]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/trans-mem.c
IPA C++ refactoring 2/N
[thirdparty/gcc.git] / gcc / trans-mem.c
1 /* Passes for transactional memory support.
2 Copyright (C) 2008-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tree.h"
25 #include "basic-block.h"
26 #include "tree-ssa-alias.h"
27 #include "internal-fn.h"
28 #include "tree-eh.h"
29 #include "gimple-expr.h"
30 #include "is-a.h"
31 #include "gimple.h"
32 #include "calls.h"
33 #include "function.h"
34 #include "rtl.h"
35 #include "emit-rtl.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-walk.h"
40 #include "gimple-ssa.h"
41 #include "cgraph.h"
42 #include "tree-cfg.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "tree-into-ssa.h"
46 #include "tree-pass.h"
47 #include "tree-inline.h"
48 #include "diagnostic-core.h"
49 #include "demangle.h"
50 #include "output.h"
51 #include "trans-mem.h"
52 #include "params.h"
53 #include "target.h"
54 #include "langhooks.h"
55 #include "gimple-pretty-print.h"
56 #include "cfgloop.h"
57 #include "tree-ssa-address.h"
58 #include "predict.h"
59
60
61 #define A_RUNINSTRUMENTEDCODE 0x0001
62 #define A_RUNUNINSTRUMENTEDCODE 0x0002
63 #define A_SAVELIVEVARIABLES 0x0004
64 #define A_RESTORELIVEVARIABLES 0x0008
65 #define A_ABORTTRANSACTION 0x0010
66
67 #define AR_USERABORT 0x0001
68 #define AR_USERRETRY 0x0002
69 #define AR_TMCONFLICT 0x0004
70 #define AR_EXCEPTIONBLOCKABORT 0x0008
71 #define AR_OUTERABORT 0x0010
72
73 #define MODE_SERIALIRREVOCABLE 0x0000
74
75
76 /* The representation of a transaction changes several times during the
77 lowering process. In the beginning, in the front-end we have the
78 GENERIC tree TRANSACTION_EXPR. For example,
79
80 __transaction {
81 local++;
82 if (++global == 10)
83 __tm_abort;
84 }
85
86 During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
87 trivially replaced with a GIMPLE_TRANSACTION node.
88
89 During pass_lower_tm, we examine the body of transactions looking
90 for aborts. Transactions that do not contain an abort may be
91 merged into an outer transaction. We also add a TRY-FINALLY node
92 to arrange for the transaction to be committed on any exit.
93
94 [??? Think about how this arrangement affects throw-with-commit
95 and throw-with-abort operations. In this case we want the TRY to
96 handle gotos, but not to catch any exceptions because the transaction
97 will already be closed.]
98
99 GIMPLE_TRANSACTION [label=NULL] {
100 try {
101 local = local + 1;
102 t0 = global;
103 t1 = t0 + 1;
104 global = t1;
105 if (t1 == 10)
106 __builtin___tm_abort ();
107 } finally {
108 __builtin___tm_commit ();
109 }
110 }
111
112 During pass_lower_eh, we create EH regions for the transactions,
113 intermixed with the regular EH stuff. This gives us a nice persistent
114 mapping (all the way through rtl) from transactional memory operation
115 back to the transaction, which allows us to get the abnormal edges
116 correct to model transaction aborts and restarts:
117
118 GIMPLE_TRANSACTION [label=over]
119 local = local + 1;
120 t0 = global;
121 t1 = t0 + 1;
122 global = t1;
123 if (t1 == 10)
124 __builtin___tm_abort ();
125 __builtin___tm_commit ();
126 over:
127
128 This is the end of all_lowering_passes, and so is what is present
129 during the IPA passes, and through all of the optimization passes.
130
131 During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
132 functions and mark functions for cloning.
133
134 At the end of gimple optimization, before exiting SSA form,
135 pass_tm_edges replaces statements that perform transactional
136 memory operations with the appropriate TM builtins, and swap
137 out function calls with their transactional clones. At this
138 point we introduce the abnormal transaction restart edges and
139 complete lowering of the GIMPLE_TRANSACTION node.
140
141 x = __builtin___tm_start (MAY_ABORT);
142 eh_label:
143 if (x & abort_transaction)
144 goto over;
145 local = local + 1;
146 t0 = __builtin___tm_load (global);
147 t1 = t0 + 1;
148 __builtin___tm_store (&global, t1);
149 if (t1 == 10)
150 __builtin___tm_abort ();
151 __builtin___tm_commit ();
152 over:
153 */
154
155 static void *expand_regions (struct tm_region *,
156 void *(*callback)(struct tm_region *, void *),
157 void *, bool);
158
159 \f
160 /* Return the attributes we want to examine for X, or NULL if it's not
161 something we examine. We look at function types, but allow pointers
162 to function types and function decls and peek through. */
163
164 static tree
165 get_attrs_for (const_tree x)
166 {
167 switch (TREE_CODE (x))
168 {
169 case FUNCTION_DECL:
170 return TYPE_ATTRIBUTES (TREE_TYPE (x));
171 break;
172
173 default:
174 if (TYPE_P (x))
175 return NULL;
176 x = TREE_TYPE (x);
177 if (TREE_CODE (x) != POINTER_TYPE)
178 return NULL;
179 /* FALLTHRU */
180
181 case POINTER_TYPE:
182 x = TREE_TYPE (x);
183 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
184 return NULL;
185 /* FALLTHRU */
186
187 case FUNCTION_TYPE:
188 case METHOD_TYPE:
189 return TYPE_ATTRIBUTES (x);
190 }
191 }
192
193 /* Return true if X has been marked TM_PURE. */
194
195 bool
196 is_tm_pure (const_tree x)
197 {
198 unsigned flags;
199
200 switch (TREE_CODE (x))
201 {
202 case FUNCTION_DECL:
203 case FUNCTION_TYPE:
204 case METHOD_TYPE:
205 break;
206
207 default:
208 if (TYPE_P (x))
209 return false;
210 x = TREE_TYPE (x);
211 if (TREE_CODE (x) != POINTER_TYPE)
212 return false;
213 /* FALLTHRU */
214
215 case POINTER_TYPE:
216 x = TREE_TYPE (x);
217 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
218 return false;
219 break;
220 }
221
222 flags = flags_from_decl_or_type (x);
223 return (flags & ECF_TM_PURE) != 0;
224 }
225
226 /* Return true if X has been marked TM_IRREVOCABLE. */
227
228 static bool
229 is_tm_irrevocable (tree x)
230 {
231 tree attrs = get_attrs_for (x);
232
233 if (attrs && lookup_attribute ("transaction_unsafe", attrs))
234 return true;
235
236 /* A call to the irrevocable builtin is by definition,
237 irrevocable. */
238 if (TREE_CODE (x) == ADDR_EXPR)
239 x = TREE_OPERAND (x, 0);
240 if (TREE_CODE (x) == FUNCTION_DECL
241 && DECL_BUILT_IN_CLASS (x) == BUILT_IN_NORMAL
242 && DECL_FUNCTION_CODE (x) == BUILT_IN_TM_IRREVOCABLE)
243 return true;
244
245 return false;
246 }
247
248 /* Return true if X has been marked TM_SAFE. */
249
250 bool
251 is_tm_safe (const_tree x)
252 {
253 if (flag_tm)
254 {
255 tree attrs = get_attrs_for (x);
256 if (attrs)
257 {
258 if (lookup_attribute ("transaction_safe", attrs))
259 return true;
260 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
261 return true;
262 }
263 }
264 return false;
265 }
266
267 /* Return true if CALL is const, or tm_pure. */
268
269 static bool
270 is_tm_pure_call (gimple call)
271 {
272 tree fn = gimple_call_fn (call);
273
274 if (TREE_CODE (fn) == ADDR_EXPR)
275 {
276 fn = TREE_OPERAND (fn, 0);
277 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
278 }
279 else
280 fn = TREE_TYPE (fn);
281
282 return is_tm_pure (fn);
283 }
284
285 /* Return true if X has been marked TM_CALLABLE. */
286
287 static bool
288 is_tm_callable (tree x)
289 {
290 tree attrs = get_attrs_for (x);
291 if (attrs)
292 {
293 if (lookup_attribute ("transaction_callable", attrs))
294 return true;
295 if (lookup_attribute ("transaction_safe", attrs))
296 return true;
297 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
298 return true;
299 }
300 return false;
301 }
302
303 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
304
305 bool
306 is_tm_may_cancel_outer (tree x)
307 {
308 tree attrs = get_attrs_for (x);
309 if (attrs)
310 return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
311 return false;
312 }
313
314 /* Return true for built in functions that "end" a transaction. */
315
316 bool
317 is_tm_ending_fndecl (tree fndecl)
318 {
319 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
320 switch (DECL_FUNCTION_CODE (fndecl))
321 {
322 case BUILT_IN_TM_COMMIT:
323 case BUILT_IN_TM_COMMIT_EH:
324 case BUILT_IN_TM_ABORT:
325 case BUILT_IN_TM_IRREVOCABLE:
326 return true;
327 default:
328 break;
329 }
330
331 return false;
332 }
333
334 /* Return true if STMT is a built in function call that "ends" a
335 transaction. */
336
337 bool
338 is_tm_ending (gimple stmt)
339 {
340 tree fndecl;
341
342 if (gimple_code (stmt) != GIMPLE_CALL)
343 return false;
344
345 fndecl = gimple_call_fndecl (stmt);
346 return (fndecl != NULL_TREE
347 && is_tm_ending_fndecl (fndecl));
348 }
349
350 /* Return true if STMT is a TM load. */
351
352 static bool
353 is_tm_load (gimple stmt)
354 {
355 tree fndecl;
356
357 if (gimple_code (stmt) != GIMPLE_CALL)
358 return false;
359
360 fndecl = gimple_call_fndecl (stmt);
361 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
362 && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
363 }
364
365 /* Same as above, but for simple TM loads, that is, not the
366 after-write, after-read, etc optimized variants. */
367
368 static bool
369 is_tm_simple_load (gimple stmt)
370 {
371 tree fndecl;
372
373 if (gimple_code (stmt) != GIMPLE_CALL)
374 return false;
375
376 fndecl = gimple_call_fndecl (stmt);
377 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
378 {
379 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
380 return (fcode == BUILT_IN_TM_LOAD_1
381 || fcode == BUILT_IN_TM_LOAD_2
382 || fcode == BUILT_IN_TM_LOAD_4
383 || fcode == BUILT_IN_TM_LOAD_8
384 || fcode == BUILT_IN_TM_LOAD_FLOAT
385 || fcode == BUILT_IN_TM_LOAD_DOUBLE
386 || fcode == BUILT_IN_TM_LOAD_LDOUBLE
387 || fcode == BUILT_IN_TM_LOAD_M64
388 || fcode == BUILT_IN_TM_LOAD_M128
389 || fcode == BUILT_IN_TM_LOAD_M256);
390 }
391 return false;
392 }
393
394 /* Return true if STMT is a TM store. */
395
396 static bool
397 is_tm_store (gimple stmt)
398 {
399 tree fndecl;
400
401 if (gimple_code (stmt) != GIMPLE_CALL)
402 return false;
403
404 fndecl = gimple_call_fndecl (stmt);
405 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
406 && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
407 }
408
409 /* Same as above, but for simple TM stores, that is, not the
410 after-write, after-read, etc optimized variants. */
411
412 static bool
413 is_tm_simple_store (gimple stmt)
414 {
415 tree fndecl;
416
417 if (gimple_code (stmt) != GIMPLE_CALL)
418 return false;
419
420 fndecl = gimple_call_fndecl (stmt);
421 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
422 {
423 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
424 return (fcode == BUILT_IN_TM_STORE_1
425 || fcode == BUILT_IN_TM_STORE_2
426 || fcode == BUILT_IN_TM_STORE_4
427 || fcode == BUILT_IN_TM_STORE_8
428 || fcode == BUILT_IN_TM_STORE_FLOAT
429 || fcode == BUILT_IN_TM_STORE_DOUBLE
430 || fcode == BUILT_IN_TM_STORE_LDOUBLE
431 || fcode == BUILT_IN_TM_STORE_M64
432 || fcode == BUILT_IN_TM_STORE_M128
433 || fcode == BUILT_IN_TM_STORE_M256);
434 }
435 return false;
436 }
437
438 /* Return true if FNDECL is BUILT_IN_TM_ABORT. */
439
440 static bool
441 is_tm_abort (tree fndecl)
442 {
443 return (fndecl
444 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
445 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_TM_ABORT);
446 }
447
448 /* Build a GENERIC tree for a user abort. This is called by front ends
449 while transforming the __tm_abort statement. */
450
451 tree
452 build_tm_abort_call (location_t loc, bool is_outer)
453 {
454 return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
455 build_int_cst (integer_type_node,
456 AR_USERABORT
457 | (is_outer ? AR_OUTERABORT : 0)));
458 }
459 \f
460 /* Map for aribtrary function replacement under TM, as created
461 by the tm_wrap attribute. */
462
463 static GTY((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
464 htab_t tm_wrap_map;
465
466 void
467 record_tm_replacement (tree from, tree to)
468 {
469 struct tree_map **slot, *h;
470
471 /* Do not inline wrapper functions that will get replaced in the TM
472 pass.
473
474 Suppose you have foo() that will get replaced into tmfoo(). Make
475 sure the inliner doesn't try to outsmart us and inline foo()
476 before we get a chance to do the TM replacement. */
477 DECL_UNINLINABLE (from) = 1;
478
479 if (tm_wrap_map == NULL)
480 tm_wrap_map = htab_create_ggc (32, tree_map_hash, tree_map_eq, 0);
481
482 h = ggc_alloc<tree_map> ();
483 h->hash = htab_hash_pointer (from);
484 h->base.from = from;
485 h->to = to;
486
487 slot = (struct tree_map **)
488 htab_find_slot_with_hash (tm_wrap_map, h, h->hash, INSERT);
489 *slot = h;
490 }
491
492 /* Return a TM-aware replacement function for DECL. */
493
494 static tree
495 find_tm_replacement_function (tree fndecl)
496 {
497 if (tm_wrap_map)
498 {
499 struct tree_map *h, in;
500
501 in.base.from = fndecl;
502 in.hash = htab_hash_pointer (fndecl);
503 h = (struct tree_map *) htab_find_with_hash (tm_wrap_map, &in, in.hash);
504 if (h)
505 return h->to;
506 }
507
508 /* ??? We may well want TM versions of most of the common <string.h>
509 functions. For now, we've already these two defined. */
510 /* Adjust expand_call_tm() attributes as necessary for the cases
511 handled here: */
512 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
513 switch (DECL_FUNCTION_CODE (fndecl))
514 {
515 case BUILT_IN_MEMCPY:
516 return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
517 case BUILT_IN_MEMMOVE:
518 return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
519 case BUILT_IN_MEMSET:
520 return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
521 default:
522 return NULL;
523 }
524
525 return NULL;
526 }
527
528 /* When appropriate, record TM replacement for memory allocation functions.
529
530 FROM is the FNDECL to wrap. */
531 void
532 tm_malloc_replacement (tree from)
533 {
534 const char *str;
535 tree to;
536
537 if (TREE_CODE (from) != FUNCTION_DECL)
538 return;
539
540 /* If we have a previous replacement, the user must be explicitly
541 wrapping malloc/calloc/free. They better know what they're
542 doing... */
543 if (find_tm_replacement_function (from))
544 return;
545
546 str = IDENTIFIER_POINTER (DECL_NAME (from));
547
548 if (!strcmp (str, "malloc"))
549 to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
550 else if (!strcmp (str, "calloc"))
551 to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
552 else if (!strcmp (str, "free"))
553 to = builtin_decl_explicit (BUILT_IN_TM_FREE);
554 else
555 return;
556
557 TREE_NOTHROW (to) = 0;
558
559 record_tm_replacement (from, to);
560 }
561 \f
562 /* Diagnostics for tm_safe functions/regions. Called by the front end
563 once we've lowered the function to high-gimple. */
564
565 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
566 Process exactly one statement. WI->INFO is set to non-null when in
567 the context of a tm_safe function, and null for a __transaction block. */
568
569 #define DIAG_TM_OUTER 1
570 #define DIAG_TM_SAFE 2
571 #define DIAG_TM_RELAXED 4
572
573 struct diagnose_tm
574 {
575 unsigned int summary_flags : 8;
576 unsigned int block_flags : 8;
577 unsigned int func_flags : 8;
578 unsigned int saw_volatile : 1;
579 gimple stmt;
580 };
581
582 /* Return true if T is a volatile variable of some kind. */
583
584 static bool
585 volatile_var_p (tree t)
586 {
587 return (SSA_VAR_P (t)
588 && TREE_THIS_VOLATILE (TREE_TYPE (t)));
589 }
590
591 /* Tree callback function for diagnose_tm pass. */
592
593 static tree
594 diagnose_tm_1_op (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
595 void *data)
596 {
597 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
598 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
599
600 if (volatile_var_p (*tp)
601 && d->block_flags & DIAG_TM_SAFE
602 && !d->saw_volatile)
603 {
604 d->saw_volatile = 1;
605 error_at (gimple_location (d->stmt),
606 "invalid volatile use of %qD inside transaction",
607 *tp);
608 }
609
610 return NULL_TREE;
611 }
612
613 static inline bool
614 is_tm_safe_or_pure (const_tree x)
615 {
616 return is_tm_safe (x) || is_tm_pure (x);
617 }
618
619 static tree
620 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
621 struct walk_stmt_info *wi)
622 {
623 gimple stmt = gsi_stmt (*gsi);
624 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
625
626 /* Save stmt for use in leaf analysis. */
627 d->stmt = stmt;
628
629 switch (gimple_code (stmt))
630 {
631 case GIMPLE_CALL:
632 {
633 tree fn = gimple_call_fn (stmt);
634
635 if ((d->summary_flags & DIAG_TM_OUTER) == 0
636 && is_tm_may_cancel_outer (fn))
637 error_at (gimple_location (stmt),
638 "%<transaction_may_cancel_outer%> function call not within"
639 " outer transaction or %<transaction_may_cancel_outer%>");
640
641 if (d->summary_flags & DIAG_TM_SAFE)
642 {
643 bool is_safe, direct_call_p;
644 tree replacement;
645
646 if (TREE_CODE (fn) == ADDR_EXPR
647 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
648 {
649 direct_call_p = true;
650 replacement = TREE_OPERAND (fn, 0);
651 replacement = find_tm_replacement_function (replacement);
652 if (replacement)
653 fn = replacement;
654 }
655 else
656 {
657 direct_call_p = false;
658 replacement = NULL_TREE;
659 }
660
661 if (is_tm_safe_or_pure (fn))
662 is_safe = true;
663 else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
664 {
665 /* A function explicitly marked transaction_callable as
666 opposed to transaction_safe is being defined to be
667 unsafe as part of its ABI, regardless of its contents. */
668 is_safe = false;
669 }
670 else if (direct_call_p)
671 {
672 if (IS_TYPE_OR_DECL_P (fn)
673 && flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
674 is_safe = true;
675 else if (replacement)
676 {
677 /* ??? At present we've been considering replacements
678 merely transaction_callable, and therefore might
679 enter irrevocable. The tm_wrap attribute has not
680 yet made it into the new language spec. */
681 is_safe = false;
682 }
683 else
684 {
685 /* ??? Diagnostics for unmarked direct calls moved into
686 the IPA pass. Section 3.2 of the spec details how
687 functions not marked should be considered "implicitly
688 safe" based on having examined the function body. */
689 is_safe = true;
690 }
691 }
692 else
693 {
694 /* An unmarked indirect call. Consider it unsafe even
695 though optimization may yet figure out how to inline. */
696 is_safe = false;
697 }
698
699 if (!is_safe)
700 {
701 if (TREE_CODE (fn) == ADDR_EXPR)
702 fn = TREE_OPERAND (fn, 0);
703 if (d->block_flags & DIAG_TM_SAFE)
704 {
705 if (direct_call_p)
706 error_at (gimple_location (stmt),
707 "unsafe function call %qD within "
708 "atomic transaction", fn);
709 else
710 {
711 if (!DECL_P (fn) || DECL_NAME (fn))
712 error_at (gimple_location (stmt),
713 "unsafe function call %qE within "
714 "atomic transaction", fn);
715 else
716 error_at (gimple_location (stmt),
717 "unsafe indirect function call within "
718 "atomic transaction");
719 }
720 }
721 else
722 {
723 if (direct_call_p)
724 error_at (gimple_location (stmt),
725 "unsafe function call %qD within "
726 "%<transaction_safe%> function", fn);
727 else
728 {
729 if (!DECL_P (fn) || DECL_NAME (fn))
730 error_at (gimple_location (stmt),
731 "unsafe function call %qE within "
732 "%<transaction_safe%> function", fn);
733 else
734 error_at (gimple_location (stmt),
735 "unsafe indirect function call within "
736 "%<transaction_safe%> function");
737 }
738 }
739 }
740 }
741 }
742 break;
743
744 case GIMPLE_ASM:
745 /* ??? We ought to come up with a way to add attributes to
746 asm statements, and then add "transaction_safe" to it.
