]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/trans-mem.c
coretypes.h: Include input.h and as-a.h.
[thirdparty/gcc.git] / gcc / trans-mem.c
1 /* Passes for transactional memory support.
2 Copyright (C) 2008-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "alias.h"
24 #include "symtab.h"
25 #include "options.h"
26 #include "tree.h"
27 #include "fold-const.h"
28 #include "predict.h"
29 #include "tm.h"
30 #include "hard-reg-set.h"
31 #include "function.h"
32 #include "dominance.h"
33 #include "cfg.h"
34 #include "basic-block.h"
35 #include "tree-ssa-alias.h"
36 #include "internal-fn.h"
37 #include "tree-eh.h"
38 #include "gimple-expr.h"
39 #include "gimple.h"
40 #include "calls.h"
41 #include "rtl.h"
42 #include "emit-rtl.h"
43 #include "gimplify.h"
44 #include "gimple-iterator.h"
45 #include "gimplify-me.h"
46 #include "gimple-walk.h"
47 #include "gimple-ssa.h"
48 #include "plugin-api.h"
49 #include "ipa-ref.h"
50 #include "cgraph.h"
51 #include "tree-cfg.h"
52 #include "stringpool.h"
53 #include "tree-ssanames.h"
54 #include "tree-into-ssa.h"
55 #include "tree-pass.h"
56 #include "tree-inline.h"
57 #include "diagnostic-core.h"
58 #include "demangle.h"
59 #include "output.h"
60 #include "trans-mem.h"
61 #include "params.h"
62 #include "target.h"
63 #include "langhooks.h"
64 #include "gimple-pretty-print.h"
65 #include "cfgloop.h"
66 #include "tree-ssa-address.h"
67
68
69 #define A_RUNINSTRUMENTEDCODE 0x0001
70 #define A_RUNUNINSTRUMENTEDCODE 0x0002
71 #define A_SAVELIVEVARIABLES 0x0004
72 #define A_RESTORELIVEVARIABLES 0x0008
73 #define A_ABORTTRANSACTION 0x0010
74
75 #define AR_USERABORT 0x0001
76 #define AR_USERRETRY 0x0002
77 #define AR_TMCONFLICT 0x0004
78 #define AR_EXCEPTIONBLOCKABORT 0x0008
79 #define AR_OUTERABORT 0x0010
80
81 #define MODE_SERIALIRREVOCABLE 0x0000
82
83
84 /* The representation of a transaction changes several times during the
85 lowering process. In the beginning, in the front-end we have the
86 GENERIC tree TRANSACTION_EXPR. For example,
87
88 __transaction {
89 local++;
90 if (++global == 10)
91 __tm_abort;
92 }
93
94 During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
95 trivially replaced with a GIMPLE_TRANSACTION node.
96
97 During pass_lower_tm, we examine the body of transactions looking
98 for aborts. Transactions that do not contain an abort may be
99 merged into an outer transaction. We also add a TRY-FINALLY node
100 to arrange for the transaction to be committed on any exit.
101
102 [??? Think about how this arrangement affects throw-with-commit
103 and throw-with-abort operations. In this case we want the TRY to
104 handle gotos, but not to catch any exceptions because the transaction
105 will already be closed.]
106
107 GIMPLE_TRANSACTION [label=NULL] {
108 try {
109 local = local + 1;
110 t0 = global;
111 t1 = t0 + 1;
112 global = t1;
113 if (t1 == 10)
114 __builtin___tm_abort ();
115 } finally {
116 __builtin___tm_commit ();
117 }
118 }
119
120 During pass_lower_eh, we create EH regions for the transactions,
121 intermixed with the regular EH stuff. This gives us a nice persistent
122 mapping (all the way through rtl) from transactional memory operation
123 back to the transaction, which allows us to get the abnormal edges
124 correct to model transaction aborts and restarts:
125
126 GIMPLE_TRANSACTION [label=over]
127 local = local + 1;
128 t0 = global;
129 t1 = t0 + 1;
130 global = t1;
131 if (t1 == 10)
132 __builtin___tm_abort ();
133 __builtin___tm_commit ();
134 over:
135
136 This is the end of all_lowering_passes, and so is what is present
137 during the IPA passes, and through all of the optimization passes.
138
139 During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
140 functions and mark functions for cloning.
141
142 At the end of gimple optimization, before exiting SSA form,
143 pass_tm_edges replaces statements that perform transactional
144 memory operations with the appropriate TM builtins, and swap
145 out function calls with their transactional clones. At this
146 point we introduce the abnormal transaction restart edges and
147 complete lowering of the GIMPLE_TRANSACTION node.
148
149 x = __builtin___tm_start (MAY_ABORT);
150 eh_label:
151 if (x & abort_transaction)
152 goto over;
153 local = local + 1;
154 t0 = __builtin___tm_load (global);
155 t1 = t0 + 1;
156 __builtin___tm_store (&global, t1);
157 if (t1 == 10)
158 __builtin___tm_abort ();
159 __builtin___tm_commit ();
160 over:
161 */
162
163 static void *expand_regions (struct tm_region *,
164 void *(*callback)(struct tm_region *, void *),
165 void *, bool);
166
167 \f
168 /* Return the attributes we want to examine for X, or NULL if it's not
169 something we examine. We look at function types, but allow pointers
170 to function types and function decls and peek through. */
171
172 static tree
173 get_attrs_for (const_tree x)
174 {
175 if (x == NULL_TREE)
176 return NULL_TREE;
177
178 switch (TREE_CODE (x))
179 {
180 case FUNCTION_DECL:
181 return TYPE_ATTRIBUTES (TREE_TYPE (x));
182 break;
183
184 default:
185 if (TYPE_P (x))
186 return NULL_TREE;
187 x = TREE_TYPE (x);
188 if (TREE_CODE (x) != POINTER_TYPE)
189 return NULL_TREE;
190 /* FALLTHRU */
191
192 case POINTER_TYPE:
193 x = TREE_TYPE (x);
194 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
195 return NULL_TREE;
196 /* FALLTHRU */
197
198 case FUNCTION_TYPE:
199 case METHOD_TYPE:
200 return TYPE_ATTRIBUTES (x);
201 }
202 }
203
204 /* Return true if X has been marked TM_PURE. */
205
206 bool
207 is_tm_pure (const_tree x)
208 {
209 unsigned flags;
210
211 switch (TREE_CODE (x))
212 {
213 case FUNCTION_DECL:
214 case FUNCTION_TYPE:
215 case METHOD_TYPE:
216 break;
217
218 default:
219 if (TYPE_P (x))
220 return false;
221 x = TREE_TYPE (x);
222 if (TREE_CODE (x) != POINTER_TYPE)
223 return false;
224 /* FALLTHRU */
225
226 case POINTER_TYPE:
227 x = TREE_TYPE (x);
228 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
229 return false;
230 break;
231 }
232
233 flags = flags_from_decl_or_type (x);
234 return (flags & ECF_TM_PURE) != 0;
235 }
236
237 /* Return true if X has been marked TM_IRREVOCABLE. */
238
239 static bool
240 is_tm_irrevocable (tree x)
241 {
242 tree attrs = get_attrs_for (x);
243
244 if (attrs && lookup_attribute ("transaction_unsafe", attrs))
245 return true;
246
247 /* A call to the irrevocable builtin is by definition,
248 irrevocable. */
249 if (TREE_CODE (x) == ADDR_EXPR)
250 x = TREE_OPERAND (x, 0);
251 if (TREE_CODE (x) == FUNCTION_DECL
252 && DECL_BUILT_IN_CLASS (x) == BUILT_IN_NORMAL
253 && DECL_FUNCTION_CODE (x) == BUILT_IN_TM_IRREVOCABLE)
254 return true;
255
256 return false;
257 }
258
259 /* Return true if X has been marked TM_SAFE. */
260
261 bool
262 is_tm_safe (const_tree x)
263 {
264 if (flag_tm)
265 {
266 tree attrs = get_attrs_for (x);
267 if (attrs)
268 {
269 if (lookup_attribute ("transaction_safe", attrs))
270 return true;
271 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
272 return true;
273 }
274 }
275 return false;
276 }
277
278 /* Return true if CALL is const, or tm_pure. */
279
280 static bool
281 is_tm_pure_call (gimple call)
282 {
283 tree fn = gimple_call_fn (call);
284
285 if (TREE_CODE (fn) == ADDR_EXPR)
286 {
287 fn = TREE_OPERAND (fn, 0);
288 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
289 }
290 else
291 fn = TREE_TYPE (fn);
292
293 return is_tm_pure (fn);
294 }
295
296 /* Return true if X has been marked TM_CALLABLE. */
297
298 static bool
299 is_tm_callable (tree x)
300 {
301 tree attrs = get_attrs_for (x);
302 if (attrs)
303 {
304 if (lookup_attribute ("transaction_callable", attrs))
305 return true;
306 if (lookup_attribute ("transaction_safe", attrs))
307 return true;
308 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
309 return true;
310 }
311 return false;
312 }
313
314 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
315
316 bool
317 is_tm_may_cancel_outer (tree x)
318 {
319 tree attrs = get_attrs_for (x);
320 if (attrs)
321 return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
322 return false;
323 }
324
325 /* Return true for built in functions that "end" a transaction. */
326
327 bool
328 is_tm_ending_fndecl (tree fndecl)
329 {
330 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
331 switch (DECL_FUNCTION_CODE (fndecl))
332 {
333 case BUILT_IN_TM_COMMIT:
334 case BUILT_IN_TM_COMMIT_EH:
335 case BUILT_IN_TM_ABORT:
336 case BUILT_IN_TM_IRREVOCABLE:
337 return true;
338 default:
339 break;
340 }
341
342 return false;
343 }
344
345 /* Return true if STMT is a built in function call that "ends" a
346 transaction. */
347
348 bool
349 is_tm_ending (gimple stmt)
350 {
351 tree fndecl;
352
353 if (gimple_code (stmt) != GIMPLE_CALL)
354 return false;
355
356 fndecl = gimple_call_fndecl (stmt);
357 return (fndecl != NULL_TREE
358 && is_tm_ending_fndecl (fndecl));
359 }
360
361 /* Return true if STMT is a TM load. */
362
363 static bool
364 is_tm_load (gimple stmt)
365 {
366 tree fndecl;
367
368 if (gimple_code (stmt) != GIMPLE_CALL)
369 return false;
370
371 fndecl = gimple_call_fndecl (stmt);
372 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
373 && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
374 }
375
376 /* Same as above, but for simple TM loads, that is, not the
377 after-write, after-read, etc optimized variants. */
378
379 static bool
380 is_tm_simple_load (gimple stmt)
381 {
382 tree fndecl;
383
384 if (gimple_code (stmt) != GIMPLE_CALL)
385 return false;
386
387 fndecl = gimple_call_fndecl (stmt);
388 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
389 {
390 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
391 return (fcode == BUILT_IN_TM_LOAD_1
392 || fcode == BUILT_IN_TM_LOAD_2
393 || fcode == BUILT_IN_TM_LOAD_4
394 || fcode == BUILT_IN_TM_LOAD_8
395 || fcode == BUILT_IN_TM_LOAD_FLOAT
396 || fcode == BUILT_IN_TM_LOAD_DOUBLE
397 || fcode == BUILT_IN_TM_LOAD_LDOUBLE
398 || fcode == BUILT_IN_TM_LOAD_M64
399 || fcode == BUILT_IN_TM_LOAD_M128
400 || fcode == BUILT_IN_TM_LOAD_M256);
401 }
402 return false;
403 }
404
405 /* Return true if STMT is a TM store. */
406
407 static bool
408 is_tm_store (gimple stmt)
409 {
410 tree fndecl;
411
412 if (gimple_code (stmt) != GIMPLE_CALL)
413 return false;
414
415 fndecl = gimple_call_fndecl (stmt);
416 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
417 && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
418 }
419
420 /* Same as above, but for simple TM stores, that is, not the
421 after-write, after-read, etc optimized variants. */
422
423 static bool
424 is_tm_simple_store (gimple stmt)
425 {
426 tree fndecl;
427
428 if (gimple_code (stmt) != GIMPLE_CALL)
429 return false;
430
431 fndecl = gimple_call_fndecl (stmt);
432 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
433 {
434 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
435 return (fcode == BUILT_IN_TM_STORE_1
436 || fcode == BUILT_IN_TM_STORE_2
437 || fcode == BUILT_IN_TM_STORE_4
438 || fcode == BUILT_IN_TM_STORE_8
439 || fcode == BUILT_IN_TM_STORE_FLOAT
440 || fcode == BUILT_IN_TM_STORE_DOUBLE
441 || fcode == BUILT_IN_TM_STORE_LDOUBLE
442 || fcode == BUILT_IN_TM_STORE_M64
443 || fcode == BUILT_IN_TM_STORE_M128
444 || fcode == BUILT_IN_TM_STORE_M256);
445 }
446 return false;
447 }
448
449 /* Return true if FNDECL is BUILT_IN_TM_ABORT. */
450
451 static bool
452 is_tm_abort (tree fndecl)
453 {
454 return (fndecl
455 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
456 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_TM_ABORT);
457 }
458
459 /* Build a GENERIC tree for a user abort. This is called by front ends
460 while transforming the __tm_abort statement. */
461
462 tree
463 build_tm_abort_call (location_t loc, bool is_outer)
464 {
465 return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
466 build_int_cst (integer_type_node,
467 AR_USERABORT
468 | (is_outer ? AR_OUTERABORT : 0)));
469 }
470 \f
471 /* Map for aribtrary function replacement under TM, as created
472 by the tm_wrap attribute. */
473
474 struct tm_wrapper_hasher : ggc_cache_hasher<tree_map *>
475 {
476 static inline hashval_t hash (tree_map *m) { return m->hash; }
477 static inline bool
478 equal (tree_map *a, tree_map *b)
479 {
480 return a->base.from == b->base.from;
481 }
482
483 static void
484 handle_cache_entry (tree_map *&m)
485 {
486 extern void gt_ggc_mx (tree_map *&);
487 if (m == HTAB_EMPTY_ENTRY || m == HTAB_DELETED_ENTRY)
488 return;
489 else if (ggc_marked_p (m->base.from))
490 gt_ggc_mx (m);
491 else
492 m = static_cast<tree_map *> (HTAB_DELETED_ENTRY);
493 }
494 };
495
496 static GTY((cache)) hash_table<tm_wrapper_hasher> *tm_wrap_map;
497
498 void
499 record_tm_replacement (tree from, tree to)
500 {
501 struct tree_map **slot, *h;
502
503 /* Do not inline wrapper functions that will get replaced in the TM
504 pass.
505
506 Suppose you have foo() that will get replaced into tmfoo(). Make
507 sure the inliner doesn't try to outsmart us and inline foo()
508 before we get a chance to do the TM replacement. */
509 DECL_UNINLINABLE (from) = 1;
510
511 if (tm_wrap_map == NULL)
512 tm_wrap_map = hash_table<tm_wrapper_hasher>::create_ggc (32);
513
514 h = ggc_alloc<tree_map> ();
515 h->hash = htab_hash_pointer (from);
516 h->base.from = from;
517 h->to = to;
518
519 slot = tm_wrap_map->find_slot_with_hash (h, h->hash, INSERT);
520 *slot = h;
521 }
522
523 /* Return a TM-aware replacement function for DECL. */
524
525 static tree
526 find_tm_replacement_function (tree fndecl)
527 {
528 if (tm_wrap_map)
529 {
530 struct tree_map *h, in;
531
532 in.base.from = fndecl;
533 in.hash = htab_hash_pointer (fndecl);
534 h = tm_wrap_map->find_with_hash (&in, in.hash);
535 if (h)
536 return h->to;
537 }
538
539 /* ??? We may well want TM versions of most of the common <string.h>
540 functions. For now, we've already these two defined. */
541 /* Adjust expand_call_tm() attributes as necessary for the cases
542 handled here: */
543 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
544 switch (DECL_FUNCTION_CODE (fndecl))
545 {
546 case BUILT_IN_MEMCPY:
547 return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
548 case BUILT_IN_MEMMOVE:
549 return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
550 case BUILT_IN_MEMSET:
551 return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
552 default:
553 return NULL;
554 }
555
556 return NULL;
557 }
558
559 /* When appropriate, record TM replacement for memory allocation functions.
560
561 FROM is the FNDECL to wrap. */
562 void
563 tm_malloc_replacement (tree from)
564 {
565 const char *str;
566 tree to;
567
568 if (TREE_CODE (from) != FUNCTION_DECL)
569 return;
570
571 /* If we have a previous replacement, the user must be explicitly
572 wrapping malloc/calloc/free. They better know what they're
573 doing... */
574 if (find_tm_replacement_function (from))
575 return;
576
577 str = IDENTIFIER_POINTER (DECL_NAME (from));
578
579 if (!strcmp (str, "malloc"))
580 to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
581 else if (!strcmp (str, "calloc"))
582 to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
583 else if (!strcmp (str, "free"))
584 to = builtin_decl_explicit (BUILT_IN_TM_FREE);
585 else
586 return;
587
588 TREE_NOTHROW (to) = 0;
589
590 record_tm_replacement (from, to);
591 }
592 \f
593 /* Diagnostics for tm_safe functions/regions. Called by the front end
594 once we've lowered the function to high-gimple. */
595
596 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
597 Process exactly one statement. WI->INFO is set to non-null when in
598 the context of a tm_safe function, and null for a __transaction block. */
599
600 #define DIAG_TM_OUTER 1
601 #define DIAG_TM_SAFE 2
602 #define DIAG_TM_RELAXED 4
603
604 struct diagnose_tm
605 {
606 unsigned int summary_flags : 8;
607 unsigned int block_flags : 8;
608 unsigned int func_flags : 8;
609 unsigned int saw_volatile : 1;
610 gimple stmt;
611 };
612
613 /* Return true if T is a volatile variable of some kind. */
614
615 static bool
616 volatile_var_p (tree t)
617 {
618 return (SSA_VAR_P (t)
619 && TREE_THIS_VOLATILE (TREE_TYPE (t)));
620 }
621
622 /* Tree callback function for diagnose_tm pass. */
623
624 static tree
625 diagnose_tm_1_op (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
626 void *data)
627 {
628 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
629 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
630
631 if (volatile_var_p (*tp)
632 && d->block_flags & DIAG_TM_SAFE
633 && !d->saw_volatile)
634 {
635 d->saw_volatile = 1;
636 error_at (gimple_location (d->stmt),
637 "invalid volatile use of %qD inside transaction",
638 *tp);
639 }
640
641 return NULL_TREE;
642 }
643
644 static inline bool
645 is_tm_safe_or_pure (const_tree x)
646 {
647 return is_tm_safe (x) || is_tm_pure (x);
648 }
649
650 static tree
651 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
652 struct walk_stmt_info *wi)
653 {
654 gimple stmt = gsi_stmt (*gsi);
655 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
656
657 /* Save stmt for use in leaf analysis. */
658 d->stmt = stmt;
659
660 switch (gimple_code (stmt))
661 {
662 case GIMPLE_CALL:
663 {
664 tree fn = gimple_call_fn (stmt);
665
666 if ((d->summary_flags & DIAG_TM_OUTER) == 0
667 && is_tm_may_cancel_outer (fn))
668 error_at (gimple_location (stmt),
669 "%<transaction_may_cancel_outer%> function call not within"
670 " outer transaction or %<transaction_may_cancel_outer%>");
671
672 if (d->summary_flags & DIAG_TM_SAFE)
673 {
674 bool is_safe, direct_call_p;
675 tree replacement;
676
677 if (TREE_CODE (fn) == ADDR_EXPR
678 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
679 {
680 direct_call_p = true;
681 replacement = TREE_OPERAND (fn, 0);
682 replacement = find_tm_replacement_function (replacement);
683 if (replacement)
684 fn = replacement;
685 }
686 else
687 {
688 direct_call_p = false;
689 replacement = NULL_TREE;
690 }
691
692 if (is_tm_safe_or_pure (fn))
693 is_safe = true;
694 else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
695 {
696 /* A function explicitly marked transaction_callable as
697 opposed to transaction_safe is being defined to be
698 unsafe as part of its ABI, regardless of its contents. */
699 is_safe = false;
700 }
701 else if (direct_call_p)
702 {
703 if (IS_TYPE_OR_DECL_P (fn)
704 && flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
705 is_safe = true;
706 else if (replacement)
707 {
708 /* ??? At present we've been considering replacements
709 merely transaction_callable, and therefore might
710 enter irrevocable. The tm_wrap attribute has not
711 yet made it into the new language spec. */
712 is_safe = false;
713 }
714 else
715 {
716 /* ??? Diagnostics for unmarked direct calls moved into
717 the IPA pass. Section 3.2 of the spec details how
718 functions not marked should be considered "implicitly
719 safe" based on having examined the function body. */
720 is_safe = true;
721 }
722 }
723 else
724 {
725 /* An unmarked indirect call. Consider it unsafe even
726 though optimization may yet figure out how to inline. */
727 is_safe = false;
728 }
729
730 if (!is_safe)
731 {
732 if (TREE_CODE (fn) == ADDR_EXPR)
733 fn = TREE_OPERAND (fn, 0);
734 if (d->block_flags & DIAG_TM_SAFE)
735 {
736 if (direct_call_p)
737 error_at (gimple_location (stmt),
738 "unsafe function call %qD within "
739 "atomic transaction", fn);
740 else
741 {
742 if (!DECL_P (fn) || DECL_NAME (fn))
743 error_at (gimple_location (stmt),
744 "unsafe function call %qE within "
745 "atomic transaction", fn);
746 else
747 error_at (gimple_location (stmt),
748 "unsafe indirect function call within "
749 "atomic transaction");
750 }
751 }
752 else
753 {
754 if (direct_call_p)
755 error_at (gimple_location (stmt),
756 "unsafe function call %qD within "
757 "%<transaction_safe%> function", fn);
758 else
759 {
760 if (!DECL_P (fn) || DECL_NAME (fn))
761 error_at (gimple_location (stmt),
762 "unsafe function call %qE within "
763 "%<transaction_safe%> function", fn);
764 else
765 error_at (gimple_location (stmt),
766 "unsafe indirect function call within "
767 "%<transaction_safe%> function");
768 }
769 }
770 }
771 }
772 }
773 break;
774
775 case GIMPLE_ASM:
776 /* ??? We ought to come up with a way to add attributes to
777 asm statements, and then add "transaction_safe" to it.
