement)
645 {
646 /* ??? At present we've been considering replacements
647 merely transaction_callable, and therefore might
648 enter irrevocable. The tm_wrap attribute has not
649 yet made it into the new language spec. */
650 is_safe = false;
651 }
652 else
653 {
654 /* ??? Diagnostics for unmarked direct calls moved into
655 the IPA pass. Section 3.2 of the spec details how
656 functions not marked should be considered "implicitly
657 safe" based on having examined the function body. */
658 is_safe = true;
659 }
660 }
661 else
662 {
663 /* An unmarked indirect call. Consider it unsafe even
664 though optimization may yet figure out how to inline. */
665 is_safe = false;
666 }
667
668 if (!is_safe)
669 {
670 if (TREE_CODE (fn) == ADDR_EXPR)
671 fn = TREE_OPERAND (fn, 0);
672 if (d->block_flags & DIAG_TM_SAFE)
673 {
674 if (direct_call_p)
675 error_at (gimple_location (stmt),
676 "unsafe function call %qD within "
677 "atomic transaction", fn);
678 else
679 {
680 if (!DECL_P (fn) || DECL_NAME (fn))
681 error_at (gimple_location (stmt),
682 "unsafe function call %qE within "
683 "atomic transaction", fn);
684 else
685 error_at (gimple_location (stmt),
686 "unsafe indirect function call within "
687 "atomic transaction");
688 }
689 }
690 else
691 {
692 if (direct_call_p)
693 error_at (gimple_location (stmt),
694 "unsafe function call %qD within "
695 "%<transaction_safe%> function", fn);
696 else
697 {
698 if (!DECL_P (fn) || DECL_NAME (fn))
699 error_at (gimple_location (stmt),
700 "unsafe function call %qE within "
701 "%<transaction_safe%> function", fn);
702 else
703 error_at (gimple_location (stmt),
704 "unsafe indirect function call within "
705 "%<transaction_safe%> function");
706 }
707 }
708 }
709 }
710 }
711 break;
712
713 case GIMPLE_ASM:
714 /* ??? We ought to come up with a way to add attributes to
715 asm statements, and then add "transaction_safe" to it.
716 Either that or get the language spec to resurrect __tm_waiver. */
717 if (d->block_flags & DIAG_TM_SAFE)
718 error_at (gimple_location (stmt),
719 "asm not allowed in atomic transaction");
720 else if (d->func_flags & DIAG_TM_SAFE)
721 error_at (gimple_location (stmt),
722 "asm not allowed in %<transaction_safe%> function");
723 break;
724
725 case GIMPLE_TRANSACTION:
726 {
727 unsigned char inner_flags = DIAG_TM_SAFE;
728
729 if (gimple_transaction_subcode (stmt) & GTMA_IS_RELAXED)
730 {
731 if (d->block_flags & DIAG_TM_SAFE)
732 error_at (gimple_location (stmt),
733 "relaxed transaction in atomic transaction");
734 else if (d->func_flags & DIAG_TM_SAFE)
735 error_at (gimple_location (stmt),
736 "relaxed transaction in %<transaction_safe%> function");
737 inner_flags = DIAG_TM_RELAXED;
738 }
739 else if (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER)
740 {
741 if (d->block_flags)
742 error_at (gimple_location (stmt),
743 "outer transaction in transaction");
744 else if (d->func_flags & DIAG_TM_OUTER)
745 error_at (gimple_location (stmt),
746 "outer transaction in "
747 "%<transaction_may_cancel_outer%> function");
748 else if (d->func_flags & DIAG_TM_SAFE)
749 error_at (gimple_location (stmt),
750 "outer transaction in %<transaction_safe%> function");
751 inner_flags |= DIAG_TM_OUTER;
752 }
753
754 *handled_ops_p = true;
755 if (gimple_transaction_body (stmt))
756 {
757 struct walk_stmt_info wi_inner;
758 struct diagnose_tm d_inner;
759
760 memset (&d_inner, 0, sizeof (d_inner));
761 d_inner.func_flags = d->func_flags;
762 d_inner.block_flags = d->block_flags | inner_flags;
763 d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
764
765 memset (&wi_inner, 0, sizeof (wi_inner));
766 wi_inner.info = &d_inner;
767
768 walk_gimple_seq (gimple_transaction_body (stmt),
769 diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
770 }
771 }
772 break;
773
774 default:
775 break;
776 }
777
778 return NULL_TREE;
779 }
780
781 static unsigned int
782 diagnose_tm_blocks (void)
783 {
784 struct walk_stmt_info wi;
785 struct diagnose_tm d;
786
787 memset (&d, 0, sizeof (d));
788 if (is_tm_may_cancel_outer (current_function_decl))
789 d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
790 else if (is_tm_safe (current_function_decl))
791 d.func_flags = DIAG_TM_SAFE;
792 d.summary_flags = d.func_flags;
793
794 memset (&wi, 0, sizeof (wi));
795 wi.info = &d;
796
797 walk_gimple_seq (gimple_body (current_function_decl),
798 diagnose_tm_1, diagnose_tm_1_op, &wi);
799
800 return 0;
801 }
802
803 struct gimple_opt_pass pass_diagnose_tm_blocks =
804 {
805 {
806 GIMPLE_PASS,
807 "*diagnose_tm_blocks", /* name */
808 OPTGROUP_NONE, /* optinfo_flags */
809 gate_tm, /* gate */
810 diagnose_tm_blocks, /* execute */
811 NULL, /* sub */
812 NULL, /* next */
813 0, /* static_pass_number */
814 TV_TRANS_MEM, /* tv_id */
815 PROP_gimple_any, /* properties_required */
816 0, /* properties_provided */
817 0, /* properties_destroyed */
818 0, /* todo_flags_start */
819 0, /* todo_flags_finish */
820 }
821 };
822 \f
823 /* Instead of instrumenting thread private memory, we save the
824 addresses in a log which we later use to save/restore the addresses
825 upon transaction start/restart.
826
827 The log is keyed by address, where each element contains individual
828 statements among different code paths that perform the store.
829
830 This log is later used to generate either plain save/restore of the
831 addresses upon transaction start/restart, or calls to the ITM_L*
832 logging functions.
833
834 So for something like:
835
836 struct large { int x[1000]; };
837 struct large lala = { 0 };
838 __transaction {
839 lala.x[i] = 123;
840 ...
841 }
842
843 We can either save/restore:
844
845 lala = { 0 };
846 trxn = _ITM_startTransaction ();
847 if (trxn & a_saveLiveVariables)
848 tmp_lala1 = lala.x[i];
849 else if (a & a_restoreLiveVariables)
850 lala.x[i] = tmp_lala1;
851
852 or use the logging functions:
853
854 lala = { 0 };
855 trxn = _ITM_startTransaction ();
856 _ITM_LU4 (&lala.x[i]);
857
858 Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
859 far up the dominator tree to shadow all of the writes to a given
860 location (thus reducing the total number of logging calls), but not
861 so high as to be called on a path that does not perform a
862 write. */
863
864 /* One individual log entry. We may have multiple statements for the
865 same location if neither dominate each other (on different
866 execution paths). */
867 typedef struct tm_log_entry
868 {
869 /* Address to save. */
870 tree addr;
871 /* Entry block for the transaction this address occurs in. */
872 basic_block entry_block;
873 /* Dominating statements the store occurs in. */
874 gimple_vec stmts;
875 /* Initially, while we are building the log, we place a nonzero
876 value here to mean that this address *will* be saved with a
877 save/restore sequence. Later, when generating the save sequence
878 we place the SSA temp generated here. */
879 tree save_var;
880 } *tm_log_entry_t;
881
882 /* The actual log. */
883 static htab_t tm_log;
884
885 /* Addresses to log with a save/restore sequence. These should be in
886 dominator order. */
887 static vec<tree> tm_log_save_addresses;
888
889 /* Map for an SSA_NAME originally pointing to a non aliased new piece
890 of memory (malloc, alloc, etc). */
891 static htab_t tm_new_mem_hash;
892
893 enum thread_memory_type
894 {
895 mem_non_local = 0,
896 mem_thread_local,
897 mem_transaction_local,
898 mem_max
899 };
900
901 typedef struct tm_new_mem_map
902 {
903 /* SSA_NAME being dereferenced. */
904 tree val;
905 enum thread_memory_type local_new_memory;
906 } tm_new_mem_map_t;
907
908 /* Htab support. Return hash value for a `tm_log_entry'. */
909 static hashval_t
910 tm_log_hash (const void *p)
911 {
912 const struct tm_log_entry *log = (const struct tm_log_entry *) p;
913 return iterative_hash_expr (log->addr, 0);
914 }
915
916 /* Htab support. Return true if two log entries are the same. */
917 static int
918 tm_log_eq (const void *p1, const void *p2)
919 {
920 const struct tm_log_entry *log1 = (const struct tm_log_entry *) p1;
921 const struct tm_log_entry *log2 = (const struct tm_log_entry *) p2;
922
923 /* FIXME:
924
925 rth: I suggest that we get rid of the component refs etc.
926 I.e. resolve the reference to base + offset.
927
928 We may need to actually finish a merge with mainline for this,
929 since we'd like to be presented with Richi's MEM_REF_EXPRs more
930 often than not. But in the meantime your tm_log_entry could save
931 the results of get_inner_reference.
932
933 See: g++.dg/tm/pr46653.C
934 */
935
936 /* Special case plain equality because operand_equal_p() below will
937 return FALSE if the addresses are equal but they have
938 side-effects (e.g. a volatile address). */
939 if (log1->addr == log2->addr)
940 return true;
941
942 return operand_equal_p (log1->addr, log2->addr, 0);
943 }
944
945 /* Htab support. Free one tm_log_entry. */
946 static void
947 tm_log_free (void *p)
948 {
949 struct tm_log_entry *lp = (struct tm_log_entry *) p;
950 lp->stmts.release ();
951 free (lp);
952 }
953
954 /* Initialize logging data structures. */
955 static void
956 tm_log_init (void)
957 {
958 tm_log = htab_create (10, tm_log_hash, tm_log_eq, tm_log_free);
959 tm_new_mem_hash = htab_create (5, struct_ptr_hash, struct_ptr_eq, free);
960 tm_log_save_addresses.create (5);
961 }
962
963 /* Free logging data structures. */
964 static void
965 tm_log_delete (void)
966 {
967 htab_delete (tm_log);
968 htab_delete (tm_new_mem_hash);
969 tm_log_save_addresses.release ();
970 }
971
972 /* Return true if MEM is a transaction invariant memory for the TM
973 region starting at REGION_ENTRY_BLOCK. */
974 static bool
975 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
976 {
977 if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
978 && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
979 {
980 basic_block def_bb;
981
982 def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
983 return def_bb != region_entry_block
984 && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
985 }
986
987 mem = strip_invariant_refs (mem);
988 return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
989 }
990
991 /* Given an address ADDR in STMT, find it in the memory log or add it,
992 making sure to keep only the addresses highest in the dominator
993 tree.
994
995 ENTRY_BLOCK is the entry_block for the transaction.
996
997 If we find the address in the log, make sure it's either the same
998 address, or an equivalent one that dominates ADDR.
999
1000 If we find the address, but neither ADDR dominates the found
1001 address, nor the found one dominates ADDR, we're on different
1002 execution paths. Add it.
1003
1004 If known, ENTRY_BLOCK is the entry block for the region, otherwise
1005 NULL. */
1006 static void
1007 tm_log_add (basic_block entry_block, tree addr, gimple stmt)
1008 {
1009 void **slot;
1010 struct tm_log_entry l, *lp;
1011
1012 l.addr = addr;
1013 slot = htab_find_slot (tm_log, &l, INSERT);
1014 if (!*slot)
1015 {
1016 tree type = TREE_TYPE (addr);
1017
1018 lp = XNEW (struct tm_log_entry);
1019 lp->addr = addr;
1020 *slot = lp;
1021
1022 /* Small invariant addresses can be handled as save/restores. */
1023 if (entry_block
1024 && transaction_invariant_address_p (lp->addr, entry_block)
1025 && TYPE_SIZE_UNIT (type) != NULL
1026 && host_integerp (TYPE_SIZE_UNIT (type), 1)
1027 && (tree_low_cst (TYPE_SIZE_UNIT (type), 1)
1028 < PARAM_VALUE (PARAM_TM_MAX_AGGREGATE_SIZE))
1029 /* We must be able to copy this type normally. I.e., no
1030 special constructors and the like. */
1031 && !TREE_ADDRESSABLE (type))
1032 {
1033 lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
1034 lp->stmts.create (0);
1035 lp->entry_block = entry_block;
1036 /* Save addresses separately in dominator order so we don't
1037 get confused by overlapping addresses in the save/restore
1038 sequence. */
1039 tm_log_save_addresses.safe_push (lp->addr);
1040 }
1041 else
1042 {
1043 /* Use the logging functions. */
1044 lp->stmts.create (5);
1045 lp->stmts.quick_push (stmt);
1046 lp->save_var = NULL;
1047 }
1048 }
1049 else
1050 {
1051 size_t i;
1052 gimple oldstmt;
1053
1054 lp = (struct tm_log_entry *) *slot;
1055
1056 /* If we're generating a save/restore sequence, we don't care
1057 about statements. */
1058 if (lp->save_var)
1059 return;
1060
1061 for (i = 0; lp->stmts.iterate (i, &oldstmt); ++i)
1062 {
1063 if (stmt == oldstmt)
1064 return;
1065 /* We already have a store to the same address, higher up the
1066 dominator tree. Nothing to do. */
1067 if (dominated_by_p (CDI_DOMINATORS,
1068 gimple_bb (stmt), gimple_bb (oldstmt)))
1069 return;
1070 /* We should be processing blocks in dominator tree order. */
1071 gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1072 gimple_bb (oldstmt), gimple_bb (stmt)));
1073 }
1074 /* Store is on a different code path. */
1075 lp->stmts.safe_push (stmt);
1076 }
1077 }
1078
1079 /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
1080 result, insert the new statements before GSI. */
1081
1082 static tree
1083 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1084 {
1085 if (TREE_CODE (x) == TARGET_MEM_REF)
1086 x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1087 else
1088 x = build_fold_addr_expr (x);
1089 return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1090 }
1091
1092 /* Instrument one address with the logging functions.
1093 ADDR is the address to save.
1094 STMT is the statement before which to place it. */
1095 static void
1096 tm_log_emit_stmt (tree addr, gimple stmt)
1097 {
1098 tree type = TREE_TYPE (addr);
1099 tree size = TYPE_SIZE_UNIT (type);
1100 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1101 gimple log;
1102 enum built_in_function code = BUILT_IN_TM_LOG;
1103
1104 if (type == float_type_node)
1105 code = BUILT_IN_TM_LOG_FLOAT;
1106 else if (type == double_type_node)
1107 code = BUILT_IN_TM_LOG_DOUBLE;
1108 else if (type == long_double_type_node)
1109 code = BUILT_IN_TM_LOG_LDOUBLE;
1110 else if (host_integerp (size, 1))
1111 {
1112 unsigned int n = tree_low_cst (size, 1);
1113 switch (n)
1114 {
1115 case 1:
1116 code = BUILT_IN_TM_LOG_1;
1117 break;
1118 case 2:
1119 code = BUILT_IN_TM_LOG_2;
1120 break;
1121 case 4:
1122 code = BUILT_IN_TM_LOG_4;
1123 break;
1124 case 8:
1125 code = BUILT_IN_TM_LOG_8;
1126 break;
1127 default:
1128 code = BUILT_IN_TM_LOG;
1129 if (TREE_CODE (type) == VECTOR_TYPE)
1130 {
1131 if (n == 8 && builtin_decl_explicit (BUILT_IN_TM_LOG_M64))
1132 code = BUILT_IN_TM_LOG_M64;
1133 else if (n == 16 && builtin_decl_explicit (BUILT_IN_TM_LOG_M128))
1134 code = BUILT_IN_TM_LOG_M128;
1135 else if (n == 32 && builtin_decl_explicit (BUILT_IN_TM_LOG_M256))
1136 code = BUILT_IN_TM_LOG_M256;
1137 }
1138 break;
1139 }
1140 }
1141
1142 addr = gimplify_addr (&gsi, addr);
1143 if (code == BUILT_IN_TM_LOG)
1144 log = gimple_build_call (builtin_decl_explicit (code), 2, addr, size);
1145 else
1146 log = gimple_build_call (builtin_decl_explicit (code), 1, addr);
1147 gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1148 }
1149
1150 /* Go through the log and instrument address that must be instrumented
1151 with the logging functions. Leave the save/restore addresses for
1152 later. */
1153 static void
1154 tm_log_emit (void)
1155 {
1156 htab_iterator hi;
1157 struct tm_log_entry *lp;
1158
1159 FOR_EACH_HTAB_ELEMENT (tm_log, lp, tm_log_entry_t, hi)
1160 {
1161 size_t i;
1162 gimple stmt;
1163
1164 if (dump_file)
1165 {
1166 fprintf (dump_file, "TM thread private mem logging: ");
1167 print_generic_expr (dump_file, lp->addr, 0);
1168 fprintf (dump_file, "\n");
1169 }
1170
1171 if (lp->save_var)
1172 {
1173 if (dump_file)
1174 fprintf (dump_file, "DUMPING to variable\n");
1175 continue;
1176 }
1177 else
1178 {
1179 if (dump_file)
1180 fprintf (dump_file, "DUMPING with logging functions\n");
1181 for (i = 0; lp->stmts.iterate (i, &stmt); ++i)
1182 tm_log_emit_stmt (lp->addr, stmt);
1183 }
1184 }
1185 }
1186
1187 /* Emit the save sequence for the corresponding addresses in the log.
1188 ENTRY_BLOCK is the entry block for the transaction.
1189 BB is the basic block to insert the code in. */
1190 static void
1191 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1192 {
1193 size_t i;
1194 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1195 gimple stmt;
1196 struct tm_log_entry l, *lp;
1197
1198 for (i = 0; i < tm_log_save_addresses.length (); ++i)
1199 {
1200 l.addr = tm_log_save_addresses[i];
1201 lp = (struct tm_log_entry *) *htab_find_slot (tm_log, &l, NO_INSERT);
1202 gcc_assert (lp->save_var != NULL);
1203
1204 /* We only care about variables in the current transaction. */
1205 if (lp->entry_block != entry_block)
1206 continue;
1207
1208 stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1209
1210 /* Make sure we can create an SSA_NAME for this type. For
1211 instance, aggregates aren't allowed, in which case the system
1212 will create a VOP for us and everything will just work. */
1213 if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1214 {
1215 lp->save_var = make_ssa_name (lp->save_var, stmt);
1216 gimple_assign_set_lhs (stmt, lp->save_var);
1217 }
1218
1219 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1220 }
1221 }
1222
1223 /* Emit the restore sequence for the corresponding addresses in the log.
1224 ENTRY_BLOCK is the entry block for the transaction.
1225 BB is the basic block to insert the code in. */
1226 static void
1227 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1228 {
1229 int i;
1230 struct tm_log_entry l, *lp;
1231 gimple_stmt_iterator gsi;
1232 gimple stmt;
1233
1234 for (i = tm_log_save_addresses.length () - 1; i >= 0; i--)
1235 {
1236 l.addr = tm_log_save_addresses[i];
1237 lp = (struct tm_log_entry *) *htab_find_slot (tm_log, &l, NO_INSERT);
1238 gcc_assert (lp->save_var != NULL);
1239
1240 /* We only care about variables in the current transaction. */
1241 if (lp->entry_block != entry_block)
1242 continue;
1243
1244 /* Restores are in LIFO order from the saves in case we have
1245 overlaps. */
1246 gsi = gsi_start_bb (bb);
1247
1248 stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1249 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1250 }
1251 }
1252
1253 \f
1254 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1255 struct walk_stmt_info *);
1256 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1257 struct walk_stmt_info *);
1258
1259 /* Evaluate an address X being dereferenced and determine if it
1260 originally points to a non aliased new chunk of memory (malloc,
1261 alloca, etc).