747 Either that or get the language spec to resurrect __tm_waiver. */
748 if (d->block_flags & DIAG_TM_SAFE)
749 error_at (gimple_location (stmt),
750 "asm not allowed in atomic transaction");
751 else if (d->func_flags & DIAG_TM_SAFE)
752 error_at (gimple_location (stmt),
753 "asm not allowed in %<transaction_safe%> function");
754 break;
755
756 case GIMPLE_TRANSACTION:
757 {
758 unsigned char inner_flags = DIAG_TM_SAFE;
759
760 if (gimple_transaction_subcode (stmt) & GTMA_IS_RELAXED)
761 {
762 if (d->block_flags & DIAG_TM_SAFE)
763 error_at (gimple_location (stmt),
764 "relaxed transaction in atomic transaction");
765 else if (d->func_flags & DIAG_TM_SAFE)
766 error_at (gimple_location (stmt),
767 "relaxed transaction in %<transaction_safe%> function");
768 inner_flags = DIAG_TM_RELAXED;
769 }
770 else if (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER)
771 {
772 if (d->block_flags)
773 error_at (gimple_location (stmt),
774 "outer transaction in transaction");
775 else if (d->func_flags & DIAG_TM_OUTER)
776 error_at (gimple_location (stmt),
777 "outer transaction in "
778 "%<transaction_may_cancel_outer%> function");
779 else if (d->func_flags & DIAG_TM_SAFE)
780 error_at (gimple_location (stmt),
781 "outer transaction in %<transaction_safe%> function");
782 inner_flags |= DIAG_TM_OUTER;
783 }
784
785 *handled_ops_p = true;
786 if (gimple_transaction_body (stmt))
787 {
788 struct walk_stmt_info wi_inner;
789 struct diagnose_tm d_inner;
790
791 memset (&d_inner, 0, sizeof (d_inner));
792 d_inner.func_flags = d->func_flags;
793 d_inner.block_flags = d->block_flags | inner_flags;
794 d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
795
796 memset (&wi_inner, 0, sizeof (wi_inner));
797 wi_inner.info = &d_inner;
798
799 walk_gimple_seq (gimple_transaction_body (stmt),
800 diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
801 }
802 }
803 break;
804
805 default:
806 break;
807 }
808
809 return NULL_TREE;
810 }
811
812 static unsigned int
813 diagnose_tm_blocks (void)
814 {
815 struct walk_stmt_info wi;
816 struct diagnose_tm d;
817
818 memset (&d, 0, sizeof (d));
819 if (is_tm_may_cancel_outer (current_function_decl))
820 d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
821 else if (is_tm_safe (current_function_decl))
822 d.func_flags = DIAG_TM_SAFE;
823 d.summary_flags = d.func_flags;
824
825 memset (&wi, 0, sizeof (wi));
826 wi.info = &d;
827
828 walk_gimple_seq (gimple_body (current_function_decl),
829 diagnose_tm_1, diagnose_tm_1_op, &wi);
830
831 return 0;
832 }
833
834 namespace {
835
836 const pass_data pass_data_diagnose_tm_blocks =
837 {
838 GIMPLE_PASS, /* type */
839 "*diagnose_tm_blocks", /* name */
840 OPTGROUP_NONE, /* optinfo_flags */
841 TV_TRANS_MEM, /* tv_id */
842 PROP_gimple_any, /* properties_required */
843 0, /* properties_provided */
844 0, /* properties_destroyed */
845 0, /* todo_flags_start */
846 0, /* todo_flags_finish */
847 };
848
849 class pass_diagnose_tm_blocks : public gimple_opt_pass
850 {
851 public:
852 pass_diagnose_tm_blocks (gcc::context *ctxt)
853 : gimple_opt_pass (pass_data_diagnose_tm_blocks, ctxt)
854 {}
855
856 /* opt_pass methods: */
857 virtual bool gate (function *) { return flag_tm; }
858 virtual unsigned int execute (function *) { return diagnose_tm_blocks (); }
859
860 }; // class pass_diagnose_tm_blocks
861
862 } // anon namespace
863
864 gimple_opt_pass *
865 make_pass_diagnose_tm_blocks (gcc::context *ctxt)
866 {
867 return new pass_diagnose_tm_blocks (ctxt);
868 }
869 \f
870 /* Instead of instrumenting thread private memory, we save the
871 addresses in a log which we later use to save/restore the addresses
872 upon transaction start/restart.
873
874 The log is keyed by address, where each element contains individual
875 statements among different code paths that perform the store.
876
877 This log is later used to generate either plain save/restore of the
878 addresses upon transaction start/restart, or calls to the ITM_L*
879 logging functions.
880
881 So for something like:
882
883 struct large { int x[1000]; };
884 struct large lala = { 0 };
885 __transaction {
886 lala.x[i] = 123;
887 ...
888 }
889
890 We can either save/restore:
891
892 lala = { 0 };
893 trxn = _ITM_startTransaction ();
894 if (trxn & a_saveLiveVariables)
895 tmp_lala1 = lala.x[i];
896 else if (a & a_restoreLiveVariables)
897 lala.x[i] = tmp_lala1;
898
899 or use the logging functions:
900
901 lala = { 0 };
902 trxn = _ITM_startTransaction ();
903 _ITM_LU4 (&lala.x[i]);
904
905 Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
906 far up the dominator tree to shadow all of the writes to a given
907 location (thus reducing the total number of logging calls), but not
908 so high as to be called on a path that does not perform a
909 write. */
910
911 /* One individual log entry. We may have multiple statements for the
912 same location if neither dominate each other (on different
913 execution paths). */
914 typedef struct tm_log_entry
915 {
916 /* Address to save. */
917 tree addr;
918 /* Entry block for the transaction this address occurs in. */
919 basic_block entry_block;
920 /* Dominating statements the store occurs in. */
921 gimple_vec stmts;
922 /* Initially, while we are building the log, we place a nonzero
923 value here to mean that this address *will* be saved with a
924 save/restore sequence. Later, when generating the save sequence
925 we place the SSA temp generated here. */
926 tree save_var;
927 } *tm_log_entry_t;
928
929
930 /* Log entry hashtable helpers. */
931
932 struct log_entry_hasher
933 {
934 typedef tm_log_entry value_type;
935 typedef tm_log_entry compare_type;
936 static inline hashval_t hash (const value_type *);
937 static inline bool equal (const value_type *, const compare_type *);
938 static inline void remove (value_type *);
939 };
940
941 /* Htab support. Return hash value for a `tm_log_entry'. */
942 inline hashval_t
943 log_entry_hasher::hash (const value_type *log)
944 {
945 return iterative_hash_expr (log->addr, 0);
946 }
947
948 /* Htab support. Return true if two log entries are the same. */
949 inline bool
950 log_entry_hasher::equal (const value_type *log1, const compare_type *log2)
951 {
952 /* FIXME:
953
954 rth: I suggest that we get rid of the component refs etc.
955 I.e. resolve the reference to base + offset.
956
957 We may need to actually finish a merge with mainline for this,
958 since we'd like to be presented with Richi's MEM_REF_EXPRs more
959 often than not. But in the meantime your tm_log_entry could save
960 the results of get_inner_reference.
961
962 See: g++.dg/tm/pr46653.C
963 */
964
965 /* Special case plain equality because operand_equal_p() below will
966 return FALSE if the addresses are equal but they have
967 side-effects (e.g. a volatile address). */
968 if (log1->addr == log2->addr)
969 return true;
970
971 return operand_equal_p (log1->addr, log2->addr, 0);
972 }
973
974 /* Htab support. Free one tm_log_entry. */
975 inline void
976 log_entry_hasher::remove (value_type *lp)
977 {
978 lp->stmts.release ();
979 free (lp);
980 }
981
982
983 /* The actual log. */
984 static hash_table<log_entry_hasher> *tm_log;
985
986 /* Addresses to log with a save/restore sequence. These should be in
987 dominator order. */
988 static vec<tree> tm_log_save_addresses;
989
990 enum thread_memory_type
991 {
992 mem_non_local = 0,
993 mem_thread_local,
994 mem_transaction_local,
995 mem_max
996 };
997
998 typedef struct tm_new_mem_map
999 {
1000 /* SSA_NAME being dereferenced. */
1001 tree val;
1002 enum thread_memory_type local_new_memory;
1003 } tm_new_mem_map_t;
1004
1005 /* Hashtable helpers. */
1006
1007 struct tm_mem_map_hasher : typed_free_remove <tm_new_mem_map_t>
1008 {
1009 typedef tm_new_mem_map_t value_type;
1010 typedef tm_new_mem_map_t compare_type;
1011 static inline hashval_t hash (const value_type *);
1012 static inline bool equal (const value_type *, const compare_type *);
1013 };
1014
1015 inline hashval_t
1016 tm_mem_map_hasher::hash (const value_type *v)
1017 {
1018 return (intptr_t)v->val >> 4;
1019 }
1020
1021 inline bool
1022 tm_mem_map_hasher::equal (const value_type *v, const compare_type *c)
1023 {
1024 return v->val == c->val;
1025 }
1026
1027 /* Map for an SSA_NAME originally pointing to a non aliased new piece
1028 of memory (malloc, alloc, etc). */
1029 static hash_table<tm_mem_map_hasher> *tm_new_mem_hash;
1030
1031 /* Initialize logging data structures. */
1032 static void
1033 tm_log_init (void)
1034 {
1035 tm_log = new hash_table<log_entry_hasher> (10);
1036 tm_new_mem_hash = new hash_table<tm_mem_map_hasher> (5);
1037 tm_log_save_addresses.create (5);
1038 }
1039
1040 /* Free logging data structures. */
1041 static void
1042 tm_log_delete (void)
1043 {
1044 delete tm_log;
1045 tm_log = NULL;
1046 delete tm_new_mem_hash;
1047 tm_new_mem_hash = NULL;
1048 tm_log_save_addresses.release ();
1049 }
1050
1051 /* Return true if MEM is a transaction invariant memory for the TM
1052 region starting at REGION_ENTRY_BLOCK. */
1053 static bool
1054 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
1055 {
1056 if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
1057 && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
1058 {
1059 basic_block def_bb;
1060
1061 def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
1062 return def_bb != region_entry_block
1063 && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
1064 }
1065
1066 mem = strip_invariant_refs (mem);
1067 return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
1068 }
1069
1070 /* Given an address ADDR in STMT, find it in the memory log or add it,
1071 making sure to keep only the addresses highest in the dominator
1072 tree.
1073
1074 ENTRY_BLOCK is the entry_block for the transaction.
1075
1076 If we find the address in the log, make sure it's either the same
1077 address, or an equivalent one that dominates ADDR.
1078
1079 If we find the address, but neither ADDR dominates the found
1080 address, nor the found one dominates ADDR, we're on different
1081 execution paths. Add it.
1082
1083 If known, ENTRY_BLOCK is the entry block for the region, otherwise
1084 NULL. */
1085 static void
1086 tm_log_add (basic_block entry_block, tree addr, gimple stmt)
1087 {
1088 tm_log_entry **slot;
1089 struct tm_log_entry l, *lp;
1090
1091 l.addr = addr;
1092 slot = tm_log->find_slot (&l, INSERT);
1093 if (!*slot)
1094 {
1095 tree type = TREE_TYPE (addr);
1096
1097 lp = XNEW (struct tm_log_entry);
1098 lp->addr = addr;
1099 *slot = lp;
1100
1101 /* Small invariant addresses can be handled as save/restores. */
1102 if (entry_block
1103 && transaction_invariant_address_p (lp->addr, entry_block)
1104 && TYPE_SIZE_UNIT (type) != NULL
1105 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
1106 && ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE_UNIT (type))
1107 < PARAM_VALUE (PARAM_TM_MAX_AGGREGATE_SIZE))
1108 /* We must be able to copy this type normally. I.e., no
1109 special constructors and the like. */
1110 && !TREE_ADDRESSABLE (type))
1111 {
1112 lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
1113 lp->stmts.create (0);
1114 lp->entry_block = entry_block;
1115 /* Save addresses separately in dominator order so we don't
1116 get confused by overlapping addresses in the save/restore
1117 sequence. */
1118 tm_log_save_addresses.safe_push (lp->addr);
1119 }
1120 else
1121 {
1122 /* Use the logging functions. */
1123 lp->stmts.create (5);
1124 lp->stmts.quick_push (stmt);
1125 lp->save_var = NULL;
1126 }
1127 }
1128 else
1129 {
1130 size_t i;
1131 gimple oldstmt;
1132
1133 lp = *slot;
1134
1135 /* If we're generating a save/restore sequence, we don't care
1136 about statements. */
1137 if (lp->save_var)
1138 return;
1139
1140 for (i = 0; lp->stmts.iterate (i, &oldstmt); ++i)
1141 {
1142 if (stmt == oldstmt)
1143 return;
1144 /* We already have a store to the same address, higher up the
1145 dominator tree. Nothing to do. */
1146 if (dominated_by_p (CDI_DOMINATORS,
1147 gimple_bb (stmt), gimple_bb (oldstmt)))
1148 return;
1149 /* We should be processing blocks in dominator tree order. */
1150 gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1151 gimple_bb (oldstmt), gimple_bb (stmt)));
1152 }
1153 /* Store is on a different code path. */
1154 lp->stmts.safe_push (stmt);
1155 }
1156 }
1157
1158 /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
1159 result, insert the new statements before GSI. */
1160
1161 static tree
1162 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1163 {
1164 if (TREE_CODE (x) == TARGET_MEM_REF)
1165 x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1166 else
1167 x = build_fold_addr_expr (x);
1168 return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1169 }
1170
1171 /* Instrument one address with the logging functions.
1172 ADDR is the address to save.
1173 STMT is the statement before which to place it. */
1174 static void
1175 tm_log_emit_stmt (tree addr, gimple stmt)
1176 {
1177 tree type = TREE_TYPE (addr);
1178 tree size = TYPE_SIZE_UNIT (type);
1179 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1180 gimple log;
1181 enum built_in_function code = BUILT_IN_TM_LOG;
1182
1183 if (type == float_type_node)
1184 code = BUILT_IN_TM_LOG_FLOAT;
1185 else if (type == double_type_node)
1186 code = BUILT_IN_TM_LOG_DOUBLE;
1187 else if (type == long_double_type_node)
1188 code = BUILT_IN_TM_LOG_LDOUBLE;
1189 else if (tree_fits_uhwi_p (size))
1190 {
1191 unsigned int n = tree_to_uhwi (size);
1192 switch (n)
1193 {
1194 case 1:
1195 code = BUILT_IN_TM_LOG_1;
1196 break;
1197 case 2:
1198 code = BUILT_IN_TM_LOG_2;
1199 break;
1200 case 4:
1201 code = BUILT_IN_TM_LOG_4;
1202 break;
1203 case 8:
1204 code = BUILT_IN_TM_LOG_8;
1205 break;
1206 default:
1207 code = BUILT_IN_TM_LOG;
1208 if (TREE_CODE (type) == VECTOR_TYPE)
1209 {
1210 if (n == 8 && builtin_decl_explicit (BUILT_IN_TM_LOG_M64))
1211 code = BUILT_IN_TM_LOG_M64;
1212 else if (n == 16 && builtin_decl_explicit (BUILT_IN_TM_LOG_M128))
1213 code = BUILT_IN_TM_LOG_M128;
1214 else if (n == 32 && builtin_decl_explicit (BUILT_IN_TM_LOG_M256))
1215 code = BUILT_IN_TM_LOG_M256;
1216 }
1217 break;
1218 }
1219 }
1220
1221 addr = gimplify_addr (&gsi, addr);
1222 if (code == BUILT_IN_TM_LOG)
1223 log = gimple_build_call (builtin_decl_explicit (code), 2, addr, size);
1224 else
1225 log = gimple_build_call (builtin_decl_explicit (code), 1, addr);
1226 gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1227 }
1228
1229 /* Go through the log and instrument address that must be instrumented
1230 with the logging functions. Leave the save/restore addresses for
1231 later. */
1232 static void
1233 tm_log_emit (void)
1234 {
1235 hash_table<log_entry_hasher>::iterator hi;
1236 struct tm_log_entry *lp;
1237
1238 FOR_EACH_HASH_TABLE_ELEMENT (*tm_log, lp, tm_log_entry_t, hi)
1239 {
1240 size_t i;
1241 gimple stmt;
1242
1243 if (dump_file)
1244 {
1245 fprintf (dump_file, "TM thread private mem logging: ");
1246 print_generic_expr (dump_file, lp->addr, 0);
1247 fprintf (dump_file, "\n");
1248 }
1249
1250 if (lp->save_var)
1251 {
1252 if (dump_file)
1253 fprintf (dump_file, "DUMPING to variable\n");
1254 continue;
1255 }
1256 else
1257 {
1258 if (dump_file)
1259 fprintf (dump_file, "DUMPING with logging functions\n");
1260 for (i = 0; lp->stmts.iterate (i, &stmt); ++i)
1261 tm_log_emit_stmt (lp->addr, stmt);
1262 }
1263 }
1264 }
1265
1266 /* Emit the save sequence for the corresponding addresses in the log.
1267 ENTRY_BLOCK is the entry block for the transaction.
1268 BB is the basic block to insert the code in. */
1269 static void
1270 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1271 {
1272 size_t i;
1273 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1274 gimple stmt;
1275 struct tm_log_entry l, *lp;
1276
1277 for (i = 0; i < tm_log_save_addresses.length (); ++i)
1278 {
1279 l.addr = tm_log_save_addresses[i];
1280 lp = *(tm_log->find_slot (&l, NO_INSERT));
1281 gcc_assert (lp->save_var != NULL);
1282
1283 /* We only care about variables in the current transaction. */
1284 if (lp->entry_block != entry_block)
1285 continue;
1286
1287 stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1288
1289 /* Make sure we can create an SSA_NAME for this type. For
1290 instance, aggregates aren't allowed, in which case the system
1291 will create a VOP for us and everything will just work. */
1292 if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1293 {
1294 lp->save_var = make_ssa_name (lp->save_var, stmt);
1295 gimple_assign_set_lhs (stmt, lp->save_var);
1296 }
1297
1298 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1299 }
1300 }
1301
1302 /* Emit the restore sequence for the corresponding addresses in the log.
1303 ENTRY_BLOCK is the entry block for the transaction.
1304 BB is the basic block to insert the code in. */
1305 static void
1306 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1307 {
1308 int i;
1309 struct tm_log_entry l, *lp;
1310 gimple_stmt_iterator gsi;
1311 gimple stmt;
1312
1313 for (i = tm_log_save_addresses.length () - 1; i >= 0; i--)
1314 {
1315 l.addr = tm_log_save_addresses[i];
1316 lp = *(tm_log->find_slot (&l, NO_INSERT));
1317 gcc_assert (lp->save_var != NULL);
1318
1319 /* We only care about variables in the current transaction. */
1320 if (lp->entry_block != entry_block)
1321 continue;
1322
1323 /* Restores are in LIFO order from the saves in case we have
1324 overlaps. */
1325 gsi = gsi_start_bb (bb);
1326
1327 stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1328 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1329 }
1330 }
1331
1332 \f
1333 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1334 struct walk_stmt_info *);
1335 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1336 struct walk_stmt_info *);
1337
1338 /* Evaluate an address X being dereferenced and determine if it
1339 originally points to a non aliased new chunk of memory (malloc,
1340 alloca, etc).
1341
1342 Return MEM_THREAD_LOCAL if it points to a thread-local address.
1343 Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1344 Return MEM_NON_LOCAL otherwise.
1345
1346 ENTRY_BLOCK is the entry block to the transaction containing the
1347 dereference of X. */
1348 static enum thread_memory_type
1349 thread_private_new_memory (basic_block entry_block, tree x)
1350 {
1351 gimple stmt = NULL;
1352 enum tree_code code;
1353 tm_new_mem_map_t **slot;
1354 tm_new_mem_map_t elt, *elt_p;
1355 tree val = x;
1356 enum thread_memory_type retval = mem_transaction_local;
1357
1358 if (!entry_block
1359 || TREE_CODE (x) != SSA_NAME
1360 /* Possible uninitialized use, or a function argument. In
1361 either case, we don't care. */
1362 || SSA_NAME_IS_DEFAULT_DEF (x))
1363 return mem_non_local;
1364
1365 /* Look in cache first. */
1366 elt.val = x;
1367 slot = tm_new_mem_hash->find_slot (&elt, INSERT);
1368 elt_p = *slot;
1369 if (elt_p)
1370 return elt_p->local_new_memory;
1371
1372 /* Optimistically assume the memory is transaction local during
1373 processing. This catches recursion into this variable. */
1374 *slot = elt_p = XNEW (tm_new_mem_map_t);
1375 elt_p->val = val;
1376 elt_p->local_new_memory = mem_transaction_local;
1377
1378 /* Search DEF chain to find the original definition of this address. */
1379 do
1380 {
1381 if (ptr_deref_may_alias_global_p (x))
1382 {
1383 /* Address escapes. This is not thread-private. */
1384 retval = mem_non_local;
1385 goto new_memory_ret;
1386 }
1387
1388 stmt = SSA_NAME_DEF_STMT (x);
1389
1390 /* If the malloc call is outside the transaction, this is
1391 thread-local. */
1392 if (retval != mem_thread_local
1393 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1394 retval = mem_thread_local;
1395
1396 if (is_gimple_assign (stmt))
1397 {
1398 code = gimple_assign_rhs_code (stmt);
1399 /* x = foo ==> foo */
1400 if (code == SSA_NAME)
1401 x = gimple_assign_rhs1 (stmt);
1402 /* x = foo + n ==> foo */
1403 else if (code == POINTER_PLUS_EXPR)
1404 x = gimple_assign_rhs1 (stmt);
1405 /* x = (cast*) foo ==> foo */
1406 else if (code == VIEW_CONVERT_EXPR || code == NOP_EXPR)
1407 x = gimple_assign_rhs1 (stmt);
1408 /* x = c ? op1 : op2 == > op1 or op2 just like a PHI */
1409 else if (code == COND_EXPR)
1410 {
1411 tree op1 = gimple_assign_rhs2 (stmt);
1412 tree op2 = gimple_assign_rhs3 (stmt);
1413 enum thread_memory_type mem;
1414 retval = thread_private_new_memory (entry_block, op1);
1415 if (retval == mem_non_local)
1416 goto new_memory_ret;
1417 mem = thread_private_new_memory (entry_block, op2);
1418 retval = MIN (retval, mem);
1419 goto new_memory_ret;
1420 }
1421 else
1422 {
1423 retval = mem_non_local;
1424 goto new_memory_ret;
1425 }
1426 }
1427 else
1428 {
1429 if (gimple_code (stmt) == GIMPLE_PHI)
1430 {
1431 unsigned int i;
1432 enum thread_memory_type mem;
1433 tree phi_result = gimple_phi_result (stmt);
1434
1435 /* If any of the ancestors are non-local, we are sure to
1436 be non-local. Otherwise we can avoid doing anything
1437 and inherit what has already been generated. */
1438 retval = mem_max;
1439 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1440 {
1441 tree op = PHI_ARG_DEF (stmt, i);
1442
1443 /* Exclude self-assignment. */
1444 if (phi_result == op)
1445 continue;
1446
1447 mem = thread_private_new_memory (entry_block, op);
1448 if (mem == mem_non_local)
1449 {
1450 retval = mem;
1451 goto new_memory_ret;
1452 }
1453 retval = MIN (retval, mem);
1454 }
1455 goto new_memory_ret;
1456 }
1457 break;
1458 }
1459 }
1460 while (TREE_CODE (x) == SSA_NAME);
1461
1462 if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1463 /* Thread-local or transaction-local. */
1464 ;
1465 else
1466 retval = mem_non_local;
1467
1468 new_memory_ret:
1469 elt_p->local_new_memory = retval;
1470 return retval;
1471 }
1472
1473 /* Determine whether X has to be instrumented using a read
1474 or write barrier.
1475
1476 ENTRY_BLOCK is the entry block for the region where stmt resides
1477 in. NULL if unknown.