778 Either that or get the language spec to resurrect __tm_waiver. */
779 if (d->block_flags & DIAG_TM_SAFE)
780 error_at (gimple_location (stmt),
781 "asm not allowed in atomic transaction");
782 else if (d->func_flags & DIAG_TM_SAFE)
783 error_at (gimple_location (stmt),
784 "asm not allowed in %<transaction_safe%> function");
785 break;
786
787 case GIMPLE_TRANSACTION:
788 {
789 gtransaction *trans_stmt = as_a <gtransaction *> (stmt);
790 unsigned char inner_flags = DIAG_TM_SAFE;
791
792 if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_RELAXED)
793 {
794 if (d->block_flags & DIAG_TM_SAFE)
795 error_at (gimple_location (stmt),
796 "relaxed transaction in atomic transaction");
797 else if (d->func_flags & DIAG_TM_SAFE)
798 error_at (gimple_location (stmt),
799 "relaxed transaction in %<transaction_safe%> function");
800 inner_flags = DIAG_TM_RELAXED;
801 }
802 else if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_OUTER)
803 {
804 if (d->block_flags)
805 error_at (gimple_location (stmt),
806 "outer transaction in transaction");
807 else if (d->func_flags & DIAG_TM_OUTER)
808 error_at (gimple_location (stmt),
809 "outer transaction in "
810 "%<transaction_may_cancel_outer%> function");
811 else if (d->func_flags & DIAG_TM_SAFE)
812 error_at (gimple_location (stmt),
813 "outer transaction in %<transaction_safe%> function");
814 inner_flags |= DIAG_TM_OUTER;
815 }
816
817 *handled_ops_p = true;
818 if (gimple_transaction_body (trans_stmt))
819 {
820 struct walk_stmt_info wi_inner;
821 struct diagnose_tm d_inner;
822
823 memset (&d_inner, 0, sizeof (d_inner));
824 d_inner.func_flags = d->func_flags;
825 d_inner.block_flags = d->block_flags | inner_flags;
826 d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
827
828 memset (&wi_inner, 0, sizeof (wi_inner));
829 wi_inner.info = &d_inner;
830
831 walk_gimple_seq (gimple_transaction_body (trans_stmt),
832 diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
833 }
834 }
835 break;
836
837 default:
838 break;
839 }
840
841 return NULL_TREE;
842 }
843
844 static unsigned int
845 diagnose_tm_blocks (void)
846 {
847 struct walk_stmt_info wi;
848 struct diagnose_tm d;
849
850 memset (&d, 0, sizeof (d));
851 if (is_tm_may_cancel_outer (current_function_decl))
852 d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
853 else if (is_tm_safe (current_function_decl))
854 d.func_flags = DIAG_TM_SAFE;
855 d.summary_flags = d.func_flags;
856
857 memset (&wi, 0, sizeof (wi));
858 wi.info = &d;
859
860 walk_gimple_seq (gimple_body (current_function_decl),
861 diagnose_tm_1, diagnose_tm_1_op, &wi);
862
863 return 0;
864 }
865
866 namespace {
867
868 const pass_data pass_data_diagnose_tm_blocks =
869 {
870 GIMPLE_PASS, /* type */
871 "*diagnose_tm_blocks", /* name */
872 OPTGROUP_NONE, /* optinfo_flags */
873 TV_TRANS_MEM, /* tv_id */
874 PROP_gimple_any, /* properties_required */
875 0, /* properties_provided */
876 0, /* properties_destroyed */
877 0, /* todo_flags_start */
878 0, /* todo_flags_finish */
879 };
880
881 class pass_diagnose_tm_blocks : public gimple_opt_pass
882 {
883 public:
884 pass_diagnose_tm_blocks (gcc::context *ctxt)
885 : gimple_opt_pass (pass_data_diagnose_tm_blocks, ctxt)
886 {}
887
888 /* opt_pass methods: */
889 virtual bool gate (function *) { return flag_tm; }
890 virtual unsigned int execute (function *) { return diagnose_tm_blocks (); }
891
892 }; // class pass_diagnose_tm_blocks
893
894 } // anon namespace
895
896 gimple_opt_pass *
897 make_pass_diagnose_tm_blocks (gcc::context *ctxt)
898 {
899 return new pass_diagnose_tm_blocks (ctxt);
900 }
901 \f
902 /* Instead of instrumenting thread private memory, we save the
903 addresses in a log which we later use to save/restore the addresses
904 upon transaction start/restart.
905
906 The log is keyed by address, where each element contains individual
907 statements among different code paths that perform the store.
908
909 This log is later used to generate either plain save/restore of the
910 addresses upon transaction start/restart, or calls to the ITM_L*
911 logging functions.
912
913 So for something like:
914
915 struct large { int x[1000]; };
916 struct large lala = { 0 };
917 __transaction {
918 lala.x[i] = 123;
919 ...
920 }
921
922 We can either save/restore:
923
924 lala = { 0 };
925 trxn = _ITM_startTransaction ();
926 if (trxn & a_saveLiveVariables)
927 tmp_lala1 = lala.x[i];
928 else if (a & a_restoreLiveVariables)
929 lala.x[i] = tmp_lala1;
930
931 or use the logging functions:
932
933 lala = { 0 };
934 trxn = _ITM_startTransaction ();
935 _ITM_LU4 (&lala.x[i]);
936
937 Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
938 far up the dominator tree to shadow all of the writes to a given
939 location (thus reducing the total number of logging calls), but not
940 so high as to be called on a path that does not perform a
941 write. */
942
943 /* One individual log entry. We may have multiple statements for the
944 same location if neither dominate each other (on different
945 execution paths). */
946 typedef struct tm_log_entry
947 {
948 /* Address to save. */
949 tree addr;
950 /* Entry block for the transaction this address occurs in. */
951 basic_block entry_block;
952 /* Dominating statements the store occurs in. */
953 vec<gimple> stmts;
954 /* Initially, while we are building the log, we place a nonzero
955 value here to mean that this address *will* be saved with a
956 save/restore sequence. Later, when generating the save sequence
957 we place the SSA temp generated here. */
958 tree save_var;
959 } *tm_log_entry_t;
960
961
962 /* Log entry hashtable helpers. */
963
964 struct log_entry_hasher
965 {
966 typedef tm_log_entry *value_type;
967 typedef tm_log_entry *compare_type;
968 static inline hashval_t hash (const tm_log_entry *);
969 static inline bool equal (const tm_log_entry *, const tm_log_entry *);
970 static inline void remove (tm_log_entry *);
971 };
972
973 /* Htab support. Return hash value for a `tm_log_entry'. */
974 inline hashval_t
975 log_entry_hasher::hash (const tm_log_entry *log)
976 {
977 return iterative_hash_expr (log->addr, 0);
978 }
979
980 /* Htab support. Return true if two log entries are the same. */
981 inline bool
982 log_entry_hasher::equal (const tm_log_entry *log1, const tm_log_entry *log2)
983 {
984 /* FIXME:
985
986 rth: I suggest that we get rid of the component refs etc.
987 I.e. resolve the reference to base + offset.
988
989 We may need to actually finish a merge with mainline for this,
990 since we'd like to be presented with Richi's MEM_REF_EXPRs more
991 often than not. But in the meantime your tm_log_entry could save
992 the results of get_inner_reference.
993
994 See: g++.dg/tm/pr46653.C
995 */
996
997 /* Special case plain equality because operand_equal_p() below will
998 return FALSE if the addresses are equal but they have
999 side-effects (e.g. a volatile address). */
1000 if (log1->addr == log2->addr)
1001 return true;
1002
1003 return operand_equal_p (log1->addr, log2->addr, 0);
1004 }
1005
1006 /* Htab support. Free one tm_log_entry. */
1007 inline void
1008 log_entry_hasher::remove (tm_log_entry *lp)
1009 {
1010 lp->stmts.release ();
1011 free (lp);
1012 }
1013
1014
1015 /* The actual log. */
1016 static hash_table<log_entry_hasher> *tm_log;
1017
1018 /* Addresses to log with a save/restore sequence. These should be in
1019 dominator order. */
1020 static vec<tree> tm_log_save_addresses;
1021
1022 enum thread_memory_type
1023 {
1024 mem_non_local = 0,
1025 mem_thread_local,
1026 mem_transaction_local,
1027 mem_max
1028 };
1029
1030 typedef struct tm_new_mem_map
1031 {
1032 /* SSA_NAME being dereferenced. */
1033 tree val;
1034 enum thread_memory_type local_new_memory;
1035 } tm_new_mem_map_t;
1036
1037 /* Hashtable helpers. */
1038
1039 struct tm_mem_map_hasher : typed_free_remove <tm_new_mem_map_t>
1040 {
1041 typedef tm_new_mem_map_t *value_type;
1042 typedef tm_new_mem_map_t *compare_type;
1043 static inline hashval_t hash (const tm_new_mem_map_t *);
1044 static inline bool equal (const tm_new_mem_map_t *, const tm_new_mem_map_t *);
1045 };
1046
1047 inline hashval_t
1048 tm_mem_map_hasher::hash (const tm_new_mem_map_t *v)
1049 {
1050 return (intptr_t)v->val >> 4;
1051 }
1052
1053 inline bool
1054 tm_mem_map_hasher::equal (const tm_new_mem_map_t *v, const tm_new_mem_map_t *c)
1055 {
1056 return v->val == c->val;
1057 }
1058
1059 /* Map for an SSA_NAME originally pointing to a non aliased new piece
1060 of memory (malloc, alloc, etc). */
1061 static hash_table<tm_mem_map_hasher> *tm_new_mem_hash;
1062
1063 /* Initialize logging data structures. */
1064 static void
1065 tm_log_init (void)
1066 {
1067 tm_log = new hash_table<log_entry_hasher> (10);
1068 tm_new_mem_hash = new hash_table<tm_mem_map_hasher> (5);
1069 tm_log_save_addresses.create (5);
1070 }
1071
1072 /* Free logging data structures. */
1073 static void
1074 tm_log_delete (void)
1075 {
1076 delete tm_log;
1077 tm_log = NULL;
1078 delete tm_new_mem_hash;
1079 tm_new_mem_hash = NULL;
1080 tm_log_save_addresses.release ();
1081 }
1082
1083 /* Return true if MEM is a transaction invariant memory for the TM
1084 region starting at REGION_ENTRY_BLOCK. */
1085 static bool
1086 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
1087 {
1088 if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
1089 && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
1090 {
1091 basic_block def_bb;
1092
1093 def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
1094 return def_bb != region_entry_block
1095 && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
1096 }
1097
1098 mem = strip_invariant_refs (mem);
1099 return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
1100 }
1101
1102 /* Given an address ADDR in STMT, find it in the memory log or add it,
1103 making sure to keep only the addresses highest in the dominator
1104 tree.
1105
1106 ENTRY_BLOCK is the entry_block for the transaction.
1107
1108 If we find the address in the log, make sure it's either the same
1109 address, or an equivalent one that dominates ADDR.
1110
1111 If we find the address, but neither ADDR dominates the found
1112 address, nor the found one dominates ADDR, we're on different
1113 execution paths. Add it.
1114
1115 If known, ENTRY_BLOCK is the entry block for the region, otherwise
1116 NULL. */
1117 static void
1118 tm_log_add (basic_block entry_block, tree addr, gimple stmt)
1119 {
1120 tm_log_entry **slot;
1121 struct tm_log_entry l, *lp;
1122
1123 l.addr = addr;
1124 slot = tm_log->find_slot (&l, INSERT);
1125 if (!*slot)
1126 {
1127 tree type = TREE_TYPE (addr);
1128
1129 lp = XNEW (struct tm_log_entry);
1130 lp->addr = addr;
1131 *slot = lp;
1132
1133 /* Small invariant addresses can be handled as save/restores. */
1134 if (entry_block
1135 && transaction_invariant_address_p (lp->addr, entry_block)
1136 && TYPE_SIZE_UNIT (type) != NULL
1137 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
1138 && ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE_UNIT (type))
1139 < PARAM_VALUE (PARAM_TM_MAX_AGGREGATE_SIZE))
1140 /* We must be able to copy this type normally. I.e., no
1141 special constructors and the like. */
1142 && !TREE_ADDRESSABLE (type))
1143 {
1144 lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
1145 lp->stmts.create (0);
1146 lp->entry_block = entry_block;
1147 /* Save addresses separately in dominator order so we don't
1148 get confused by overlapping addresses in the save/restore
1149 sequence. */
1150 tm_log_save_addresses.safe_push (lp->addr);
1151 }
1152 else
1153 {
1154 /* Use the logging functions. */
1155 lp->stmts.create (5);
1156 lp->stmts.quick_push (stmt);
1157 lp->save_var = NULL;
1158 }
1159 }
1160 else
1161 {
1162 size_t i;
1163 gimple oldstmt;
1164
1165 lp = *slot;
1166
1167 /* If we're generating a save/restore sequence, we don't care
1168 about statements. */
1169 if (lp->save_var)
1170 return;
1171
1172 for (i = 0; lp->stmts.iterate (i, &oldstmt); ++i)
1173 {
1174 if (stmt == oldstmt)
1175 return;
1176 /* We already have a store to the same address, higher up the
1177 dominator tree. Nothing to do. */
1178 if (dominated_by_p (CDI_DOMINATORS,
1179 gimple_bb (stmt), gimple_bb (oldstmt)))
1180 return;
1181 /* We should be processing blocks in dominator tree order. */
1182 gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1183 gimple_bb (oldstmt), gimple_bb (stmt)));
1184 }
1185 /* Store is on a different code path. */
1186 lp->stmts.safe_push (stmt);
1187 }
1188 }
1189
1190 /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
1191 result, insert the new statements before GSI. */
1192
1193 static tree
1194 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1195 {
1196 if (TREE_CODE (x) == TARGET_MEM_REF)
1197 x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1198 else
1199 x = build_fold_addr_expr (x);
1200 return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1201 }
1202
1203 /* Instrument one address with the logging functions.
1204 ADDR is the address to save.
1205 STMT is the statement before which to place it. */
1206 static void
1207 tm_log_emit_stmt (tree addr, gimple stmt)
1208 {
1209 tree type = TREE_TYPE (addr);
1210 tree size = TYPE_SIZE_UNIT (type);
1211 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1212 gimple log;
1213 enum built_in_function code = BUILT_IN_TM_LOG;
1214
1215 if (type == float_type_node)
1216 code = BUILT_IN_TM_LOG_FLOAT;
1217 else if (type == double_type_node)
1218 code = BUILT_IN_TM_LOG_DOUBLE;
1219 else if (type == long_double_type_node)
1220 code = BUILT_IN_TM_LOG_LDOUBLE;
1221 else if (tree_fits_uhwi_p (size))
1222 {
1223 unsigned int n = tree_to_uhwi (size);
1224 switch (n)
1225 {
1226 case 1:
1227 code = BUILT_IN_TM_LOG_1;
1228 break;
1229 case 2:
1230 code = BUILT_IN_TM_LOG_2;
1231 break;
1232 case 4:
1233 code = BUILT_IN_TM_LOG_4;
1234 break;
1235 case 8:
1236 code = BUILT_IN_TM_LOG_8;
1237 break;
1238 default:
1239 code = BUILT_IN_TM_LOG;
1240 if (TREE_CODE (type) == VECTOR_TYPE)
1241 {
1242 if (n == 8 && builtin_decl_explicit (BUILT_IN_TM_LOG_M64))
1243 code = BUILT_IN_TM_LOG_M64;
1244 else if (n == 16 && builtin_decl_explicit (BUILT_IN_TM_LOG_M128))
1245 code = BUILT_IN_TM_LOG_M128;
1246 else if (n == 32 && builtin_decl_explicit (BUILT_IN_TM_LOG_M256))
1247 code = BUILT_IN_TM_LOG_M256;
1248 }
1249 break;
1250 }
1251 }
1252
1253 addr = gimplify_addr (&gsi, addr);
1254 if (code == BUILT_IN_TM_LOG)
1255 log = gimple_build_call (builtin_decl_explicit (code), 2, addr, size);
1256 else
1257 log = gimple_build_call (builtin_decl_explicit (code), 1, addr);
1258 gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1259 }
1260
1261 /* Go through the log and instrument address that must be instrumented
1262 with the logging functions. Leave the save/restore addresses for
1263 later. */
1264 static void
1265 tm_log_emit (void)
1266 {
1267 hash_table<log_entry_hasher>::iterator hi;
1268 struct tm_log_entry *lp;
1269
1270 FOR_EACH_HASH_TABLE_ELEMENT (*tm_log, lp, tm_log_entry_t, hi)
1271 {
1272 size_t i;
1273 gimple stmt;
1274
1275 if (dump_file)
1276 {
1277 fprintf (dump_file, "TM thread private mem logging: ");
1278 print_generic_expr (dump_file, lp->addr, 0);
1279 fprintf (dump_file, "\n");
1280 }
1281
1282 if (lp->save_var)
1283 {
1284 if (dump_file)
1285 fprintf (dump_file, "DUMPING to variable\n");
1286 continue;
1287 }
1288 else
1289 {
1290 if (dump_file)
1291 fprintf (dump_file, "DUMPING with logging functions\n");
1292 for (i = 0; lp->stmts.iterate (i, &stmt); ++i)
1293 tm_log_emit_stmt (lp->addr, stmt);
1294 }
1295 }
1296 }
1297
1298 /* Emit the save sequence for the corresponding addresses in the log.
1299 ENTRY_BLOCK is the entry block for the transaction.
1300 BB is the basic block to insert the code in. */
1301 static void
1302 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1303 {
1304 size_t i;
1305 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1306 gimple stmt;
1307 struct tm_log_entry l, *lp;
1308
1309 for (i = 0; i < tm_log_save_addresses.length (); ++i)
1310 {
1311 l.addr = tm_log_save_addresses[i];
1312 lp = *(tm_log->find_slot (&l, NO_INSERT));
1313 gcc_assert (lp->save_var != NULL);
1314
1315 /* We only care about variables in the current transaction. */
1316 if (lp->entry_block != entry_block)
1317 continue;
1318
1319 stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1320
1321 /* Make sure we can create an SSA_NAME for this type. For
1322 instance, aggregates aren't allowed, in which case the system
1323 will create a VOP for us and everything will just work. */
1324 if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1325 {
1326 lp->save_var = make_ssa_name (lp->save_var, stmt);
1327 gimple_assign_set_lhs (stmt, lp->save_var);
1328 }
1329
1330 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1331 }
1332 }
1333
1334 /* Emit the restore sequence for the corresponding addresses in the log.
1335 ENTRY_BLOCK is the entry block for the transaction.
1336 BB is the basic block to insert the code in. */
1337 static void
1338 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1339 {
1340 int i;
1341 struct tm_log_entry l, *lp;
1342 gimple_stmt_iterator gsi;
1343 gimple stmt;
1344
1345 for (i = tm_log_save_addresses.length () - 1; i >= 0; i--)
1346 {
1347 l.addr = tm_log_save_addresses[i];
1348 lp = *(tm_log->find_slot (&l, NO_INSERT));
1349 gcc_assert (lp->save_var != NULL);
1350
1351 /* We only care about variables in the current transaction. */
1352 if (lp->entry_block != entry_block)
1353 continue;
1354
1355 /* Restores are in LIFO order from the saves in case we have
1356 overlaps. */
1357 gsi = gsi_start_bb (bb);
1358
1359 stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1360 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1361 }
1362 }
1363
1364 \f
1365 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1366 struct walk_stmt_info *);
1367 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1368 struct walk_stmt_info *);
1369
1370 /* Evaluate an address X being dereferenced and determine if it
1371 originally points to a non aliased new chunk of memory (malloc,
1372 alloca, etc).
1373
1374 Return MEM_THREAD_LOCAL if it points to a thread-local address.
1375 Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1376 Return MEM_NON_LOCAL otherwise.
1377
1378 ENTRY_BLOCK is the entry block to the transaction containing the
1379 dereference of X. */
1380 static enum thread_memory_type
1381 thread_private_new_memory (basic_block entry_block, tree x)
1382 {
1383 gimple stmt = NULL;
1384 enum tree_code code;
1385 tm_new_mem_map_t **slot;
1386 tm_new_mem_map_t elt, *elt_p;
1387 tree val = x;
1388 enum thread_memory_type retval = mem_transaction_local;
1389
1390 if (!entry_block
1391 || TREE_CODE (x) != SSA_NAME
1392 /* Possible uninitialized use, or a function argument. In
1393 either case, we don't care. */
1394 || SSA_NAME_IS_DEFAULT_DEF (x))
1395 return mem_non_local;
1396
1397 /* Look in cache first. */
1398 elt.val = x;
1399 slot = tm_new_mem_hash->find_slot (&elt, INSERT);
1400 elt_p = *slot;
1401 if (elt_p)
1402 return elt_p->local_new_memory;
1403
1404 /* Optimistically assume the memory is transaction local during
1405 processing. This catches recursion into this variable. */
1406 *slot = elt_p = XNEW (tm_new_mem_map_t);
1407 elt_p->val = val;
1408 elt_p->local_new_memory = mem_transaction_local;
1409
1410 /* Search DEF chain to find the original definition of this address. */
1411 do
1412 {
1413 if (ptr_deref_may_alias_global_p (x))
1414 {
1415 /* Address escapes. This is not thread-private. */
1416 retval = mem_non_local;
1417 goto new_memory_ret;
1418 }
1419
1420 stmt = SSA_NAME_DEF_STMT (x);
1421
1422 /* If the malloc call is outside the transaction, this is
1423 thread-local. */
1424 if (retval != mem_thread_local
1425 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1426 retval = mem_thread_local;
1427
1428 if (is_gimple_assign (stmt))
1429 {
1430 code = gimple_assign_rhs_code (stmt);
1431 /* x = foo ==> foo */
1432 if (code == SSA_NAME)
1433 x = gimple_assign_rhs1 (stmt);
1434 /* x = foo + n ==> foo */
1435 else if (code == POINTER_PLUS_EXPR)
1436 x = gimple_assign_rhs1 (stmt);
1437 /* x = (cast*) foo ==> foo */
1438 else if (code == VIEW_CONVERT_EXPR || CONVERT_EXPR_CODE_P (code))
1439 x = gimple_assign_rhs1 (stmt);
1440 /* x = c ? op1 : op2 == > op1 or op2 just like a PHI */
1441 else if (code == COND_EXPR)
1442 {
1443 tree op1 = gimple_assign_rhs2 (stmt);
1444 tree op2 = gimple_assign_rhs3 (stmt);
1445 enum thread_memory_type mem;
1446 retval = thread_private_new_memory (entry_block, op1);
1447 if (retval == mem_non_local)
1448 goto new_memory_ret;
1449 mem = thread_private_new_memory (entry_block, op2);
1450 retval = MIN (retval, mem);
1451 goto new_memory_ret;
1452 }
1453 else
1454 {
1455 retval = mem_non_local;
1456 goto new_memory_ret;
1457 }
1458 }
1459 else
1460 {
1461 if (gimple_code (stmt) == GIMPLE_PHI)
1462 {
1463 unsigned int i;
1464 enum thread_memory_type mem;
1465 tree phi_result = gimple_phi_result (stmt);
1466
1467 /* If any of the ancestors are non-local, we are sure to
1468 be non-local. Otherwise we can avoid doing anything
1469 and inherit what has already been generated. */
1470 retval = mem_max;
1471 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1472 {
1473 tree op = PHI_ARG_DEF (stmt, i);
1474
1475 /* Exclude self-assignment. */
1476 if (phi_result == op)
1477 continue;
1478
1479 mem = thread_private_new_memory (entry_block, op);
1480 if (mem == mem_non_local)
1481 {
1482 retval = mem;
1483 goto new_memory_ret;
1484 }
1485 retval = MIN (retval, mem);
1486 }
1487 goto new_memory_ret;
1488 }
1489 break;
1490 }
1491 }
1492 while (TREE_CODE (x) == SSA_NAME);
1493
1494 if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1495 /* Thread-local or transaction-local. */
1496 ;
1497 else
1498 retval = mem_non_local;
1499
1500 new_memory_ret:
1501 elt_p->local_new_memory = retval;
1502 return retval;
1503 }
1504
1505 /* Determine whether X has to be instrumented using a read
1506 or write barrier.
