]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/trans-mem.c
merge auto_vec and stack_vec
[thirdparty/gcc.git] / gcc / trans-mem.c
1 /* Passes for transactional memory support.
2 Copyright (C) 2008-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tree.h"
25 #include "basic-block.h"
26 #include "tree-ssa-alias.h"
27 #include "internal-fn.h"
28 #include "tree-eh.h"
29 #include "gimple-expr.h"
30 #include "is-a.h"
31 #include "gimple.h"
32 #include "calls.h"
33 #include "function.h"
34 #include "rtl.h"
35 #include "emit-rtl.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-walk.h"
40 #include "gimple-ssa.h"
41 #include "cgraph.h"
42 #include "tree-cfg.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "tree-into-ssa.h"
46 #include "tree-pass.h"
47 #include "tree-inline.h"
48 #include "diagnostic-core.h"
49 #include "demangle.h"
50 #include "output.h"
51 #include "trans-mem.h"
52 #include "params.h"
53 #include "target.h"
54 #include "langhooks.h"
55 #include "gimple-pretty-print.h"
56 #include "cfgloop.h"
57 #include "tree-ssa-address.h"
58 #include "predict.h"
59
60
61 #define A_RUNINSTRUMENTEDCODE 0x0001
62 #define A_RUNUNINSTRUMENTEDCODE 0x0002
63 #define A_SAVELIVEVARIABLES 0x0004
64 #define A_RESTORELIVEVARIABLES 0x0008
65 #define A_ABORTTRANSACTION 0x0010
66
67 #define AR_USERABORT 0x0001
68 #define AR_USERRETRY 0x0002
69 #define AR_TMCONFLICT 0x0004
70 #define AR_EXCEPTIONBLOCKABORT 0x0008
71 #define AR_OUTERABORT 0x0010
72
73 #define MODE_SERIALIRREVOCABLE 0x0000
74
75
76 /* The representation of a transaction changes several times during the
77 lowering process. In the beginning, in the front-end we have the
78 GENERIC tree TRANSACTION_EXPR. For example,
79
80 __transaction {
81 local++;
82 if (++global == 10)
83 __tm_abort;
84 }
85
86 During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
87 trivially replaced with a GIMPLE_TRANSACTION node.
88
89 During pass_lower_tm, we examine the body of transactions looking
90 for aborts. Transactions that do not contain an abort may be
91 merged into an outer transaction. We also add a TRY-FINALLY node
92 to arrange for the transaction to be committed on any exit.
93
94 [??? Think about how this arrangement affects throw-with-commit
95 and throw-with-abort operations. In this case we want the TRY to
96 handle gotos, but not to catch any exceptions because the transaction
97 will already be closed.]
98
99 GIMPLE_TRANSACTION [label=NULL] {
100 try {
101 local = local + 1;
102 t0 = global;
103 t1 = t0 + 1;
104 global = t1;
105 if (t1 == 10)
106 __builtin___tm_abort ();
107 } finally {
108 __builtin___tm_commit ();
109 }
110 }
111
112 During pass_lower_eh, we create EH regions for the transactions,
113 intermixed with the regular EH stuff. This gives us a nice persistent
114 mapping (all the way through rtl) from transactional memory operation
115 back to the transaction, which allows us to get the abnormal edges
116 correct to model transaction aborts and restarts:
117
118 GIMPLE_TRANSACTION [label=over]
119 local = local + 1;
120 t0 = global;
121 t1 = t0 + 1;
122 global = t1;
123 if (t1 == 10)
124 __builtin___tm_abort ();
125 __builtin___tm_commit ();
126 over:
127
128 This is the end of all_lowering_passes, and so is what is present
129 during the IPA passes, and through all of the optimization passes.
130
131 During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
132 functions and mark functions for cloning.
133
134 At the end of gimple optimization, before exiting SSA form,
135 pass_tm_edges replaces statements that perform transactional
136 memory operations with the appropriate TM builtins, and swap
137 out function calls with their transactional clones. At this
138 point we introduce the abnormal transaction restart edges and
139 complete lowering of the GIMPLE_TRANSACTION node.
140
141 x = __builtin___tm_start (MAY_ABORT);
142 eh_label:
143 if (x & abort_transaction)
144 goto over;
145 local = local + 1;
146 t0 = __builtin___tm_load (global);
147 t1 = t0 + 1;
148 __builtin___tm_store (&global, t1);
149 if (t1 == 10)
150 __builtin___tm_abort ();
151 __builtin___tm_commit ();
152 over:
153 */
154
155 static void *expand_regions (struct tm_region *,
156 void *(*callback)(struct tm_region *, void *),
157 void *, bool);
158
159 \f
160 /* Return the attributes we want to examine for X, or NULL if it's not
161 something we examine. We look at function types, but allow pointers
162 to function types and function decls and peek through. */
163
164 static tree
165 get_attrs_for (const_tree x)
166 {
167 switch (TREE_CODE (x))
168 {
169 case FUNCTION_DECL:
170 return TYPE_ATTRIBUTES (TREE_TYPE (x));
171 break;
172
173 default:
174 if (TYPE_P (x))
175 return NULL;
176 x = TREE_TYPE (x);
177 if (TREE_CODE (x) != POINTER_TYPE)
178 return NULL;
179 /* FALLTHRU */
180
181 case POINTER_TYPE:
182 x = TREE_TYPE (x);
183 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
184 return NULL;
185 /* FALLTHRU */
186
187 case FUNCTION_TYPE:
188 case METHOD_TYPE:
189 return TYPE_ATTRIBUTES (x);
190 }
191 }
192
193 /* Return true if X has been marked TM_PURE. */
194
195 bool
196 is_tm_pure (const_tree x)
197 {
198 unsigned flags;
199
200 switch (TREE_CODE (x))
201 {
202 case FUNCTION_DECL:
203 case FUNCTION_TYPE:
204 case METHOD_TYPE:
205 break;
206
207 default:
208 if (TYPE_P (x))
209 return false;
210 x = TREE_TYPE (x);
211 if (TREE_CODE (x) != POINTER_TYPE)
212 return false;
213 /* FALLTHRU */
214
215 case POINTER_TYPE:
216 x = TREE_TYPE (x);
217 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
218 return false;
219 break;
220 }
221
222 flags = flags_from_decl_or_type (x);
223 return (flags & ECF_TM_PURE) != 0;
224 }
225
226 /* Return true if X has been marked TM_IRREVOCABLE. */
227
228 static bool
229 is_tm_irrevocable (tree x)
230 {
231 tree attrs = get_attrs_for (x);
232
233 if (attrs && lookup_attribute ("transaction_unsafe", attrs))
234 return true;
235
236 /* A call to the irrevocable builtin is by definition,
237 irrevocable. */
238 if (TREE_CODE (x) == ADDR_EXPR)
239 x = TREE_OPERAND (x, 0);
240 if (TREE_CODE (x) == FUNCTION_DECL
241 && DECL_BUILT_IN_CLASS (x) == BUILT_IN_NORMAL
242 && DECL_FUNCTION_CODE (x) == BUILT_IN_TM_IRREVOCABLE)
243 return true;
244
245 return false;
246 }
247
248 /* Return true if X has been marked TM_SAFE. */
249
250 bool
251 is_tm_safe (const_tree x)
252 {
253 if (flag_tm)
254 {
255 tree attrs = get_attrs_for (x);
256 if (attrs)
257 {
258 if (lookup_attribute ("transaction_safe", attrs))
259 return true;
260 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
261 return true;
262 }
263 }
264 return false;
265 }
266
267 /* Return true if CALL is const, or tm_pure. */
268
269 static bool
270 is_tm_pure_call (gimple call)
271 {
272 tree fn = gimple_call_fn (call);
273
274 if (TREE_CODE (fn) == ADDR_EXPR)
275 {
276 fn = TREE_OPERAND (fn, 0);
277 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
278 }
279 else
280 fn = TREE_TYPE (fn);
281
282 return is_tm_pure (fn);
283 }
284
285 /* Return true if X has been marked TM_CALLABLE. */
286
287 static bool
288 is_tm_callable (tree x)
289 {
290 tree attrs = get_attrs_for (x);
291 if (attrs)
292 {
293 if (lookup_attribute ("transaction_callable", attrs))
294 return true;
295 if (lookup_attribute ("transaction_safe", attrs))
296 return true;
297 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
298 return true;
299 }
300 return false;
301 }
302
303 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
304
305 bool
306 is_tm_may_cancel_outer (tree x)
307 {
308 tree attrs = get_attrs_for (x);
309 if (attrs)
310 return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
311 return false;
312 }
313
314 /* Return true for built in functions that "end" a transaction. */
315
316 bool
317 is_tm_ending_fndecl (tree fndecl)
318 {
319 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
320 switch (DECL_FUNCTION_CODE (fndecl))
321 {
322 case BUILT_IN_TM_COMMIT:
323 case BUILT_IN_TM_COMMIT_EH:
324 case BUILT_IN_TM_ABORT:
325 case BUILT_IN_TM_IRREVOCABLE:
326 return true;
327 default:
328 break;
329 }
330
331 return false;
332 }
333
334 /* Return true if STMT is a built in function call that "ends" a
335 transaction. */
336
337 bool
338 is_tm_ending (gimple stmt)
339 {
340 tree fndecl;
341
342 if (gimple_code (stmt) != GIMPLE_CALL)
343 return false;
344
345 fndecl = gimple_call_fndecl (stmt);
346 return (fndecl != NULL_TREE
347 && is_tm_ending_fndecl (fndecl));
348 }
349
350 /* Return true if STMT is a TM load. */
351
352 static bool
353 is_tm_load (gimple stmt)
354 {
355 tree fndecl;
356
357 if (gimple_code (stmt) != GIMPLE_CALL)
358 return false;
359
360 fndecl = gimple_call_fndecl (stmt);
361 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
362 && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
363 }
364
365 /* Same as above, but for simple TM loads, that is, not the
366 after-write, after-read, etc optimized variants. */
367
368 static bool
369 is_tm_simple_load (gimple stmt)
370 {
371 tree fndecl;
372
373 if (gimple_code (stmt) != GIMPLE_CALL)
374 return false;
375
376 fndecl = gimple_call_fndecl (stmt);
377 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
378 {
379 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
380 return (fcode == BUILT_IN_TM_LOAD_1
381 || fcode == BUILT_IN_TM_LOAD_2
382 || fcode == BUILT_IN_TM_LOAD_4
383 || fcode == BUILT_IN_TM_LOAD_8
384 || fcode == BUILT_IN_TM_LOAD_FLOAT
385 || fcode == BUILT_IN_TM_LOAD_DOUBLE
386 || fcode == BUILT_IN_TM_LOAD_LDOUBLE
387 || fcode == BUILT_IN_TM_LOAD_M64
388 || fcode == BUILT_IN_TM_LOAD_M128
389 || fcode == BUILT_IN_TM_LOAD_M256);
390 }
391 return false;
392 }
393
394 /* Return true if STMT is a TM store. */
395
396 static bool
397 is_tm_store (gimple stmt)
398 {
399 tree fndecl;
400
401 if (gimple_code (stmt) != GIMPLE_CALL)
402 return false;
403
404 fndecl = gimple_call_fndecl (stmt);
405 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
406 && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
407 }
408
409 /* Same as above, but for simple TM stores, that is, not the
410 after-write, after-read, etc optimized variants. */
411
412 static bool
413 is_tm_simple_store (gimple stmt)
414 {
415 tree fndecl;
416
417 if (gimple_code (stmt) != GIMPLE_CALL)
418 return false;
419
420 fndecl = gimple_call_fndecl (stmt);
421 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
422 {
423 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
424 return (fcode == BUILT_IN_TM_STORE_1
425 || fcode == BUILT_IN_TM_STORE_2
426 || fcode == BUILT_IN_TM_STORE_4
427 || fcode == BUILT_IN_TM_STORE_8
428 || fcode == BUILT_IN_TM_STORE_FLOAT
429 || fcode == BUILT_IN_TM_STORE_DOUBLE
430 || fcode == BUILT_IN_TM_STORE_LDOUBLE
431 || fcode == BUILT_IN_TM_STORE_M64
432 || fcode == BUILT_IN_TM_STORE_M128
433 || fcode == BUILT_IN_TM_STORE_M256);
434 }
435 return false;
436 }
437
438 /* Return true if FNDECL is BUILT_IN_TM_ABORT. */
439
440 static bool
441 is_tm_abort (tree fndecl)
442 {
443 return (fndecl
444 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
445 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_TM_ABORT);
446 }
447
448 /* Build a GENERIC tree for a user abort. This is called by front ends
449 while transforming the __tm_abort statement. */
450
451 tree
452 build_tm_abort_call (location_t loc, bool is_outer)
453 {
454 return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
455 build_int_cst (integer_type_node,
456 AR_USERABORT
457 | (is_outer ? AR_OUTERABORT : 0)));
458 }
459
460 /* Common gateing function for several of the TM passes. */
461
462 static bool
463 gate_tm (void)
464 {
465 return flag_tm;
466 }
467 \f
468 /* Map for aribtrary function replacement under TM, as created
469 by the tm_wrap attribute. */
470
471 static GTY((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
472 htab_t tm_wrap_map;
473
474 void
475 record_tm_replacement (tree from, tree to)
476 {
477 struct tree_map **slot, *h;
478
479 /* Do not inline wrapper functions that will get replaced in the TM
480 pass.
481
482 Suppose you have foo() that will get replaced into tmfoo(). Make
483 sure the inliner doesn't try to outsmart us and inline foo()
484 before we get a chance to do the TM replacement. */
485 DECL_UNINLINABLE (from) = 1;
486
487 if (tm_wrap_map == NULL)
488 tm_wrap_map = htab_create_ggc (32, tree_map_hash, tree_map_eq, 0);
489
490 h = ggc_alloc_tree_map ();
491 h->hash = htab_hash_pointer (from);
492 h->base.from = from;
493 h->to = to;
494
495 slot = (struct tree_map **)
496 htab_find_slot_with_hash (tm_wrap_map, h, h->hash, INSERT);
497 *slot = h;
498 }
499
500 /* Return a TM-aware replacement function for DECL. */
501
502 static tree
503 find_tm_replacement_function (tree fndecl)
504 {
505 if (tm_wrap_map)
506 {
507 struct tree_map *h, in;
508
509 in.base.from = fndecl;
510 in.hash = htab_hash_pointer (fndecl);
511 h = (struct tree_map *) htab_find_with_hash (tm_wrap_map, &in, in.hash);
512 if (h)
513 return h->to;
514 }
515
516 /* ??? We may well want TM versions of most of the common <string.h>
517 functions. For now, we've already these two defined. */
518 /* Adjust expand_call_tm() attributes as necessary for the cases
519 handled here: */
520 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
521 switch (DECL_FUNCTION_CODE (fndecl))
522 {
523 case BUILT_IN_MEMCPY:
524 return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
525 case BUILT_IN_MEMMOVE:
526 return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
527 case BUILT_IN_MEMSET:
528 return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
529 default:
530 return NULL;
531 }
532
533 return NULL;
534 }
535
536 /* When appropriate, record TM replacement for memory allocation functions.
537
538 FROM is the FNDECL to wrap. */
539 void
540 tm_malloc_replacement (tree from)
541 {
542 const char *str;
543 tree to;
544
545 if (TREE_CODE (from) != FUNCTION_DECL)
546 return;
547
548 /* If we have a previous replacement, the user must be explicitly
549 wrapping malloc/calloc/free. They better know what they're
550 doing... */
551 if (find_tm_replacement_function (from))
552 return;
553
554 str = IDENTIFIER_POINTER (DECL_NAME (from));
555
556 if (!strcmp (str, "malloc"))
557 to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
558 else if (!strcmp (str, "calloc"))
559 to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
560 else if (!strcmp (str, "free"))
561 to = builtin_decl_explicit (BUILT_IN_TM_FREE);
562 else
563 return;
564
565 TREE_NOTHROW (to) = 0;
566
567 record_tm_replacement (from, to);
568 }
569 \f
570 /* Diagnostics for tm_safe functions/regions. Called by the front end
571 once we've lowered the function to high-gimple. */
572
573 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
574 Process exactly one statement. WI->INFO is set to non-null when in
575 the context of a tm_safe function, and null for a __transaction block. */
576
577 #define DIAG_TM_OUTER 1
578 #define DIAG_TM_SAFE 2
579 #define DIAG_TM_RELAXED 4
580
581 struct diagnose_tm
582 {
583 unsigned int summary_flags : 8;
584 unsigned int block_flags : 8;
585 unsigned int func_flags : 8;
586 unsigned int saw_volatile : 1;
587 gimple stmt;
588 };
589
590 /* Return true if T is a volatile variable of some kind. */
591
592 static bool
593 volatile_var_p (tree t)
594 {
595 return (SSA_VAR_P (t)
596 && TREE_THIS_VOLATILE (TREE_TYPE (t)));
597 }
598
599 /* Tree callback function for diagnose_tm pass. */
600
601 static tree
602 diagnose_tm_1_op (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
603 void *data)
604 {
605 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
606 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
607
608 if (volatile_var_p (*tp)
609 && d->block_flags & DIAG_TM_SAFE
610 && !d->saw_volatile)
611 {
612 d->saw_volatile = 1;
613 error_at (gimple_location (d->stmt),
614 "invalid volatile use of %qD inside transaction",
615 *tp);
616 }
617
618 return NULL_TREE;
619 }
620
621 static inline bool
622 is_tm_safe_or_pure (const_tree x)
623 {
624 return is_tm_safe (x) || is_tm_pure (x);
625 }
626
627 static tree
628 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
629 struct walk_stmt_info *wi)
630 {
631 gimple stmt = gsi_stmt (*gsi);
632 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
633
634 /* Save stmt for use in leaf analysis. */
635 d->stmt = stmt;
636
637 switch (gimple_code (stmt))
638 {
639 case GIMPLE_CALL:
640 {
641 tree fn = gimple_call_fn (stmt);
642
643 if ((d->summary_flags & DIAG_TM_OUTER) == 0
644 && is_tm_may_cancel_outer (fn))
645 error_at (gimple_location (stmt),
646 "%<transaction_may_cancel_outer%> function call not within"
647 " outer transaction or %<transaction_may_cancel_outer%>");
648
649 if (d->summary_flags & DIAG_TM_SAFE)
650 {
651 bool is_safe, direct_call_p;
652 tree replacement;
653
654 if (TREE_CODE (fn) == ADDR_EXPR
655 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
656 {
657 direct_call_p = true;
658 replacement = TREE_OPERAND (fn, 0);
659 replacement = find_tm_replacement_function (replacement);
660 if (replacement)
661 fn = replacement;
662 }
663 else
664 {
665 direct_call_p = false;
666 replacement = NULL_TREE;
667 }
668
669 if (is_tm_safe_or_pure (fn))
670 is_safe = true;
671 else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
672 {
673 /* A function explicitly marked transaction_callable as
674 opposed to transaction_safe is being defined to be
675 unsafe as part of its ABI, regardless of its contents. */
676 is_safe = false;
677 }
678 else if (direct_call_p)
679 {
680 if (IS_TYPE_OR_DECL_P (fn)
681 && flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
682 is_safe = true;
683 else if (replacement)
684 {
685 /* ??? At present we've been considering replacements
686 merely transaction_callable, and therefore might
687 enter irrevocable. The tm_wrap attribute has not
688 yet made it into the new language spec. */
689 is_safe = false;
690 }
691 else
692 {
693 /* ??? Diagnostics for unmarked direct calls moved into
694 the IPA pass. Section 3.2 of the spec details how
695 functions not marked should be considered "implicitly
696 safe" based on having examined the function body. */
697 is_safe = true;
698 }
699 }
700 else
701 {
702 /* An unmarked indirect call. Consider it unsafe even
703 though optimization may yet figure out how to inline. */
704 is_safe = false;
705 }
706
707 if (!is_safe)
708 {
709 if (TREE_CODE (fn) == ADDR_EXPR)
710 fn = TREE_OPERAND (fn, 0);
711 if (d->block_flags & DIAG_TM_SAFE)
712 {
713 if (direct_call_p)
714 error_at (gimple_location (stmt),
715 "unsafe function call %qD within "
716 "atomic transaction", fn);
717 else
718 {
719 if (!DECL_P (fn) || DECL_NAME (fn))
720 error_at (gimple_location (stmt),
721 "unsafe function call %qE within "
722 "atomic transaction", fn);
723 else
724 error_at (gimple_location (stmt),
725 "unsafe indirect function call within "
726 "atomic transaction");
727 }
728 }
729 else
730 {
731 if (direct_call_p)
732 error_at (gimple_location (stmt),
733 "unsafe function call %qD within "
734 "%<transaction_safe%> function", fn);
735 else
736 {
737 if (!DECL_P (fn) || DECL_NAME (fn))
738 error_at (gimple_location (stmt),
739 "unsafe function call %qE within "
740 "%<transaction_safe%> function", fn);
741 else
742 error_at (gimple_location (stmt),
743 "unsafe indirect function call within "
744 "%<transaction_safe%> function");
745 }
746 }
747 }
748 }
749 }
750 break;
751
752 case GIMPLE_ASM:
753 /* ??? We ought to come up with a way to add attributes to
754 asm statements, and then add "transaction_safe" to it.