1478
1479 STMT is the statement in which X occurs in. It is used for thread
1480 private memory instrumentation. If no TPM instrumentation is
1481 desired, STMT should be null. */
1482 static bool
1483 requires_barrier (basic_block entry_block, tree x, gimple stmt)
1484 {
1485 tree orig = x;
1486 while (handled_component_p (x))
1487 x = TREE_OPERAND (x, 0);
1488
1489 switch (TREE_CODE (x))
1490 {
1491 case INDIRECT_REF:
1492 case MEM_REF:
1493 {
1494 enum thread_memory_type ret;
1495
1496 ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1497 if (ret == mem_non_local)
1498 return true;
1499 if (stmt && ret == mem_thread_local)
1500 /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
1501 tm_log_add (entry_block, orig, stmt);
1502
1503 /* Transaction-locals require nothing at all. For malloc, a
1504 transaction restart frees the memory and we reallocate.
1505 For alloca, the stack pointer gets reset by the retry and
1506 we reallocate. */
1507 return false;
1508 }
1509
1510 case TARGET_MEM_REF:
1511 if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1512 return true;
1513 x = TREE_OPERAND (TMR_BASE (x), 0);
1514 if (TREE_CODE (x) == PARM_DECL)
1515 return false;
1516 gcc_assert (TREE_CODE (x) == VAR_DECL);
1517 /* FALLTHRU */
1518
1519 case PARM_DECL:
1520 case RESULT_DECL:
1521 case VAR_DECL:
1522 if (DECL_BY_REFERENCE (x))
1523 {
1524 /* ??? This value is a pointer, but aggregate_value_p has been
1525 jigged to return true which confuses needs_to_live_in_memory.
1526 This ought to be cleaned up generically.
1527
1528 FIXME: Verify this still happens after the next mainline
1529 merge. Testcase ie g++.dg/tm/pr47554.C.
1530 */
1531 return false;
1532 }
1533
1534 if (is_global_var (x))
1535 return !TREE_READONLY (x);
1536 if (/* FIXME: This condition should actually go below in the
1537 tm_log_add() call, however is_call_clobbered() depends on
1538 aliasing info which is not available during
1539 gimplification. Since requires_barrier() gets called
1540 during lower_sequence_tm/gimplification, leave the call
1541 to needs_to_live_in_memory until we eliminate
1542 lower_sequence_tm altogether. */
1543 needs_to_live_in_memory (x))
1544 return true;
1545 else
1546 {
1547 /* For local memory that doesn't escape (aka thread private
1548 memory), we can either save the value at the beginning of
1549 the transaction and restore on restart, or call a tm
1550 function to dynamically save and restore on restart
1551 (ITM_L*). */
1552 if (stmt)
1553 tm_log_add (entry_block, orig, stmt);
1554 return false;
1555 }
1556
1557 default:
1558 return false;
1559 }
1560 }
1561
1562 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1563 a transaction region. */
1564
1565 static void
1566 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1567 {
1568 gimple stmt = gsi_stmt (*gsi);
1569
1570 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1571 *state |= GTMA_HAVE_LOAD;
1572 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1573 *state |= GTMA_HAVE_STORE;
1574 }
1575
1576 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
1577
1578 static void
1579 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1580 {
1581 gimple stmt = gsi_stmt (*gsi);
1582 tree fn;
1583
1584 if (is_tm_pure_call (stmt))
1585 return;
1586
1587 /* Check if this call is a transaction abort. */
1588 fn = gimple_call_fndecl (stmt);
1589 if (is_tm_abort (fn))
1590 *state |= GTMA_HAVE_ABORT;
1591
1592 /* Note that something may happen. */
1593 *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1594 }
1595
1596 /* Lower a GIMPLE_TRANSACTION statement. */
1597
1598 static void
1599 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1600 {
1601 gimple g, stmt = gsi_stmt (*gsi);
1602 unsigned int *outer_state = (unsigned int *) wi->info;
1603 unsigned int this_state = 0;
1604 struct walk_stmt_info this_wi;
1605
1606 /* First, lower the body. The scanning that we do inside gives
1607 us some idea of what we're dealing with. */
1608 memset (&this_wi, 0, sizeof (this_wi));
1609 this_wi.info = (void *) &this_state;
1610 walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
1611 lower_sequence_tm, NULL, &this_wi);
1612
1613 /* If there was absolutely nothing transaction related inside the
1614 transaction, we may elide it. Likewise if this is a nested
1615 transaction and does not contain an abort. */
1616 if (this_state == 0
1617 || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1618 {
1619 if (outer_state)
1620 *outer_state |= this_state;
1621
1622 gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1623 GSI_SAME_STMT);
1624 gimple_transaction_set_body (stmt, NULL);
1625
1626 gsi_remove (gsi, true);
1627 wi->removed_stmt = true;
1628 return;
1629 }
1630
1631 /* Wrap the body of the transaction in a try-finally node so that
1632 the commit call is always properly called. */
1633 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1634 if (flag_exceptions)
1635 {
1636 tree ptr;
1637 gimple_seq n_seq, e_seq;
1638
1639 n_seq = gimple_seq_alloc_with_stmt (g);
1640 e_seq = NULL;
1641
1642 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1643 1, integer_zero_node);
1644 ptr = create_tmp_var (ptr_type_node, NULL);
1645 gimple_call_set_lhs (g, ptr);
1646 gimple_seq_add_stmt (&e_seq, g);
1647
1648 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1649 1, ptr);
1650 gimple_seq_add_stmt (&e_seq, g);
1651
1652 g = gimple_build_eh_else (n_seq, e_seq);
1653 }
1654
1655 g = gimple_build_try (gimple_transaction_body (stmt),
1656 gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1657 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1658
1659 gimple_transaction_set_body (stmt, NULL);
1660
1661 /* If the transaction calls abort or if this is an outer transaction,
1662 add an "over" label afterwards. */
1663 if ((this_state & (GTMA_HAVE_ABORT))
1664 || (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER))
1665 {
1666 tree label = create_artificial_label (UNKNOWN_LOCATION);
1667 gimple_transaction_set_label (stmt, label);
1668 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
1669 }
1670
1671 /* Record the set of operations found for use later. */
1672 this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1673 gimple_transaction_set_subcode (stmt, this_state);
1674 }
1675
1676 /* Iterate through the statements in the sequence, lowering them all
1677 as appropriate for being in a transaction. */
1678
1679 static tree
1680 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1681 struct walk_stmt_info *wi)
1682 {
1683 unsigned int *state = (unsigned int *) wi->info;
1684 gimple stmt = gsi_stmt (*gsi);
1685
1686 *handled_ops_p = true;
1687 switch (gimple_code (stmt))
1688 {
1689 case GIMPLE_ASSIGN:
1690 /* Only memory reads/writes need to be instrumented. */
1691 if (gimple_assign_single_p (stmt))
1692 examine_assign_tm (state, gsi);
1693 break;
1694
1695 case GIMPLE_CALL:
1696 examine_call_tm (state, gsi);
1697 break;
1698
1699 case GIMPLE_ASM:
1700 *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1701 break;
1702
1703 case GIMPLE_TRANSACTION:
1704 lower_transaction (gsi, wi);
1705 break;
1706
1707 default:
1708 *handled_ops_p = !gimple_has_substatements (stmt);
1709 break;
1710 }
1711
1712 return NULL_TREE;
1713 }
1714
1715 /* Iterate through the statements in the sequence, lowering them all
1716 as appropriate for being outside of a transaction. */
1717
1718 static tree
1719 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1720 struct walk_stmt_info * wi)
1721 {
1722 gimple stmt = gsi_stmt (*gsi);
1723
1724 if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1725 {
1726 *handled_ops_p = true;
1727 lower_transaction (gsi, wi);
1728 }
1729 else
1730 *handled_ops_p = !gimple_has_substatements (stmt);
1731
1732 return NULL_TREE;
1733 }
1734
1735 /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
1736 this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1737 been moved out, and all the data required for constructing a proper
1738 CFG has been recorded. */
1739
1740 static unsigned int
1741 execute_lower_tm (void)
1742 {
1743 struct walk_stmt_info wi;
1744 gimple_seq body;
1745
1746 /* Transactional clones aren't created until a later pass. */
1747 gcc_assert (!decl_is_tm_clone (current_function_decl));
1748
1749 body = gimple_body (current_function_decl);
1750 memset (&wi, 0, sizeof (wi));
1751 walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi);
1752 gimple_set_body (current_function_decl, body);
1753
1754 return 0;
1755 }
1756
1757 namespace {
1758
1759 const pass_data pass_data_lower_tm =
1760 {
1761 GIMPLE_PASS, /* type */
1762 "tmlower", /* name */
1763 OPTGROUP_NONE, /* optinfo_flags */
1764 TV_TRANS_MEM, /* tv_id */
1765 PROP_gimple_lcf, /* properties_required */
1766 0, /* properties_provided */
1767 0, /* properties_destroyed */
1768 0, /* todo_flags_start */
1769 0, /* todo_flags_finish */
1770 };
1771
1772 class pass_lower_tm : public gimple_opt_pass
1773 {
1774 public:
1775 pass_lower_tm (gcc::context *ctxt)
1776 : gimple_opt_pass (pass_data_lower_tm, ctxt)
1777 {}
1778
1779 /* opt_pass methods: */
1780 virtual bool gate (function *) { return flag_tm; }
1781 virtual unsigned int execute (function *) { return execute_lower_tm (); }
1782
1783 }; // class pass_lower_tm
1784
1785 } // anon namespace
1786
1787 gimple_opt_pass *
1788 make_pass_lower_tm (gcc::context *ctxt)
1789 {
1790 return new pass_lower_tm (ctxt);
1791 }
1792 \f
1793 /* Collect region information for each transaction. */
1794
1795 struct tm_region
1796 {
1797 /* Link to the next unnested transaction. */
1798 struct tm_region *next;
1799
1800 /* Link to the next inner transaction. */
1801 struct tm_region *inner;
1802
1803 /* Link to the next outer transaction. */
1804 struct tm_region *outer;
1805
1806 /* The GIMPLE_TRANSACTION statement beginning this transaction.
1807 After TM_MARK, this gets replaced by a call to
1808 BUILT_IN_TM_START. */
1809 gimple transaction_stmt;
1810
1811 /* After TM_MARK expands the GIMPLE_TRANSACTION into a call to
1812 BUILT_IN_TM_START, this field is true if the transaction is an
1813 outer transaction. */
1814 bool original_transaction_was_outer;
1815
1816 /* Return value from BUILT_IN_TM_START. */
1817 tree tm_state;
1818
1819 /* The entry block to this region. This will always be the first
1820 block of the body of the transaction. */
1821 basic_block entry_block;
1822
1823 /* The first block after an expanded call to _ITM_beginTransaction. */
1824 basic_block restart_block;
1825
1826 /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1827 These blocks are still a part of the region (i.e., the border is
1828 inclusive). Note that this set is only complete for paths in the CFG
1829 starting at ENTRY_BLOCK, and that there is no exit block recorded for
1830 the edge to the "over" label. */
1831 bitmap exit_blocks;
1832
1833 /* The set of all blocks that have an TM_IRREVOCABLE call. */
1834 bitmap irr_blocks;
1835 };
1836
1837 typedef struct tm_region *tm_region_p;
1838
1839 /* True if there are pending edge statements to be committed for the
1840 current function being scanned in the tmmark pass. */
1841 bool pending_edge_inserts_p;
1842
1843 static struct tm_region *all_tm_regions;
1844 static bitmap_obstack tm_obstack;
1845
1846
1847 /* A subroutine of tm_region_init. Record the existence of the
1848 GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
1849
1850 static struct tm_region *
1851 tm_region_init_0 (struct tm_region *outer, basic_block bb, gimple stmt)
1852 {
1853 struct tm_region *region;
1854
1855 region = (struct tm_region *)
1856 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1857
1858 if (outer)
1859 {
1860 region->next = outer->inner;
1861 outer->inner = region;
1862 }
1863 else
1864 {
1865 region->next = all_tm_regions;
1866 all_tm_regions = region;
1867 }
1868 region->inner = NULL;
1869 region->outer = outer;
1870
1871 region->transaction_stmt = stmt;
1872 region->original_transaction_was_outer = false;
1873 region->tm_state = NULL;
1874
1875 /* There are either one or two edges out of the block containing
1876 the GIMPLE_TRANSACTION, one to the actual region and one to the
1877 "over" label if the region contains an abort. The former will
1878 always be the one marked FALLTHRU. */
1879 region->entry_block = FALLTHRU_EDGE (bb)->dest;
1880
1881 region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1882 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1883
1884 return region;
1885 }
1886
1887 /* A subroutine of tm_region_init. Record all the exit and
1888 irrevocable blocks in BB into the region's exit_blocks and
1889 irr_blocks bitmaps. Returns the new region being scanned. */
1890
1891 static struct tm_region *
1892 tm_region_init_1 (struct tm_region *region, basic_block bb)
1893 {
1894 gimple_stmt_iterator gsi;
1895 gimple g;
1896
1897 if (!region
1898 || (!region->irr_blocks && !region->exit_blocks))
1899 return region;
1900
1901 /* Check to see if this is the end of a region by seeing if it
1902 contains a call to __builtin_tm_commit{,_eh}. Note that the
1903 outermost region for DECL_IS_TM_CLONE need not collect this. */
1904 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1905 {
1906 g = gsi_stmt (gsi);
1907 if (gimple_code (g) == GIMPLE_CALL)
1908 {
1909 tree fn = gimple_call_fndecl (g);
1910 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
1911 {
1912 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
1913 || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
1914 && region->exit_blocks)
1915 {
1916 bitmap_set_bit (region->exit_blocks, bb->index);
1917 region = region->outer;
1918 break;
1919 }
1920 if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
1921 bitmap_set_bit (region->irr_blocks, bb->index);
1922 }
1923 }
1924 }
1925 return region;
1926 }
1927
1928 /* Collect all of the transaction regions within the current function
1929 and record them in ALL_TM_REGIONS. The REGION parameter may specify
1930 an "outermost" region for use by tm clones. */
1931
1932 static void
1933 tm_region_init (struct tm_region *region)
1934 {
1935 gimple g;
1936 edge_iterator ei;
1937 edge e;
1938 basic_block bb;
1939 auto_vec<basic_block> queue;
1940 bitmap visited_blocks = BITMAP_ALLOC (NULL);
1941 struct tm_region *old_region;
1942 auto_vec<tm_region_p> bb_regions;
1943
1944 all_tm_regions = region;
1945 bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1946
1947 /* We could store this information in bb->aux, but we may get called
1948 through get_all_tm_blocks() from another pass that may be already
1949 using bb->aux. */
1950 bb_regions.safe_grow_cleared (last_basic_block_for_fn (cfun));
1951
1952 queue.safe_push (bb);
1953 bb_regions[bb->index] = region;
1954 do
1955 {
1956 bb = queue.pop ();
1957 region = bb_regions[bb->index];
1958 bb_regions[bb->index] = NULL;
1959
1960 /* Record exit and irrevocable blocks. */
1961 region = tm_region_init_1 (region, bb);
1962
1963 /* Check for the last statement in the block beginning a new region. */
1964 g = last_stmt (bb);
1965 old_region = region;
1966 if (g && gimple_code (g) == GIMPLE_TRANSACTION)
1967 region = tm_region_init_0 (region, bb, g);
1968
1969 /* Process subsequent blocks. */
1970 FOR_EACH_EDGE (e, ei, bb->succs)
1971 if (!bitmap_bit_p (visited_blocks, e->dest->index))
1972 {
1973 bitmap_set_bit (visited_blocks, e->dest->index);
1974 queue.safe_push (e->dest);
1975
1976 /* If the current block started a new region, make sure that only
1977 the entry block of the new region is associated with this region.
1978 Other successors are still part of the old region. */
1979 if (old_region != region && e->dest != region->entry_block)
1980 bb_regions[e->dest->index] = old_region;
1981 else
1982 bb_regions[e->dest->index] = region;
1983 }
1984 }
1985 while (!queue.is_empty ());
1986 BITMAP_FREE (visited_blocks);
1987 }
1988
1989 /* The "gate" function for all transactional memory expansion and optimization
1990 passes. We collect region information for each top-level transaction, and
1991 if we don't find any, we skip all of the TM passes. Each region will have
1992 all of the exit blocks recorded, and the originating statement. */
1993
1994 static bool
1995 gate_tm_init (void)
1996 {
1997 if (!flag_tm)
1998 return false;
1999
2000 calculate_dominance_info (CDI_DOMINATORS);
2001 bitmap_obstack_initialize (&tm_obstack);
2002
2003 /* If the function is a TM_CLONE, then the entire function is the region. */
2004 if (decl_is_tm_clone (current_function_decl))
2005 {
2006 struct tm_region *region = (struct tm_region *)
2007 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
2008 memset (region, 0, sizeof (*region));
2009 region->entry_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2010 /* For a clone, the entire function is the region. But even if
2011 we don't need to record any exit blocks, we may need to
2012 record irrevocable blocks. */
2013 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
2014
2015 tm_region_init (region);
2016 }
2017 else
2018 {
2019 tm_region_init (NULL);
2020
2021 /* If we didn't find any regions, cleanup and skip the whole tree
2022 of tm-related optimizations. */
2023 if (all_tm_regions == NULL)
2024 {
2025 bitmap_obstack_release (&tm_obstack);
2026 return false;
2027 }
2028 }
2029
2030 return true;
2031 }
2032
2033 namespace {
2034
2035 const pass_data pass_data_tm_init =
2036 {
2037 GIMPLE_PASS, /* type */
2038 "*tminit", /* name */
2039 OPTGROUP_NONE, /* optinfo_flags */
2040 TV_TRANS_MEM, /* tv_id */
2041 ( PROP_ssa | PROP_cfg ), /* properties_required */
2042 0, /* properties_provided */
2043 0, /* properties_destroyed */
2044 0, /* todo_flags_start */
2045 0, /* todo_flags_finish */
2046 };
2047
2048 class pass_tm_init : public gimple_opt_pass
2049 {
2050 public:
2051 pass_tm_init (gcc::context *ctxt)
2052 : gimple_opt_pass (pass_data_tm_init, ctxt)
2053 {}
2054
2055 /* opt_pass methods: */
2056 virtual bool gate (function *) { return gate_tm_init (); }
2057
2058 }; // class pass_tm_init
2059
2060 } // anon namespace
2061
2062 gimple_opt_pass *
2063 make_pass_tm_init (gcc::context *ctxt)
2064 {
2065 return new pass_tm_init (ctxt);
2066 }
2067 \f
2068 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
2069 represented by STATE. */
2070
2071 static inline void
2072 transaction_subcode_ior (struct tm_region *region, unsigned flags)
2073 {
2074 if (region && region->transaction_stmt)
2075 {
2076 flags |= gimple_transaction_subcode (region->transaction_stmt);
2077 gimple_transaction_set_subcode (region->transaction_stmt, flags);
2078 }
2079 }
2080
2081 /* Construct a memory load in a transactional context. Return the
2082 gimple statement performing the load, or NULL if there is no
2083 TM_LOAD builtin of the appropriate size to do the load.
2084
2085 LOC is the location to use for the new statement(s). */
2086
2087 static gimple
2088 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2089 {
2090 enum built_in_function code = END_BUILTINS;
2091 tree t, type = TREE_TYPE (rhs), decl;
2092 gimple gcall;
2093
2094 if (type == float_type_node)
2095 code = BUILT_IN_TM_LOAD_FLOAT;
2096 else if (type == double_type_node)
2097 code = BUILT_IN_TM_LOAD_DOUBLE;
2098 else if (type == long_double_type_node)
2099 code = BUILT_IN_TM_LOAD_LDOUBLE;
2100 else if (TYPE_SIZE_UNIT (type) != NULL
2101 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2102 {
2103 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2104 {
2105 case 1:
2106 code = BUILT_IN_TM_LOAD_1;
2107 break;
2108 case 2:
2109 code = BUILT_IN_TM_LOAD_2;
2110 break;
2111 case 4:
2112 code = BUILT_IN_TM_LOAD_4;
2113 break;
2114 case 8:
2115 code = BUILT_IN_TM_LOAD_8;
2116 break;
2117 }
2118 }
2119
2120 if (code == END_BUILTINS)
2121 {
2122 decl = targetm.vectorize.builtin_tm_load (type);
2123 if (!decl)
2124 return NULL;
2125 }
2126 else
2127 decl = builtin_decl_explicit (code);
2128
2129 t = gimplify_addr (gsi, rhs);
2130 gcall = gimple_build_call (decl, 1, t);
2131 gimple_set_location (gcall, loc);
2132
2133 t = TREE_TYPE (TREE_TYPE (decl));
2134 if (useless_type_conversion_p (type, t))
2135 {
2136 gimple_call_set_lhs (gcall, lhs);
2137 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2138 }
2139 else
2140 {
2141 gimple g;
2142 tree temp;
2143
2144 temp = create_tmp_reg (t, NULL);
2145 gimple_call_set_lhs (gcall, temp);
2146 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2147
2148 t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2149 g = gimple_build_assign (lhs, t);
2150 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2151 }
2152
2153 return gcall;
2154 }
2155
2156
2157 /* Similarly for storing TYPE in a transactional context. */
2158
2159 static gimple
2160 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2161 {
2162 enum built_in_function code = END_BUILTINS;
2163 tree t, fn, type = TREE_TYPE (rhs), simple_type;
2164 gimple gcall;
2165
2166 if (type == float_type_node)
2167 code = BUILT_IN_TM_STORE_FLOAT;
2168 else if (type == double_type_node)
2169 code = BUILT_IN_TM_STORE_DOUBLE;
2170 else if (type == long_double_type_node)
2171 code = BUILT_IN_TM_STORE_LDOUBLE;
2172 else if (TYPE_SIZE_UNIT (type) != NULL
2173 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2174 {
2175 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2176 {
2177 case 1:
2178 code = BUILT_IN_TM_STORE_1;
2179 break;
2180 case 2:
2181 code = BUILT_IN_TM_STORE_2;
2182 break;
2183 case 4:
2184 code = BUILT_IN_TM_STORE_4;
2185 break;
2186 case 8:
2187 code = BUILT_IN_TM_STORE_8;
2188 break;
2189 }
2190 }
2191
2192 if (code == END_BUILTINS)
2193 {
2194 fn = targetm.vectorize.builtin_tm_store (type);
2195 if (!fn)
2196 return NULL;
2197 }
2198 else
2199 fn = builtin_decl_explicit (code);
2200
2201 simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2202
2203 if (TREE_CODE (rhs) == CONSTRUCTOR)
2204 {
2205 /* Handle the easy initialization to zero. */
2206 if (!CONSTRUCTOR_ELTS (rhs))
2207 rhs = build_int_cst (simple_type, 0);
2208 else
2209 {
2210 /* ...otherwise punt to the caller and probably use
2211 BUILT_IN_TM_MEMMOVE, because we can't wrap a
2212 VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2213 valid gimple. */
2214 return NULL;
2215 }
2216 }
2217 else if (!useless_type_conversion_p (simple_type, type))
2218 {
2219 gimple g;
2220 tree temp;
2221
2222 temp = create_tmp_reg (simple_type, NULL);
2223 t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2224 g = gimple_build_assign (temp, t);
2225 gimple_set_location (g, loc);
2226 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2227
2228 rhs = temp;
2229 }
2230
2231 t = gimplify_addr (gsi, lhs);
2232 gcall = gimple_build_call (fn, 2, t, rhs);
2233 gimple_set_location (gcall, loc);
2234 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2235
2236 return gcall;
2237 }
2238
2239
2240 /* Expand an assignment statement into transactional builtins. */
2241
2242 static void
2243 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2244 {
2245 gimple stmt = gsi_stmt (*gsi);
2246 location_t loc = gimple_location (stmt);
2247 tree lhs = gimple_assign_lhs (stmt);
2248 tree rhs = gimple_assign_rhs1 (stmt);
2249 bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2250 bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2251 gimple gcall = NULL;
2252
2253 if (!load_p && !store_p)
2254 {
2255 /* Add thread private addresses to log if applicable. */
2256 requires_barrier (region->entry_block, lhs, stmt);
2257 gsi_next (gsi);
2258 return;
2259 }
2260
2261 // Remove original load/store statement.
