]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/trans-mem.c
vec: add exact argument for various grow functions.
[thirdparty/gcc.git] / gcc / trans-mem.c
1 /* Passes for transactional memory support.
2 Copyright (C) 2008-2020 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "cgraph.h"
34 #include "gimple-pretty-print.h"
35 #include "diagnostic-core.h"
36 #include "fold-const.h"
37 #include "tree-eh.h"
38 #include "calls.h"
39 #include "gimplify.h"
40 #include "gimple-iterator.h"
41 #include "gimplify-me.h"
42 #include "gimple-walk.h"
43 #include "tree-cfg.h"
44 #include "tree-into-ssa.h"
45 #include "tree-inline.h"
46 #include "demangle.h"
47 #include "output.h"
48 #include "trans-mem.h"
49 #include "langhooks.h"
50 #include "cfgloop.h"
51 #include "tree-ssa-address.h"
52 #include "stringpool.h"
53 #include "attribs.h"
54
55 #define A_RUNINSTRUMENTEDCODE 0x0001
56 #define A_RUNUNINSTRUMENTEDCODE 0x0002
57 #define A_SAVELIVEVARIABLES 0x0004
58 #define A_RESTORELIVEVARIABLES 0x0008
59 #define A_ABORTTRANSACTION 0x0010
60
61 #define AR_USERABORT 0x0001
62 #define AR_USERRETRY 0x0002
63 #define AR_TMCONFLICT 0x0004
64 #define AR_EXCEPTIONBLOCKABORT 0x0008
65 #define AR_OUTERABORT 0x0010
66
67 #define MODE_SERIALIRREVOCABLE 0x0000
68
69
70 /* The representation of a transaction changes several times during the
71 lowering process. In the beginning, in the front-end we have the
72 GENERIC tree TRANSACTION_EXPR. For example,
73
74 __transaction {
75 local++;
76 if (++global == 10)
77 __tm_abort;
78 }
79
80 During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
81 trivially replaced with a GIMPLE_TRANSACTION node.
82
83 During pass_lower_tm, we examine the body of transactions looking
84 for aborts. Transactions that do not contain an abort may be
85 merged into an outer transaction. We also add a TRY-FINALLY node
86 to arrange for the transaction to be committed on any exit.
87
88 [??? Think about how this arrangement affects throw-with-commit
89 and throw-with-abort operations. In this case we want the TRY to
90 handle gotos, but not to catch any exceptions because the transaction
91 will already be closed.]
92
93 GIMPLE_TRANSACTION [label=NULL] {
94 try {
95 local = local + 1;
96 t0 = global;
97 t1 = t0 + 1;
98 global = t1;
99 if (t1 == 10)
100 __builtin___tm_abort ();
101 } finally {
102 __builtin___tm_commit ();
103 }
104 }
105
106 During pass_lower_eh, we create EH regions for the transactions,
107 intermixed with the regular EH stuff. This gives us a nice persistent
108 mapping (all the way through rtl) from transactional memory operation
109 back to the transaction, which allows us to get the abnormal edges
110 correct to model transaction aborts and restarts:
111
112 GIMPLE_TRANSACTION [label=over]
113 local = local + 1;
114 t0 = global;
115 t1 = t0 + 1;
116 global = t1;
117 if (t1 == 10)
118 __builtin___tm_abort ();
119 __builtin___tm_commit ();
120 over:
121
122 This is the end of all_lowering_passes, and so is what is present
123 during the IPA passes, and through all of the optimization passes.
124
125 During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
126 functions and mark functions for cloning.
127
128 At the end of gimple optimization, before exiting SSA form,
129 pass_tm_edges replaces statements that perform transactional
130 memory operations with the appropriate TM builtins, and swap
131 out function calls with their transactional clones. At this
132 point we introduce the abnormal transaction restart edges and
133 complete lowering of the GIMPLE_TRANSACTION node.