1262
1263 Return MEM_THREAD_LOCAL if it points to a thread-local address.
1264 Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1265 Return MEM_NON_LOCAL otherwise.
1266
1267 ENTRY_BLOCK is the entry block to the transaction containing the
1268 dereference of X. */
1269 static enum thread_memory_type
1270 thread_private_new_memory (basic_block entry_block, tree x)
1271 {
1272 gimple stmt = NULL;
1273 enum tree_code code;
1274 void **slot;
1275 tm_new_mem_map_t elt, *elt_p;
1276 tree val = x;
1277 enum thread_memory_type retval = mem_transaction_local;
1278
1279 if (!entry_block
1280 || TREE_CODE (x) != SSA_NAME
1281 /* Possible uninitialized use, or a function argument. In
1282 either case, we don't care. */
1283 || SSA_NAME_IS_DEFAULT_DEF (x))
1284 return mem_non_local;
1285
1286 /* Look in cache first. */
1287 elt.val = x;
1288 slot = htab_find_slot (tm_new_mem_hash, &elt, INSERT);
1289 elt_p = (tm_new_mem_map_t *) *slot;
1290 if (elt_p)
1291 return elt_p->local_new_memory;
1292
1293 /* Optimistically assume the memory is transaction local during
1294 processing. This catches recursion into this variable. */
1295 *slot = elt_p = XNEW (tm_new_mem_map_t);
1296 elt_p->val = val;
1297 elt_p->local_new_memory = mem_transaction_local;
1298
1299 /* Search DEF chain to find the original definition of this address. */
1300 do
1301 {
1302 if (ptr_deref_may_alias_global_p (x))
1303 {
1304 /* Address escapes. This is not thread-private. */
1305 retval = mem_non_local;
1306 goto new_memory_ret;
1307 }
1308
1309 stmt = SSA_NAME_DEF_STMT (x);
1310
1311 /* If the malloc call is outside the transaction, this is
1312 thread-local. */
1313 if (retval != mem_thread_local
1314 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1315 retval = mem_thread_local;
1316
1317 if (is_gimple_assign (stmt))
1318 {
1319 code = gimple_assign_rhs_code (stmt);
1320 /* x = foo ==> foo */
1321 if (code == SSA_NAME)
1322 x = gimple_assign_rhs1 (stmt);
1323 /* x = foo + n ==> foo */
1324 else if (code == POINTER_PLUS_EXPR)
1325 x = gimple_assign_rhs1 (stmt);
1326 /* x = (cast*) foo ==> foo */
1327 else if (code == VIEW_CONVERT_EXPR || code == NOP_EXPR)
1328 x = gimple_assign_rhs1 (stmt);
1329 /* x = c ? op1 : op2 == > op1 or op2 just like a PHI */
1330 else if (code == COND_EXPR)
1331 {
1332 tree op1 = gimple_assign_rhs2 (stmt);
1333 tree op2 = gimple_assign_rhs3 (stmt);
1334 enum thread_memory_type mem;
1335 retval = thread_private_new_memory (entry_block, op1);
1336 if (retval == mem_non_local)
1337 goto new_memory_ret;
1338 mem = thread_private_new_memory (entry_block, op2);
1339 retval = MIN (retval, mem);
1340 goto new_memory_ret;
1341 }
1342 else
1343 {
1344 retval = mem_non_local;
1345 goto new_memory_ret;
1346 }
1347 }
1348 else
1349 {
1350 if (gimple_code (stmt) == GIMPLE_PHI)
1351 {
1352 unsigned int i;
1353 enum thread_memory_type mem;
1354 tree phi_result = gimple_phi_result (stmt);
1355
1356 /* If any of the ancestors are non-local, we are sure to
1357 be non-local. Otherwise we can avoid doing anything
1358 and inherit what has already been generated. */
1359 retval = mem_max;
1360 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1361 {
1362 tree op = PHI_ARG_DEF (stmt, i);
1363
1364 /* Exclude self-assignment. */
1365 if (phi_result == op)
1366 continue;
1367
1368 mem = thread_private_new_memory (entry_block, op);
1369 if (mem == mem_non_local)
1370 {
1371 retval = mem;
1372 goto new_memory_ret;
1373 }
1374 retval = MIN (retval, mem);
1375 }
1376 goto new_memory_ret;
1377 }
1378 break;
1379 }
1380 }
1381 while (TREE_CODE (x) == SSA_NAME);
1382
1383 if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1384 /* Thread-local or transaction-local. */
1385 ;
1386 else
1387 retval = mem_non_local;
1388
1389 new_memory_ret:
1390 elt_p->local_new_memory = retval;
1391 return retval;
1392 }
1393
1394 /* Determine whether X has to be instrumented using a read
1395 or write barrier.
1396
1397 ENTRY_BLOCK is the entry block for the region where stmt resides
1398 in. NULL if unknown.
1399
1400 STMT is the statement in which X occurs in. It is used for thread
1401 private memory instrumentation. If no TPM instrumentation is
1402 desired, STMT should be null. */
1403 static bool
1404 requires_barrier (basic_block entry_block, tree x, gimple stmt)
1405 {
1406 tree orig = x;
1407 while (handled_component_p (x))
1408 x = TREE_OPERAND (x, 0);
1409
1410 switch (TREE_CODE (x))
1411 {
1412 case INDIRECT_REF:
1413 case MEM_REF:
1414 {
1415 enum thread_memory_type ret;
1416
1417 ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1418 if (ret == mem_non_local)
1419 return true;
1420 if (stmt && ret == mem_thread_local)
1421 /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
1422 tm_log_add (entry_block, orig, stmt);
1423
1424 /* Transaction-locals require nothing at all. For malloc, a
1425 transaction restart frees the memory and we reallocate.
1426 For alloca, the stack pointer gets reset by the retry and
1427 we reallocate. */
1428 return false;
1429 }
1430
1431 case TARGET_MEM_REF:
1432 if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1433 return true;
1434 x = TREE_OPERAND (TMR_BASE (x), 0);
1435 if (TREE_CODE (x) == PARM_DECL)
1436 return false;
1437 gcc_assert (TREE_CODE (x) == VAR_DECL);
1438 /* FALLTHRU */
1439
1440 case PARM_DECL:
1441 case RESULT_DECL:
1442 case VAR_DECL:
1443 if (DECL_BY_REFERENCE (x))
1444 {
1445 /* ??? This value is a pointer, but aggregate_value_p has been
1446 jigged to return true which confuses needs_to_live_in_memory.
1447 This ought to be cleaned up generically.
1448
1449 FIXME: Verify this still happens after the next mainline
1450 merge. Testcase ie g++.dg/tm/pr47554.C.
1451 */
1452 return false;
1453 }
1454
1455 if (is_global_var (x))
1456 return !TREE_READONLY (x);
1457 if (/* FIXME: This condition should actually go below in the
1458 tm_log_add() call, however is_call_clobbered() depends on
1459 aliasing info which is not available during
1460 gimplification. Since requires_barrier() gets called
1461 during lower_sequence_tm/gimplification, leave the call
1462 to needs_to_live_in_memory until we eliminate
1463 lower_sequence_tm altogether. */
1464 needs_to_live_in_memory (x))
1465 return true;
1466 else
1467 {
1468 /* For local memory that doesn't escape (aka thread private
1469 memory), we can either save the value at the beginning of
1470 the transaction and restore on restart, or call a tm
1471 function to dynamically save and restore on restart
1472 (ITM_L*). */
1473 if (stmt)
1474 tm_log_add (entry_block, orig, stmt);
1475 return false;
1476 }
1477
1478 default:
1479 return false;
1480 }
1481 }
1482
1483 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1484 a transaction region. */
1485
1486 static void
1487 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1488 {
1489 gimple stmt = gsi_stmt (*gsi);
1490
1491 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1492 *state |= GTMA_HAVE_LOAD;
1493 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1494 *state |= GTMA_HAVE_STORE;
1495 }
1496
1497 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
1498
1499 static void
1500 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1501 {
1502 gimple stmt = gsi_stmt (*gsi);
1503 tree fn;
1504
1505 if (is_tm_pure_call (stmt))
1506 return;
1507
1508 /* Check if this call is a transaction abort. */
1509 fn = gimple_call_fndecl (stmt);
1510 if (is_tm_abort (fn))
1511 *state |= GTMA_HAVE_ABORT;
1512
1513 /* Note that something may happen. */
1514 *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1515 }
1516
1517 /* Lower a GIMPLE_TRANSACTION statement. */
1518
1519 static void
1520 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1521 {
1522 gimple g, stmt = gsi_stmt (*gsi);
1523 unsigned int *outer_state = (unsigned int *) wi->info;
1524 unsigned int this_state = 0;
1525 struct walk_stmt_info this_wi;
1526
1527 /* First, lower the body. The scanning that we do inside gives
1528 us some idea of what we're dealing with. */
1529 memset (&this_wi, 0, sizeof (this_wi));
1530 this_wi.info = (void *) &this_state;
1531 walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
1532 lower_sequence_tm, NULL, &this_wi);
1533
1534 /* If there was absolutely nothing transaction related inside the
1535 transaction, we may elide it. Likewise if this is a nested
1536 transaction and does not contain an abort. */
1537 if (this_state == 0
1538 || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1539 {
1540 if (outer_state)
1541 *outer_state |= this_state;
1542
1543 gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1544 GSI_SAME_STMT);
1545 gimple_transaction_set_body (stmt, NULL);
1546
1547 gsi_remove (gsi, true);
1548 wi->removed_stmt = true;
1549 return;
1550 }
1551
1552 /* Wrap the body of the transaction in a try-finally node so that
1553 the commit call is always properly called. */
1554 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1555 if (flag_exceptions)
1556 {
1557 tree ptr;
1558 gimple_seq n_seq, e_seq;
1559
1560 n_seq = gimple_seq_alloc_with_stmt (g);
1561 e_seq = NULL;
1562
1563 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1564 1, integer_zero_node);
1565 ptr = create_tmp_var (ptr_type_node, NULL);
1566 gimple_call_set_lhs (g, ptr);
1567 gimple_seq_add_stmt (&e_seq, g);
1568
1569 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1570 1, ptr);
1571 gimple_seq_add_stmt (&e_seq, g);
1572
1573 g = gimple_build_eh_else (n_seq, e_seq);
1574 }
1575
1576 g = gimple_build_try (gimple_transaction_body (stmt),
1577 gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1578 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1579
1580 gimple_transaction_set_body (stmt, NULL);
1581
1582 /* If the transaction calls abort or if this is an outer transaction,
1583 add an "over" label afterwards. */
1584 if ((this_state & (GTMA_HAVE_ABORT))
1585 || (gimple_transaction_subcode(stmt) & GTMA_IS_OUTER))
1586 {
1587 tree label = create_artificial_label (UNKNOWN_LOCATION);
1588 gimple_transaction_set_label (stmt, label);
1589 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
1590 }
1591
1592 /* Record the set of operations found for use later. */
1593 this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1594 gimple_transaction_set_subcode (stmt, this_state);
1595 }
1596
1597 /* Iterate through the statements in the sequence, lowering them all
1598 as appropriate for being in a transaction. */
1599
1600 static tree
1601 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1602 struct walk_stmt_info *wi)
1603 {
1604 unsigned int *state = (unsigned int *) wi->info;
1605 gimple stmt = gsi_stmt (*gsi);
1606
1607 *handled_ops_p = true;
1608 switch (gimple_code (stmt))
1609 {
1610 case GIMPLE_ASSIGN:
1611 /* Only memory reads/writes need to be instrumented. */
1612 if (gimple_assign_single_p (stmt))
1613 examine_assign_tm (state, gsi);
1614 break;
1615
1616 case GIMPLE_CALL:
1617 examine_call_tm (state, gsi);
1618 break;
1619
1620 case GIMPLE_ASM:
1621 *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1622 break;
1623
1624 case GIMPLE_TRANSACTION:
1625 lower_transaction (gsi, wi);
1626 break;
1627
1628 default:
1629 *handled_ops_p = !gimple_has_substatements (stmt);
1630 break;
1631 }
1632
1633 return NULL_TREE;
1634 }
1635
1636 /* Iterate through the statements in the sequence, lowering them all
1637 as appropriate for being outside of a transaction. */
1638
1639 static tree
1640 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1641 struct walk_stmt_info * wi)
1642 {
1643 gimple stmt = gsi_stmt (*gsi);
1644
1645 if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1646 {
1647 *handled_ops_p = true;
1648 lower_transaction (gsi, wi);
1649 }
1650 else
1651 *handled_ops_p = !gimple_has_substatements (stmt);
1652
1653 return NULL_TREE;
1654 }
1655
1656 /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
1657 this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1658 been moved out, and all the data required for constructing a proper
1659 CFG has been recorded. */
1660
1661 static unsigned int
1662 execute_lower_tm (void)
1663 {
1664 struct walk_stmt_info wi;
1665 gimple_seq body;
1666
1667 /* Transactional clones aren't created until a later pass. */
1668 gcc_assert (!decl_is_tm_clone (current_function_decl));
1669
1670 body = gimple_body (current_function_decl);
1671 memset (&wi, 0, sizeof (wi));
1672 walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi);
1673 gimple_set_body (current_function_decl, body);
1674
1675 return 0;
1676 }
1677
1678 struct gimple_opt_pass pass_lower_tm =
1679 {
1680 {
1681 GIMPLE_PASS,
1682 "tmlower", /* name */
1683 OPTGROUP_NONE, /* optinfo_flags */
1684 gate_tm, /* gate */
1685 execute_lower_tm, /* execute */
1686 NULL, /* sub */
1687 NULL, /* next */
1688 0, /* static_pass_number */
1689 TV_TRANS_MEM, /* tv_id */
1690 PROP_gimple_lcf, /* properties_required */
1691 0, /* properties_provided */
1692 0, /* properties_destroyed */
1693 0, /* todo_flags_start */
1694 0, /* todo_flags_finish */
1695 }
1696 };
1697 \f
1698 /* Collect region information for each transaction. */
1699
1700 struct tm_region
1701 {
1702 /* Link to the next unnested transaction. */
1703 struct tm_region *next;
1704
1705 /* Link to the next inner transaction. */
1706 struct tm_region *inner;
1707
1708 /* Link to the next outer transaction. */
1709 struct tm_region *outer;
1710
1711 /* The GIMPLE_TRANSACTION statement beginning this transaction.
1712 After TM_MARK, this gets replaced by a call to
1713 BUILT_IN_TM_START. */
1714 gimple transaction_stmt;
1715
1716 /* After TM_MARK expands the GIMPLE_TRANSACTION into a call to
1717 BUILT_IN_TM_START, this field is true if the transaction is an
1718 outer transaction. */
1719 bool original_transaction_was_outer;
1720
1721 /* Return value from BUILT_IN_TM_START. */
1722 tree tm_state;
1723
1724 /* The entry block to this region. This will always be the first
1725 block of the body of the transaction. */
1726 basic_block entry_block;
1727
1728 /* The first block after an expanded call to _ITM_beginTransaction. */
1729 basic_block restart_block;
1730
1731 /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1732 These blocks are still a part of the region (i.e., the border is
1733 inclusive). Note that this set is only complete for paths in the CFG
1734 starting at ENTRY_BLOCK, and that there is no exit block recorded for
1735 the edge to the "over" label. */
1736 bitmap exit_blocks;
1737
1738 /* The set of all blocks that have an TM_IRREVOCABLE call. */
1739 bitmap irr_blocks;
1740 };
1741
1742 typedef struct tm_region *tm_region_p;
1743
1744 /* True if there are pending edge statements to be committed for the
1745 current function being scanned in the tmmark pass. */
1746 bool pending_edge_inserts_p;
1747
1748 static struct tm_region *all_tm_regions;
1749 static bitmap_obstack tm_obstack;
1750
1751
1752 /* A subroutine of tm_region_init. Record the existence of the
1753 GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
1754
1755 static struct tm_region *
1756 tm_region_init_0 (struct tm_region *outer, basic_block bb, gimple stmt)
1757 {
1758 struct tm_region *region;
1759
1760 region = (struct tm_region *)
1761 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1762
1763 if (outer)
1764 {
1765 region->next = outer->inner;
1766 outer->inner = region;
1767 }
1768 else
1769 {
1770 region->next = all_tm_regions;
1771 all_tm_regions = region;
1772 }
1773 region->inner = NULL;
1774 region->outer = outer;
1775
1776 region->transaction_stmt = stmt;
1777 region->original_transaction_was_outer = false;
1778 region->tm_state = NULL;
1779
1780 /* There are either one or two edges out of the block containing
1781 the GIMPLE_TRANSACTION, one to the actual region and one to the
1782 "over" label if the region contains an abort. The former will
1783 always be the one marked FALLTHRU. */
1784 region->entry_block = FALLTHRU_EDGE (bb)->dest;
1785
1786 region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1787 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1788
1789 return region;
1790 }
1791
1792 /* A subroutine of tm_region_init. Record all the exit and
1793 irrevocable blocks in BB into the region's exit_blocks and
1794 irr_blocks bitmaps. Returns the new region being scanned. */
1795
1796 static struct tm_region *
1797 tm_region_init_1 (struct tm_region *region, basic_block bb)
1798 {
1799 gimple_stmt_iterator gsi;
1800 gimple g;
1801
1802 if (!region
1803 || (!region->irr_blocks && !region->exit_blocks))
1804 return region;
1805
1806 /* Check to see if this is the end of a region by seeing if it
1807 contains a call to __builtin_tm_commit{,_eh}. Note that the
1808 outermost region for DECL_IS_TM_CLONE need not collect this. */
1809 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1810 {
1811 g = gsi_stmt (gsi);
1812 if (gimple_code (g) == GIMPLE_CALL)
1813 {
1814 tree fn = gimple_call_fndecl (g);
1815 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
1816 {
1817 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
1818 || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
1819 && region->exit_blocks)
1820 {
1821 bitmap_set_bit (region->exit_blocks, bb->index);
1822 region = region->outer;
1823 break;
1824 }
1825 if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
1826 bitmap_set_bit (region->irr_blocks, bb->index);
1827 }
1828 }
1829 }
1830 return region;
1831 }
1832
1833 /* Collect all of the transaction regions within the current function
1834 and record them in ALL_TM_REGIONS. The REGION parameter may specify
1835 an "outermost" region for use by tm clones. */
1836
1837 static void
1838 tm_region_init (struct tm_region *region)
1839 {
1840 gimple g;
1841 edge_iterator ei;
1842 edge e;
1843 basic_block bb;
1844 vec<basic_block> queue = vec<basic_block>();
1845 bitmap visited_blocks = BITMAP_ALLOC (NULL);
1846 struct tm_region *old_region;
1847 vec<tm_region_p> bb_regions = vec<tm_region_p>();
1848
1849 all_tm_regions = region;
1850 bb = single_succ (ENTRY_BLOCK_PTR);
1851
1852 /* We could store this information in bb->aux, but we may get called
1853 through get_all_tm_blocks() from another pass that may be already
1854 using bb->aux. */
1855 bb_regions.safe_grow_cleared (last_basic_block);
1856
1857 queue.safe_push (bb);
1858 bb_regions[bb->index] = region;
1859 do
1860 {
1861 bb = queue.pop ();
1862 region = bb_regions[bb->index];
1863 bb_regions[bb->index] = NULL;
1864
1865 /* Record exit and irrevocable blocks. */
1866 region = tm_region_init_1 (region, bb);
1867
1868 /* Check for the last statement in the block beginning a new region. */
1869 g = last_stmt (bb);
1870 old_region = region;
1871 if (g && gimple_code (g) == GIMPLE_TRANSACTION)
1872 region = tm_region_init_0 (region, bb, g);
1873
1874 /* Process subsequent blocks. */
1875 FOR_EACH_EDGE (e, ei, bb->succs)
1876 if (!bitmap_bit_p (visited_blocks, e->dest->index))
1877 {
1878 bitmap_set_bit (visited_blocks, e->dest->index);
1879 queue.safe_push (e->dest);
1880
1881 /* If the current block started a new region, make sure that only
1882 the entry block of the new region is associated with this region.