2262 gsi_remove (gsi, true);
2263
2264 if (load_p && !store_p)
2265 {
2266 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2267 gcall = build_tm_load (loc, lhs, rhs, gsi);
2268 }
2269 else if (store_p && !load_p)
2270 {
2271 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2272 gcall = build_tm_store (loc, lhs, rhs, gsi);
2273 }
2274 if (!gcall)
2275 {
2276 tree lhs_addr, rhs_addr, tmp;
2277
2278 if (load_p)
2279 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2280 if (store_p)
2281 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2282
2283 /* ??? Figure out if there's any possible overlap between the LHS
2284 and the RHS and if not, use MEMCPY. */
2285
2286 if (load_p && is_gimple_reg (lhs))
2287 {
2288 tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2289 lhs_addr = build_fold_addr_expr (tmp);
2290 }
2291 else
2292 {
2293 tmp = NULL_TREE;
2294 lhs_addr = gimplify_addr (gsi, lhs);
2295 }
2296 rhs_addr = gimplify_addr (gsi, rhs);
2297 gcall = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_MEMMOVE),
2298 3, lhs_addr, rhs_addr,
2299 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2300 gimple_set_location (gcall, loc);
2301 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2302
2303 if (tmp)
2304 {
2305 gcall = gimple_build_assign (lhs, tmp);
2306 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2307 }
2308 }
2309
2310 /* Now that we have the load/store in its instrumented form, add
2311 thread private addresses to the log if applicable. */
2312 if (!store_p)
2313 requires_barrier (region->entry_block, lhs, gcall);
2314
2315 // The calls to build_tm_{store,load} above inserted the instrumented
2316 // call into the stream.
2317 // gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2318 }
2319
2320
2321 /* Expand a call statement as appropriate for a transaction. That is,
2322 either verify that the call does not affect the transaction, or
2323 redirect the call to a clone that handles transactions, or change
2324 the transaction state to IRREVOCABLE. Return true if the call is
2325 one of the builtins that end a transaction. */
2326
2327 static bool
2328 expand_call_tm (struct tm_region *region,
2329 gimple_stmt_iterator *gsi)
2330 {
2331 gimple stmt = gsi_stmt (*gsi);
2332 tree lhs = gimple_call_lhs (stmt);
2333 tree fn_decl;
2334 struct cgraph_node *node;
2335 bool retval = false;
2336
2337 fn_decl = gimple_call_fndecl (stmt);
2338
2339 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2340 || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2341 transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2342 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2343 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2344
2345 if (is_tm_pure_call (stmt))
2346 return false;
2347
2348 if (fn_decl)
2349 retval = is_tm_ending_fndecl (fn_decl);
2350 if (!retval)
2351 {
2352 /* Assume all non-const/pure calls write to memory, except
2353 transaction ending builtins. */
2354 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2355 }
2356
2357 /* For indirect calls, we already generated a call into the runtime. */
2358 if (!fn_decl)
2359 {
2360 tree fn = gimple_call_fn (stmt);
2361
2362 /* We are guaranteed never to go irrevocable on a safe or pure
2363 call, and the pure call was handled above. */
2364 if (is_tm_safe (fn))
2365 return false;
2366 else
2367 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2368
2369 return false;
2370 }
2371
2372 node = cgraph_node::get (fn_decl);
2373 /* All calls should have cgraph here. */
2374 if (!node)
2375 {
2376 /* We can have a nodeless call here if some pass after IPA-tm
2377 added uninstrumented calls. For example, loop distribution
2378 can transform certain loop constructs into __builtin_mem*
2379 calls. In this case, see if we have a suitable TM
2380 replacement and fill in the gaps. */
2381 gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL);
2382 enum built_in_function code = DECL_FUNCTION_CODE (fn_decl);
2383 gcc_assert (code == BUILT_IN_MEMCPY
2384 || code == BUILT_IN_MEMMOVE
2385 || code == BUILT_IN_MEMSET);
2386
2387 tree repl = find_tm_replacement_function (fn_decl);
2388 if (repl)
2389 {
2390 gimple_call_set_fndecl (stmt, repl);
2391 update_stmt (stmt);
2392 node = cgraph_node::create (repl);
2393 node->local.tm_may_enter_irr = false;
2394 return expand_call_tm (region, gsi);
2395 }
2396 gcc_unreachable ();
2397 }
2398 if (node->local.tm_may_enter_irr)
2399 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2400
2401 if (is_tm_abort (fn_decl))
2402 {
2403 transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2404 return true;
2405 }
2406
2407 /* Instrument the store if needed.
2408
2409 If the assignment happens inside the function call (return slot
2410 optimization), there is no instrumentation to be done, since
2411 the callee should have done the right thing. */
2412 if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2413 && !gimple_call_return_slot_opt_p (stmt))
2414 {
2415 tree tmp = create_tmp_reg (TREE_TYPE (lhs), NULL);
2416 location_t loc = gimple_location (stmt);
2417 edge fallthru_edge = NULL;
2418
2419 /* Remember if the call was going to throw. */
2420 if (stmt_can_throw_internal (stmt))
2421 {
2422 edge_iterator ei;
2423 edge e;
2424 basic_block bb = gimple_bb (stmt);
2425
2426 FOR_EACH_EDGE (e, ei, bb->succs)
2427 if (e->flags & EDGE_FALLTHRU)
2428 {
2429 fallthru_edge = e;
2430 break;
2431 }
2432 }
2433
2434 gimple_call_set_lhs (stmt, tmp);
2435 update_stmt (stmt);
2436 stmt = gimple_build_assign (lhs, tmp);
2437 gimple_set_location (stmt, loc);
2438
2439 /* We cannot throw in the middle of a BB. If the call was going
2440 to throw, place the instrumentation on the fallthru edge, so
2441 the call remains the last statement in the block. */
2442 if (fallthru_edge)
2443 {
2444 gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (stmt);
2445 gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2446 expand_assign_tm (region, &fallthru_gsi);
2447 gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2448 pending_edge_inserts_p = true;
2449 }
2450 else
2451 {
2452 gsi_insert_after (gsi, stmt, GSI_CONTINUE_LINKING);
2453 expand_assign_tm (region, gsi);
2454 }
2455
2456 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2457 }
2458
2459 return retval;
2460 }
2461
2462
2463 /* Expand all statements in BB as appropriate for being inside
2464 a transaction. */
2465
2466 static void
2467 expand_block_tm (struct tm_region *region, basic_block bb)
2468 {
2469 gimple_stmt_iterator gsi;
2470
2471 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2472 {
2473 gimple stmt = gsi_stmt (gsi);
2474 switch (gimple_code (stmt))
2475 {
2476 case GIMPLE_ASSIGN:
2477 /* Only memory reads/writes need to be instrumented. */
2478 if (gimple_assign_single_p (stmt)
2479 && !gimple_clobber_p (stmt))
2480 {
2481 expand_assign_tm (region, &gsi);
2482 continue;
2483 }
2484 break;
2485
2486 case GIMPLE_CALL:
2487 if (expand_call_tm (region, &gsi))
2488 return;
2489 break;
2490
2491 case GIMPLE_ASM:
2492 gcc_unreachable ();
2493
2494 default:
2495 break;
2496 }
2497 if (!gsi_end_p (gsi))
2498 gsi_next (&gsi);
2499 }
2500 }
2501
2502 /* Return the list of basic-blocks in REGION.
2503
2504 STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2505 following a TM_IRREVOCABLE call.
2506
2507 INCLUDE_UNINSTRUMENTED_P is TRUE if we should include the
2508 uninstrumented code path blocks in the list of basic blocks
2509 returned, false otherwise. */
2510
2511 static vec<basic_block>
2512 get_tm_region_blocks (basic_block entry_block,
2513 bitmap exit_blocks,
2514 bitmap irr_blocks,
2515 bitmap all_region_blocks,
2516 bool stop_at_irrevocable_p,
2517 bool include_uninstrumented_p = true)
2518 {
2519 vec<basic_block> bbs = vNULL;
2520 unsigned i;
2521 edge e;
2522 edge_iterator ei;
2523 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2524
2525 i = 0;
2526 bbs.safe_push (entry_block);
2527 bitmap_set_bit (visited_blocks, entry_block->index);
2528
2529 do
2530 {
2531 basic_block bb = bbs[i++];
2532
2533 if (exit_blocks &&
2534 bitmap_bit_p (exit_blocks, bb->index))
2535 continue;
2536
2537 if (stop_at_irrevocable_p
2538 && irr_blocks
2539 && bitmap_bit_p (irr_blocks, bb->index))
2540 continue;
2541
2542 FOR_EACH_EDGE (e, ei, bb->succs)
2543 if ((include_uninstrumented_p
2544 || !(e->flags & EDGE_TM_UNINSTRUMENTED))
2545 && !bitmap_bit_p (visited_blocks, e->dest->index))
2546 {
2547 bitmap_set_bit (visited_blocks, e->dest->index);
2548 bbs.safe_push (e->dest);
2549 }
2550 }
2551 while (i < bbs.length ());
2552
2553 if (all_region_blocks)
2554 bitmap_ior_into (all_region_blocks, visited_blocks);
2555
2556 BITMAP_FREE (visited_blocks);
2557 return bbs;
2558 }
2559
2560 // Callback data for collect_bb2reg.
2561 struct bb2reg_stuff
2562 {
2563 vec<tm_region_p> *bb2reg;
2564 bool include_uninstrumented_p;
2565 };
2566
2567 // Callback for expand_regions, collect innermost region data for each bb.
2568 static void *
2569 collect_bb2reg (struct tm_region *region, void *data)
2570 {
2571 struct bb2reg_stuff *stuff = (struct bb2reg_stuff *)data;
2572 vec<tm_region_p> *bb2reg = stuff->bb2reg;
2573 vec<basic_block> queue;
2574 unsigned int i;
2575 basic_block bb;
2576
2577 queue = get_tm_region_blocks (region->entry_block,
2578 region->exit_blocks,
2579 region->irr_blocks,
2580 NULL,
2581 /*stop_at_irr_p=*/true,
2582 stuff->include_uninstrumented_p);
2583
2584 // We expect expand_region to perform a post-order traversal of the region
2585 // tree. Therefore the last region seen for any bb is the innermost.
2586 FOR_EACH_VEC_ELT (queue, i, bb)
2587 (*bb2reg)[bb->index] = region;
2588
2589 queue.release ();
2590 return NULL;
2591 }
2592
2593 // Returns a vector, indexed by BB->INDEX, of the innermost tm_region to
2594 // which a basic block belongs. Note that we only consider the instrumented
2595 // code paths for the region; the uninstrumented code paths are ignored if
2596 // INCLUDE_UNINSTRUMENTED_P is false.
2597 //
2598 // ??? This data is very similar to the bb_regions array that is collected
2599 // during tm_region_init. Or, rather, this data is similar to what could
2600 // be used within tm_region_init. The actual computation in tm_region_init
2601 // begins and ends with bb_regions entirely full of NULL pointers, due to
2602 // the way in which pointers are swapped in and out of the array.
2603 //
2604 // ??? Our callers expect that blocks are not shared between transactions.
2605 // When the optimizers get too smart, and blocks are shared, then during
2606 // the tm_mark phase we'll add log entries to only one of the two transactions,
2607 // and in the tm_edge phase we'll add edges to the CFG that create invalid
2608 // cycles. The symptom being SSA defs that do not dominate their uses.
2609 // Note that the optimizers were locally correct with their transformation,
2610 // as we have no info within the program that suggests that the blocks cannot
2611 // be shared.
2612 //
2613 // ??? There is currently a hack inside tree-ssa-pre.c to work around the
2614 // only known instance of this block sharing.
2615
2616 static vec<tm_region_p>
2617 get_bb_regions_instrumented (bool traverse_clones,
2618 bool include_uninstrumented_p)
2619 {
2620 unsigned n = last_basic_block_for_fn (cfun);
2621 struct bb2reg_stuff stuff;
2622 vec<tm_region_p> ret;
2623
2624 ret.create (n);
2625 ret.safe_grow_cleared (n);
2626 stuff.bb2reg = &ret;
2627 stuff.include_uninstrumented_p = include_uninstrumented_p;
2628 expand_regions (all_tm_regions, collect_bb2reg, &stuff, traverse_clones);
2629
2630 return ret;
2631 }
2632
2633 /* Set the IN_TRANSACTION for all gimple statements that appear in a
2634 transaction. */
2635
2636 void
2637 compute_transaction_bits (void)
2638 {
2639 struct tm_region *region;
2640 vec<basic_block> queue;
2641 unsigned int i;
2642 basic_block bb;
2643
2644 /* ?? Perhaps we need to abstract gate_tm_init further, because we
2645 certainly don't need it to calculate CDI_DOMINATOR info. */
2646 gate_tm_init ();
2647
2648 FOR_EACH_BB_FN (bb, cfun)
2649 bb->flags &= ~BB_IN_TRANSACTION;
2650
2651 for (region = all_tm_regions; region; region = region->next)
2652 {
2653 queue = get_tm_region_blocks (region->entry_block,
2654 region->exit_blocks,
2655 region->irr_blocks,
2656 NULL,
2657 /*stop_at_irr_p=*/true);
2658 for (i = 0; queue.iterate (i, &bb); ++i)
2659 bb->flags |= BB_IN_TRANSACTION;
2660 queue.release ();
2661 }
2662
2663 if (all_tm_regions)
2664 bitmap_obstack_release (&tm_obstack);
2665 }
2666
2667 /* Replace the GIMPLE_TRANSACTION in this region with the corresponding
2668 call to BUILT_IN_TM_START. */
2669
2670 static void *
2671 expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2672 {
2673 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2674 basic_block transaction_bb = gimple_bb (region->transaction_stmt);
2675 tree tm_state = region->tm_state;
2676 tree tm_state_type = TREE_TYPE (tm_state);
2677 edge abort_edge = NULL;
2678 edge inst_edge = NULL;
2679 edge uninst_edge = NULL;
2680 edge fallthru_edge = NULL;
2681
2682 // Identify the various successors of the transaction start.
2683 {
2684 edge_iterator i;
2685 edge e;
2686 FOR_EACH_EDGE (e, i, transaction_bb->succs)
2687 {
2688 if (e->flags & EDGE_TM_ABORT)
2689 abort_edge = e;
2690 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
2691 uninst_edge = e;
2692 else
2693 inst_edge = e;
2694 if (e->flags & EDGE_FALLTHRU)
2695 fallthru_edge = e;
2696 }
2697 }
2698
2699 /* ??? There are plenty of bits here we're not computing. */
2700 {
2701 int subcode = gimple_transaction_subcode (region->transaction_stmt);
2702 int flags = 0;
2703 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2704 flags |= PR_DOESGOIRREVOCABLE;
2705 if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2706 flags |= PR_HASNOIRREVOCABLE;
2707 /* If the transaction does not have an abort in lexical scope and is not
2708 marked as an outer transaction, then it will never abort. */
2709 if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0)
2710 flags |= PR_HASNOABORT;
2711 if ((subcode & GTMA_HAVE_STORE) == 0)
2712 flags |= PR_READONLY;
2713 if (inst_edge && !(subcode & GTMA_HAS_NO_INSTRUMENTATION))
2714 flags |= PR_INSTRUMENTEDCODE;
2715 if (uninst_edge)
2716 flags |= PR_UNINSTRUMENTEDCODE;
2717 if (subcode & GTMA_IS_OUTER)
2718 region->original_transaction_was_outer = true;
2719 tree t = build_int_cst (tm_state_type, flags);
2720 gimple call = gimple_build_call (tm_start, 1, t);
2721 gimple_call_set_lhs (call, tm_state);
2722 gimple_set_location (call, gimple_location (region->transaction_stmt));
2723
2724 // Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START.
2725 gimple_stmt_iterator gsi = gsi_last_bb (transaction_bb);
2726 gcc_assert (gsi_stmt (gsi) == region->transaction_stmt);
2727 gsi_insert_before (&gsi, call, GSI_SAME_STMT);
2728 gsi_remove (&gsi, true);
2729 region->transaction_stmt = call;
2730 }
2731
2732 // Generate log saves.
2733 if (!tm_log_save_addresses.is_empty ())
2734 tm_log_emit_saves (region->entry_block, transaction_bb);
2735
2736 // In the beginning, we've no tests to perform on transaction restart.
2737 // Note that after this point, transaction_bb becomes the "most recent
2738 // block containing tests for the transaction".
2739 region->restart_block = region->entry_block;
2740
2741 // Generate log restores.
2742 if (!tm_log_save_addresses.is_empty ())
2743 {
2744 basic_block test_bb = create_empty_bb (transaction_bb);
2745 basic_block code_bb = create_empty_bb (test_bb);
2746 basic_block join_bb = create_empty_bb (code_bb);
2747 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2748 add_bb_to_loop (code_bb, transaction_bb->loop_father);
2749 add_bb_to_loop (join_bb, transaction_bb->loop_father);
2750 if (region->restart_block == region->entry_block)
2751 region->restart_block = test_bb;
2752
2753 tree t1 = create_tmp_reg (tm_state_type, NULL);
2754 tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES);
2755 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2756 tm_state, t2);
2757 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2758 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2759
2760 t2 = build_int_cst (tm_state_type, 0);
2761 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2762 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2763
2764 tm_log_emit_restores (region->entry_block, code_bb);
2765
2766 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2767 edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE);
2768 edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE);
2769 redirect_edge_pred (fallthru_edge, join_bb);
2770
2771 join_bb->frequency = test_bb->frequency = transaction_bb->frequency;
2772 join_bb->count = test_bb->count = transaction_bb->count;
2773
2774 ei->probability = PROB_ALWAYS;
2775 et->probability = PROB_LIKELY;
2776 ef->probability = PROB_UNLIKELY;
2777 et->count = apply_probability (test_bb->count, et->probability);
2778 ef->count = apply_probability (test_bb->count, ef->probability);
2779
2780 code_bb->count = et->count;
2781 code_bb->frequency = EDGE_FREQUENCY (et);
2782
2783 transaction_bb = join_bb;
2784 }
2785
2786 // If we have an ABORT edge, create a test to perform the abort.
2787 if (abort_edge)
2788 {
2789 basic_block test_bb = create_empty_bb (transaction_bb);
2790 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2791 if (region->restart_block == region->entry_block)
2792 region->restart_block = test_bb;
2793
2794 tree t1 = create_tmp_reg (tm_state_type, NULL);
2795 tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION);
2796 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2797 tm_state, t2);
2798 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2799 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2800
2801 t2 = build_int_cst (tm_state_type, 0);
2802 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2803 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2804
2805 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2806 test_bb->frequency = transaction_bb->frequency;
2807 test_bb->count = transaction_bb->count;
2808 ei->probability = PROB_ALWAYS;
2809
2810 // Not abort edge. If both are live, chose one at random as we'll
2811 // we'll be fixing that up below.
2812 redirect_edge_pred (fallthru_edge, test_bb);
2813 fallthru_edge->flags = EDGE_FALSE_VALUE;
2814 fallthru_edge->probability = PROB_VERY_LIKELY;
2815 fallthru_edge->count
2816 = apply_probability (test_bb->count, fallthru_edge->probability);
2817
2818 // Abort/over edge.
2819 redirect_edge_pred (abort_edge, test_bb);
2820 abort_edge->flags = EDGE_TRUE_VALUE;
2821 abort_edge->probability = PROB_VERY_UNLIKELY;
2822 abort_edge->count
2823 = apply_probability (test_bb->count, abort_edge->probability);
2824
2825 transaction_bb = test_bb;
2826 }
2827
2828 // If we have both instrumented and uninstrumented code paths, select one.
2829 if (inst_edge && uninst_edge)
2830 {
2831 basic_block test_bb = create_empty_bb (transaction_bb);
2832 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2833 if (region->restart_block == region->entry_block)
2834 region->restart_block = test_bb;
2835
2836 tree t1 = create_tmp_reg (tm_state_type, NULL);
2837 tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE);
2838
2839 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2840 tm_state, t2);
2841 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2842 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2843
2844 t2 = build_int_cst (tm_state_type, 0);
2845 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2846 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2847
2848 // Create the edge into test_bb first, as we want to copy values
2849 // out of the fallthru edge.
2850 edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags);
2851 e->probability = fallthru_edge->probability;
2852 test_bb->count = e->count = fallthru_edge->count;
2853 test_bb->frequency = EDGE_FREQUENCY (e);
2854
2855 // Now update the edges to the inst/uninist implementations.
2856 // For now assume that the paths are equally likely. When using HTM,
2857 // we'll try the uninst path first and fallback to inst path if htm
2858 // buffers are exceeded. Without HTM we start with the inst path and
2859 // use the uninst path when falling back to serial mode.
2860 redirect_edge_pred (inst_edge, test_bb);
2861 inst_edge->flags = EDGE_FALSE_VALUE;
2862 inst_edge->probability = REG_BR_PROB_BASE / 2;
2863 inst_edge->count
2864 = apply_probability (test_bb->count, inst_edge->probability);
2865
2866 redirect_edge_pred (uninst_edge, test_bb);
2867 uninst_edge->flags = EDGE_TRUE_VALUE;
2868 uninst_edge->probability = REG_BR_PROB_BASE / 2;
2869 uninst_edge->count
2870 = apply_probability (test_bb->count, uninst_edge->probability);
2871 }
2872
2873 // If we have no previous special cases, and we have PHIs at the beginning
2874 // of the atomic region, this means we have a loop at the beginning of the
2875 // atomic region that shares the first block. This can cause problems with
2876 // the transaction restart abnormal edges to be added in the tm_edges pass.