134
135 x = __builtin___tm_start (MAY_ABORT);
136 eh_label:
137 if (x & abort_transaction)
138 goto over;
139 local = local + 1;
140 t0 = __builtin___tm_load (global);
141 t1 = t0 + 1;
142 __builtin___tm_store (&global, t1);
143 if (t1 == 10)
144 __builtin___tm_abort ();
145 __builtin___tm_commit ();
146 over:
147 */
148
149 static void *expand_regions (struct tm_region *,
150 void *(*callback)(struct tm_region *, void *),
151 void *, bool);
152
153 \f
154 /* Return the attributes we want to examine for X, or NULL if it's not
155 something we examine. We look at function types, but allow pointers
156 to function types and function decls and peek through. */
157
158 static tree
159 get_attrs_for (const_tree x)
160 {
161 if (x == NULL_TREE)
162 return NULL_TREE;
163
164 switch (TREE_CODE (x))
165 {
166 case FUNCTION_DECL:
167 return TYPE_ATTRIBUTES (TREE_TYPE (x));
168
169 default:
170 if (TYPE_P (x))
171 return NULL_TREE;
172 x = TREE_TYPE (x);
173 if (TREE_CODE (x) != POINTER_TYPE)
174 return NULL_TREE;
175 /* FALLTHRU */
176
177 case POINTER_TYPE:
178 x = TREE_TYPE (x);
179 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
180 return NULL_TREE;
181 /* FALLTHRU */
182
183 case FUNCTION_TYPE:
184 case METHOD_TYPE:
185 return TYPE_ATTRIBUTES (x);
186 }
187 }
188
189 /* Return true if X has been marked TM_PURE. */
190
191 bool
192 is_tm_pure (const_tree x)
193 {
194 unsigned flags;
195
196 switch (TREE_CODE (x))
197 {
198 case FUNCTION_DECL:
199 case FUNCTION_TYPE:
200 case METHOD_TYPE:
201 break;
202
203 default:
204 if (TYPE_P (x))
205 return false;
206 x = TREE_TYPE (x);
207 if (TREE_CODE (x) != POINTER_TYPE)
208 return false;
209 /* FALLTHRU */
210
211 case POINTER_TYPE:
212 x = TREE_TYPE (x);
213 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
214 return false;
215 break;
216 }
217
218 flags = flags_from_decl_or_type (x);
219 return (flags & ECF_TM_PURE) != 0;
220 }
221
222 /* Return true if X has been marked TM_IRREVOCABLE. */
223
224 static bool
225 is_tm_irrevocable (tree x)
226 {
227 tree attrs = get_attrs_for (x);
228
229 if (attrs && lookup_attribute ("transaction_unsafe", attrs))
230 return true;
231
232 /* A call to the irrevocable builtin is by definition,
233 irrevocable. */
234 if (TREE_CODE (x) == ADDR_EXPR)
235 x = TREE_OPERAND (x, 0);
236 if (TREE_CODE (x) == FUNCTION_DECL
237 && fndecl_built_in_p (x, BUILT_IN_TM_IRREVOCABLE))
238 return true;
239
240 return false;
241 }
242
243 /* Return true if X has been marked TM_SAFE. */
244
245 bool
246 is_tm_safe (const_tree x)
247 {
248 if (flag_tm)
249 {
250 tree attrs = get_attrs_for (x);
251 if (attrs)
252 {
253 if (lookup_attribute ("transaction_safe", attrs))
254 return true;
255 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
256 return true;
257 }
258 }
259 return false;
260 }
261
262 /* Return true if CALL is const, or tm_pure. */
263
264 static bool
265 is_tm_pure_call (gimple *call)
266 {
267 return (gimple_call_flags (call) & (ECF_CONST | ECF_TM_PURE)) != 0;
268 }
269
270 /* Return true if X has been marked TM_CALLABLE. */
271
272 static bool
273 is_tm_callable (tree x)
274 {
275 tree attrs = get_attrs_for (x);
276 if (attrs)
277 {
278 if (lookup_attribute ("transaction_callable", attrs))
279 return true;
280 if (lookup_attribute ("transaction_safe", attrs))