1507
1508 ENTRY_BLOCK is the entry block for the region where stmt resides
1509 in. NULL if unknown.
1510
1511 STMT is the statement in which X occurs in. It is used for thread
1512 private memory instrumentation. If no TPM instrumentation is
1513 desired, STMT should be null. */
1514 static bool
1515 requires_barrier (basic_block entry_block, tree x, gimple stmt)
1516 {
1517 tree orig = x;
1518 while (handled_component_p (x))
1519 x = TREE_OPERAND (x, 0);
1520
1521 switch (TREE_CODE (x))
1522 {
1523 case INDIRECT_REF:
1524 case MEM_REF:
1525 {
1526 enum thread_memory_type ret;
1527
1528 ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1529 if (ret == mem_non_local)
1530 return true;
1531 if (stmt && ret == mem_thread_local)
1532 /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
1533 tm_log_add (entry_block, orig, stmt);
1534
1535 /* Transaction-locals require nothing at all. For malloc, a
1536 transaction restart frees the memory and we reallocate.
1537 For alloca, the stack pointer gets reset by the retry and
1538 we reallocate. */
1539 return false;
1540 }
1541
1542 case TARGET_MEM_REF:
1543 if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1544 return true;
1545 x = TREE_OPERAND (TMR_BASE (x), 0);
1546 if (TREE_CODE (x) == PARM_DECL)
1547 return false;
1548 gcc_assert (TREE_CODE (x) == VAR_DECL);
1549 /* FALLTHRU */
1550
1551 case PARM_DECL:
1552 case RESULT_DECL:
1553 case VAR_DECL:
1554 if (DECL_BY_REFERENCE (x))
1555 {
1556 /* ??? This value is a pointer, but aggregate_value_p has been
1557 jigged to return true which confuses needs_to_live_in_memory.
1558 This ought to be cleaned up generically.
1559
1560 FIXME: Verify this still happens after the next mainline
1561 merge. Testcase ie g++.dg/tm/pr47554.C.
1562 */
1563 return false;
1564 }
1565
1566 if (is_global_var (x))
1567 return !TREE_READONLY (x);
1568 if (/* FIXME: This condition should actually go below in the
1569 tm_log_add() call, however is_call_clobbered() depends on
1570 aliasing info which is not available during
1571 gimplification. Since requires_barrier() gets called
1572 during lower_sequence_tm/gimplification, leave the call
1573 to needs_to_live_in_memory until we eliminate
1574 lower_sequence_tm altogether. */
1575 needs_to_live_in_memory (x))
1576 return true;
1577 else
1578 {
1579 /* For local memory that doesn't escape (aka thread private
1580 memory), we can either save the value at the beginning of
1581 the transaction and restore on restart, or call a tm
1582 function to dynamically save and restore on restart
1583 (ITM_L*). */
1584 if (stmt)
1585 tm_log_add (entry_block, orig, stmt);
1586 return false;
1587 }
1588
1589 default:
1590 return false;
1591 }
1592 }
1593
1594 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1595 a transaction region. */
1596
1597 static void
1598 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1599 {
1600 gimple stmt = gsi_stmt (*gsi);
1601
1602 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1603 *state |= GTMA_HAVE_LOAD;
1604 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1605 *state |= GTMA_HAVE_STORE;
1606 }
1607
1608 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
1609
1610 static void
1611 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1612 {
1613 gimple stmt = gsi_stmt (*gsi);
1614 tree fn;
1615
1616 if (is_tm_pure_call (stmt))
1617 return;
1618
1619 /* Check if this call is a transaction abort. */
1620 fn = gimple_call_fndecl (stmt);
1621 if (is_tm_abort (fn))
1622 *state |= GTMA_HAVE_ABORT;
1623
1624 /* Note that something may happen. */
1625 *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1626 }
1627
1628 /* Lower a GIMPLE_TRANSACTION statement. */
1629
1630 static void
1631 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1632 {
1633 gimple g;
1634 gtransaction *stmt = as_a <gtransaction *> (gsi_stmt (*gsi));
1635 unsigned int *outer_state = (unsigned int *) wi->info;
1636 unsigned int this_state = 0;
1637 struct walk_stmt_info this_wi;
1638
1639 /* First, lower the body. The scanning that we do inside gives
1640 us some idea of what we're dealing with. */
1641 memset (&this_wi, 0, sizeof (this_wi));
1642 this_wi.info = (void *) &this_state;
1643 walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
1644 lower_sequence_tm, NULL, &this_wi);
1645
1646 /* If there was absolutely nothing transaction related inside the
1647 transaction, we may elide it. Likewise if this is a nested
1648 transaction and does not contain an abort. */
1649 if (this_state == 0
1650 || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1651 {
1652 if (outer_state)
1653 *outer_state |= this_state;
1654
1655 gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1656 GSI_SAME_STMT);
1657 gimple_transaction_set_body (stmt, NULL);
1658
1659 gsi_remove (gsi, true);
1660 wi->removed_stmt = true;
1661 return;
1662 }
1663
1664 /* Wrap the body of the transaction in a try-finally node so that
1665 the commit call is always properly called. */
1666 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1667 if (flag_exceptions)
1668 {
1669 tree ptr;
1670 gimple_seq n_seq, e_seq;
1671
1672 n_seq = gimple_seq_alloc_with_stmt (g);
1673 e_seq = NULL;
1674
1675 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1676 1, integer_zero_node);
1677 ptr = create_tmp_var (ptr_type_node);
1678 gimple_call_set_lhs (g, ptr);
1679 gimple_seq_add_stmt (&e_seq, g);
1680
1681 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1682 1, ptr);
1683 gimple_seq_add_stmt (&e_seq, g);
1684
1685 g = gimple_build_eh_else (n_seq, e_seq);
1686 }
1687
1688 g = gimple_build_try (gimple_transaction_body (stmt),
1689 gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1690 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1691
1692 gimple_transaction_set_body (stmt, NULL);
1693
1694 /* If the transaction calls abort or if this is an outer transaction,
1695 add an "over" label afterwards. */
1696 if ((this_state & (GTMA_HAVE_ABORT))
1697 || (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER))
1698 {
1699 tree label = create_artificial_label (UNKNOWN_LOCATION);
1700 gimple_transaction_set_label (stmt, label);
1701 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
1702 }
1703
1704 /* Record the set of operations found for use later. */
1705 this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1706 gimple_transaction_set_subcode (stmt, this_state);
1707 }
1708
1709 /* Iterate through the statements in the sequence, lowering them all
1710 as appropriate for being in a transaction. */
1711
1712 static tree
1713 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1714 struct walk_stmt_info *wi)
1715 {
1716 unsigned int *state = (unsigned int *) wi->info;
1717 gimple stmt = gsi_stmt (*gsi);
1718
1719 *handled_ops_p = true;
1720 switch (gimple_code (stmt))
1721 {
1722 case GIMPLE_ASSIGN:
1723 /* Only memory reads/writes need to be instrumented. */
1724 if (gimple_assign_single_p (stmt))
1725 examine_assign_tm (state, gsi);
1726 break;
1727
1728 case GIMPLE_CALL:
1729 examine_call_tm (state, gsi);
1730 break;
1731
1732 case GIMPLE_ASM:
1733 *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1734 break;
1735
1736 case GIMPLE_TRANSACTION:
1737 lower_transaction (gsi, wi);
1738 break;
1739
1740 default:
1741 *handled_ops_p = !gimple_has_substatements (stmt);
1742 break;
1743 }
1744
1745 return NULL_TREE;
1746 }
1747
1748 /* Iterate through the statements in the sequence, lowering them all
1749 as appropriate for being outside of a transaction. */
1750
1751 static tree
1752 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1753 struct walk_stmt_info * wi)
1754 {
1755 gimple stmt = gsi_stmt (*gsi);
1756
1757 if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1758 {
1759 *handled_ops_p = true;
1760 lower_transaction (gsi, wi);
1761 }
1762 else
1763 *handled_ops_p = !gimple_has_substatements (stmt);
1764
1765 return NULL_TREE;
1766 }
1767
1768 /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
1769 this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1770 been moved out, and all the data required for constructing a proper
1771 CFG has been recorded. */
1772
1773 static unsigned int
1774 execute_lower_tm (void)
1775 {
1776 struct walk_stmt_info wi;
1777 gimple_seq body;
1778
1779 /* Transactional clones aren't created until a later pass. */
1780 gcc_assert (!decl_is_tm_clone (current_function_decl));
1781
1782 body = gimple_body (current_function_decl);
1783 memset (&wi, 0, sizeof (wi));
1784 walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi);
1785 gimple_set_body (current_function_decl, body);
1786
1787 return 0;
1788 }
1789
1790 namespace {
1791
1792 const pass_data pass_data_lower_tm =
1793 {
1794 GIMPLE_PASS, /* type */
1795 "tmlower", /* name */
1796 OPTGROUP_NONE, /* optinfo_flags */
1797 TV_TRANS_MEM, /* tv_id */
1798 PROP_gimple_lcf, /* properties_required */
1799 0, /* properties_provided */
1800 0, /* properties_destroyed */
1801 0, /* todo_flags_start */
1802 0, /* todo_flags_finish */
1803 };
1804
1805 class pass_lower_tm : public gimple_opt_pass
1806 {
1807 public:
1808 pass_lower_tm (gcc::context *ctxt)
1809 : gimple_opt_pass (pass_data_lower_tm, ctxt)
1810 {}
1811
1812 /* opt_pass methods: */
1813 virtual bool gate (function *) { return flag_tm; }
1814 virtual unsigned int execute (function *) { return execute_lower_tm (); }
1815
1816 }; // class pass_lower_tm
1817
1818 } // anon namespace
1819
1820 gimple_opt_pass *
1821 make_pass_lower_tm (gcc::context *ctxt)
1822 {
1823 return new pass_lower_tm (ctxt);
1824 }
1825 \f
1826 /* Collect region information for each transaction. */
1827
1828 struct tm_region
1829 {
1830 public:
1831
1832 /* The field "transaction_stmt" is initially a gtransaction *,
1833 but eventually gets lowered to a gcall *(to BUILT_IN_TM_START).
1834
1835 Helper method to get it as a gtransaction *, with code-checking
1836 in a checked-build. */
1837
1838 gtransaction *
1839 get_transaction_stmt () const
1840 {
1841 return as_a <gtransaction *> (transaction_stmt);
1842 }
1843
1844 public:
1845
1846 /* Link to the next unnested transaction. */
1847 struct tm_region *next;
1848
1849 /* Link to the next inner transaction. */
1850 struct tm_region *inner;
1851
1852 /* Link to the next outer transaction. */
1853 struct tm_region *outer;
1854
1855 /* The GIMPLE_TRANSACTION statement beginning this transaction.
1856 After TM_MARK, this gets replaced by a call to
1857 BUILT_IN_TM_START.
1858 Hence this will be either a gtransaction *or a gcall *. */
1859 gimple transaction_stmt;
1860
1861 /* After TM_MARK expands the GIMPLE_TRANSACTION into a call to
1862 BUILT_IN_TM_START, this field is true if the transaction is an
1863 outer transaction. */
1864 bool original_transaction_was_outer;
1865
1866 /* Return value from BUILT_IN_TM_START. */
1867 tree tm_state;
1868
1869 /* The entry block to this region. This will always be the first
1870 block of the body of the transaction. */
1871 basic_block entry_block;
1872
1873 /* The first block after an expanded call to _ITM_beginTransaction. */
1874 basic_block restart_block;
1875
1876 /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1877 These blocks are still a part of the region (i.e., the border is
1878 inclusive). Note that this set is only complete for paths in the CFG
1879 starting at ENTRY_BLOCK, and that there is no exit block recorded for
1880 the edge to the "over" label. */
1881 bitmap exit_blocks;
1882
1883 /* The set of all blocks that have an TM_IRREVOCABLE call. */
1884 bitmap irr_blocks;
1885 };
1886
1887 typedef struct tm_region *tm_region_p;
1888
1889 /* True if there are pending edge statements to be committed for the
1890 current function being scanned in the tmmark pass. */
1891 bool pending_edge_inserts_p;
1892
1893 static struct tm_region *all_tm_regions;
1894 static bitmap_obstack tm_obstack;
1895
1896
1897 /* A subroutine of tm_region_init. Record the existence of the
1898 GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
1899
1900 static struct tm_region *
1901 tm_region_init_0 (struct tm_region *outer, basic_block bb,
1902 gtransaction *stmt)
1903 {
1904 struct tm_region *region;
1905
1906 region = (struct tm_region *)
1907 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1908
1909 if (outer)
1910 {
1911 region->next = outer->inner;
1912 outer->inner = region;
1913 }
1914 else
1915 {
1916 region->next = all_tm_regions;
1917 all_tm_regions = region;
1918 }
1919 region->inner = NULL;
1920 region->outer = outer;
1921
1922 region->transaction_stmt = stmt;
1923 region->original_transaction_was_outer = false;
1924 region->tm_state = NULL;
1925
1926 /* There are either one or two edges out of the block containing
1927 the GIMPLE_TRANSACTION, one to the actual region and one to the
1928 "over" label if the region contains an abort. The former will
1929 always be the one marked FALLTHRU. */
1930 region->entry_block = FALLTHRU_EDGE (bb)->dest;
1931
1932 region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1933 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1934
1935 return region;
1936 }
1937
1938 /* A subroutine of tm_region_init. Record all the exit and
1939 irrevocable blocks in BB into the region's exit_blocks and
1940 irr_blocks bitmaps. Returns the new region being scanned. */
1941
1942 static struct tm_region *
1943 tm_region_init_1 (struct tm_region *region, basic_block bb)
1944 {
1945 gimple_stmt_iterator gsi;
1946 gimple g;
1947
1948 if (!region
1949 || (!region->irr_blocks && !region->exit_blocks))
1950 return region;
1951
1952 /* Check to see if this is the end of a region by seeing if it
1953 contains a call to __builtin_tm_commit{,_eh}. Note that the
1954 outermost region for DECL_IS_TM_CLONE need not collect this. */
1955 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1956 {
1957 g = gsi_stmt (gsi);
1958 if (gimple_code (g) == GIMPLE_CALL)
1959 {
1960 tree fn = gimple_call_fndecl (g);
1961 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
1962 {
1963 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
1964 || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
1965 && region->exit_blocks)
1966 {
1967 bitmap_set_bit (region->exit_blocks, bb->index);
1968 region = region->outer;
1969 break;
1970 }
1971 if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
1972 bitmap_set_bit (region->irr_blocks, bb->index);
1973 }
1974 }
1975 }
1976 return region;
1977 }
1978
1979 /* Collect all of the transaction regions within the current function
1980 and record them in ALL_TM_REGIONS. The REGION parameter may specify
1981 an "outermost" region for use by tm clones. */
1982
1983 static void
1984 tm_region_init (struct tm_region *region)
1985 {
1986 gimple g;
1987 edge_iterator ei;
1988 edge e;
1989 basic_block bb;
1990 auto_vec<basic_block> queue;
1991 bitmap visited_blocks = BITMAP_ALLOC (NULL);
1992 struct tm_region *old_region;
1993 auto_vec<tm_region_p> bb_regions;
1994
1995 all_tm_regions = region;
1996 bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1997
1998 /* We could store this information in bb->aux, but we may get called
1999 through get_all_tm_blocks() from another pass that may be already
2000 using bb->aux. */
2001 bb_regions.safe_grow_cleared (last_basic_block_for_fn (cfun));
2002
2003 queue.safe_push (bb);
2004 bb_regions[bb->index] = region;
2005 do
2006 {
2007 bb = queue.pop ();
2008 region = bb_regions[bb->index];
2009 bb_regions[bb->index] = NULL;
2010
2011 /* Record exit and irrevocable blocks. */
2012 region = tm_region_init_1 (region, bb);
2013
2014 /* Check for the last statement in the block beginning a new region. */
2015 g = last_stmt (bb);
2016 old_region = region;
2017 if (g)
2018 if (gtransaction *trans_stmt = dyn_cast <gtransaction *> (g))
2019 region = tm_region_init_0 (region, bb, trans_stmt);
2020
2021 /* Process subsequent blocks. */
2022 FOR_EACH_EDGE (e, ei, bb->succs)
2023 if (!bitmap_bit_p (visited_blocks, e->dest->index))
2024 {
2025 bitmap_set_bit (visited_blocks, e->dest->index);
2026 queue.safe_push (e->dest);
2027
2028 /* If the current block started a new region, make sure that only
2029 the entry block of the new region is associated with this region.
2030 Other successors are still part of the old region. */
2031 if (old_region != region && e->dest != region->entry_block)
2032 bb_regions[e->dest->index] = old_region;
2033 else
2034 bb_regions[e->dest->index] = region;
2035 }
2036 }
2037 while (!queue.is_empty ());
2038 BITMAP_FREE (visited_blocks);
2039 }
2040
2041 /* The "gate" function for all transactional memory expansion and optimization
2042 passes. We collect region information for each top-level transaction, and
2043 if we don't find any, we skip all of the TM passes. Each region will have
2044 all of the exit blocks recorded, and the originating statement. */
2045
2046 static bool
2047 gate_tm_init (void)
2048 {
2049 if (!flag_tm)
2050 return false;
2051
2052 calculate_dominance_info (CDI_DOMINATORS);
2053 bitmap_obstack_initialize (&tm_obstack);
2054
2055 /* If the function is a TM_CLONE, then the entire function is the region. */
2056 if (decl_is_tm_clone (current_function_decl))
2057 {
2058 struct tm_region *region = (struct tm_region *)
2059 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
2060 memset (region, 0, sizeof (*region));
2061 region->entry_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2062 /* For a clone, the entire function is the region. But even if
2063 we don't need to record any exit blocks, we may need to
2064 record irrevocable blocks. */
2065 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
2066
2067 tm_region_init (region);
2068 }
2069 else
2070 {
2071 tm_region_init (NULL);
2072
2073 /* If we didn't find any regions, cleanup and skip the whole tree
2074 of tm-related optimizations. */
2075 if (all_tm_regions == NULL)
2076 {
2077 bitmap_obstack_release (&tm_obstack);
2078 return false;
2079 }
2080 }
2081
2082 return true;
2083 }
2084
2085 namespace {
2086
2087 const pass_data pass_data_tm_init =
2088 {
2089 GIMPLE_PASS, /* type */
2090 "*tminit", /* name */
2091 OPTGROUP_NONE, /* optinfo_flags */
2092 TV_TRANS_MEM, /* tv_id */
2093 ( PROP_ssa | PROP_cfg ), /* properties_required */
2094 0, /* properties_provided */
2095 0, /* properties_destroyed */
2096 0, /* todo_flags_start */
2097 0, /* todo_flags_finish */
2098 };
2099
2100 class pass_tm_init : public gimple_opt_pass
2101 {
2102 public:
2103 pass_tm_init (gcc::context *ctxt)
2104 : gimple_opt_pass (pass_data_tm_init, ctxt)
2105 {}
2106
2107 /* opt_pass methods: */
2108 virtual bool gate (function *) { return gate_tm_init (); }
2109
2110 }; // class pass_tm_init
2111
2112 } // anon namespace
2113
2114 gimple_opt_pass *
2115 make_pass_tm_init (gcc::context *ctxt)
2116 {
2117 return new pass_tm_init (ctxt);
2118 }
2119 \f
2120 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
2121 represented by STATE. */
2122
2123 static inline void
2124 transaction_subcode_ior (struct tm_region *region, unsigned flags)
2125 {
2126 if (region && region->transaction_stmt)
2127 {
2128 gtransaction *transaction_stmt = region->get_transaction_stmt ();
2129 flags |= gimple_transaction_subcode (transaction_stmt);
2130 gimple_transaction_set_subcode (transaction_stmt, flags);
2131 }
2132 }
2133
2134 /* Construct a memory load in a transactional context. Return the
2135 gimple statement performing the load, or NULL if there is no
2136 TM_LOAD builtin of the appropriate size to do the load.
2137
2138 LOC is the location to use for the new statement(s). */
2139
2140 static gcall *
2141 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2142 {
2143 enum built_in_function code = END_BUILTINS;
2144 tree t, type = TREE_TYPE (rhs), decl;
2145 gcall *gcall;
2146
2147 if (type == float_type_node)
2148 code = BUILT_IN_TM_LOAD_FLOAT;
2149 else if (type == double_type_node)
2150 code = BUILT_IN_TM_LOAD_DOUBLE;
2151 else if (type == long_double_type_node)
2152 code = BUILT_IN_TM_LOAD_LDOUBLE;
2153 else if (TYPE_SIZE_UNIT (type) != NULL
2154 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2155 {
2156 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2157 {
2158 case 1:
2159 code = BUILT_IN_TM_LOAD_1;
2160 break;
2161 case 2:
2162 code = BUILT_IN_TM_LOAD_2;
2163 break;
2164 case 4:
2165 code = BUILT_IN_TM_LOAD_4;
2166 break;
2167 case 8:
2168 code = BUILT_IN_TM_LOAD_8;
2169 break;
2170 }
2171 }
2172
2173 if (code == END_BUILTINS)
2174 {
2175 decl = targetm.vectorize.builtin_tm_load (type);
2176 if (!decl)
2177 return NULL;
2178 }
2179 else
2180 decl = builtin_decl_explicit (code);
2181
2182 t = gimplify_addr (gsi, rhs);
2183 gcall = gimple_build_call (decl, 1, t);
2184 gimple_set_location (gcall, loc);
2185
2186 t = TREE_TYPE (TREE_TYPE (decl));
2187 if (useless_type_conversion_p (type, t))
2188 {
2189 gimple_call_set_lhs (gcall, lhs);
2190 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2191 }
2192 else
2193 {
2194 gimple g;
2195 tree temp;
2196
2197 temp = create_tmp_reg (t);
2198 gimple_call_set_lhs (gcall, temp);
2199 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2200
2201 t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2202 g = gimple_build_assign (lhs, t);
2203 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2204 }
2205
2206 return gcall;
2207 }
2208
2209
2210 /* Similarly for storing TYPE in a transactional context. */
2211
2212 static gcall *
2213 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2214 {
2215 enum built_in_function code = END_BUILTINS;
2216 tree t, fn, type = TREE_TYPE (rhs), simple_type;
2217 gcall *gcall;
2218
2219 if (type == float_type_node)
2220 code = BUILT_IN_TM_STORE_FLOAT;
2221 else if (type == double_type_node)
2222 code = BUILT_IN_TM_STORE_DOUBLE;
2223 else if (type == long_double_type_node)
2224 code = BUILT_IN_TM_STORE_LDOUBLE;
2225 else if (TYPE_SIZE_UNIT (type) != NULL
2226 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2227 {
2228 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2229 {
2230 case 1:
2231 code = BUILT_IN_TM_STORE_1;
2232 break;
2233 case 2:
2234 code = BUILT_IN_TM_STORE_2;
2235 break;
2236 case 4:
2237 code = BUILT_IN_TM_STORE_4;
2238 break;
2239 case 8:
2240 code = BUILT_IN_TM_STORE_8;
2241 break;
2242 }
2243 }
2244
2245 if (code == END_BUILTINS)
2246 {
2247 fn = targetm.vectorize.builtin_tm_store (type);
2248 if (!fn)
2249 return NULL;
2250 }
2251 else
2252 fn = builtin_decl_explicit (code);
2253
2254 simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2255
2256 if (TREE_CODE (rhs) == CONSTRUCTOR)
2257 {
2258 /* Handle the easy initialization to zero. */
2259 if (!CONSTRUCTOR_ELTS (rhs))
2260 rhs = build_int_cst (simple_type, 0);
2261 else
2262 {
2263 /* ...otherwise punt to the caller and probably use
2264 BUILT_IN_TM_MEMMOVE, because we can't wrap a
2265 VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2266 valid gimple. */
2267 return NULL;
2268 }
2269 }
2270 else if (!useless_type_conversion_p (simple_type, type))
2271 {
2272 gimple g;
2273 tree temp;
2274
2275 temp = create_tmp_reg (simple_type);
2276 t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2277 g = gimple_build_assign (temp, t);
2278 gimple_set_location (g, loc);
2279 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2280
2281 rhs = temp;
2282 }
2283
2284 t = gimplify_addr (gsi, lhs);
2285 gcall = gimple_build_call (fn, 2, t, rhs);
2286 gimple_set_location (gcall, loc);
2287 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2288
2289 return gcall;
2290 }
2291
2292
2293 /* Expand an assignment statement into transactional builtins. */
2294
2295 static void
2296 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2297 {
2298 gimple stmt = gsi_stmt (*gsi);
2299 location_t loc = gimple_location (stmt);
2300 tree lhs = gimple_assign_lhs (stmt);
2301 tree rhs = gimple_assign_rhs1 (stmt);
2302 bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2303 bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2304 gimple gcall = NULL;
2305
2306 if (!load_p && !store_p)
2307 {
2308 /* Add thread private addresses to log if applicable. */
2309 requires_barrier (region->entry_block, lhs, stmt);
2310 gsi_next (gsi);
2311 return;
2312 }
2313
2314 // Remove original load/store statement.