2877 // Solve this by adding a new empty block to receive the abnormal edges.
2878 if (region->restart_block == region->entry_block
2879 && phi_nodes (region->entry_block))
2880 {
2881 basic_block empty_bb = create_empty_bb (transaction_bb);
2882 region->restart_block = empty_bb;
2883 add_bb_to_loop (empty_bb, transaction_bb->loop_father);
2884
2885 redirect_edge_pred (fallthru_edge, empty_bb);
2886 make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU);
2887 }
2888
2889 return NULL;
2890 }
2891
2892 /* Generate the temporary to be used for the return value of
2893 BUILT_IN_TM_START. */
2894
2895 static void *
2896 generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2897 {
2898 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2899 region->tm_state =
2900 create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
2901
2902 // Reset the subcode, post optimizations. We'll fill this in
2903 // again as we process blocks.
2904 if (region->exit_blocks)
2905 {
2906 unsigned int subcode
2907 = gimple_transaction_subcode (region->transaction_stmt);
2908
2909 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2910 subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
2911 | GTMA_MAY_ENTER_IRREVOCABLE
2912 | GTMA_HAS_NO_INSTRUMENTATION);
2913 else
2914 subcode &= GTMA_DECLARATION_MASK;
2915 gimple_transaction_set_subcode (region->transaction_stmt, subcode);
2916 }
2917
2918 return NULL;
2919 }
2920
2921 // Propagate flags from inner transactions outwards.
2922 static void
2923 propagate_tm_flags_out (struct tm_region *region)
2924 {
2925 if (region == NULL)
2926 return;
2927 propagate_tm_flags_out (region->inner);
2928
2929 if (region->outer && region->outer->transaction_stmt)
2930 {
2931 unsigned s = gimple_transaction_subcode (region->transaction_stmt);
2932 s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE
2933 | GTMA_MAY_ENTER_IRREVOCABLE);
2934 s |= gimple_transaction_subcode (region->outer->transaction_stmt);
2935 gimple_transaction_set_subcode (region->outer->transaction_stmt, s);
2936 }
2937
2938 propagate_tm_flags_out (region->next);
2939 }
2940
2941 /* Entry point to the MARK phase of TM expansion. Here we replace
2942 transactional memory statements with calls to builtins, and function
2943 calls with their transactional clones (if available). But we don't
2944 yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
2945
2946 static unsigned int
2947 execute_tm_mark (void)
2948 {
2949 pending_edge_inserts_p = false;
2950
2951 expand_regions (all_tm_regions, generate_tm_state, NULL,
2952 /*traverse_clones=*/true);
2953
2954 tm_log_init ();
2955
2956 vec<tm_region_p> bb_regions
2957 = get_bb_regions_instrumented (/*traverse_clones=*/true,
2958 /*include_uninstrumented_p=*/false);
2959 struct tm_region *r;
2960 unsigned i;
2961
2962 // Expand memory operations into calls into the runtime.
2963 // This collects log entries as well.
2964 FOR_EACH_VEC_ELT (bb_regions, i, r)
2965 {
2966 if (r != NULL)
2967 {
2968 if (r->transaction_stmt)
2969 {
2970 unsigned sub = gimple_transaction_subcode (r->transaction_stmt);
2971
2972 /* If we're sure to go irrevocable, there won't be
2973 anything to expand, since the run-time will go
2974 irrevocable right away. */
2975 if (sub & GTMA_DOES_GO_IRREVOCABLE
2976 && sub & GTMA_MAY_ENTER_IRREVOCABLE)
2977 continue;
2978 }
2979 expand_block_tm (r, BASIC_BLOCK_FOR_FN (cfun, i));
2980 }
2981 }
2982
2983 bb_regions.release ();
2984
2985 // Propagate flags from inner transactions outwards.
2986 propagate_tm_flags_out (all_tm_regions);
2987
2988 // Expand GIMPLE_TRANSACTIONs into calls into the runtime.
2989 expand_regions (all_tm_regions, expand_transaction, NULL,
2990 /*traverse_clones=*/false);
2991
2992 tm_log_emit ();
2993 tm_log_delete ();
2994
2995 if (pending_edge_inserts_p)
2996 gsi_commit_edge_inserts ();
2997 free_dominance_info (CDI_DOMINATORS);
2998 return 0;
2999 }
3000
3001 namespace {
3002
3003 const pass_data pass_data_tm_mark =
3004 {
3005 GIMPLE_PASS, /* type */
3006 "tmmark", /* name */
3007 OPTGROUP_NONE, /* optinfo_flags */
3008 TV_TRANS_MEM, /* tv_id */
3009 ( PROP_ssa | PROP_cfg ), /* properties_required */
3010 0, /* properties_provided */
3011 0, /* properties_destroyed */
3012 0, /* todo_flags_start */
3013 TODO_update_ssa, /* todo_flags_finish */
3014 };
3015
3016 class pass_tm_mark : public gimple_opt_pass
3017 {
3018 public:
3019 pass_tm_mark (gcc::context *ctxt)
3020 : gimple_opt_pass (pass_data_tm_mark, ctxt)
3021 {}
3022
3023 /* opt_pass methods: */
3024 virtual unsigned int execute (function *) { return execute_tm_mark (); }
3025
3026 }; // class pass_tm_mark
3027
3028 } // anon namespace
3029
3030 gimple_opt_pass *
3031 make_pass_tm_mark (gcc::context *ctxt)
3032 {
3033 return new pass_tm_mark (ctxt);
3034 }
3035 \f
3036
3037 /* Create an abnormal edge from STMT at iter, splitting the block
3038 as necessary. Adjust *PNEXT as needed for the split block. */
3039
3040 static inline void
3041 split_bb_make_tm_edge (gimple stmt, basic_block dest_bb,
3042 gimple_stmt_iterator iter, gimple_stmt_iterator *pnext)
3043 {
3044 basic_block bb = gimple_bb (stmt);
3045 if (!gsi_one_before_end_p (iter))
3046 {
3047 edge e = split_block (bb, stmt);
3048 *pnext = gsi_start_bb (e->dest);
3049 }
3050 make_edge (bb, dest_bb, EDGE_ABNORMAL);
3051
3052 // Record the need for the edge for the benefit of the rtl passes.
3053 if (cfun->gimple_df->tm_restart == NULL)
3054 cfun->gimple_df->tm_restart = htab_create_ggc (31, struct_ptr_hash,
3055 struct_ptr_eq, ggc_free);
3056
3057 struct tm_restart_node dummy;
3058 dummy.stmt = stmt;
3059 dummy.label_or_list = gimple_block_label (dest_bb);
3060
3061 void **slot = htab_find_slot (cfun->gimple_df->tm_restart, &dummy, INSERT);
3062 struct tm_restart_node *n = (struct tm_restart_node *) *slot;
3063 if (n == NULL)
3064 {
3065 n = ggc_alloc<tm_restart_node> ();
3066 *n = dummy;
3067 }
3068 else
3069 {
3070 tree old = n->label_or_list;
3071 if (TREE_CODE (old) == LABEL_DECL)
3072 old = tree_cons (NULL, old, NULL);
3073 n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
3074 }
3075 }
3076
3077 /* Split block BB as necessary for every builtin function we added, and
3078 wire up the abnormal back edges implied by the transaction restart. */
3079
3080 static void
3081 expand_block_edges (struct tm_region *const region, basic_block bb)
3082 {
3083 gimple_stmt_iterator gsi, next_gsi;
3084
3085 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi = next_gsi)
3086 {
3087 gimple stmt = gsi_stmt (gsi);
3088
3089 next_gsi = gsi;
3090 gsi_next (&next_gsi);
3091
3092 // ??? Shouldn't we split for any non-pure, non-irrevocable function?
3093 if (gimple_code (stmt) != GIMPLE_CALL
3094 || (gimple_call_flags (stmt) & ECF_TM_BUILTIN) == 0)
3095 continue;
3096
3097 if (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)) == BUILT_IN_TM_ABORT)
3098 {
3099 // If we have a ``_transaction_cancel [[outer]]'', there is only
3100 // one abnormal edge: to the transaction marked OUTER.
3101 // All compiler-generated instances of BUILT_IN_TM_ABORT have a
3102 // constant argument, which we can examine here. Users invoking
3103 // TM_ABORT directly get what they deserve.
3104 tree arg = gimple_call_arg (stmt, 0);
3105 if (TREE_CODE (arg) == INTEGER_CST
3106 && (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0
3107 && !decl_is_tm_clone (current_function_decl))
3108 {
3109 // Find the GTMA_IS_OUTER transaction.
3110 for (struct tm_region *o = region; o; o = o->outer)
3111 if (o->original_transaction_was_outer)
3112 {
3113 split_bb_make_tm_edge (stmt, o->restart_block,
3114 gsi, &next_gsi);
3115 break;
3116 }
3117
3118 // Otherwise, the front-end should have semantically checked
3119 // outer aborts, but in either case the target region is not
3120 // within this function.
3121 continue;
3122 }
3123
3124 // Non-outer, TM aborts have an abnormal edge to the inner-most
3125 // transaction, the one being aborted;
3126 split_bb_make_tm_edge (stmt, region->restart_block, gsi, &next_gsi);
3127 }
3128
3129 // All TM builtins have an abnormal edge to the outer-most transaction.
3130 // We never restart inner transactions. For tm clones, we know a-priori
3131 // that the outer-most transaction is outside the function.
3132 if (decl_is_tm_clone (current_function_decl))
3133 continue;
3134
3135 if (cfun->gimple_df->tm_restart == NULL)
3136 cfun->gimple_df->tm_restart
3137 = htab_create_ggc (31, struct_ptr_hash, struct_ptr_eq, ggc_free);
3138
3139 // All TM builtins have an abnormal edge to the outer-most transaction.
3140 // We never restart inner transactions.
3141 for (struct tm_region *o = region; o; o = o->outer)
3142 if (!o->outer)
3143 {
3144 split_bb_make_tm_edge (stmt, o->restart_block, gsi, &next_gsi);
3145 break;
3146 }
3147
3148 // Delete any tail-call annotation that may have been added.
3149 // The tail-call pass may have mis-identified the commit as being
3150 // a candidate because we had not yet added this restart edge.
3151 gimple_call_set_tail (stmt, false);
3152 }
3153 }
3154
3155 /* Entry point to the final expansion of transactional nodes. */
3156
3157 namespace {
3158
3159 const pass_data pass_data_tm_edges =
3160 {
3161 GIMPLE_PASS, /* type */
3162 "tmedge", /* name */
3163 OPTGROUP_NONE, /* optinfo_flags */
3164 TV_TRANS_MEM, /* tv_id */
3165 ( PROP_ssa | PROP_cfg ), /* properties_required */
3166 0, /* properties_provided */
3167 0, /* properties_destroyed */
3168 0, /* todo_flags_start */
3169 TODO_update_ssa, /* todo_flags_finish */
3170 };
3171
3172 class pass_tm_edges : public gimple_opt_pass
3173 {
3174 public:
3175 pass_tm_edges (gcc::context *ctxt)
3176 : gimple_opt_pass (pass_data_tm_edges, ctxt)
3177 {}
3178
3179 /* opt_pass methods: */
3180 virtual unsigned int execute (function *);
3181
3182 }; // class pass_tm_edges
3183
3184 unsigned int
3185 pass_tm_edges::execute (function *fun)
3186 {
3187 vec<tm_region_p> bb_regions
3188 = get_bb_regions_instrumented (/*traverse_clones=*/false,
3189 /*include_uninstrumented_p=*/true);
3190 struct tm_region *r;
3191 unsigned i;
3192
3193 FOR_EACH_VEC_ELT (bb_regions, i, r)
3194 if (r != NULL)
3195 expand_block_edges (r, BASIC_BLOCK_FOR_FN (fun, i));
3196
3197 bb_regions.release ();
3198
3199 /* We've got to release the dominance info now, to indicate that it
3200 must be rebuilt completely. Otherwise we'll crash trying to update
3201 the SSA web in the TODO section following this pass. */
3202 free_dominance_info (CDI_DOMINATORS);
3203 bitmap_obstack_release (&tm_obstack);
3204 all_tm_regions = NULL;
3205
3206 return 0;
3207 }
3208
3209 } // anon namespace
3210
3211 gimple_opt_pass *
3212 make_pass_tm_edges (gcc::context *ctxt)
3213 {
3214 return new pass_tm_edges (ctxt);
3215 }
3216 \f
3217 /* Helper function for expand_regions. Expand REGION and recurse to
3218 the inner region. Call CALLBACK on each region. CALLBACK returns
3219 NULL to continue the traversal, otherwise a non-null value which
3220 this function will return as well. TRAVERSE_CLONES is true if we
3221 should traverse transactional clones. */
3222
3223 static void *
3224 expand_regions_1 (struct tm_region *region,
3225 void *(*callback)(struct tm_region *, void *),
3226 void *data,
3227 bool traverse_clones)
3228 {
3229 void *retval = NULL;
3230 if (region->exit_blocks
3231 || (traverse_clones && decl_is_tm_clone (current_function_decl)))
3232 {
3233 retval = callback (region, data);
3234 if (retval)
3235 return retval;
3236 }
3237 if (region->inner)
3238 {
3239 retval = expand_regions (region->inner, callback, data, traverse_clones);
3240 if (retval)
3241 return retval;
3242 }
3243 return retval;
3244 }
3245
3246 /* Traverse the regions enclosed and including REGION. Execute
3247 CALLBACK for each region, passing DATA. CALLBACK returns NULL to
3248 continue the traversal, otherwise a non-null value which this
3249 function will return as well. TRAVERSE_CLONES is true if we should
3250 traverse transactional clones. */
3251
3252 static void *
3253 expand_regions (struct tm_region *region,
3254 void *(*callback)(struct tm_region *, void *),
3255 void *data,
3256 bool traverse_clones)
3257 {
3258 void *retval = NULL;
3259 while (region)
3260 {
3261 retval = expand_regions_1 (region, callback, data, traverse_clones);
3262 if (retval)
3263 return retval;
3264 region = region->next;
3265 }
3266 return retval;
3267 }
3268
3269 \f
3270 /* A unique TM memory operation. */
3271 typedef struct tm_memop
3272 {
3273 /* Unique ID that all memory operations to the same location have. */
3274 unsigned int value_id;
3275 /* Address of load/store. */
3276 tree addr;
3277 } *tm_memop_t;
3278
3279 /* TM memory operation hashtable helpers. */
3280
3281 struct tm_memop_hasher : typed_free_remove <tm_memop>
3282 {
3283 typedef tm_memop value_type;
3284 typedef tm_memop compare_type;
3285 static inline hashval_t hash (const value_type *);
3286 static inline bool equal (const value_type *, const compare_type *);
3287 };
3288
3289 /* Htab support. Return a hash value for a `tm_memop'. */
3290 inline hashval_t
3291 tm_memop_hasher::hash (const value_type *mem)
3292 {
3293 tree addr = mem->addr;
3294 /* We drill down to the SSA_NAME/DECL for the hash, but equality is
3295 actually done with operand_equal_p (see tm_memop_eq). */
3296 if (TREE_CODE (addr) == ADDR_EXPR)
3297 addr = TREE_OPERAND (addr, 0);
3298 return iterative_hash_expr (addr, 0);
3299 }
3300
3301 /* Htab support. Return true if two tm_memop's are the same. */
3302 inline bool
3303 tm_memop_hasher::equal (const value_type *mem1, const compare_type *mem2)
3304 {
3305 return operand_equal_p (mem1->addr, mem2->addr, 0);
3306 }
3307
3308 /* Sets for solving data flow equations in the memory optimization pass. */
3309 struct tm_memopt_bitmaps
3310 {
3311 /* Stores available to this BB upon entry. Basically, stores that
3312 dominate this BB. */
3313 bitmap store_avail_in;
3314 /* Stores available at the end of this BB. */
3315 bitmap store_avail_out;
3316 bitmap store_antic_in;
3317 bitmap store_antic_out;
3318 /* Reads available to this BB upon entry. Basically, reads that
3319 dominate this BB. */
3320 bitmap read_avail_in;
3321 /* Reads available at the end of this BB. */
3322 bitmap read_avail_out;
3323 /* Reads performed in this BB. */
3324 bitmap read_local;
3325 /* Writes performed in this BB. */
3326 bitmap store_local;
3327
3328 /* Temporary storage for pass. */
3329 /* Is the current BB in the worklist? */
3330 bool avail_in_worklist_p;
3331 /* Have we visited this BB? */
3332 bool visited_p;
3333 };
3334
3335 static bitmap_obstack tm_memopt_obstack;
3336
3337 /* Unique counter for TM loads and stores. Loads and stores of the
3338 same address get the same ID. */
3339 static unsigned int tm_memopt_value_id;
3340 static hash_table<tm_memop_hasher> *tm_memopt_value_numbers;
3341
3342 #define STORE_AVAIL_IN(BB) \
3343 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
3344 #define STORE_AVAIL_OUT(BB) \
3345 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
3346 #define STORE_ANTIC_IN(BB) \
3347 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
3348 #define STORE_ANTIC_OUT(BB) \
3349 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
3350 #define READ_AVAIL_IN(BB) \
3351 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
3352 #define READ_AVAIL_OUT(BB) \
3353 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
3354 #define READ_LOCAL(BB) \
3355 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
3356 #define STORE_LOCAL(BB) \
3357 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
3358 #define AVAIL_IN_WORKLIST_P(BB) \
3359 ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
3360 #define BB_VISITED_P(BB) \
3361 ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
3362
3363 /* Given a TM load/store in STMT, return the value number for the address
3364 it accesses. */
3365
3366 static unsigned int
3367 tm_memopt_value_number (gimple stmt, enum insert_option op)
3368 {
3369 struct tm_memop tmpmem, *mem;
3370 tm_memop **slot;
3371
3372 gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
3373 tmpmem.addr = gimple_call_arg (stmt, 0);
3374 slot = tm_memopt_value_numbers->find_slot (&tmpmem, op);
3375 if (*slot)
3376 mem = *slot;
3377 else if (op == INSERT)
3378 {
3379 mem = XNEW (struct tm_memop);
3380 *slot = mem;
3381 mem->value_id = tm_memopt_value_id++;
3382 mem->addr = tmpmem.addr;
3383 }
3384 else
3385 gcc_unreachable ();
3386 return mem->value_id;
3387 }
3388
3389 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
3390
3391 static void
3392 tm_memopt_accumulate_memops (basic_block bb)
3393 {
3394 gimple_stmt_iterator gsi;
3395
3396 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3397 {
3398 gimple stmt = gsi_stmt (gsi);
3399 bitmap bits;
3400 unsigned int loc;
3401
3402 if (is_tm_store (stmt))
3403 bits = STORE_LOCAL (bb);
3404 else if (is_tm_load (stmt))
3405 bits = READ_LOCAL (bb);
3406 else
3407 continue;
3408
3409 loc = tm_memopt_value_number (stmt, INSERT);
3410 bitmap_set_bit (bits, loc);
3411 if (dump_file)
3412 {
3413 fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
3414 is_tm_load (stmt) ? "LOAD" : "STORE", loc,
3415 gimple_bb (stmt)->index);
3416 print_generic_expr (dump_file, gimple_call_arg (stmt, 0), 0);
3417 fprintf (dump_file, "\n");
3418 }
3419 }
3420 }
3421
3422 /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
3423
3424 static void
3425 dump_tm_memopt_set (const char *set_name, bitmap bits)
3426 {
3427 unsigned i;
3428 bitmap_iterator bi;
3429 const char *comma = "";
3430
3431 fprintf (dump_file, "TM memopt: %s: [", set_name);
3432 EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
3433 {
3434 hash_table<tm_memop_hasher>::iterator hi;
3435 struct tm_memop *mem = NULL;
3436
3437 /* Yeah, yeah, yeah. Whatever. This is just for debugging. */
3438 FOR_EACH_HASH_TABLE_ELEMENT (*tm_memopt_value_numbers, mem, tm_memop_t, hi)
3439 if (mem->value_id == i)
3440 break;
3441 gcc_assert (mem->value_id == i);
3442 fprintf (dump_file, "%s", comma);
3443 comma = ", ";
3444 print_generic_expr (dump_file, mem->addr, 0);
3445 }
3446 fprintf (dump_file, "]\n");
3447 }
3448
3449 /* Prettily dump all of the memopt sets in BLOCKS. */
3450
3451 static void
3452 dump_tm_memopt_sets (vec<basic_block> blocks)
3453 {
3454 size_t i;
3455 basic_block bb;
3456
3457 for (i = 0; blocks.iterate (i, &bb); ++i)
3458 {
3459 fprintf (dump_file, "------------BB %d---------\n", bb->index);
3460 dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
3461 dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
3462 dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
3463 dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
3464 dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
3465 dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
3466 }
3467 }
3468
3469 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
3470
3471 static void
3472 tm_memopt_compute_avin (basic_block bb)
3473 {
3474 edge e;
3475 unsigned ix;
3476
3477 /* Seed with the AVOUT of any predecessor. */
3478 for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
3479 {
3480 e = EDGE_PRED (bb, ix);
3481 /* Make sure we have already visited this BB, and is thus
3482 initialized.
3483
3484 If e->src->aux is NULL, this predecessor is actually on an
3485 enclosing transaction. We only care about the current
3486 transaction, so ignore it. */
3487 if (e->src->aux && BB_VISITED_P (e->src))
3488 {
3489 bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3490 bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3491 break;
3492 }
3493 }
3494
3495 for (; ix < EDGE_COUNT (bb->preds); ix++)
3496 {
3497 e = EDGE_PRED (bb, ix);
3498 if (e->src->aux && BB_VISITED_P (e->src))
3499 {
3500 bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3501 bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3502 }
3503 }
3504
3505 BB_VISITED_P (bb) = true;
3506 }
3507
3508 /* Compute the STORE_ANTIC_IN for the basic block BB. */
3509
3510 static void
3511 tm_memopt_compute_antin (basic_block bb)
3512 {
3513 edge e;
3514 unsigned ix;
3515
3516 /* Seed with the ANTIC_OUT of any successor. */
3517 for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
3518 {
3519 e = EDGE_SUCC (bb, ix);
3520 /* Make sure we have already visited this BB, and is thus
3521 initialized. */
3522 if (BB_VISITED_P (e->dest))
3523 {
3524 bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3525 break;
3526 }
3527 }
3528
3529 for (; ix < EDGE_COUNT (bb->succs); ix++)
3530 {
3531 e = EDGE_SUCC (bb, ix);
3532 if (BB_VISITED_P (e->dest))
3533 bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3534 }
3535
3536 BB_VISITED_P (bb) = true;
3537 }
3538
3539 /* Compute the AVAIL sets for every basic block in BLOCKS.