1883 Other successors are still part of the old region. */
1884 if (old_region != region && e->dest != region->entry_block)
1885 bb_regions[e->dest->index] = old_region;
1886 else
1887 bb_regions[e->dest->index] = region;
1888 }
1889 }
1890 while (!queue.is_empty ());
1891 queue.release ();
1892 BITMAP_FREE (visited_blocks);
1893 bb_regions.release ();
1894 }
1895
1896 /* The "gate" function for all transactional memory expansion and optimization
1897 passes. We collect region information for each top-level transaction, and
1898 if we don't find any, we skip all of the TM passes. Each region will have
1899 all of the exit blocks recorded, and the originating statement. */
1900
1901 static bool
1902 gate_tm_init (void)
1903 {
1904 if (!flag_tm)
1905 return false;
1906
1907 calculate_dominance_info (CDI_DOMINATORS);
1908 bitmap_obstack_initialize (&tm_obstack);
1909
1910 /* If the function is a TM_CLONE, then the entire function is the region. */
1911 if (decl_is_tm_clone (current_function_decl))
1912 {
1913 struct tm_region *region = (struct tm_region *)
1914 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1915 memset (region, 0, sizeof (*region));
1916 region->entry_block = single_succ (ENTRY_BLOCK_PTR);
1917 /* For a clone, the entire function is the region. But even if
1918 we don't need to record any exit blocks, we may need to
1919 record irrevocable blocks. */
1920 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1921
1922 tm_region_init (region);
1923 }
1924 else
1925 {
1926 tm_region_init (NULL);
1927
1928 /* If we didn't find any regions, cleanup and skip the whole tree
1929 of tm-related optimizations. */
1930 if (all_tm_regions == NULL)
1931 {
1932 bitmap_obstack_release (&tm_obstack);
1933 return false;
1934 }
1935 }
1936
1937 return true;
1938 }
1939
1940 struct gimple_opt_pass pass_tm_init =
1941 {
1942 {
1943 GIMPLE_PASS,
1944 "*tminit", /* name */
1945 OPTGROUP_NONE, /* optinfo_flags */
1946 gate_tm_init, /* gate */
1947 NULL, /* execute */
1948 NULL, /* sub */
1949 NULL, /* next */
1950 0, /* static_pass_number */
1951 TV_TRANS_MEM, /* tv_id */
1952 PROP_ssa | PROP_cfg, /* properties_required */
1953 0, /* properties_provided */
1954 0, /* properties_destroyed */
1955 0, /* todo_flags_start */
1956 0, /* todo_flags_finish */
1957 }
1958 };
1959 \f
1960 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
1961 represented by STATE. */
1962
1963 static inline void
1964 transaction_subcode_ior (struct tm_region *region, unsigned flags)
1965 {
1966 if (region && region->transaction_stmt)
1967 {
1968 flags |= gimple_transaction_subcode (region->transaction_stmt);
1969 gimple_transaction_set_subcode (region->transaction_stmt, flags);
1970 }
1971 }
1972
1973 /* Construct a memory load in a transactional context. Return the
1974 gimple statement performing the load, or NULL if there is no
1975 TM_LOAD builtin of the appropriate size to do the load.
1976
1977 LOC is the location to use for the new statement(s). */
1978
1979 static gimple
1980 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
1981 {
1982 enum built_in_function code = END_BUILTINS;
1983 tree t, type = TREE_TYPE (rhs), decl;
1984 gimple gcall;
1985
1986 if (type == float_type_node)
1987 code = BUILT_IN_TM_LOAD_FLOAT;
1988 else if (type == double_type_node)
1989 code = BUILT_IN_TM_LOAD_DOUBLE;
1990 else if (type == long_double_type_node)
1991 code = BUILT_IN_TM_LOAD_LDOUBLE;
1992 else if (TYPE_SIZE_UNIT (type) != NULL
1993 && host_integerp (TYPE_SIZE_UNIT (type), 1))
1994 {
1995 switch (tree_low_cst (TYPE_SIZE_UNIT (type), 1))
1996 {
1997 case 1:
1998 code = BUILT_IN_TM_LOAD_1;
1999 break;
2000 case 2:
2001 code = BUILT_IN_TM_LOAD_2;
2002 break;
2003 case 4:
2004 code = BUILT_IN_TM_LOAD_4;
2005 break;
2006 case 8:
2007 code = BUILT_IN_TM_LOAD_8;
2008 break;
2009 }
2010 }
2011
2012 if (code == END_BUILTINS)
2013 {
2014 decl = targetm.vectorize.builtin_tm_load (type);
2015 if (!decl)
2016 return NULL;
2017 }
2018 else
2019 decl = builtin_decl_explicit (code);
2020
2021 t = gimplify_addr (gsi, rhs);
2022 gcall = gimple_build_call (decl, 1, t);
2023 gimple_set_location (gcall, loc);
2024
2025 t = TREE_TYPE (TREE_TYPE (decl));
2026 if (useless_type_conversion_p (type, t))
2027 {
2028 gimple_call_set_lhs (gcall, lhs);
2029 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2030 }
2031 else
2032 {
2033 gimple g;
2034 tree temp;
2035
2036 temp = create_tmp_reg (t, NULL);
2037 gimple_call_set_lhs (gcall, temp);
2038 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2039
2040 t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2041 g = gimple_build_assign (lhs, t);
2042 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2043 }
2044
2045 return gcall;
2046 }
2047
2048
2049 /* Similarly for storing TYPE in a transactional context. */
2050
2051 static gimple
2052 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2053 {
2054 enum built_in_function code = END_BUILTINS;
2055 tree t, fn, type = TREE_TYPE (rhs), simple_type;
2056 gimple gcall;
2057
2058 if (type == float_type_node)
2059 code = BUILT_IN_TM_STORE_FLOAT;
2060 else if (type == double_type_node)
2061 code = BUILT_IN_TM_STORE_DOUBLE;
2062 else if (type == long_double_type_node)
2063 code = BUILT_IN_TM_STORE_LDOUBLE;
2064 else if (TYPE_SIZE_UNIT (type) != NULL
2065 && host_integerp (TYPE_SIZE_UNIT (type), 1))
2066 {
2067 switch (tree_low_cst (TYPE_SIZE_UNIT (type), 1))
2068 {
2069 case 1:
2070 code = BUILT_IN_TM_STORE_1;
2071 break;
2072 case 2:
2073 code = BUILT_IN_TM_STORE_2;
2074 break;
2075 case 4:
2076 code = BUILT_IN_TM_STORE_4;
2077 break;
2078 case 8:
2079 code = BUILT_IN_TM_STORE_8;
2080 break;
2081 }
2082 }
2083
2084 if (code == END_BUILTINS)
2085 {
2086 fn = targetm.vectorize.builtin_tm_store (type);
2087 if (!fn)
2088 return NULL;
2089 }
2090 else
2091 fn = builtin_decl_explicit (code);
2092
2093 simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2094
2095 if (TREE_CODE (rhs) == CONSTRUCTOR)
2096 {
2097 /* Handle the easy initialization to zero. */
2098 if (!CONSTRUCTOR_ELTS (rhs))
2099 rhs = build_int_cst (simple_type, 0);
2100 else
2101 {
2102 /* ...otherwise punt to the caller and probably use
2103 BUILT_IN_TM_MEMMOVE, because we can't wrap a
2104 VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2105 valid gimple. */
2106 return NULL;
2107 }
2108 }
2109 else if (!useless_type_conversion_p (simple_type, type))
2110 {
2111 gimple g;
2112 tree temp;
2113
2114 temp = create_tmp_reg (simple_type, NULL);
2115 t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2116 g = gimple_build_assign (temp, t);
2117 gimple_set_location (g, loc);
2118 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2119
2120 rhs = temp;
2121 }
2122
2123 t = gimplify_addr (gsi, lhs);
2124 gcall = gimple_build_call (fn, 2, t, rhs);
2125 gimple_set_location (gcall, loc);
2126 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2127
2128 return gcall;
2129 }
2130
2131
2132 /* Expand an assignment statement into transactional builtins. */
2133
2134 static void
2135 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2136 {
2137 gimple stmt = gsi_stmt (*gsi);
2138 location_t loc = gimple_location (stmt);
2139 tree lhs = gimple_assign_lhs (stmt);
2140 tree rhs = gimple_assign_rhs1 (stmt);
2141 bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2142 bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2143 gimple gcall = NULL;
2144
2145 if (!load_p && !store_p)
2146 {
2147 /* Add thread private addresses to log if applicable. */
2148 requires_barrier (region->entry_block, lhs, stmt);
2149 gsi_next (gsi);
2150 return;
2151 }
2152
2153 // Remove original load/store statement.
2154 gsi_remove (gsi, true);
2155
2156 if (load_p && !store_p)
2157 {
2158 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2159 gcall = build_tm_load (loc, lhs, rhs, gsi);
2160 }
2161 else if (store_p && !load_p)
2162 {
2163 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2164 gcall = build_tm_store (loc, lhs, rhs, gsi);
2165 }
2166 if (!gcall)
2167 {
2168 tree lhs_addr, rhs_addr, tmp;
2169
2170 if (load_p)
2171 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2172 if (store_p)
2173 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2174
2175 /* ??? Figure out if there's any possible overlap between the LHS
2176 and the RHS and if not, use MEMCPY. */
2177
2178 if (load_p && is_gimple_reg (lhs))
2179 {
2180 tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2181 lhs_addr = build_fold_addr_expr (tmp);
2182 }
2183 else
2184 {
2185 tmp = NULL_TREE;
2186 lhs_addr = gimplify_addr (gsi, lhs);
2187 }
2188 rhs_addr = gimplify_addr (gsi, rhs);
2189 gcall = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_MEMMOVE),
2190 3, lhs_addr, rhs_addr,
2191 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2192 gimple_set_location (gcall, loc);
2193 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2194
2195 if (tmp)
2196 {
2197 gcall = gimple_build_assign (lhs, tmp);
2198 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2199 }
2200 }
2201
2202 /* Now that we have the load/store in its instrumented form, add
2203 thread private addresses to the log if applicable. */
2204 if (!store_p)
2205 requires_barrier (region->entry_block, lhs, gcall);
2206
2207 // The calls to build_tm_{store,load} above inserted the instrumented
2208 // call into the stream.
2209 // gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2210 }
2211
2212
2213 /* Expand a call statement as appropriate for a transaction. That is,
2214 either verify that the call does not affect the transaction, or
2215 redirect the call to a clone that handles transactions, or change
2216 the transaction state to IRREVOCABLE. Return true if the call is
2217 one of the builtins that end a transaction. */
2218
2219 static bool
2220 expand_call_tm (struct tm_region *region,
2221 gimple_stmt_iterator *gsi)
2222 {
2223 gimple stmt = gsi_stmt (*gsi);
2224 tree lhs = gimple_call_lhs (stmt);
2225 tree fn_decl;
2226 struct cgraph_node *node;
2227 bool retval = false;
2228
2229 fn_decl = gimple_call_fndecl (stmt);
2230
2231 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2232 || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2233 transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2234 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2235 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2236
2237 if (is_tm_pure_call (stmt))
2238 return false;
2239
2240 if (fn_decl)
2241 retval = is_tm_ending_fndecl (fn_decl);
2242 if (!retval)
2243 {
2244 /* Assume all non-const/pure calls write to memory, except
2245 transaction ending builtins. */
2246 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2247 }
2248
2249 /* For indirect calls, we already generated a call into the runtime. */
2250 if (!fn_decl)
2251 {
2252 tree fn = gimple_call_fn (stmt);
2253
2254 /* We are guaranteed never to go irrevocable on a safe or pure
2255 call, and the pure call was handled above. */
2256 if (is_tm_safe (fn))
2257 return false;
2258 else
2259 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2260
2261 return false;
2262 }
2263
2264 node = cgraph_get_node (fn_decl);
2265 /* All calls should have cgraph here. */
2266 if (!node)
2267 {
2268 /* We can have a nodeless call here if some pass after IPA-tm
2269 added uninstrumented calls. For example, loop distribution
2270 can transform certain loop constructs into __builtin_mem*
2271 calls. In this case, see if we have a suitable TM
2272 replacement and fill in the gaps. */
2273 gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL);
2274 enum built_in_function code = DECL_FUNCTION_CODE (fn_decl);
2275 gcc_assert (code == BUILT_IN_MEMCPY
2276 || code == BUILT_IN_MEMMOVE
2277 || code == BUILT_IN_MEMSET);
2278
2279 tree repl = find_tm_replacement_function (fn_decl);
2280 if (repl)
2281 {
2282 gimple_call_set_fndecl (stmt, repl);
2283 update_stmt (stmt);
2284 node = cgraph_create_node (repl);
2285 node->local.tm_may_enter_irr = false;
2286 return expand_call_tm (region, gsi);
2287 }
2288 gcc_unreachable ();
2289 }
2290 if (node->local.tm_may_enter_irr)
2291 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2292
2293 if (is_tm_abort (fn_decl))
2294 {
2295 transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2296 return true;
2297 }
2298
2299 /* Instrument the store if needed.
2300
2301 If the assignment happens inside the function call (return slot
2302 optimization), there is no instrumentation to be done, since
2303 the callee should have done the right thing. */
2304 if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2305 && !gimple_call_return_slot_opt_p (stmt))
2306 {
2307 tree tmp = create_tmp_reg (TREE_TYPE (lhs), NULL);
2308 location_t loc = gimple_location (stmt);
2309 edge fallthru_edge = NULL;
2310
2311 /* Remember if the call was going to throw. */
2312 if (stmt_can_throw_internal (stmt))
2313 {
2314 edge_iterator ei;
2315 edge e;
2316 basic_block bb = gimple_bb (stmt);
2317
2318 FOR_EACH_EDGE (e, ei, bb->succs)
2319 if (e->flags & EDGE_FALLTHRU)
2320 {
2321 fallthru_edge = e;
2322 break;
2323 }
2324 }
2325
2326 gimple_call_set_lhs (stmt, tmp);
2327 update_stmt (stmt);
2328 stmt = gimple_build_assign (lhs, tmp);
2329 gimple_set_location (stmt, loc);
2330
2331 /* We cannot throw in the middle of a BB. If the call was going
2332 to throw, place the instrumentation on the fallthru edge, so
2333 the call remains the last statement in the block. */
2334 if (fallthru_edge)
2335 {
2336 gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (stmt);
2337 gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2338 expand_assign_tm (region, &fallthru_gsi);
2339 gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2340 pending_edge_inserts_p = true;
2341 }
2342 else
2343 {
2344 gsi_insert_after (gsi, stmt, GSI_CONTINUE_LINKING);
2345 expand_assign_tm (region, gsi);
2346 }
2347
2348 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2349 }
2350
2351 return retval;
2352 }
2353
2354
2355 /* Expand all statements in BB as appropriate for being inside
2356 a transaction. */
2357
2358 static void
2359 expand_block_tm (struct tm_region *region, basic_block bb)
2360 {
2361 gimple_stmt_iterator gsi;
2362
2363 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2364 {
2365 gimple stmt = gsi_stmt (gsi);
2366 switch (gimple_code (stmt))
2367 {
2368 case GIMPLE_ASSIGN:
2369 /* Only memory reads/writes need to be instrumented. */
2370 if (gimple_assign_single_p (stmt)
2371 && !gimple_clobber_p (stmt))
2372 {
2373 expand_assign_tm (region, &gsi);
2374 continue;
2375 }
2376 break;
2377
2378 case GIMPLE_CALL:
2379 if (expand_call_tm (region, &gsi))
2380 return;
2381 break;
2382
2383 case GIMPLE_ASM:
2384 gcc_unreachable ();
2385
2386 default:
2387 break;
2388 }
2389 if (!gsi_end_p (gsi))
2390 gsi_next (&gsi);
2391 }
2392 }
2393
2394 /* Return the list of basic-blocks in REGION.
2395
2396 STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2397 following a TM_IRREVOCABLE call. */
2398
2399 static vec<basic_block>
2400 get_tm_region_blocks (basic_block entry_block,
2401 bitmap exit_blocks,
2402 bitmap irr_blocks,
2403 bitmap all_region_blocks,
2404 bool stop_at_irrevocable_p)
2405 {
2406 vec<basic_block> bbs = vec<basic_block>();
2407 unsigned i;
2408 edge e;
2409 edge_iterator ei;
2410 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2411
2412 i = 0;
2413 bbs.safe_push (entry_block);
2414 bitmap_set_bit (visited_blocks, entry_block->index);
2415
2416 do
2417 {
2418 basic_block bb = bbs[i++];
2419
2420 if (exit_blocks &&
2421 bitmap_bit_p (exit_blocks, bb->index))
2422 continue;
2423
2424 if (stop_at_irrevocable_p
2425 && irr_blocks
2426 && bitmap_bit_p (irr_blocks, bb->index))
2427 continue;
2428
2429 FOR_EACH_EDGE (e, ei, bb->succs)
2430 if (!bitmap_bit_p (visited_blocks, e->dest->index))
2431 {
2432 bitmap_set_bit (visited_blocks, e->dest->index);
2433 bbs.safe_push (e->dest);
2434 }
2435 }
2436 while (i < bbs.length ());
2437
2438 if (all_region_blocks)
2439 bitmap_ior_into (all_region_blocks, visited_blocks);
2440
2441 BITMAP_FREE (visited_blocks);
2442 return bbs;
2443 }
2444
2445 // Callback for expand_regions, collect innermost region data for each bb.
2446 static void *
2447 collect_bb2reg (struct tm_region *region, void *data)
2448 {
2449 vec<tm_region_p> *bb2reg = (vec<tm_region_p> *) data;
2450 vec<basic_block> queue;
2451 unsigned int i;
2452 basic_block bb;
2453
2454 queue = get_tm_region_blocks (region->entry_block,
2455 region->exit_blocks,
2456 region->irr_blocks,
2457 NULL,
2458 /*stop_at_irr_p=*/false);
2459
2460 // We expect expand_region to perform a post-order traversal of the region
2461 // tree. Therefore the last region seen for any bb is the innermost.
2462 FOR_EACH_VEC_ELT (queue, i, bb)
2463 (*bb2reg)[bb->index] = region;
2464
2465 queue.release ();
2466 return NULL;
2467 }
2468
2469 // Returns a vector, indexed by BB->INDEX, of the innermost tm_region to
2470 // which a basic block belongs. Note that we only consider the instrumented
2471 // code paths for the region; the uninstrumented code paths are ignored.