2315 gsi_remove (gsi, true);
2316
2317 if (load_p && !store_p)
2318 {
2319 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2320 gcall = build_tm_load (loc, lhs, rhs, gsi);
2321 }
2322 else if (store_p && !load_p)
2323 {
2324 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2325 gcall = build_tm_store (loc, lhs, rhs, gsi);
2326 }
2327 if (!gcall)
2328 {
2329 tree lhs_addr, rhs_addr, tmp;
2330
2331 if (load_p)
2332 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2333 if (store_p)
2334 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2335
2336 /* ??? Figure out if there's any possible overlap between the LHS
2337 and the RHS and if not, use MEMCPY. */
2338
2339 if (load_p && is_gimple_reg (lhs))
2340 {
2341 tmp = create_tmp_var (TREE_TYPE (lhs));
2342 lhs_addr = build_fold_addr_expr (tmp);
2343 }
2344 else
2345 {
2346 tmp = NULL_TREE;
2347 lhs_addr = gimplify_addr (gsi, lhs);
2348 }
2349 rhs_addr = gimplify_addr (gsi, rhs);
2350 gcall = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_MEMMOVE),
2351 3, lhs_addr, rhs_addr,
2352 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2353 gimple_set_location (gcall, loc);
2354 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2355
2356 if (tmp)
2357 {
2358 gcall = gimple_build_assign (lhs, tmp);
2359 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2360 }
2361 }
2362
2363 /* Now that we have the load/store in its instrumented form, add
2364 thread private addresses to the log if applicable. */
2365 if (!store_p)
2366 requires_barrier (region->entry_block, lhs, gcall);
2367
2368 // The calls to build_tm_{store,load} above inserted the instrumented
2369 // call into the stream.
2370 // gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2371 }
2372
2373
2374 /* Expand a call statement as appropriate for a transaction. That is,
2375 either verify that the call does not affect the transaction, or
2376 redirect the call to a clone that handles transactions, or change
2377 the transaction state to IRREVOCABLE. Return true if the call is
2378 one of the builtins that end a transaction. */
2379
2380 static bool
2381 expand_call_tm (struct tm_region *region,
2382 gimple_stmt_iterator *gsi)
2383 {
2384 gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
2385 tree lhs = gimple_call_lhs (stmt);
2386 tree fn_decl;
2387 struct cgraph_node *node;
2388 bool retval = false;
2389
2390 fn_decl = gimple_call_fndecl (stmt);
2391
2392 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2393 || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2394 transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2395 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2396 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2397
2398 if (is_tm_pure_call (stmt))
2399 return false;
2400
2401 if (fn_decl)
2402 retval = is_tm_ending_fndecl (fn_decl);
2403 if (!retval)
2404 {
2405 /* Assume all non-const/pure calls write to memory, except
2406 transaction ending builtins. */
2407 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2408 }
2409
2410 /* For indirect calls, we already generated a call into the runtime. */
2411 if (!fn_decl)
2412 {
2413 tree fn = gimple_call_fn (stmt);
2414
2415 /* We are guaranteed never to go irrevocable on a safe or pure
2416 call, and the pure call was handled above. */
2417 if (is_tm_safe (fn))
2418 return false;
2419 else
2420 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2421
2422 return false;
2423 }
2424
2425 node = cgraph_node::get (fn_decl);
2426 /* All calls should have cgraph here. */
2427 if (!node)
2428 {
2429 /* We can have a nodeless call here if some pass after IPA-tm
2430 added uninstrumented calls. For example, loop distribution
2431 can transform certain loop constructs into __builtin_mem*
2432 calls. In this case, see if we have a suitable TM
2433 replacement and fill in the gaps. */
2434 gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL);
2435 enum built_in_function code = DECL_FUNCTION_CODE (fn_decl);
2436 gcc_assert (code == BUILT_IN_MEMCPY
2437 || code == BUILT_IN_MEMMOVE
2438 || code == BUILT_IN_MEMSET);
2439
2440 tree repl = find_tm_replacement_function (fn_decl);
2441 if (repl)
2442 {
2443 gimple_call_set_fndecl (stmt, repl);
2444 update_stmt (stmt);
2445 node = cgraph_node::create (repl);
2446 node->local.tm_may_enter_irr = false;
2447 return expand_call_tm (region, gsi);
2448 }
2449 gcc_unreachable ();
2450 }
2451 if (node->local.tm_may_enter_irr)
2452 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2453
2454 if (is_tm_abort (fn_decl))
2455 {
2456 transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2457 return true;
2458 }
2459
2460 /* Instrument the store if needed.
2461
2462 If the assignment happens inside the function call (return slot
2463 optimization), there is no instrumentation to be done, since
2464 the callee should have done the right thing. */
2465 if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2466 && !gimple_call_return_slot_opt_p (stmt))
2467 {
2468 tree tmp = create_tmp_reg (TREE_TYPE (lhs));
2469 location_t loc = gimple_location (stmt);
2470 edge fallthru_edge = NULL;
2471 gassign *assign_stmt;
2472
2473 /* Remember if the call was going to throw. */
2474 if (stmt_can_throw_internal (stmt))
2475 {
2476 edge_iterator ei;
2477 edge e;
2478 basic_block bb = gimple_bb (stmt);
2479
2480 FOR_EACH_EDGE (e, ei, bb->succs)
2481 if (e->flags & EDGE_FALLTHRU)
2482 {
2483 fallthru_edge = e;
2484 break;
2485 }
2486 }
2487
2488 gimple_call_set_lhs (stmt, tmp);
2489 update_stmt (stmt);
2490 assign_stmt = gimple_build_assign (lhs, tmp);
2491 gimple_set_location (assign_stmt, loc);
2492
2493 /* We cannot throw in the middle of a BB. If the call was going
2494 to throw, place the instrumentation on the fallthru edge, so
2495 the call remains the last statement in the block. */
2496 if (fallthru_edge)
2497 {
2498 gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (assign_stmt);
2499 gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2500 expand_assign_tm (region, &fallthru_gsi);
2501 gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2502 pending_edge_inserts_p = true;
2503 }
2504 else
2505 {
2506 gsi_insert_after (gsi, assign_stmt, GSI_CONTINUE_LINKING);
2507 expand_assign_tm (region, gsi);
2508 }
2509
2510 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2511 }
2512
2513 return retval;
2514 }
2515
2516
2517 /* Expand all statements in BB as appropriate for being inside
2518 a transaction. */
2519
2520 static void
2521 expand_block_tm (struct tm_region *region, basic_block bb)
2522 {
2523 gimple_stmt_iterator gsi;
2524
2525 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2526 {
2527 gimple stmt = gsi_stmt (gsi);
2528 switch (gimple_code (stmt))
2529 {
2530 case GIMPLE_ASSIGN:
2531 /* Only memory reads/writes need to be instrumented. */
2532 if (gimple_assign_single_p (stmt)
2533 && !gimple_clobber_p (stmt))
2534 {
2535 expand_assign_tm (region, &gsi);
2536 continue;
2537 }
2538 break;
2539
2540 case GIMPLE_CALL:
2541 if (expand_call_tm (region, &gsi))
2542 return;
2543 break;
2544
2545 case GIMPLE_ASM:
2546 gcc_unreachable ();
2547
2548 default:
2549 break;
2550 }
2551 if (!gsi_end_p (gsi))
2552 gsi_next (&gsi);
2553 }
2554 }
2555
2556 /* Return the list of basic-blocks in REGION.
2557
2558 STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2559 following a TM_IRREVOCABLE call.
2560
2561 INCLUDE_UNINSTRUMENTED_P is TRUE if we should include the
2562 uninstrumented code path blocks in the list of basic blocks
2563 returned, false otherwise. */
2564
2565 static vec<basic_block>
2566 get_tm_region_blocks (basic_block entry_block,
2567 bitmap exit_blocks,
2568 bitmap irr_blocks,
2569 bitmap all_region_blocks,
2570 bool stop_at_irrevocable_p,
2571 bool include_uninstrumented_p = true)
2572 {
2573 vec<basic_block> bbs = vNULL;
2574 unsigned i;
2575 edge e;
2576 edge_iterator ei;
2577 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2578
2579 i = 0;
2580 bbs.safe_push (entry_block);
2581 bitmap_set_bit (visited_blocks, entry_block->index);
2582
2583 do
2584 {
2585 basic_block bb = bbs[i++];
2586
2587 if (exit_blocks &&
2588 bitmap_bit_p (exit_blocks, bb->index))
2589 continue;
2590
2591 if (stop_at_irrevocable_p
2592 && irr_blocks
2593 && bitmap_bit_p (irr_blocks, bb->index))
2594 continue;
2595
2596 FOR_EACH_EDGE (e, ei, bb->succs)
2597 if ((include_uninstrumented_p
2598 || !(e->flags & EDGE_TM_UNINSTRUMENTED))
2599 && !bitmap_bit_p (visited_blocks, e->dest->index))
2600 {
2601 bitmap_set_bit (visited_blocks, e->dest->index);
2602 bbs.safe_push (e->dest);
2603 }
2604 }
2605 while (i < bbs.length ());
2606
2607 if (all_region_blocks)
2608 bitmap_ior_into (all_region_blocks, visited_blocks);
2609
2610 BITMAP_FREE (visited_blocks);
2611 return bbs;
2612 }
2613
2614 // Callback data for collect_bb2reg.
2615 struct bb2reg_stuff
2616 {
2617 vec<tm_region_p> *bb2reg;
2618 bool include_uninstrumented_p;
2619 };
2620
2621 // Callback for expand_regions, collect innermost region data for each bb.
2622 static void *
2623 collect_bb2reg (struct tm_region *region, void *data)
2624 {
2625 struct bb2reg_stuff *stuff = (struct bb2reg_stuff *)data;
2626 vec<tm_region_p> *bb2reg = stuff->bb2reg;
2627 vec<basic_block> queue;
2628 unsigned int i;
2629 basic_block bb;
2630
2631 queue = get_tm_region_blocks (region->entry_block,
2632 region->exit_blocks,
2633 region->irr_blocks,
2634 NULL,
2635 /*stop_at_irr_p=*/true,
2636 stuff->include_uninstrumented_p);
2637
2638 // We expect expand_region to perform a post-order traversal of the region
2639 // tree. Therefore the last region seen for any bb is the innermost.
2640 FOR_EACH_VEC_ELT (queue, i, bb)
2641 (*bb2reg)[bb->index] = region;
2642
2643 queue.release ();
2644 return NULL;
2645 }
2646
2647 // Returns a vector, indexed by BB->INDEX, of the innermost tm_region to
2648 // which a basic block belongs. Note that we only consider the instrumented
2649 // code paths for the region; the uninstrumented code paths are ignored if
2650 // INCLUDE_UNINSTRUMENTED_P is false.
2651 //
2652 // ??? This data is very similar to the bb_regions array that is collected
2653 // during tm_region_init. Or, rather, this data is similar to what could
2654 // be used within tm_region_init. The actual computation in tm_region_init
2655 // begins and ends with bb_regions entirely full of NULL pointers, due to
2656 // the way in which pointers are swapped in and out of the array.
2657 //
2658 // ??? Our callers expect that blocks are not shared between transactions.
2659 // When the optimizers get too smart, and blocks are shared, then during
2660 // the tm_mark phase we'll add log entries to only one of the two transactions,
2661 // and in the tm_edge phase we'll add edges to the CFG that create invalid
2662 // cycles. The symptom being SSA defs that do not dominate their uses.
2663 // Note that the optimizers were locally correct with their transformation,
2664 // as we have no info within the program that suggests that the blocks cannot
2665 // be shared.
2666 //
2667 // ??? There is currently a hack inside tree-ssa-pre.c to work around the
2668 // only known instance of this block sharing.
2669
2670 static vec<tm_region_p>
2671 get_bb_regions_instrumented (bool traverse_clones,
2672 bool include_uninstrumented_p)
2673 {
2674 unsigned n = last_basic_block_for_fn (cfun);
2675 struct bb2reg_stuff stuff;
2676 vec<tm_region_p> ret;
2677
2678 ret.create (n);
2679 ret.safe_grow_cleared (n);
2680 stuff.bb2reg = &ret;
2681 stuff.include_uninstrumented_p = include_uninstrumented_p;
2682 expand_regions (all_tm_regions, collect_bb2reg, &stuff, traverse_clones);
2683
2684 return ret;
2685 }
2686
2687 /* Set the IN_TRANSACTION for all gimple statements that appear in a
2688 transaction. */
2689
2690 void
2691 compute_transaction_bits (void)
2692 {
2693 struct tm_region *region;
2694 vec<basic_block> queue;
2695 unsigned int i;
2696 basic_block bb;
2697
2698 /* ?? Perhaps we need to abstract gate_tm_init further, because we
2699 certainly don't need it to calculate CDI_DOMINATOR info. */
2700 gate_tm_init ();
2701
2702 FOR_EACH_BB_FN (bb, cfun)
2703 bb->flags &= ~BB_IN_TRANSACTION;
2704
2705 for (region = all_tm_regions; region; region = region->next)
2706 {
2707 queue = get_tm_region_blocks (region->entry_block,
2708 region->exit_blocks,
2709 region->irr_blocks,
2710 NULL,
2711 /*stop_at_irr_p=*/true);
2712 for (i = 0; queue.iterate (i, &bb); ++i)
2713 bb->flags |= BB_IN_TRANSACTION;
2714 queue.release ();
2715 }
2716
2717 if (all_tm_regions)
2718 bitmap_obstack_release (&tm_obstack);
2719 }
2720
2721 /* Replace the GIMPLE_TRANSACTION in this region with the corresponding
2722 call to BUILT_IN_TM_START. */
2723
2724 static void *
2725 expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2726 {
2727 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2728 basic_block transaction_bb = gimple_bb (region->transaction_stmt);
2729 tree tm_state = region->tm_state;
2730 tree tm_state_type = TREE_TYPE (tm_state);
2731 edge abort_edge = NULL;
2732 edge inst_edge = NULL;
2733 edge uninst_edge = NULL;
2734 edge fallthru_edge = NULL;
2735
2736 // Identify the various successors of the transaction start.
2737 {
2738 edge_iterator i;
2739 edge e;
2740 FOR_EACH_EDGE (e, i, transaction_bb->succs)
2741 {
2742 if (e->flags & EDGE_TM_ABORT)
2743 abort_edge = e;
2744 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
2745 uninst_edge = e;
2746 else
2747 inst_edge = e;
2748 if (e->flags & EDGE_FALLTHRU)
2749 fallthru_edge = e;
2750 }
2751 }
2752
2753 /* ??? There are plenty of bits here we're not computing. */
2754 {
2755 int subcode = gimple_transaction_subcode (region->get_transaction_stmt ());
2756 int flags = 0;
2757 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2758 flags |= PR_DOESGOIRREVOCABLE;
2759 if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2760 flags |= PR_HASNOIRREVOCABLE;
2761 /* If the transaction does not have an abort in lexical scope and is not
2762 marked as an outer transaction, then it will never abort. */
2763 if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0)
2764 flags |= PR_HASNOABORT;
2765 if ((subcode & GTMA_HAVE_STORE) == 0)
2766 flags |= PR_READONLY;
2767 if (inst_edge && !(subcode & GTMA_HAS_NO_INSTRUMENTATION))
2768 flags |= PR_INSTRUMENTEDCODE;
2769 if (uninst_edge)
2770 flags |= PR_UNINSTRUMENTEDCODE;
2771 if (subcode & GTMA_IS_OUTER)
2772 region->original_transaction_was_outer = true;
2773 tree t = build_int_cst (tm_state_type, flags);
2774 gcall *call = gimple_build_call (tm_start, 1, t);
2775 gimple_call_set_lhs (call, tm_state);
2776 gimple_set_location (call, gimple_location (region->transaction_stmt));
2777
2778 // Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START.
2779 gimple_stmt_iterator gsi = gsi_last_bb (transaction_bb);
2780 gcc_assert (gsi_stmt (gsi) == region->transaction_stmt);
2781 gsi_insert_before (&gsi, call, GSI_SAME_STMT);
2782 gsi_remove (&gsi, true);
2783 region->transaction_stmt = call;
2784 }
2785
2786 // Generate log saves.
2787 if (!tm_log_save_addresses.is_empty ())
2788 tm_log_emit_saves (region->entry_block, transaction_bb);
2789
2790 // In the beginning, we've no tests to perform on transaction restart.
2791 // Note that after this point, transaction_bb becomes the "most recent
2792 // block containing tests for the transaction".
2793 region->restart_block = region->entry_block;
2794
2795 // Generate log restores.
2796 if (!tm_log_save_addresses.is_empty ())
2797 {
2798 basic_block test_bb = create_empty_bb (transaction_bb);
2799 basic_block code_bb = create_empty_bb (test_bb);
2800 basic_block join_bb = create_empty_bb (code_bb);
2801 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2802 add_bb_to_loop (code_bb, transaction_bb->loop_father);
2803 add_bb_to_loop (join_bb, transaction_bb->loop_father);
2804 if (region->restart_block == region->entry_block)
2805 region->restart_block = test_bb;
2806
2807 tree t1 = create_tmp_reg (tm_state_type);
2808 tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES);
2809 gimple stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2810 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2811 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2812
2813 t2 = build_int_cst (tm_state_type, 0);
2814 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2815 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2816
2817 tm_log_emit_restores (region->entry_block, code_bb);
2818
2819 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2820 edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE);
2821 edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE);
2822 redirect_edge_pred (fallthru_edge, join_bb);
2823
2824 join_bb->frequency = test_bb->frequency = transaction_bb->frequency;
2825 join_bb->count = test_bb->count = transaction_bb->count;
2826
2827 ei->probability = PROB_ALWAYS;
2828 et->probability = PROB_LIKELY;
2829 ef->probability = PROB_UNLIKELY;
2830 et->count = apply_probability (test_bb->count, et->probability);
2831 ef->count = apply_probability (test_bb->count, ef->probability);
2832
2833 code_bb->count = et->count;
2834 code_bb->frequency = EDGE_FREQUENCY (et);
2835
2836 transaction_bb = join_bb;
2837 }
2838
2839 // If we have an ABORT edge, create a test to perform the abort.
2840 if (abort_edge)
2841 {
2842 basic_block test_bb = create_empty_bb (transaction_bb);
2843 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2844 if (region->restart_block == region->entry_block)
2845 region->restart_block = test_bb;
2846
2847 tree t1 = create_tmp_reg (tm_state_type);
2848 tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION);
2849 gimple stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2850 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2851 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2852
2853 t2 = build_int_cst (tm_state_type, 0);
2854 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2855 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2856
2857 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2858 test_bb->frequency = transaction_bb->frequency;
2859 test_bb->count = transaction_bb->count;
2860 ei->probability = PROB_ALWAYS;
2861
2862 // Not abort edge. If both are live, chose one at random as we'll
2863 // we'll be fixing that up below.
2864 redirect_edge_pred (fallthru_edge, test_bb);
2865 fallthru_edge->flags = EDGE_FALSE_VALUE;
2866 fallthru_edge->probability = PROB_VERY_LIKELY;
2867 fallthru_edge->count
2868 = apply_probability (test_bb->count, fallthru_edge->probability);
2869
2870 // Abort/over edge.
2871 redirect_edge_pred (abort_edge, test_bb);
2872 abort_edge->flags = EDGE_TRUE_VALUE;
2873 abort_edge->probability = PROB_VERY_UNLIKELY;
2874 abort_edge->count
2875 = apply_probability (test_bb->count, abort_edge->probability);
2876
2877 transaction_bb = test_bb;
2878 }
2879
2880 // If we have both instrumented and uninstrumented code paths, select one.
2881 if (inst_edge && uninst_edge)
2882 {
2883 basic_block test_bb = create_empty_bb (transaction_bb);
2884 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2885 if (region->restart_block == region->entry_block)
2886 region->restart_block = test_bb;
2887
2888 tree t1 = create_tmp_reg (tm_state_type);
2889 tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE);
2890
2891 gimple stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2892 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2893 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2894
2895 t2 = build_int_cst (tm_state_type, 0);
2896 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2897 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2898
2899 // Create the edge into test_bb first, as we want to copy values
2900 // out of the fallthru edge.
2901 edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags);
2902 e->probability = fallthru_edge->probability;
2903 test_bb->count = e->count = fallthru_edge->count;
2904 test_bb->frequency = EDGE_FREQUENCY (e);
2905
2906 // Now update the edges to the inst/uninist implementations.