3540
3541 We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3542
3543 AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3544 AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
3545
3546 This is basically what we do in lcm's compute_available(), but here
3547 we calculate two sets of sets (one for STOREs and one for READs),
3548 and we work on a region instead of the entire CFG.
3549
3550 REGION is the TM region.
3551 BLOCKS are the basic blocks in the region. */
3552
3553 static void
3554 tm_memopt_compute_available (struct tm_region *region,
3555 vec<basic_block> blocks)
3556 {
3557 edge e;
3558 basic_block *worklist, *qin, *qout, *qend, bb;
3559 unsigned int qlen, i;
3560 edge_iterator ei;
3561 bool changed;
3562
3563 /* Allocate a worklist array/queue. Entries are only added to the
3564 list if they were not already on the list. So the size is
3565 bounded by the number of basic blocks in the region. */
3566 qlen = blocks.length () - 1;
3567 qin = qout = worklist =
3568 XNEWVEC (basic_block, qlen);
3569
3570 /* Put every block in the region on the worklist. */
3571 for (i = 0; blocks.iterate (i, &bb); ++i)
3572 {
3573 /* Seed AVAIL_OUT with the LOCAL set. */
3574 bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3575 bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3576
3577 AVAIL_IN_WORKLIST_P (bb) = true;
3578 /* No need to insert the entry block, since it has an AVIN of
3579 null, and an AVOUT that has already been seeded in. */
3580 if (bb != region->entry_block)
3581 *qin++ = bb;
3582 }
3583
3584 /* The entry block has been initialized with the local sets. */
3585 BB_VISITED_P (region->entry_block) = true;
3586
3587 qin = worklist;
3588 qend = &worklist[qlen];
3589
3590 /* Iterate until the worklist is empty. */
3591 while (qlen)
3592 {
3593 /* Take the first entry off the worklist. */
3594 bb = *qout++;
3595 qlen--;
3596
3597 if (qout >= qend)
3598 qout = worklist;
3599
3600 /* This block can be added to the worklist again if necessary. */
3601 AVAIL_IN_WORKLIST_P (bb) = false;
3602 tm_memopt_compute_avin (bb);
3603
3604 /* Note: We do not add the LOCAL sets here because we already
3605 seeded the AVAIL_OUT sets with them. */
3606 changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3607 changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3608 if (changed
3609 && (region->exit_blocks == NULL
3610 || !bitmap_bit_p (region->exit_blocks, bb->index)))
3611 /* If the out state of this block changed, then we need to add
3612 its successors to the worklist if they are not already in. */
3613 FOR_EACH_EDGE (e, ei, bb->succs)
3614 if (!AVAIL_IN_WORKLIST_P (e->dest)
3615 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
3616 {
3617 *qin++ = e->dest;
3618 AVAIL_IN_WORKLIST_P (e->dest) = true;
3619 qlen++;
3620
3621 if (qin >= qend)
3622 qin = worklist;
3623 }
3624 }
3625
3626 free (worklist);
3627
3628 if (dump_file)
3629 dump_tm_memopt_sets (blocks);
3630 }
3631
3632 /* Compute ANTIC sets for every basic block in BLOCKS.
3633
3634 We compute STORE_ANTIC_OUT as follows:
3635
3636 STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3637 STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
3638
3639 REGION is the TM region.
3640 BLOCKS are the basic blocks in the region. */
3641
3642 static void
3643 tm_memopt_compute_antic (struct tm_region *region,
3644 vec<basic_block> blocks)
3645 {
3646 edge e;
3647 basic_block *worklist, *qin, *qout, *qend, bb;
3648 unsigned int qlen;
3649 int i;
3650 edge_iterator ei;
3651
3652 /* Allocate a worklist array/queue. Entries are only added to the
3653 list if they were not already on the list. So the size is
3654 bounded by the number of basic blocks in the region. */
3655 qin = qout = worklist = XNEWVEC (basic_block, blocks.length ());
3656
3657 for (qlen = 0, i = blocks.length () - 1; i >= 0; --i)
3658 {
3659 bb = blocks[i];
3660
3661 /* Seed ANTIC_OUT with the LOCAL set. */
3662 bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3663
3664 /* Put every block in the region on the worklist. */
3665 AVAIL_IN_WORKLIST_P (bb) = true;
3666 /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3667 and their ANTIC_OUT has already been seeded in. */
3668 if (region->exit_blocks
3669 && !bitmap_bit_p (region->exit_blocks, bb->index))
3670 {
3671 qlen++;
3672 *qin++ = bb;
3673 }
3674 }
3675
3676 /* The exit blocks have been initialized with the local sets. */
3677 if (region->exit_blocks)
3678 {
3679 unsigned int i;
3680 bitmap_iterator bi;
3681 EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3682 BB_VISITED_P (BASIC_BLOCK_FOR_FN (cfun, i)) = true;
3683 }
3684
3685 qin = worklist;
3686 qend = &worklist[qlen];
3687
3688 /* Iterate until the worklist is empty. */
3689 while (qlen)
3690 {
3691 /* Take the first entry off the worklist. */
3692 bb = *qout++;
3693 qlen--;
3694
3695 if (qout >= qend)
3696 qout = worklist;
3697
3698 /* This block can be added to the worklist again if necessary. */
3699 AVAIL_IN_WORKLIST_P (bb) = false;
3700 tm_memopt_compute_antin (bb);
3701
3702 /* Note: We do not add the LOCAL sets here because we already
3703 seeded the ANTIC_OUT sets with them. */
3704 if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3705 && bb != region->entry_block)
3706 /* If the out state of this block changed, then we need to add
3707 its predecessors to the worklist if they are not already in. */
3708 FOR_EACH_EDGE (e, ei, bb->preds)
3709 if (!AVAIL_IN_WORKLIST_P (e->src))
3710 {
3711 *qin++ = e->src;
3712 AVAIL_IN_WORKLIST_P (e->src) = true;
3713 qlen++;
3714
3715 if (qin >= qend)
3716 qin = worklist;
3717 }
3718 }
3719
3720 free (worklist);
3721
3722 if (dump_file)
3723 dump_tm_memopt_sets (blocks);
3724 }
3725
3726 /* Offsets of load variants from TM_LOAD. For example,
3727 BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3728 See gtm-builtins.def. */
3729 #define TRANSFORM_RAR 1
3730 #define TRANSFORM_RAW 2
3731 #define TRANSFORM_RFW 3
3732 /* Offsets of store variants from TM_STORE. */
3733 #define TRANSFORM_WAR 1
3734 #define TRANSFORM_WAW 2
3735
3736 /* Inform about a load/store optimization. */
3737
3738 static void
3739 dump_tm_memopt_transform (gimple stmt)
3740 {
3741 if (dump_file)
3742 {
3743 fprintf (dump_file, "TM memopt: transforming: ");
3744 print_gimple_stmt (dump_file, stmt, 0, 0);
3745 fprintf (dump_file, "\n");
3746 }
3747 }
3748
3749 /* Perform a read/write optimization. Replaces the TM builtin in STMT
3750 by a builtin that is OFFSET entries down in the builtins table in
3751 gtm-builtins.def. */
3752
3753 static void
3754 tm_memopt_transform_stmt (unsigned int offset,
3755 gimple stmt,
3756 gimple_stmt_iterator *gsi)
3757 {
3758 tree fn = gimple_call_fn (stmt);
3759 gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3760 TREE_OPERAND (fn, 0)
3761 = builtin_decl_explicit ((enum built_in_function)
3762 (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3763 + offset));
3764 gimple_call_set_fn (stmt, fn);
3765 gsi_replace (gsi, stmt, true);
3766 dump_tm_memopt_transform (stmt);
3767 }
3768
3769 /* Perform the actual TM memory optimization transformations in the
3770 basic blocks in BLOCKS. */
3771
3772 static void
3773 tm_memopt_transform_blocks (vec<basic_block> blocks)
3774 {
3775 size_t i;
3776 basic_block bb;
3777 gimple_stmt_iterator gsi;
3778
3779 for (i = 0; blocks.iterate (i, &bb); ++i)
3780 {
3781 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3782 {
3783 gimple stmt = gsi_stmt (gsi);
3784 bitmap read_avail = READ_AVAIL_IN (bb);
3785 bitmap store_avail = STORE_AVAIL_IN (bb);
3786 bitmap store_antic = STORE_ANTIC_OUT (bb);
3787 unsigned int loc;
3788
3789 if (is_tm_simple_load (stmt))
3790 {
3791 loc = tm_memopt_value_number (stmt, NO_INSERT);
3792 if (store_avail && bitmap_bit_p (store_avail, loc))
3793 tm_memopt_transform_stmt (TRANSFORM_RAW, stmt, &gsi);
3794 else if (store_antic && bitmap_bit_p (store_antic, loc))
3795 {
3796 tm_memopt_transform_stmt (TRANSFORM_RFW, stmt, &gsi);
3797 bitmap_set_bit (store_avail, loc);
3798 }
3799 else if (read_avail && bitmap_bit_p (read_avail, loc))
3800 tm_memopt_transform_stmt (TRANSFORM_RAR, stmt, &gsi);
3801 else
3802 bitmap_set_bit (read_avail, loc);
3803 }
3804 else if (is_tm_simple_store (stmt))
3805 {
3806 loc = tm_memopt_value_number (stmt, NO_INSERT);
3807 if (store_avail && bitmap_bit_p (store_avail, loc))
3808 tm_memopt_transform_stmt (TRANSFORM_WAW, stmt, &gsi);
3809 else
3810 {
3811 if (read_avail && bitmap_bit_p (read_avail, loc))
3812 tm_memopt_transform_stmt (TRANSFORM_WAR, stmt, &gsi);
3813 bitmap_set_bit (store_avail, loc);
3814 }
3815 }
3816 }
3817 }
3818 }
3819
3820 /* Return a new set of bitmaps for a BB. */
3821
3822 static struct tm_memopt_bitmaps *
3823 tm_memopt_init_sets (void)
3824 {
3825 struct tm_memopt_bitmaps *b
3826 = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3827 b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3828 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3829 b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
3830 b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
3831 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3832 b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3833 b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3834 b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
3835 b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
3836 return b;
3837 }
3838
3839 /* Free sets computed for each BB. */
3840
3841 static void
3842 tm_memopt_free_sets (vec<basic_block> blocks)
3843 {
3844 size_t i;
3845 basic_block bb;
3846
3847 for (i = 0; blocks.iterate (i, &bb); ++i)
3848 bb->aux = NULL;
3849 }
3850
3851 /* Clear the visited bit for every basic block in BLOCKS. */
3852
3853 static void
3854 tm_memopt_clear_visited (vec<basic_block> blocks)
3855 {
3856 size_t i;
3857 basic_block bb;
3858
3859 for (i = 0; blocks.iterate (i, &bb); ++i)
3860 BB_VISITED_P (bb) = false;
3861 }
3862
3863 /* Replace TM load/stores with hints for the runtime. We handle
3864 things like read-after-write, write-after-read, read-after-read,
3865 read-for-write, etc. */
3866
3867 static unsigned int
3868 execute_tm_memopt (void)
3869 {
3870 struct tm_region *region;
3871 vec<basic_block> bbs;
3872
3873 tm_memopt_value_id = 0;
3874 tm_memopt_value_numbers = new hash_table<tm_memop_hasher> (10);
3875
3876 for (region = all_tm_regions; region; region = region->next)
3877 {
3878 /* All the TM stores/loads in the current region. */
3879 size_t i;
3880 basic_block bb;
3881
3882 bitmap_obstack_initialize (&tm_memopt_obstack);
3883
3884 /* Save all BBs for the current region. */
3885 bbs = get_tm_region_blocks (region->entry_block,
3886 region->exit_blocks,
3887 region->irr_blocks,
3888 NULL,
3889 false);
3890
3891 /* Collect all the memory operations. */
3892 for (i = 0; bbs.iterate (i, &bb); ++i)
3893 {
3894 bb->aux = tm_memopt_init_sets ();
3895 tm_memopt_accumulate_memops (bb);
3896 }
3897
3898 /* Solve data flow equations and transform each block accordingly. */
3899 tm_memopt_clear_visited (bbs);
3900 tm_memopt_compute_available (region, bbs);
3901 tm_memopt_clear_visited (bbs);
3902 tm_memopt_compute_antic (region, bbs);
3903 tm_memopt_transform_blocks (bbs);
3904
3905 tm_memopt_free_sets (bbs);
3906 bbs.release ();
3907 bitmap_obstack_release (&tm_memopt_obstack);
3908 tm_memopt_value_numbers->empty ();
3909 }
3910
3911 delete tm_memopt_value_numbers;
3912 tm_memopt_value_numbers = NULL;
3913 return 0;
3914 }
3915
3916 namespace {
3917
3918 const pass_data pass_data_tm_memopt =
3919 {
3920 GIMPLE_PASS, /* type */
3921 "tmmemopt", /* name */
3922 OPTGROUP_NONE, /* optinfo_flags */
3923 TV_TRANS_MEM, /* tv_id */
3924 ( PROP_ssa | PROP_cfg ), /* properties_required */
3925 0, /* properties_provided */
3926 0, /* properties_destroyed */
3927 0, /* todo_flags_start */
3928 0, /* todo_flags_finish */
3929 };
3930
3931 class pass_tm_memopt : public gimple_opt_pass
3932 {
3933 public:
3934 pass_tm_memopt (gcc::context *ctxt)
3935 : gimple_opt_pass (pass_data_tm_memopt, ctxt)
3936 {}
3937
3938 /* opt_pass methods: */
3939 virtual bool gate (function *) { return flag_tm && optimize > 0; }
3940 virtual unsigned int execute (function *) { return execute_tm_memopt (); }
3941
3942 }; // class pass_tm_memopt
3943
3944 } // anon namespace
3945
3946 gimple_opt_pass *
3947 make_pass_tm_memopt (gcc::context *ctxt)
3948 {
3949 return new pass_tm_memopt (ctxt);
3950 }
3951
3952 \f
3953 /* Interprocedual analysis for the creation of transactional clones.
3954 The aim of this pass is to find which functions are referenced in
3955 a non-irrevocable transaction context, and for those over which
3956 we have control (or user directive), create a version of the
3957 function which uses only the transactional interface to reference
3958 protected memories. This analysis proceeds in several steps:
3959
3960 (1) Collect the set of all possible transactional clones:
3961
3962 (a) For all local public functions marked tm_callable, push
3963 it onto the tm_callee queue.
3964
3965 (b) For all local functions, scan for calls in transaction blocks.
3966 Push the caller and callee onto the tm_caller and tm_callee
3967 queues. Count the number of callers for each callee.
3968
3969 (c) For each local function on the callee list, assume we will
3970 create a transactional clone. Push *all* calls onto the
3971 callee queues; count the number of clone callers separately
3972 to the number of original callers.
3973
3974 (2) Propagate irrevocable status up the dominator tree:
3975
3976 (a) Any external function on the callee list that is not marked
3977 tm_callable is irrevocable. Push all callers of such onto
3978 a worklist.
3979
3980 (b) For each function on the worklist, mark each block that
3981 contains an irrevocable call. Use the AND operator to
3982 propagate that mark up the dominator tree.
3983
3984 (c) If we reach the entry block for a possible transactional
3985 clone, then the transactional clone is irrevocable, and
3986 we should not create the clone after all. Push all
3987 callers onto the worklist.
3988
3989 (d) Place tm_irrevocable calls at the beginning of the relevant
3990 blocks. Special case here is the entry block for the entire
3991 transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
3992 the library to begin the region in serial mode. Decrement
3993 the call count for all callees in the irrevocable region.
3994
3995 (3) Create the transactional clones:
3996
3997 Any tm_callee that still has a non-zero call count is cloned.
3998 */
3999
4000 /* This structure is stored in the AUX field of each cgraph_node. */
4001 struct tm_ipa_cg_data
4002 {
4003 /* The clone of the function that got created. */
4004 struct cgraph_node *clone;
4005
4006 /* The tm regions in the normal function. */
4007 struct tm_region *all_tm_regions;
4008
4009 /* The blocks of the normal/clone functions that contain irrevocable
4010 calls, or blocks that are post-dominated by irrevocable calls. */
4011 bitmap irrevocable_blocks_normal;
4012 bitmap irrevocable_blocks_clone;
4013
4014 /* The blocks of the normal function that are involved in transactions. */
4015 bitmap transaction_blocks_normal;
4016
4017 /* The number of callers to the transactional clone of this function
4018 from normal and transactional clones respectively. */
4019 unsigned tm_callers_normal;
4020 unsigned tm_callers_clone;
4021
4022 /* True if all calls to this function's transactional clone
4023 are irrevocable. Also automatically true if the function
4024 has no transactional clone. */
4025 bool is_irrevocable;
4026
4027 /* Flags indicating the presence of this function in various queues. */
4028 bool in_callee_queue;
4029 bool in_worklist;
4030
4031 /* Flags indicating the kind of scan desired while in the worklist. */
4032 bool want_irr_scan_normal;
4033 };
4034
4035 typedef vec<cgraph_node *> cgraph_node_queue;
4036
4037 /* Return the ipa data associated with NODE, allocating zeroed memory
4038 if necessary. TRAVERSE_ALIASES is true if we must traverse aliases
4039 and set *NODE accordingly. */
4040
4041 static struct tm_ipa_cg_data *
4042 get_cg_data (struct cgraph_node **node, bool traverse_aliases)
4043 {
4044 struct tm_ipa_cg_data *d;
4045
4046 if (traverse_aliases && (*node)->alias)
4047 *node = (*node)->get_alias_target ();
4048
4049 d = (struct tm_ipa_cg_data *) (*node)->aux;
4050
4051 if (d == NULL)
4052 {
4053 d = (struct tm_ipa_cg_data *)
4054 obstack_alloc (&tm_obstack.obstack, sizeof (*d));
4055 (*node)->aux = (void *) d;
4056 memset (d, 0, sizeof (*d));
4057 }
4058
4059 return d;
4060 }
4061
4062 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
4063 it is already present. */
4064
4065 static void
4066 maybe_push_queue (struct cgraph_node *node,
4067 cgraph_node_queue *queue_p, bool *in_queue_p)
4068 {
4069 if (!*in_queue_p)
4070 {
4071 *in_queue_p = true;
4072 queue_p->safe_push (node);
4073 }
4074 }
4075
4076 /* Duplicate the basic blocks in QUEUE for use in the uninstrumented
4077 code path. QUEUE are the basic blocks inside the transaction
4078 represented in REGION.
4079
4080 Later in split_code_paths() we will add the conditional to choose
4081 between the two alternatives. */
4082
4083 static void
4084 ipa_uninstrument_transaction (struct tm_region *region,
4085 vec<basic_block> queue)
4086 {
4087 gimple transaction = region->transaction_stmt;
4088 basic_block transaction_bb = gimple_bb (transaction);
4089 int n = queue.length ();
4090 basic_block *new_bbs = XNEWVEC (basic_block, n);
4091
4092 copy_bbs (queue.address (), n, new_bbs, NULL, 0, NULL, NULL, transaction_bb,
4093 true);
4094 edge e = make_edge (transaction_bb, new_bbs[0], EDGE_TM_UNINSTRUMENTED);
4095 add_phi_args_after_copy (new_bbs, n, e);
4096
4097 // Now we will have a GIMPLE_ATOMIC with 3 possible edges out of it.
4098 // a) EDGE_FALLTHRU into the transaction
4099 // b) EDGE_TM_ABORT out of the transaction
4100 // c) EDGE_TM_UNINSTRUMENTED into the uninstrumented blocks.
4101
4102 free (new_bbs);
4103 }
4104
4105 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
4106 Queue all callees within block BB. */
4107
4108 static void
4109 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
4110 basic_block bb, bool for_clone)
4111 {
4112 gimple_stmt_iterator gsi;
4113
4114 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4115 {
4116 gimple stmt = gsi_stmt (gsi);
4117 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4118 {
4119 tree fndecl = gimple_call_fndecl (stmt);
4120 if (fndecl)
4121 {
4122 struct tm_ipa_cg_data *d;
4123 unsigned *pcallers;
4124 struct cgraph_node *node;
4125
4126 if (is_tm_ending_fndecl (fndecl))
4127 continue;
4128 if (find_tm_replacement_function (fndecl))
4129 continue;
4130
4131 node = cgraph_node::get (fndecl);
4132 gcc_assert (node != NULL);
4133 d = get_cg_data (&node, true);
4134
4135 pcallers = (for_clone ? &d->tm_callers_clone
4136 : &d->tm_callers_normal);
4137 *pcallers += 1;
4138
4139 maybe_push_queue (node, callees_p, &d->in_callee_queue);
4140 }
4141 }
4142 }
4143 }
4144
4145 /* Scan all calls in NODE that are within a transaction region,
4146 and push the resulting nodes into the callee queue. */
4147
4148 static void
4149 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
4150 cgraph_node_queue *callees_p)
4151 {
4152 struct tm_region *r;
4153
4154 d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
4155 d->all_tm_regions = all_tm_regions;
4156
4157 for (r = all_tm_regions; r; r = r->next)
4158 {
4159 vec<basic_block> bbs;
4160 basic_block bb;
4161 unsigned i;
4162
4163 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
4164 d->transaction_blocks_normal, false);
4165
4166 // Generate the uninstrumented code path for this transaction.
4167 ipa_uninstrument_transaction (r, bbs);
4168
4169 FOR_EACH_VEC_ELT (bbs, i, bb)
4170 ipa_tm_scan_calls_block (callees_p, bb, false);
4171
4172 bbs.release ();
4173 }
4174
4175 // ??? copy_bbs should maintain cgraph edges for the blocks as it is
4176 // copying them, rather than forcing us to do this externally.
4177 rebuild_cgraph_edges ();
4178
4179 // ??? In ipa_uninstrument_transaction we don't try to update dominators
4180 // because copy_bbs doesn't return a VEC like iterate_fix_dominators expects.
4181 // Instead, just release dominators here so update_ssa recomputes them.
4182 free_dominance_info (CDI_DOMINATORS);
4183
4184 // When building the uninstrumented code path, copy_bbs will have invoked
4185 // create_new_def_for starting an "ssa update context". There is only one
4186 // instance of this context, so resolve ssa updates before moving on to
4187 // the next function.