755 Either that or get the language spec to resurrect __tm_waiver. */
756 if (d->block_flags & DIAG_TM_SAFE)
757 error_at (gimple_location (stmt),
758 "asm not allowed in atomic transaction");
759 else if (d->func_flags & DIAG_TM_SAFE)
760 error_at (gimple_location (stmt),
761 "asm not allowed in %<transaction_safe%> function");
762 break;
763
764 case GIMPLE_TRANSACTION:
765 {
766 unsigned char inner_flags = DIAG_TM_SAFE;
767
768 if (gimple_transaction_subcode (stmt) & GTMA_IS_RELAXED)
769 {
770 if (d->block_flags & DIAG_TM_SAFE)
771 error_at (gimple_location (stmt),
772 "relaxed transaction in atomic transaction");
773 else if (d->func_flags & DIAG_TM_SAFE)
774 error_at (gimple_location (stmt),
775 "relaxed transaction in %<transaction_safe%> function");
776 inner_flags = DIAG_TM_RELAXED;
777 }
778 else if (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER)
779 {
780 if (d->block_flags)
781 error_at (gimple_location (stmt),
782 "outer transaction in transaction");
783 else if (d->func_flags & DIAG_TM_OUTER)
784 error_at (gimple_location (stmt),
785 "outer transaction in "
786 "%<transaction_may_cancel_outer%> function");
787 else if (d->func_flags & DIAG_TM_SAFE)
788 error_at (gimple_location (stmt),
789 "outer transaction in %<transaction_safe%> function");
790 inner_flags |= DIAG_TM_OUTER;
791 }
792
793 *handled_ops_p = true;
794 if (gimple_transaction_body (stmt))
795 {
796 struct walk_stmt_info wi_inner;
797 struct diagnose_tm d_inner;
798
799 memset (&d_inner, 0, sizeof (d_inner));
800 d_inner.func_flags = d->func_flags;
801 d_inner.block_flags = d->block_flags | inner_flags;
802 d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
803
804 memset (&wi_inner, 0, sizeof (wi_inner));
805 wi_inner.info = &d_inner;
806
807 walk_gimple_seq (gimple_transaction_body (stmt),
808 diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
809 }
810 }
811 break;
812
813 default:
814 break;
815 }
816
817 return NULL_TREE;
818 }
819
820 static unsigned int
821 diagnose_tm_blocks (void)
822 {
823 struct walk_stmt_info wi;
824 struct diagnose_tm d;
825
826 memset (&d, 0, sizeof (d));
827 if (is_tm_may_cancel_outer (current_function_decl))
828 d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
829 else if (is_tm_safe (current_function_decl))
830 d.func_flags = DIAG_TM_SAFE;
831 d.summary_flags = d.func_flags;
832
833 memset (&wi, 0, sizeof (wi));
834 wi.info = &d;
835
836 walk_gimple_seq (gimple_body (current_function_decl),
837 diagnose_tm_1, diagnose_tm_1_op, &wi);
838
839 return 0;
840 }
841
842 namespace {
843
844 const pass_data pass_data_diagnose_tm_blocks =
845 {
846 GIMPLE_PASS, /* type */
847 "*diagnose_tm_blocks", /* name */
848 OPTGROUP_NONE, /* optinfo_flags */
849 true, /* has_gate */
850 true, /* has_execute */
851 TV_TRANS_MEM, /* tv_id */
852 PROP_gimple_any, /* properties_required */
853 0, /* properties_provided */
854 0, /* properties_destroyed */
855 0, /* todo_flags_start */
856 0, /* todo_flags_finish */
857 };
858
859 class pass_diagnose_tm_blocks : public gimple_opt_pass
860 {
861 public:
862 pass_diagnose_tm_blocks (gcc::context *ctxt)
863 : gimple_opt_pass (pass_data_diagnose_tm_blocks, ctxt)
864 {}
865
866 /* opt_pass methods: */
867 bool gate () { return gate_tm (); }
868 unsigned int execute () { return diagnose_tm_blocks (); }
869
870 }; // class pass_diagnose_tm_blocks
871
872 } // anon namespace
873
874 gimple_opt_pass *
875 make_pass_diagnose_tm_blocks (gcc::context *ctxt)
876 {
877 return new pass_diagnose_tm_blocks (ctxt);
878 }
879 \f
880 /* Instead of instrumenting thread private memory, we save the
881 addresses in a log which we later use to save/restore the addresses
882 upon transaction start/restart.
883
884 The log is keyed by address, where each element contains individual
885 statements among different code paths that perform the store.
886
887 This log is later used to generate either plain save/restore of the
888 addresses upon transaction start/restart, or calls to the ITM_L*
889 logging functions.
890
891 So for something like:
892
893 struct large { int x[1000]; };
894 struct large lala = { 0 };
895 __transaction {
896 lala.x[i] = 123;
897 ...
898 }
899
900 We can either save/restore:
901
902 lala = { 0 };
903 trxn = _ITM_startTransaction ();
904 if (trxn & a_saveLiveVariables)
905 tmp_lala1 = lala.x[i];
906 else if (a & a_restoreLiveVariables)
907 lala.x[i] = tmp_lala1;
908
909 or use the logging functions:
910
911 lala = { 0 };
912 trxn = _ITM_startTransaction ();
913 _ITM_LU4 (&lala.x[i]);
914
915 Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
916 far up the dominator tree to shadow all of the writes to a given
917 location (thus reducing the total number of logging calls), but not
918 so high as to be called on a path that does not perform a
919 write. */
920
921 /* One individual log entry. We may have multiple statements for the
922 same location if neither dominate each other (on different
923 execution paths). */
924 typedef struct tm_log_entry
925 {
926 /* Address to save. */
927 tree addr;
928 /* Entry block for the transaction this address occurs in. */
929 basic_block entry_block;
930 /* Dominating statements the store occurs in. */
931 gimple_vec stmts;
932 /* Initially, while we are building the log, we place a nonzero
933 value here to mean that this address *will* be saved with a
934 save/restore sequence. Later, when generating the save sequence
935 we place the SSA temp generated here. */
936 tree save_var;
937 } *tm_log_entry_t;
938
939
940 /* Log entry hashtable helpers. */
941
942 struct log_entry_hasher
943 {
944 typedef tm_log_entry value_type;
945 typedef tm_log_entry compare_type;
946 static inline hashval_t hash (const value_type *);
947 static inline bool equal (const value_type *, const compare_type *);
948 static inline void remove (value_type *);
949 };
950
951 /* Htab support. Return hash value for a `tm_log_entry'. */
952 inline hashval_t
953 log_entry_hasher::hash (const value_type *log)
954 {
955 return iterative_hash_expr (log->addr, 0);
956 }
957
958 /* Htab support. Return true if two log entries are the same. */
959 inline bool
960 log_entry_hasher::equal (const value_type *log1, const compare_type *log2)
961 {
962 /* FIXME:
963
964 rth: I suggest that we get rid of the component refs etc.
965 I.e. resolve the reference to base + offset.
966
967 We may need to actually finish a merge with mainline for this,
968 since we'd like to be presented with Richi's MEM_REF_EXPRs more
969 often than not. But in the meantime your tm_log_entry could save
970 the results of get_inner_reference.
971
972 See: g++.dg/tm/pr46653.C
973 */
974
975 /* Special case plain equality because operand_equal_p() below will
976 return FALSE if the addresses are equal but they have
977 side-effects (e.g. a volatile address). */
978 if (log1->addr == log2->addr)
979 return true;
980
981 return operand_equal_p (log1->addr, log2->addr, 0);
982 }
983
984 /* Htab support. Free one tm_log_entry. */
985 inline void
986 log_entry_hasher::remove (value_type *lp)
987 {
988 lp->stmts.release ();
989 free (lp);
990 }
991
992
993 /* The actual log. */
994 static hash_table <log_entry_hasher> tm_log;
995
996 /* Addresses to log with a save/restore sequence. These should be in
997 dominator order. */
998 static vec<tree> tm_log_save_addresses;
999
1000 enum thread_memory_type
1001 {
1002 mem_non_local = 0,
1003 mem_thread_local,
1004 mem_transaction_local,
1005 mem_max
1006 };
1007
1008 typedef struct tm_new_mem_map
1009 {
1010 /* SSA_NAME being dereferenced. */
1011 tree val;
1012 enum thread_memory_type local_new_memory;
1013 } tm_new_mem_map_t;
1014
1015 /* Hashtable helpers. */
1016
1017 struct tm_mem_map_hasher : typed_free_remove <tm_new_mem_map_t>
1018 {
1019 typedef tm_new_mem_map_t value_type;
1020 typedef tm_new_mem_map_t compare_type;
1021 static inline hashval_t hash (const value_type *);
1022 static inline bool equal (const value_type *, const compare_type *);
1023 };
1024
1025 inline hashval_t
1026 tm_mem_map_hasher::hash (const value_type *v)
1027 {
1028 return (intptr_t)v->val >> 4;
1029 }
1030
1031 inline bool
1032 tm_mem_map_hasher::equal (const value_type *v, const compare_type *c)
1033 {
1034 return v->val == c->val;
1035 }
1036
1037 /* Map for an SSA_NAME originally pointing to a non aliased new piece
1038 of memory (malloc, alloc, etc). */
1039 static hash_table <tm_mem_map_hasher> tm_new_mem_hash;
1040
1041 /* Initialize logging data structures. */
1042 static void
1043 tm_log_init (void)
1044 {
1045 tm_log.create (10);
1046 tm_new_mem_hash.create (5);
1047 tm_log_save_addresses.create (5);
1048 }
1049
1050 /* Free logging data structures. */
1051 static void
1052 tm_log_delete (void)
1053 {
1054 tm_log.dispose ();
1055 tm_new_mem_hash.dispose ();
1056 tm_log_save_addresses.release ();
1057 }
1058
1059 /* Return true if MEM is a transaction invariant memory for the TM
1060 region starting at REGION_ENTRY_BLOCK. */
1061 static bool
1062 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
1063 {
1064 if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
1065 && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
1066 {
1067 basic_block def_bb;
1068
1069 def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
1070 return def_bb != region_entry_block
1071 && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
1072 }
1073
1074 mem = strip_invariant_refs (mem);
1075 return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
1076 }
1077
1078 /* Given an address ADDR in STMT, find it in the memory log or add it,
1079 making sure to keep only the addresses highest in the dominator
1080 tree.
1081
1082 ENTRY_BLOCK is the entry_block for the transaction.
1083
1084 If we find the address in the log, make sure it's either the same
1085 address, or an equivalent one that dominates ADDR.
1086
1087 If we find the address, but neither ADDR dominates the found
1088 address, nor the found one dominates ADDR, we're on different
1089 execution paths. Add it.
1090
1091 If known, ENTRY_BLOCK is the entry block for the region, otherwise
1092 NULL. */
1093 static void
1094 tm_log_add (basic_block entry_block, tree addr, gimple stmt)
1095 {
1096 tm_log_entry **slot;
1097 struct tm_log_entry l, *lp;
1098
1099 l.addr = addr;
1100 slot = tm_log.find_slot (&l, INSERT);
1101 if (!*slot)
1102 {
1103 tree type = TREE_TYPE (addr);
1104
1105 lp = XNEW (struct tm_log_entry);
1106 lp->addr = addr;
1107 *slot = lp;
1108
1109 /* Small invariant addresses can be handled as save/restores. */
1110 if (entry_block
1111 && transaction_invariant_address_p (lp->addr, entry_block)
1112 && TYPE_SIZE_UNIT (type) != NULL
1113 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
1114 && ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE_UNIT (type))
1115 < PARAM_VALUE (PARAM_TM_MAX_AGGREGATE_SIZE))
1116 /* We must be able to copy this type normally. I.e., no
1117 special constructors and the like. */
1118 && !TREE_ADDRESSABLE (type))
1119 {
1120 lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
1121 lp->stmts.create (0);
1122 lp->entry_block = entry_block;
1123 /* Save addresses separately in dominator order so we don't
1124 get confused by overlapping addresses in the save/restore
1125 sequence. */
1126 tm_log_save_addresses.safe_push (lp->addr);
1127 }
1128 else
1129 {
1130 /* Use the logging functions. */
1131 lp->stmts.create (5);
1132 lp->stmts.quick_push (stmt);
1133 lp->save_var = NULL;
1134 }
1135 }
1136 else
1137 {
1138 size_t i;
1139 gimple oldstmt;
1140
1141 lp = *slot;
1142
1143 /* If we're generating a save/restore sequence, we don't care
1144 about statements. */
1145 if (lp->save_var)
1146 return;
1147
1148 for (i = 0; lp->stmts.iterate (i, &oldstmt); ++i)
1149 {
1150 if (stmt == oldstmt)
1151 return;
1152 /* We already have a store to the same address, higher up the
1153 dominator tree. Nothing to do. */
1154 if (dominated_by_p (CDI_DOMINATORS,
1155 gimple_bb (stmt), gimple_bb (oldstmt)))
1156 return;
1157 /* We should be processing blocks in dominator tree order. */
1158 gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1159 gimple_bb (oldstmt), gimple_bb (stmt)));
1160 }
1161 /* Store is on a different code path. */
1162 lp->stmts.safe_push (stmt);
1163 }
1164 }
1165
1166 /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
1167 result, insert the new statements before GSI. */
1168
1169 static tree
1170 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1171 {
1172 if (TREE_CODE (x) == TARGET_MEM_REF)
1173 x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1174 else
1175 x = build_fold_addr_expr (x);
1176 return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1177 }
1178
1179 /* Instrument one address with the logging functions.
1180 ADDR is the address to save.
1181 STMT is the statement before which to place it. */
1182 static void
1183 tm_log_emit_stmt (tree addr, gimple stmt)
1184 {
1185 tree type = TREE_TYPE (addr);
1186 tree size = TYPE_SIZE_UNIT (type);
1187 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1188 gimple log;
1189 enum built_in_function code = BUILT_IN_TM_LOG;
1190
1191 if (type == float_type_node)
1192 code = BUILT_IN_TM_LOG_FLOAT;
1193 else if (type == double_type_node)
1194 code = BUILT_IN_TM_LOG_DOUBLE;
1195 else if (type == long_double_type_node)
1196 code = BUILT_IN_TM_LOG_LDOUBLE;
1197 else if (tree_fits_uhwi_p (size))
1198 {
1199 unsigned int n = tree_to_uhwi (size);
1200 switch (n)
1201 {
1202 case 1:
1203 code = BUILT_IN_TM_LOG_1;
1204 break;
1205 case 2:
1206 code = BUILT_IN_TM_LOG_2;
1207 break;
1208 case 4:
1209 code = BUILT_IN_TM_LOG_4;
1210 break;
1211 case 8:
1212 code = BUILT_IN_TM_LOG_8;
1213 break;
1214 default:
1215 code = BUILT_IN_TM_LOG;
1216 if (TREE_CODE (type) == VECTOR_TYPE)
1217 {
1218 if (n == 8 && builtin_decl_explicit (BUILT_IN_TM_LOG_M64))
1219 code = BUILT_IN_TM_LOG_M64;
1220 else if (n == 16 && builtin_decl_explicit (BUILT_IN_TM_LOG_M128))
1221 code = BUILT_IN_TM_LOG_M128;
1222 else if (n == 32 && builtin_decl_explicit (BUILT_IN_TM_LOG_M256))
1223 code = BUILT_IN_TM_LOG_M256;
1224 }
1225 break;
1226 }
1227 }
1228
1229 addr = gimplify_addr (&gsi, addr);
1230 if (code == BUILT_IN_TM_LOG)
1231 log = gimple_build_call (builtin_decl_explicit (code), 2, addr, size);
1232 else
1233 log = gimple_build_call (builtin_decl_explicit (code), 1, addr);
1234 gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1235 }
1236
1237 /* Go through the log and instrument address that must be instrumented
1238 with the logging functions. Leave the save/restore addresses for
1239 later. */
1240 static void
1241 tm_log_emit (void)
1242 {
1243 hash_table <log_entry_hasher>::iterator hi;
1244 struct tm_log_entry *lp;
1245
1246 FOR_EACH_HASH_TABLE_ELEMENT (tm_log, lp, tm_log_entry_t, hi)
1247 {
1248 size_t i;
1249 gimple stmt;
1250
1251 if (dump_file)
1252 {
1253 fprintf (dump_file, "TM thread private mem logging: ");
1254 print_generic_expr (dump_file, lp->addr, 0);
1255 fprintf (dump_file, "\n");
1256 }
1257
1258 if (lp->save_var)
1259 {
1260 if (dump_file)
1261 fprintf (dump_file, "DUMPING to variable\n");
1262 continue;
1263 }
1264 else
1265 {
1266 if (dump_file)
1267 fprintf (dump_file, "DUMPING with logging functions\n");
1268 for (i = 0; lp->stmts.iterate (i, &stmt); ++i)
1269 tm_log_emit_stmt (lp->addr, stmt);
1270 }
1271 }
1272 }
1273
1274 /* Emit the save sequence for the corresponding addresses in the log.
1275 ENTRY_BLOCK is the entry block for the transaction.
1276 BB is the basic block to insert the code in. */
1277 static void
1278 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1279 {
1280 size_t i;
1281 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1282 gimple stmt;
1283 struct tm_log_entry l, *lp;
1284
1285 for (i = 0; i < tm_log_save_addresses.length (); ++i)
1286 {
1287 l.addr = tm_log_save_addresses[i];
1288 lp = *(tm_log.find_slot (&l, NO_INSERT));
1289 gcc_assert (lp->save_var != NULL);
1290
1291 /* We only care about variables in the current transaction. */
1292 if (lp->entry_block != entry_block)
1293 continue;
1294
1295 stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1296
1297 /* Make sure we can create an SSA_NAME for this type. For
1298 instance, aggregates aren't allowed, in which case the system
1299 will create a VOP for us and everything will just work. */
1300 if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1301 {
1302 lp->save_var = make_ssa_name (lp->save_var, stmt);
1303 gimple_assign_set_lhs (stmt, lp->save_var);
1304 }
1305
1306 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1307 }
1308 }
1309
1310 /* Emit the restore sequence for the corresponding addresses in the log.
1311 ENTRY_BLOCK is the entry block for the transaction.
1312 BB is the basic block to insert the code in. */
1313 static void
1314 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1315 {
1316 int i;
1317 struct tm_log_entry l, *lp;
1318 gimple_stmt_iterator gsi;
1319 gimple stmt;
1320
1321 for (i = tm_log_save_addresses.length () - 1; i >= 0; i--)
1322 {
1323 l.addr = tm_log_save_addresses[i];
1324 lp = *(tm_log.find_slot (&l, NO_INSERT));
1325 gcc_assert (lp->save_var != NULL);
1326
1327 /* We only care about variables in the current transaction. */
1328 if (lp->entry_block != entry_block)
1329 continue;
1330
1331 /* Restores are in LIFO order from the saves in case we have
1332 overlaps. */
1333 gsi = gsi_start_bb (bb);
1334
1335 stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1336 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1337 }
1338 }
1339
1340 \f
1341 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1342 struct walk_stmt_info *);
1343 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1344 struct walk_stmt_info *);
1345
1346 /* Evaluate an address X being dereferenced and determine if it
1347 originally points to a non aliased new chunk of memory (malloc,
1348 alloca, etc).
1349
1350 Return MEM_THREAD_LOCAL if it points to a thread-local address.
1351 Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1352 Return MEM_NON_LOCAL otherwise.
1353
1354 ENTRY_BLOCK is the entry block to the transaction containing the
1355 dereference of X. */
1356 static enum thread_memory_type
1357 thread_private_new_memory (basic_block entry_block, tree x)
1358 {
1359 gimple stmt = NULL;
1360 enum tree_code code;
1361 tm_new_mem_map_t **slot;
1362 tm_new_mem_map_t elt, *elt_p;
1363 tree val = x;
1364 enum thread_memory_type retval = mem_transaction_local;
1365
1366 if (!entry_block
1367 || TREE_CODE (x) != SSA_NAME
1368 /* Possible uninitialized use, or a function argument. In
1369 either case, we don't care. */
1370 || SSA_NAME_IS_DEFAULT_DEF (x))
1371 return mem_non_local;
1372
1373 /* Look in cache first. */
1374 elt.val = x;
1375 slot = tm_new_mem_hash.find_slot (&elt, INSERT);
1376 elt_p = *slot;
1377 if (elt_p)
1378 return elt_p->local_new_memory;
1379
1380 /* Optimistically assume the memory is transaction local during
1381 processing. This catches recursion into this variable. */
1382 *slot = elt_p = XNEW (tm_new_mem_map_t);
1383 elt_p->val = val;
1384 elt_p->local_new_memory = mem_transaction_local;
1385
1386 /* Search DEF chain to find the original definition of this address. */
1387 do
1388 {
1389 if (ptr_deref_may_alias_global_p (x))
1390 {
1391 /* Address escapes. This is not thread-private. */
1392 retval = mem_non_local;
1393 goto new_memory_ret;
1394 }
1395
1396 stmt = SSA_NAME_DEF_STMT (x);
1397
1398 /* If the malloc call is outside the transaction, this is
1399 thread-local. */
1400 if (retval != mem_thread_local
1401 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1402 retval = mem_thread_local;
1403
1404 if (is_gimple_assign (stmt))
1405 {
1406 code = gimple_assign_rhs_code (stmt);
1407 /* x = foo ==> foo */
1408 if (code == SSA_NAME)
1409 x = gimple_assign_rhs1 (stmt);
1410 /* x = foo + n ==> foo */
1411 else if (code == POINTER_PLUS_EXPR)
1412 x = gimple_assign_rhs1 (stmt);
1413 /* x = (cast*) foo ==> foo */
1414 else if (code == VIEW_CONVERT_EXPR || code == NOP_EXPR)
1415 x = gimple_assign_rhs1 (stmt);
1416 /* x = c ? op1 : op2 == > op1 or op2 just like a PHI */
1417 else if (code == COND_EXPR)
1418 {
1419 tree op1 = gimple_assign_rhs2 (stmt);
1420 tree op2 = gimple_assign_rhs3 (stmt);
1421 enum thread_memory_type mem;
1422 retval = thread_private_new_memory (entry_block, op1);
1423 if (retval == mem_non_local)
1424 goto new_memory_ret;
1425 mem = thread_private_new_memory (entry_block, op2);
1426 retval = MIN (retval, mem);
1427 goto new_memory_ret;
1428 }
1429 else
1430 {
1431 retval = mem_non_local;
1432 goto new_memory_ret;
1433 }
1434 }
1435 else
1436 {
1437 if (gimple_code (stmt) == GIMPLE_PHI)
1438 {
1439 unsigned int i;
1440 enum thread_memory_type mem;
1441 tree phi_result = gimple_phi_result (stmt);
1442
1443 /* If any of the ancestors are non-local, we are sure to
1444 be non-local. Otherwise we can avoid doing anything
1445 and inherit what has already been generated. */
1446 retval = mem_max;
1447 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1448 {
1449 tree op = PHI_ARG_DEF (stmt, i);
1450
1451 /* Exclude self-assignment. */
1452 if (phi_result == op)
1453 continue;
1454
1455 mem = thread_private_new_memory (entry_block, op);
1456 if (mem == mem_non_local)
1457 {
1458 retval = mem;
1459 goto new_memory_ret;
1460 }
1461 retval = MIN (retval, mem);
1462 }
1463 goto new_memory_ret;
1464 }
1465 break;
1466 }
1467 }
1468 while (TREE_CODE (x) == SSA_NAME);
1469
1470 if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1471 /* Thread-local or transaction-local. */
1472 ;
1473 else
1474 retval = mem_non_local;
1475
1476 new_memory_ret:
1477 elt_p->local_new_memory = retval;
1478 return retval;
1479 }
1480
1481 /* Determine whether X has to be instrumented using a read
1482 or write barrier.
1483
1484 ENTRY_BLOCK is the entry block for the region where stmt resides
1485 in. NULL if unknown.