2907 // For now assume that the paths are equally likely. When using HTM,
2908 // we'll try the uninst path first and fallback to inst path if htm
2909 // buffers are exceeded. Without HTM we start with the inst path and
2910 // use the uninst path when falling back to serial mode.
2911 redirect_edge_pred (inst_edge, test_bb);
2912 inst_edge->flags = EDGE_FALSE_VALUE;
2913 inst_edge->probability = REG_BR_PROB_BASE / 2;
2914 inst_edge->count
2915 = apply_probability (test_bb->count, inst_edge->probability);
2916
2917 redirect_edge_pred (uninst_edge, test_bb);
2918 uninst_edge->flags = EDGE_TRUE_VALUE;
2919 uninst_edge->probability = REG_BR_PROB_BASE / 2;
2920 uninst_edge->count
2921 = apply_probability (test_bb->count, uninst_edge->probability);
2922 }
2923
2924 // If we have no previous special cases, and we have PHIs at the beginning
2925 // of the atomic region, this means we have a loop at the beginning of the
2926 // atomic region that shares the first block. This can cause problems with
2927 // the transaction restart abnormal edges to be added in the tm_edges pass.
2928 // Solve this by adding a new empty block to receive the abnormal edges.
2929 if (region->restart_block == region->entry_block
2930 && phi_nodes (region->entry_block))
2931 {
2932 basic_block empty_bb = create_empty_bb (transaction_bb);
2933 region->restart_block = empty_bb;
2934 add_bb_to_loop (empty_bb, transaction_bb->loop_father);
2935
2936 redirect_edge_pred (fallthru_edge, empty_bb);
2937 make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU);
2938 }
2939
2940 return NULL;
2941 }
2942
2943 /* Generate the temporary to be used for the return value of
2944 BUILT_IN_TM_START. */
2945
2946 static void *
2947 generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2948 {
2949 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2950 region->tm_state =
2951 create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
2952
2953 // Reset the subcode, post optimizations. We'll fill this in
2954 // again as we process blocks.
2955 if (region->exit_blocks)
2956 {
2957 gtransaction *transaction_stmt = region->get_transaction_stmt ();
2958 unsigned int subcode = gimple_transaction_subcode (transaction_stmt);
2959
2960 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2961 subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
2962 | GTMA_MAY_ENTER_IRREVOCABLE
2963 | GTMA_HAS_NO_INSTRUMENTATION);
2964 else
2965 subcode &= GTMA_DECLARATION_MASK;
2966 gimple_transaction_set_subcode (transaction_stmt, subcode);
2967 }
2968
2969 return NULL;
2970 }
2971
2972 // Propagate flags from inner transactions outwards.
2973 static void
2974 propagate_tm_flags_out (struct tm_region *region)
2975 {
2976 if (region == NULL)
2977 return;
2978 propagate_tm_flags_out (region->inner);
2979
2980 if (region->outer && region->outer->transaction_stmt)
2981 {
2982 unsigned s
2983 = gimple_transaction_subcode (region->get_transaction_stmt ());
2984 s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE
2985 | GTMA_MAY_ENTER_IRREVOCABLE);
2986 s |= gimple_transaction_subcode (region->outer->get_transaction_stmt ());
2987 gimple_transaction_set_subcode (region->outer->get_transaction_stmt (),
2988 s);
2989 }
2990
2991 propagate_tm_flags_out (region->next);
2992 }
2993
2994 /* Entry point to the MARK phase of TM expansion. Here we replace
2995 transactional memory statements with calls to builtins, and function
2996 calls with their transactional clones (if available). But we don't
2997 yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
2998
2999 static unsigned int
3000 execute_tm_mark (void)
3001 {
3002 pending_edge_inserts_p = false;
3003
3004 expand_regions (all_tm_regions, generate_tm_state, NULL,
3005 /*traverse_clones=*/true);
3006
3007 tm_log_init ();
3008
3009 vec<tm_region_p> bb_regions
3010 = get_bb_regions_instrumented (/*traverse_clones=*/true,
3011 /*include_uninstrumented_p=*/false);
3012 struct tm_region *r;
3013 unsigned i;
3014
3015 // Expand memory operations into calls into the runtime.
3016 // This collects log entries as well.
3017 FOR_EACH_VEC_ELT (bb_regions, i, r)
3018 {
3019 if (r != NULL)
3020 {
3021 if (r->transaction_stmt)
3022 {
3023 unsigned sub
3024 = gimple_transaction_subcode (r->get_transaction_stmt ());
3025
3026 /* If we're sure to go irrevocable, there won't be
3027 anything to expand, since the run-time will go
3028 irrevocable right away. */
3029 if (sub & GTMA_DOES_GO_IRREVOCABLE
3030 && sub & GTMA_MAY_ENTER_IRREVOCABLE)
3031 continue;
3032 }
3033 expand_block_tm (r, BASIC_BLOCK_FOR_FN (cfun, i));
3034 }
3035 }
3036
3037 bb_regions.release ();
3038
3039 // Propagate flags from inner transactions outwards.
3040 propagate_tm_flags_out (all_tm_regions);
3041
3042 // Expand GIMPLE_TRANSACTIONs into calls into the runtime.
3043 expand_regions (all_tm_regions, expand_transaction, NULL,
3044 /*traverse_clones=*/false);
3045
3046 tm_log_emit ();
3047 tm_log_delete ();
3048
3049 if (pending_edge_inserts_p)
3050 gsi_commit_edge_inserts ();
3051 free_dominance_info (CDI_DOMINATORS);
3052 return 0;
3053 }
3054
3055 namespace {
3056
3057 const pass_data pass_data_tm_mark =
3058 {
3059 GIMPLE_PASS, /* type */
3060 "tmmark", /* name */
3061 OPTGROUP_NONE, /* optinfo_flags */
3062 TV_TRANS_MEM, /* tv_id */
3063 ( PROP_ssa | PROP_cfg ), /* properties_required */
3064 0, /* properties_provided */
3065 0, /* properties_destroyed */
3066 0, /* todo_flags_start */
3067 TODO_update_ssa, /* todo_flags_finish */
3068 };
3069
3070 class pass_tm_mark : public gimple_opt_pass
3071 {
3072 public:
3073 pass_tm_mark (gcc::context *ctxt)
3074 : gimple_opt_pass (pass_data_tm_mark, ctxt)
3075 {}
3076
3077 /* opt_pass methods: */
3078 virtual unsigned int execute (function *) { return execute_tm_mark (); }
3079
3080 }; // class pass_tm_mark
3081
3082 } // anon namespace
3083
3084 gimple_opt_pass *
3085 make_pass_tm_mark (gcc::context *ctxt)
3086 {
3087 return new pass_tm_mark (ctxt);
3088 }
3089 \f
3090
3091 /* Create an abnormal edge from STMT at iter, splitting the block
3092 as necessary. Adjust *PNEXT as needed for the split block. */
3093
3094 static inline void
3095 split_bb_make_tm_edge (gimple stmt, basic_block dest_bb,
3096 gimple_stmt_iterator iter, gimple_stmt_iterator *pnext)
3097 {
3098 basic_block bb = gimple_bb (stmt);
3099 if (!gsi_one_before_end_p (iter))
3100 {
3101 edge e = split_block (bb, stmt);
3102 *pnext = gsi_start_bb (e->dest);
3103 }
3104 make_edge (bb, dest_bb, EDGE_ABNORMAL);
3105
3106 // Record the need for the edge for the benefit of the rtl passes.
3107 if (cfun->gimple_df->tm_restart == NULL)
3108 cfun->gimple_df->tm_restart
3109 = hash_table<tm_restart_hasher>::create_ggc (31);
3110
3111 struct tm_restart_node dummy;
3112 dummy.stmt = stmt;
3113 dummy.label_or_list = gimple_block_label (dest_bb);
3114
3115 tm_restart_node **slot = cfun->gimple_df->tm_restart->find_slot (&dummy,
3116 INSERT);
3117 struct tm_restart_node *n = *slot;
3118 if (n == NULL)
3119 {
3120 n = ggc_alloc<tm_restart_node> ();
3121 *n = dummy;
3122 }
3123 else
3124 {
3125 tree old = n->label_or_list;
3126 if (TREE_CODE (old) == LABEL_DECL)
3127 old = tree_cons (NULL, old, NULL);
3128 n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
3129 }
3130 }
3131
3132 /* Split block BB as necessary for every builtin function we added, and
3133 wire up the abnormal back edges implied by the transaction restart. */
3134
3135 static void
3136 expand_block_edges (struct tm_region *const region, basic_block bb)
3137 {
3138 gimple_stmt_iterator gsi, next_gsi;
3139
3140 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi = next_gsi)
3141 {
3142 gimple stmt = gsi_stmt (gsi);
3143 gcall *call_stmt;
3144
3145 next_gsi = gsi;
3146 gsi_next (&next_gsi);
3147
3148 // ??? Shouldn't we split for any non-pure, non-irrevocable function?
3149 call_stmt = dyn_cast <gcall *> (stmt);
3150 if ((!call_stmt)
3151 || (gimple_call_flags (call_stmt) & ECF_TM_BUILTIN) == 0)
3152 continue;
3153
3154 if (DECL_FUNCTION_CODE (gimple_call_fndecl (call_stmt))
3155 == BUILT_IN_TM_ABORT)
3156 {
3157 // If we have a ``_transaction_cancel [[outer]]'', there is only
3158 // one abnormal edge: to the transaction marked OUTER.
3159 // All compiler-generated instances of BUILT_IN_TM_ABORT have a
3160 // constant argument, which we can examine here. Users invoking
3161 // TM_ABORT directly get what they deserve.
3162 tree arg = gimple_call_arg (call_stmt, 0);
3163 if (TREE_CODE (arg) == INTEGER_CST
3164 && (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0
3165 && !decl_is_tm_clone (current_function_decl))
3166 {
3167 // Find the GTMA_IS_OUTER transaction.
3168 for (struct tm_region *o = region; o; o = o->outer)
3169 if (o->original_transaction_was_outer)
3170 {
3171 split_bb_make_tm_edge (call_stmt, o->restart_block,
3172 gsi, &next_gsi);
3173 break;
3174 }
3175
3176 // Otherwise, the front-end should have semantically checked
3177 // outer aborts, but in either case the target region is not
3178 // within this function.
3179 continue;
3180 }
3181
3182 // Non-outer, TM aborts have an abnormal edge to the inner-most
3183 // transaction, the one being aborted;
3184 split_bb_make_tm_edge (call_stmt, region->restart_block, gsi,
3185 &next_gsi);
3186 }
3187
3188 // All TM builtins have an abnormal edge to the outer-most transaction.
3189 // We never restart inner transactions. For tm clones, we know a-priori
3190 // that the outer-most transaction is outside the function.
3191 if (decl_is_tm_clone (current_function_decl))
3192 continue;
3193
3194 if (cfun->gimple_df->tm_restart == NULL)
3195 cfun->gimple_df->tm_restart
3196 = hash_table<tm_restart_hasher>::create_ggc (31);
3197
3198 // All TM builtins have an abnormal edge to the outer-most transaction.
3199 // We never restart inner transactions.
3200 for (struct tm_region *o = region; o; o = o->outer)
3201 if (!o->outer)
3202 {
3203 split_bb_make_tm_edge (call_stmt, o->restart_block, gsi, &next_gsi);
3204 break;
3205 }
3206
3207 // Delete any tail-call annotation that may have been added.
3208 // The tail-call pass may have mis-identified the commit as being
3209 // a candidate because we had not yet added this restart edge.
3210 gimple_call_set_tail (call_stmt, false);
3211 }
3212 }
3213
3214 /* Entry point to the final expansion of transactional nodes. */
3215
3216 namespace {
3217
3218 const pass_data pass_data_tm_edges =
3219 {
3220 GIMPLE_PASS, /* type */
3221 "tmedge", /* name */
3222 OPTGROUP_NONE, /* optinfo_flags */
3223 TV_TRANS_MEM, /* tv_id */
3224 ( PROP_ssa | PROP_cfg ), /* properties_required */
3225 0, /* properties_provided */
3226 0, /* properties_destroyed */
3227 0, /* todo_flags_start */
3228 TODO_update_ssa, /* todo_flags_finish */
3229 };
3230
3231 class pass_tm_edges : public gimple_opt_pass
3232 {
3233 public:
3234 pass_tm_edges (gcc::context *ctxt)
3235 : gimple_opt_pass (pass_data_tm_edges, ctxt)
3236 {}
3237
3238 /* opt_pass methods: */
3239 virtual unsigned int execute (function *);
3240
3241 }; // class pass_tm_edges
3242
3243 unsigned int
3244 pass_tm_edges::execute (function *fun)
3245 {
3246 vec<tm_region_p> bb_regions
3247 = get_bb_regions_instrumented (/*traverse_clones=*/false,
3248 /*include_uninstrumented_p=*/true);
3249 struct tm_region *r;
3250 unsigned i;
3251
3252 FOR_EACH_VEC_ELT (bb_regions, i, r)
3253 if (r != NULL)
3254 expand_block_edges (r, BASIC_BLOCK_FOR_FN (fun, i));
3255
3256 bb_regions.release ();
3257
3258 /* We've got to release the dominance info now, to indicate that it
3259 must be rebuilt completely. Otherwise we'll crash trying to update
3260 the SSA web in the TODO section following this pass. */
3261 free_dominance_info (CDI_DOMINATORS);
3262 bitmap_obstack_release (&tm_obstack);
3263 all_tm_regions = NULL;
3264
3265 return 0;
3266 }
3267
3268 } // anon namespace
3269
3270 gimple_opt_pass *
3271 make_pass_tm_edges (gcc::context *ctxt)
3272 {
3273 return new pass_tm_edges (ctxt);
3274 }
3275 \f
3276 /* Helper function for expand_regions. Expand REGION and recurse to
3277 the inner region. Call CALLBACK on each region. CALLBACK returns
3278 NULL to continue the traversal, otherwise a non-null value which
3279 this function will return as well. TRAVERSE_CLONES is true if we
3280 should traverse transactional clones. */
3281
3282 static void *
3283 expand_regions_1 (struct tm_region *region,
3284 void *(*callback)(struct tm_region *, void *),
3285 void *data,
3286 bool traverse_clones)
3287 {
3288 void *retval = NULL;
3289 if (region->exit_blocks
3290 || (traverse_clones && decl_is_tm_clone (current_function_decl)))
3291 {
3292 retval = callback (region, data);
3293 if (retval)
3294 return retval;
3295 }
3296 if (region->inner)
3297 {
3298 retval = expand_regions (region->inner, callback, data, traverse_clones);
3299 if (retval)
3300 return retval;
3301 }
3302 return retval;
3303 }
3304
3305 /* Traverse the regions enclosed and including REGION. Execute
3306 CALLBACK for each region, passing DATA. CALLBACK returns NULL to
3307 continue the traversal, otherwise a non-null value which this
3308 function will return as well. TRAVERSE_CLONES is true if we should
3309 traverse transactional clones. */
3310
3311 static void *
3312 expand_regions (struct tm_region *region,
3313 void *(*callback)(struct tm_region *, void *),
3314 void *data,
3315 bool traverse_clones)
3316 {
3317 void *retval = NULL;
3318 while (region)
3319 {
3320 retval = expand_regions_1 (region, callback, data, traverse_clones);
3321 if (retval)
3322 return retval;
3323 region = region->next;
3324 }
3325 return retval;
3326 }
3327
3328 \f
3329 /* A unique TM memory operation. */
3330 typedef struct tm_memop
3331 {
3332 /* Unique ID that all memory operations to the same location have. */
3333 unsigned int value_id;
3334 /* Address of load/store. */
3335 tree addr;
3336 } *tm_memop_t;
3337
3338 /* TM memory operation hashtable helpers. */
3339
3340 struct tm_memop_hasher : typed_free_remove <tm_memop>
3341 {
3342 typedef tm_memop *value_type;
3343 typedef tm_memop *compare_type;
3344 static inline hashval_t hash (const tm_memop *);
3345 static inline bool equal (const tm_memop *, const tm_memop *);
3346 };
3347
3348 /* Htab support. Return a hash value for a `tm_memop'. */
3349 inline hashval_t
3350 tm_memop_hasher::hash (const tm_memop *mem)
3351 {
3352 tree addr = mem->addr;
3353 /* We drill down to the SSA_NAME/DECL for the hash, but equality is
3354 actually done with operand_equal_p (see tm_memop_eq). */
3355 if (TREE_CODE (addr) == ADDR_EXPR)
3356 addr = TREE_OPERAND (addr, 0);
3357 return iterative_hash_expr (addr, 0);
3358 }
3359
3360 /* Htab support. Return true if two tm_memop's are the same. */
3361 inline bool
3362 tm_memop_hasher::equal (const tm_memop *mem1, const tm_memop *mem2)
3363 {
3364 return operand_equal_p (mem1->addr, mem2->addr, 0);
3365 }
3366
3367 /* Sets for solving data flow equations in the memory optimization pass. */
3368 struct tm_memopt_bitmaps
3369 {
3370 /* Stores available to this BB upon entry. Basically, stores that
3371 dominate this BB. */
3372 bitmap store_avail_in;
3373 /* Stores available at the end of this BB. */
3374 bitmap store_avail_out;
3375 bitmap store_antic_in;
3376 bitmap store_antic_out;
3377 /* Reads available to this BB upon entry. Basically, reads that
3378 dominate this BB. */
3379 bitmap read_avail_in;
3380 /* Reads available at the end of this BB. */
3381 bitmap read_avail_out;
3382 /* Reads performed in this BB. */
3383 bitmap read_local;
3384 /* Writes performed in this BB. */
3385 bitmap store_local;
3386
3387 /* Temporary storage for pass. */
3388 /* Is the current BB in the worklist? */
3389 bool avail_in_worklist_p;
3390 /* Have we visited this BB? */
3391 bool visited_p;
3392 };
3393
3394 static bitmap_obstack tm_memopt_obstack;
3395
3396 /* Unique counter for TM loads and stores. Loads and stores of the
3397 same address get the same ID. */
3398 static unsigned int tm_memopt_value_id;
3399 static hash_table<tm_memop_hasher> *tm_memopt_value_numbers;
3400
3401 #define STORE_AVAIL_IN(BB) \
3402 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
3403 #define STORE_AVAIL_OUT(BB) \
3404 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
3405 #define STORE_ANTIC_IN(BB) \
3406 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
3407 #define STORE_ANTIC_OUT(BB) \
3408 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
3409 #define READ_AVAIL_IN(BB) \
3410 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
3411 #define READ_AVAIL_OUT(BB) \
3412 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
3413 #define READ_LOCAL(BB) \
3414 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
3415 #define STORE_LOCAL(BB) \
3416 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
3417 #define AVAIL_IN_WORKLIST_P(BB) \
3418 ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
3419 #define BB_VISITED_P(BB) \
3420 ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
3421
3422 /* Given a TM load/store in STMT, return the value number for the address
3423 it accesses. */
3424
3425 static unsigned int
3426 tm_memopt_value_number (gimple stmt, enum insert_option op)
3427 {
3428 struct tm_memop tmpmem, *mem;
3429 tm_memop **slot;
3430
3431 gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
3432 tmpmem.addr = gimple_call_arg (stmt, 0);
3433 slot = tm_memopt_value_numbers->find_slot (&tmpmem, op);
3434 if (*slot)
3435 mem = *slot;
3436 else if (op == INSERT)
3437 {
3438 mem = XNEW (struct tm_memop);
3439 *slot = mem;
3440 mem->value_id = tm_memopt_value_id++;
3441 mem->addr = tmpmem.addr;
3442 }
3443 else
3444 gcc_unreachable ();
3445 return mem->value_id;
3446 }
3447
3448 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
3449
3450 static void
3451 tm_memopt_accumulate_memops (basic_block bb)
3452 {
3453 gimple_stmt_iterator gsi;
3454
3455 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3456 {
3457 gimple stmt = gsi_stmt (gsi);
3458 bitmap bits;
3459 unsigned int loc;
3460
3461 if (is_tm_store (stmt))
3462 bits = STORE_LOCAL (bb);
3463 else if (is_tm_load (stmt))
3464 bits = READ_LOCAL (bb);
3465 else
3466 continue;
3467
3468 loc = tm_memopt_value_number (stmt, INSERT);
3469 bitmap_set_bit (bits, loc);
3470 if (dump_file)
3471 {
3472 fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
3473 is_tm_load (stmt) ? "LOAD" : "STORE", loc,
3474 gimple_bb (stmt)->index);
3475 print_generic_expr (dump_file, gimple_call_arg (stmt, 0), 0);
3476 fprintf (dump_file, "\n");
3477 }
3478 }
3479 }
3480
3481 /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
3482
3483 static void
3484 dump_tm_memopt_set (const char *set_name, bitmap bits)
3485 {
3486 unsigned i;
3487 bitmap_iterator bi;
3488 const char *comma = "";
3489
3490 fprintf (dump_file, "TM memopt: %s: [", set_name);
3491 EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
3492 {
3493 hash_table<tm_memop_hasher>::iterator hi;
3494 struct tm_memop *mem = NULL;
3495
3496 /* Yeah, yeah, yeah. Whatever. This is just for debugging. */
3497 FOR_EACH_HASH_TABLE_ELEMENT (*tm_memopt_value_numbers, mem, tm_memop_t, hi)
3498 if (mem->value_id == i)
3499 break;
3500 gcc_assert (mem->value_id == i);
3501 fprintf (dump_file, "%s", comma);
3502 comma = ", ";
3503 print_generic_expr (dump_file, mem->addr, 0);
3504 }
3505 fprintf (dump_file, "]\n");
3506 }
3507
3508 /* Prettily dump all of the memopt sets in BLOCKS. */
3509
3510 static void
3511 dump_tm_memopt_sets (vec<basic_block> blocks)
3512 {
3513 size_t i;
3514 basic_block bb;
3515
3516 for (i = 0; blocks.iterate (i, &bb); ++i)
3517 {
3518 fprintf (dump_file, "------------BB %d---------\n", bb->index);
3519 dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
3520 dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
3521 dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
3522 dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
3523 dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
3524 dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
3525 }
3526 }
3527
3528 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
3529
3530 static void
3531 tm_memopt_compute_avin (basic_block bb)
3532 {
3533 edge e;
3534 unsigned ix;
3535
3536 /* Seed with the AVOUT of any predecessor. */
3537 for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
3538 {
3539 e = EDGE_PRED (bb, ix);
3540 /* Make sure we have already visited this BB, and is thus
3541 initialized.