2472 //
2473 // ??? This data is very similar to the bb_regions array that is collected
2474 // during tm_region_init. Or, rather, this data is similar to what could
2475 // be used within tm_region_init. The actual computation in tm_region_init
2476 // begins and ends with bb_regions entirely full of NULL pointers, due to
2477 // the way in which pointers are swapped in and out of the array.
2478 //
2479 // ??? Our callers expect that blocks are not shared between transactions.
2480 // When the optimizers get too smart, and blocks are shared, then during
2481 // the tm_mark phase we'll add log entries to only one of the two transactions,
2482 // and in the tm_edge phase we'll add edges to the CFG that create invalid
2483 // cycles. The symptom being SSA defs that do not dominate their uses.
2484 // Note that the optimizers were locally correct with their transformation,
2485 // as we have no info within the program that suggests that the blocks cannot
2486 // be shared.
2487 //
2488 // ??? There is currently a hack inside tree-ssa-pre.c to work around the
2489 // only known instance of this block sharing.
2490
2491 static vec<tm_region_p>
2492 get_bb_regions_instrumented (void)
2493 {
2494 unsigned n = last_basic_block;
2495 vec<tm_region_p> ret;
2496
2497 ret.create (n);
2498 ret.safe_grow_cleared (n);
2499 expand_regions (all_tm_regions, collect_bb2reg, &ret);
2500
2501 return ret;
2502 }
2503
2504 /* Set the IN_TRANSACTION for all gimple statements that appear in a
2505 transaction. */
2506
2507 void
2508 compute_transaction_bits (void)
2509 {
2510 struct tm_region *region;
2511 vec<basic_block> queue;
2512 unsigned int i;
2513 basic_block bb;
2514
2515 /* ?? Perhaps we need to abstract gate_tm_init further, because we
2516 certainly don't need it to calculate CDI_DOMINATOR info. */
2517 gate_tm_init ();
2518
2519 FOR_EACH_BB (bb)
2520 bb->flags &= ~BB_IN_TRANSACTION;
2521
2522 for (region = all_tm_regions; region; region = region->next)
2523 {
2524 queue = get_tm_region_blocks (region->entry_block,
2525 region->exit_blocks,
2526 region->irr_blocks,
2527 NULL,
2528 /*stop_at_irr_p=*/true);
2529 for (i = 0; queue.iterate (i, &bb); ++i)
2530 bb->flags |= BB_IN_TRANSACTION;
2531 queue.release ();
2532 }
2533
2534 if (all_tm_regions)
2535 bitmap_obstack_release (&tm_obstack);
2536 }
2537
2538 /* Replace the GIMPLE_TRANSACTION in this region with the corresponding
2539 call to BUILT_IN_TM_START. */
2540
2541 static void *
2542 expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2543 {
2544 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2545 basic_block transaction_bb = gimple_bb (region->transaction_stmt);
2546 tree tm_state = region->tm_state;
2547 tree tm_state_type = TREE_TYPE (tm_state);
2548 edge abort_edge = NULL;
2549 edge inst_edge = NULL;
2550 edge uninst_edge = NULL;
2551 edge fallthru_edge = NULL;
2552
2553 // Identify the various successors of the transaction start.
2554 {
2555 edge_iterator i;
2556 edge e;
2557 FOR_EACH_EDGE (e, i, transaction_bb->succs)
2558 {
2559 if (e->flags & EDGE_TM_ABORT)
2560 abort_edge = e;
2561 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
2562 uninst_edge = e;
2563 else
2564 inst_edge = e;
2565 if (e->flags & EDGE_FALLTHRU)
2566 fallthru_edge = e;
2567 }
2568 }
2569
2570 /* ??? There are plenty of bits here we're not computing. */
2571 {
2572 int subcode = gimple_transaction_subcode (region->transaction_stmt);
2573 int flags = 0;
2574 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2575 flags |= PR_DOESGOIRREVOCABLE;
2576 if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2577 flags |= PR_HASNOIRREVOCABLE;
2578 /* If the transaction does not have an abort in lexical scope and is not
2579 marked as an outer transaction, then it will never abort. */
2580 if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0)
2581 flags |= PR_HASNOABORT;
2582 if ((subcode & GTMA_HAVE_STORE) == 0)
2583 flags |= PR_READONLY;
2584 if (inst_edge)
2585 flags |= PR_INSTRUMENTEDCODE;
2586 if (uninst_edge)
2587 flags |= PR_UNINSTRUMENTEDCODE;
2588 if (subcode & GTMA_IS_OUTER)
2589 region->original_transaction_was_outer = true;
2590 tree t = build_int_cst (tm_state_type, flags);
2591 gimple call = gimple_build_call (tm_start, 1, t);
2592 gimple_call_set_lhs (call, tm_state);
2593 gimple_set_location (call, gimple_location (region->transaction_stmt));
2594
2595 // Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START.
2596 gimple_stmt_iterator gsi = gsi_last_bb (transaction_bb);
2597 gcc_assert (gsi_stmt (gsi) == region->transaction_stmt);
2598 gsi_insert_before (&gsi, call, GSI_SAME_STMT);
2599 gsi_remove (&gsi, true);
2600 region->transaction_stmt = call;
2601 }
2602
2603 // Generate log saves.
2604 if (!tm_log_save_addresses.is_empty ())
2605 tm_log_emit_saves (region->entry_block, transaction_bb);
2606
2607 // In the beginning, we've no tests to perform on transaction restart.
2608 // Note that after this point, transaction_bb becomes the "most recent
2609 // block containing tests for the transaction".
2610 region->restart_block = region->entry_block;
2611
2612 // Generate log restores.
2613 if (!tm_log_save_addresses.is_empty ())
2614 {
2615 basic_block test_bb = create_empty_bb (transaction_bb);
2616 basic_block code_bb = create_empty_bb (test_bb);
2617 basic_block join_bb = create_empty_bb (code_bb);
2618 if (current_loops && transaction_bb->loop_father)
2619 {
2620 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2621 add_bb_to_loop (code_bb, transaction_bb->loop_father);
2622 add_bb_to_loop (join_bb, transaction_bb->loop_father);
2623 }
2624 if (region->restart_block == region->entry_block)
2625 region->restart_block = test_bb;
2626
2627 tree t1 = create_tmp_reg (tm_state_type, NULL);
2628 tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES);
2629 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2630 tm_state, t2);
2631 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2632 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2633
2634 t2 = build_int_cst (tm_state_type, 0);
2635 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2636 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2637
2638 tm_log_emit_restores (region->entry_block, code_bb);
2639
2640 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2641 edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE);
2642 edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE);
2643 redirect_edge_pred (fallthru_edge, join_bb);
2644
2645 join_bb->frequency = test_bb->frequency = transaction_bb->frequency;
2646 join_bb->count = test_bb->count = transaction_bb->count;
2647
2648 ei->probability = PROB_ALWAYS;
2649 et->probability = PROB_LIKELY;
2650 ef->probability = PROB_UNLIKELY;
2651 et->count = apply_probability(test_bb->count, et->probability);
2652 ef->count = apply_probability(test_bb->count, ef->probability);
2653
2654 code_bb->count = et->count;
2655 code_bb->frequency = EDGE_FREQUENCY (et);
2656
2657 transaction_bb = join_bb;
2658 }
2659
2660 // If we have an ABORT edge, create a test to perform the abort.
2661 if (abort_edge)
2662 {
2663 basic_block test_bb = create_empty_bb (transaction_bb);
2664 if (current_loops && transaction_bb->loop_father)
2665 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2666 if (region->restart_block == region->entry_block)
2667 region->restart_block = test_bb;
2668
2669 tree t1 = create_tmp_reg (tm_state_type, NULL);
2670 tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION);
2671 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2672 tm_state, t2);
2673 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2674 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2675
2676 t2 = build_int_cst (tm_state_type, 0);
2677 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2678 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2679
2680 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2681 test_bb->frequency = transaction_bb->frequency;
2682 test_bb->count = transaction_bb->count;
2683 ei->probability = PROB_ALWAYS;
2684
2685 // Not abort edge. If both are live, chose one at random as we'll
2686 // we'll be fixing that up below.
2687 redirect_edge_pred (fallthru_edge, test_bb);
2688 fallthru_edge->flags = EDGE_FALSE_VALUE;
2689 fallthru_edge->probability = PROB_VERY_LIKELY;
2690 fallthru_edge->count
2691 = apply_probability(test_bb->count, fallthru_edge->probability);
2692
2693 // Abort/over edge.
2694 redirect_edge_pred (abort_edge, test_bb);
2695 abort_edge->flags = EDGE_TRUE_VALUE;
2696 abort_edge->probability = PROB_VERY_UNLIKELY;
2697 abort_edge->count
2698 = apply_probability(test_bb->count, abort_edge->probability);
2699
2700 transaction_bb = test_bb;
2701 }
2702
2703 // If we have both instrumented and uninstrumented code paths, select one.
2704 if (inst_edge && uninst_edge)
2705 {
2706 basic_block test_bb = create_empty_bb (transaction_bb);
2707 if (current_loops && transaction_bb->loop_father)
2708 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2709 if (region->restart_block == region->entry_block)
2710 region->restart_block = test_bb;
2711
2712 tree t1 = create_tmp_reg (tm_state_type, NULL);
2713 tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE);
2714
2715 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2716 tm_state, t2);
2717 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2718 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2719
2720 t2 = build_int_cst (tm_state_type, 0);
2721 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2722 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2723
2724 // Create the edge into test_bb first, as we want to copy values
2725 // out of the fallthru edge.
2726 edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags);
2727 e->probability = fallthru_edge->probability;
2728 test_bb->count = e->count = fallthru_edge->count;
2729 test_bb->frequency = EDGE_FREQUENCY (e);
2730
2731 // Now update the edges to the inst/uninist implementations.
2732 // For now assume that the paths are equally likely. When using HTM,
2733 // we'll try the uninst path first and fallback to inst path if htm
2734 // buffers are exceeded. Without HTM we start with the inst path and
2735 // use the uninst path when falling back to serial mode.
2736 redirect_edge_pred (inst_edge, test_bb);
2737 inst_edge->flags = EDGE_FALSE_VALUE;
2738 inst_edge->probability = REG_BR_PROB_BASE / 2;
2739 inst_edge->count
2740 = apply_probability(test_bb->count, inst_edge->probability);
2741
2742 redirect_edge_pred (uninst_edge, test_bb);
2743 uninst_edge->flags = EDGE_TRUE_VALUE;
2744 uninst_edge->probability = REG_BR_PROB_BASE / 2;
2745 uninst_edge->count
2746 = apply_probability(test_bb->count, uninst_edge->probability);
2747 }
2748
2749 // If we have no previous special cases, and we have PHIs at the beginning
2750 // of the atomic region, this means we have a loop at the beginning of the
2751 // atomic region that shares the first block. This can cause problems with
2752 // the transaction restart abnormal edges to be added in the tm_edges pass.
2753 // Solve this by adding a new empty block to receive the abnormal edges.
2754 if (region->restart_block == region->entry_block
2755 && phi_nodes (region->entry_block))
2756 {
2757 basic_block empty_bb = create_empty_bb (transaction_bb);
2758 region->restart_block = empty_bb;
2759 if (current_loops && transaction_bb->loop_father)
2760 add_bb_to_loop (empty_bb, transaction_bb->loop_father);
2761
2762 redirect_edge_pred (fallthru_edge, empty_bb);
2763 make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU);
2764 }
2765
2766 return NULL;
2767 }
2768
2769 /* Generate the temporary to be used for the return value of
2770 BUILT_IN_TM_START. */
2771
2772 static void *
2773 generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2774 {
2775 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2776 region->tm_state =
2777 create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
2778
2779 // Reset the subcode, post optimizations. We'll fill this in
2780 // again as we process blocks.
2781 if (region->exit_blocks)
2782 {
2783 unsigned int subcode
2784 = gimple_transaction_subcode (region->transaction_stmt);
2785
2786 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2787 subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
2788 | GTMA_MAY_ENTER_IRREVOCABLE);
2789 else
2790 subcode &= GTMA_DECLARATION_MASK;
2791 gimple_transaction_set_subcode (region->transaction_stmt, subcode);
2792 }
2793
2794 return NULL;
2795 }
2796
2797 // Propagate flags from inner transactions outwards.
2798 static void
2799 propagate_tm_flags_out (struct tm_region *region)
2800 {
2801 if (region == NULL)
2802 return;
2803 propagate_tm_flags_out (region->inner);
2804
2805 if (region->outer && region->outer->transaction_stmt)
2806 {
2807 unsigned s = gimple_transaction_subcode (region->transaction_stmt);
2808 s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE
2809 | GTMA_MAY_ENTER_IRREVOCABLE);
2810 s |= gimple_transaction_subcode (region->outer->transaction_stmt);
2811 gimple_transaction_set_subcode (region->outer->transaction_stmt, s);
2812 }
2813
2814 propagate_tm_flags_out (region->next);
2815 }
2816
2817 /* Entry point to the MARK phase of TM expansion. Here we replace
2818 transactional memory statements with calls to builtins, and function
2819 calls with their transactional clones (if available). But we don't
2820 yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
2821
2822 static unsigned int
2823 execute_tm_mark (void)
2824 {
2825 pending_edge_inserts_p = false;
2826
2827 expand_regions (all_tm_regions, generate_tm_state, NULL);
2828
2829 tm_log_init ();
2830
2831 vec<tm_region_p> bb_regions = get_bb_regions_instrumented ();
2832 struct tm_region *r;
2833 unsigned i;
2834
2835 // Expand memory operations into calls into the runtime.
2836 // This collects log entries as well.
2837 FOR_EACH_VEC_ELT (bb_regions, i, r)
2838 if (r != NULL)
2839 expand_block_tm (r, BASIC_BLOCK (i));
2840
2841 // Propagate flags from inner transactions outwards.
2842 propagate_tm_flags_out (all_tm_regions);
2843
2844 // Expand GIMPLE_TRANSACTIONs into calls into the runtime.
2845 expand_regions (all_tm_regions, expand_transaction, NULL);
2846
2847 tm_log_emit ();
2848 tm_log_delete ();
2849
2850 if (pending_edge_inserts_p)
2851 gsi_commit_edge_inserts ();
2852 free_dominance_info (CDI_DOMINATORS);
2853 return 0;
2854 }
2855
2856 struct gimple_opt_pass pass_tm_mark =
2857 {
2858 {
2859 GIMPLE_PASS,
2860 "tmmark", /* name */
2861 OPTGROUP_NONE, /* optinfo_flags */
2862 NULL, /* gate */
2863 execute_tm_mark, /* execute */
2864 NULL, /* sub */
2865 NULL, /* next */
2866 0, /* static_pass_number */
2867 TV_TRANS_MEM, /* tv_id */
2868 PROP_ssa | PROP_cfg, /* properties_required */
2869 0, /* properties_provided */
2870 0, /* properties_destroyed */
2871 0, /* todo_flags_start */
2872 TODO_update_ssa
2873 | TODO_verify_ssa, /* todo_flags_finish */
2874 }
2875 };
2876 \f
2877
2878 /* Create an abnormal edge from STMT at iter, splitting the block
2879 as necessary. Adjust *PNEXT as needed for the split block. */
2880
2881 static inline void
2882 split_bb_make_tm_edge (gimple stmt, basic_block dest_bb,
2883 gimple_stmt_iterator iter, gimple_stmt_iterator *pnext)
2884 {
2885 basic_block bb = gimple_bb (stmt);
2886 if (!gsi_one_before_end_p (iter))
2887 {
2888 edge e = split_block (bb, stmt);
2889 *pnext = gsi_start_bb (e->dest);
2890 }
2891 make_edge (bb, dest_bb, EDGE_ABNORMAL);
2892
2893 // Record the need for the edge for the benefit of the rtl passes.
2894 if (cfun->gimple_df->tm_restart == NULL)
2895 cfun->gimple_df->tm_restart = htab_create_ggc (31, struct_ptr_hash,
2896 struct_ptr_eq, ggc_free);
2897
2898 struct tm_restart_node dummy;
2899 dummy.stmt = stmt;
2900 dummy.label_or_list = gimple_block_label (dest_bb);
2901
2902 void **slot = htab_find_slot (cfun->gimple_df->tm_restart, &dummy, INSERT);
2903 struct tm_restart_node *n = (struct tm_restart_node *) *slot;
2904 if (n == NULL)
2905 {
2906 n = ggc_alloc_tm_restart_node ();
2907 *n = dummy;
2908 }
2909 else
2910 {
2911 tree old = n->label_or_list;
2912 if (TREE_CODE (old) == LABEL_DECL)
2913 old = tree_cons (NULL, old, NULL);
2914 n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
2915 }
2916 }
2917
2918 /* Split block BB as necessary for every builtin function we added, and
2919 wire up the abnormal back edges implied by the transaction restart. */
2920
2921 static void
2922 expand_block_edges (struct tm_region *const region, basic_block bb)
2923 {
2924 gimple_stmt_iterator gsi, next_gsi;
2925
2926 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi = next_gsi)
2927 {
2928 gimple stmt = gsi_stmt (gsi);
2929
2930 next_gsi = gsi;
2931 gsi_next (&next_gsi);
2932
2933 // ??? Shouldn't we split for any non-pure, non-irrevocable function?
2934 if (gimple_code (stmt) != GIMPLE_CALL
2935 || (gimple_call_flags (stmt) & ECF_TM_BUILTIN) == 0)
2936 continue;
2937
2938 if (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)) == BUILT_IN_TM_ABORT)
2939 {
2940 // If we have a ``_transaction_cancel [[outer]]'', there is only
2941 // one abnormal edge: to the transaction marked OUTER.
2942 // All compiler-generated instances of BUILT_IN_TM_ABORT have a
2943 // constant argument, which we can examine here. Users invoking
2944 // TM_ABORT directly get what they deserve.
2945 tree arg = gimple_call_arg (stmt, 0);
2946 if (TREE_CODE (arg) == INTEGER_CST
2947 && (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0
2948 && !decl_is_tm_clone (current_function_decl))
2949 {
2950 // Find the GTMA_IS_OUTER transaction.
2951 for (struct tm_region *o = region; o; o = o->outer)
2952 if (o->original_transaction_was_outer)
2953 {
2954 split_bb_make_tm_edge (stmt, o->restart_block,
2955 gsi, &next_gsi);
2956 break;
2957 }
2958
2959 // Otherwise, the front-end should have semantically checked
2960 // outer aborts, but in either case the target region is not
2961 // within this function.
2962 continue;
2963 }
2964
2965 // Non-outer, TM aborts have an abnormal edge to the inner-most
2966 // transaction, the one being aborted;
2967 split_bb_make_tm_edge (stmt, region->restart_block, gsi, &next_gsi);
2968 }
2969
2970 // All TM builtins have an abnormal edge to the outer-most transaction.
2971 // We never restart inner transactions. For tm clones, we know a-priori
2972 // that the outer-most transaction is outside the function.
2973 if (decl_is_tm_clone (current_function_decl))
2974 continue;
2975
2976 if (cfun->gimple_df->tm_restart == NULL)
2977 cfun->gimple_df->tm_restart
2978 = htab_create_ggc (31, struct_ptr_hash, struct_ptr_eq, ggc_free);
2979
2980 // All TM builtins have an abnormal edge to the outer-most transaction.
2981 // We never restart inner transactions.
2982 for (struct tm_region *o = region; o; o = o->outer)
2983 if (!o->outer)
2984 {
2985 split_bb_make_tm_edge (stmt, o->restart_block, gsi, &next_gsi);
2986 break;
2987 }
2988
2989 // Delete any tail-call annotation that may have been added.