4188 update_ssa (TODO_update_ssa);
4189 }
4190
4191 /* Scan all calls in NODE as if this is the transactional clone,
4192 and push the destinations into the callee queue. */
4193
4194 static void
4195 ipa_tm_scan_calls_clone (struct cgraph_node *node,
4196 cgraph_node_queue *callees_p)
4197 {
4198 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
4199 basic_block bb;
4200
4201 FOR_EACH_BB_FN (bb, fn)
4202 ipa_tm_scan_calls_block (callees_p, bb, true);
4203 }
4204
4205 /* The function NODE has been detected to be irrevocable. Push all
4206 of its callers onto WORKLIST for the purpose of re-scanning them. */
4207
4208 static void
4209 ipa_tm_note_irrevocable (struct cgraph_node *node,
4210 cgraph_node_queue *worklist_p)
4211 {
4212 struct tm_ipa_cg_data *d = get_cg_data (&node, true);
4213 struct cgraph_edge *e;
4214
4215 d->is_irrevocable = true;
4216
4217 for (e = node->callers; e ; e = e->next_caller)
4218 {
4219 basic_block bb;
4220 struct cgraph_node *caller;
4221
4222 /* Don't examine recursive calls. */
4223 if (e->caller == node)
4224 continue;
4225 /* Even if we think we can go irrevocable, believe the user
4226 above all. */
4227 if (is_tm_safe_or_pure (e->caller->decl))
4228 continue;
4229
4230 caller = e->caller;
4231 d = get_cg_data (&caller, true);
4232
4233 /* Check if the callee is in a transactional region. If so,
4234 schedule the function for normal re-scan as well. */
4235 bb = gimple_bb (e->call_stmt);
4236 gcc_assert (bb != NULL);
4237 if (d->transaction_blocks_normal
4238 && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
4239 d->want_irr_scan_normal = true;
4240
4241 maybe_push_queue (caller, worklist_p, &d->in_worklist);
4242 }
4243 }
4244
4245 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
4246 within the block is irrevocable. */
4247
4248 static bool
4249 ipa_tm_scan_irr_block (basic_block bb)
4250 {
4251 gimple_stmt_iterator gsi;
4252 tree fn;
4253
4254 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4255 {
4256 gimple stmt = gsi_stmt (gsi);
4257 switch (gimple_code (stmt))
4258 {
4259 case GIMPLE_ASSIGN:
4260 if (gimple_assign_single_p (stmt))
4261 {
4262 tree lhs = gimple_assign_lhs (stmt);
4263 tree rhs = gimple_assign_rhs1 (stmt);
4264 if (volatile_var_p (lhs) || volatile_var_p (rhs))
4265 return true;
4266 }
4267 break;
4268
4269 case GIMPLE_CALL:
4270 {
4271 tree lhs = gimple_call_lhs (stmt);
4272 if (lhs && volatile_var_p (lhs))
4273 return true;
4274
4275 if (is_tm_pure_call (stmt))
4276 break;
4277
4278 fn = gimple_call_fn (stmt);
4279
4280 /* Functions with the attribute are by definition irrevocable. */
4281 if (is_tm_irrevocable (fn))
4282 return true;
4283
4284 /* For direct function calls, go ahead and check for replacement
4285 functions, or transitive irrevocable functions. For indirect
4286 functions, we'll ask the runtime. */
4287 if (TREE_CODE (fn) == ADDR_EXPR)
4288 {
4289 struct tm_ipa_cg_data *d;
4290 struct cgraph_node *node;
4291
4292 fn = TREE_OPERAND (fn, 0);
4293 if (is_tm_ending_fndecl (fn))
4294 break;
4295 if (find_tm_replacement_function (fn))
4296 break;
4297
4298 node = cgraph_node::get (fn);
4299 d = get_cg_data (&node, true);
4300
4301 /* Return true if irrevocable, but above all, believe
4302 the user. */
4303 if (d->is_irrevocable
4304 && !is_tm_safe_or_pure (fn))
4305 return true;
4306 }
4307 break;
4308 }
4309
4310 case GIMPLE_ASM:
4311 /* ??? The Approved Method of indicating that an inline
4312 assembly statement is not relevant to the transaction
4313 is to wrap it in a __tm_waiver block. This is not
4314 yet implemented, so we can't check for it. */
4315 if (is_tm_safe (current_function_decl))
4316 {
4317 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
4318 SET_EXPR_LOCATION (t, gimple_location (stmt));
4319 error ("%Kasm not allowed in %<transaction_safe%> function", t);
4320 }
4321 return true;
4322
4323 default:
4324 break;
4325 }
4326 }
4327
4328 return false;
4329 }
4330
4331 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
4332 for new irrevocable blocks, marking them in NEW_IRR. Don't bother
4333 scanning past OLD_IRR or EXIT_BLOCKS. */
4334
4335 static bool
4336 ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr,
4337 bitmap old_irr, bitmap exit_blocks)
4338 {
4339 bool any_new_irr = false;
4340 edge e;
4341 edge_iterator ei;
4342 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4343
4344 do
4345 {
4346 basic_block bb = pqueue->pop ();
4347
4348 /* Don't re-scan blocks we know already are irrevocable. */
4349 if (old_irr && bitmap_bit_p (old_irr, bb->index))
4350 continue;
4351
4352 if (ipa_tm_scan_irr_block (bb))
4353 {
4354 bitmap_set_bit (new_irr, bb->index);
4355 any_new_irr = true;
4356 }
4357 else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
4358 {
4359 FOR_EACH_EDGE (e, ei, bb->succs)
4360 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4361 {
4362 bitmap_set_bit (visited_blocks, e->dest->index);
4363 pqueue->safe_push (e->dest);
4364 }
4365 }
4366 }
4367 while (!pqueue->is_empty ());
4368
4369 BITMAP_FREE (visited_blocks);
4370
4371 return any_new_irr;
4372 }
4373
4374 /* Propagate the irrevocable property both up and down the dominator tree.
4375 BB is the current block being scanned; EXIT_BLOCKS are the edges of the
4376 TM regions; OLD_IRR are the results of a previous scan of the dominator
4377 tree which has been fully propagated; NEW_IRR is the set of new blocks
4378 which are gaining the irrevocable property during the current scan. */
4379
4380 static void
4381 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
4382 bitmap old_irr, bitmap exit_blocks)
4383 {
4384 vec<basic_block> bbs;
4385 bitmap all_region_blocks;
4386
4387 /* If this block is in the old set, no need to rescan. */
4388 if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
4389 return;
4390
4391 all_region_blocks = BITMAP_ALLOC (&tm_obstack);
4392 bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
4393 all_region_blocks, false);
4394 do
4395 {
4396 basic_block bb = bbs.pop ();
4397 bool this_irr = bitmap_bit_p (new_irr, bb->index);
4398 bool all_son_irr = false;
4399 edge_iterator ei;
4400 edge e;
4401
4402 /* Propagate up. If my children are, I am too, but we must have
4403 at least one child that is. */
4404 if (!this_irr)
4405 {
4406 FOR_EACH_EDGE (e, ei, bb->succs)
4407 {
4408 if (!bitmap_bit_p (new_irr, e->dest->index))
4409 {
4410 all_son_irr = false;
4411 break;
4412 }
4413 else
4414 all_son_irr = true;
4415 }
4416 if (all_son_irr)
4417 {
4418 /* Add block to new_irr if it hasn't already been processed. */
4419 if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
4420 {
4421 bitmap_set_bit (new_irr, bb->index);
4422 this_irr = true;
4423 }
4424 }
4425 }
4426
4427 /* Propagate down to everyone we immediately dominate. */
4428 if (this_irr)
4429 {
4430 basic_block son;
4431 for (son = first_dom_son (CDI_DOMINATORS, bb);
4432 son;
4433 son = next_dom_son (CDI_DOMINATORS, son))
4434 {
4435 /* Make sure block is actually in a TM region, and it
4436 isn't already in old_irr. */
4437 if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
4438 && bitmap_bit_p (all_region_blocks, son->index))
4439 bitmap_set_bit (new_irr, son->index);
4440 }
4441 }
4442 }
4443 while (!bbs.is_empty ());
4444
4445 BITMAP_FREE (all_region_blocks);
4446 bbs.release ();
4447 }
4448
4449 static void
4450 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
4451 {
4452 gimple_stmt_iterator gsi;
4453
4454 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4455 {
4456 gimple stmt = gsi_stmt (gsi);
4457 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4458 {
4459 tree fndecl = gimple_call_fndecl (stmt);
4460 if (fndecl)
4461 {
4462 struct tm_ipa_cg_data *d;
4463 unsigned *pcallers;
4464 struct cgraph_node *tnode;
4465
4466 if (is_tm_ending_fndecl (fndecl))
4467 continue;
4468 if (find_tm_replacement_function (fndecl))
4469 continue;
4470
4471 tnode = cgraph_node::get (fndecl);
4472 d = get_cg_data (&tnode, true);
4473
4474 pcallers = (for_clone ? &d->tm_callers_clone
4475 : &d->tm_callers_normal);
4476
4477 gcc_assert (*pcallers > 0);
4478 *pcallers -= 1;
4479 }
4480 }
4481 }
4482 }
4483
4484 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
4485 as well as other irrevocable actions such as inline assembly. Mark all
4486 such blocks as irrevocable and decrement the number of calls to
4487 transactional clones. Return true if, for the transactional clone, the
4488 entire function is irrevocable. */
4489
4490 static bool
4491 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
4492 {
4493 struct tm_ipa_cg_data *d;
4494 bitmap new_irr, old_irr;
4495 bool ret = false;
4496
4497 /* Builtin operators (operator new, and such). */
4498 if (DECL_STRUCT_FUNCTION (node->decl) == NULL
4499 || DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL)
4500 return false;
4501
4502 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4503 calculate_dominance_info (CDI_DOMINATORS);
4504
4505 d = get_cg_data (&node, true);
4506 auto_vec<basic_block, 10> queue;
4507 new_irr = BITMAP_ALLOC (&tm_obstack);
4508
4509 /* Scan each tm region, propagating irrevocable status through the tree. */
4510 if (for_clone)
4511 {
4512 old_irr = d->irrevocable_blocks_clone;
4513 queue.quick_push (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4514 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
4515 {
4516 ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4517 new_irr,
4518 old_irr, NULL);
4519 ret = bitmap_bit_p (new_irr,
4520 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->index);
4521 }
4522 }
4523 else
4524 {
4525 struct tm_region *region;
4526
4527 old_irr = d->irrevocable_blocks_normal;
4528 for (region = d->all_tm_regions; region; region = region->next)
4529 {
4530 queue.quick_push (region->entry_block);
4531 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
4532 region->exit_blocks))
4533 ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
4534 region->exit_blocks);
4535 }
4536 }
4537
4538 /* If we found any new irrevocable blocks, reduce the call count for
4539 transactional clones within the irrevocable blocks. Save the new
4540 set of irrevocable blocks for next time. */
4541 if (!bitmap_empty_p (new_irr))
4542 {
4543 bitmap_iterator bmi;
4544 unsigned i;
4545
4546 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4547 ipa_tm_decrement_clone_counts (BASIC_BLOCK_FOR_FN (cfun, i),
4548 for_clone);
4549
4550 if (old_irr)
4551 {
4552 bitmap_ior_into (old_irr, new_irr);
4553 BITMAP_FREE (new_irr);
4554 }
4555 else if (for_clone)
4556 d->irrevocable_blocks_clone = new_irr;
4557 else
4558 d->irrevocable_blocks_normal = new_irr;
4559
4560 if (dump_file && new_irr)
4561 {
4562 const char *dname;
4563 bitmap_iterator bmi;
4564 unsigned i;
4565
4566 dname = lang_hooks.decl_printable_name (current_function_decl, 2);
4567 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4568 fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
4569 }
4570 }
4571 else
4572 BITMAP_FREE (new_irr);
4573
4574 pop_cfun ();
4575
4576 return ret;
4577 }
4578
4579 /* Return true if, for the transactional clone of NODE, any call
4580 may enter irrevocable mode. */
4581
4582 static bool
4583 ipa_tm_mayenterirr_function (struct cgraph_node *node)
4584 {
4585 struct tm_ipa_cg_data *d;
4586 tree decl;
4587 unsigned flags;
4588
4589 d = get_cg_data (&node, true);
4590 decl = node->decl;
4591 flags = flags_from_decl_or_type (decl);
4592
4593 /* Handle some TM builtins. Ordinarily these aren't actually generated
4594 at this point, but handling these functions when written in by the
4595 user makes it easier to build unit tests. */
4596 if (flags & ECF_TM_BUILTIN)
4597 return false;
4598
4599 /* Filter out all functions that are marked. */
4600 if (flags & ECF_TM_PURE)
4601 return false;
4602 if (is_tm_safe (decl))
4603 return false;
4604 if (is_tm_irrevocable (decl))
4605 return true;
4606 if (is_tm_callable (decl))
4607 return true;
4608 if (find_tm_replacement_function (decl))
4609 return true;
4610
4611 /* If we aren't seeing the final version of the function we don't
4612 know what it will contain at runtime. */
4613 if (node->get_availability () < AVAIL_AVAILABLE)
4614 return true;
4615
4616 /* If the function must go irrevocable, then of course true. */
4617 if (d->is_irrevocable)
4618 return true;
4619
4620 /* If there are any blocks marked irrevocable, then the function
4621 as a whole may enter irrevocable. */
4622 if (d->irrevocable_blocks_clone)
4623 return true;
4624
4625 /* We may have previously marked this function as tm_may_enter_irr;
4626 see pass_diagnose_tm_blocks. */
4627 if (node->local.tm_may_enter_irr)
4628 return true;
4629
4630 /* Recurse on the main body for aliases. In general, this will
4631 result in one of the bits above being set so that we will not
4632 have to recurse next time. */
4633 if (node->alias)
4634 return ipa_tm_mayenterirr_function (cgraph_node::get (node->thunk.alias));
4635
4636 /* What remains is unmarked local functions without items that force
4637 the function to go irrevocable. */
4638 return false;
4639 }
4640
4641 /* Diagnose calls from transaction_safe functions to unmarked
4642 functions that are determined to not be safe. */
4643
4644 static void
4645 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4646 {
4647 struct cgraph_edge *e;
4648
4649 for (e = node->callees; e ; e = e->next_callee)
4650 if (!is_tm_callable (e->callee->decl)
4651 && e->callee->local.tm_may_enter_irr)
4652 error_at (gimple_location (e->call_stmt),
4653 "unsafe function call %qD within "
4654 "%<transaction_safe%> function", e->callee->decl);
4655 }
4656
4657 /* Diagnose call from atomic transactions to unmarked functions
4658 that are determined to not be safe. */
4659
4660 static void
4661 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4662 struct tm_region *all_tm_regions)
4663 {
4664 struct tm_region *r;
4665
4666 for (r = all_tm_regions; r ; r = r->next)
4667 if (gimple_transaction_subcode (r->transaction_stmt) & GTMA_IS_RELAXED)
4668 {
4669 /* Atomic transactions can be nested inside relaxed. */
4670 if (r->inner)
4671 ipa_tm_diagnose_transaction (node, r->inner);
4672 }
4673 else
4674 {
4675 vec<basic_block> bbs;
4676 gimple_stmt_iterator gsi;
4677 basic_block bb;
4678 size_t i;
4679
4680 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4681 r->irr_blocks, NULL, false);
4682
4683 for (i = 0; bbs.iterate (i, &bb); ++i)
4684 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4685 {
4686 gimple stmt = gsi_stmt (gsi);
4687 tree fndecl;
4688
4689 if (gimple_code (stmt) == GIMPLE_ASM)
4690 {
4691 error_at (gimple_location (stmt),
4692 "asm not allowed in atomic transaction");
4693 continue;
4694 }
4695
4696 if (!is_gimple_call (stmt))
4697 continue;
4698 fndecl = gimple_call_fndecl (stmt);
4699
4700 /* Indirect function calls have been diagnosed already. */
4701 if (!fndecl)
4702 continue;
4703
4704 /* Stop at the end of the transaction. */
4705 if (is_tm_ending_fndecl (fndecl))
4706 {
4707 if (bitmap_bit_p (r->exit_blocks, bb->index))
4708 break;
4709 continue;
4710 }
4711
4712 /* Marked functions have been diagnosed already. */
4713 if (is_tm_pure_call (stmt))
4714 continue;
4715 if (is_tm_callable (fndecl))
4716 continue;
4717
4718 if (cgraph_local_info (fndecl)->tm_may_enter_irr)
4719 error_at (gimple_location (stmt),
4720 "unsafe function call %qD within "
4721 "atomic transaction", fndecl);
4722 }
4723
4724 bbs.release ();
4725 }
4726 }
4727
4728 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4729 OLD_DECL. The returned value is a freshly malloced pointer that
4730 should be freed by the caller. */
4731
4732 static tree
4733 tm_mangle (tree old_asm_id)
4734 {
4735 const char *old_asm_name;
4736 char *tm_name;
4737 void *alloc = NULL;
4738 struct demangle_component *dc;
4739 tree new_asm_id;
4740
4741 /* Determine if the symbol is already a valid C++ mangled name. Do this
4742 even for C, which might be interfacing with C++ code via appropriately
4743 ugly identifiers. */
4744 /* ??? We could probably do just as well checking for "_Z" and be done. */
4745 old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4746 dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4747
4748 if (dc == NULL)
4749 {
4750 char length[8];
4751
4752 do_unencoded:
4753 sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4754 tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4755 }
4756 else
4757 {
4758 old_asm_name += 2; /* Skip _Z */
4759
4760 switch (dc->type)
4761 {
4762 case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4763 case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4764 /* Don't play silly games, you! */
4765 goto do_unencoded;
4766
4767 case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4768 /* I'd really like to know if we can ever be passed one of
4769 these from the C++ front end. The Logical Thing would
4770 seem that hidden-alias should be outer-most, so that we
4771 get hidden-alias of a transaction-clone and not vice-versa. */
4772 old_asm_name += 2;
4773 break;
4774
4775 default:
4776 break;
4777 }
4778
4779 tm_name = concat ("_ZGTt", old_asm_name, NULL);
4780 }
4781 free (alloc);
4782
4783 new_asm_id = get_identifier (tm_name);
4784 free (tm_name);
4785
4786 return new_asm_id;
4787 }
4788
4789 static inline void
4790 ipa_tm_mark_force_output_node (struct cgraph_node *node)
4791 {
4792 node->mark_force_output ();
4793 node->analyzed = true;
4794 }
4795
4796 static inline void
4797 ipa_tm_mark_forced_by_abi_node (struct cgraph_node *node)
4798 {
4799 node->forced_by_abi = true;
4800 node->analyzed = true;
4801 }
4802
4803 /* Callback data for ipa_tm_create_version_alias. */
4804 struct create_version_alias_info
4805 {
4806 struct cgraph_node *old_node;
4807 tree new_decl;
4808 };
4809
4810 /* A subroutine of ipa_tm_create_version, called via
4811 cgraph_for_node_and_aliases. Create new tm clones for each of
4812 the existing aliases. */
4813 static bool
4814 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4815 {
4816 struct create_version_alias_info *info
4817 = (struct create_version_alias_info *)data;
4818 tree old_decl, new_decl, tm_name;
4819 struct cgraph_node *new_node;
4820
4821 if (!node->cpp_implicit_alias)
4822 return false;
4823
4824 old_decl = node->decl;
4825 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4826 new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4827 TREE_CODE (old_decl), tm_name,
4828 TREE_TYPE (old_decl));
4829
4830 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4831 SET_DECL_RTL (new_decl, NULL);
4832
4833 /* Based loosely on C++'s make_alias_for(). */
4834 TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4835 DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
4836 DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
4837 TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4838 DECL_EXTERNAL (new_decl) = 0;
4839 DECL_ARTIFICIAL (new_decl) = 1;
4840 TREE_ADDRESSABLE (new_decl) = 1;
4841 TREE_USED (new_decl) = 1;
4842 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4843
4844 /* Perform the same remapping to the comdat group. */
4845 if (DECL_ONE_ONLY (new_decl))
4846 varpool_node::get (new_decl)->set_comdat_group
4847 (tm_mangle (decl_comdat_group_id (old_decl)));
4848
4849 new_node = cgraph_node::create_same_body_alias (new_decl, info->new_decl);
4850 new_node->tm_clone = true;
4851 new_node->externally_visible = info->old_node->externally_visible;
4852 /* ?? Do not traverse aliases here. */
4853 get_cg_data (&node, false)->clone = new_node;
4854
4855 record_tm_clone_pair (old_decl, new_decl);
4856
4857 if (info->old_node->force_output
4858 || info->old_node->ref_list.first_referring ())
4859 ipa_tm_mark_force_output_node (new_node);
4860 if (info->old_node->forced_by_abi)
4861 ipa_tm_mark_forced_by_abi_node (new_node);
4862 return false;
4863 }
4864
4865 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4866 appropriate for the transactional clone. */
4867
4868 static void
4869 ipa_tm_create_version (struct cgraph_node *old_node)
4870 {
4871 tree new_decl, old_decl, tm_name;
4872 struct cgraph_node *new_node;
4873
4874 old_decl = old_node->decl;
4875 new_decl = copy_node (old_decl);
4876
4877 /* DECL_ASSEMBLER_NAME needs to be set before we call
4878 cgraph_copy_node_for_versioning below, because cgraph_node will
4879 fill the assembler_name_hash. */
4880 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4881 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4882 SET_DECL_RTL (new_decl, NULL);
4883 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4884
4885 /* Perform the same remapping to the comdat group. */
4886 if (DECL_ONE_ONLY (new_decl))
4887 varpool_node::get (new_decl)->set_comdat_group
4888 (tm_mangle (DECL_COMDAT_GROUP (old_decl)));
4889
4890 gcc_assert (!old_node->ipa_transforms_to_apply.exists ());
4891 new_node = old_node->create_version_clone (new_decl, vNULL, NULL);
4892 new_node->local.local = false;
4893 new_node->externally_visible = old_node->externally_visible;
4894 new_node->lowered = true;
4895 new_node->tm_clone = 1;
4896 get_cg_data (&old_node, true)->clone = new_node;
4897
4898 if (old_node->get_availability () >= AVAIL_INTERPOSABLE)
4899 {
4900 /* Remap extern inline to static inline. */
4901 /* ??? Is it worth trying to use make_decl_one_only? */
4902 if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
4903 {
4904 DECL_EXTERNAL (new_decl) = 0;
4905 TREE_PUBLIC (new_decl) = 0;
4906 DECL_WEAK (new_decl) = 0;
4907 }
4908
4909 tree_function_versioning (old_decl, new_decl,
4910 NULL, false, NULL,
4911 false, NULL, NULL);
4912 }
4913
4914 record_tm_clone_pair (old_decl, new_decl);
4915
4916 new_node->call_function_insertion_hooks ();
4917 if (old_node->force_output
4918 || old_node->ref_list.first_referring ())
4919 ipa_tm_mark_force_output_node (new_node);
4920 if (old_node->forced_by_abi)
4921 ipa_tm_mark_forced_by_abi_node (new_node);
4922
4923 /* Do the same thing, but for any aliases of the original node. */
4924 {
4925 struct create_version_alias_info data;
4926 data.old_node = old_node;
4927 data.new_decl = new_decl;
4928 old_node->call_for_symbol_thunks_and_aliases (ipa_tm_create_version_alias,
4929 &data, true);
4930 }
4931 }
4932
4933 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
4934
4935 static void
4936 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
4937 basic_block bb)
4938 {
4939 gimple_stmt_iterator gsi;
4940 gimple g;
4941
4942 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4943
4944 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
4945 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
4946
4947 split_block_after_labels (bb);
4948 gsi = gsi_after_labels (bb);
4949 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
4950
4951 node->create_edge (cgraph_node::get_create
4952 (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
4953 g, 0,
4954 compute_call_stmt_bb_frequency (node->decl,
4955 gimple_bb (g)));
4956 }
4957
4958 /* Construct a call to TM_GETTMCLONE and insert it before GSI. */
4959
4960 static bool
4961 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
4962 struct tm_region *region,
4963 gimple_stmt_iterator *gsi, gimple stmt)
4964 {
4965 tree gettm_fn, ret, old_fn, callfn;
4966 gimple g, g2;
4967 bool safe;
4968
4969 old_fn = gimple_call_fn (stmt);
4970
4971 if (TREE_CODE (old_fn) == ADDR_EXPR)
4972 {
4973 tree fndecl = TREE_OPERAND (old_fn, 0);
4974 tree clone = get_tm_clone_pair (fndecl);
4975
4976 /* By transforming the call into a TM_GETTMCLONE, we are
4977 technically taking the address of the original function and
4978 its clone. Explain this so inlining will know this function
4979 is needed. */
4980 cgraph_node::get (fndecl)->mark_address_taken () ;
4981 if (clone)
4982 cgraph_node::get (clone)->mark_address_taken ();
4983 }
4984
4985 safe = is_tm_safe (TREE_TYPE (old_fn));
4986 gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
4987 : BUILT_IN_TM_GETTMCLONE_IRR);
4988 ret = create_tmp_var (ptr_type_node, NULL);
4989
4990 if (!safe)
4991 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4992
4993 /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
4994 if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
4995 old_fn = OBJ_TYPE_REF_EXPR (old_fn);
4996
4997 g = gimple_build_call (gettm_fn, 1, old_fn);
4998 ret = make_ssa_name (ret, g);
4999 gimple_call_set_lhs (g, ret);
5000
5001 gsi_insert_before (gsi, g, GSI_SAME_STMT);
5002
5003 node->create_edge (cgraph_node::get_create (gettm_fn), g, 0,
5004 compute_call_stmt_bb_frequency (node->decl,
5005 gimple_bb (g)));
5006
5007 /* Cast return value from tm_gettmclone* into appropriate function
5008 pointer. */
5009 callfn = create_tmp_var (TREE_TYPE (old_fn), NULL);
5010 g2 = gimple_build_assign (callfn,
5011 fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
5012 callfn = make_ssa_name (callfn, g2);
5013 gimple_assign_set_lhs (g2, callfn);
5014 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
5015
5016 /* ??? This is a hack to preserve the NOTHROW bit on the call,
5017 which we would have derived from the decl. Failure to save
5018 this bit means we might have to split the basic block. */
5019 if (gimple_call_nothrow_p (stmt))
5020 gimple_call_set_nothrow (stmt, true);
5021
5022 gimple_call_set_fn (stmt, callfn);
5023
5024 /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
5025 for a call statement. Fix it. */
5026 {
5027 tree lhs = gimple_call_lhs (stmt);
5028 tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
5029 if (lhs
5030 && !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
5031 {
5032 tree temp;
5033
5034 temp = create_tmp_reg (rettype, 0);
5035 gimple_call_set_lhs (stmt, temp);
5036
5037 g2 = gimple_build_assign (lhs,
5038 fold_build1 (VIEW_CONVERT_EXPR,
5039 TREE_TYPE (lhs), temp));
5040 gsi_insert_after (gsi, g2, GSI_SAME_STMT);
5041 }
5042 }
5043
5044 update_stmt (stmt);
5045
5046 return true;
5047 }
5048
5049 /* Helper function for ipa_tm_transform_calls*. Given a call
5050 statement in GSI which resides inside transaction REGION, redirect
5051 the call to either its wrapper function, or its clone. */
5052
5053 static void
5054 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
5055 struct tm_region *region,
5056 gimple_stmt_iterator *gsi,
5057 bool *need_ssa_rename_p)
5058 {
5059 gimple stmt = gsi_stmt (*gsi);
5060 struct cgraph_node *new_node;
5061 struct cgraph_edge *e = node->get_edge (stmt);
5062 tree fndecl = gimple_call_fndecl (stmt);
5063
5064 /* For indirect calls, pass the address through the runtime. */
5065 if (fndecl == NULL)
5066 {
5067 *need_ssa_rename_p |=
5068 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5069 return;
5070 }
5071
5072 /* Handle some TM builtins. Ordinarily these aren't actually generated
5073 at this point, but handling these functions when written in by the
5074 user makes it easier to build unit tests. */
5075 if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
5076 return;
5077
5078 /* Fixup recursive calls inside clones. */
5079 /* ??? Why did cgraph_copy_node_for_versioning update the call edges
5080 for recursion but not update the call statements themselves? */
5081 if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
5082 {
5083 gimple_call_set_fndecl (stmt, current_function_decl);
5084 return;
5085 }
5086
5087 /* If there is a replacement, use it. */
5088 fndecl = find_tm_replacement_function (fndecl);
5089 if (fndecl)
5090 {
5091 new_node = cgraph_node::get_create (fndecl);
5092
5093 /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
5094
5095 We can't do this earlier in record_tm_replacement because
5096 cgraph_remove_unreachable_nodes is called before we inject
5097 references to the node. Further, we can't do this in some
5098 nice central place in ipa_tm_execute because we don't have
5099 the exact list of wrapper functions that would be used.