3542
3543 If e->src->aux is NULL, this predecessor is actually on an
3544 enclosing transaction. We only care about the current
3545 transaction, so ignore it. */
3546 if (e->src->aux && BB_VISITED_P (e->src))
3547 {
3548 bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3549 bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3550 break;
3551 }
3552 }
3553
3554 for (; ix < EDGE_COUNT (bb->preds); ix++)
3555 {
3556 e = EDGE_PRED (bb, ix);
3557 if (e->src->aux && BB_VISITED_P (e->src))
3558 {
3559 bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3560 bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3561 }
3562 }
3563
3564 BB_VISITED_P (bb) = true;
3565 }
3566
3567 /* Compute the STORE_ANTIC_IN for the basic block BB. */
3568
3569 static void
3570 tm_memopt_compute_antin (basic_block bb)
3571 {
3572 edge e;
3573 unsigned ix;
3574
3575 /* Seed with the ANTIC_OUT of any successor. */
3576 for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
3577 {
3578 e = EDGE_SUCC (bb, ix);
3579 /* Make sure we have already visited this BB, and is thus
3580 initialized. */
3581 if (BB_VISITED_P (e->dest))
3582 {
3583 bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3584 break;
3585 }
3586 }
3587
3588 for (; ix < EDGE_COUNT (bb->succs); ix++)
3589 {
3590 e = EDGE_SUCC (bb, ix);
3591 if (BB_VISITED_P (e->dest))
3592 bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3593 }
3594
3595 BB_VISITED_P (bb) = true;
3596 }
3597
3598 /* Compute the AVAIL sets for every basic block in BLOCKS.
3599
3600 We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3601
3602 AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3603 AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
3604
3605 This is basically what we do in lcm's compute_available(), but here
3606 we calculate two sets of sets (one for STOREs and one for READs),
3607 and we work on a region instead of the entire CFG.
3608
3609 REGION is the TM region.
3610 BLOCKS are the basic blocks in the region. */
3611
3612 static void
3613 tm_memopt_compute_available (struct tm_region *region,
3614 vec<basic_block> blocks)
3615 {
3616 edge e;
3617 basic_block *worklist, *qin, *qout, *qend, bb;
3618 unsigned int qlen, i;
3619 edge_iterator ei;
3620 bool changed;
3621
3622 /* Allocate a worklist array/queue. Entries are only added to the
3623 list if they were not already on the list. So the size is
3624 bounded by the number of basic blocks in the region. */
3625 qlen = blocks.length () - 1;
3626 qin = qout = worklist =
3627 XNEWVEC (basic_block, qlen);
3628
3629 /* Put every block in the region on the worklist. */
3630 for (i = 0; blocks.iterate (i, &bb); ++i)
3631 {
3632 /* Seed AVAIL_OUT with the LOCAL set. */
3633 bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3634 bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3635
3636 AVAIL_IN_WORKLIST_P (bb) = true;
3637 /* No need to insert the entry block, since it has an AVIN of
3638 null, and an AVOUT that has already been seeded in. */
3639 if (bb != region->entry_block)
3640 *qin++ = bb;
3641 }
3642
3643 /* The entry block has been initialized with the local sets. */
3644 BB_VISITED_P (region->entry_block) = true;
3645
3646 qin = worklist;
3647 qend = &worklist[qlen];
3648
3649 /* Iterate until the worklist is empty. */
3650 while (qlen)
3651 {
3652 /* Take the first entry off the worklist. */
3653 bb = *qout++;
3654 qlen--;
3655
3656 if (qout >= qend)
3657 qout = worklist;
3658
3659 /* This block can be added to the worklist again if necessary. */
3660 AVAIL_IN_WORKLIST_P (bb) = false;
3661 tm_memopt_compute_avin (bb);
3662
3663 /* Note: We do not add the LOCAL sets here because we already
3664 seeded the AVAIL_OUT sets with them. */
3665 changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3666 changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3667 if (changed
3668 && (region->exit_blocks == NULL
3669 || !bitmap_bit_p (region->exit_blocks, bb->index)))
3670 /* If the out state of this block changed, then we need to add
3671 its successors to the worklist if they are not already in. */
3672 FOR_EACH_EDGE (e, ei, bb->succs)
3673 if (!AVAIL_IN_WORKLIST_P (e->dest)
3674 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
3675 {
3676 *qin++ = e->dest;
3677 AVAIL_IN_WORKLIST_P (e->dest) = true;
3678 qlen++;
3679
3680 if (qin >= qend)
3681 qin = worklist;
3682 }
3683 }
3684
3685 free (worklist);
3686
3687 if (dump_file)
3688 dump_tm_memopt_sets (blocks);
3689 }
3690
3691 /* Compute ANTIC sets for every basic block in BLOCKS.
3692
3693 We compute STORE_ANTIC_OUT as follows:
3694
3695 STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3696 STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
3697
3698 REGION is the TM region.
3699 BLOCKS are the basic blocks in the region. */
3700
3701 static void
3702 tm_memopt_compute_antic (struct tm_region *region,
3703 vec<basic_block> blocks)
3704 {
3705 edge e;
3706 basic_block *worklist, *qin, *qout, *qend, bb;
3707 unsigned int qlen;
3708 int i;
3709 edge_iterator ei;
3710
3711 /* Allocate a worklist array/queue. Entries are only added to the
3712 list if they were not already on the list. So the size is
3713 bounded by the number of basic blocks in the region. */
3714 qin = qout = worklist = XNEWVEC (basic_block, blocks.length ());
3715
3716 for (qlen = 0, i = blocks.length () - 1; i >= 0; --i)
3717 {
3718 bb = blocks[i];
3719
3720 /* Seed ANTIC_OUT with the LOCAL set. */
3721 bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3722
3723 /* Put every block in the region on the worklist. */
3724 AVAIL_IN_WORKLIST_P (bb) = true;
3725 /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3726 and their ANTIC_OUT has already been seeded in. */
3727 if (region->exit_blocks
3728 && !bitmap_bit_p (region->exit_blocks, bb->index))
3729 {
3730 qlen++;
3731 *qin++ = bb;
3732 }
3733 }
3734
3735 /* The exit blocks have been initialized with the local sets. */
3736 if (region->exit_blocks)
3737 {
3738 unsigned int i;
3739 bitmap_iterator bi;
3740 EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3741 BB_VISITED_P (BASIC_BLOCK_FOR_FN (cfun, i)) = true;
3742 }
3743
3744 qin = worklist;
3745 qend = &worklist[qlen];
3746
3747 /* Iterate until the worklist is empty. */
3748 while (qlen)
3749 {
3750 /* Take the first entry off the worklist. */
3751 bb = *qout++;
3752 qlen--;
3753
3754 if (qout >= qend)
3755 qout = worklist;
3756
3757 /* This block can be added to the worklist again if necessary. */
3758 AVAIL_IN_WORKLIST_P (bb) = false;
3759 tm_memopt_compute_antin (bb);
3760
3761 /* Note: We do not add the LOCAL sets here because we already
3762 seeded the ANTIC_OUT sets with them. */
3763 if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3764 && bb != region->entry_block)
3765 /* If the out state of this block changed, then we need to add
3766 its predecessors to the worklist if they are not already in. */
3767 FOR_EACH_EDGE (e, ei, bb->preds)
3768 if (!AVAIL_IN_WORKLIST_P (e->src))
3769 {
3770 *qin++ = e->src;
3771 AVAIL_IN_WORKLIST_P (e->src) = true;
3772 qlen++;
3773
3774 if (qin >= qend)
3775 qin = worklist;
3776 }
3777 }
3778
3779 free (worklist);
3780
3781 if (dump_file)
3782 dump_tm_memopt_sets (blocks);
3783 }
3784
3785 /* Offsets of load variants from TM_LOAD. For example,
3786 BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3787 See gtm-builtins.def. */
3788 #define TRANSFORM_RAR 1
3789 #define TRANSFORM_RAW 2
3790 #define TRANSFORM_RFW 3
3791 /* Offsets of store variants from TM_STORE. */
3792 #define TRANSFORM_WAR 1
3793 #define TRANSFORM_WAW 2
3794
3795 /* Inform about a load/store optimization. */
3796
3797 static void
3798 dump_tm_memopt_transform (gimple stmt)
3799 {
3800 if (dump_file)
3801 {
3802 fprintf (dump_file, "TM memopt: transforming: ");
3803 print_gimple_stmt (dump_file, stmt, 0, 0);
3804 fprintf (dump_file, "\n");
3805 }
3806 }
3807
3808 /* Perform a read/write optimization. Replaces the TM builtin in STMT
3809 by a builtin that is OFFSET entries down in the builtins table in
3810 gtm-builtins.def. */
3811
3812 static void
3813 tm_memopt_transform_stmt (unsigned int offset,
3814 gcall *stmt,
3815 gimple_stmt_iterator *gsi)
3816 {
3817 tree fn = gimple_call_fn (stmt);
3818 gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3819 TREE_OPERAND (fn, 0)
3820 = builtin_decl_explicit ((enum built_in_function)
3821 (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3822 + offset));
3823 gimple_call_set_fn (stmt, fn);
3824 gsi_replace (gsi, stmt, true);
3825 dump_tm_memopt_transform (stmt);
3826 }
3827
3828 /* Perform the actual TM memory optimization transformations in the
3829 basic blocks in BLOCKS. */
3830
3831 static void
3832 tm_memopt_transform_blocks (vec<basic_block> blocks)
3833 {
3834 size_t i;
3835 basic_block bb;
3836 gimple_stmt_iterator gsi;
3837
3838 for (i = 0; blocks.iterate (i, &bb); ++i)
3839 {
3840 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3841 {
3842 gimple stmt = gsi_stmt (gsi);
3843 bitmap read_avail = READ_AVAIL_IN (bb);
3844 bitmap store_avail = STORE_AVAIL_IN (bb);
3845 bitmap store_antic = STORE_ANTIC_OUT (bb);
3846 unsigned int loc;
3847
3848 if (is_tm_simple_load (stmt))
3849 {
3850 gcall *call_stmt = as_a <gcall *> (stmt);
3851 loc = tm_memopt_value_number (stmt, NO_INSERT);
3852 if (store_avail && bitmap_bit_p (store_avail, loc))
3853 tm_memopt_transform_stmt (TRANSFORM_RAW, call_stmt, &gsi);
3854 else if (store_antic && bitmap_bit_p (store_antic, loc))
3855 {
3856 tm_memopt_transform_stmt (TRANSFORM_RFW, call_stmt, &gsi);
3857 bitmap_set_bit (store_avail, loc);
3858 }
3859 else if (read_avail && bitmap_bit_p (read_avail, loc))
3860 tm_memopt_transform_stmt (TRANSFORM_RAR, call_stmt, &gsi);
3861 else
3862 bitmap_set_bit (read_avail, loc);
3863 }
3864 else if (is_tm_simple_store (stmt))
3865 {
3866 gcall *call_stmt = as_a <gcall *> (stmt);
3867 loc = tm_memopt_value_number (stmt, NO_INSERT);
3868 if (store_avail && bitmap_bit_p (store_avail, loc))
3869 tm_memopt_transform_stmt (TRANSFORM_WAW, call_stmt, &gsi);
3870 else
3871 {
3872 if (read_avail && bitmap_bit_p (read_avail, loc))
3873 tm_memopt_transform_stmt (TRANSFORM_WAR, call_stmt, &gsi);
3874 bitmap_set_bit (store_avail, loc);
3875 }
3876 }
3877 }
3878 }
3879 }
3880
3881 /* Return a new set of bitmaps for a BB. */
3882
3883 static struct tm_memopt_bitmaps *
3884 tm_memopt_init_sets (void)
3885 {
3886 struct tm_memopt_bitmaps *b
3887 = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3888 b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3889 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3890 b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
3891 b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
3892 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3893 b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3894 b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3895 b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
3896 b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
3897 return b;
3898 }
3899
3900 /* Free sets computed for each BB. */
3901
3902 static void
3903 tm_memopt_free_sets (vec<basic_block> blocks)
3904 {
3905 size_t i;
3906 basic_block bb;
3907
3908 for (i = 0; blocks.iterate (i, &bb); ++i)
3909 bb->aux = NULL;
3910 }
3911
3912 /* Clear the visited bit for every basic block in BLOCKS. */
3913
3914 static void
3915 tm_memopt_clear_visited (vec<basic_block> blocks)
3916 {
3917 size_t i;
3918 basic_block bb;
3919
3920 for (i = 0; blocks.iterate (i, &bb); ++i)
3921 BB_VISITED_P (bb) = false;
3922 }
3923
3924 /* Replace TM load/stores with hints for the runtime. We handle
3925 things like read-after-write, write-after-read, read-after-read,
3926 read-for-write, etc. */
3927
3928 static unsigned int
3929 execute_tm_memopt (void)
3930 {
3931 struct tm_region *region;
3932 vec<basic_block> bbs;
3933
3934 tm_memopt_value_id = 0;
3935 tm_memopt_value_numbers = new hash_table<tm_memop_hasher> (10);
3936
3937 for (region = all_tm_regions; region; region = region->next)
3938 {
3939 /* All the TM stores/loads in the current region. */
3940 size_t i;
3941 basic_block bb;
3942
3943 bitmap_obstack_initialize (&tm_memopt_obstack);
3944
3945 /* Save all BBs for the current region. */
3946 bbs = get_tm_region_blocks (region->entry_block,
3947 region->exit_blocks,
3948 region->irr_blocks,
3949 NULL,
3950 false);
3951
3952 /* Collect all the memory operations. */
3953 for (i = 0; bbs.iterate (i, &bb); ++i)
3954 {
3955 bb->aux = tm_memopt_init_sets ();
3956 tm_memopt_accumulate_memops (bb);
3957 }
3958
3959 /* Solve data flow equations and transform each block accordingly. */
3960 tm_memopt_clear_visited (bbs);
3961 tm_memopt_compute_available (region, bbs);
3962 tm_memopt_clear_visited (bbs);
3963 tm_memopt_compute_antic (region, bbs);
3964 tm_memopt_transform_blocks (bbs);
3965
3966 tm_memopt_free_sets (bbs);
3967 bbs.release ();
3968 bitmap_obstack_release (&tm_memopt_obstack);
3969 tm_memopt_value_numbers->empty ();
3970 }
3971
3972 delete tm_memopt_value_numbers;
3973 tm_memopt_value_numbers = NULL;
3974 return 0;
3975 }
3976
3977 namespace {
3978
3979 const pass_data pass_data_tm_memopt =
3980 {
3981 GIMPLE_PASS, /* type */
3982 "tmmemopt", /* name */
3983 OPTGROUP_NONE, /* optinfo_flags */
3984 TV_TRANS_MEM, /* tv_id */
3985 ( PROP_ssa | PROP_cfg ), /* properties_required */
3986 0, /* properties_provided */
3987 0, /* properties_destroyed */
3988 0, /* todo_flags_start */
3989 0, /* todo_flags_finish */
3990 };
3991
3992 class pass_tm_memopt : public gimple_opt_pass
3993 {
3994 public:
3995 pass_tm_memopt (gcc::context *ctxt)
3996 : gimple_opt_pass (pass_data_tm_memopt, ctxt)
3997 {}
3998
3999 /* opt_pass methods: */
4000 virtual bool gate (function *) { return flag_tm && optimize > 0; }
4001 virtual unsigned int execute (function *) { return execute_tm_memopt (); }
4002
4003 }; // class pass_tm_memopt
4004
4005 } // anon namespace
4006
4007 gimple_opt_pass *
4008 make_pass_tm_memopt (gcc::context *ctxt)
4009 {
4010 return new pass_tm_memopt (ctxt);
4011 }
4012
4013 \f
4014 /* Interprocedual analysis for the creation of transactional clones.
4015 The aim of this pass is to find which functions are referenced in
4016 a non-irrevocable transaction context, and for those over which
4017 we have control (or user directive), create a version of the
4018 function which uses only the transactional interface to reference
4019 protected memories. This analysis proceeds in several steps:
4020
4021 (1) Collect the set of all possible transactional clones:
4022
4023 (a) For all local public functions marked tm_callable, push
4024 it onto the tm_callee queue.
4025
4026 (b) For all local functions, scan for calls in transaction blocks.
4027 Push the caller and callee onto the tm_caller and tm_callee
4028 queues. Count the number of callers for each callee.
4029
4030 (c) For each local function on the callee list, assume we will
4031 create a transactional clone. Push *all* calls onto the
4032 callee queues; count the number of clone callers separately
4033 to the number of original callers.
4034
4035 (2) Propagate irrevocable status up the dominator tree:
4036
4037 (a) Any external function on the callee list that is not marked
4038 tm_callable is irrevocable. Push all callers of such onto
4039 a worklist.
4040
4041 (b) For each function on the worklist, mark each block that
4042 contains an irrevocable call. Use the AND operator to
4043 propagate that mark up the dominator tree.
4044
4045 (c) If we reach the entry block for a possible transactional
4046 clone, then the transactional clone is irrevocable, and
4047 we should not create the clone after all. Push all
4048 callers onto the worklist.
4049
4050 (d) Place tm_irrevocable calls at the beginning of the relevant
4051 blocks. Special case here is the entry block for the entire
4052 transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
4053 the library to begin the region in serial mode. Decrement
4054 the call count for all callees in the irrevocable region.
4055
4056 (3) Create the transactional clones:
4057
4058 Any tm_callee that still has a non-zero call count is cloned.
4059 */
4060
4061 /* This structure is stored in the AUX field of each cgraph_node. */
4062 struct tm_ipa_cg_data
4063 {
4064 /* The clone of the function that got created. */
4065 struct cgraph_node *clone;
4066
4067 /* The tm regions in the normal function. */
4068 struct tm_region *all_tm_regions;
4069
4070 /* The blocks of the normal/clone functions that contain irrevocable
4071 calls, or blocks that are post-dominated by irrevocable calls. */
4072 bitmap irrevocable_blocks_normal;
4073 bitmap irrevocable_blocks_clone;
4074
4075 /* The blocks of the normal function that are involved in transactions. */
4076 bitmap transaction_blocks_normal;
4077
4078 /* The number of callers to the transactional clone of this function
4079 from normal and transactional clones respectively. */
4080 unsigned tm_callers_normal;
4081 unsigned tm_callers_clone;
4082
4083 /* True if all calls to this function's transactional clone
4084 are irrevocable. Also automatically true if the function
4085 has no transactional clone. */
4086 bool is_irrevocable;
4087
4088 /* Flags indicating the presence of this function in various queues. */
4089 bool in_callee_queue;
4090 bool in_worklist;
4091
4092 /* Flags indicating the kind of scan desired while in the worklist. */
4093 bool want_irr_scan_normal;
4094 };
4095
4096 typedef vec<cgraph_node *> cgraph_node_queue;
4097
4098 /* Return the ipa data associated with NODE, allocating zeroed memory
4099 if necessary. TRAVERSE_ALIASES is true if we must traverse aliases
4100 and set *NODE accordingly. */
4101
4102 static struct tm_ipa_cg_data *
4103 get_cg_data (struct cgraph_node **node, bool traverse_aliases)
4104 {
4105 struct tm_ipa_cg_data *d;
4106
4107 if (traverse_aliases && (*node)->alias)
4108 *node = (*node)->get_alias_target ();
4109
4110 d = (struct tm_ipa_cg_data *) (*node)->aux;
4111
4112 if (d == NULL)
4113 {
4114 d = (struct tm_ipa_cg_data *)
4115 obstack_alloc (&tm_obstack.obstack, sizeof (*d));
4116 (*node)->aux = (void *) d;
4117 memset (d, 0, sizeof (*d));
4118 }
4119
4120 return d;
4121 }
4122
4123 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
4124 it is already present. */
4125
4126 static void
4127 maybe_push_queue (struct cgraph_node *node,
4128 cgraph_node_queue *queue_p, bool *in_queue_p)
4129 {
4130 if (!*in_queue_p)
4131 {
4132 *in_queue_p = true;
4133 queue_p->safe_push (node);
4134 }
4135 }
4136
4137 /* Duplicate the basic blocks in QUEUE for use in the uninstrumented
4138 code path. QUEUE are the basic blocks inside the transaction
4139 represented in REGION.
4140
4141 Later in split_code_paths() we will add the conditional to choose
4142 between the two alternatives. */
4143
4144 static void
4145 ipa_uninstrument_transaction (struct tm_region *region,
4146 vec<basic_block> queue)
4147 {
4148 gimple transaction = region->transaction_stmt;
4149 basic_block transaction_bb = gimple_bb (transaction);
4150 int n = queue.length ();
4151 basic_block *new_bbs = XNEWVEC (basic_block, n);
4152
4153 copy_bbs (queue.address (), n, new_bbs, NULL, 0, NULL, NULL, transaction_bb,
4154 true);
4155 edge e = make_edge (transaction_bb, new_bbs[0], EDGE_TM_UNINSTRUMENTED);
4156 add_phi_args_after_copy (new_bbs, n, e);
4157
4158 // Now we will have a GIMPLE_ATOMIC with 3 possible edges out of it.
4159 // a) EDGE_FALLTHRU into the transaction
4160 // b) EDGE_TM_ABORT out of the transaction
4161 // c) EDGE_TM_UNINSTRUMENTED into the uninstrumented blocks.
4162
4163 free (new_bbs);
4164 }
4165
4166 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
4167 Queue all callees within block BB. */
4168
4169 static void
4170 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
4171 basic_block bb, bool for_clone)
4172 {
4173 gimple_stmt_iterator gsi;
4174
4175 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4176 {
4177 gimple stmt = gsi_stmt (gsi);
4178 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4179 {
4180 tree fndecl = gimple_call_fndecl (stmt);
4181 if (fndecl)
4182 {
4183 struct tm_ipa_cg_data *d;
4184 unsigned *pcallers;
4185 struct cgraph_node *node;
4186
4187 if (is_tm_ending_fndecl (fndecl))
4188 continue;
4189 if (find_tm_replacement_function (fndecl))
4190 continue;
4191
4192 node = cgraph_node::get (fndecl);
4193 gcc_assert (node != NULL);
4194 d = get_cg_data (&node, true);
4195
4196 pcallers = (for_clone ? &d->tm_callers_clone
4197 : &d->tm_callers_normal);
4198 *pcallers += 1;
4199
4200 maybe_push_queue (node, callees_p, &d->in_callee_queue);
4201 }
4202 }
4203 }
4204 }
4205
4206 /* Scan all calls in NODE that are within a transaction region,
4207 and push the resulting nodes into the callee queue. */
4208
4209 static void
4210 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
4211 cgraph_node_queue *callees_p)
4212 {
4213 struct tm_region *r;
4214
4215 d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
4216 d->all_tm_regions = all_tm_regions;
4217
4218 for (r = all_tm_regions; r; r = r->next)
4219 {
4220 vec<basic_block> bbs;
4221 basic_block bb;
4222 unsigned i;
4223
4224 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
4225 d->transaction_blocks_normal, false);
4226
4227 // Generate the uninstrumented code path for this transaction.
4228 ipa_uninstrument_transaction (r, bbs);
4229
4230 FOR_EACH_VEC_ELT (bbs, i, bb)
4231 ipa_tm_scan_calls_block (callees_p, bb, false);
4232
4233 bbs.release ();
4234 }
4235
4236 // ??? copy_bbs should maintain cgraph edges for the blocks as it is
4237 // copying them, rather than forcing us to do this externally.