2990 // The tail-call pass may have mis-identified the commit as being
2991 // a candidate because we had not yet added this restart edge.
2992 gimple_call_set_tail (stmt, false);
2993 }
2994 }
2995
2996 /* Entry point to the final expansion of transactional nodes. */
2997
2998 static unsigned int
2999 execute_tm_edges (void)
3000 {
3001 vec<tm_region_p> bb_regions = get_bb_regions_instrumented ();
3002 struct tm_region *r;
3003 unsigned i;
3004
3005 FOR_EACH_VEC_ELT (bb_regions, i, r)
3006 if (r != NULL)
3007 expand_block_edges (r, BASIC_BLOCK (i));
3008
3009 bb_regions.release ();
3010
3011 /* We've got to release the dominance info now, to indicate that it
3012 must be rebuilt completely. Otherwise we'll crash trying to update
3013 the SSA web in the TODO section following this pass. */
3014 free_dominance_info (CDI_DOMINATORS);
3015 bitmap_obstack_release (&tm_obstack);
3016 all_tm_regions = NULL;
3017
3018 return 0;
3019 }
3020
3021 struct gimple_opt_pass pass_tm_edges =
3022 {
3023 {
3024 GIMPLE_PASS,
3025 "tmedge", /* name */
3026 OPTGROUP_NONE, /* optinfo_flags */
3027 NULL, /* gate */
3028 execute_tm_edges, /* execute */
3029 NULL, /* sub */
3030 NULL, /* next */
3031 0, /* static_pass_number */
3032 TV_TRANS_MEM, /* tv_id */
3033 PROP_ssa | PROP_cfg, /* properties_required */
3034 0, /* properties_provided */
3035 0, /* properties_destroyed */
3036 0, /* todo_flags_start */
3037 TODO_update_ssa
3038 | TODO_verify_ssa, /* todo_flags_finish */
3039 }
3040 };
3041 \f
3042 /* Helper function for expand_regions. Expand REGION and recurse to
3043 the inner region. Call CALLBACK on each region. CALLBACK returns
3044 NULL to continue the traversal, otherwise a non-null value which
3045 this function will return as well. */
3046
3047 static void *
3048 expand_regions_1 (struct tm_region *region,
3049 void *(*callback)(struct tm_region *, void *),
3050 void *data)
3051 {
3052 void *retval = NULL;
3053 if (region->exit_blocks)
3054 {
3055 retval = callback (region, data);
3056 if (retval)
3057 return retval;
3058 }
3059 if (region->inner)
3060 {
3061 retval = expand_regions (region->inner, callback, data);
3062 if (retval)
3063 return retval;
3064 }
3065 return retval;
3066 }
3067
3068 /* Traverse the regions enclosed and including REGION. Execute
3069 CALLBACK for each region, passing DATA. CALLBACK returns NULL to
3070 continue the traversal, otherwise a non-null value which this
3071 function will return as well. */
3072
3073 static void *
3074 expand_regions (struct tm_region *region,
3075 void *(*callback)(struct tm_region *, void *),
3076 void *data)
3077 {
3078 void *retval = NULL;
3079 while (region)
3080 {
3081 retval = expand_regions_1 (region, callback, data);
3082 if (retval)
3083 return retval;
3084 region = region->next;
3085 }
3086 return retval;
3087 }
3088
3089 \f
3090 /* A unique TM memory operation. */
3091 typedef struct tm_memop
3092 {
3093 /* Unique ID that all memory operations to the same location have. */
3094 unsigned int value_id;
3095 /* Address of load/store. */
3096 tree addr;
3097 } *tm_memop_t;
3098
3099 /* Sets for solving data flow equations in the memory optimization pass. */
3100 struct tm_memopt_bitmaps
3101 {
3102 /* Stores available to this BB upon entry. Basically, stores that
3103 dominate this BB. */
3104 bitmap store_avail_in;
3105 /* Stores available at the end of this BB. */
3106 bitmap store_avail_out;
3107 bitmap store_antic_in;
3108 bitmap store_antic_out;
3109 /* Reads available to this BB upon entry. Basically, reads that
3110 dominate this BB. */
3111 bitmap read_avail_in;
3112 /* Reads available at the end of this BB. */
3113 bitmap read_avail_out;
3114 /* Reads performed in this BB. */
3115 bitmap read_local;
3116 /* Writes performed in this BB. */
3117 bitmap store_local;
3118
3119 /* Temporary storage for pass. */
3120 /* Is the current BB in the worklist? */
3121 bool avail_in_worklist_p;
3122 /* Have we visited this BB? */
3123 bool visited_p;
3124 };
3125
3126 static bitmap_obstack tm_memopt_obstack;
3127
3128 /* Unique counter for TM loads and stores. Loads and stores of the
3129 same address get the same ID. */
3130 static unsigned int tm_memopt_value_id;
3131 static htab_t tm_memopt_value_numbers;
3132
3133 #define STORE_AVAIL_IN(BB) \
3134 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
3135 #define STORE_AVAIL_OUT(BB) \
3136 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
3137 #define STORE_ANTIC_IN(BB) \
3138 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
3139 #define STORE_ANTIC_OUT(BB) \
3140 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
3141 #define READ_AVAIL_IN(BB) \
3142 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
3143 #define READ_AVAIL_OUT(BB) \
3144 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
3145 #define READ_LOCAL(BB) \
3146 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
3147 #define STORE_LOCAL(BB) \
3148 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
3149 #define AVAIL_IN_WORKLIST_P(BB) \
3150 ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
3151 #define BB_VISITED_P(BB) \
3152 ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
3153
3154 /* Htab support. Return a hash value for a `tm_memop'. */
3155 static hashval_t
3156 tm_memop_hash (const void *p)
3157 {
3158 const struct tm_memop *mem = (const struct tm_memop *) p;
3159 tree addr = mem->addr;
3160 /* We drill down to the SSA_NAME/DECL for the hash, but equality is
3161 actually done with operand_equal_p (see tm_memop_eq). */
3162 if (TREE_CODE (addr) == ADDR_EXPR)
3163 addr = TREE_OPERAND (addr, 0);
3164 return iterative_hash_expr (addr, 0);
3165 }
3166
3167 /* Htab support. Return true if two tm_memop's are the same. */
3168 static int
3169 tm_memop_eq (const void *p1, const void *p2)
3170 {
3171 const struct tm_memop *mem1 = (const struct tm_memop *) p1;
3172 const struct tm_memop *mem2 = (const struct tm_memop *) p2;
3173
3174 return operand_equal_p (mem1->addr, mem2->addr, 0);
3175 }
3176
3177 /* Given a TM load/store in STMT, return the value number for the address
3178 it accesses. */
3179
3180 static unsigned int
3181 tm_memopt_value_number (gimple stmt, enum insert_option op)
3182 {
3183 struct tm_memop tmpmem, *mem;
3184 void **slot;
3185
3186 gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
3187 tmpmem.addr = gimple_call_arg (stmt, 0);
3188 slot = htab_find_slot (tm_memopt_value_numbers, &tmpmem, op);
3189 if (*slot)
3190 mem = (struct tm_memop *) *slot;
3191 else if (op == INSERT)
3192 {
3193 mem = XNEW (struct tm_memop);
3194 *slot = mem;
3195 mem->value_id = tm_memopt_value_id++;
3196 mem->addr = tmpmem.addr;
3197 }
3198 else
3199 gcc_unreachable ();
3200 return mem->value_id;
3201 }
3202
3203 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
3204
3205 static void
3206 tm_memopt_accumulate_memops (basic_block bb)
3207 {
3208 gimple_stmt_iterator gsi;
3209
3210 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3211 {
3212 gimple stmt = gsi_stmt (gsi);
3213 bitmap bits;
3214 unsigned int loc;
3215
3216 if (is_tm_store (stmt))
3217 bits = STORE_LOCAL (bb);
3218 else if (is_tm_load (stmt))
3219 bits = READ_LOCAL (bb);
3220 else
3221 continue;
3222
3223 loc = tm_memopt_value_number (stmt, INSERT);
3224 bitmap_set_bit (bits, loc);
3225 if (dump_file)
3226 {
3227 fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
3228 is_tm_load (stmt) ? "LOAD" : "STORE", loc,
3229 gimple_bb (stmt)->index);
3230 print_generic_expr (dump_file, gimple_call_arg (stmt, 0), 0);
3231 fprintf (dump_file, "\n");
3232 }
3233 }
3234 }
3235
3236 /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
3237
3238 static void
3239 dump_tm_memopt_set (const char *set_name, bitmap bits)
3240 {
3241 unsigned i;
3242 bitmap_iterator bi;
3243 const char *comma = "";
3244
3245 fprintf (dump_file, "TM memopt: %s: [", set_name);
3246 EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
3247 {
3248 htab_iterator hi;
3249 struct tm_memop *mem;
3250
3251 /* Yeah, yeah, yeah. Whatever. This is just for debugging. */
3252 FOR_EACH_HTAB_ELEMENT (tm_memopt_value_numbers, mem, tm_memop_t, hi)
3253 if (mem->value_id == i)
3254 break;
3255 gcc_assert (mem->value_id == i);
3256 fprintf (dump_file, "%s", comma);
3257 comma = ", ";
3258 print_generic_expr (dump_file, mem->addr, 0);
3259 }
3260 fprintf (dump_file, "]\n");
3261 }
3262
3263 /* Prettily dump all of the memopt sets in BLOCKS. */
3264
3265 static void
3266 dump_tm_memopt_sets (vec<basic_block> blocks)
3267 {
3268 size_t i;
3269 basic_block bb;
3270
3271 for (i = 0; blocks.iterate (i, &bb); ++i)
3272 {
3273 fprintf (dump_file, "------------BB %d---------\n", bb->index);
3274 dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
3275 dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
3276 dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
3277 dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
3278 dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
3279 dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
3280 }
3281 }
3282
3283 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
3284
3285 static void
3286 tm_memopt_compute_avin (basic_block bb)
3287 {
3288 edge e;
3289 unsigned ix;
3290
3291 /* Seed with the AVOUT of any predecessor. */
3292 for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
3293 {
3294 e = EDGE_PRED (bb, ix);
3295 /* Make sure we have already visited this BB, and is thus
3296 initialized.
3297
3298 If e->src->aux is NULL, this predecessor is actually on an
3299 enclosing transaction. We only care about the current
3300 transaction, so ignore it. */
3301 if (e->src->aux && BB_VISITED_P (e->src))
3302 {
3303 bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3304 bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3305 break;
3306 }
3307 }
3308
3309 for (; ix < EDGE_COUNT (bb->preds); ix++)
3310 {
3311 e = EDGE_PRED (bb, ix);
3312 if (e->src->aux && BB_VISITED_P (e->src))
3313 {
3314 bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3315 bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3316 }
3317 }
3318
3319 BB_VISITED_P (bb) = true;
3320 }
3321
3322 /* Compute the STORE_ANTIC_IN for the basic block BB. */
3323
3324 static void
3325 tm_memopt_compute_antin (basic_block bb)
3326 {
3327 edge e;
3328 unsigned ix;
3329
3330 /* Seed with the ANTIC_OUT of any successor. */
3331 for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
3332 {
3333 e = EDGE_SUCC (bb, ix);
3334 /* Make sure we have already visited this BB, and is thus
3335 initialized. */
3336 if (BB_VISITED_P (e->dest))
3337 {
3338 bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3339 break;
3340 }
3341 }
3342
3343 for (; ix < EDGE_COUNT (bb->succs); ix++)
3344 {
3345 e = EDGE_SUCC (bb, ix);
3346 if (BB_VISITED_P (e->dest))
3347 bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3348 }
3349
3350 BB_VISITED_P (bb) = true;
3351 }
3352
3353 /* Compute the AVAIL sets for every basic block in BLOCKS.
3354
3355 We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3356
3357 AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3358 AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
3359
3360 This is basically what we do in lcm's compute_available(), but here
3361 we calculate two sets of sets (one for STOREs and one for READs),
3362 and we work on a region instead of the entire CFG.
3363
3364 REGION is the TM region.
3365 BLOCKS are the basic blocks in the region. */
3366
3367 static void
3368 tm_memopt_compute_available (struct tm_region *region,
3369 vec<basic_block> blocks)
3370 {
3371 edge e;
3372 basic_block *worklist, *qin, *qout, *qend, bb;
3373 unsigned int qlen, i;
3374 edge_iterator ei;
3375 bool changed;
3376
3377 /* Allocate a worklist array/queue. Entries are only added to the
3378 list if they were not already on the list. So the size is
3379 bounded by the number of basic blocks in the region. */
3380 qlen = blocks.length () - 1;
3381 qin = qout = worklist =
3382 XNEWVEC (basic_block, qlen);
3383
3384 /* Put every block in the region on the worklist. */
3385 for (i = 0; blocks.iterate (i, &bb); ++i)
3386 {
3387 /* Seed AVAIL_OUT with the LOCAL set. */
3388 bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3389 bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3390
3391 AVAIL_IN_WORKLIST_P (bb) = true;
3392 /* No need to insert the entry block, since it has an AVIN of
3393 null, and an AVOUT that has already been seeded in. */
3394 if (bb != region->entry_block)
3395 *qin++ = bb;
3396 }
3397
3398 /* The entry block has been initialized with the local sets. */
3399 BB_VISITED_P (region->entry_block) = true;
3400
3401 qin = worklist;
3402 qend = &worklist[qlen];
3403
3404 /* Iterate until the worklist is empty. */
3405 while (qlen)
3406 {
3407 /* Take the first entry off the worklist. */
3408 bb = *qout++;
3409 qlen--;
3410
3411 if (qout >= qend)
3412 qout = worklist;
3413
3414 /* This block can be added to the worklist again if necessary. */
3415 AVAIL_IN_WORKLIST_P (bb) = false;
3416 tm_memopt_compute_avin (bb);
3417
3418 /* Note: We do not add the LOCAL sets here because we already
3419 seeded the AVAIL_OUT sets with them. */
3420 changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3421 changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3422 if (changed
3423 && (region->exit_blocks == NULL
3424 || !bitmap_bit_p (region->exit_blocks, bb->index)))
3425 /* If the out state of this block changed, then we need to add
3426 its successors to the worklist if they are not already in. */
3427 FOR_EACH_EDGE (e, ei, bb->succs)
3428 if (!AVAIL_IN_WORKLIST_P (e->dest) && e->dest != EXIT_BLOCK_PTR)
3429 {
3430 *qin++ = e->dest;
3431 AVAIL_IN_WORKLIST_P (e->dest) = true;
3432 qlen++;
3433
3434 if (qin >= qend)
3435 qin = worklist;
3436 }
3437 }
3438
3439 free (worklist);
3440
3441 if (dump_file)
3442 dump_tm_memopt_sets (blocks);
3443 }
3444
3445 /* Compute ANTIC sets for every basic block in BLOCKS.