1486
1487 STMT is the statement in which X occurs in. It is used for thread
1488 private memory instrumentation. If no TPM instrumentation is
1489 desired, STMT should be null. */
1490 static bool
1491 requires_barrier (basic_block entry_block, tree x, gimple stmt)
1492 {
1493 tree orig = x;
1494 while (handled_component_p (x))
1495 x = TREE_OPERAND (x, 0);
1496
1497 switch (TREE_CODE (x))
1498 {
1499 case INDIRECT_REF:
1500 case MEM_REF:
1501 {
1502 enum thread_memory_type ret;
1503
1504 ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1505 if (ret == mem_non_local)
1506 return true;
1507 if (stmt && ret == mem_thread_local)
1508 /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
1509 tm_log_add (entry_block, orig, stmt);
1510
1511 /* Transaction-locals require nothing at all. For malloc, a
1512 transaction restart frees the memory and we reallocate.
1513 For alloca, the stack pointer gets reset by the retry and
1514 we reallocate. */
1515 return false;
1516 }
1517
1518 case TARGET_MEM_REF:
1519 if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1520 return true;
1521 x = TREE_OPERAND (TMR_BASE (x), 0);
1522 if (TREE_CODE (x) == PARM_DECL)
1523 return false;
1524 gcc_assert (TREE_CODE (x) == VAR_DECL);
1525 /* FALLTHRU */
1526
1527 case PARM_DECL:
1528 case RESULT_DECL:
1529 case VAR_DECL:
1530 if (DECL_BY_REFERENCE (x))
1531 {
1532 /* ??? This value is a pointer, but aggregate_value_p has been
1533 jigged to return true which confuses needs_to_live_in_memory.
1534 This ought to be cleaned up generically.
1535
1536 FIXME: Verify this still happens after the next mainline
1537 merge. Testcase ie g++.dg/tm/pr47554.C.
1538 */
1539 return false;
1540 }
1541
1542 if (is_global_var (x))
1543 return !TREE_READONLY (x);
1544 if (/* FIXME: This condition should actually go below in the
1545 tm_log_add() call, however is_call_clobbered() depends on
1546 aliasing info which is not available during
1547 gimplification. Since requires_barrier() gets called
1548 during lower_sequence_tm/gimplification, leave the call
1549 to needs_to_live_in_memory until we eliminate
1550 lower_sequence_tm altogether. */
1551 needs_to_live_in_memory (x))
1552 return true;
1553 else
1554 {
1555 /* For local memory that doesn't escape (aka thread private
1556 memory), we can either save the value at the beginning of
1557 the transaction and restore on restart, or call a tm
1558 function to dynamically save and restore on restart
1559 (ITM_L*). */
1560 if (stmt)
1561 tm_log_add (entry_block, orig, stmt);
1562 return false;
1563 }
1564
1565 default:
1566 return false;
1567 }
1568 }
1569
1570 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1571 a transaction region. */
1572
1573 static void
1574 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1575 {
1576 gimple stmt = gsi_stmt (*gsi);
1577
1578 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1579 *state |= GTMA_HAVE_LOAD;
1580 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1581 *state |= GTMA_HAVE_STORE;
1582 }
1583
1584 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
1585
1586 static void
1587 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1588 {
1589 gimple stmt = gsi_stmt (*gsi);
1590 tree fn;
1591
1592 if (is_tm_pure_call (stmt))
1593 return;
1594
1595 /* Check if this call is a transaction abort. */
1596 fn = gimple_call_fndecl (stmt);
1597 if (is_tm_abort (fn))
1598 *state |= GTMA_HAVE_ABORT;
1599
1600 /* Note that something may happen. */
1601 *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1602 }
1603
1604 /* Lower a GIMPLE_TRANSACTION statement. */
1605
1606 static void
1607 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1608 {
1609 gimple g, stmt = gsi_stmt (*gsi);
1610 unsigned int *outer_state = (unsigned int *) wi->info;
1611 unsigned int this_state = 0;
1612 struct walk_stmt_info this_wi;
1613
1614 /* First, lower the body. The scanning that we do inside gives
1615 us some idea of what we're dealing with. */
1616 memset (&this_wi, 0, sizeof (this_wi));
1617 this_wi.info = (void *) &this_state;
1618 walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
1619 lower_sequence_tm, NULL, &this_wi);
1620
1621 /* If there was absolutely nothing transaction related inside the
1622 transaction, we may elide it. Likewise if this is a nested
1623 transaction and does not contain an abort. */
1624 if (this_state == 0
1625 || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1626 {
1627 if (outer_state)
1628 *outer_state |= this_state;
1629
1630 gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1631 GSI_SAME_STMT);
1632 gimple_transaction_set_body (stmt, NULL);
1633
1634 gsi_remove (gsi, true);
1635 wi->removed_stmt = true;
1636 return;
1637 }
1638
1639 /* Wrap the body of the transaction in a try-finally node so that
1640 the commit call is always properly called. */
1641 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1642 if (flag_exceptions)
1643 {
1644 tree ptr;
1645 gimple_seq n_seq, e_seq;
1646
1647 n_seq = gimple_seq_alloc_with_stmt (g);
1648 e_seq = NULL;
1649
1650 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1651 1, integer_zero_node);
1652 ptr = create_tmp_var (ptr_type_node, NULL);
1653 gimple_call_set_lhs (g, ptr);
1654 gimple_seq_add_stmt (&e_seq, g);
1655
1656 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1657 1, ptr);
1658 gimple_seq_add_stmt (&e_seq, g);
1659
1660 g = gimple_build_eh_else (n_seq, e_seq);
1661 }
1662
1663 g = gimple_build_try (gimple_transaction_body (stmt),
1664 gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1665 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1666
1667 gimple_transaction_set_body (stmt, NULL);
1668
1669 /* If the transaction calls abort or if this is an outer transaction,
1670 add an "over" label afterwards. */
1671 if ((this_state & (GTMA_HAVE_ABORT))
1672 || (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER))
1673 {
1674 tree label = create_artificial_label (UNKNOWN_LOCATION);
1675 gimple_transaction_set_label (stmt, label);
1676 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
1677 }
1678
1679 /* Record the set of operations found for use later. */
1680 this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1681 gimple_transaction_set_subcode (stmt, this_state);
1682 }
1683
1684 /* Iterate through the statements in the sequence, lowering them all
1685 as appropriate for being in a transaction. */
1686
1687 static tree
1688 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1689 struct walk_stmt_info *wi)
1690 {
1691 unsigned int *state = (unsigned int *) wi->info;
1692 gimple stmt = gsi_stmt (*gsi);
1693
1694 *handled_ops_p = true;
1695 switch (gimple_code (stmt))
1696 {
1697 case GIMPLE_ASSIGN:
1698 /* Only memory reads/writes need to be instrumented. */
1699 if (gimple_assign_single_p (stmt))
1700 examine_assign_tm (state, gsi);
1701 break;
1702
1703 case GIMPLE_CALL:
1704 examine_call_tm (state, gsi);
1705 break;
1706
1707 case GIMPLE_ASM:
1708 *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1709 break;
1710
1711 case GIMPLE_TRANSACTION:
1712 lower_transaction (gsi, wi);
1713 break;
1714
1715 default:
1716 *handled_ops_p = !gimple_has_substatements (stmt);
1717 break;
1718 }
1719
1720 return NULL_TREE;
1721 }
1722
1723 /* Iterate through the statements in the sequence, lowering them all
1724 as appropriate for being outside of a transaction. */
1725
1726 static tree
1727 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1728 struct walk_stmt_info * wi)
1729 {
1730 gimple stmt = gsi_stmt (*gsi);
1731
1732 if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1733 {
1734 *handled_ops_p = true;
1735 lower_transaction (gsi, wi);
1736 }
1737 else
1738 *handled_ops_p = !gimple_has_substatements (stmt);
1739
1740 return NULL_TREE;
1741 }
1742
1743 /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
1744 this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1745 been moved out, and all the data required for constructing a proper
1746 CFG has been recorded. */
1747
1748 static unsigned int
1749 execute_lower_tm (void)
1750 {
1751 struct walk_stmt_info wi;
1752 gimple_seq body;
1753
1754 /* Transactional clones aren't created until a later pass. */
1755 gcc_assert (!decl_is_tm_clone (current_function_decl));
1756
1757 body = gimple_body (current_function_decl);
1758 memset (&wi, 0, sizeof (wi));
1759 walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi);
1760 gimple_set_body (current_function_decl, body);
1761
1762 return 0;
1763 }
1764
1765 namespace {
1766
1767 const pass_data pass_data_lower_tm =
1768 {
1769 GIMPLE_PASS, /* type */
1770 "tmlower", /* name */
1771 OPTGROUP_NONE, /* optinfo_flags */
1772 true, /* has_gate */
1773 true, /* has_execute */
1774 TV_TRANS_MEM, /* tv_id */
1775 PROP_gimple_lcf, /* properties_required */
1776 0, /* properties_provided */
1777 0, /* properties_destroyed */
1778 0, /* todo_flags_start */
1779 0, /* todo_flags_finish */
1780 };
1781
1782 class pass_lower_tm : public gimple_opt_pass
1783 {
1784 public:
1785 pass_lower_tm (gcc::context *ctxt)
1786 : gimple_opt_pass (pass_data_lower_tm, ctxt)
1787 {}
1788
1789 /* opt_pass methods: */
1790 bool gate () { return gate_tm (); }
1791 unsigned int execute () { return execute_lower_tm (); }
1792
1793 }; // class pass_lower_tm
1794
1795 } // anon namespace
1796
1797 gimple_opt_pass *
1798 make_pass_lower_tm (gcc::context *ctxt)
1799 {
1800 return new pass_lower_tm (ctxt);
1801 }
1802 \f
1803 /* Collect region information for each transaction. */
1804
1805 struct tm_region
1806 {
1807 /* Link to the next unnested transaction. */
1808 struct tm_region *next;
1809
1810 /* Link to the next inner transaction. */
1811 struct tm_region *inner;
1812
1813 /* Link to the next outer transaction. */
1814 struct tm_region *outer;
1815
1816 /* The GIMPLE_TRANSACTION statement beginning this transaction.
1817 After TM_MARK, this gets replaced by a call to
1818 BUILT_IN_TM_START. */
1819 gimple transaction_stmt;
1820
1821 /* After TM_MARK expands the GIMPLE_TRANSACTION into a call to
1822 BUILT_IN_TM_START, this field is true if the transaction is an
1823 outer transaction. */
1824 bool original_transaction_was_outer;
1825
1826 /* Return value from BUILT_IN_TM_START. */
1827 tree tm_state;
1828
1829 /* The entry block to this region. This will always be the first
1830 block of the body of the transaction. */
1831 basic_block entry_block;
1832
1833 /* The first block after an expanded call to _ITM_beginTransaction. */
1834 basic_block restart_block;
1835
1836 /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1837 These blocks are still a part of the region (i.e., the border is
1838 inclusive). Note that this set is only complete for paths in the CFG
1839 starting at ENTRY_BLOCK, and that there is no exit block recorded for
1840 the edge to the "over" label. */
1841 bitmap exit_blocks;
1842
1843 /* The set of all blocks that have an TM_IRREVOCABLE call. */
1844 bitmap irr_blocks;
1845 };
1846
1847 typedef struct tm_region *tm_region_p;
1848
1849 /* True if there are pending edge statements to be committed for the
1850 current function being scanned in the tmmark pass. */
1851 bool pending_edge_inserts_p;
1852
1853 static struct tm_region *all_tm_regions;
1854 static bitmap_obstack tm_obstack;
1855
1856
1857 /* A subroutine of tm_region_init. Record the existence of the
1858 GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
1859
1860 static struct tm_region *
1861 tm_region_init_0 (struct tm_region *outer, basic_block bb, gimple stmt)
1862 {
1863 struct tm_region *region;
1864
1865 region = (struct tm_region *)
1866 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1867
1868 if (outer)
1869 {
1870 region->next = outer->inner;
1871 outer->inner = region;
1872 }
1873 else
1874 {
1875 region->next = all_tm_regions;
1876 all_tm_regions = region;
1877 }
1878 region->inner = NULL;
1879 region->outer = outer;
1880
1881 region->transaction_stmt = stmt;
1882 region->original_transaction_was_outer = false;
1883 region->tm_state = NULL;
1884
1885 /* There are either one or two edges out of the block containing
1886 the GIMPLE_TRANSACTION, one to the actual region and one to the
1887 "over" label if the region contains an abort. The former will
1888 always be the one marked FALLTHRU. */
1889 region->entry_block = FALLTHRU_EDGE (bb)->dest;
1890
1891 region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1892 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1893
1894 return region;
1895 }
1896
1897 /* A subroutine of tm_region_init. Record all the exit and
1898 irrevocable blocks in BB into the region's exit_blocks and
1899 irr_blocks bitmaps. Returns the new region being scanned. */
1900
1901 static struct tm_region *
1902 tm_region_init_1 (struct tm_region *region, basic_block bb)
1903 {
1904 gimple_stmt_iterator gsi;
1905 gimple g;
1906
1907 if (!region
1908 || (!region->irr_blocks && !region->exit_blocks))
1909 return region;
1910
1911 /* Check to see if this is the end of a region by seeing if it
1912 contains a call to __builtin_tm_commit{,_eh}. Note that the
1913 outermost region for DECL_IS_TM_CLONE need not collect this. */
1914 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1915 {
1916 g = gsi_stmt (gsi);
1917 if (gimple_code (g) == GIMPLE_CALL)
1918 {
1919 tree fn = gimple_call_fndecl (g);
1920 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
1921 {
1922 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
1923 || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
1924 && region->exit_blocks)
1925 {
1926 bitmap_set_bit (region->exit_blocks, bb->index);
1927 region = region->outer;
1928 break;
1929 }
1930 if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
1931 bitmap_set_bit (region->irr_blocks, bb->index);
1932 }
1933 }
1934 }
1935 return region;
1936 }
1937
1938 /* Collect all of the transaction regions within the current function
1939 and record them in ALL_TM_REGIONS. The REGION parameter may specify
1940 an "outermost" region for use by tm clones. */
1941
1942 static void
1943 tm_region_init (struct tm_region *region)
1944 {
1945 gimple g;
1946 edge_iterator ei;
1947 edge e;
1948 basic_block bb;
1949 auto_vec<basic_block> queue;
1950 bitmap visited_blocks = BITMAP_ALLOC (NULL);
1951 struct tm_region *old_region;
1952 auto_vec<tm_region_p> bb_regions;
1953
1954 all_tm_regions = region;
1955 bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1956
1957 /* We could store this information in bb->aux, but we may get called
1958 through get_all_tm_blocks() from another pass that may be already
1959 using bb->aux. */
1960 bb_regions.safe_grow_cleared (last_basic_block_for_fn (cfun));
1961
1962 queue.safe_push (bb);
1963 bb_regions[bb->index] = region;
1964 do
1965 {
1966 bb = queue.pop ();
1967 region = bb_regions[bb->index];
1968 bb_regions[bb->index] = NULL;
1969
1970 /* Record exit and irrevocable blocks. */
1971 region = tm_region_init_1 (region, bb);
1972
1973 /* Check for the last statement in the block beginning a new region. */
1974 g = last_stmt (bb);
1975 old_region = region;
1976 if (g && gimple_code (g) == GIMPLE_TRANSACTION)
1977 region = tm_region_init_0 (region, bb, g);
1978
1979 /* Process subsequent blocks. */
1980 FOR_EACH_EDGE (e, ei, bb->succs)
1981 if (!bitmap_bit_p (visited_blocks, e->dest->index))
1982 {
1983 bitmap_set_bit (visited_blocks, e->dest->index);
1984 queue.safe_push (e->dest);
1985
1986 /* If the current block started a new region, make sure that only
1987 the entry block of the new region is associated with this region.
1988 Other successors are still part of the old region. */
1989 if (old_region != region && e->dest != region->entry_block)
1990 bb_regions[e->dest->index] = old_region;
1991 else
1992 bb_regions[e->dest->index] = region;
1993 }
1994 }
1995 while (!queue.is_empty ());
1996 BITMAP_FREE (visited_blocks);
1997 }
1998
1999 /* The "gate" function for all transactional memory expansion and optimization
2000 passes. We collect region information for each top-level transaction, and
2001 if we don't find any, we skip all of the TM passes. Each region will have
2002 all of the exit blocks recorded, and the originating statement. */
2003
2004 static bool
2005 gate_tm_init (void)
2006 {
2007 if (!flag_tm)
2008 return false;
2009
2010 calculate_dominance_info (CDI_DOMINATORS);
2011 bitmap_obstack_initialize (&tm_obstack);
2012
2013 /* If the function is a TM_CLONE, then the entire function is the region. */
2014 if (decl_is_tm_clone (current_function_decl))
2015 {
2016 struct tm_region *region = (struct tm_region *)
2017 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
2018 memset (region, 0, sizeof (*region));
2019 region->entry_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2020 /* For a clone, the entire function is the region. But even if
2021 we don't need to record any exit blocks, we may need to
2022 record irrevocable blocks. */
2023 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
2024
2025 tm_region_init (region);
2026 }
2027 else
2028 {
2029 tm_region_init (NULL);
2030
2031 /* If we didn't find any regions, cleanup and skip the whole tree
2032 of tm-related optimizations. */
2033 if (all_tm_regions == NULL)
2034 {
2035 bitmap_obstack_release (&tm_obstack);
2036 return false;
2037 }
2038 }
2039
2040 return true;
2041 }
2042
2043 namespace {
2044
2045 const pass_data pass_data_tm_init =
2046 {
2047 GIMPLE_PASS, /* type */
2048 "*tminit", /* name */
2049 OPTGROUP_NONE, /* optinfo_flags */
2050 true, /* has_gate */
2051 false, /* has_execute */
2052 TV_TRANS_MEM, /* tv_id */
2053 ( PROP_ssa | PROP_cfg ), /* properties_required */
2054 0, /* properties_provided */
2055 0, /* properties_destroyed */
2056 0, /* todo_flags_start */
2057 0, /* todo_flags_finish */
2058 };
2059
2060 class pass_tm_init : public gimple_opt_pass
2061 {
2062 public:
2063 pass_tm_init (gcc::context *ctxt)
2064 : gimple_opt_pass (pass_data_tm_init, ctxt)
2065 {}
2066
2067 /* opt_pass methods: */
2068 bool gate () { return gate_tm_init (); }
2069
2070 }; // class pass_tm_init
2071
2072 } // anon namespace
2073
2074 gimple_opt_pass *
2075 make_pass_tm_init (gcc::context *ctxt)
2076 {
2077 return new pass_tm_init (ctxt);
2078 }
2079 \f
2080 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
2081 represented by STATE. */
2082
2083 static inline void
2084 transaction_subcode_ior (struct tm_region *region, unsigned flags)
2085 {
2086 if (region && region->transaction_stmt)
2087 {
2088 flags |= gimple_transaction_subcode (region->transaction_stmt);
2089 gimple_transaction_set_subcode (region->transaction_stmt, flags);
2090 }
2091 }
2092
2093 /* Construct a memory load in a transactional context. Return the
2094 gimple statement performing the load, or NULL if there is no
2095 TM_LOAD builtin of the appropriate size to do the load.
2096
2097 LOC is the location to use for the new statement(s). */
2098
2099 static gimple
2100 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2101 {
2102 enum built_in_function code = END_BUILTINS;
2103 tree t, type = TREE_TYPE (rhs), decl;
2104 gimple gcall;
2105
2106 if (type == float_type_node)
2107 code = BUILT_IN_TM_LOAD_FLOAT;
2108 else if (type == double_type_node)
2109 code = BUILT_IN_TM_LOAD_DOUBLE;
2110 else if (type == long_double_type_node)
2111 code = BUILT_IN_TM_LOAD_LDOUBLE;
2112 else if (TYPE_SIZE_UNIT (type) != NULL
2113 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2114 {
2115 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2116 {
2117 case 1:
2118 code = BUILT_IN_TM_LOAD_1;
2119 break;
2120 case 2:
2121 code = BUILT_IN_TM_LOAD_2;
2122 break;
2123 case 4:
2124 code = BUILT_IN_TM_LOAD_4;
2125 break;
2126 case 8:
2127 code = BUILT_IN_TM_LOAD_8;
2128 break;
2129 }
2130 }
2131
2132 if (code == END_BUILTINS)
2133 {
2134 decl = targetm.vectorize.builtin_tm_load (type);
2135 if (!decl)
2136 return NULL;
2137 }
2138 else
2139 decl = builtin_decl_explicit (code);
2140
2141 t = gimplify_addr (gsi, rhs);
2142 gcall = gimple_build_call (decl, 1, t);
2143 gimple_set_location (gcall, loc);
2144
2145 t = TREE_TYPE (TREE_TYPE (decl));
2146 if (useless_type_conversion_p (type, t))
2147 {
2148 gimple_call_set_lhs (gcall, lhs);
2149 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2150 }
2151 else
2152 {
2153 gimple g;
2154 tree temp;
2155
2156 temp = create_tmp_reg (t, NULL);
2157 gimple_call_set_lhs (gcall, temp);
2158 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2159
2160 t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2161 g = gimple_build_assign (lhs, t);
2162 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2163 }
2164
2165 return gcall;
2166 }
2167
2168
2169 /* Similarly for storing TYPE in a transactional context. */
2170
2171 static gimple
2172 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2173 {
2174 enum built_in_function code = END_BUILTINS;
2175 tree t, fn, type = TREE_TYPE (rhs), simple_type;
2176 gimple gcall;
2177
2178 if (type == float_type_node)
2179 code = BUILT_IN_TM_STORE_FLOAT;
2180 else if (type == double_type_node)
2181 code = BUILT_IN_TM_STORE_DOUBLE;
2182 else if (type == long_double_type_node)
2183 code = BUILT_IN_TM_STORE_LDOUBLE;
2184 else if (TYPE_SIZE_UNIT (type) != NULL
2185 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2186 {
2187 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2188 {
2189 case 1:
2190 code = BUILT_IN_TM_STORE_1;
2191 break;
2192 case 2:
2193 code = BUILT_IN_TM_STORE_2;
2194 break;
2195 case 4:
2196 code = BUILT_IN_TM_STORE_4;
2197 break;
2198 case 8:
2199 code = BUILT_IN_TM_STORE_8;
2200 break;
2201 }
2202 }
2203
2204 if (code == END_BUILTINS)
2205 {
2206 fn = targetm.vectorize.builtin_tm_store (type);
2207 if (!fn)
2208 return NULL;
2209 }
2210 else
2211 fn = builtin_decl_explicit (code);
2212
2213 simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2214
2215 if (TREE_CODE (rhs) == CONSTRUCTOR)
2216 {
2217 /* Handle the easy initialization to zero. */
2218 if (!CONSTRUCTOR_ELTS (rhs))
2219 rhs = build_int_cst (simple_type, 0);
2220 else
2221 {
2222 /* ...otherwise punt to the caller and probably use
2223 BUILT_IN_TM_MEMMOVE, because we can't wrap a
2224 VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2225 valid gimple. */
2226 return NULL;
2227 }
2228 }
2229 else if (!useless_type_conversion_p (simple_type, type))
2230 {
2231 gimple g;
2232 tree temp;
2233
2234 temp = create_tmp_reg (simple_type, NULL);
2235 t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2236 g = gimple_build_assign (temp, t);
2237 gimple_set_location (g, loc);
2238 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2239
2240 rhs = temp;
2241 }
2242
2243 t = gimplify_addr (gsi, lhs);
2244 gcall = gimple_build_call (fn, 2, t, rhs);
2245 gimple_set_location (gcall, loc);
2246 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2247
2248 return gcall;
2249 }
2250
2251
2252 /* Expand an assignment statement into transactional builtins. */
2253
2254 static void
2255 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2256 {
2257 gimple stmt = gsi_stmt (*gsi);
2258 location_t loc = gimple_location (stmt);
2259 tree lhs = gimple_assign_lhs (stmt);
2260 tree rhs = gimple_assign_rhs1 (stmt);
2261 bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2262 bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2263 gimple gcall = NULL;
2264
2265 if (!load_p && !store_p)
2266 {
2267 /* Add thread private addresses to log if applicable. */
2268 requires_barrier (region->entry_block, lhs, stmt);
2269 gsi_next (gsi);
2270 return;
2271 }
2272
2273 // Remove original load/store statement.