4238 cgraph_edge::rebuild_edges ();
4239
4240 // ??? In ipa_uninstrument_transaction we don't try to update dominators
4241 // because copy_bbs doesn't return a VEC like iterate_fix_dominators expects.
4242 // Instead, just release dominators here so update_ssa recomputes them.
4243 free_dominance_info (CDI_DOMINATORS);
4244
4245 // When building the uninstrumented code path, copy_bbs will have invoked
4246 // create_new_def_for starting an "ssa update context". There is only one
4247 // instance of this context, so resolve ssa updates before moving on to
4248 // the next function.
4249 update_ssa (TODO_update_ssa);
4250 }
4251
4252 /* Scan all calls in NODE as if this is the transactional clone,
4253 and push the destinations into the callee queue. */
4254
4255 static void
4256 ipa_tm_scan_calls_clone (struct cgraph_node *node,
4257 cgraph_node_queue *callees_p)
4258 {
4259 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
4260 basic_block bb;
4261
4262 FOR_EACH_BB_FN (bb, fn)
4263 ipa_tm_scan_calls_block (callees_p, bb, true);
4264 }
4265
4266 /* The function NODE has been detected to be irrevocable. Push all
4267 of its callers onto WORKLIST for the purpose of re-scanning them. */
4268
4269 static void
4270 ipa_tm_note_irrevocable (struct cgraph_node *node,
4271 cgraph_node_queue *worklist_p)
4272 {
4273 struct tm_ipa_cg_data *d = get_cg_data (&node, true);
4274 struct cgraph_edge *e;
4275
4276 d->is_irrevocable = true;
4277
4278 for (e = node->callers; e ; e = e->next_caller)
4279 {
4280 basic_block bb;
4281 struct cgraph_node *caller;
4282
4283 /* Don't examine recursive calls. */
4284 if (e->caller == node)
4285 continue;
4286 /* Even if we think we can go irrevocable, believe the user
4287 above all. */
4288 if (is_tm_safe_or_pure (e->caller->decl))
4289 continue;
4290
4291 caller = e->caller;
4292 d = get_cg_data (&caller, true);
4293
4294 /* Check if the callee is in a transactional region. If so,
4295 schedule the function for normal re-scan as well. */
4296 bb = gimple_bb (e->call_stmt);
4297 gcc_assert (bb != NULL);
4298 if (d->transaction_blocks_normal
4299 && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
4300 d->want_irr_scan_normal = true;
4301
4302 maybe_push_queue (caller, worklist_p, &d->in_worklist);
4303 }
4304 }
4305
4306 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
4307 within the block is irrevocable. */
4308
4309 static bool
4310 ipa_tm_scan_irr_block (basic_block bb)
4311 {
4312 gimple_stmt_iterator gsi;
4313 tree fn;
4314
4315 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4316 {
4317 gimple stmt = gsi_stmt (gsi);
4318 switch (gimple_code (stmt))
4319 {
4320 case GIMPLE_ASSIGN:
4321 if (gimple_assign_single_p (stmt))
4322 {
4323 tree lhs = gimple_assign_lhs (stmt);
4324 tree rhs = gimple_assign_rhs1 (stmt);
4325 if (volatile_var_p (lhs) || volatile_var_p (rhs))
4326 return true;
4327 }
4328 break;
4329
4330 case GIMPLE_CALL:
4331 {
4332 tree lhs = gimple_call_lhs (stmt);
4333 if (lhs && volatile_var_p (lhs))
4334 return true;
4335
4336 if (is_tm_pure_call (stmt))
4337 break;
4338
4339 fn = gimple_call_fn (stmt);
4340
4341 /* Functions with the attribute are by definition irrevocable. */
4342 if (is_tm_irrevocable (fn))
4343 return true;
4344
4345 /* For direct function calls, go ahead and check for replacement
4346 functions, or transitive irrevocable functions. For indirect
4347 functions, we'll ask the runtime. */
4348 if (TREE_CODE (fn) == ADDR_EXPR)
4349 {
4350 struct tm_ipa_cg_data *d;
4351 struct cgraph_node *node;
4352
4353 fn = TREE_OPERAND (fn, 0);
4354 if (is_tm_ending_fndecl (fn))
4355 break;
4356 if (find_tm_replacement_function (fn))
4357 break;
4358
4359 node = cgraph_node::get (fn);
4360 d = get_cg_data (&node, true);
4361
4362 /* Return true if irrevocable, but above all, believe
4363 the user. */
4364 if (d->is_irrevocable
4365 && !is_tm_safe_or_pure (fn))
4366 return true;
4367 }
4368 break;
4369 }
4370
4371 case GIMPLE_ASM:
4372 /* ??? The Approved Method of indicating that an inline
4373 assembly statement is not relevant to the transaction
4374 is to wrap it in a __tm_waiver block. This is not
4375 yet implemented, so we can't check for it. */
4376 if (is_tm_safe (current_function_decl))
4377 {
4378 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
4379 SET_EXPR_LOCATION (t, gimple_location (stmt));
4380 error ("%Kasm not allowed in %<transaction_safe%> function", t);
4381 }
4382 return true;
4383
4384 default:
4385 break;
4386 }
4387 }
4388
4389 return false;
4390 }
4391
4392 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
4393 for new irrevocable blocks, marking them in NEW_IRR. Don't bother
4394 scanning past OLD_IRR or EXIT_BLOCKS. */
4395
4396 static bool
4397 ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr,
4398 bitmap old_irr, bitmap exit_blocks)
4399 {
4400 bool any_new_irr = false;
4401 edge e;
4402 edge_iterator ei;
4403 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4404
4405 do
4406 {
4407 basic_block bb = pqueue->pop ();
4408
4409 /* Don't re-scan blocks we know already are irrevocable. */
4410 if (old_irr && bitmap_bit_p (old_irr, bb->index))
4411 continue;
4412
4413 if (ipa_tm_scan_irr_block (bb))
4414 {
4415 bitmap_set_bit (new_irr, bb->index);
4416 any_new_irr = true;
4417 }
4418 else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
4419 {
4420 FOR_EACH_EDGE (e, ei, bb->succs)
4421 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4422 {
4423 bitmap_set_bit (visited_blocks, e->dest->index);
4424 pqueue->safe_push (e->dest);
4425 }
4426 }
4427 }
4428 while (!pqueue->is_empty ());
4429
4430 BITMAP_FREE (visited_blocks);
4431
4432 return any_new_irr;
4433 }
4434
4435 /* Propagate the irrevocable property both up and down the dominator tree.
4436 BB is the current block being scanned; EXIT_BLOCKS are the edges of the
4437 TM regions; OLD_IRR are the results of a previous scan of the dominator
4438 tree which has been fully propagated; NEW_IRR is the set of new blocks
4439 which are gaining the irrevocable property during the current scan. */
4440
4441 static void
4442 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
4443 bitmap old_irr, bitmap exit_blocks)
4444 {
4445 vec<basic_block> bbs;
4446 bitmap all_region_blocks;
4447
4448 /* If this block is in the old set, no need to rescan. */
4449 if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
4450 return;
4451
4452 all_region_blocks = BITMAP_ALLOC (&tm_obstack);
4453 bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
4454 all_region_blocks, false);
4455 do
4456 {
4457 basic_block bb = bbs.pop ();
4458 bool this_irr = bitmap_bit_p (new_irr, bb->index);
4459 bool all_son_irr = false;
4460 edge_iterator ei;
4461 edge e;
4462
4463 /* Propagate up. If my children are, I am too, but we must have
4464 at least one child that is. */
4465 if (!this_irr)
4466 {
4467 FOR_EACH_EDGE (e, ei, bb->succs)
4468 {
4469 if (!bitmap_bit_p (new_irr, e->dest->index))
4470 {
4471 all_son_irr = false;
4472 break;
4473 }
4474 else
4475 all_son_irr = true;
4476 }
4477 if (all_son_irr)
4478 {
4479 /* Add block to new_irr if it hasn't already been processed. */
4480 if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
4481 {
4482 bitmap_set_bit (new_irr, bb->index);
4483 this_irr = true;
4484 }
4485 }
4486 }
4487
4488 /* Propagate down to everyone we immediately dominate. */
4489 if (this_irr)
4490 {
4491 basic_block son;
4492 for (son = first_dom_son (CDI_DOMINATORS, bb);
4493 son;
4494 son = next_dom_son (CDI_DOMINATORS, son))
4495 {
4496 /* Make sure block is actually in a TM region, and it
4497 isn't already in old_irr. */
4498 if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
4499 && bitmap_bit_p (all_region_blocks, son->index))
4500 bitmap_set_bit (new_irr, son->index);
4501 }
4502 }
4503 }
4504 while (!bbs.is_empty ());
4505
4506 BITMAP_FREE (all_region_blocks);
4507 bbs.release ();
4508 }
4509
4510 static void
4511 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
4512 {
4513 gimple_stmt_iterator gsi;
4514
4515 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4516 {
4517 gimple stmt = gsi_stmt (gsi);
4518 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4519 {
4520 tree fndecl = gimple_call_fndecl (stmt);
4521 if (fndecl)
4522 {
4523 struct tm_ipa_cg_data *d;
4524 unsigned *pcallers;
4525 struct cgraph_node *tnode;
4526
4527 if (is_tm_ending_fndecl (fndecl))
4528 continue;
4529 if (find_tm_replacement_function (fndecl))
4530 continue;
4531
4532 tnode = cgraph_node::get (fndecl);
4533 d = get_cg_data (&tnode, true);
4534
4535 pcallers = (for_clone ? &d->tm_callers_clone
4536 : &d->tm_callers_normal);
4537
4538 gcc_assert (*pcallers > 0);
4539 *pcallers -= 1;
4540 }
4541 }
4542 }
4543 }
4544
4545 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
4546 as well as other irrevocable actions such as inline assembly. Mark all
4547 such blocks as irrevocable and decrement the number of calls to
4548 transactional clones. Return true if, for the transactional clone, the
4549 entire function is irrevocable. */
4550
4551 static bool
4552 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
4553 {
4554 struct tm_ipa_cg_data *d;
4555 bitmap new_irr, old_irr;
4556 bool ret = false;
4557
4558 /* Builtin operators (operator new, and such). */
4559 if (DECL_STRUCT_FUNCTION (node->decl) == NULL
4560 || DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL)
4561 return false;
4562
4563 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4564 calculate_dominance_info (CDI_DOMINATORS);
4565
4566 d = get_cg_data (&node, true);
4567 auto_vec<basic_block, 10> queue;
4568 new_irr = BITMAP_ALLOC (&tm_obstack);
4569
4570 /* Scan each tm region, propagating irrevocable status through the tree. */
4571 if (for_clone)
4572 {
4573 old_irr = d->irrevocable_blocks_clone;
4574 queue.quick_push (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4575 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
4576 {
4577 ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4578 new_irr,
4579 old_irr, NULL);
4580 ret = bitmap_bit_p (new_irr,
4581 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->index);
4582 }
4583 }
4584 else
4585 {
4586 struct tm_region *region;
4587
4588 old_irr = d->irrevocable_blocks_normal;
4589 for (region = d->all_tm_regions; region; region = region->next)
4590 {
4591 queue.quick_push (region->entry_block);
4592 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
4593 region->exit_blocks))
4594 ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
4595 region->exit_blocks);
4596 }
4597 }
4598
4599 /* If we found any new irrevocable blocks, reduce the call count for
4600 transactional clones within the irrevocable blocks. Save the new
4601 set of irrevocable blocks for next time. */
4602 if (!bitmap_empty_p (new_irr))
4603 {
4604 bitmap_iterator bmi;
4605 unsigned i;
4606
4607 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4608 ipa_tm_decrement_clone_counts (BASIC_BLOCK_FOR_FN (cfun, i),
4609 for_clone);
4610
4611 if (old_irr)
4612 {
4613 bitmap_ior_into (old_irr, new_irr);
4614 BITMAP_FREE (new_irr);
4615 }
4616 else if (for_clone)
4617 d->irrevocable_blocks_clone = new_irr;
4618 else
4619 d->irrevocable_blocks_normal = new_irr;
4620
4621 if (dump_file && new_irr)
4622 {
4623 const char *dname;
4624 bitmap_iterator bmi;
4625 unsigned i;
4626
4627 dname = lang_hooks.decl_printable_name (current_function_decl, 2);
4628 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4629 fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
4630 }
4631 }
4632 else
4633 BITMAP_FREE (new_irr);
4634
4635 pop_cfun ();
4636
4637 return ret;
4638 }
4639
4640 /* Return true if, for the transactional clone of NODE, any call
4641 may enter irrevocable mode. */
4642
4643 static bool
4644 ipa_tm_mayenterirr_function (struct cgraph_node *node)
4645 {
4646 struct tm_ipa_cg_data *d;
4647 tree decl;
4648 unsigned flags;
4649
4650 d = get_cg_data (&node, true);
4651 decl = node->decl;
4652 flags = flags_from_decl_or_type (decl);
4653
4654 /* Handle some TM builtins. Ordinarily these aren't actually generated
4655 at this point, but handling these functions when written in by the
4656 user makes it easier to build unit tests. */
4657 if (flags & ECF_TM_BUILTIN)
4658 return false;
4659
4660 /* Filter out all functions that are marked. */
4661 if (flags & ECF_TM_PURE)
4662 return false;
4663 if (is_tm_safe (decl))
4664 return false;
4665 if (is_tm_irrevocable (decl))
4666 return true;
4667 if (is_tm_callable (decl))
4668 return true;
4669 if (find_tm_replacement_function (decl))
4670 return true;
4671
4672 /* If we aren't seeing the final version of the function we don't
4673 know what it will contain at runtime. */
4674 if (node->get_availability () < AVAIL_AVAILABLE)
4675 return true;
4676
4677 /* If the function must go irrevocable, then of course true. */
4678 if (d->is_irrevocable)
4679 return true;
4680
4681 /* If there are any blocks marked irrevocable, then the function
4682 as a whole may enter irrevocable. */
4683 if (d->irrevocable_blocks_clone)
4684 return true;
4685
4686 /* We may have previously marked this function as tm_may_enter_irr;
4687 see pass_diagnose_tm_blocks. */
4688 if (node->local.tm_may_enter_irr)
4689 return true;
4690
4691 /* Recurse on the main body for aliases. In general, this will
4692 result in one of the bits above being set so that we will not
4693 have to recurse next time. */
4694 if (node->alias)
4695 return ipa_tm_mayenterirr_function (cgraph_node::get (node->thunk.alias));
4696
4697 /* What remains is unmarked local functions without items that force
4698 the function to go irrevocable. */
4699 return false;
4700 }
4701
4702 /* Diagnose calls from transaction_safe functions to unmarked
4703 functions that are determined to not be safe. */
4704
4705 static void
4706 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4707 {
4708 struct cgraph_edge *e;
4709
4710 for (e = node->callees; e ; e = e->next_callee)
4711 if (!is_tm_callable (e->callee->decl)
4712 && e->callee->local.tm_may_enter_irr)
4713 error_at (gimple_location (e->call_stmt),
4714 "unsafe function call %qD within "
4715 "%<transaction_safe%> function", e->callee->decl);
4716 }
4717
4718 /* Diagnose call from atomic transactions to unmarked functions
4719 that are determined to not be safe. */
4720
4721 static void
4722 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4723 struct tm_region *all_tm_regions)
4724 {
4725 struct tm_region *r;
4726
4727 for (r = all_tm_regions; r ; r = r->next)
4728 if (gimple_transaction_subcode (r->get_transaction_stmt ())
4729 & GTMA_IS_RELAXED)
4730 {
4731 /* Atomic transactions can be nested inside relaxed. */
4732 if (r->inner)
4733 ipa_tm_diagnose_transaction (node, r->inner);
4734 }
4735 else
4736 {
4737 vec<basic_block> bbs;
4738 gimple_stmt_iterator gsi;
4739 basic_block bb;
4740 size_t i;
4741
4742 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4743 r->irr_blocks, NULL, false);
4744
4745 for (i = 0; bbs.iterate (i, &bb); ++i)
4746 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4747 {
4748 gimple stmt = gsi_stmt (gsi);
4749 tree fndecl;
4750
4751 if (gimple_code (stmt) == GIMPLE_ASM)
4752 {
4753 error_at (gimple_location (stmt),
4754 "asm not allowed in atomic transaction");
4755 continue;
4756 }
4757
4758 if (!is_gimple_call (stmt))
4759 continue;
4760 fndecl = gimple_call_fndecl (stmt);
4761
4762 /* Indirect function calls have been diagnosed already. */
4763 if (!fndecl)
4764 continue;
4765
4766 /* Stop at the end of the transaction. */
4767 if (is_tm_ending_fndecl (fndecl))
4768 {
4769 if (bitmap_bit_p (r->exit_blocks, bb->index))
4770 break;
4771 continue;
4772 }
4773
4774 /* Marked functions have been diagnosed already. */
4775 if (is_tm_pure_call (stmt))
4776 continue;
4777 if (is_tm_callable (fndecl))
4778 continue;
4779
4780 if (cgraph_node::local_info (fndecl)->tm_may_enter_irr)
4781 error_at (gimple_location (stmt),
4782 "unsafe function call %qD within "
4783 "atomic transaction", fndecl);
4784 }
4785
4786 bbs.release ();
4787 }
4788 }
4789
4790 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4791 OLD_DECL. The returned value is a freshly malloced pointer that
4792 should be freed by the caller. */
4793
4794 static tree
4795 tm_mangle (tree old_asm_id)
4796 {
4797 const char *old_asm_name;
4798 char *tm_name;
4799 void *alloc = NULL;
4800 struct demangle_component *dc;
4801 tree new_asm_id;
4802
4803 /* Determine if the symbol is already a valid C++ mangled name. Do this
4804 even for C, which might be interfacing with C++ code via appropriately
4805 ugly identifiers. */
4806 /* ??? We could probably do just as well checking for "_Z" and be done. */
4807 old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4808 dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4809
4810 if (dc == NULL)
4811 {
4812 char length[8];
4813
4814 do_unencoded:
4815 sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4816 tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4817 }
4818 else
4819 {
4820 old_asm_name += 2; /* Skip _Z */
4821
4822 switch (dc->type)
4823 {
4824 case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4825 case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4826 /* Don't play silly games, you! */
4827 goto do_unencoded;
4828
4829 case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4830 /* I'd really like to know if we can ever be passed one of
4831 these from the C++ front end. The Logical Thing would
4832 seem that hidden-alias should be outer-most, so that we
4833 get hidden-alias of a transaction-clone and not vice-versa. */
4834 old_asm_name += 2;
4835 break;
4836
4837 default:
4838 break;
4839 }
4840
4841 tm_name = concat ("_ZGTt", old_asm_name, NULL);
4842 }
4843 free (alloc);
4844
4845 new_asm_id = get_identifier (tm_name);
4846 free (tm_name);
4847
4848 return new_asm_id;
4849 }
4850
4851 static inline void
4852 ipa_tm_mark_force_output_node (struct cgraph_node *node)
4853 {
4854 node->mark_force_output ();
4855 node->analyzed = true;
4856 }
4857
4858 static inline void
4859 ipa_tm_mark_forced_by_abi_node (struct cgraph_node *node)
4860 {
4861 node->forced_by_abi = true;
4862 node->analyzed = true;
4863 }
4864
4865 /* Callback data for ipa_tm_create_version_alias. */
4866 struct create_version_alias_info
4867 {
4868 struct cgraph_node *old_node;
4869 tree new_decl;
4870 };
4871
4872 /* A subroutine of ipa_tm_create_version, called via
4873 cgraph_for_node_and_aliases. Create new tm clones for each of
4874 the existing aliases. */
4875 static bool
4876 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4877 {
4878 struct create_version_alias_info *info
4879 = (struct create_version_alias_info *)data;
4880 tree old_decl, new_decl, tm_name;
4881 struct cgraph_node *new_node;
4882
4883 if (!node->cpp_implicit_alias)
4884 return false;
4885
4886 old_decl = node->decl;
4887 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4888 new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4889 TREE_CODE (old_decl), tm_name,
4890 TREE_TYPE (old_decl));
4891
4892 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4893 SET_DECL_RTL (new_decl, NULL);
4894
4895 /* Based loosely on C++'s make_alias_for(). */
4896 TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4897 DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
4898 DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
4899 TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4900 DECL_EXTERNAL (new_decl) = 0;
4901 DECL_ARTIFICIAL (new_decl) = 1;
4902 TREE_ADDRESSABLE (new_decl) = 1;
4903 TREE_USED (new_decl) = 1;
4904 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4905
4906 /* Perform the same remapping to the comdat group. */
4907 if (DECL_ONE_ONLY (new_decl))
4908 varpool_node::get (new_decl)->set_comdat_group
4909 (tm_mangle (decl_comdat_group_id (old_decl)));
4910
4911 new_node = cgraph_node::create_same_body_alias (new_decl, info->new_decl);
4912 new_node->tm_clone = true;
4913 new_node->externally_visible = info->old_node->externally_visible;
4914 new_node->no_reorder = info->old_node->no_reorder;
4915 /* ?? Do not traverse aliases here. */
4916 get_cg_data (&node, false)->clone = new_node;
4917
4918 record_tm_clone_pair (old_decl, new_decl);
4919
4920 if (info->old_node->force_output
4921 || info->old_node->ref_list.first_referring ())
4922 ipa_tm_mark_force_output_node (new_node);
4923 if (info->old_node->forced_by_abi)
4924 ipa_tm_mark_forced_by_abi_node (new_node);
4925 return false;
4926 }
4927
4928 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4929 appropriate for the transactional clone. */
4930
4931 static void
4932 ipa_tm_create_version (struct cgraph_node *old_node)
4933 {
4934 tree new_decl, old_decl, tm_name;
4935 struct cgraph_node *new_node;
4936
4937 old_decl = old_node->decl;
4938 new_decl = copy_node (old_decl);
4939
4940 /* DECL_ASSEMBLER_NAME needs to be set before we call
4941 cgraph_copy_node_for_versioning below, because cgraph_node will
4942 fill the assembler_name_hash. */
4943 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4944 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4945 SET_DECL_RTL (new_decl, NULL);
4946 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4947
4948 /* Perform the same remapping to the comdat group. */
4949 if (DECL_ONE_ONLY (new_decl))
4950 varpool_node::get (new_decl)->set_comdat_group
4951 (tm_mangle (DECL_COMDAT_GROUP (old_decl)));
4952
4953 gcc_assert (!old_node->ipa_transforms_to_apply.exists ());
4954 new_node = old_node->create_version_clone (new_decl, vNULL, NULL);
4955 new_node->local.local = false;
4956 new_node->externally_visible = old_node->externally_visible;
4957 new_node->lowered = true;
4958 new_node->tm_clone = 1;
4959 if (!old_node->implicit_section)
4960 new_node->set_section (old_node->get_section ());
4961 get_cg_data (&old_node, true)->clone = new_node;
4962
4963 if (old_node->get_availability () >= AVAIL_INTERPOSABLE)
4964 {
4965 /* Remap extern inline to static inline. */
4966 /* ??? Is it worth trying to use make_decl_one_only? */
4967 if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
4968 {
4969 DECL_EXTERNAL (new_decl) = 0;
4970 TREE_PUBLIC (new_decl) = 0;
4971 DECL_WEAK (new_decl) = 0;
4972 }
4973
4974 tree_function_versioning (old_decl, new_decl,
4975 NULL, false, NULL,
4976 false, NULL, NULL);
4977 }
4978
4979 record_tm_clone_pair (old_decl, new_decl);
4980
4981 symtab->call_cgraph_insertion_hooks (new_node);
4982 if (old_node->force_output
4983 || old_node->ref_list.first_referring ())
4984 ipa_tm_mark_force_output_node (new_node);
4985 if (old_node->forced_by_abi)
4986 ipa_tm_mark_forced_by_abi_node (new_node);
4987
4988 /* Do the same thing, but for any aliases of the original node. */
4989 {
4990 struct create_version_alias_info data;
4991 data.old_node = old_node;
4992 data.new_decl = new_decl;
4993 old_node->call_for_symbol_thunks_and_aliases (ipa_tm_create_version_alias,
4994 &data, true);
4995 }
4996 }
4997
4998 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
4999
5000 static void
5001 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
5002 basic_block bb)
5003 {
5004 gimple_stmt_iterator gsi;
5005 gcall *g;
5006
5007 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5008
5009 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
5010 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
5011
5012 split_block_after_labels (bb);
5013 gsi = gsi_after_labels (bb);
5014 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
5015
5016 node->create_edge (cgraph_node::get_create
5017 (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
5018 g, 0,
5019 compute_call_stmt_bb_frequency (node->decl,
5020 gimple_bb (g)));
5021 }
5022
5023 /* Construct a call to TM_GETTMCLONE and insert it before GSI. */
5024
5025 static bool
5026 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
5027 struct tm_region *region,
5028 gimple_stmt_iterator *gsi, gcall *stmt)
5029 {
5030 tree gettm_fn, ret, old_fn, callfn;
5031 gcall *g;
5032 gassign *g2;
5033 bool safe;
5034
5035 old_fn = gimple_call_fn (stmt);
5036
5037 if (TREE_CODE (old_fn) == ADDR_EXPR)
5038 {
5039 tree fndecl = TREE_OPERAND (old_fn, 0);
5040 tree clone = get_tm_clone_pair (fndecl);
5041
5042 /* By transforming the call into a TM_GETTMCLONE, we are
5043 technically taking the address of the original function and
5044 its clone. Explain this so inlining will know this function
5045 is needed. */
5046 cgraph_node::get (fndecl)->mark_address_taken () ;
5047 if (clone)
5048 cgraph_node::get (clone)->mark_address_taken ();
5049 }
5050
5051 safe = is_tm_safe (TREE_TYPE (old_fn));
5052 gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
5053 : BUILT_IN_TM_GETTMCLONE_IRR);
5054 ret = create_tmp_var (ptr_type_node);
5055
5056 if (!safe)
5057 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5058
5059 /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
5060 if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
5061 old_fn = OBJ_TYPE_REF_EXPR (old_fn);
5062
5063 g = gimple_build_call (gettm_fn, 1, old_fn);
5064 ret = make_ssa_name (ret, g);
5065 gimple_call_set_lhs (g, ret);
5066
5067 gsi_insert_before (gsi, g, GSI_SAME_STMT);
5068
5069 node->create_edge (cgraph_node::get_create (gettm_fn), g, 0,
5070 compute_call_stmt_bb_frequency (node->decl,
5071 gimple_bb (g)));
5072
5073 /* Cast return value from tm_gettmclone* into appropriate function
5074 pointer. */
5075 callfn = create_tmp_var (TREE_TYPE (old_fn));
5076 g2 = gimple_build_assign (callfn,
5077 fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
5078 callfn = make_ssa_name (callfn, g2);
5079 gimple_assign_set_lhs (g2, callfn);
5080 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
5081
5082 /* ??? This is a hack to preserve the NOTHROW bit on the call,
5083 which we would have derived from the decl. Failure to save
5084 this bit means we might have to split the basic block. */
5085 if (gimple_call_nothrow_p (stmt))
5086 gimple_call_set_nothrow (stmt, true);
5087
5088 gimple_call_set_fn (stmt, callfn);
5089
5090 /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
5091 for a call statement. Fix it. */
5092 {
5093 tree lhs = gimple_call_lhs (stmt);
5094 tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
5095 if (lhs
5096 && !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
5097 {
5098 tree temp;
5099
5100 temp = create_tmp_reg (rettype);
5101 gimple_call_set_lhs (stmt, temp);
5102
5103 g2 = gimple_build_assign (lhs,
5104 fold_build1 (VIEW_CONVERT_EXPR,
5105 TREE_TYPE (lhs), temp));
5106 gsi_insert_after (gsi, g2, GSI_SAME_STMT);
5107 }
5108 }
5109
5110 update_stmt (stmt);
5111 cgraph_edge *e = cgraph_node::get (current_function_decl)->get_edge (stmt);
5112 if (e && e->indirect_info)
5113 e->indirect_info->polymorphic = false;
5114
5115 return true;
5116 }
5117
5118 /* Helper function for ipa_tm_transform_calls*. Given a call
5119 statement in GSI which resides inside transaction REGION, redirect
5120 the call to either its wrapper function, or its clone. */
5121
5122 static void
5123 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
5124 struct tm_region *region,
5125 gimple_stmt_iterator *gsi,
5126 bool *need_ssa_rename_p)
5127 {
5128 gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
5129 struct cgraph_node *new_node;
5130 struct cgraph_edge *e = node->get_edge (stmt);
5131 tree fndecl = gimple_call_fndecl (stmt);
5132
5133 /* For indirect calls, pass the address through the runtime. */
5134 if (fndecl == NULL)
5135 {
5136 *need_ssa_rename_p |=
5137 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5138 return;
5139 }
5140
5141 /* Handle some TM builtins. Ordinarily these aren't actually generated
5142 at this point, but handling these functions when written in by the
5143 user makes it easier to build unit tests. */
5144 if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
5145 return;
5146
5147 /* Fixup recursive calls inside clones. */
5148 /* ??? Why did cgraph_copy_node_for_versioning update the call edges
5149 for recursion but not update the call statements themselves? */
5150 if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
5151 {
5152 gimple_call_set_fndecl (stmt, current_function_decl);
5153 return;
5154 }
5155
5156 /* If there is a replacement, use it. */
5157 fndecl = find_tm_replacement_function (fndecl);
5158 if (fndecl)
5159 {
5160 new_node = cgraph_node::get_create (fndecl);
5161
5162 /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
5163
5164 We can't do this earlier in record_tm_replacement because
5165 cgraph_remove_unreachable_nodes is called before we inject
5166 references to the node. Further, we can't do this in some
5167 nice central place in ipa_tm_execute because we don't have
5168 the exact list of wrapper functions that would be used.