3446
3447 We compute STORE_ANTIC_OUT as follows:
3448
3449 STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3450 STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
3451
3452 REGION is the TM region.
3453 BLOCKS are the basic blocks in the region. */
3454
3455 static void
3456 tm_memopt_compute_antic (struct tm_region *region,
3457 vec<basic_block> blocks)
3458 {
3459 edge e;
3460 basic_block *worklist, *qin, *qout, *qend, bb;
3461 unsigned int qlen;
3462 int i;
3463 edge_iterator ei;
3464
3465 /* Allocate a worklist array/queue. Entries are only added to the
3466 list if they were not already on the list. So the size is
3467 bounded by the number of basic blocks in the region. */
3468 qin = qout = worklist = XNEWVEC (basic_block, blocks.length ());
3469
3470 for (qlen = 0, i = blocks.length () - 1; i >= 0; --i)
3471 {
3472 bb = blocks[i];
3473
3474 /* Seed ANTIC_OUT with the LOCAL set. */
3475 bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3476
3477 /* Put every block in the region on the worklist. */
3478 AVAIL_IN_WORKLIST_P (bb) = true;
3479 /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3480 and their ANTIC_OUT has already been seeded in. */
3481 if (region->exit_blocks
3482 && !bitmap_bit_p (region->exit_blocks, bb->index))
3483 {
3484 qlen++;
3485 *qin++ = bb;
3486 }
3487 }
3488
3489 /* The exit blocks have been initialized with the local sets. */
3490 if (region->exit_blocks)
3491 {
3492 unsigned int i;
3493 bitmap_iterator bi;
3494 EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3495 BB_VISITED_P (BASIC_BLOCK (i)) = true;
3496 }
3497
3498 qin = worklist;
3499 qend = &worklist[qlen];
3500
3501 /* Iterate until the worklist is empty. */
3502 while (qlen)
3503 {
3504 /* Take the first entry off the worklist. */
3505 bb = *qout++;
3506 qlen--;
3507
3508 if (qout >= qend)
3509 qout = worklist;
3510
3511 /* This block can be added to the worklist again if necessary. */
3512 AVAIL_IN_WORKLIST_P (bb) = false;
3513 tm_memopt_compute_antin (bb);
3514
3515 /* Note: We do not add the LOCAL sets here because we already
3516 seeded the ANTIC_OUT sets with them. */
3517 if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3518 && bb != region->entry_block)
3519 /* If the out state of this block changed, then we need to add
3520 its predecessors to the worklist if they are not already in. */
3521 FOR_EACH_EDGE (e, ei, bb->preds)
3522 if (!AVAIL_IN_WORKLIST_P (e->src))
3523 {
3524 *qin++ = e->src;
3525 AVAIL_IN_WORKLIST_P (e->src) = true;
3526 qlen++;
3527
3528 if (qin >= qend)
3529 qin = worklist;
3530 }
3531 }
3532
3533 free (worklist);
3534
3535 if (dump_file)
3536 dump_tm_memopt_sets (blocks);
3537 }
3538
3539 /* Offsets of load variants from TM_LOAD. For example,
3540 BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3541 See gtm-builtins.def. */
3542 #define TRANSFORM_RAR 1
3543 #define TRANSFORM_RAW 2
3544 #define TRANSFORM_RFW 3
3545 /* Offsets of store variants from TM_STORE. */
3546 #define TRANSFORM_WAR 1
3547 #define TRANSFORM_WAW 2
3548
3549 /* Inform about a load/store optimization. */
3550
3551 static void
3552 dump_tm_memopt_transform (gimple stmt)
3553 {
3554 if (dump_file)
3555 {
3556 fprintf (dump_file, "TM memopt: transforming: ");
3557 print_gimple_stmt (dump_file, stmt, 0, 0);
3558 fprintf (dump_file, "\n");
3559 }
3560 }
3561
3562 /* Perform a read/write optimization. Replaces the TM builtin in STMT
3563 by a builtin that is OFFSET entries down in the builtins table in
3564 gtm-builtins.def. */
3565
3566 static void
3567 tm_memopt_transform_stmt (unsigned int offset,
3568 gimple stmt,
3569 gimple_stmt_iterator *gsi)
3570 {
3571 tree fn = gimple_call_fn (stmt);
3572 gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3573 TREE_OPERAND (fn, 0)
3574 = builtin_decl_explicit ((enum built_in_function)
3575 (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3576 + offset));
3577 gimple_call_set_fn (stmt, fn);
3578 gsi_replace (gsi, stmt, true);
3579 dump_tm_memopt_transform (stmt);
3580 }
3581
3582 /* Perform the actual TM memory optimization transformations in the
3583 basic blocks in BLOCKS. */
3584
3585 static void
3586 tm_memopt_transform_blocks (vec<basic_block> blocks)
3587 {
3588 size_t i;
3589 basic_block bb;
3590 gimple_stmt_iterator gsi;
3591
3592 for (i = 0; blocks.iterate (i, &bb); ++i)
3593 {
3594 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3595 {
3596 gimple stmt = gsi_stmt (gsi);
3597 bitmap read_avail = READ_AVAIL_IN (bb);
3598 bitmap store_avail = STORE_AVAIL_IN (bb);
3599 bitmap store_antic = STORE_ANTIC_OUT (bb);
3600 unsigned int loc;
3601
3602 if (is_tm_simple_load (stmt))
3603 {
3604 loc = tm_memopt_value_number (stmt, NO_INSERT);
3605 if (store_avail && bitmap_bit_p (store_avail, loc))
3606 tm_memopt_transform_stmt (TRANSFORM_RAW, stmt, &gsi);
3607 else if (store_antic && bitmap_bit_p (store_antic, loc))
3608 {
3609 tm_memopt_transform_stmt (TRANSFORM_RFW, stmt, &gsi);
3610 bitmap_set_bit (store_avail, loc);
3611 }
3612 else if (read_avail && bitmap_bit_p (read_avail, loc))
3613 tm_memopt_transform_stmt (TRANSFORM_RAR, stmt, &gsi);
3614 else
3615 bitmap_set_bit (read_avail, loc);
3616 }
3617 else if (is_tm_simple_store (stmt))
3618 {
3619 loc = tm_memopt_value_number (stmt, NO_INSERT);
3620 if (store_avail && bitmap_bit_p (store_avail, loc))
3621 tm_memopt_transform_stmt (TRANSFORM_WAW, stmt, &gsi);
3622 else
3623 {
3624 if (read_avail && bitmap_bit_p (read_avail, loc))
3625 tm_memopt_transform_stmt (TRANSFORM_WAR, stmt, &gsi);
3626 bitmap_set_bit (store_avail, loc);
3627 }
3628 }
3629 }
3630 }
3631 }
3632
3633 /* Return a new set of bitmaps for a BB. */
3634
3635 static struct tm_memopt_bitmaps *
3636 tm_memopt_init_sets (void)
3637 {
3638 struct tm_memopt_bitmaps *b
3639 = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3640 b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3641 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3642 b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
3643 b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
3644 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3645 b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3646 b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3647 b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
3648 b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
3649 return b;
3650 }
3651
3652 /* Free sets computed for each BB. */
3653
3654 static void
3655 tm_memopt_free_sets (vec<basic_block> blocks)
3656 {
3657 size_t i;
3658 basic_block bb;
3659
3660 for (i = 0; blocks.iterate (i, &bb); ++i)
3661 bb->aux = NULL;
3662 }
3663
3664 /* Clear the visited bit for every basic block in BLOCKS. */
3665
3666 static void
3667 tm_memopt_clear_visited (vec<basic_block> blocks)
3668 {
3669 size_t i;
3670 basic_block bb;
3671
3672 for (i = 0; blocks.iterate (i, &bb); ++i)
3673 BB_VISITED_P (bb) = false;
3674 }
3675
3676 /* Replace TM load/stores with hints for the runtime. We handle
3677 things like read-after-write, write-after-read, read-after-read,
3678 read-for-write, etc. */
3679
3680 static unsigned int
3681 execute_tm_memopt (void)
3682 {
3683 struct tm_region *region;
3684 vec<basic_block> bbs;
3685
3686 tm_memopt_value_id = 0;
3687 tm_memopt_value_numbers = htab_create (10, tm_memop_hash, tm_memop_eq, free);
3688
3689 for (region = all_tm_regions; region; region = region->next)
3690 {
3691 /* All the TM stores/loads in the current region. */
3692 size_t i;
3693 basic_block bb;
3694
3695 bitmap_obstack_initialize (&tm_memopt_obstack);
3696
3697 /* Save all BBs for the current region. */
3698 bbs = get_tm_region_blocks (region->entry_block,
3699 region->exit_blocks,
3700 region->irr_blocks,
3701 NULL,
3702 false);
3703
3704 /* Collect all the memory operations. */
3705 for (i = 0; bbs.iterate (i, &bb); ++i)
3706 {
3707 bb->aux = tm_memopt_init_sets ();
3708 tm_memopt_accumulate_memops (bb);
3709 }
3710
3711 /* Solve data flow equations and transform each block accordingly. */
3712 tm_memopt_clear_visited (bbs);
3713 tm_memopt_compute_available (region, bbs);
3714 tm_memopt_clear_visited (bbs);
3715 tm_memopt_compute_antic (region, bbs);
3716 tm_memopt_transform_blocks (bbs);
3717
3718 tm_memopt_free_sets (bbs);
3719 bbs.release ();
3720 bitmap_obstack_release (&tm_memopt_obstack);
3721 htab_empty (tm_memopt_value_numbers);
3722 }
3723
3724 htab_delete (tm_memopt_value_numbers);
3725 return 0;
3726 }
3727
3728 static bool
3729 gate_tm_memopt (void)
3730 {
3731 return flag_tm && optimize > 0;
3732 }
3733
3734 struct gimple_opt_pass pass_tm_memopt =
3735 {
3736 {
3737 GIMPLE_PASS,
3738 "tmmemopt", /* name */
3739 OPTGROUP_NONE, /* optinfo_flags */
3740 gate_tm_memopt, /* gate */
3741 execute_tm_memopt, /* execute */
3742 NULL, /* sub */
3743 NULL, /* next */
3744 0, /* static_pass_number */
3745 TV_TRANS_MEM, /* tv_id */
3746 PROP_ssa | PROP_cfg, /* properties_required */
3747 0, /* properties_provided */
3748 0, /* properties_destroyed */
3749 0, /* todo_flags_start */
3750 0, /* todo_flags_finish */
3751 }
3752 };
3753
3754 \f
3755 /* Interprocedual analysis for the creation of transactional clones.
3756 The aim of this pass is to find which functions are referenced in
3757 a non-irrevocable transaction context, and for those over which
3758 we have control (or user directive), create a version of the
3759 function which uses only the transactional interface to reference
3760 protected memories. This analysis proceeds in several steps:
3761
3762 (1) Collect the set of all possible transactional clones:
3763
3764 (a) For all local public functions marked tm_callable, push
3765 it onto the tm_callee queue.
3766
3767 (b) For all local functions, scan for calls in transaction blocks.
3768 Push the caller and callee onto the tm_caller and tm_callee
3769 queues. Count the number of callers for each callee.
3770
3771 (c) For each local function on the callee list, assume we will
3772 create a transactional clone. Push *all* calls onto the
3773 callee queues; count the number of clone callers separately
3774 to the number of original callers.
3775
3776 (2) Propagate irrevocable status up the dominator tree:
3777
3778 (a) Any external function on the callee list that is not marked
3779 tm_callable is irrevocable. Push all callers of such onto
3780 a worklist.
3781
3782 (b) For each function on the worklist, mark each block that
3783 contains an irrevocable call. Use the AND operator to
3784 propagate that mark up the dominator tree.
3785
3786 (c) If we reach the entry block for a possible transactional
3787 clone, then the transactional clone is irrevocable, and
3788 we should not create the clone after all. Push all
3789 callers onto the worklist.
3790
3791 (d) Place tm_irrevocable calls at the beginning of the relevant
3792 blocks. Special case here is the entry block for the entire
3793 transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
3794 the library to begin the region in serial mode. Decrement
3795 the call count for all callees in the irrevocable region.
3796
3797 (3) Create the transactional clones:
3798
3799 Any tm_callee that still has a non-zero call count is cloned.
3800 */
3801
3802 /* This structure is stored in the AUX field of each cgraph_node. */
3803 struct tm_ipa_cg_data
3804 {
3805 /* The clone of the function that got created. */
3806 struct cgraph_node *clone;
3807
3808 /* The tm regions in the normal function. */
3809 struct tm_region *all_tm_regions;
3810
3811 /* The blocks of the normal/clone functions that contain irrevocable
3812 calls, or blocks that are post-dominated by irrevocable calls. */
3813 bitmap irrevocable_blocks_normal;
3814 bitmap irrevocable_blocks_clone;
3815
3816 /* The blocks of the normal function that are involved in transactions. */
3817 bitmap transaction_blocks_normal;
3818
3819 /* The number of callers to the transactional clone of this function
3820 from normal and transactional clones respectively. */
3821 unsigned tm_callers_normal;
3822 unsigned tm_callers_clone;
3823
3824 /* True if all calls to this function's transactional clone
3825 are irrevocable. Also automatically true if the function
3826 has no transactional clone. */
3827 bool is_irrevocable;
3828
3829 /* Flags indicating the presence of this function in various queues. */
3830 bool in_callee_queue;
3831 bool in_worklist;
3832
3833 /* Flags indicating the kind of scan desired while in the worklist. */
3834 bool want_irr_scan_normal;
3835 };
3836
3837 typedef vec<cgraph_node_ptr> cgraph_node_queue;
3838
3839 /* Return the ipa data associated with NODE, allocating zeroed memory
3840 if necessary. TRAVERSE_ALIASES is true if we must traverse aliases
3841 and set *NODE accordingly. */
3842
3843 static struct tm_ipa_cg_data *
3844 get_cg_data (struct cgraph_node **node, bool traverse_aliases)
3845 {
3846 struct tm_ipa_cg_data *d;
3847
3848 if (traverse_aliases && (*node)->alias)
3849 *node = cgraph_get_node ((*node)->thunk.alias);
3850
3851 d = (struct tm_ipa_cg_data *) (*node)->symbol.aux;
3852
3853 if (d == NULL)
3854 {
3855 d = (struct tm_ipa_cg_data *)
3856 obstack_alloc (&tm_obstack.obstack, sizeof (*d));
3857 (*node)->symbol.aux = (void *) d;
3858 memset (d, 0, sizeof (*d));
3859 }
3860
3861 return d;
3862 }
3863
3864 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
3865 it is already present. */
3866
3867 static void
3868 maybe_push_queue (struct cgraph_node *node,
3869 cgraph_node_queue *queue_p, bool *in_queue_p)
3870 {
3871 if (!*in_queue_p)
3872 {
3873 *in_queue_p = true;
3874 queue_p->safe_push (node);
3875 }
3876 }
3877
3878 /* Duplicate the basic blocks in QUEUE for use in the uninstrumented
3879 code path. QUEUE are the basic blocks inside the transaction
3880 represented in REGION.
3881
3882 Later in split_code_paths() we will add the conditional to choose
3883 between the two alternatives. */
3884
3885 static void
3886 ipa_uninstrument_transaction (struct tm_region *region,
3887 vec<basic_block> queue)
3888 {
3889 gimple transaction = region->transaction_stmt;
3890 basic_block transaction_bb = gimple_bb (transaction);
3891 int n = queue.length ();
3892 basic_block *new_bbs = XNEWVEC (basic_block, n);
3893
3894 copy_bbs (queue.address (), n, new_bbs, NULL, 0, NULL, NULL, transaction_bb);
3895 edge e = make_edge (transaction_bb, new_bbs[0], EDGE_TM_UNINSTRUMENTED);
3896 add_phi_args_after_copy (new_bbs, n, e);
3897
3898 // Now we will have a GIMPLE_ATOMIC with 3 possible edges out of it.
3899 // a) EDGE_FALLTHRU into the transaction
3900 // b) EDGE_TM_ABORT out of the transaction
3901 // c) EDGE_TM_UNINSTRUMENTED into the uninstrumented blocks.
3902
3903 free (new_bbs);
3904 }
3905
3906 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
3907 Queue all callees within block BB. */
3908
3909 static void
3910 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
3911 basic_block bb, bool for_clone)
3912 {
3913 gimple_stmt_iterator gsi;
3914
3915 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3916 {
3917 gimple stmt = gsi_stmt (gsi);
3918 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
3919 {
3920 tree fndecl = gimple_call_fndecl (stmt);
3921 if (fndecl)
3922 {
3923 struct tm_ipa_cg_data *d;
3924 unsigned *pcallers;
3925 struct cgraph_node *node;
3926
3927 if (is_tm_ending_fndecl (fndecl))
3928 continue;
3929 if (find_tm_replacement_function (fndecl))
3930 continue;
3931
3932 node = cgraph_get_node (fndecl);
3933 gcc_assert (node != NULL);
3934 d = get_cg_data (&node, true);
3935
3936 pcallers = (for_clone ? &d->tm_callers_clone
3937 : &d->tm_callers_normal);
3938 *pcallers += 1;
3939
3940 maybe_push_queue (node, callees_p, &d->in_callee_queue);
3941 }
3942 }
3943 }
3944 }
3945
3946 /* Scan all calls in NODE that are within a transaction region,
3947 and push the resulting nodes into the callee queue. */
3948
3949 static void
3950 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
3951 cgraph_node_queue *callees_p)
3952 {
3953 struct tm_region *r;
3954
3955 d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
3956 d->all_tm_regions = all_tm_regions;
3957
3958 for (r = all_tm_regions; r; r = r->next)
3959 {
3960 vec<basic_block> bbs;
3961 basic_block bb;
3962 unsigned i;
3963
3964 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
3965 d->transaction_blocks_normal, false);
3966
3967 // Generate the uninstrumented code path for this transaction.
3968 ipa_uninstrument_transaction (r, bbs);
3969
3970 FOR_EACH_VEC_ELT (bbs, i, bb)
3971 ipa_tm_scan_calls_block (callees_p, bb, false);
3972
3973 bbs.release ();
3974 }
3975
3976 // ??? copy_bbs should maintain cgraph edges for the blocks as it is
3977 // copying them, rather than forcing us to do this externally.
3978 rebuild_cgraph_edges ();
3979
3980 // ??? In ipa_uninstrument_transaction we don't try to update dominators
3981 // because copy_bbs doesn't return a VEC like iterate_fix_dominators expects.
3982 // Instead, just release dominators here so update_ssa recomputes them.
3983 free_dominance_info (CDI_DOMINATORS);
3984
3985 // When building the uninstrumented code path, copy_bbs will have invoked
3986 // create_new_def_for starting an "ssa update context". There is only one
3987 // instance of this context, so resolve ssa updates before moving on to
3988 // the next function.
3989 update_ssa (TODO_update_ssa);
3990 }
3991
3992 /* Scan all calls in NODE as if this is the transactional clone,
3993 and push the destinations into the callee queue. */
3994
3995 static void
3996 ipa_tm_scan_calls_clone (struct cgraph_node *node,
3997 cgraph_node_queue *callees_p)
3998 {
3999 struct function *fn = DECL_STRUCT_FUNCTION (node->symbol.decl);
4000 basic_block bb;
4001
4002 FOR_EACH_BB_FN (bb, fn)
4003 ipa_tm_scan_calls_block (callees_p, bb, true);
4004 }
4005
4006 /* The function NODE has been detected to be irrevocable. Push all
4007 of its callers onto WORKLIST for the purpose of re-scanning them. */
4008
4009 static void
4010 ipa_tm_note_irrevocable (struct cgraph_node *node,
4011 cgraph_node_queue *worklist_p)
4012 {
4013 struct tm_ipa_cg_data *d = get_cg_data (&node, true);
4014 struct cgraph_edge *e;
4015
4016 d->is_irrevocable = true;
4017
4018 for (e = node->callers; e ; e = e->next_caller)
4019 {
4020 basic_block bb;
4021 struct cgraph_node *caller;
4022
4023 /* Don't examine recursive calls. */
4024 if (e->caller == node)
4025 continue;
4026 /* Even if we think we can go irrevocable, believe the user
4027 above all. */
4028 if (is_tm_safe_or_pure (e->caller->symbol.decl))
4029 continue;
4030
4031 caller = e->caller;
4032 d = get_cg_data (&caller, true);
4033
4034 /* Check if the callee is in a transactional region. If so,
4035 schedule the function for normal re-scan as well. */
4036 bb = gimple_bb (e->call_stmt);
4037 gcc_assert (bb != NULL);
4038 if (d->transaction_blocks_normal
4039 && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
4040 d->want_irr_scan_normal = true;
4041
4042 maybe_push_queue (caller, worklist_p, &d->in_worklist);
4043 }
4044 }
4045
4046 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
4047 within the block is irrevocable. */
4048
4049 static bool
4050 ipa_tm_scan_irr_block (basic_block bb)
4051 {
4052 gimple_stmt_iterator gsi;
4053 tree fn;
4054
4055 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4056 {
4057 gimple stmt = gsi_stmt (gsi);
4058 switch (gimple_code (stmt))
4059 {
4060 case GIMPLE_ASSIGN:
4061 if (gimple_assign_single_p (stmt))
4062 {
4063 tree lhs = gimple_assign_lhs (stmt);
4064 tree rhs = gimple_assign_rhs1 (stmt);
4065 if (volatile_var_p (lhs) || volatile_var_p (rhs))
4066 return true;
4067 }
4068 break;
4069
4070 case GIMPLE_CALL:
4071 {
4072 tree lhs = gimple_call_lhs (stmt);
4073 if (lhs && volatile_var_p (lhs))
4074 return true;
4075
4076 if (is_tm_pure_call (stmt))
4077 break;
4078
4079 fn = gimple_call_fn (stmt);
4080
4081 /* Functions with the attribute are by definition irrevocable. */
4082 if (is_tm_irrevocable (fn))
4083 return true;
4084
4085 /* For direct function calls, go ahead and check for replacement
4086 functions, or transitive irrevocable functions. For indirect
4087 functions, we'll ask the runtime. */
4088 if (TREE_CODE (fn) == ADDR_EXPR)
4089 {
4090 struct tm_ipa_cg_data *d;
4091 struct cgraph_node *node;
4092
4093 fn = TREE_OPERAND (fn, 0);
4094 if (is_tm_ending_fndecl (fn))
4095 break;
4096 if (find_tm_replacement_function (fn))
4097 break;
4098
4099 node = cgraph_get_node(fn);
4100 d = get_cg_data (&node, true);
4101
4102 /* Return true if irrevocable, but above all, believe
4103 the user. */
4104 if (d->is_irrevocable
4105 && !is_tm_safe_or_pure (fn))
4106 return true;
4107 }
4108 break;
4109 }
4110
4111 case GIMPLE_ASM:
4112 /* ??? The Approved Method of indicating that an inline
4113 assembly statement is not relevant to the transaction
4114 is to wrap it in a __tm_waiver block. This is not
4115 yet implemented, so we can't check for it. */
4116 if (is_tm_safe (current_function_decl))
4117 {
4118 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
4119 SET_EXPR_LOCATION (t, gimple_location (stmt));
4120 error ("%Kasm not allowed in %<transaction_safe%> function", t);
4121 }
4122 return true;
4123
4124 default:
4125 break;
4126 }
4127 }
4128
4129 return false;
4130 }
4131
4132 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
4133 for new irrevocable blocks, marking them in NEW_IRR. Don't bother
4134 scanning past OLD_IRR or EXIT_BLOCKS. */
4135
4136 static bool
4137 ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr,
4138 bitmap old_irr, bitmap exit_blocks)
4139 {
4140 bool any_new_irr = false;
4141 edge e;
4142 edge_iterator ei;
4143 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4144
4145 do
4146 {
4147 basic_block bb = pqueue->pop ();
4148
4149 /* Don't re-scan blocks we know already are irrevocable. */
4150 if (old_irr && bitmap_bit_p (old_irr, bb->index))
4151 continue;
4152
4153 if (ipa_tm_scan_irr_block (bb))
4154 {
4155 bitmap_set_bit (new_irr, bb->index);
4156 any_new_irr = true;
4157 }
4158 else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
4159 {
4160 FOR_EACH_EDGE (e, ei, bb->succs)
4161 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4162 {
4163 bitmap_set_bit (visited_blocks, e->dest->index);
4164 pqueue->safe_push (e->dest);
4165 }
4166 }
4167 }
4168 while (!pqueue->is_empty ());
4169
4170 BITMAP_FREE (visited_blocks);
4171
4172 return any_new_irr;
4173 }
4174
4175 /* Propagate the irrevocable property both up and down the dominator tree.