2274 gsi_remove (gsi, true);
2275
2276 if (load_p && !store_p)
2277 {
2278 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2279 gcall = build_tm_load (loc, lhs, rhs, gsi);
2280 }
2281 else if (store_p && !load_p)
2282 {
2283 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2284 gcall = build_tm_store (loc, lhs, rhs, gsi);
2285 }
2286 if (!gcall)
2287 {
2288 tree lhs_addr, rhs_addr, tmp;
2289
2290 if (load_p)
2291 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2292 if (store_p)
2293 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2294
2295 /* ??? Figure out if there's any possible overlap between the LHS
2296 and the RHS and if not, use MEMCPY. */
2297
2298 if (load_p && is_gimple_reg (lhs))
2299 {
2300 tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2301 lhs_addr = build_fold_addr_expr (tmp);
2302 }
2303 else
2304 {
2305 tmp = NULL_TREE;
2306 lhs_addr = gimplify_addr (gsi, lhs);
2307 }
2308 rhs_addr = gimplify_addr (gsi, rhs);
2309 gcall = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_MEMMOVE),
2310 3, lhs_addr, rhs_addr,
2311 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2312 gimple_set_location (gcall, loc);
2313 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2314
2315 if (tmp)
2316 {
2317 gcall = gimple_build_assign (lhs, tmp);
2318 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2319 }
2320 }
2321
2322 /* Now that we have the load/store in its instrumented form, add
2323 thread private addresses to the log if applicable. */
2324 if (!store_p)
2325 requires_barrier (region->entry_block, lhs, gcall);
2326
2327 // The calls to build_tm_{store,load} above inserted the instrumented
2328 // call into the stream.
2329 // gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2330 }
2331
2332
2333 /* Expand a call statement as appropriate for a transaction. That is,
2334 either verify that the call does not affect the transaction, or
2335 redirect the call to a clone that handles transactions, or change
2336 the transaction state to IRREVOCABLE. Return true if the call is
2337 one of the builtins that end a transaction. */
2338
2339 static bool
2340 expand_call_tm (struct tm_region *region,
2341 gimple_stmt_iterator *gsi)
2342 {
2343 gimple stmt = gsi_stmt (*gsi);
2344 tree lhs = gimple_call_lhs (stmt);
2345 tree fn_decl;
2346 struct cgraph_node *node;
2347 bool retval = false;
2348
2349 fn_decl = gimple_call_fndecl (stmt);
2350
2351 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2352 || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2353 transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2354 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2355 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2356
2357 if (is_tm_pure_call (stmt))
2358 return false;
2359
2360 if (fn_decl)
2361 retval = is_tm_ending_fndecl (fn_decl);
2362 if (!retval)
2363 {
2364 /* Assume all non-const/pure calls write to memory, except
2365 transaction ending builtins. */
2366 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2367 }
2368
2369 /* For indirect calls, we already generated a call into the runtime. */
2370 if (!fn_decl)
2371 {
2372 tree fn = gimple_call_fn (stmt);
2373
2374 /* We are guaranteed never to go irrevocable on a safe or pure
2375 call, and the pure call was handled above. */
2376 if (is_tm_safe (fn))
2377 return false;
2378 else
2379 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2380
2381 return false;
2382 }
2383
2384 node = cgraph_get_node (fn_decl);
2385 /* All calls should have cgraph here. */
2386 if (!node)
2387 {
2388 /* We can have a nodeless call here if some pass after IPA-tm
2389 added uninstrumented calls. For example, loop distribution
2390 can transform certain loop constructs into __builtin_mem*
2391 calls. In this case, see if we have a suitable TM
2392 replacement and fill in the gaps. */
2393 gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL);
2394 enum built_in_function code = DECL_FUNCTION_CODE (fn_decl);
2395 gcc_assert (code == BUILT_IN_MEMCPY
2396 || code == BUILT_IN_MEMMOVE
2397 || code == BUILT_IN_MEMSET);
2398
2399 tree repl = find_tm_replacement_function (fn_decl);
2400 if (repl)
2401 {
2402 gimple_call_set_fndecl (stmt, repl);
2403 update_stmt (stmt);
2404 node = cgraph_create_node (repl);
2405 node->local.tm_may_enter_irr = false;
2406 return expand_call_tm (region, gsi);
2407 }
2408 gcc_unreachable ();
2409 }
2410 if (node->local.tm_may_enter_irr)
2411 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2412
2413 if (is_tm_abort (fn_decl))
2414 {
2415 transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2416 return true;
2417 }
2418
2419 /* Instrument the store if needed.
2420
2421 If the assignment happens inside the function call (return slot
2422 optimization), there is no instrumentation to be done, since
2423 the callee should have done the right thing. */
2424 if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2425 && !gimple_call_return_slot_opt_p (stmt))
2426 {
2427 tree tmp = create_tmp_reg (TREE_TYPE (lhs), NULL);
2428 location_t loc = gimple_location (stmt);
2429 edge fallthru_edge = NULL;
2430
2431 /* Remember if the call was going to throw. */
2432 if (stmt_can_throw_internal (stmt))
2433 {
2434 edge_iterator ei;
2435 edge e;
2436 basic_block bb = gimple_bb (stmt);
2437
2438 FOR_EACH_EDGE (e, ei, bb->succs)
2439 if (e->flags & EDGE_FALLTHRU)
2440 {
2441 fallthru_edge = e;
2442 break;
2443 }
2444 }
2445
2446 gimple_call_set_lhs (stmt, tmp);
2447 update_stmt (stmt);
2448 stmt = gimple_build_assign (lhs, tmp);
2449 gimple_set_location (stmt, loc);
2450
2451 /* We cannot throw in the middle of a BB. If the call was going
2452 to throw, place the instrumentation on the fallthru edge, so
2453 the call remains the last statement in the block. */
2454 if (fallthru_edge)
2455 {
2456 gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (stmt);
2457 gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2458 expand_assign_tm (region, &fallthru_gsi);
2459 gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2460 pending_edge_inserts_p = true;
2461 }
2462 else
2463 {
2464 gsi_insert_after (gsi, stmt, GSI_CONTINUE_LINKING);
2465 expand_assign_tm (region, gsi);
2466 }
2467
2468 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2469 }
2470
2471 return retval;
2472 }
2473
2474
2475 /* Expand all statements in BB as appropriate for being inside
2476 a transaction. */
2477
2478 static void
2479 expand_block_tm (struct tm_region *region, basic_block bb)
2480 {
2481 gimple_stmt_iterator gsi;
2482
2483 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2484 {
2485 gimple stmt = gsi_stmt (gsi);
2486 switch (gimple_code (stmt))
2487 {
2488 case GIMPLE_ASSIGN:
2489 /* Only memory reads/writes need to be instrumented. */
2490 if (gimple_assign_single_p (stmt)
2491 && !gimple_clobber_p (stmt))
2492 {
2493 expand_assign_tm (region, &gsi);
2494 continue;
2495 }
2496 break;
2497
2498 case GIMPLE_CALL:
2499 if (expand_call_tm (region, &gsi))
2500 return;
2501 break;
2502
2503 case GIMPLE_ASM:
2504 gcc_unreachable ();
2505
2506 default:
2507 break;
2508 }
2509 if (!gsi_end_p (gsi))
2510 gsi_next (&gsi);
2511 }
2512 }
2513
2514 /* Return the list of basic-blocks in REGION.
2515
2516 STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2517 following a TM_IRREVOCABLE call.
2518
2519 INCLUDE_UNINSTRUMENTED_P is TRUE if we should include the
2520 uninstrumented code path blocks in the list of basic blocks
2521 returned, false otherwise. */
2522
2523 static vec<basic_block>
2524 get_tm_region_blocks (basic_block entry_block,
2525 bitmap exit_blocks,
2526 bitmap irr_blocks,
2527 bitmap all_region_blocks,
2528 bool stop_at_irrevocable_p,
2529 bool include_uninstrumented_p = true)
2530 {
2531 vec<basic_block> bbs = vNULL;
2532 unsigned i;
2533 edge e;
2534 edge_iterator ei;
2535 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2536
2537 i = 0;
2538 bbs.safe_push (entry_block);
2539 bitmap_set_bit (visited_blocks, entry_block->index);
2540
2541 do
2542 {
2543 basic_block bb = bbs[i++];
2544
2545 if (exit_blocks &&
2546 bitmap_bit_p (exit_blocks, bb->index))
2547 continue;
2548
2549 if (stop_at_irrevocable_p
2550 && irr_blocks
2551 && bitmap_bit_p (irr_blocks, bb->index))
2552 continue;
2553
2554 FOR_EACH_EDGE (e, ei, bb->succs)
2555 if ((include_uninstrumented_p
2556 || !(e->flags & EDGE_TM_UNINSTRUMENTED))
2557 && !bitmap_bit_p (visited_blocks, e->dest->index))
2558 {
2559 bitmap_set_bit (visited_blocks, e->dest->index);
2560 bbs.safe_push (e->dest);
2561 }
2562 }
2563 while (i < bbs.length ());
2564
2565 if (all_region_blocks)
2566 bitmap_ior_into (all_region_blocks, visited_blocks);
2567
2568 BITMAP_FREE (visited_blocks);
2569 return bbs;
2570 }
2571
2572 // Callback data for collect_bb2reg.
2573 struct bb2reg_stuff
2574 {
2575 vec<tm_region_p> *bb2reg;
2576 bool include_uninstrumented_p;
2577 };
2578
2579 // Callback for expand_regions, collect innermost region data for each bb.
2580 static void *
2581 collect_bb2reg (struct tm_region *region, void *data)
2582 {
2583 struct bb2reg_stuff *stuff = (struct bb2reg_stuff *)data;
2584 vec<tm_region_p> *bb2reg = stuff->bb2reg;
2585 vec<basic_block> queue;
2586 unsigned int i;
2587 basic_block bb;
2588
2589 queue = get_tm_region_blocks (region->entry_block,
2590 region->exit_blocks,
2591 region->irr_blocks,
2592 NULL,
2593 /*stop_at_irr_p=*/true,
2594 stuff->include_uninstrumented_p);
2595
2596 // We expect expand_region to perform a post-order traversal of the region
2597 // tree. Therefore the last region seen for any bb is the innermost.
2598 FOR_EACH_VEC_ELT (queue, i, bb)
2599 (*bb2reg)[bb->index] = region;
2600
2601 queue.release ();
2602 return NULL;
2603 }
2604
2605 // Returns a vector, indexed by BB->INDEX, of the innermost tm_region to
2606 // which a basic block belongs. Note that we only consider the instrumented
2607 // code paths for the region; the uninstrumented code paths are ignored if
2608 // INCLUDE_UNINSTRUMENTED_P is false.
2609 //
2610 // ??? This data is very similar to the bb_regions array that is collected
2611 // during tm_region_init. Or, rather, this data is similar to what could
2612 // be used within tm_region_init. The actual computation in tm_region_init
2613 // begins and ends with bb_regions entirely full of NULL pointers, due to
2614 // the way in which pointers are swapped in and out of the array.
2615 //
2616 // ??? Our callers expect that blocks are not shared between transactions.
2617 // When the optimizers get too smart, and blocks are shared, then during
2618 // the tm_mark phase we'll add log entries to only one of the two transactions,
2619 // and in the tm_edge phase we'll add edges to the CFG that create invalid
2620 // cycles. The symptom being SSA defs that do not dominate their uses.
2621 // Note that the optimizers were locally correct with their transformation,
2622 // as we have no info within the program that suggests that the blocks cannot
2623 // be shared.
2624 //
2625 // ??? There is currently a hack inside tree-ssa-pre.c to work around the
2626 // only known instance of this block sharing.
2627
2628 static vec<tm_region_p>
2629 get_bb_regions_instrumented (bool traverse_clones,
2630 bool include_uninstrumented_p)
2631 {
2632 unsigned n = last_basic_block_for_fn (cfun);
2633 struct bb2reg_stuff stuff;
2634 vec<tm_region_p> ret;
2635
2636 ret.create (n);
2637 ret.safe_grow_cleared (n);
2638 stuff.bb2reg = &ret;
2639 stuff.include_uninstrumented_p = include_uninstrumented_p;
2640 expand_regions (all_tm_regions, collect_bb2reg, &stuff, traverse_clones);
2641
2642 return ret;
2643 }
2644
2645 /* Set the IN_TRANSACTION for all gimple statements that appear in a
2646 transaction. */
2647
2648 void
2649 compute_transaction_bits (void)
2650 {
2651 struct tm_region *region;
2652 vec<basic_block> queue;
2653 unsigned int i;
2654 basic_block bb;
2655
2656 /* ?? Perhaps we need to abstract gate_tm_init further, because we
2657 certainly don't need it to calculate CDI_DOMINATOR info. */
2658 gate_tm_init ();
2659
2660 FOR_EACH_BB_FN (bb, cfun)
2661 bb->flags &= ~BB_IN_TRANSACTION;
2662
2663 for (region = all_tm_regions; region; region = region->next)
2664 {
2665 queue = get_tm_region_blocks (region->entry_block,
2666 region->exit_blocks,
2667 region->irr_blocks,
2668 NULL,
2669 /*stop_at_irr_p=*/true);
2670 for (i = 0; queue.iterate (i, &bb); ++i)
2671 bb->flags |= BB_IN_TRANSACTION;
2672 queue.release ();
2673 }
2674
2675 if (all_tm_regions)
2676 bitmap_obstack_release (&tm_obstack);
2677 }
2678
2679 /* Replace the GIMPLE_TRANSACTION in this region with the corresponding
2680 call to BUILT_IN_TM_START. */
2681
2682 static void *
2683 expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2684 {
2685 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2686 basic_block transaction_bb = gimple_bb (region->transaction_stmt);
2687 tree tm_state = region->tm_state;
2688 tree tm_state_type = TREE_TYPE (tm_state);
2689 edge abort_edge = NULL;
2690 edge inst_edge = NULL;
2691 edge uninst_edge = NULL;
2692 edge fallthru_edge = NULL;
2693
2694 // Identify the various successors of the transaction start.
2695 {
2696 edge_iterator i;
2697 edge e;
2698 FOR_EACH_EDGE (e, i, transaction_bb->succs)
2699 {
2700 if (e->flags & EDGE_TM_ABORT)
2701 abort_edge = e;
2702 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
2703 uninst_edge = e;
2704 else
2705 inst_edge = e;
2706 if (e->flags & EDGE_FALLTHRU)
2707 fallthru_edge = e;
2708 }
2709 }
2710
2711 /* ??? There are plenty of bits here we're not computing. */
2712 {
2713 int subcode = gimple_transaction_subcode (region->transaction_stmt);
2714 int flags = 0;
2715 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2716 flags |= PR_DOESGOIRREVOCABLE;
2717 if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2718 flags |= PR_HASNOIRREVOCABLE;
2719 /* If the transaction does not have an abort in lexical scope and is not
2720 marked as an outer transaction, then it will never abort. */
2721 if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0)
2722 flags |= PR_HASNOABORT;
2723 if ((subcode & GTMA_HAVE_STORE) == 0)
2724 flags |= PR_READONLY;
2725 if (inst_edge && !(subcode & GTMA_HAS_NO_INSTRUMENTATION))
2726 flags |= PR_INSTRUMENTEDCODE;
2727 if (uninst_edge)
2728 flags |= PR_UNINSTRUMENTEDCODE;
2729 if (subcode & GTMA_IS_OUTER)
2730 region->original_transaction_was_outer = true;
2731 tree t = build_int_cst (tm_state_type, flags);
2732 gimple call = gimple_build_call (tm_start, 1, t);
2733 gimple_call_set_lhs (call, tm_state);
2734 gimple_set_location (call, gimple_location (region->transaction_stmt));
2735
2736 // Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START.
2737 gimple_stmt_iterator gsi = gsi_last_bb (transaction_bb);
2738 gcc_assert (gsi_stmt (gsi) == region->transaction_stmt);
2739 gsi_insert_before (&gsi, call, GSI_SAME_STMT);
2740 gsi_remove (&gsi, true);
2741 region->transaction_stmt = call;
2742 }
2743
2744 // Generate log saves.
2745 if (!tm_log_save_addresses.is_empty ())
2746 tm_log_emit_saves (region->entry_block, transaction_bb);
2747
2748 // In the beginning, we've no tests to perform on transaction restart.
2749 // Note that after this point, transaction_bb becomes the "most recent
2750 // block containing tests for the transaction".
2751 region->restart_block = region->entry_block;
2752
2753 // Generate log restores.
2754 if (!tm_log_save_addresses.is_empty ())
2755 {
2756 basic_block test_bb = create_empty_bb (transaction_bb);
2757 basic_block code_bb = create_empty_bb (test_bb);
2758 basic_block join_bb = create_empty_bb (code_bb);
2759 if (current_loops && transaction_bb->loop_father)
2760 {
2761 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2762 add_bb_to_loop (code_bb, transaction_bb->loop_father);
2763 add_bb_to_loop (join_bb, transaction_bb->loop_father);
2764 }
2765 if (region->restart_block == region->entry_block)
2766 region->restart_block = test_bb;
2767
2768 tree t1 = create_tmp_reg (tm_state_type, NULL);
2769 tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES);
2770 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2771 tm_state, t2);
2772 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2773 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2774
2775 t2 = build_int_cst (tm_state_type, 0);
2776 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2777 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2778
2779 tm_log_emit_restores (region->entry_block, code_bb);
2780
2781 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2782 edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE);
2783 edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE);
2784 redirect_edge_pred (fallthru_edge, join_bb);
2785
2786 join_bb->frequency = test_bb->frequency = transaction_bb->frequency;
2787 join_bb->count = test_bb->count = transaction_bb->count;
2788
2789 ei->probability = PROB_ALWAYS;
2790 et->probability = PROB_LIKELY;
2791 ef->probability = PROB_UNLIKELY;
2792 et->count = apply_probability (test_bb->count, et->probability);
2793 ef->count = apply_probability (test_bb->count, ef->probability);
2794
2795 code_bb->count = et->count;
2796 code_bb->frequency = EDGE_FREQUENCY (et);
2797
2798 transaction_bb = join_bb;
2799 }
2800
2801 // If we have an ABORT edge, create a test to perform the abort.
2802 if (abort_edge)
2803 {
2804 basic_block test_bb = create_empty_bb (transaction_bb);
2805 if (current_loops && transaction_bb->loop_father)
2806 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2807 if (region->restart_block == region->entry_block)
2808 region->restart_block = test_bb;
2809
2810 tree t1 = create_tmp_reg (tm_state_type, NULL);
2811 tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION);
2812 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2813 tm_state, t2);
2814 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2815 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2816
2817 t2 = build_int_cst (tm_state_type, 0);
2818 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2819 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2820
2821 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2822 test_bb->frequency = transaction_bb->frequency;
2823 test_bb->count = transaction_bb->count;
2824 ei->probability = PROB_ALWAYS;
2825
2826 // Not abort edge. If both are live, chose one at random as we'll
2827 // we'll be fixing that up below.
2828 redirect_edge_pred (fallthru_edge, test_bb);
2829 fallthru_edge->flags = EDGE_FALSE_VALUE;
2830 fallthru_edge->probability = PROB_VERY_LIKELY;
2831 fallthru_edge->count
2832 = apply_probability (test_bb->count, fallthru_edge->probability);
2833
2834 // Abort/over edge.
2835 redirect_edge_pred (abort_edge, test_bb);
2836 abort_edge->flags = EDGE_TRUE_VALUE;
2837 abort_edge->probability = PROB_VERY_UNLIKELY;
2838 abort_edge->count
2839 = apply_probability (test_bb->count, abort_edge->probability);
2840
2841 transaction_bb = test_bb;
2842 }
2843
2844 // If we have both instrumented and uninstrumented code paths, select one.
2845 if (inst_edge && uninst_edge)
2846 {
2847 basic_block test_bb = create_empty_bb (transaction_bb);
2848 if (current_loops && transaction_bb->loop_father)
2849 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2850 if (region->restart_block == region->entry_block)
2851 region->restart_block = test_bb;
2852
2853 tree t1 = create_tmp_reg (tm_state_type, NULL);
2854 tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE);
2855
2856 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2857 tm_state, t2);
2858 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2859 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2860
2861 t2 = build_int_cst (tm_state_type, 0);
2862 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2863 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2864
2865 // Create the edge into test_bb first, as we want to copy values
2866 // out of the fallthru edge.
2867 edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags);
2868 e->probability = fallthru_edge->probability;
2869 test_bb->count = e->count = fallthru_edge->count;
2870 test_bb->frequency = EDGE_FREQUENCY (e);
2871
2872 // Now update the edges to the inst/uninist implementations.
2873 // For now assume that the paths are equally likely. When using HTM,
2874 // we'll try the uninst path first and fallback to inst path if htm
2875 // buffers are exceeded. Without HTM we start with the inst path and
2876 // use the uninst path when falling back to serial mode.