5100 Marking more wrappers than necessary results in the creation
5101 of unnecessary cgraph_nodes, which can cause some of the
5102 other IPA passes to crash.
5103
5104 We do need to mark these nodes so that we get the proper
5105 result in expand_call_tm. */
5106 /* ??? This seems broken. How is it that we're marking the
5107 CALLEE as may_enter_irr? Surely we should be marking the
5108 CALLER. Also note that find_tm_replacement_function also
5109 contains mappings into the TM runtime, e.g. memcpy. These
5110 we know won't go irrevocable. */
5111 new_node->local.tm_may_enter_irr = 1;
5112 }
5113 else
5114 {
5115 struct tm_ipa_cg_data *d;
5116 struct cgraph_node *tnode = e->callee;
5117
5118 d = get_cg_data (&tnode, true);
5119 new_node = d->clone;
5120
5121 /* As we've already skipped pure calls and appropriate builtins,
5122 and we've already marked irrevocable blocks, if we can't come
5123 up with a static replacement, then ask the runtime. */
5124 if (new_node == NULL)
5125 {
5126 *need_ssa_rename_p |=
5127 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5128 return;
5129 }
5130
5131 fndecl = new_node->decl;
5132 }
5133
5134 cgraph_redirect_edge_callee (e, new_node);
5135 gimple_call_set_fndecl (stmt, fndecl);
5136 }
5137
5138 /* Helper function for ipa_tm_transform_calls. For a given BB,
5139 install calls to tm_irrevocable when IRR_BLOCKS are reached,
5140 redirect other calls to the generated transactional clone. */
5141
5142 static bool
5143 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
5144 basic_block bb, bitmap irr_blocks)
5145 {
5146 gimple_stmt_iterator gsi;
5147 bool need_ssa_rename = false;
5148
5149 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5150 {
5151 ipa_tm_insert_irr_call (node, region, bb);
5152 return true;
5153 }
5154
5155 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5156 {
5157 gimple stmt = gsi_stmt (gsi);
5158
5159 if (!is_gimple_call (stmt))
5160 continue;
5161 if (is_tm_pure_call (stmt))
5162 continue;
5163
5164 /* Redirect edges to the appropriate replacement or clone. */
5165 ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
5166 }
5167
5168 return need_ssa_rename;
5169 }
5170
5171 /* Walk the CFG for REGION, beginning at BB. Install calls to
5172 tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
5173 the generated transactional clone. */
5174
5175 static bool
5176 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
5177 basic_block bb, bitmap irr_blocks)
5178 {
5179 bool need_ssa_rename = false;
5180 edge e;
5181 edge_iterator ei;
5182 auto_vec<basic_block> queue;
5183 bitmap visited_blocks = BITMAP_ALLOC (NULL);
5184
5185 queue.safe_push (bb);
5186 do
5187 {
5188 bb = queue.pop ();
5189
5190 need_ssa_rename |=
5191 ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
5192
5193 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5194 continue;
5195
5196 if (region && bitmap_bit_p (region->exit_blocks, bb->index))
5197 continue;
5198
5199 FOR_EACH_EDGE (e, ei, bb->succs)
5200 if (!bitmap_bit_p (visited_blocks, e->dest->index))
5201 {
5202 bitmap_set_bit (visited_blocks, e->dest->index);
5203 queue.safe_push (e->dest);
5204 }
5205 }
5206 while (!queue.is_empty ());
5207
5208 BITMAP_FREE (visited_blocks);
5209
5210 return need_ssa_rename;
5211 }
5212
5213 /* Transform the calls within the TM regions within NODE. */
5214
5215 static void
5216 ipa_tm_transform_transaction (struct cgraph_node *node)
5217 {
5218 struct tm_ipa_cg_data *d;
5219 struct tm_region *region;
5220 bool need_ssa_rename = false;
5221
5222 d = get_cg_data (&node, true);
5223
5224 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5225 calculate_dominance_info (CDI_DOMINATORS);
5226
5227 for (region = d->all_tm_regions; region; region = region->next)
5228 {
5229 /* If we're sure to go irrevocable, don't transform anything. */
5230 if (d->irrevocable_blocks_normal
5231 && bitmap_bit_p (d->irrevocable_blocks_normal,
5232 region->entry_block->index))
5233 {
5234 transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE
5235 | GTMA_MAY_ENTER_IRREVOCABLE
5236 | GTMA_HAS_NO_INSTRUMENTATION);
5237 continue;
5238 }
5239
5240 need_ssa_rename |=
5241 ipa_tm_transform_calls (node, region, region->entry_block,
5242 d->irrevocable_blocks_normal);
5243 }
5244
5245 if (need_ssa_rename)
5246 update_ssa (TODO_update_ssa_only_virtuals);
5247
5248 pop_cfun ();
5249 }
5250
5251 /* Transform the calls within the transactional clone of NODE. */
5252
5253 static void
5254 ipa_tm_transform_clone (struct cgraph_node *node)
5255 {
5256 struct tm_ipa_cg_data *d;
5257 bool need_ssa_rename;
5258
5259 d = get_cg_data (&node, true);
5260
5261 /* If this function makes no calls and has no irrevocable blocks,
5262 then there's nothing to do. */
5263 /* ??? Remove non-aborting top-level transactions. */
5264 if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone)
5265 return;
5266
5267 push_cfun (DECL_STRUCT_FUNCTION (d->clone->decl));
5268 calculate_dominance_info (CDI_DOMINATORS);
5269
5270 need_ssa_rename =
5271 ipa_tm_transform_calls (d->clone, NULL,
5272 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
5273 d->irrevocable_blocks_clone);
5274
5275 if (need_ssa_rename)
5276 update_ssa (TODO_update_ssa_only_virtuals);
5277
5278 pop_cfun ();
5279 }
5280
5281 /* Main entry point for the transactional memory IPA pass. */
5282
5283 static unsigned int
5284 ipa_tm_execute (void)
5285 {
5286 cgraph_node_queue tm_callees = cgraph_node_queue ();
5287 /* List of functions that will go irrevocable. */
5288 cgraph_node_queue irr_worklist = cgraph_node_queue ();
5289
5290 struct cgraph_node *node;
5291 struct tm_ipa_cg_data *d;
5292 enum availability a;
5293 unsigned int i;
5294
5295 #ifdef ENABLE_CHECKING
5296 cgraph_node::verify_cgraph_nodes ();
5297 #endif
5298
5299 bitmap_obstack_initialize (&tm_obstack);
5300 initialize_original_copy_tables ();
5301
5302 /* For all local functions marked tm_callable, queue them. */
5303 FOR_EACH_DEFINED_FUNCTION (node)
5304 if (is_tm_callable (node->decl)
5305 && node->get_availability () >= AVAIL_INTERPOSABLE)
5306 {
5307 d = get_cg_data (&node, true);
5308 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5309 }
5310
5311 /* For all local reachable functions... */
5312 FOR_EACH_DEFINED_FUNCTION (node)
5313 if (node->lowered
5314 && node->get_availability () >= AVAIL_INTERPOSABLE)
5315 {
5316 /* ... marked tm_pure, record that fact for the runtime by
5317 indicating that the pure function is its own tm_callable.
5318 No need to do this if the function's address can't be taken. */
5319 if (is_tm_pure (node->decl))
5320 {
5321 if (!node->local.local)
5322 record_tm_clone_pair (node->decl, node->decl);
5323 continue;
5324 }
5325
5326 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5327 calculate_dominance_info (CDI_DOMINATORS);
5328
5329 tm_region_init (NULL);
5330 if (all_tm_regions)
5331 {
5332 d = get_cg_data (&node, true);
5333
5334 /* Scan for calls that are in each transaction, and
5335 generate the uninstrumented code path. */
5336 ipa_tm_scan_calls_transaction (d, &tm_callees);
5337
5338 /* Put it in the worklist so we can scan the function
5339 later (ipa_tm_scan_irr_function) and mark the
5340 irrevocable blocks. */
5341 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5342 d->want_irr_scan_normal = true;
5343 }
5344
5345 pop_cfun ();
5346 }
5347
5348 /* For every local function on the callee list, scan as if we will be
5349 creating a transactional clone, queueing all new functions we find
5350 along the way. */
5351 for (i = 0; i < tm_callees.length (); ++i)
5352 {
5353 node = tm_callees[i];
5354 a = node->get_availability ();
5355 d = get_cg_data (&node, true);
5356
5357 /* Put it in the worklist so we can scan the function later
5358 (ipa_tm_scan_irr_function) and mark the irrevocable
5359 blocks. */
5360 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5361
5362 /* Some callees cannot be arbitrarily cloned. These will always be
5363 irrevocable. Mark these now, so that we need not scan them. */
5364 if (is_tm_irrevocable (node->decl))
5365 ipa_tm_note_irrevocable (node, &irr_worklist);
5366 else if (a <= AVAIL_NOT_AVAILABLE
5367 && !is_tm_safe_or_pure (node->decl))
5368 ipa_tm_note_irrevocable (node, &irr_worklist);
5369 else if (a >= AVAIL_INTERPOSABLE)
5370 {
5371 if (!tree_versionable_function_p (node->decl))
5372 ipa_tm_note_irrevocable (node, &irr_worklist);
5373 else if (!d->is_irrevocable)
5374 {
5375 /* If this is an alias, make sure its base is queued as well.
5376 we need not scan the callees now, as the base will do. */
5377 if (node->alias)
5378 {
5379 node = cgraph_node::get (node->thunk.alias);
5380 d = get_cg_data (&node, true);
5381 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5382 continue;
5383 }
5384
5385 /* Add all nodes called by this function into
5386 tm_callees as well. */
5387 ipa_tm_scan_calls_clone (node, &tm_callees);
5388 }
5389 }
5390 }
5391
5392 /* Iterate scans until no more work to be done. Prefer not to use
5393 vec::pop because the worklist tends to follow a breadth-first
5394 search of the callgraph, which should allow convergance with a
5395 minimum number of scans. But we also don't want the worklist
5396 array to grow without bound, so we shift the array up periodically. */
5397 for (i = 0; i < irr_worklist.length (); ++i)
5398 {
5399 if (i > 256 && i == irr_worklist.length () / 8)
5400 {
5401 irr_worklist.block_remove (0, i);
5402 i = 0;
5403 }
5404
5405 node = irr_worklist[i];
5406 d = get_cg_data (&node, true);
5407 d->in_worklist = false;
5408
5409 if (d->want_irr_scan_normal)
5410 {
5411 d->want_irr_scan_normal = false;
5412 ipa_tm_scan_irr_function (node, false);
5413 }
5414 if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
5415 ipa_tm_note_irrevocable (node, &irr_worklist);
5416 }
5417
5418 /* For every function on the callee list, collect the tm_may_enter_irr
5419 bit on the node. */
5420 irr_worklist.truncate (0);
5421 for (i = 0; i < tm_callees.length (); ++i)
5422 {
5423 node = tm_callees[i];
5424 if (ipa_tm_mayenterirr_function (node))
5425 {
5426 d = get_cg_data (&node, true);
5427 gcc_assert (d->in_worklist == false);
5428 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5429 }
5430 }
5431
5432 /* Propagate the tm_may_enter_irr bit to callers until stable. */
5433 for (i = 0; i < irr_worklist.length (); ++i)
5434 {
5435 struct cgraph_node *caller;
5436 struct cgraph_edge *e;
5437 struct ipa_ref *ref;
5438
5439 if (i > 256 && i == irr_worklist.length () / 8)
5440 {
5441 irr_worklist.block_remove (0, i);
5442 i = 0;
5443 }
5444
5445 node = irr_worklist[i];
5446 d = get_cg_data (&node, true);
5447 d->in_worklist = false;
5448 node->local.tm_may_enter_irr = true;
5449
5450 /* Propagate back to normal callers. */
5451 for (e = node->callers; e ; e = e->next_caller)
5452 {
5453 caller = e->caller;
5454 if (!is_tm_safe_or_pure (caller->decl)
5455 && !caller->local.tm_may_enter_irr)
5456 {
5457 d = get_cg_data (&caller, true);
5458 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5459 }
5460 }
5461
5462 /* Propagate back to referring aliases as well. */
5463 FOR_EACH_ALIAS (node, ref)
5464 {
5465 caller = dyn_cast<cgraph_node *> (ref->referring);
5466 if (!caller->local.tm_may_enter_irr)
5467 {
5468 /* ?? Do not traverse aliases here. */
5469 d = get_cg_data (&caller, false);
5470 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5471 }
5472 }
5473 }
5474
5475 /* Now validate all tm_safe functions, and all atomic regions in
5476 other functions. */
5477 FOR_EACH_DEFINED_FUNCTION (node)
5478 if (node->lowered
5479 && node->get_availability () >= AVAIL_INTERPOSABLE)
5480 {
5481 d = get_cg_data (&node, true);
5482 if (is_tm_safe (node->decl))
5483 ipa_tm_diagnose_tm_safe (node);
5484 else if (d->all_tm_regions)
5485 ipa_tm_diagnose_transaction (node, d->all_tm_regions);
5486 }
5487
5488 /* Create clones. Do those that are not irrevocable and have a
5489 positive call count. Do those publicly visible functions that
5490 the user directed us to clone. */
5491 for (i = 0; i < tm_callees.length (); ++i)
5492 {
5493 bool doit = false;
5494
5495 node = tm_callees[i];
5496 if (node->cpp_implicit_alias)
5497 continue;
5498
5499 a = node->get_availability ();
5500 d = get_cg_data (&node, true);
5501
5502 if (a <= AVAIL_NOT_AVAILABLE)
5503 doit = is_tm_callable (node->decl);
5504 else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
5505 doit = true;
5506 else if (!d->is_irrevocable
5507 && d->tm_callers_normal + d->tm_callers_clone > 0)
5508 doit = true;
5509
5510 if (doit)
5511 ipa_tm_create_version (node);
5512 }
5513
5514 /* Redirect calls to the new clones, and insert irrevocable marks. */
5515 for (i = 0; i < tm_callees.length (); ++i)
5516 {
5517 node = tm_callees[i];
5518 if (node->analyzed)
5519 {
5520 d = get_cg_data (&node, true);
5521 if (d->clone)
5522 ipa_tm_transform_clone (node);
5523 }
5524 }
5525 FOR_EACH_DEFINED_FUNCTION (node)
5526 if (node->lowered
5527 && node->get_availability () >= AVAIL_INTERPOSABLE)
5528 {
5529 d = get_cg_data (&node, true);
5530 if (d->all_tm_regions)
5531 ipa_tm_transform_transaction (node);
5532 }
5533
5534 /* Free and clear all data structures. */
5535 tm_callees.release ();
5536 irr_worklist.release ();
5537 bitmap_obstack_release (&tm_obstack);
5538 free_original_copy_tables ();
5539
5540 FOR_EACH_FUNCTION (node)
5541 node->aux = NULL;
5542
5543 #ifdef ENABLE_CHECKING
5544 cgraph_node::verify_cgraph_nodes ();
5545 #endif
5546
5547 return 0;
5548 }
5549
5550 namespace {
5551
5552 const pass_data pass_data_ipa_tm =
5553 {
5554 SIMPLE_IPA_PASS, /* type */
5555 "tmipa", /* name */
5556 OPTGROUP_NONE, /* optinfo_flags */
5557 TV_TRANS_MEM, /* tv_id */
5558 ( PROP_ssa | PROP_cfg ), /* properties_required */
5559 0, /* properties_provided */
5560 0, /* properties_destroyed */
5561 0, /* todo_flags_start */
5562 0, /* todo_flags_finish */
5563 };
5564
5565 class pass_ipa_tm : public simple_ipa_opt_pass
5566 {
5567 public:
5568 pass_ipa_tm (gcc::context *ctxt)
5569 : simple_ipa_opt_pass (pass_data_ipa_tm, ctxt)
5570 {}
5571
5572 /* opt_pass methods: */
5573 virtual bool gate (function *) { return flag_tm; }
5574 virtual unsigned int execute (function *) { return ipa_tm_execute (); }
5575
5576 }; // class pass_ipa_tm
5577
5578 } // anon namespace
5579
5580 simple_ipa_opt_pass *
5581 make_pass_ipa_tm (gcc::context *ctxt)
5582 {
5583 return new pass_ipa_tm (ctxt);
5584 }
5585
5586 #include "gt-trans-mem.h"