4176 BB is the current block being scanned; EXIT_BLOCKS are the edges of the
4177 TM regions; OLD_IRR are the results of a previous scan of the dominator
4178 tree which has been fully propagated; NEW_IRR is the set of new blocks
4179 which are gaining the irrevocable property during the current scan. */
4180
4181 static void
4182 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
4183 bitmap old_irr, bitmap exit_blocks)
4184 {
4185 vec<basic_block> bbs;
4186 bitmap all_region_blocks;
4187
4188 /* If this block is in the old set, no need to rescan. */
4189 if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
4190 return;
4191
4192 all_region_blocks = BITMAP_ALLOC (&tm_obstack);
4193 bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
4194 all_region_blocks, false);
4195 do
4196 {
4197 basic_block bb = bbs.pop ();
4198 bool this_irr = bitmap_bit_p (new_irr, bb->index);
4199 bool all_son_irr = false;
4200 edge_iterator ei;
4201 edge e;
4202
4203 /* Propagate up. If my children are, I am too, but we must have
4204 at least one child that is. */
4205 if (!this_irr)
4206 {
4207 FOR_EACH_EDGE (e, ei, bb->succs)
4208 {
4209 if (!bitmap_bit_p (new_irr, e->dest->index))
4210 {
4211 all_son_irr = false;
4212 break;
4213 }
4214 else
4215 all_son_irr = true;
4216 }
4217 if (all_son_irr)
4218 {
4219 /* Add block to new_irr if it hasn't already been processed. */
4220 if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
4221 {
4222 bitmap_set_bit (new_irr, bb->index);
4223 this_irr = true;
4224 }
4225 }
4226 }
4227
4228 /* Propagate down to everyone we immediately dominate. */
4229 if (this_irr)
4230 {
4231 basic_block son;
4232 for (son = first_dom_son (CDI_DOMINATORS, bb);
4233 son;
4234 son = next_dom_son (CDI_DOMINATORS, son))
4235 {
4236 /* Make sure block is actually in a TM region, and it
4237 isn't already in old_irr. */
4238 if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
4239 && bitmap_bit_p (all_region_blocks, son->index))
4240 bitmap_set_bit (new_irr, son->index);
4241 }
4242 }
4243 }
4244 while (!bbs.is_empty ());
4245
4246 BITMAP_FREE (all_region_blocks);
4247 bbs.release ();
4248 }
4249
4250 static void
4251 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
4252 {
4253 gimple_stmt_iterator gsi;
4254
4255 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4256 {
4257 gimple stmt = gsi_stmt (gsi);
4258 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4259 {
4260 tree fndecl = gimple_call_fndecl (stmt);
4261 if (fndecl)
4262 {
4263 struct tm_ipa_cg_data *d;
4264 unsigned *pcallers;
4265 struct cgraph_node *tnode;
4266
4267 if (is_tm_ending_fndecl (fndecl))
4268 continue;
4269 if (find_tm_replacement_function (fndecl))
4270 continue;
4271
4272 tnode = cgraph_get_node (fndecl);
4273 d = get_cg_data (&tnode, true);
4274
4275 pcallers = (for_clone ? &d->tm_callers_clone
4276 : &d->tm_callers_normal);
4277
4278 gcc_assert (*pcallers > 0);
4279 *pcallers -= 1;
4280 }
4281 }
4282 }
4283 }
4284
4285 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
4286 as well as other irrevocable actions such as inline assembly. Mark all
4287 such blocks as irrevocable and decrement the number of calls to
4288 transactional clones. Return true if, for the transactional clone, the
4289 entire function is irrevocable. */
4290
4291 static bool
4292 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
4293 {
4294 struct tm_ipa_cg_data *d;
4295 bitmap new_irr, old_irr;
4296 vec<basic_block> queue;
4297 bool ret = false;
4298
4299 /* Builtin operators (operator new, and such). */
4300 if (DECL_STRUCT_FUNCTION (node->symbol.decl) == NULL
4301 || DECL_STRUCT_FUNCTION (node->symbol.decl)->cfg == NULL)
4302 return false;
4303
4304 push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl));
4305 calculate_dominance_info (CDI_DOMINATORS);
4306
4307 d = get_cg_data (&node, true);
4308 queue.create (10);
4309 new_irr = BITMAP_ALLOC (&tm_obstack);
4310
4311 /* Scan each tm region, propagating irrevocable status through the tree. */
4312 if (for_clone)
4313 {
4314 old_irr = d->irrevocable_blocks_clone;
4315 queue.quick_push (single_succ (ENTRY_BLOCK_PTR));
4316 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
4317 {
4318 ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR), new_irr,
4319 old_irr, NULL);
4320 ret = bitmap_bit_p (new_irr, single_succ (ENTRY_BLOCK_PTR)->index);
4321 }
4322 }
4323 else
4324 {
4325 struct tm_region *region;
4326
4327 old_irr = d->irrevocable_blocks_normal;
4328 for (region = d->all_tm_regions; region; region = region->next)
4329 {
4330 queue.quick_push (region->entry_block);
4331 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
4332 region->exit_blocks))
4333 ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
4334 region->exit_blocks);
4335 }
4336 }
4337
4338 /* If we found any new irrevocable blocks, reduce the call count for
4339 transactional clones within the irrevocable blocks. Save the new
4340 set of irrevocable blocks for next time. */
4341 if (!bitmap_empty_p (new_irr))
4342 {
4343 bitmap_iterator bmi;
4344 unsigned i;
4345
4346 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4347 ipa_tm_decrement_clone_counts (BASIC_BLOCK (i), for_clone);
4348
4349 if (old_irr)
4350 {
4351 bitmap_ior_into (old_irr, new_irr);
4352 BITMAP_FREE (new_irr);
4353 }
4354 else if (for_clone)
4355 d->irrevocable_blocks_clone = new_irr;
4356 else
4357 d->irrevocable_blocks_normal = new_irr;
4358
4359 if (dump_file && new_irr)
4360 {
4361 const char *dname;
4362 bitmap_iterator bmi;
4363 unsigned i;
4364
4365 dname = lang_hooks.decl_printable_name (current_function_decl, 2);
4366 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4367 fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
4368 }
4369 }
4370 else
4371 BITMAP_FREE (new_irr);
4372
4373 queue.release ();
4374 pop_cfun ();
4375
4376 return ret;
4377 }
4378
4379 /* Return true if, for the transactional clone of NODE, any call
4380 may enter irrevocable mode. */
4381
4382 static bool
4383 ipa_tm_mayenterirr_function (struct cgraph_node *node)
4384 {
4385 struct tm_ipa_cg_data *d;
4386 tree decl;
4387 unsigned flags;
4388
4389 d = get_cg_data (&node, true);
4390 decl = node->symbol.decl;
4391 flags = flags_from_decl_or_type (decl);
4392
4393 /* Handle some TM builtins. Ordinarily these aren't actually generated
4394 at this point, but handling these functions when written in by the
4395 user makes it easier to build unit tests. */
4396 if (flags & ECF_TM_BUILTIN)
4397 return false;
4398
4399 /* Filter out all functions that are marked. */
4400 if (flags & ECF_TM_PURE)
4401 return false;
4402 if (is_tm_safe (decl))
4403 return false;
4404 if (is_tm_irrevocable (decl))
4405 return true;
4406 if (is_tm_callable (decl))
4407 return true;
4408 if (find_tm_replacement_function (decl))
4409 return true;
4410
4411 /* If we aren't seeing the final version of the function we don't
4412 know what it will contain at runtime. */
4413 if (cgraph_function_body_availability (node) < AVAIL_AVAILABLE)
4414 return true;
4415
4416 /* If the function must go irrevocable, then of course true. */
4417 if (d->is_irrevocable)
4418 return true;
4419
4420 /* If there are any blocks marked irrevocable, then the function
4421 as a whole may enter irrevocable. */
4422 if (d->irrevocable_blocks_clone)
4423 return true;
4424
4425 /* We may have previously marked this function as tm_may_enter_irr;
4426 see pass_diagnose_tm_blocks. */
4427 if (node->local.tm_may_enter_irr)
4428 return true;
4429
4430 /* Recurse on the main body for aliases. In general, this will
4431 result in one of the bits above being set so that we will not
4432 have to recurse next time. */
4433 if (node->alias)
4434 return ipa_tm_mayenterirr_function (cgraph_get_node (node->thunk.alias));
4435
4436 /* What remains is unmarked local functions without items that force
4437 the function to go irrevocable. */
4438 return false;
4439 }
4440
4441 /* Diagnose calls from transaction_safe functions to unmarked
4442 functions that are determined to not be safe. */
4443
4444 static void
4445 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4446 {
4447 struct cgraph_edge *e;
4448
4449 for (e = node->callees; e ; e = e->next_callee)
4450 if (!is_tm_callable (e->callee->symbol.decl)
4451 && e->callee->local.tm_may_enter_irr)
4452 error_at (gimple_location (e->call_stmt),
4453 "unsafe function call %qD within "
4454 "%<transaction_safe%> function", e->callee->symbol.decl);
4455 }
4456
4457 /* Diagnose call from atomic transactions to unmarked functions
4458 that are determined to not be safe. */
4459
4460 static void
4461 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4462 struct tm_region *all_tm_regions)
4463 {
4464 struct tm_region *r;
4465
4466 for (r = all_tm_regions; r ; r = r->next)
4467 if (gimple_transaction_subcode (r->transaction_stmt) & GTMA_IS_RELAXED)
4468 {
4469 /* Atomic transactions can be nested inside relaxed. */
4470 if (r->inner)
4471 ipa_tm_diagnose_transaction (node, r->inner);
4472 }
4473 else
4474 {
4475 vec<basic_block> bbs;
4476 gimple_stmt_iterator gsi;
4477 basic_block bb;
4478 size_t i;
4479
4480 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4481 r->irr_blocks, NULL, false);
4482
4483 for (i = 0; bbs.iterate (i, &bb); ++i)
4484 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4485 {
4486 gimple stmt = gsi_stmt (gsi);
4487 tree fndecl;
4488
4489 if (gimple_code (stmt) == GIMPLE_ASM)
4490 {
4491 error_at (gimple_location (stmt),
4492 "asm not allowed in atomic transaction");
4493 continue;
4494 }
4495
4496 if (!is_gimple_call (stmt))
4497 continue;
4498 fndecl = gimple_call_fndecl (stmt);
4499
4500 /* Indirect function calls have been diagnosed already. */
4501 if (!fndecl)
4502 continue;
4503
4504 /* Stop at the end of the transaction. */
4505 if (is_tm_ending_fndecl (fndecl))
4506 {
4507 if (bitmap_bit_p (r->exit_blocks, bb->index))
4508 break;
4509 continue;
4510 }
4511
4512 /* Marked functions have been diagnosed already. */
4513 if (is_tm_pure_call (stmt))
4514 continue;
4515 if (is_tm_callable (fndecl))
4516 continue;
4517
4518 if (cgraph_local_info (fndecl)->tm_may_enter_irr)
4519 error_at (gimple_location (stmt),
4520 "unsafe function call %qD within "
4521 "atomic transaction", fndecl);
4522 }
4523
4524 bbs.release ();
4525 }
4526 }
4527
4528 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4529 OLD_DECL. The returned value is a freshly malloced pointer that
4530 should be freed by the caller. */
4531
4532 static tree
4533 tm_mangle (tree old_asm_id)
4534 {
4535 const char *old_asm_name;
4536 char *tm_name;
4537 void *alloc = NULL;
4538 struct demangle_component *dc;
4539 tree new_asm_id;
4540
4541 /* Determine if the symbol is already a valid C++ mangled name. Do this
4542 even for C, which might be interfacing with C++ code via appropriately
4543 ugly identifiers. */
4544 /* ??? We could probably do just as well checking for "_Z" and be done. */
4545 old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4546 dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4547
4548 if (dc == NULL)
4549 {
4550 char length[8];
4551
4552 do_unencoded:
4553 sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4554 tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4555 }
4556 else
4557 {
4558 old_asm_name += 2; /* Skip _Z */
4559
4560 switch (dc->type)
4561 {
4562 case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4563 case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4564 /* Don't play silly games, you! */
4565 goto do_unencoded;
4566
4567 case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4568 /* I'd really like to know if we can ever be passed one of
4569 these from the C++ front end. The Logical Thing would
4570 seem that hidden-alias should be outer-most, so that we
4571 get hidden-alias of a transaction-clone and not vice-versa. */
4572 old_asm_name += 2;
4573 break;
4574
4575 default:
4576 break;
4577 }
4578
4579 tm_name = concat ("_ZGTt", old_asm_name, NULL);
4580 }
4581 free (alloc);
4582
4583 new_asm_id = get_identifier (tm_name);
4584 free (tm_name);
4585
4586 return new_asm_id;
4587 }
4588
4589 static inline void
4590 ipa_tm_mark_force_output_node (struct cgraph_node *node)
4591 {
4592 cgraph_mark_force_output_node (node);
4593 /* ??? function_and_variable_visibility will reset
4594 the needed bit, without actually checking. */
4595 node->analyzed = 1;
4596 }
4597
4598 /* Callback data for ipa_tm_create_version_alias. */
4599 struct create_version_alias_info
4600 {
4601 struct cgraph_node *old_node;
4602 tree new_decl;
4603 };
4604
4605 /* A subroutine of ipa_tm_create_version, called via
4606 cgraph_for_node_and_aliases. Create new tm clones for each of
4607 the existing aliases. */
4608 static bool
4609 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4610 {
4611 struct create_version_alias_info *info
4612 = (struct create_version_alias_info *)data;
4613 tree old_decl, new_decl, tm_name;
4614 struct cgraph_node *new_node;
4615
4616 if (!node->same_body_alias)
4617 return false;
4618
4619 old_decl = node->symbol.decl;
4620 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4621 new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4622 TREE_CODE (old_decl), tm_name,
4623 TREE_TYPE (old_decl));
4624
4625 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4626 SET_DECL_RTL (new_decl, NULL);
4627
4628 /* Based loosely on C++'s make_alias_for(). */
4629 TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4630 DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
4631 DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
4632 TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4633 DECL_EXTERNAL (new_decl) = 0;
4634 DECL_ARTIFICIAL (new_decl) = 1;
4635 TREE_ADDRESSABLE (new_decl) = 1;
4636 TREE_USED (new_decl) = 1;
4637 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4638
4639 /* Perform the same remapping to the comdat group. */
4640 if (DECL_ONE_ONLY (new_decl))
4641 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4642
4643 new_node = cgraph_same_body_alias (NULL, new_decl, info->new_decl);
4644 new_node->tm_clone = true;
4645 new_node->symbol.externally_visible = info->old_node->symbol.externally_visible;
4646 /* ?? Do not traverse aliases here. */
4647 get_cg_data (&node, false)->clone = new_node;
4648
4649 record_tm_clone_pair (old_decl, new_decl);
4650
4651 if (info->old_node->symbol.force_output
4652 || ipa_ref_list_first_referring (&info->old_node->symbol.ref_list))
4653 ipa_tm_mark_force_output_node (new_node);
4654 return false;
4655 }
4656
4657 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4658 appropriate for the transactional clone. */
4659
4660 static void
4661 ipa_tm_create_version (struct cgraph_node *old_node)
4662 {
4663 tree new_decl, old_decl, tm_name;
4664 struct cgraph_node *new_node;
4665
4666 old_decl = old_node->symbol.decl;
4667 new_decl = copy_node (old_decl);
4668
4669 /* DECL_ASSEMBLER_NAME needs to be set before we call
4670 cgraph_copy_node_for_versioning below, because cgraph_node will
4671 fill the assembler_name_hash. */
4672 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4673 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4674 SET_DECL_RTL (new_decl, NULL);
4675 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4676
4677 /* Perform the same remapping to the comdat group. */
4678 if (DECL_ONE_ONLY (new_decl))
4679 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4680
4681 new_node = cgraph_copy_node_for_versioning (old_node, new_decl,
4682 vec<cgraph_edge_p>(),
4683 NULL);
4684 new_node->symbol.externally_visible = old_node->symbol.externally_visible;
4685 new_node->lowered = true;
4686 new_node->tm_clone = 1;
4687 get_cg_data (&old_node, true)->clone = new_node;
4688
4689 if (cgraph_function_body_availability (old_node) >= AVAIL_OVERWRITABLE)
4690 {
4691 /* Remap extern inline to static inline. */
4692 /* ??? Is it worth trying to use make_decl_one_only? */
4693 if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
4694 {
4695 DECL_EXTERNAL (new_decl) = 0;
4696 TREE_PUBLIC (new_decl) = 0;
4697 DECL_WEAK (new_decl) = 0;
4698 }
4699
4700 tree_function_versioning (old_decl, new_decl,
4701 NULL, false, NULL,
4702 false, NULL, NULL);
4703 }
4704
4705 record_tm_clone_pair (old_decl, new_decl);
4706
4707 cgraph_call_function_insertion_hooks (new_node);
4708 if (old_node->symbol.force_output
4709 || ipa_ref_list_first_referring (&old_node->symbol.ref_list))
4710 ipa_tm_mark_force_output_node (new_node);
4711
4712 /* Do the same thing, but for any aliases of the original node. */
4713 {
4714 struct create_version_alias_info data;
4715 data.old_node = old_node;
4716 data.new_decl = new_decl;
4717 cgraph_for_node_and_aliases (old_node, ipa_tm_create_version_alias,
4718 &data, true);
4719 }
4720 }
4721
4722 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
4723
4724 static void
4725 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
4726 basic_block bb)
4727 {
4728 gimple_stmt_iterator gsi;
4729 gimple g;
4730
4731 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4732
4733 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
4734 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
4735
4736 split_block_after_labels (bb);
4737 gsi = gsi_after_labels (bb);
4738 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
4739
4740 cgraph_create_edge (node,
4741 cgraph_get_create_node
4742 (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
4743 g, 0,
4744 compute_call_stmt_bb_frequency (node->symbol.decl,
4745 gimple_bb (g)));
4746 }
4747
4748 /* Construct a call to TM_GETTMCLONE and insert it before GSI. */
4749
4750 static bool
4751 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
4752 struct tm_region *region,
4753 gimple_stmt_iterator *gsi, gimple stmt)
4754 {
4755 tree gettm_fn, ret, old_fn, callfn;
4756 gimple g, g2;
4757 bool safe;
4758
4759 old_fn = gimple_call_fn (stmt);
4760
4761 if (TREE_CODE (old_fn) == ADDR_EXPR)
4762 {
4763 tree fndecl = TREE_OPERAND (old_fn, 0);
4764 tree clone = get_tm_clone_pair (fndecl);
4765
4766 /* By transforming the call into a TM_GETTMCLONE, we are
4767 technically taking the address of the original function and
4768 its clone. Explain this so inlining will know this function
4769 is needed. */
4770 cgraph_mark_address_taken_node (cgraph_get_node (fndecl));
4771 if (clone)
4772 cgraph_mark_address_taken_node (cgraph_get_node (clone));
4773 }
4774
4775 safe = is_tm_safe (TREE_TYPE (old_fn));
4776 gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
4777 : BUILT_IN_TM_GETTMCLONE_IRR);
4778 ret = create_tmp_var (ptr_type_node, NULL);
4779
4780 if (!safe)
4781 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4782
4783 /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
4784 if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
4785 old_fn = OBJ_TYPE_REF_EXPR (old_fn);
4786
4787 g = gimple_build_call (gettm_fn, 1, old_fn);
4788 ret = make_ssa_name (ret, g);
4789 gimple_call_set_lhs (g, ret);
4790
4791 gsi_insert_before (gsi, g, GSI_SAME_STMT);
4792
4793 cgraph_create_edge (node, cgraph_get_create_node (gettm_fn), g, 0,
4794 compute_call_stmt_bb_frequency (node->symbol.decl,
4795 gimple_bb(g)));
4796
4797 /* Cast return value from tm_gettmclone* into appropriate function
4798 pointer. */
4799 callfn = create_tmp_var (TREE_TYPE (old_fn), NULL);
4800 g2 = gimple_build_assign (callfn,
4801 fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
4802 callfn = make_ssa_name (callfn, g2);
4803 gimple_assign_set_lhs (g2, callfn);
4804 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
4805
4806 /* ??? This is a hack to preserve the NOTHROW bit on the call,
4807 which we would have derived from the decl. Failure to save
4808 this bit means we might have to split the basic block. */
4809 if (gimple_call_nothrow_p (stmt))
4810 gimple_call_set_nothrow (stmt, true);
4811
4812 gimple_call_set_fn (stmt, callfn);
4813
4814 /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
4815 for a call statement. Fix it. */
4816 {
4817 tree lhs = gimple_call_lhs (stmt);
4818 tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
4819 if (lhs
4820 && !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
4821 {
4822 tree temp;
4823
4824 temp = create_tmp_reg (rettype, 0);
4825 gimple_call_set_lhs (stmt, temp);
4826
4827 g2 = gimple_build_assign (lhs,
4828 fold_build1 (VIEW_CONVERT_EXPR,
4829 TREE_TYPE (lhs), temp));
4830 gsi_insert_after (gsi, g2, GSI_SAME_STMT);
4831 }
4832 }
4833
4834 update_stmt (stmt);
4835
4836 return true;
4837 }
4838
4839 /* Helper function for ipa_tm_transform_calls*. Given a call
4840 statement in GSI which resides inside transaction REGION, redirect
4841 the call to either its wrapper function, or its clone. */
4842
4843 static void
4844 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
4845 struct tm_region *region,
4846 gimple_stmt_iterator *gsi,
4847 bool *need_ssa_rename_p)
4848 {
4849 gimple stmt = gsi_stmt (*gsi);
4850 struct cgraph_node *new_node;
4851 struct cgraph_edge *e = cgraph_edge (node, stmt);
4852 tree fndecl = gimple_call_fndecl (stmt);
4853
4854 /* For indirect calls, pass the address through the runtime. */
4855 if (fndecl == NULL)
4856 {
4857 *need_ssa_rename_p |=
4858 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
4859 return;
4860 }
4861
4862 /* Handle some TM builtins. Ordinarily these aren't actually generated
4863 at this point, but handling these functions when written in by the
4864 user makes it easier to build unit tests. */
4865 if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
4866 return;
4867
4868 /* Fixup recursive calls inside clones. */
4869 /* ??? Why did cgraph_copy_node_for_versioning update the call edges
4870 for recursion but not update the call statements themselves? */
4871 if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
4872 {
4873 gimple_call_set_fndecl (stmt, current_function_decl);
4874 return;
4875 }
4876
4877 /* If there is a replacement, use it. */
4878 fndecl = find_tm_replacement_function (fndecl);
4879 if (fndecl)
4880 {
4881 new_node = cgraph_get_create_node (fndecl);
4882
4883 /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
4884
4885 We can't do this earlier in record_tm_replacement because
4886 cgraph_remove_unreachable_nodes is called before we inject
4887 references to the node. Further, we can't do this in some
4888 nice central place in ipa_tm_execute because we don't have
4889 the exact list of wrapper functions that would be used.