2877 redirect_edge_pred (inst_edge, test_bb);
2878 inst_edge->flags = EDGE_FALSE_VALUE;
2879 inst_edge->probability = REG_BR_PROB_BASE / 2;
2880 inst_edge->count
2881 = apply_probability (test_bb->count, inst_edge->probability);
2882
2883 redirect_edge_pred (uninst_edge, test_bb);
2884 uninst_edge->flags = EDGE_TRUE_VALUE;
2885 uninst_edge->probability = REG_BR_PROB_BASE / 2;
2886 uninst_edge->count
2887 = apply_probability (test_bb->count, uninst_edge->probability);
2888 }
2889
2890 // If we have no previous special cases, and we have PHIs at the beginning
2891 // of the atomic region, this means we have a loop at the beginning of the
2892 // atomic region that shares the first block. This can cause problems with
2893 // the transaction restart abnormal edges to be added in the tm_edges pass.
2894 // Solve this by adding a new empty block to receive the abnormal edges.
2895 if (region->restart_block == region->entry_block
2896 && phi_nodes (region->entry_block))
2897 {
2898 basic_block empty_bb = create_empty_bb (transaction_bb);
2899 region->restart_block = empty_bb;
2900 if (current_loops && transaction_bb->loop_father)
2901 add_bb_to_loop (empty_bb, transaction_bb->loop_father);
2902
2903 redirect_edge_pred (fallthru_edge, empty_bb);
2904 make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU);
2905 }
2906
2907 return NULL;
2908 }
2909
2910 /* Generate the temporary to be used for the return value of
2911 BUILT_IN_TM_START. */
2912
2913 static void *
2914 generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2915 {
2916 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2917 region->tm_state =
2918 create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
2919
2920 // Reset the subcode, post optimizations. We'll fill this in
2921 // again as we process blocks.
2922 if (region->exit_blocks)
2923 {
2924 unsigned int subcode
2925 = gimple_transaction_subcode (region->transaction_stmt);
2926
2927 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2928 subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
2929 | GTMA_MAY_ENTER_IRREVOCABLE
2930 | GTMA_HAS_NO_INSTRUMENTATION);
2931 else
2932 subcode &= GTMA_DECLARATION_MASK;
2933 gimple_transaction_set_subcode (region->transaction_stmt, subcode);
2934 }
2935
2936 return NULL;
2937 }
2938
2939 // Propagate flags from inner transactions outwards.
2940 static void
2941 propagate_tm_flags_out (struct tm_region *region)
2942 {
2943 if (region == NULL)
2944 return;
2945 propagate_tm_flags_out (region->inner);
2946
2947 if (region->outer && region->outer->transaction_stmt)
2948 {
2949 unsigned s = gimple_transaction_subcode (region->transaction_stmt);
2950 s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE
2951 | GTMA_MAY_ENTER_IRREVOCABLE);
2952 s |= gimple_transaction_subcode (region->outer->transaction_stmt);
2953 gimple_transaction_set_subcode (region->outer->transaction_stmt, s);
2954 }
2955
2956 propagate_tm_flags_out (region->next);
2957 }
2958
2959 /* Entry point to the MARK phase of TM expansion. Here we replace
2960 transactional memory statements with calls to builtins, and function
2961 calls with their transactional clones (if available). But we don't
2962 yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
2963
2964 static unsigned int
2965 execute_tm_mark (void)
2966 {
2967 pending_edge_inserts_p = false;
2968
2969 expand_regions (all_tm_regions, generate_tm_state, NULL,
2970 /*traverse_clones=*/true);
2971
2972 tm_log_init ();
2973
2974 vec<tm_region_p> bb_regions
2975 = get_bb_regions_instrumented (/*traverse_clones=*/true,
2976 /*include_uninstrumented_p=*/false);
2977 struct tm_region *r;
2978 unsigned i;
2979
2980 // Expand memory operations into calls into the runtime.
2981 // This collects log entries as well.
2982 FOR_EACH_VEC_ELT (bb_regions, i, r)
2983 {
2984 if (r != NULL)
2985 {
2986 if (r->transaction_stmt)
2987 {
2988 unsigned sub = gimple_transaction_subcode (r->transaction_stmt);
2989
2990 /* If we're sure to go irrevocable, there won't be
2991 anything to expand, since the run-time will go
2992 irrevocable right away. */
2993 if (sub & GTMA_DOES_GO_IRREVOCABLE
2994 && sub & GTMA_MAY_ENTER_IRREVOCABLE)
2995 continue;
2996 }
2997 expand_block_tm (r, BASIC_BLOCK_FOR_FN (cfun, i));
2998 }
2999 }
3000
3001 bb_regions.release ();
3002
3003 // Propagate flags from inner transactions outwards.
3004 propagate_tm_flags_out (all_tm_regions);
3005
3006 // Expand GIMPLE_TRANSACTIONs into calls into the runtime.
3007 expand_regions (all_tm_regions, expand_transaction, NULL,
3008 /*traverse_clones=*/false);
3009
3010 tm_log_emit ();
3011 tm_log_delete ();
3012
3013 if (pending_edge_inserts_p)
3014 gsi_commit_edge_inserts ();
3015 free_dominance_info (CDI_DOMINATORS);
3016 return 0;
3017 }
3018
3019 namespace {
3020
3021 const pass_data pass_data_tm_mark =
3022 {
3023 GIMPLE_PASS, /* type */
3024 "tmmark", /* name */
3025 OPTGROUP_NONE, /* optinfo_flags */
3026 false, /* has_gate */
3027 true, /* has_execute */
3028 TV_TRANS_MEM, /* tv_id */
3029 ( PROP_ssa | PROP_cfg ), /* properties_required */
3030 0, /* properties_provided */
3031 0, /* properties_destroyed */
3032 0, /* todo_flags_start */
3033 ( TODO_update_ssa | TODO_verify_ssa ), /* todo_flags_finish */
3034 };
3035
3036 class pass_tm_mark : public gimple_opt_pass
3037 {
3038 public:
3039 pass_tm_mark (gcc::context *ctxt)
3040 : gimple_opt_pass (pass_data_tm_mark, ctxt)
3041 {}
3042
3043 /* opt_pass methods: */
3044 unsigned int execute () { return execute_tm_mark (); }
3045
3046 }; // class pass_tm_mark
3047
3048 } // anon namespace
3049
3050 gimple_opt_pass *
3051 make_pass_tm_mark (gcc::context *ctxt)
3052 {
3053 return new pass_tm_mark (ctxt);
3054 }
3055 \f
3056
3057 /* Create an abnormal edge from STMT at iter, splitting the block
3058 as necessary. Adjust *PNEXT as needed for the split block. */
3059
3060 static inline void
3061 split_bb_make_tm_edge (gimple stmt, basic_block dest_bb,
3062 gimple_stmt_iterator iter, gimple_stmt_iterator *pnext)
3063 {
3064 basic_block bb = gimple_bb (stmt);
3065 if (!gsi_one_before_end_p (iter))
3066 {
3067 edge e = split_block (bb, stmt);
3068 *pnext = gsi_start_bb (e->dest);
3069 }
3070 make_edge (bb, dest_bb, EDGE_ABNORMAL);
3071
3072 // Record the need for the edge for the benefit of the rtl passes.
3073 if (cfun->gimple_df->tm_restart == NULL)
3074 cfun->gimple_df->tm_restart = htab_create_ggc (31, struct_ptr_hash,
3075 struct_ptr_eq, ggc_free);
3076
3077 struct tm_restart_node dummy;
3078 dummy.stmt = stmt;
3079 dummy.label_or_list = gimple_block_label (dest_bb);
3080
3081 void **slot = htab_find_slot (cfun->gimple_df->tm_restart, &dummy, INSERT);
3082 struct tm_restart_node *n = (struct tm_restart_node *) *slot;
3083 if (n == NULL)
3084 {
3085 n = ggc_alloc_tm_restart_node ();
3086 *n = dummy;
3087 }
3088 else
3089 {
3090 tree old = n->label_or_list;
3091 if (TREE_CODE (old) == LABEL_DECL)
3092 old = tree_cons (NULL, old, NULL);
3093 n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
3094 }
3095 }
3096
3097 /* Split block BB as necessary for every builtin function we added, and
3098 wire up the abnormal back edges implied by the transaction restart. */
3099
3100 static void
3101 expand_block_edges (struct tm_region *const region, basic_block bb)
3102 {
3103 gimple_stmt_iterator gsi, next_gsi;
3104
3105 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi = next_gsi)
3106 {
3107 gimple stmt = gsi_stmt (gsi);
3108
3109 next_gsi = gsi;
3110 gsi_next (&next_gsi);
3111
3112 // ??? Shouldn't we split for any non-pure, non-irrevocable function?
3113 if (gimple_code (stmt) != GIMPLE_CALL
3114 || (gimple_call_flags (stmt) & ECF_TM_BUILTIN) == 0)
3115 continue;
3116
3117 if (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)) == BUILT_IN_TM_ABORT)
3118 {
3119 // If we have a ``_transaction_cancel [[outer]]'', there is only
3120 // one abnormal edge: to the transaction marked OUTER.
3121 // All compiler-generated instances of BUILT_IN_TM_ABORT have a
3122 // constant argument, which we can examine here. Users invoking
3123 // TM_ABORT directly get what they deserve.
3124 tree arg = gimple_call_arg (stmt, 0);
3125 if (TREE_CODE (arg) == INTEGER_CST
3126 && (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0
3127 && !decl_is_tm_clone (current_function_decl))
3128 {
3129 // Find the GTMA_IS_OUTER transaction.
3130 for (struct tm_region *o = region; o; o = o->outer)
3131 if (o->original_transaction_was_outer)
3132 {
3133 split_bb_make_tm_edge (stmt, o->restart_block,
3134 gsi, &next_gsi);
3135 break;
3136 }
3137
3138 // Otherwise, the front-end should have semantically checked
3139 // outer aborts, but in either case the target region is not
3140 // within this function.
3141 continue;
3142 }
3143
3144 // Non-outer, TM aborts have an abnormal edge to the inner-most
3145 // transaction, the one being aborted;
3146 split_bb_make_tm_edge (stmt, region->restart_block, gsi, &next_gsi);
3147 }
3148
3149 // All TM builtins have an abnormal edge to the outer-most transaction.
3150 // We never restart inner transactions. For tm clones, we know a-priori
3151 // that the outer-most transaction is outside the function.
3152 if (decl_is_tm_clone (current_function_decl))
3153 continue;
3154
3155 if (cfun->gimple_df->tm_restart == NULL)
3156 cfun->gimple_df->tm_restart
3157 = htab_create_ggc (31, struct_ptr_hash, struct_ptr_eq, ggc_free);
3158
3159 // All TM builtins have an abnormal edge to the outer-most transaction.
3160 // We never restart inner transactions.
3161 for (struct tm_region *o = region; o; o = o->outer)
3162 if (!o->outer)
3163 {
3164 split_bb_make_tm_edge (stmt, o->restart_block, gsi, &next_gsi);
3165 break;
3166 }
3167
3168 // Delete any tail-call annotation that may have been added.
3169 // The tail-call pass may have mis-identified the commit as being
3170 // a candidate because we had not yet added this restart edge.
3171 gimple_call_set_tail (stmt, false);
3172 }
3173 }
3174
3175 /* Entry point to the final expansion of transactional nodes. */
3176
3177 static unsigned int
3178 execute_tm_edges (void)
3179 {
3180 vec<tm_region_p> bb_regions
3181 = get_bb_regions_instrumented (/*traverse_clones=*/false,
3182 /*include_uninstrumented_p=*/true);
3183 struct tm_region *r;
3184 unsigned i;
3185
3186 FOR_EACH_VEC_ELT (bb_regions, i, r)
3187 if (r != NULL)
3188 expand_block_edges (r, BASIC_BLOCK_FOR_FN (cfun, i));
3189
3190 bb_regions.release ();
3191
3192 /* We've got to release the dominance info now, to indicate that it
3193 must be rebuilt completely. Otherwise we'll crash trying to update
3194 the SSA web in the TODO section following this pass. */
3195 free_dominance_info (CDI_DOMINATORS);
3196 bitmap_obstack_release (&tm_obstack);
3197 all_tm_regions = NULL;
3198
3199 return 0;
3200 }
3201
3202 namespace {
3203
3204 const pass_data pass_data_tm_edges =
3205 {
3206 GIMPLE_PASS, /* type */
3207 "tmedge", /* name */
3208 OPTGROUP_NONE, /* optinfo_flags */
3209 false, /* has_gate */
3210 true, /* has_execute */
3211 TV_TRANS_MEM, /* tv_id */
3212 ( PROP_ssa | PROP_cfg ), /* properties_required */
3213 0, /* properties_provided */
3214 0, /* properties_destroyed */
3215 0, /* todo_flags_start */
3216 ( TODO_update_ssa | TODO_verify_ssa ), /* todo_flags_finish */
3217 };
3218
3219 class pass_tm_edges : public gimple_opt_pass
3220 {
3221 public:
3222 pass_tm_edges (gcc::context *ctxt)
3223 : gimple_opt_pass (pass_data_tm_edges, ctxt)
3224 {}
3225
3226 /* opt_pass methods: */
3227 unsigned int execute () { return execute_tm_edges (); }
3228
3229 }; // class pass_tm_edges
3230
3231 } // anon namespace
3232
3233 gimple_opt_pass *
3234 make_pass_tm_edges (gcc::context *ctxt)
3235 {
3236 return new pass_tm_edges (ctxt);
3237 }
3238 \f
3239 /* Helper function for expand_regions. Expand REGION and recurse to
3240 the inner region. Call CALLBACK on each region. CALLBACK returns
3241 NULL to continue the traversal, otherwise a non-null value which
3242 this function will return as well. TRAVERSE_CLONES is true if we
3243 should traverse transactional clones. */
3244
3245 static void *
3246 expand_regions_1 (struct tm_region *region,
3247 void *(*callback)(struct tm_region *, void *),
3248 void *data,
3249 bool traverse_clones)
3250 {
3251 void *retval = NULL;
3252 if (region->exit_blocks
3253 || (traverse_clones && decl_is_tm_clone (current_function_decl)))
3254 {
3255 retval = callback (region, data);
3256 if (retval)
3257 return retval;
3258 }
3259 if (region->inner)
3260 {
3261 retval = expand_regions (region->inner, callback, data, traverse_clones);
3262 if (retval)
3263 return retval;
3264 }
3265 return retval;
3266 }
3267
3268 /* Traverse the regions enclosed and including REGION. Execute
3269 CALLBACK for each region, passing DATA. CALLBACK returns NULL to
3270 continue the traversal, otherwise a non-null value which this
3271 function will return as well. TRAVERSE_CLONES is true if we should
3272 traverse transactional clones. */
3273
3274 static void *
3275 expand_regions (struct tm_region *region,
3276 void *(*callback)(struct tm_region *, void *),
3277 void *data,
3278 bool traverse_clones)
3279 {
3280 void *retval = NULL;
3281 while (region)
3282 {
3283 retval = expand_regions_1 (region, callback, data, traverse_clones);
3284 if (retval)
3285 return retval;
3286 region = region->next;
3287 }
3288 return retval;
3289 }
3290
3291 \f
3292 /* A unique TM memory operation. */
3293 typedef struct tm_memop
3294 {
3295 /* Unique ID that all memory operations to the same location have. */
3296 unsigned int value_id;
3297 /* Address of load/store. */
3298 tree addr;
3299 } *tm_memop_t;
3300
3301 /* TM memory operation hashtable helpers. */
3302
3303 struct tm_memop_hasher : typed_free_remove <tm_memop>
3304 {
3305 typedef tm_memop value_type;
3306 typedef tm_memop compare_type;
3307 static inline hashval_t hash (const value_type *);
3308 static inline bool equal (const value_type *, const compare_type *);
3309 };
3310
3311 /* Htab support. Return a hash value for a `tm_memop'. */
3312 inline hashval_t
3313 tm_memop_hasher::hash (const value_type *mem)
3314 {
3315 tree addr = mem->addr;
3316 /* We drill down to the SSA_NAME/DECL for the hash, but equality is
3317 actually done with operand_equal_p (see tm_memop_eq). */
3318 if (TREE_CODE (addr) == ADDR_EXPR)
3319 addr = TREE_OPERAND (addr, 0);
3320 return iterative_hash_expr (addr, 0);
3321 }
3322
3323 /* Htab support. Return true if two tm_memop's are the same. */
3324 inline bool
3325 tm_memop_hasher::equal (const value_type *mem1, const compare_type *mem2)
3326 {
3327 return operand_equal_p (mem1->addr, mem2->addr, 0);
3328 }
3329
3330 /* Sets for solving data flow equations in the memory optimization pass. */
3331 struct tm_memopt_bitmaps
3332 {
3333 /* Stores available to this BB upon entry. Basically, stores that
3334 dominate this BB. */
3335 bitmap store_avail_in;
3336 /* Stores available at the end of this BB. */
3337 bitmap store_avail_out;
3338 bitmap store_antic_in;
3339 bitmap store_antic_out;
3340 /* Reads available to this BB upon entry. Basically, reads that
3341 dominate this BB. */
3342 bitmap read_avail_in;
3343 /* Reads available at the end of this BB. */
3344 bitmap read_avail_out;
3345 /* Reads performed in this BB. */
3346 bitmap read_local;
3347 /* Writes performed in this BB. */
3348 bitmap store_local;
3349
3350 /* Temporary storage for pass. */
3351 /* Is the current BB in the worklist? */
3352 bool avail_in_worklist_p;
3353 /* Have we visited this BB? */
3354 bool visited_p;
3355 };
3356
3357 static bitmap_obstack tm_memopt_obstack;
3358
3359 /* Unique counter for TM loads and stores. Loads and stores of the
3360 same address get the same ID. */
3361 static unsigned int tm_memopt_value_id;
3362 static hash_table <tm_memop_hasher> tm_memopt_value_numbers;
3363
3364 #define STORE_AVAIL_IN(BB) \
3365 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
3366 #define STORE_AVAIL_OUT(BB) \
3367 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
3368 #define STORE_ANTIC_IN(BB) \
3369 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
3370 #define STORE_ANTIC_OUT(BB) \
3371 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
3372 #define READ_AVAIL_IN(BB) \
3373 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
3374 #define READ_AVAIL_OUT(BB) \
3375 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
3376 #define READ_LOCAL(BB) \
3377 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
3378 #define STORE_LOCAL(BB) \
3379 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
3380 #define AVAIL_IN_WORKLIST_P(BB) \
3381 ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
3382 #define BB_VISITED_P(BB) \
3383 ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
3384
3385 /* Given a TM load/store in STMT, return the value number for the address
3386 it accesses. */
3387
3388 static unsigned int
3389 tm_memopt_value_number (gimple stmt, enum insert_option op)
3390 {
3391 struct tm_memop tmpmem, *mem;
3392 tm_memop **slot;
3393
3394 gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
3395 tmpmem.addr = gimple_call_arg (stmt, 0);
3396 slot = tm_memopt_value_numbers.find_slot (&tmpmem, op);
3397 if (*slot)
3398 mem = *slot;
3399 else if (op == INSERT)
3400 {
3401 mem = XNEW (struct tm_memop);
3402 *slot = mem;
3403 mem->value_id = tm_memopt_value_id++;
3404 mem->addr = tmpmem.addr;
3405 }
3406 else
3407 gcc_unreachable ();
3408 return mem->value_id;
3409 }
3410
3411 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
3412
3413 static void
3414 tm_memopt_accumulate_memops (basic_block bb)
3415 {
3416 gimple_stmt_iterator gsi;
3417
3418 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3419 {
3420 gimple stmt = gsi_stmt (gsi);
3421 bitmap bits;
3422 unsigned int loc;
3423
3424 if (is_tm_store (stmt))
3425 bits = STORE_LOCAL (bb);
3426 else if (is_tm_load (stmt))
3427 bits = READ_LOCAL (bb);
3428 else
3429 continue;
3430
3431 loc = tm_memopt_value_number (stmt, INSERT);
3432 bitmap_set_bit (bits, loc);
3433 if (dump_file)
3434 {
3435 fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
3436 is_tm_load (stmt) ? "LOAD" : "STORE", loc,
3437 gimple_bb (stmt)->index);
3438 print_generic_expr (dump_file, gimple_call_arg (stmt, 0), 0);
3439 fprintf (dump_file, "\n");
3440 }
3441 }
3442 }
3443
3444 /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
3445
3446 static void
3447 dump_tm_memopt_set (const char *set_name, bitmap bits)
3448 {
3449 unsigned i;
3450 bitmap_iterator bi;
3451 const char *comma = "";
3452
3453 fprintf (dump_file, "TM memopt: %s: [", set_name);
3454 EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
3455 {
3456 hash_table <tm_memop_hasher>::iterator hi;
3457 struct tm_memop *mem = NULL;
3458
3459 /* Yeah, yeah, yeah. Whatever. This is just for debugging. */
3460 FOR_EACH_HASH_TABLE_ELEMENT (tm_memopt_value_numbers, mem, tm_memop_t, hi)
3461 if (mem->value_id == i)
3462 break;
3463 gcc_assert (mem->value_id == i);
3464 fprintf (dump_file, "%s", comma);
3465 comma = ", ";
3466 print_generic_expr (dump_file, mem->addr, 0);
3467 }
3468 fprintf (dump_file, "]\n");
3469 }
3470
3471 /* Prettily dump all of the memopt sets in BLOCKS. */
3472
3473 static void
3474 dump_tm_memopt_sets (vec<basic_block> blocks)
3475 {
3476 size_t i;
3477 basic_block bb;
3478
3479 for (i = 0; blocks.iterate (i, &bb); ++i)
3480 {
3481 fprintf (dump_file, "------------BB %d---------\n", bb->index);
3482 dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
3483 dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
3484 dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
3485 dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
3486 dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
3487 dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
3488 }
3489 }
3490
3491 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
3492
3493 static void
3494 tm_memopt_compute_avin (basic_block bb)
3495 {
3496 edge e;
3497 unsigned ix;
3498
3499 /* Seed with the AVOUT of any predecessor. */
3500 for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
3501 {
3502 e = EDGE_PRED (bb, ix);
3503 /* Make sure we have already visited this BB, and is thus
3504 initialized.