5169 Marking more wrappers than necessary results in the creation
5170 of unnecessary cgraph_nodes, which can cause some of the
5171 other IPA passes to crash.
5172
5173 We do need to mark these nodes so that we get the proper
5174 result in expand_call_tm. */
5175 /* ??? This seems broken. How is it that we're marking the
5176 CALLEE as may_enter_irr? Surely we should be marking the
5177 CALLER. Also note that find_tm_replacement_function also
5178 contains mappings into the TM runtime, e.g. memcpy. These
5179 we know won't go irrevocable. */
5180 new_node->local.tm_may_enter_irr = 1;
5181 }
5182 else
5183 {
5184 struct tm_ipa_cg_data *d;
5185 struct cgraph_node *tnode = e->callee;
5186
5187 d = get_cg_data (&tnode, true);
5188 new_node = d->clone;
5189
5190 /* As we've already skipped pure calls and appropriate builtins,
5191 and we've already marked irrevocable blocks, if we can't come
5192 up with a static replacement, then ask the runtime. */
5193 if (new_node == NULL)
5194 {
5195 *need_ssa_rename_p |=
5196 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5197 return;
5198 }
5199
5200 fndecl = new_node->decl;
5201 }
5202
5203 e->redirect_callee (new_node);
5204 gimple_call_set_fndecl (stmt, fndecl);
5205 }
5206
5207 /* Helper function for ipa_tm_transform_calls. For a given BB,
5208 install calls to tm_irrevocable when IRR_BLOCKS are reached,
5209 redirect other calls to the generated transactional clone. */
5210
5211 static bool
5212 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
5213 basic_block bb, bitmap irr_blocks)
5214 {
5215 gimple_stmt_iterator gsi;
5216 bool need_ssa_rename = false;
5217
5218 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5219 {
5220 ipa_tm_insert_irr_call (node, region, bb);
5221 return true;
5222 }
5223
5224 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5225 {
5226 gimple stmt = gsi_stmt (gsi);
5227
5228 if (!is_gimple_call (stmt))
5229 continue;
5230 if (is_tm_pure_call (stmt))
5231 continue;
5232
5233 /* Redirect edges to the appropriate replacement or clone. */
5234 ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
5235 }
5236
5237 return need_ssa_rename;
5238 }
5239
5240 /* Walk the CFG for REGION, beginning at BB. Install calls to
5241 tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
5242 the generated transactional clone. */
5243
5244 static bool
5245 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
5246 basic_block bb, bitmap irr_blocks)
5247 {
5248 bool need_ssa_rename = false;
5249 edge e;
5250 edge_iterator ei;
5251 auto_vec<basic_block> queue;
5252 bitmap visited_blocks = BITMAP_ALLOC (NULL);
5253
5254 queue.safe_push (bb);
5255 do
5256 {
5257 bb = queue.pop ();
5258
5259 need_ssa_rename |=
5260 ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
5261
5262 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5263 continue;
5264
5265 if (region && bitmap_bit_p (region->exit_blocks, bb->index))
5266 continue;
5267
5268 FOR_EACH_EDGE (e, ei, bb->succs)
5269 if (!bitmap_bit_p (visited_blocks, e->dest->index))
5270 {
5271 bitmap_set_bit (visited_blocks, e->dest->index);
5272 queue.safe_push (e->dest);
5273 }
5274 }
5275 while (!queue.is_empty ());
5276
5277 BITMAP_FREE (visited_blocks);
5278
5279 return need_ssa_rename;
5280 }
5281
5282 /* Transform the calls within the TM regions within NODE. */
5283
5284 static void
5285 ipa_tm_transform_transaction (struct cgraph_node *node)
5286 {
5287 struct tm_ipa_cg_data *d;
5288 struct tm_region *region;
5289 bool need_ssa_rename = false;
5290
5291 d = get_cg_data (&node, true);
5292
5293 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5294 calculate_dominance_info (CDI_DOMINATORS);
5295
5296 for (region = d->all_tm_regions; region; region = region->next)
5297 {
5298 /* If we're sure to go irrevocable, don't transform anything. */
5299 if (d->irrevocable_blocks_normal
5300 && bitmap_bit_p (d->irrevocable_blocks_normal,
5301 region->entry_block->index))
5302 {
5303 transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE
5304 | GTMA_MAY_ENTER_IRREVOCABLE
5305 | GTMA_HAS_NO_INSTRUMENTATION);
5306 continue;
5307 }
5308
5309 need_ssa_rename |=
5310 ipa_tm_transform_calls (node, region, region->entry_block,
5311 d->irrevocable_blocks_normal);
5312 }
5313
5314 if (need_ssa_rename)
5315 update_ssa (TODO_update_ssa_only_virtuals);
5316
5317 pop_cfun ();
5318 }
5319
5320 /* Transform the calls within the transactional clone of NODE. */
5321
5322 static void
5323 ipa_tm_transform_clone (struct cgraph_node *node)
5324 {
5325 struct tm_ipa_cg_data *d;
5326 bool need_ssa_rename;
5327
5328 d = get_cg_data (&node, true);
5329
5330 /* If this function makes no calls and has no irrevocable blocks,
5331 then there's nothing to do. */
5332 /* ??? Remove non-aborting top-level transactions. */
5333 if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone)
5334 return;
5335
5336 push_cfun (DECL_STRUCT_FUNCTION (d->clone->decl));
5337 calculate_dominance_info (CDI_DOMINATORS);
5338
5339 need_ssa_rename =
5340 ipa_tm_transform_calls (d->clone, NULL,
5341 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
5342 d->irrevocable_blocks_clone);
5343
5344 if (need_ssa_rename)
5345 update_ssa (TODO_update_ssa_only_virtuals);
5346
5347 pop_cfun ();
5348 }
5349
5350 /* Main entry point for the transactional memory IPA pass. */
5351
5352 static unsigned int
5353 ipa_tm_execute (void)
5354 {
5355 cgraph_node_queue tm_callees = cgraph_node_queue ();
5356 /* List of functions that will go irrevocable. */
5357 cgraph_node_queue irr_worklist = cgraph_node_queue ();
5358
5359 struct cgraph_node *node;
5360 struct tm_ipa_cg_data *d;
5361 enum availability a;
5362 unsigned int i;
5363
5364 #ifdef ENABLE_CHECKING
5365 cgraph_node::verify_cgraph_nodes ();
5366 #endif
5367
5368 bitmap_obstack_initialize (&tm_obstack);
5369 initialize_original_copy_tables ();
5370
5371 /* For all local functions marked tm_callable, queue them. */
5372 FOR_EACH_DEFINED_FUNCTION (node)
5373 if (is_tm_callable (node->decl)
5374 && node->get_availability () >= AVAIL_INTERPOSABLE)
5375 {
5376 d = get_cg_data (&node, true);
5377 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5378 }
5379
5380 /* For all local reachable functions... */
5381 FOR_EACH_DEFINED_FUNCTION (node)
5382 if (node->lowered
5383 && node->get_availability () >= AVAIL_INTERPOSABLE)
5384 {
5385 /* ... marked tm_pure, record that fact for the runtime by
5386 indicating that the pure function is its own tm_callable.
5387 No need to do this if the function's address can't be taken. */
5388 if (is_tm_pure (node->decl))
5389 {
5390 if (!node->local.local)
5391 record_tm_clone_pair (node->decl, node->decl);
5392 continue;
5393 }
5394
5395 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5396 calculate_dominance_info (CDI_DOMINATORS);
5397
5398 tm_region_init (NULL);
5399 if (all_tm_regions)
5400 {
5401 d = get_cg_data (&node, true);
5402
5403 /* Scan for calls that are in each transaction, and
5404 generate the uninstrumented code path. */
5405 ipa_tm_scan_calls_transaction (d, &tm_callees);
5406
5407 /* Put it in the worklist so we can scan the function
5408 later (ipa_tm_scan_irr_function) and mark the
5409 irrevocable blocks. */
5410 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5411 d->want_irr_scan_normal = true;
5412 }
5413
5414 pop_cfun ();
5415 }
5416
5417 /* For every local function on the callee list, scan as if we will be
5418 creating a transactional clone, queueing all new functions we find
5419 along the way. */
5420 for (i = 0; i < tm_callees.length (); ++i)
5421 {
5422 node = tm_callees[i];
5423 a = node->get_availability ();
5424 d = get_cg_data (&node, true);
5425
5426 /* Put it in the worklist so we can scan the function later
5427 (ipa_tm_scan_irr_function) and mark the irrevocable
5428 blocks. */
5429 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5430
5431 /* Some callees cannot be arbitrarily cloned. These will always be
5432 irrevocable. Mark these now, so that we need not scan them. */
5433 if (is_tm_irrevocable (node->decl))
5434 ipa_tm_note_irrevocable (node, &irr_worklist);
5435 else if (a <= AVAIL_NOT_AVAILABLE
5436 && !is_tm_safe_or_pure (node->decl))
5437 ipa_tm_note_irrevocable (node, &irr_worklist);
5438 else if (a >= AVAIL_INTERPOSABLE)
5439 {
5440 if (!tree_versionable_function_p (node->decl))
5441 ipa_tm_note_irrevocable (node, &irr_worklist);
5442 else if (!d->is_irrevocable)
5443 {
5444 /* If this is an alias, make sure its base is queued as well.
5445 we need not scan the callees now, as the base will do. */
5446 if (node->alias)
5447 {
5448 node = cgraph_node::get (node->thunk.alias);
5449 d = get_cg_data (&node, true);
5450 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5451 continue;
5452 }
5453
5454 /* Add all nodes called by this function into
5455 tm_callees as well. */
5456 ipa_tm_scan_calls_clone (node, &tm_callees);
5457 }
5458 }
5459 }
5460
5461 /* Iterate scans until no more work to be done. Prefer not to use
5462 vec::pop because the worklist tends to follow a breadth-first
5463 search of the callgraph, which should allow convergance with a
5464 minimum number of scans. But we also don't want the worklist
5465 array to grow without bound, so we shift the array up periodically. */
5466 for (i = 0; i < irr_worklist.length (); ++i)
5467 {
5468 if (i > 256 && i == irr_worklist.length () / 8)
5469 {
5470 irr_worklist.block_remove (0, i);
5471 i = 0;
5472 }
5473
5474 node = irr_worklist[i];
5475 d = get_cg_data (&node, true);
5476 d->in_worklist = false;
5477
5478 if (d->want_irr_scan_normal)
5479 {
5480 d->want_irr_scan_normal = false;
5481 ipa_tm_scan_irr_function (node, false);
5482 }
5483 if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
5484 ipa_tm_note_irrevocable (node, &irr_worklist);
5485 }
5486
5487 /* For every function on the callee list, collect the tm_may_enter_irr
5488 bit on the node. */
5489 irr_worklist.truncate (0);
5490 for (i = 0; i < tm_callees.length (); ++i)
5491 {
5492 node = tm_callees[i];
5493 if (ipa_tm_mayenterirr_function (node))
5494 {
5495 d = get_cg_data (&node, true);
5496 gcc_assert (d->in_worklist == false);
5497 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5498 }
5499 }
5500
5501 /* Propagate the tm_may_enter_irr bit to callers until stable. */
5502 for (i = 0; i < irr_worklist.length (); ++i)
5503 {
5504 struct cgraph_node *caller;
5505 struct cgraph_edge *e;
5506 struct ipa_ref *ref;
5507
5508 if (i > 256 && i == irr_worklist.length () / 8)
5509 {
5510 irr_worklist.block_remove (0, i);
5511 i = 0;
5512 }
5513
5514 node = irr_worklist[i];
5515 d = get_cg_data (&node, true);
5516 d->in_worklist = false;
5517 node->local.tm_may_enter_irr = true;
5518
5519 /* Propagate back to normal callers. */
5520 for (e = node->callers; e ; e = e->next_caller)
5521 {
5522 caller = e->caller;
5523 if (!is_tm_safe_or_pure (caller->decl)
5524 && !caller->local.tm_may_enter_irr)
5525 {
5526 d = get_cg_data (&caller, true);
5527 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5528 }
5529 }
5530
5531 /* Propagate back to referring aliases as well. */
5532 FOR_EACH_ALIAS (node, ref)
5533 {
5534 caller = dyn_cast<cgraph_node *> (ref->referring);
5535 if (!caller->local.tm_may_enter_irr)
5536 {
5537 /* ?? Do not traverse aliases here. */
5538 d = get_cg_data (&caller, false);
5539 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5540 }
5541 }
5542 }
5543
5544 /* Now validate all tm_safe functions, and all atomic regions in
5545 other functions. */
5546 FOR_EACH_DEFINED_FUNCTION (node)
5547 if (node->lowered
5548 && node->get_availability () >= AVAIL_INTERPOSABLE)
5549 {
5550 d = get_cg_data (&node, true);
5551 if (is_tm_safe (node->decl))
5552 ipa_tm_diagnose_tm_safe (node);
5553 else if (d->all_tm_regions)
5554 ipa_tm_diagnose_transaction (node, d->all_tm_regions);
5555 }
5556
5557 /* Create clones. Do those that are not irrevocable and have a
5558 positive call count. Do those publicly visible functions that
5559 the user directed us to clone. */
5560 for (i = 0; i < tm_callees.length (); ++i)
5561 {
5562 bool doit = false;
5563
5564 node = tm_callees[i];
5565 if (node->cpp_implicit_alias)
5566 continue;
5567
5568 a = node->get_availability ();
5569 d = get_cg_data (&node, true);
5570
5571 if (a <= AVAIL_NOT_AVAILABLE)
5572 doit = is_tm_callable (node->decl);
5573 else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
5574 doit = true;
5575 else if (!d->is_irrevocable
5576 && d->tm_callers_normal + d->tm_callers_clone > 0)
5577 doit = true;
5578
5579 if (doit)
5580 ipa_tm_create_version (node);
5581 }
5582
5583 /* Redirect calls to the new clones, and insert irrevocable marks. */
5584 for (i = 0; i < tm_callees.length (); ++i)
5585 {
5586 node = tm_callees[i];
5587 if (node->analyzed)
5588 {
5589 d = get_cg_data (&node, true);
5590 if (d->clone)
5591 ipa_tm_transform_clone (node);
5592 }
5593 }
5594 FOR_EACH_DEFINED_FUNCTION (node)
5595 if (node->lowered
5596 && node->get_availability () >= AVAIL_INTERPOSABLE)
5597 {
5598 d = get_cg_data (&node, true);
5599 if (d->all_tm_regions)
5600 ipa_tm_transform_transaction (node);
5601 }
5602
5603 /* Free and clear all data structures. */
5604 tm_callees.release ();
5605 irr_worklist.release ();
5606 bitmap_obstack_release (&tm_obstack);
5607 free_original_copy_tables ();
5608
5609 FOR_EACH_FUNCTION (node)
5610 node->aux = NULL;
5611
5612 #ifdef ENABLE_CHECKING
5613 cgraph_node::verify_cgraph_nodes ();
5614 #endif
5615
5616 return 0;
5617 }
5618
5619 namespace {
5620
5621 const pass_data pass_data_ipa_tm =
5622 {
5623 SIMPLE_IPA_PASS, /* type */
5624 "tmipa", /* name */
5625 OPTGROUP_NONE, /* optinfo_flags */
5626 TV_TRANS_MEM, /* tv_id */
5627 ( PROP_ssa | PROP_cfg ), /* properties_required */
5628 0, /* properties_provided */
5629 0, /* properties_destroyed */
5630 0, /* todo_flags_start */
5631 0, /* todo_flags_finish */
5632 };
5633
5634 class pass_ipa_tm : public simple_ipa_opt_pass
5635 {
5636 public:
5637 pass_ipa_tm (gcc::context *ctxt)
5638 : simple_ipa_opt_pass (pass_data_ipa_tm, ctxt)
5639 {}
5640
5641 /* opt_pass methods: */
5642 virtual bool gate (function *) { return flag_tm; }
5643 virtual unsigned int execute (function *) { return ipa_tm_execute (); }
5644
5645 }; // class pass_ipa_tm
5646
5647 } // anon namespace
5648
5649 simple_ipa_opt_pass *
5650 make_pass_ipa_tm (gcc::context *ctxt)
5651 {
5652 return new pass_ipa_tm (ctxt);
5653 }
5654
5655 #include "gt-trans-mem.h"