4890 Marking more wrappers than necessary results in the creation
4891 of unnecessary cgraph_nodes, which can cause some of the
4892 other IPA passes to crash.
4893
4894 We do need to mark these nodes so that we get the proper
4895 result in expand_call_tm. */
4896 /* ??? This seems broken. How is it that we're marking the
4897 CALLEE as may_enter_irr? Surely we should be marking the
4898 CALLER. Also note that find_tm_replacement_function also
4899 contains mappings into the TM runtime, e.g. memcpy. These
4900 we know won't go irrevocable. */
4901 new_node->local.tm_may_enter_irr = 1;
4902 }
4903 else
4904 {
4905 struct tm_ipa_cg_data *d;
4906 struct cgraph_node *tnode = e->callee;
4907
4908 d = get_cg_data (&tnode, true);
4909 new_node = d->clone;
4910
4911 /* As we've already skipped pure calls and appropriate builtins,
4912 and we've already marked irrevocable blocks, if we can't come
4913 up with a static replacement, then ask the runtime. */
4914 if (new_node == NULL)
4915 {
4916 *need_ssa_rename_p |=
4917 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
4918 return;
4919 }
4920
4921 fndecl = new_node->symbol.decl;
4922 }
4923
4924 cgraph_redirect_edge_callee (e, new_node);
4925 gimple_call_set_fndecl (stmt, fndecl);
4926 }
4927
4928 /* Helper function for ipa_tm_transform_calls. For a given BB,
4929 install calls to tm_irrevocable when IRR_BLOCKS are reached,
4930 redirect other calls to the generated transactional clone. */
4931
4932 static bool
4933 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
4934 basic_block bb, bitmap irr_blocks)
4935 {
4936 gimple_stmt_iterator gsi;
4937 bool need_ssa_rename = false;
4938
4939 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
4940 {
4941 ipa_tm_insert_irr_call (node, region, bb);
4942 return true;
4943 }
4944
4945 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4946 {
4947 gimple stmt = gsi_stmt (gsi);
4948
4949 if (!is_gimple_call (stmt))
4950 continue;
4951 if (is_tm_pure_call (stmt))
4952 continue;
4953
4954 /* Redirect edges to the appropriate replacement or clone. */
4955 ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
4956 }
4957
4958 return need_ssa_rename;
4959 }
4960
4961 /* Walk the CFG for REGION, beginning at BB. Install calls to
4962 tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
4963 the generated transactional clone. */
4964
4965 static bool
4966 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
4967 basic_block bb, bitmap irr_blocks)
4968 {
4969 bool need_ssa_rename = false;
4970 edge e;
4971 edge_iterator ei;
4972 vec<basic_block> queue = vec<basic_block>();
4973 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4974
4975 queue.safe_push (bb);
4976 do
4977 {
4978 bb = queue.pop ();
4979
4980 need_ssa_rename |=
4981 ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
4982
4983 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
4984 continue;
4985
4986 if (region && bitmap_bit_p (region->exit_blocks, bb->index))
4987 continue;
4988
4989 FOR_EACH_EDGE (e, ei, bb->succs)
4990 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4991 {
4992 bitmap_set_bit (visited_blocks, e->dest->index);
4993 queue.safe_push (e->dest);
4994 }
4995 }
4996 while (!queue.is_empty ());
4997
4998 queue.release ();
4999 BITMAP_FREE (visited_blocks);
5000
5001 return need_ssa_rename;
5002 }
5003
5004 /* Transform the calls within the TM regions within NODE. */
5005
5006 static void
5007 ipa_tm_transform_transaction (struct cgraph_node *node)
5008 {
5009 struct tm_ipa_cg_data *d;
5010 struct tm_region *region;
5011 bool need_ssa_rename = false;
5012
5013 d = get_cg_data (&node, true);
5014
5015 push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl));
5016 calculate_dominance_info (CDI_DOMINATORS);
5017
5018 for (region = d->all_tm_regions; region; region = region->next)
5019 {
5020 /* If we're sure to go irrevocable, don't transform anything. */
5021 if (d->irrevocable_blocks_normal
5022 && bitmap_bit_p (d->irrevocable_blocks_normal,
5023 region->entry_block->index))
5024 {
5025 transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE);
5026 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5027 continue;
5028 }
5029
5030 need_ssa_rename |=
5031 ipa_tm_transform_calls (node, region, region->entry_block,
5032 d->irrevocable_blocks_normal);
5033 }
5034
5035 if (need_ssa_rename)
5036 update_ssa (TODO_update_ssa_only_virtuals);
5037
5038 pop_cfun ();
5039 }
5040
5041 /* Transform the calls within the transactional clone of NODE. */
5042
5043 static void
5044 ipa_tm_transform_clone (struct cgraph_node *node)
5045 {
5046 struct tm_ipa_cg_data *d;
5047 bool need_ssa_rename;
5048
5049 d = get_cg_data (&node, true);
5050
5051 /* If this function makes no calls and has no irrevocable blocks,
5052 then there's nothing to do. */
5053 /* ??? Remove non-aborting top-level transactions. */
5054 if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone)
5055 return;
5056
5057 push_cfun (DECL_STRUCT_FUNCTION (d->clone->symbol.decl));
5058 calculate_dominance_info (CDI_DOMINATORS);
5059
5060 need_ssa_rename =
5061 ipa_tm_transform_calls (d->clone, NULL, single_succ (ENTRY_BLOCK_PTR),
5062 d->irrevocable_blocks_clone);
5063
5064 if (need_ssa_rename)
5065 update_ssa (TODO_update_ssa_only_virtuals);
5066
5067 pop_cfun ();
5068 }
5069
5070 /* Main entry point for the transactional memory IPA pass. */
5071
5072 static unsigned int
5073 ipa_tm_execute (void)
5074 {
5075 cgraph_node_queue tm_callees = cgraph_node_queue();
5076 /* List of functions that will go irrevocable. */
5077 cgraph_node_queue irr_worklist = cgraph_node_queue();
5078
5079 struct cgraph_node *node;
5080 struct tm_ipa_cg_data *d;
5081 enum availability a;
5082 unsigned int i;
5083
5084 #ifdef ENABLE_CHECKING
5085 verify_cgraph ();
5086 #endif
5087
5088 bitmap_obstack_initialize (&tm_obstack);
5089 initialize_original_copy_tables ();
5090
5091 /* For all local functions marked tm_callable, queue them. */
5092 FOR_EACH_DEFINED_FUNCTION (node)
5093 if (is_tm_callable (node->symbol.decl)
5094 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5095 {
5096 d = get_cg_data (&node, true);
5097 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5098 }
5099
5100 /* For all local reachable functions... */
5101 FOR_EACH_DEFINED_FUNCTION (node)
5102 if (node->lowered
5103 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5104 {
5105 /* ... marked tm_pure, record that fact for the runtime by
5106 indicating that the pure function is its own tm_callable.
5107 No need to do this if the function's address can't be taken. */
5108 if (is_tm_pure (node->symbol.decl))
5109 {
5110 if (!node->local.local)
5111 record_tm_clone_pair (node->symbol.decl, node->symbol.decl);
5112 continue;
5113 }
5114
5115 push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl));
5116 calculate_dominance_info (CDI_DOMINATORS);
5117
5118 tm_region_init (NULL);
5119 if (all_tm_regions)
5120 {
5121 d = get_cg_data (&node, true);
5122
5123 /* Scan for calls that are in each transaction, and
5124 generate the uninstrumented code path. */
5125 ipa_tm_scan_calls_transaction (d, &tm_callees);
5126
5127 /* Put it in the worklist so we can scan the function
5128 later (ipa_tm_scan_irr_function) and mark the
5129 irrevocable blocks. */
5130 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5131 d->want_irr_scan_normal = true;
5132 }
5133
5134 pop_cfun ();
5135 }
5136
5137 /* For every local function on the callee list, scan as if we will be
5138 creating a transactional clone, queueing all new functions we find
5139 along the way. */
5140 for (i = 0; i < tm_callees.length (); ++i)
5141 {
5142 node = tm_callees[i];
5143 a = cgraph_function_body_availability (node);
5144 d = get_cg_data (&node, true);
5145
5146 /* Put it in the worklist so we can scan the function later
5147 (ipa_tm_scan_irr_function) and mark the irrevocable
5148 blocks. */
5149 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5150
5151 /* Some callees cannot be arbitrarily cloned. These will always be
5152 irrevocable. Mark these now, so that we need not scan them. */
5153 if (is_tm_irrevocable (node->symbol.decl))
5154 ipa_tm_note_irrevocable (node, &irr_worklist);
5155 else if (a <= AVAIL_NOT_AVAILABLE
5156 && !is_tm_safe_or_pure (node->symbol.decl))
5157 ipa_tm_note_irrevocable (node, &irr_worklist);
5158 else if (a >= AVAIL_OVERWRITABLE)
5159 {
5160 if (!tree_versionable_function_p (node->symbol.decl))
5161 ipa_tm_note_irrevocable (node, &irr_worklist);
5162 else if (!d->is_irrevocable)
5163 {
5164 /* If this is an alias, make sure its base is queued as well.
5165 we need not scan the callees now, as the base will do. */
5166 if (node->alias)
5167 {
5168 node = cgraph_get_node (node->thunk.alias);
5169 d = get_cg_data (&node, true);
5170 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5171 continue;
5172 }
5173
5174 /* Add all nodes called by this function into
5175 tm_callees as well. */
5176 ipa_tm_scan_calls_clone (node, &tm_callees);
5177 }
5178 }
5179 }
5180
5181 /* Iterate scans until no more work to be done. Prefer not to use
5182 vec::pop because the worklist tends to follow a breadth-first
5183 search of the callgraph, which should allow convergance with a
5184 minimum number of scans. But we also don't want the worklist
5185 array to grow without bound, so we shift the array up periodically. */
5186 for (i = 0; i < irr_worklist.length (); ++i)
5187 {
5188 if (i > 256 && i == irr_worklist.length () / 8)
5189 {
5190 irr_worklist.block_remove (0, i);
5191 i = 0;
5192 }
5193
5194 node = irr_worklist[i];
5195 d = get_cg_data (&node, true);
5196 d->in_worklist = false;
5197
5198 if (d->want_irr_scan_normal)
5199 {
5200 d->want_irr_scan_normal = false;
5201 ipa_tm_scan_irr_function (node, false);
5202 }
5203 if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
5204 ipa_tm_note_irrevocable (node, &irr_worklist);
5205 }
5206
5207 /* For every function on the callee list, collect the tm_may_enter_irr
5208 bit on the node. */
5209 irr_worklist.truncate (0);
5210 for (i = 0; i < tm_callees.length (); ++i)
5211 {
5212 node = tm_callees[i];
5213 if (ipa_tm_mayenterirr_function (node))
5214 {
5215 d = get_cg_data (&node, true);
5216 gcc_assert (d->in_worklist == false);
5217 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5218 }
5219 }
5220
5221 /* Propagate the tm_may_enter_irr bit to callers until stable. */
5222 for (i = 0; i < irr_worklist.length (); ++i)
5223 {
5224 struct cgraph_node *caller;
5225 struct cgraph_edge *e;
5226 struct ipa_ref *ref;
5227 unsigned j;
5228
5229 if (i > 256 && i == irr_worklist.length () / 8)
5230 {
5231 irr_worklist.block_remove (0, i);
5232 i = 0;
5233 }
5234
5235 node = irr_worklist[i];
5236 d = get_cg_data (&node, true);
5237 d->in_worklist = false;
5238 node->local.tm_may_enter_irr = true;
5239
5240 /* Propagate back to normal callers. */
5241 for (e = node->callers; e ; e = e->next_caller)
5242 {
5243 caller = e->caller;
5244 if (!is_tm_safe_or_pure (caller->symbol.decl)
5245 && !caller->local.tm_may_enter_irr)
5246 {
5247 d = get_cg_data (&caller, true);
5248 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5249 }
5250 }
5251
5252 /* Propagate back to referring aliases as well. */
5253 for (j = 0; ipa_ref_list_referring_iterate (&node->symbol.ref_list, j, ref); j++)
5254 {
5255 caller = cgraph (ref->referring);
5256 if (ref->use == IPA_REF_ALIAS
5257 && !caller->local.tm_may_enter_irr)
5258 {
5259 /* ?? Do not traverse aliases here. */
5260 d = get_cg_data (&caller, false);
5261 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5262 }
5263 }
5264 }
5265
5266 /* Now validate all tm_safe functions, and all atomic regions in
5267 other functions. */
5268 FOR_EACH_DEFINED_FUNCTION (node)
5269 if (node->lowered
5270 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5271 {
5272 d = get_cg_data (&node, true);
5273 if (is_tm_safe (node->symbol.decl))
5274 ipa_tm_diagnose_tm_safe (node);
5275 else if (d->all_tm_regions)
5276 ipa_tm_diagnose_transaction (node, d->all_tm_regions);
5277 }
5278
5279 /* Create clones. Do those that are not irrevocable and have a
5280 positive call count. Do those publicly visible functions that
5281 the user directed us to clone. */
5282 for (i = 0; i < tm_callees.length (); ++i)
5283 {
5284 bool doit = false;
5285
5286 node = tm_callees[i];
5287 if (node->same_body_alias)
5288 continue;
5289
5290 a = cgraph_function_body_availability (node);
5291 d = get_cg_data (&node, true);
5292
5293 if (a <= AVAIL_NOT_AVAILABLE)
5294 doit = is_tm_callable (node->symbol.decl);
5295 else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->symbol.decl))
5296 doit = true;
5297 else if (!d->is_irrevocable
5298 && d->tm_callers_normal + d->tm_callers_clone > 0)
5299 doit = true;
5300
5301 if (doit)
5302 ipa_tm_create_version (node);
5303 }
5304
5305 /* Redirect calls to the new clones, and insert irrevocable marks. */
5306 for (i = 0; i < tm_callees.length (); ++i)
5307 {
5308 node = tm_callees[i];
5309 if (node->analyzed)
5310 {
5311 d = get_cg_data (&node, true);
5312 if (d->clone)
5313 ipa_tm_transform_clone (node);
5314 }
5315 }
5316 FOR_EACH_DEFINED_FUNCTION (node)
5317 if (node->lowered
5318 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5319 {
5320 d = get_cg_data (&node, true);
5321 if (d->all_tm_regions)
5322 ipa_tm_transform_transaction (node);
5323 }
5324
5325 /* Free and clear all data structures. */
5326 tm_callees.release ();
5327 irr_worklist.release ();
5328 bitmap_obstack_release (&tm_obstack);
5329 free_original_copy_tables ();
5330
5331 FOR_EACH_FUNCTION (node)
5332 node->symbol.aux = NULL;
5333
5334 #ifdef ENABLE_CHECKING
5335 verify_cgraph ();
5336 #endif
5337
5338 return 0;
5339 }
5340
5341 struct simple_ipa_opt_pass pass_ipa_tm =
5342 {
5343 {
5344 SIMPLE_IPA_PASS,
5345 "tmipa", /* name */
5346 OPTGROUP_NONE, /* optinfo_flags */
5347 gate_tm, /* gate */
5348 ipa_tm_execute, /* execute */
5349 NULL, /* sub */
5350 NULL, /* next */
5351 0, /* static_pass_number */
5352 TV_TRANS_MEM, /* tv_id */
5353 PROP_ssa | PROP_cfg, /* properties_required */
5354 0, /* properties_provided */
5355 0, /* properties_destroyed */
5356 0, /* todo_flags_start */
5357 0, /* todo_flags_finish */
5358 },
5359 };
5360
5361 #include "gt-trans-mem.h"