3505
3506 If e->src->aux is NULL, this predecessor is actually on an
3507 enclosing transaction. We only care about the current
3508 transaction, so ignore it. */
3509 if (e->src->aux && BB_VISITED_P (e->src))
3510 {
3511 bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3512 bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3513 break;
3514 }
3515 }
3516
3517 for (; ix < EDGE_COUNT (bb->preds); ix++)
3518 {
3519 e = EDGE_PRED (bb, ix);
3520 if (e->src->aux && BB_VISITED_P (e->src))
3521 {
3522 bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3523 bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3524 }
3525 }
3526
3527 BB_VISITED_P (bb) = true;
3528 }
3529
3530 /* Compute the STORE_ANTIC_IN for the basic block BB. */
3531
3532 static void
3533 tm_memopt_compute_antin (basic_block bb)
3534 {
3535 edge e;
3536 unsigned ix;
3537
3538 /* Seed with the ANTIC_OUT of any successor. */
3539 for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
3540 {
3541 e = EDGE_SUCC (bb, ix);
3542 /* Make sure we have already visited this BB, and is thus
3543 initialized. */
3544 if (BB_VISITED_P (e->dest))
3545 {
3546 bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3547 break;
3548 }
3549 }
3550
3551 for (; ix < EDGE_COUNT (bb->succs); ix++)
3552 {
3553 e = EDGE_SUCC (bb, ix);
3554 if (BB_VISITED_P (e->dest))
3555 bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3556 }
3557
3558 BB_VISITED_P (bb) = true;
3559 }
3560
3561 /* Compute the AVAIL sets for every basic block in BLOCKS.
3562
3563 We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3564
3565 AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3566 AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
3567
3568 This is basically what we do in lcm's compute_available(), but here
3569 we calculate two sets of sets (one for STOREs and one for READs),
3570 and we work on a region instead of the entire CFG.
3571
3572 REGION is the TM region.
3573 BLOCKS are the basic blocks in the region. */
3574
3575 static void
3576 tm_memopt_compute_available (struct tm_region *region,
3577 vec<basic_block> blocks)
3578 {
3579 edge e;
3580 basic_block *worklist, *qin, *qout, *qend, bb;
3581 unsigned int qlen, i;
3582 edge_iterator ei;
3583 bool changed;
3584
3585 /* Allocate a worklist array/queue. Entries are only added to the
3586 list if they were not already on the list. So the size is
3587 bounded by the number of basic blocks in the region. */
3588 qlen = blocks.length () - 1;
3589 qin = qout = worklist =
3590 XNEWVEC (basic_block, qlen);
3591
3592 /* Put every block in the region on the worklist. */
3593 for (i = 0; blocks.iterate (i, &bb); ++i)
3594 {
3595 /* Seed AVAIL_OUT with the LOCAL set. */
3596 bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3597 bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3598
3599 AVAIL_IN_WORKLIST_P (bb) = true;
3600 /* No need to insert the entry block, since it has an AVIN of
3601 null, and an AVOUT that has already been seeded in. */
3602 if (bb != region->entry_block)
3603 *qin++ = bb;
3604 }
3605
3606 /* The entry block has been initialized with the local sets. */
3607 BB_VISITED_P (region->entry_block) = true;
3608
3609 qin = worklist;
3610 qend = &worklist[qlen];
3611
3612 /* Iterate until the worklist is empty. */
3613 while (qlen)
3614 {
3615 /* Take the first entry off the worklist. */
3616 bb = *qout++;
3617 qlen--;
3618
3619 if (qout >= qend)
3620 qout = worklist;
3621
3622 /* This block can be added to the worklist again if necessary. */
3623 AVAIL_IN_WORKLIST_P (bb) = false;
3624 tm_memopt_compute_avin (bb);
3625
3626 /* Note: We do not add the LOCAL sets here because we already
3627 seeded the AVAIL_OUT sets with them. */
3628 changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3629 changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3630 if (changed
3631 && (region->exit_blocks == NULL
3632 || !bitmap_bit_p (region->exit_blocks, bb->index)))
3633 /* If the out state of this block changed, then we need to add
3634 its successors to the worklist if they are not already in. */
3635 FOR_EACH_EDGE (e, ei, bb->succs)
3636 if (!AVAIL_IN_WORKLIST_P (e->dest)
3637 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
3638 {
3639 *qin++ = e->dest;
3640 AVAIL_IN_WORKLIST_P (e->dest) = true;
3641 qlen++;
3642
3643 if (qin >= qend)
3644 qin = worklist;
3645 }
3646 }
3647
3648 free (worklist);
3649
3650 if (dump_file)
3651 dump_tm_memopt_sets (blocks);
3652 }
3653
3654 /* Compute ANTIC sets for every basic block in BLOCKS.
3655
3656 We compute STORE_ANTIC_OUT as follows:
3657
3658 STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3659 STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
3660
3661 REGION is the TM region.
3662 BLOCKS are the basic blocks in the region. */
3663
3664 static void
3665 tm_memopt_compute_antic (struct tm_region *region,
3666 vec<basic_block> blocks)
3667 {
3668 edge e;
3669 basic_block *worklist, *qin, *qout, *qend, bb;
3670 unsigned int qlen;
3671 int i;
3672 edge_iterator ei;
3673
3674 /* Allocate a worklist array/queue. Entries are only added to the
3675 list if they were not already on the list. So the size is
3676 bounded by the number of basic blocks in the region. */
3677 qin = qout = worklist = XNEWVEC (basic_block, blocks.length ());
3678
3679 for (qlen = 0, i = blocks.length () - 1; i >= 0; --i)
3680 {
3681 bb = blocks[i];
3682
3683 /* Seed ANTIC_OUT with the LOCAL set. */
3684 bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3685
3686 /* Put every block in the region on the worklist. */
3687 AVAIL_IN_WORKLIST_P (bb) = true;
3688 /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3689 and their ANTIC_OUT has already been seeded in. */
3690 if (region->exit_blocks
3691 && !bitmap_bit_p (region->exit_blocks, bb->index))
3692 {
3693 qlen++;
3694 *qin++ = bb;
3695 }
3696 }
3697
3698 /* The exit blocks have been initialized with the local sets. */
3699 if (region->exit_blocks)
3700 {
3701 unsigned int i;
3702 bitmap_iterator bi;
3703 EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3704 BB_VISITED_P (BASIC_BLOCK_FOR_FN (cfun, i)) = true;
3705 }
3706
3707 qin = worklist;
3708 qend = &worklist[qlen];
3709
3710 /* Iterate until the worklist is empty. */
3711 while (qlen)
3712 {
3713 /* Take the first entry off the worklist. */
3714 bb = *qout++;
3715 qlen--;
3716
3717 if (qout >= qend)
3718 qout = worklist;
3719
3720 /* This block can be added to the worklist again if necessary. */
3721 AVAIL_IN_WORKLIST_P (bb) = false;
3722 tm_memopt_compute_antin (bb);
3723
3724 /* Note: We do not add the LOCAL sets here because we already
3725 seeded the ANTIC_OUT sets with them. */
3726 if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3727 && bb != region->entry_block)
3728 /* If the out state of this block changed, then we need to add
3729 its predecessors to the worklist if they are not already in. */
3730 FOR_EACH_EDGE (e, ei, bb->preds)
3731 if (!AVAIL_IN_WORKLIST_P (e->src))
3732 {
3733 *qin++ = e->src;
3734 AVAIL_IN_WORKLIST_P (e->src) = true;
3735 qlen++;
3736
3737 if (qin >= qend)
3738 qin = worklist;
3739 }
3740 }
3741
3742 free (worklist);
3743
3744 if (dump_file)
3745 dump_tm_memopt_sets (blocks);
3746 }
3747
3748 /* Offsets of load variants from TM_LOAD. For example,
3749 BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3750 See gtm-builtins.def. */
3751 #define TRANSFORM_RAR 1
3752 #define TRANSFORM_RAW 2
3753 #define TRANSFORM_RFW 3
3754 /* Offsets of store variants from TM_STORE. */
3755 #define TRANSFORM_WAR 1
3756 #define TRANSFORM_WAW 2
3757
3758 /* Inform about a load/store optimization. */
3759
3760 static void
3761 dump_tm_memopt_transform (gimple stmt)
3762 {
3763 if (dump_file)
3764 {
3765 fprintf (dump_file, "TM memopt: transforming: ");
3766 print_gimple_stmt (dump_file, stmt, 0, 0);
3767 fprintf (dump_file, "\n");
3768 }
3769 }
3770
3771 /* Perform a read/write optimization. Replaces the TM builtin in STMT
3772 by a builtin that is OFFSET entries down in the builtins table in
3773 gtm-builtins.def. */
3774
3775 static void
3776 tm_memopt_transform_stmt (unsigned int offset,
3777 gimple stmt,
3778 gimple_stmt_iterator *gsi)
3779 {
3780 tree fn = gimple_call_fn (stmt);
3781 gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3782 TREE_OPERAND (fn, 0)
3783 = builtin_decl_explicit ((enum built_in_function)
3784 (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3785 + offset));
3786 gimple_call_set_fn (stmt, fn);
3787 gsi_replace (gsi, stmt, true);
3788 dump_tm_memopt_transform (stmt);
3789 }
3790
3791 /* Perform the actual TM memory optimization transformations in the
3792 basic blocks in BLOCKS. */
3793
3794 static void
3795 tm_memopt_transform_blocks (vec<basic_block> blocks)
3796 {
3797 size_t i;
3798 basic_block bb;
3799 gimple_stmt_iterator gsi;
3800
3801 for (i = 0; blocks.iterate (i, &bb); ++i)
3802 {
3803 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3804 {
3805 gimple stmt = gsi_stmt (gsi);
3806 bitmap read_avail = READ_AVAIL_IN (bb);
3807 bitmap store_avail = STORE_AVAIL_IN (bb);
3808 bitmap store_antic = STORE_ANTIC_OUT (bb);
3809 unsigned int loc;
3810
3811 if (is_tm_simple_load (stmt))
3812 {
3813 loc = tm_memopt_value_number (stmt, NO_INSERT);
3814 if (store_avail && bitmap_bit_p (store_avail, loc))
3815 tm_memopt_transform_stmt (TRANSFORM_RAW, stmt, &gsi);
3816 else if (store_antic && bitmap_bit_p (store_antic, loc))
3817 {
3818 tm_memopt_transform_stmt (TRANSFORM_RFW, stmt, &gsi);
3819 bitmap_set_bit (store_avail, loc);
3820 }
3821 else if (read_avail && bitmap_bit_p (read_avail, loc))
3822 tm_memopt_transform_stmt (TRANSFORM_RAR, stmt, &gsi);
3823 else
3824 bitmap_set_bit (read_avail, loc);
3825 }
3826 else if (is_tm_simple_store (stmt))
3827 {
3828 loc = tm_memopt_value_number (stmt, NO_INSERT);
3829 if (store_avail && bitmap_bit_p (store_avail, loc))
3830 tm_memopt_transform_stmt (TRANSFORM_WAW, stmt, &gsi);
3831 else
3832 {
3833 if (read_avail && bitmap_bit_p (read_avail, loc))
3834 tm_memopt_transform_stmt (TRANSFORM_WAR, stmt, &gsi);
3835 bitmap_set_bit (store_avail, loc);
3836 }
3837 }
3838 }
3839 }
3840 }
3841
3842 /* Return a new set of bitmaps for a BB. */
3843
3844 static struct tm_memopt_bitmaps *
3845 tm_memopt_init_sets (void)
3846 {
3847 struct tm_memopt_bitmaps *b
3848 = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3849 b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3850 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3851 b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
3852 b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
3853 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3854 b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3855 b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3856 b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
3857 b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
3858 return b;
3859 }
3860
3861 /* Free sets computed for each BB. */
3862
3863 static void
3864 tm_memopt_free_sets (vec<basic_block> blocks)
3865 {
3866 size_t i;
3867 basic_block bb;
3868
3869 for (i = 0; blocks.iterate (i, &bb); ++i)
3870 bb->aux = NULL;
3871 }
3872
3873 /* Clear the visited bit for every basic block in BLOCKS. */
3874
3875 static void
3876 tm_memopt_clear_visited (vec<basic_block> blocks)
3877 {
3878 size_t i;
3879 basic_block bb;
3880
3881 for (i = 0; blocks.iterate (i, &bb); ++i)
3882 BB_VISITED_P (bb) = false;
3883 }
3884
3885 /* Replace TM load/stores with hints for the runtime. We handle
3886 things like read-after-write, write-after-read, read-after-read,
3887 read-for-write, etc. */
3888
3889 static unsigned int
3890 execute_tm_memopt (void)
3891 {
3892 struct tm_region *region;
3893 vec<basic_block> bbs;
3894
3895 tm_memopt_value_id = 0;
3896 tm_memopt_value_numbers.create (10);
3897
3898 for (region = all_tm_regions; region; region = region->next)
3899 {
3900 /* All the TM stores/loads in the current region. */
3901 size_t i;
3902 basic_block bb;
3903
3904 bitmap_obstack_initialize (&tm_memopt_obstack);
3905
3906 /* Save all BBs for the current region. */
3907 bbs = get_tm_region_blocks (region->entry_block,
3908 region->exit_blocks,
3909 region->irr_blocks,
3910 NULL,
3911 false);
3912
3913 /* Collect all the memory operations. */
3914 for (i = 0; bbs.iterate (i, &bb); ++i)
3915 {
3916 bb->aux = tm_memopt_init_sets ();
3917 tm_memopt_accumulate_memops (bb);
3918 }
3919
3920 /* Solve data flow equations and transform each block accordingly. */
3921 tm_memopt_clear_visited (bbs);
3922 tm_memopt_compute_available (region, bbs);
3923 tm_memopt_clear_visited (bbs);
3924 tm_memopt_compute_antic (region, bbs);
3925 tm_memopt_transform_blocks (bbs);
3926
3927 tm_memopt_free_sets (bbs);
3928 bbs.release ();
3929 bitmap_obstack_release (&tm_memopt_obstack);
3930 tm_memopt_value_numbers.empty ();
3931 }
3932
3933 tm_memopt_value_numbers.dispose ();
3934 return 0;
3935 }
3936
3937 static bool
3938 gate_tm_memopt (void)
3939 {
3940 return flag_tm && optimize > 0;
3941 }
3942
3943 namespace {
3944
3945 const pass_data pass_data_tm_memopt =
3946 {
3947 GIMPLE_PASS, /* type */
3948 "tmmemopt", /* name */
3949 OPTGROUP_NONE, /* optinfo_flags */
3950 true, /* has_gate */
3951 true, /* has_execute */
3952 TV_TRANS_MEM, /* tv_id */
3953 ( PROP_ssa | PROP_cfg ), /* properties_required */
3954 0, /* properties_provided */
3955 0, /* properties_destroyed */
3956 0, /* todo_flags_start */
3957 0, /* todo_flags_finish */
3958 };
3959
3960 class pass_tm_memopt : public gimple_opt_pass
3961 {
3962 public:
3963 pass_tm_memopt (gcc::context *ctxt)
3964 : gimple_opt_pass (pass_data_tm_memopt, ctxt)
3965 {}
3966
3967 /* opt_pass methods: */
3968 bool gate () { return gate_tm_memopt (); }
3969 unsigned int execute () { return execute_tm_memopt (); }
3970
3971 }; // class pass_tm_memopt
3972
3973 } // anon namespace
3974
3975 gimple_opt_pass *
3976 make_pass_tm_memopt (gcc::context *ctxt)
3977 {
3978 return new pass_tm_memopt (ctxt);
3979 }
3980
3981 \f
3982 /* Interprocedual analysis for the creation of transactional clones.
3983 The aim of this pass is to find which functions are referenced in
3984 a non-irrevocable transaction context, and for those over which
3985 we have control (or user directive), create a version of the
3986 function which uses only the transactional interface to reference
3987 protected memories. This analysis proceeds in several steps:
3988
3989 (1) Collect the set of all possible transactional clones:
3990
3991 (a) For all local public functions marked tm_callable, push
3992 it onto the tm_callee queue.
3993
3994 (b) For all local functions, scan for calls in transaction blocks.
3995 Push the caller and callee onto the tm_caller and tm_callee
3996 queues. Count the number of callers for each callee.
3997
3998 (c) For each local function on the callee list, assume we will
3999 create a transactional clone. Push *all* calls onto the
4000 callee queues; count the number of clone callers separately
4001 to the number of original callers.
4002
4003 (2) Propagate irrevocable status up the dominator tree:
4004
4005 (a) Any external function on the callee list that is not marked
4006 tm_callable is irrevocable. Push all callers of such onto
4007 a worklist.
4008
4009 (b) For each function on the worklist, mark each block that
4010 contains an irrevocable call. Use the AND operator to
4011 propagate that mark up the dominator tree.
4012
4013 (c) If we reach the entry block for a possible transactional
4014 clone, then the transactional clone is irrevocable, and
4015 we should not create the clone after all. Push all
4016 callers onto the worklist.
4017
4018 (d) Place tm_irrevocable calls at the beginning of the relevant
4019 blocks. Special case here is the entry block for the entire
4020 transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
4021 the library to begin the region in serial mode. Decrement
4022 the call count for all callees in the irrevocable region.
4023
4024 (3) Create the transactional clones:
4025
4026 Any tm_callee that still has a non-zero call count is cloned.
4027 */
4028
4029 /* This structure is stored in the AUX field of each cgraph_node. */
4030 struct tm_ipa_cg_data
4031 {
4032 /* The clone of the function that got created. */
4033 struct cgraph_node *clone;
4034
4035 /* The tm regions in the normal function. */
4036 struct tm_region *all_tm_regions;
4037
4038 /* The blocks of the normal/clone functions that contain irrevocable
4039 calls, or blocks that are post-dominated by irrevocable calls. */
4040 bitmap irrevocable_blocks_normal;
4041 bitmap irrevocable_blocks_clone;
4042
4043 /* The blocks of the normal function that are involved in transactions. */
4044 bitmap transaction_blocks_normal;
4045
4046 /* The number of callers to the transactional clone of this function
4047 from normal and transactional clones respectively. */
4048 unsigned tm_callers_normal;
4049 unsigned tm_callers_clone;
4050
4051 /* True if all calls to this function's transactional clone
4052 are irrevocable. Also automatically true if the function
4053 has no transactional clone. */
4054 bool is_irrevocable;
4055
4056 /* Flags indicating the presence of this function in various queues. */
4057 bool in_callee_queue;
4058 bool in_worklist;
4059
4060 /* Flags indicating the kind of scan desired while in the worklist. */
4061 bool want_irr_scan_normal;
4062 };
4063
4064 typedef vec<cgraph_node_ptr> cgraph_node_queue;
4065
4066 /* Return the ipa data associated with NODE, allocating zeroed memory
4067 if necessary. TRAVERSE_ALIASES is true if we must traverse aliases
4068 and set *NODE accordingly. */
4069
4070 static struct tm_ipa_cg_data *
4071 get_cg_data (struct cgraph_node **node, bool traverse_aliases)
4072 {
4073 struct tm_ipa_cg_data *d;
4074
4075 if (traverse_aliases && (*node)->alias)
4076 *node = cgraph_alias_target (*node);
4077
4078 d = (struct tm_ipa_cg_data *) (*node)->aux;
4079
4080 if (d == NULL)
4081 {
4082 d = (struct tm_ipa_cg_data *)
4083 obstack_alloc (&tm_obstack.obstack, sizeof (*d));
4084 (*node)->aux = (void *) d;
4085 memset (d, 0, sizeof (*d));
4086 }
4087
4088 return d;
4089 }
4090
4091 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
4092 it is already present. */
4093
4094 static void
4095 maybe_push_queue (struct cgraph_node *node,
4096 cgraph_node_queue *queue_p, bool *in_queue_p)
4097 {
4098 if (!*in_queue_p)
4099 {
4100 *in_queue_p = true;
4101 queue_p->safe_push (node);
4102 }
4103 }
4104
4105 /* Duplicate the basic blocks in QUEUE for use in the uninstrumented
4106 code path. QUEUE are the basic blocks inside the transaction
4107 represented in REGION.
4108
4109 Later in split_code_paths() we will add the conditional to choose
4110 between the two alternatives. */
4111
4112 static void
4113 ipa_uninstrument_transaction (struct tm_region *region,
4114 vec<basic_block> queue)
4115 {
4116 gimple transaction = region->transaction_stmt;
4117 basic_block transaction_bb = gimple_bb (transaction);
4118 int n = queue.length ();
4119 basic_block *new_bbs = XNEWVEC (basic_block, n);
4120
4121 copy_bbs (queue.address (), n, new_bbs, NULL, 0, NULL, NULL, transaction_bb,
4122 true);
4123 edge e = make_edge (transaction_bb, new_bbs[0], EDGE_TM_UNINSTRUMENTED);
4124 add_phi_args_after_copy (new_bbs, n, e);
4125
4126 // Now we will have a GIMPLE_ATOMIC with 3 possible edges out of it.
4127 // a) EDGE_FALLTHRU into the transaction
4128 // b) EDGE_TM_ABORT out of the transaction
4129 // c) EDGE_TM_UNINSTRUMENTED into the uninstrumented blocks.
4130
4131 free (new_bbs);
4132 }
4133
4134 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
4135 Queue all callees within block BB. */
4136
4137 static void
4138 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
4139 basic_block bb, bool for_clone)
4140 {
4141 gimple_stmt_iterator gsi;
4142
4143 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4144 {
4145 gimple stmt = gsi_stmt (gsi);
4146 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4147 {
4148 tree fndecl = gimple_call_fndecl (stmt);
4149 if (fndecl)
4150 {
4151 struct tm_ipa_cg_data *d;
4152 unsigned *pcallers;
4153 struct cgraph_node *node;
4154
4155 if (is_tm_ending_fndecl (fndecl))
4156 continue;
4157 if (find_tm_replacement_function (fndecl))
4158 continue;
4159
4160 node = cgraph_get_node (fndecl);
4161 gcc_assert (node != NULL);
4162 d = get_cg_data (&node, true);
4163
4164 pcallers = (for_clone ? &d->tm_callers_clone
4165 : &d->tm_callers_normal);
4166 *pcallers += 1;
4167
4168 maybe_push_queue (node, callees_p, &d->in_callee_queue);
4169 }
4170 }
4171 }
4172 }
4173
4174 /* Scan all calls in NODE that are within a transaction region,
4175 and push the resulting nodes into the callee queue. */
4176
4177 static void
4178 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
4179 cgraph_node_queue *callees_p)
4180 {
4181 struct tm_region *r;
4182
4183 d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
4184 d->all_tm_regions = all_tm_regions;
4185
4186 for (r = all_tm_regions; r; r = r->next)
4187 {
4188 vec<basic_block> bbs;
4189 basic_block bb;
4190 unsigned i;
4191
4192 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
4193 d->transaction_blocks_normal, false);
4194
4195 // Generate the uninstrumented code path for this transaction.
4196 ipa_uninstrument_transaction (r, bbs);
4197
4198 FOR_EACH_VEC_ELT (bbs, i, bb)
4199 ipa_tm_scan_calls_block (callees_p, bb, false);
4200
4201 bbs.release ();
4202 }
4203
4204 // ??? copy_bbs should maintain cgraph edges for the blocks as it is
4205 // copying them, rather than forcing us to do this externally.
4206 rebuild_cgraph_edges ();
4207
4208 // ??? In ipa_uninstrument_transaction we don't try to update dominators
4209 // because copy_bbs doesn't return a VEC like iterate_fix_dominators expects.
4210 // Instead, just release dominators here so update_ssa recomputes them.
4211 free_dominance_info (CDI_DOMINATORS);
4212
4213 // When building the uninstrumented code path, copy_bbs will have invoked
4214 // create_new_def_for starting an "ssa update context". There is only one
4215 // instance of this context, so resolve ssa updates before moving on to
4216 // the next function.
4217 update_ssa (TODO_update_ssa);
4218 }
4219
4220 /* Scan all calls in NODE as if this is the transactional clone,
4221 and push the destinations into the callee queue. */
4222
4223 static void
4224 ipa_tm_scan_calls_clone (struct cgraph_node *node,
4225 cgraph_node_queue *callees_p)
4226 {
4227 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
4228 basic_block bb;
4229
4230 FOR_EACH_BB_FN (bb, fn)
4231 ipa_tm_scan_calls_block (callees_p, bb, true);
4232 }
4233
4234 /* The function NODE has been detected to be irrevocable. Push all
4235 of its callers onto WORKLIST for the purpose of re-scanning them. */
4236
4237 static void
4238 ipa_tm_note_irrevocable (struct cgraph_node *node,
4239 cgraph_node_queue *worklist_p)
4240 {
4241 struct tm_ipa_cg_data *d = get_cg_data (&node, true);
4242 struct cgraph_edge *e;
4243
4244 d->is_irrevocable = true;
4245
4246 for (e = node->callers; e ; e = e->next_caller)
4247 {
4248 basic_block bb;
4249 struct cgraph_node *caller;
4250
4251 /* Don't examine recursive calls. */
4252 if (e->caller == node)
4253 continue;
4254 /* Even if we think we can go irrevocable, believe the user
4255 above all. */
4256 if (is_tm_safe_or_pure (e->caller->decl))
4257 continue;
4258
4259 caller = e->caller;
4260 d = get_cg_data (&caller, true);
4261
4262 /* Check if the callee is in a transactional region. If so,
4263 schedule the function for normal re-scan as well. */
4264 bb = gimple_bb (e->call_stmt);
4265 gcc_assert (bb != NULL);
4266 if (d->transaction_blocks_normal
4267 && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
4268 d->want_irr_scan_normal = true;
4269
4270 maybe_push_queue (caller, worklist_p, &d->in_worklist);
4271 }
4272 }
4273
4274 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
4275 within the block is irrevocable. */
4276
4277 static bool
4278 ipa_tm_scan_irr_block (basic_block bb)
4279 {
4280 gimple_stmt_iterator gsi;
4281 tree fn;
4282
4283 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4284 {
4285 gimple stmt = gsi_stmt (gsi);
4286 switch (gimple_code (stmt))
4287 {
4288 case GIMPLE_ASSIGN:
4289 if (gimple_assign_single_p (stmt))
4290 {
4291 tree lhs = gimple_assign_lhs (stmt);
4292 tree rhs = gimple_assign_rhs1 (stmt);
4293 if (volatile_var_p (lhs) || volatile_var_p (rhs))
4294 return true;
4295 }
4296 break;
4297
4298 case GIMPLE_CALL:
4299 {
4300 tree lhs = gimple_call_lhs (stmt);
4301 if (lhs && volatile_var_p (lhs))
4302 return true;
4303
4304 if (is_tm_pure_call (stmt))
4305 break;
4306
4307 fn = gimple_call_fn (stmt);
4308
4309 /* Functions with the attribute are by definition irrevocable. */
4310 if (is_tm_irrevocable (fn))
4311 return true;
4312
4313 /* For direct function calls, go ahead and check for replacement
4314 functions, or transitive irrevocable functions. For indirect
4315 functions, we'll ask the runtime. */
4316 if (TREE_CODE (fn) == ADDR_EXPR)
4317 {
4318 struct tm_ipa_cg_data *d;
4319 struct cgraph_node *node;
4320
4321 fn = TREE_OPERAND (fn, 0);
4322 if (is_tm_ending_fndecl (fn))
4323 break;
4324 if (find_tm_replacement_function (fn))
4325 break;
4326
4327 node = cgraph_get_node (fn);
4328 d = get_cg_data (&node, true);
4329
4330 /* Return true if irrevocable, but above all, believe
4331 the user. */
4332 if (d->is_irrevocable
4333 && !is_tm_safe_or_pure (fn))
4334 return true;
4335 }
4336 break;
4337 }
4338
4339 case GIMPLE_ASM:
4340 /* ??? The Approved Method of indicating that an inline
4341 assembly statement is not relevant to the transaction
4342 is to wrap it in a __tm_waiver block. This is not
4343 yet implemented, so we can't check for it. */
4344 if (is_tm_safe (current_function_decl))
4345 {
4346 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
4347 SET_EXPR_LOCATION (t, gimple_location (stmt));
4348 error ("%Kasm not allowed in %<transaction_safe%> function", t);
4349 }
4350 return true;
4351
4352 default:
4353 break;
4354 }
4355 }
4356
4357 return false;
4358 }
4359
4360 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
4361 for new irrevocable blocks, marking them in NEW_IRR. Don't bother
4362 scanning past OLD_IRR or EXIT_BLOCKS. */
4363
4364 static bool
4365 ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr,
4366 bitmap old_irr, bitmap exit_blocks)
4367 {
4368 bool any_new_irr = false;
4369 edge e;
4370 edge_iterator ei;
4371 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4372
4373 do
4374 {
4375 basic_block bb = pqueue->pop ();
4376
4377 /* Don't re-scan blocks we know already are irrevocable. */
4378 if (old_irr && bitmap_bit_p (old_irr, bb->index))
4379 continue;
4380
4381 if (ipa_tm_scan_irr_block (bb))
4382 {
4383 bitmap_set_bit (new_irr, bb->index);
4384 any_new_irr = true;
4385 }
4386 else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
4387 {
4388 FOR_EACH_EDGE (e, ei, bb->succs)
4389 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4390 {
4391 bitmap_set_bit (visited_blocks, e->dest->index);
4392 pqueue->safe_push (e->dest);
4393 }
4394 }
4395 }
4396 while (!pqueue->is_empty ());
4397
4398 BITMAP_FREE (visited_blocks);
4399
4400 return any_new_irr;
4401 }
4402
4403 /* Propagate the irrevocable property both up and down the dominator tree.
4404 BB is the current block being scanned; EXIT_BLOCKS are the edges of the
4405 TM regions; OLD_IRR are the results of a previous scan of the dominator
4406 tree which has been fully propagated; NEW_IRR is the set of new blocks
4407 which are gaining the irrevocable property during the current scan. */
4408
4409 static void
4410 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
4411 bitmap old_irr, bitmap exit_blocks)
4412 {
4413 vec<basic_block> bbs;
4414 bitmap all_region_blocks;
4415
4416 /* If this block is in the old set, no need to rescan. */
4417 if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
4418 return;
4419
4420 all_region_blocks = BITMAP_ALLOC (&tm_obstack);
4421 bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
4422 all_region_blocks, false);
4423 do
4424 {
4425 basic_block bb = bbs.pop ();
4426 bool this_irr = bitmap_bit_p (new_irr, bb->index);
4427 bool all_son_irr = false;
4428 edge_iterator ei;
4429 edge e;
4430
4431 /* Propagate up. If my children are, I am too, but we must have
4432 at least one child that is. */
4433 if (!this_irr)
4434 {
4435 FOR_EACH_EDGE (e, ei, bb->succs)
4436 {
4437 if (!bitmap_bit_p (new_irr, e->dest->index))
4438 {
4439 all_son_irr = false;
4440 break;
4441 }
4442 else
4443 all_son_irr = true;
4444 }
4445 if (all_son_irr)
4446 {
4447 /* Add block to new_irr if it hasn't already been processed. */
4448 if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
4449 {
4450 bitmap_set_bit (new_irr, bb->index);
4451 this_irr = true;
4452 }
4453 }
4454 }
4455
4456 /* Propagate down to everyone we immediately dominate. */
4457 if (this_irr)
4458 {
4459 basic_block son;
4460 for (son = first_dom_son (CDI_DOMINATORS, bb);
4461 son;
4462 son = next_dom_son (CDI_DOMINATORS, son))
4463 {
4464 /* Make sure block is actually in a TM region, and it
4465 isn't already in old_irr. */
4466 if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
4467 && bitmap_bit_p (all_region_blocks, son->index))
4468 bitmap_set_bit (new_irr, son->index);
4469 }
4470 }
4471 }
4472 while (!bbs.is_empty ());
4473
4474 BITMAP_FREE (all_region_blocks);
4475 bbs.release ();
4476 }
4477
4478 static void
4479 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
4480 {
4481 gimple_stmt_iterator gsi;
4482
4483 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4484 {
4485 gimple stmt = gsi_stmt (gsi);
4486 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4487 {
4488 tree fndecl = gimple_call_fndecl (stmt);
4489 if (fndecl)
4490 {
4491 struct tm_ipa_cg_data *d;
4492 unsigned *pcallers;
4493 struct cgraph_node *tnode;
4494
4495 if (is_tm_ending_fndecl (fndecl))
4496 continue;
4497 if (find_tm_replacement_function (fndecl))
4498 continue;
4499
4500 tnode = cgraph_get_node (fndecl);
4501 d = get_cg_data (&tnode, true);
4502
4503 pcallers = (for_clone ? &d->tm_callers_clone
4504 : &d->tm_callers_normal);
4505
4506 gcc_assert (*pcallers > 0);
4507 *pcallers -= 1;
4508 }
4509 }
4510 }
4511 }
4512
4513 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
4514 as well as other irrevocable actions such as inline assembly. Mark all
4515 such blocks as irrevocable and decrement the number of calls to
4516 transactional clones. Return true if, for the transactional clone, the
4517 entire function is irrevocable. */
4518
4519 static bool
4520 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
4521 {
4522 struct tm_ipa_cg_data *d;
4523 bitmap new_irr, old_irr;
4524 bool ret = false;
4525
4526 /* Builtin operators (operator new, and such). */
4527 if (DECL_STRUCT_FUNCTION (node->decl) == NULL
4528 || DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL)
4529 return false;
4530
4531 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4532 calculate_dominance_info (CDI_DOMINATORS);
4533
4534 d = get_cg_data (&node, true);
4535 auto_vec<basic_block, 10> queue;
4536 new_irr = BITMAP_ALLOC (&tm_obstack);
4537
4538 /* Scan each tm region, propagating irrevocable status through the tree. */
4539 if (for_clone)
4540 {
4541 old_irr = d->irrevocable_blocks_clone;
4542 queue.quick_push (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4543 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
4544 {
4545 ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4546 new_irr,
4547 old_irr, NULL);
4548 ret = bitmap_bit_p (new_irr,
4549 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->index);
4550 }
4551 }
4552 else
4553 {
4554 struct tm_region *region;
4555
4556 old_irr = d->irrevocable_blocks_normal;
4557 for (region = d->all_tm_regions; region; region = region->next)
4558 {
4559 queue.quick_push (region->entry_block);
4560 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
4561 region->exit_blocks))
4562 ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
4563 region->exit_blocks);
4564 }
4565 }
4566
4567 /* If we found any new irrevocable blocks, reduce the call count for
4568 transactional clones within the irrevocable blocks. Save the new
4569 set of irrevocable blocks for next time. */
4570 if (!bitmap_empty_p (new_irr))
4571 {
4572 bitmap_iterator bmi;
4573 unsigned i;
4574
4575 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4576 ipa_tm_decrement_clone_counts (BASIC_BLOCK_FOR_FN (cfun, i),
4577 for_clone);
4578
4579 if (old_irr)
4580 {
4581 bitmap_ior_into (old_irr, new_irr);
4582 BITMAP_FREE (new_irr);
4583 }
4584 else if (for_clone)
4585 d->irrevocable_blocks_clone = new_irr;
4586 else
4587 d->irrevocable_blocks_normal = new_irr;
4588
4589 if (dump_file && new_irr)
4590 {
4591 const char *dname;
4592 bitmap_iterator bmi;
4593 unsigned i;
4594
4595 dname = lang_hooks.decl_printable_name (current_function_decl, 2);
4596 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4597 fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
4598 }
4599 }
4600 else
4601 BITMAP_FREE (new_irr);
4602
4603 pop_cfun ();
4604
4605 return ret;
4606 }
4607
4608 /* Return true if, for the transactional clone of NODE, any call
4609 may enter irrevocable mode. */
4610
4611 static bool
4612 ipa_tm_mayenterirr_function (struct cgraph_node *node)
4613 {
4614 struct tm_ipa_cg_data *d;
4615 tree decl;
4616 unsigned flags;
4617
4618 d = get_cg_data (&node, true);
4619 decl = node->decl;
4620 flags = flags_from_decl_or_type (decl);
4621
4622 /* Handle some TM builtins. Ordinarily these aren't actually generated
4623 at this point, but handling these functions when written in by the
4624 user makes it easier to build unit tests. */
4625 if (flags & ECF_TM_BUILTIN)
4626 return false;
4627
4628 /* Filter out all functions that are marked. */
4629 if (flags & ECF_TM_PURE)
4630 return false;
4631 if (is_tm_safe (decl))
4632 return false;
4633 if (is_tm_irrevocable (decl))
4634 return true;
4635 if (is_tm_callable (decl))
4636 return true;
4637 if (find_tm_replacement_function (decl))
4638 return true;
4639
4640 /* If we aren't seeing the final version of the function we don't
4641 know what it will contain at runtime. */
4642 if (cgraph_function_body_availability (node) < AVAIL_AVAILABLE)
4643 return true;
4644
4645 /* If the function must go irrevocable, then of course true. */
4646 if (d->is_irrevocable)
4647 return true;
4648
4649 /* If there are any blocks marked irrevocable, then the function
4650 as a whole may enter irrevocable. */
4651 if (d->irrevocable_blocks_clone)
4652 return true;
4653
4654 /* We may have previously marked this function as tm_may_enter_irr;
4655 see pass_diagnose_tm_blocks. */
4656 if (node->local.tm_may_enter_irr)
4657 return true;
4658
4659 /* Recurse on the main body for aliases. In general, this will
4660 result in one of the bits above being set so that we will not
4661 have to recurse next time. */
4662 if (node->alias)
4663 return ipa_tm_mayenterirr_function (cgraph_get_node (node->thunk.alias));
4664
4665 /* What remains is unmarked local functions without items that force
4666 the function to go irrevocable. */
4667 return false;
4668 }
4669
4670 /* Diagnose calls from transaction_safe functions to unmarked
4671 functions that are determined to not be safe. */
4672
4673 static void
4674 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4675 {
4676 struct cgraph_edge *e;
4677
4678 for (e = node->callees; e ; e = e->next_callee)
4679 if (!is_tm_callable (e->callee->decl)
4680 && e->callee->local.tm_may_enter_irr)
4681 error_at (gimple_location (e->call_stmt),
4682 "unsafe function call %qD within "
4683 "%<transaction_safe%> function", e->callee->decl);
4684 }
4685
4686 /* Diagnose call from atomic transactions to unmarked functions
4687 that are determined to not be safe. */
4688
4689 static void
4690 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4691 struct tm_region *all_tm_regions)
4692 {
4693 struct tm_region *r;
4694
4695 for (r = all_tm_regions; r ; r = r->next)
4696 if (gimple_transaction_subcode (r->transaction_stmt) & GTMA_IS_RELAXED)
4697 {
4698 /* Atomic transactions can be nested inside relaxed. */
4699 if (r->inner)
4700 ipa_tm_diagnose_transaction (node, r->inner);
4701 }
4702 else
4703 {
4704 vec<basic_block> bbs;
4705 gimple_stmt_iterator gsi;
4706 basic_block bb;
4707 size_t i;
4708
4709 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4710 r->irr_blocks, NULL, false);
4711
4712 for (i = 0; bbs.iterate (i, &bb); ++i)
4713 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4714 {
4715 gimple stmt = gsi_stmt (gsi);
4716 tree fndecl;
4717
4718 if (gimple_code (stmt) == GIMPLE_ASM)
4719 {
4720 error_at (gimple_location (stmt),
4721 "asm not allowed in atomic transaction");
4722 continue;
4723 }
4724
4725 if (!is_gimple_call (stmt))
4726 continue;
4727 fndecl = gimple_call_fndecl (stmt);
4728
4729 /* Indirect function calls have been diagnosed already. */
4730 if (!fndecl)
4731 continue;
4732
4733 /* Stop at the end of the transaction. */
4734 if (is_tm_ending_fndecl (fndecl))
4735 {
4736 if (bitmap_bit_p (r->exit_blocks, bb->index))
4737 break;
4738 continue;
4739 }
4740
4741 /* Marked functions have been diagnosed already. */
4742 if (is_tm_pure_call (stmt))
4743 continue;
4744 if (is_tm_callable (fndecl))
4745 continue;
4746
4747 if (cgraph_local_info (fndecl)->tm_may_enter_irr)
4748 error_at (gimple_location (stmt),
4749 "unsafe function call %qD within "
4750 "atomic transaction", fndecl);
4751 }
4752
4753 bbs.release ();
4754 }
4755 }
4756
4757 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4758 OLD_DECL. The returned value is a freshly malloced pointer that
4759 should be freed by the caller. */
4760
4761 static tree
4762 tm_mangle (tree old_asm_id)
4763 {
4764 const char *old_asm_name;
4765 char *tm_name;
4766 void *alloc = NULL;
4767 struct demangle_component *dc;
4768 tree new_asm_id;
4769
4770 /* Determine if the symbol is already a valid C++ mangled name. Do this
4771 even for C, which might be interfacing with C++ code via appropriately
4772 ugly identifiers. */
4773 /* ??? We could probably do just as well checking for "_Z" and be done. */
4774 old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4775 dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4776
4777 if (dc == NULL)
4778 {
4779 char length[8];
4780
4781 do_unencoded:
4782 sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4783 tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4784 }
4785 else
4786 {
4787 old_asm_name += 2; /* Skip _Z */
4788
4789 switch (dc->type)
4790 {
4791 case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4792 case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4793 /* Don't play silly games, you! */
4794 goto do_unencoded;
4795
4796 case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4797 /* I'd really like to know if we can ever be passed one of
4798 these from the C++ front end. The Logical Thing would
4799 seem that hidden-alias should be outer-most, so that we
4800 get hidden-alias of a transaction-clone and not vice-versa. */
4801 old_asm_name += 2;
4802 break;
4803
4804 default:
4805 break;
4806 }
4807
4808 tm_name = concat ("_ZGTt", old_asm_name, NULL);
4809 }
4810 free (alloc);
4811
4812 new_asm_id = get_identifier (tm_name);
4813 free (tm_name);
4814
4815 return new_asm_id;
4816 }
4817
4818 static inline void
4819 ipa_tm_mark_force_output_node (struct cgraph_node *node)
4820 {
4821 cgraph_mark_force_output_node (node);
4822 node->analyzed = true;
4823 }
4824
4825 static inline void
4826 ipa_tm_mark_forced_by_abi_node (struct cgraph_node *node)
4827 {
4828 node->forced_by_abi = true;
4829 node->analyzed = true;
4830 }
4831
4832 /* Callback data for ipa_tm_create_version_alias. */
4833 struct create_version_alias_info
4834 {
4835 struct cgraph_node *old_node;
4836 tree new_decl;
4837 };
4838
4839 /* A subroutine of ipa_tm_create_version, called via
4840 cgraph_for_node_and_aliases. Create new tm clones for each of
4841 the existing aliases. */
4842 static bool
4843 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4844 {
4845 struct create_version_alias_info *info
4846 = (struct create_version_alias_info *)data;
4847 tree old_decl, new_decl, tm_name;
4848 struct cgraph_node *new_node;
4849
4850 if (!node->cpp_implicit_alias)
4851 return false;
4852
4853 old_decl = node->decl;
4854 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4855 new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4856 TREE_CODE (old_decl), tm_name,
4857 TREE_TYPE (old_decl));
4858
4859 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4860 SET_DECL_RTL (new_decl, NULL);
4861
4862 /* Based loosely on C++'s make_alias_for(). */
4863 TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4864 DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
4865 DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
4866 TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4867 DECL_EXTERNAL (new_decl) = 0;
4868 DECL_ARTIFICIAL (new_decl) = 1;
4869 TREE_ADDRESSABLE (new_decl) = 1;
4870 TREE_USED (new_decl) = 1;
4871 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4872
4873 /* Perform the same remapping to the comdat group. */
4874 if (DECL_ONE_ONLY (new_decl))
4875 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4876
4877 new_node = cgraph_same_body_alias (NULL, new_decl, info->new_decl);
4878 new_node->tm_clone = true;
4879 new_node->externally_visible = info->old_node->externally_visible;
4880 /* ?? Do not traverse aliases here. */
4881 get_cg_data (&node, false)->clone = new_node;
4882
4883 record_tm_clone_pair (old_decl, new_decl);
4884
4885 if (info->old_node->force_output
4886 || ipa_ref_list_first_referring (&info->old_node->ref_list))
4887 ipa_tm_mark_force_output_node (new_node);
4888 if (info->old_node->forced_by_abi)
4889 ipa_tm_mark_forced_by_abi_node (new_node);
4890 return false;
4891 }
4892
4893 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4894 appropriate for the transactional clone. */
4895
4896 static void
4897 ipa_tm_create_version (struct cgraph_node *old_node)
4898 {
4899 tree new_decl, old_decl, tm_name;
4900 struct cgraph_node *new_node;
4901
4902 old_decl = old_node->decl;
4903 new_decl = copy_node (old_decl);
4904
4905 /* DECL_ASSEMBLER_NAME needs to be set before we call
4906 cgraph_copy_node_for_versioning below, because cgraph_node will
4907 fill the assembler_name_hash. */
4908 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4909 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4910 SET_DECL_RTL (new_decl, NULL);
4911 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4912
4913 /* Perform the same remapping to the comdat group. */
4914 if (DECL_ONE_ONLY (new_decl))
4915 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4916
4917 new_node = cgraph_copy_node_for_versioning (old_node, new_decl, vNULL, NULL);
4918 new_node->local.local = false;
4919 new_node->externally_visible = old_node->externally_visible;
4920 new_node->lowered = true;
4921 new_node->tm_clone = 1;
4922 get_cg_data (&old_node, true)->clone = new_node;
4923
4924 if (cgraph_function_body_availability (old_node) >= AVAIL_OVERWRITABLE)
4925 {
4926 /* Remap extern inline to static inline. */
4927 /* ??? Is it worth trying to use make_decl_one_only? */
4928 if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
4929 {
4930 DECL_EXTERNAL (new_decl) = 0;
4931 TREE_PUBLIC (new_decl) = 0;
4932 DECL_WEAK (new_decl) = 0;
4933 }
4934
4935 tree_function_versioning (old_decl, new_decl,
4936 NULL, false, NULL,
4937 false, NULL, NULL);
4938 }
4939
4940 record_tm_clone_pair (old_decl, new_decl);
4941
4942 cgraph_call_function_insertion_hooks (new_node);
4943 if (old_node->force_output
4944 || ipa_ref_list_first_referring (&old_node->ref_list))
4945 ipa_tm_mark_force_output_node (new_node);
4946 if (old_node->forced_by_abi)
4947 ipa_tm_mark_forced_by_abi_node (new_node);
4948
4949 /* Do the same thing, but for any aliases of the original node. */
4950 {
4951 struct create_version_alias_info data;
4952 data.old_node = old_node;
4953 data.new_decl = new_decl;
4954 cgraph_for_node_and_aliases (old_node, ipa_tm_create_version_alias,
4955 &data, true);
4956 }
4957 }
4958
4959 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
4960
4961 static void
4962 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
4963 basic_block bb)
4964 {
4965 gimple_stmt_iterator gsi;
4966 gimple g;
4967
4968 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4969
4970 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
4971 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
4972
4973 split_block_after_labels (bb);
4974 gsi = gsi_after_labels (bb);
4975 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
4976
4977 cgraph_create_edge (node,
4978 cgraph_get_create_node
4979 (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
4980 g, 0,
4981 compute_call_stmt_bb_frequency (node->decl,
4982 gimple_bb (g)));
4983 }
4984
4985 /* Construct a call to TM_GETTMCLONE and insert it before GSI. */
4986
4987 static bool
4988 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
4989 struct tm_region *region,
4990 gimple_stmt_iterator *gsi, gimple stmt)
4991 {
4992 tree gettm_fn, ret, old_fn, callfn;
4993 gimple g, g2;
4994 bool safe;
4995
4996 old_fn = gimple_call_fn (stmt);
4997
4998 if (TREE_CODE (old_fn) == ADDR_EXPR)
4999 {
5000 tree fndecl = TREE_OPERAND (old_fn, 0);
5001 tree clone = get_tm_clone_pair (fndecl);
5002
5003 /* By transforming the call into a TM_GETTMCLONE, we are
5004 technically taking the address of the original function and
5005 its clone. Explain this so inlining will know this function
5006 is needed. */
5007 cgraph_mark_address_taken_node (cgraph_get_node (fndecl));
5008 if (clone)
5009 cgraph_mark_address_taken_node (cgraph_get_node (clone));
5010 }
5011
5012 safe = is_tm_safe (TREE_TYPE (old_fn));
5013 gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
5014 : BUILT_IN_TM_GETTMCLONE_IRR);
5015 ret = create_tmp_var (ptr_type_node, NULL);
5016
5017 if (!safe)
5018 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5019
5020 /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
5021 if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
5022 old_fn = OBJ_TYPE_REF_EXPR (old_fn);
5023
5024 g = gimple_build_call (gettm_fn, 1, old_fn);
5025 ret = make_ssa_name (ret, g);
5026 gimple_call_set_lhs (g, ret);
5027
5028 gsi_insert_before (gsi, g, GSI_SAME_STMT);
5029
5030 cgraph_create_edge (node, cgraph_get_create_node (gettm_fn), g, 0,
5031 compute_call_stmt_bb_frequency (node->decl,
5032 gimple_bb (g)));
5033
5034 /* Cast return value from tm_gettmclone* into appropriate function
5035 pointer. */
5036 callfn = create_tmp_var (TREE_TYPE (old_fn), NULL);
5037 g2 = gimple_build_assign (callfn,
5038 fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
5039 callfn = make_ssa_name (callfn, g2);
5040 gimple_assign_set_lhs (g2, callfn);
5041 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
5042
5043 /* ??? This is a hack to preserve the NOTHROW bit on the call,
5044 which we would have derived from the decl. Failure to save
5045 this bit means we might have to split the basic block. */
5046 if (gimple_call_nothrow_p (stmt))
5047 gimple_call_set_nothrow (stmt, true);
5048
5049 gimple_call_set_fn (stmt, callfn);
5050
5051 /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
5052 for a call statement. Fix it. */
5053 {
5054 tree lhs = gimple_call_lhs (stmt);
5055 tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
5056 if (lhs
5057 && !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
5058 {
5059 tree temp;
5060
5061 temp = create_tmp_reg (rettype, 0);
5062 gimple_call_set_lhs (stmt, temp);
5063
5064 g2 = gimple_build_assign (lhs,
5065 fold_build1 (VIEW_CONVERT_EXPR,
5066 TREE_TYPE (lhs), temp));
5067 gsi_insert_after (gsi, g2, GSI_SAME_STMT);
5068 }
5069 }
5070
5071 update_stmt (stmt);
5072
5073 return true;
5074 }
5075
5076 /* Helper function for ipa_tm_transform_calls*. Given a call
5077 statement in GSI which resides inside transaction REGION, redirect
5078 the call to either its wrapper function, or its clone. */
5079
5080 static void
5081 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
5082 struct tm_region *region,
5083 gimple_stmt_iterator *gsi,
5084 bool *need_ssa_rename_p)
5085 {
5086 gimple stmt = gsi_stmt (*gsi);
5087 struct cgraph_node *new_node;
5088 struct cgraph_edge *e = cgraph_edge (node, stmt);
5089 tree fndecl = gimple_call_fndecl (stmt);
5090
5091 /* For indirect calls, pass the address through the runtime. */
5092 if (fndecl == NULL)
5093 {
5094 *need_ssa_rename_p |=
5095 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5096 return;
5097 }
5098
5099 /* Handle some TM builtins. Ordinarily these aren't actually generated
5100 at this point, but handling these functions when written in by the
5101 user makes it easier to build unit tests. */
5102 if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
5103 return;
5104
5105 /* Fixup recursive calls inside clones. */
5106 /* ??? Why did cgraph_copy_node_for_versioning update the call edges
5107 for recursion but not update the call statements themselves? */
5108 if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
5109 {
5110 gimple_call_set_fndecl (stmt, current_function_decl);
5111 return;
5112 }
5113
5114 /* If there is a replacement, use it. */
5115 fndecl = find_tm_replacement_function (fndecl);
5116 if (fndecl)
5117 {
5118 new_node = cgraph_get_create_node (fndecl);
5119
5120 /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
5121
5122 We can't do this earlier in record_tm_replacement because
5123 cgraph_remove_unreachable_nodes is called before we inject
5124 references to the node. Further, we can't do this in some
5125 nice central place in ipa_tm_execute because we don't have
5126 the exact list of wrapper functions that would be used.
5127 Marking more wrappers than necessary results in the creation
5128 of unnecessary cgraph_nodes, which can cause some of the
5129 other IPA passes to crash.
5130
5131 We do need to mark these nodes so that we get the proper
5132 result in expand_call_tm. */
5133 /* ??? This seems broken. How is it that we're marking the
5134 CALLEE as may_enter_irr? Surely we should be marking the
5135 CALLER. Also note that find_tm_replacement_function also
5136 contains mappings into the TM runtime, e.g. memcpy. These
5137 we know won't go irrevocable. */
5138 new_node->local.tm_may_enter_irr = 1;
5139 }
5140 else
5141 {
5142 struct tm_ipa_cg_data *d;
5143 struct cgraph_node *tnode = e->callee;
5144
5145 d = get_cg_data (&tnode, true);
5146 new_node = d->clone;
5147
5148 /* As we've already skipped pure calls and appropriate builtins,
5149 and we've already marked irrevocable blocks, if we can't come
5150 up with a static replacement, then ask the runtime. */
5151 if (new_node == NULL)
5152 {
5153 *need_ssa_rename_p |=
5154 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5155 return;
5156 }
5157
5158 fndecl = new_node->decl;
5159 }
5160
5161 cgraph_redirect_edge_callee (e, new_node);
5162 gimple_call_set_fndecl (stmt, fndecl);
5163 }
5164
5165 /* Helper function for ipa_tm_transform_calls. For a given BB,
5166 install calls to tm_irrevocable when IRR_BLOCKS are reached,
5167 redirect other calls to the generated transactional clone. */
5168
5169 static bool
5170 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
5171 basic_block bb, bitmap irr_blocks)
5172 {
5173 gimple_stmt_iterator gsi;
5174 bool need_ssa_rename = false;
5175
5176 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5177 {
5178 ipa_tm_insert_irr_call (node, region, bb);
5179 return true;
5180 }
5181
5182 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5183 {
5184 gimple stmt = gsi_stmt (gsi);
5185
5186 if (!is_gimple_call (stmt))
5187 continue;
5188 if (is_tm_pure_call (stmt))
5189 continue;
5190
5191 /* Redirect edges to the appropriate replacement or clone. */
5192 ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
5193 }
5194
5195 return need_ssa_rename;
5196 }
5197
5198 /* Walk the CFG for REGION, beginning at BB. Install calls to
5199 tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
5200 the generated transactional clone. */
5201
5202 static bool
5203 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
5204 basic_block bb, bitmap irr_blocks)
5205 {
5206 bool need_ssa_rename = false;
5207 edge e;
5208 edge_iterator ei;
5209 auto_vec<basic_block> queue;
5210 bitmap visited_blocks = BITMAP_ALLOC (NULL);
5211
5212 queue.safe_push (bb);
5213 do
5214 {
5215 bb = queue.pop ();
5216
5217 need_ssa_rename |=
5218 ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
5219
5220 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5221 continue;
5222
5223 if (region && bitmap_bit_p (region->exit_blocks, bb->index))
5224 continue;
5225
5226 FOR_EACH_EDGE (e, ei, bb->succs)
5227 if (!bitmap_bit_p (visited_blocks, e->dest->index))
5228 {
5229 bitmap_set_bit (visited_blocks, e->dest->index);
5230 queue.safe_push (e->dest);
5231 }
5232 }
5233 while (!queue.is_empty ());
5234
5235 BITMAP_FREE (visited_blocks);
5236
5237 return need_ssa_rename;
5238 }
5239
5240 /* Transform the calls within the TM regions within NODE. */
5241
5242 static void
5243 ipa_tm_transform_transaction (struct cgraph_node *node)
5244 {
5245 struct tm_ipa_cg_data *d;
5246 struct tm_region *region;
5247 bool need_ssa_rename = false;
5248
5249 d = get_cg_data (&node, true);
5250
5251 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5252 calculate_dominance_info (CDI_DOMINATORS);
5253
5254 for (region = d->all_tm_regions; region; region = region->next)
5255 {
5256 /* If we're sure to go irrevocable, don't transform anything. */
5257 if (d->irrevocable_blocks_normal
5258 && bitmap_bit_p (d->irrevocable_blocks_normal,
5259 region->entry_block->index))
5260 {
5261 transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE
5262 | GTMA_MAY_ENTER_IRREVOCABLE
5263 | GTMA_HAS_NO_INSTRUMENTATION);
5264 continue;
5265 }
5266
5267 need_ssa_rename |=
5268 ipa_tm_transform_calls (node, region, region->entry_block,
5269 d->irrevocable_blocks_normal);
5270 }
5271
5272 if (need_ssa_rename)
5273 update_ssa (TODO_update_ssa_only_virtuals);
5274
5275 pop_cfun ();
5276 }
5277
5278 /* Transform the calls within the transactional clone of NODE. */
5279
5280 static void
5281 ipa_tm_transform_clone (struct cgraph_node *node)
5282 {
5283 struct tm_ipa_cg_data *d;
5284 bool need_ssa_rename;
5285
5286 d = get_cg_data (&node, true);
5287
5288 /* If this function makes no calls and has no irrevocable blocks,
5289 then there's nothing to do. */
5290 /* ??? Remove non-aborting top-level transactions. */
5291 if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone)
5292 return;
5293
5294 push_cfun (DECL_STRUCT_FUNCTION (d->clone->decl));
5295 calculate_dominance_info (CDI_DOMINATORS);
5296
5297 need_ssa_rename =
5298 ipa_tm_transform_calls (d->clone, NULL,
5299 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
5300 d->irrevocable_blocks_clone);
5301
5302 if (need_ssa_rename)
5303 update_ssa (TODO_update_ssa_only_virtuals);
5304
5305 pop_cfun ();
5306 }
5307
5308 /* Main entry point for the transactional memory IPA pass. */
5309
5310 static unsigned int
5311 ipa_tm_execute (void)
5312 {
5313 cgraph_node_queue tm_callees = cgraph_node_queue ();
5314 /* List of functions that will go irrevocable. */
5315 cgraph_node_queue irr_worklist = cgraph_node_queue ();
5316
5317 struct cgraph_node *node;
5318 struct tm_ipa_cg_data *d;
5319 enum availability a;
5320 unsigned int i;
5321
5322 #ifdef ENABLE_CHECKING
5323 verify_cgraph ();
5324 #endif
5325
5326 bitmap_obstack_initialize (&tm_obstack);
5327 initialize_original_copy_tables ();
5328
5329 /* For all local functions marked tm_callable, queue them. */
5330 FOR_EACH_DEFINED_FUNCTION (node)
5331 if (is_tm_callable (node->decl)
5332 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5333 {
5334 d = get_cg_data (&node, true);
5335 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5336 }
5337
5338 /* For all local reachable functions... */
5339 FOR_EACH_DEFINED_FUNCTION (node)
5340 if (node->lowered
5341 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5342 {
5343 /* ... marked tm_pure, record that fact for the runtime by
5344 indicating that the pure function is its own tm_callable.
5345 No need to do this if the function's address can't be taken. */
5346 if (is_tm_pure (node->decl))
5347 {
5348 if (!node->local.local)
5349 record_tm_clone_pair (node->decl, node->decl);
5350 continue;
5351 }
5352
5353 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5354 calculate_dominance_info (CDI_DOMINATORS);
5355
5356 tm_region_init (NULL);
5357 if (all_tm_regions)
5358 {
5359 d = get_cg_data (&node, true);
5360
5361 /* Scan for calls that are in each transaction, and
5362 generate the uninstrumented code path. */
5363 ipa_tm_scan_calls_transaction (d, &tm_callees);
5364
5365 /* Put it in the worklist so we can scan the function
5366 later (ipa_tm_scan_irr_function) and mark the
5367 irrevocable blocks. */
5368 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5369 d->want_irr_scan_normal = true;
5370 }
5371
5372 pop_cfun ();
5373 }
5374
5375 /* For every local function on the callee list, scan as if we will be
5376 creating a transactional clone, queueing all new functions we find
5377 along the way. */
5378 for (i = 0; i < tm_callees.length (); ++i)
5379 {
5380 node = tm_callees[i];
5381 a = cgraph_function_body_availability (node);
5382 d = get_cg_data (&node, true);
5383
5384 /* Put it in the worklist so we can scan the function later
5385 (ipa_tm_scan_irr_function) and mark the irrevocable
5386 blocks. */
5387 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5388
5389 /* Some callees cannot be arbitrarily cloned. These will always be
5390 irrevocable. Mark these now, so that we need not scan them. */
5391 if (is_tm_irrevocable (node->decl))
5392 ipa_tm_note_irrevocable (node, &irr_worklist);
5393 else if (a <= AVAIL_NOT_AVAILABLE
5394 && !is_tm_safe_or_pure (node->decl))
5395 ipa_tm_note_irrevocable (node, &irr_worklist);
5396 else if (a >= AVAIL_OVERWRITABLE)
5397 {
5398 if (!tree_versionable_function_p (node->decl))
5399 ipa_tm_note_irrevocable (node, &irr_worklist);
5400 else if (!d->is_irrevocable)
5401 {
5402 /* If this is an alias, make sure its base is queued as well.
5403 we need not scan the callees now, as the base will do. */
5404 if (node->alias)
5405 {
5406 node = cgraph_get_node (node->thunk.alias);
5407 d = get_cg_data (&node, true);
5408 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5409 continue;
5410 }
5411
5412 /* Add all nodes called by this function into
5413 tm_callees as well. */
5414 ipa_tm_scan_calls_clone (node, &tm_callees);
5415 }
5416 }
5417 }
5418
5419 /* Iterate scans until no more work to be done. Prefer not to use
5420 vec::pop because the worklist tends to follow a breadth-first
5421 search of the callgraph, which should allow convergance with a
5422 minimum number of scans. But we also don't want the worklist
5423 array to grow without bound, so we shift the array up periodically. */
5424 for (i = 0; i < irr_worklist.length (); ++i)
5425 {
5426 if (i > 256 && i == irr_worklist.length () / 8)
5427 {
5428 irr_worklist.block_remove (0, i);
5429 i = 0;
5430 }
5431
5432 node = irr_worklist[i];
5433 d = get_cg_data (&node, true);
5434 d->in_worklist = false;
5435
5436 if (d->want_irr_scan_normal)
5437 {
5438 d->want_irr_scan_normal = false;
5439 ipa_tm_scan_irr_function (node, false);
5440 }
5441 if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
5442 ipa_tm_note_irrevocable (node, &irr_worklist);
5443 }
5444
5445 /* For every function on the callee list, collect the tm_may_enter_irr
5446 bit on the node. */
5447 irr_worklist.truncate (0);
5448 for (i = 0; i < tm_callees.length (); ++i)
5449 {
5450 node = tm_callees[i];
5451 if (ipa_tm_mayenterirr_function (node))
5452 {
5453 d = get_cg_data (&node, true);
5454 gcc_assert (d->in_worklist == false);
5455 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5456 }
5457 }
5458
5459 /* Propagate the tm_may_enter_irr bit to callers until stable. */
5460 for (i = 0; i < irr_worklist.length (); ++i)
5461 {
5462 struct cgraph_node *caller;
5463 struct cgraph_edge *e;
5464 struct ipa_ref *ref;
5465 unsigned j;
5466
5467 if (i > 256 && i == irr_worklist.length () / 8)
5468 {
5469 irr_worklist.block_remove (0, i);
5470 i = 0;
5471 }
5472
5473 node = irr_worklist[i];
5474 d = get_cg_data (&node, true);
5475 d->in_worklist = false;
5476 node->local.tm_may_enter_irr = true;
5477
5478 /* Propagate back to normal callers. */
5479 for (e = node->callers; e ; e = e->next_caller)
5480 {
5481 caller = e->caller;
5482 if (!is_tm_safe_or_pure (caller->decl)
5483 && !caller->local.tm_may_enter_irr)
5484 {
5485 d = get_cg_data (&caller, true);
5486 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5487 }
5488 }
5489
5490 /* Propagate back to referring aliases as well. */
5491 for (j = 0; ipa_ref_list_referring_iterate (&node->ref_list, j, ref); j++)
5492 {
5493 caller = cgraph (ref->referring);
5494 if (ref->use == IPA_REF_ALIAS
5495 && !caller->local.tm_may_enter_irr)
5496 {
5497 /* ?? Do not traverse aliases here. */
5498 d = get_cg_data (&caller, false);
5499 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5500 }
5501 }
5502 }
5503
5504 /* Now validate all tm_safe functions, and all atomic regions in
5505 other functions. */
5506 FOR_EACH_DEFINED_FUNCTION (node)
5507 if (node->lowered
5508 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5509 {
5510 d = get_cg_data (&node, true);
5511 if (is_tm_safe (node->decl))
5512 ipa_tm_diagnose_tm_safe (node);
5513 else if (d->all_tm_regions)
5514 ipa_tm_diagnose_transaction (node, d->all_tm_regions);
5515 }
5516
5517 /* Create clones. Do those that are not irrevocable and have a
5518 positive call count. Do those publicly visible functions that
5519 the user directed us to clone. */
5520 for (i = 0; i < tm_callees.length (); ++i)
5521 {
5522 bool doit = false;
5523
5524 node = tm_callees[i];
5525 if (node->cpp_implicit_alias)
5526 continue;
5527
5528 a = cgraph_function_body_availability (node);
5529 d = get_cg_data (&node, true);
5530
5531 if (a <= AVAIL_NOT_AVAILABLE)
5532 doit = is_tm_callable (node->decl);
5533 else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
5534 doit = true;
5535 else if (!d->is_irrevocable
5536 && d->tm_callers_normal + d->tm_callers_clone > 0)
5537 doit = true;
5538
5539 if (doit)
5540 ipa_tm_create_version (node);
5541 }
5542
5543 /* Redirect calls to the new clones, and insert irrevocable marks. */
5544 for (i = 0; i < tm_callees.length (); ++i)
5545 {
5546 node = tm_callees[i];
5547 if (node->analyzed)
5548 {
5549 d = get_cg_data (&node, true);
5550 if (d->clone)
5551 ipa_tm_transform_clone (node);
5552 }
5553 }
5554 FOR_EACH_DEFINED_FUNCTION (node)
5555 if (node->lowered
5556 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5557 {
5558 d = get_cg_data (&node, true);
5559 if (d->all_tm_regions)
5560 ipa_tm_transform_transaction (node);
5561 }
5562
5563 /* Free and clear all data structures. */
5564 tm_callees.release ();
5565 irr_worklist.release ();
5566 bitmap_obstack_release (&tm_obstack);
5567 free_original_copy_tables ();
5568
5569 FOR_EACH_FUNCTION (node)
5570 node->aux = NULL;
5571
5572 #ifdef ENABLE_CHECKING
5573 verify_cgraph ();
5574 #endif
5575
5576 return 0;
5577 }
5578
5579 namespace {
5580
5581 const pass_data pass_data_ipa_tm =
5582 {
5583 SIMPLE_IPA_PASS, /* type */
5584 "tmipa", /* name */
5585 OPTGROUP_NONE, /* optinfo_flags */
5586 true, /* has_gate */
5587 true, /* has_execute */
5588 TV_TRANS_MEM, /* tv_id */
5589 ( PROP_ssa | PROP_cfg ), /* properties_required */
5590 0, /* properties_provided */
5591 0, /* properties_destroyed */
5592 0, /* todo_flags_start */
5593 0, /* todo_flags_finish */
5594 };
5595
5596 class pass_ipa_tm : public simple_ipa_opt_pass
5597 {
5598 public:
5599 pass_ipa_tm (gcc::context *ctxt)
5600 : simple_ipa_opt_pass (pass_data_ipa_tm, ctxt)
5601 {}
5602
5603 /* opt_pass methods: */
5604 bool gate () { return gate_tm (); }
5605 unsigned int execute () { return ipa_tm_execute (); }
5606
5607 }; // class pass_ipa_tm
5608
5609 } // anon namespace
5610
5611 simple_ipa_opt_pass *
5612 make_pass_ipa_tm (gcc::context *ctxt)
5613 {
5614 return new pass_ipa_tm (ctxt);
5615 }
5616
5617 #include "gt-trans-mem.h"