281 return true;
282 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
283 return true;
284 }
285 return false;
286 }
287
288 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
289
290 bool
291 is_tm_may_cancel_outer (tree x)
292 {
293 tree attrs = get_attrs_for (x);
294 if (attrs)
295 return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
296 return false;
297 }
298
299 /* Return true for built in functions that "end" a transaction. */
300
301 bool
302 is_tm_ending_fndecl (tree fndecl)
303 {
304 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
305 switch (DECL_FUNCTION_CODE (fndecl))
306 {
307 case BUILT_IN_TM_COMMIT:
308 case BUILT_IN_TM_COMMIT_EH:
309 case BUILT_IN_TM_ABORT:
310 case BUILT_IN_TM_IRREVOCABLE:
311 return true;
312 default:
313 break;
314 }
315
316 return false;
317 }
318
319 /* Return true if STMT is a built in function call that "ends" a
320 transaction. */
321
322 bool
323 is_tm_ending (gimple *stmt)
324 {
325 tree fndecl;
326
327 if (gimple_code (stmt) != GIMPLE_CALL)
328 return false;
329
330 fndecl = gimple_call_fndecl (stmt);
331 return (fndecl != NULL_TREE
332 && is_tm_ending_fndecl (fndecl));
333 }
334
335 /* Return true if STMT is a TM load. */
336
337 static bool
338 is_tm_load (gimple *stmt)
339 {
340 tree fndecl;
341
342 if (gimple_code (stmt) != GIMPLE_CALL)
343 return false;
344
345 fndecl = gimple_call_fndecl (stmt);
346 return (fndecl
347 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
348 && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
349 }
350
351 /* Same as above, but for simple TM loads, that is, not the
352 after-write, after-read, etc optimized variants. */
353
354 static bool
355 is_tm_simple_load (gimple *stmt)
356 {
357 tree fndecl;
358
359 if (gimple_code (stmt) != GIMPLE_CALL)
360 return false;
361
362 fndecl = gimple_call_fndecl (stmt);
363 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
364 {
365 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
366 return (fcode == BUILT_IN_TM_LOAD_1
367 || fcode == BUILT_IN_TM_LOAD_2
368 || fcode == BUILT_IN_TM_LOAD_4
369 || fcode == BUILT_IN_TM_LOAD_8
370 || fcode == BUILT_IN_TM_LOAD_FLOAT
371 || fcode == BUILT_IN_TM_LOAD_DOUBLE
372 || fcode == BUILT_IN_TM_LOAD_LDOUBLE
373 || fcode == BUILT_IN_TM_LOAD_M64
374 || fcode == BUILT_IN_TM_LOAD_M128
375 || fcode == BUILT_IN_TM_LOAD_M256);
376 }
377 return false;
378 }
379
380 /* Return true if STMT is a TM store. */
381
382 static bool
383 is_tm_store (gimple *stmt)
384 {
385 tree fndecl;
386
387 if (gimple_code (stmt) != GIMPLE_CALL)
388 return false;
389
390 fndecl = gimple_call_fndecl (stmt);
391 return (fndecl
392 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
393 && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
394 }
395
396 /* Same as above, but for simple TM stores, that is, not the
397 after-write, after-read, etc optimized variants. */
398
399 static bool
400 is_tm_simple_store (gimple *stmt)
401 {
402 tree fndecl;
403
404 if (gimple_code (stmt) != GIMPLE_CALL)
405 return false;
406
407 fndecl = gimple_call_fndecl (stmt);
408 if (fndecl
409 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
410 {
411 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
412 return (fcode == BUILT_IN_TM_STORE_1
413 || fcode == BUILT_IN_TM_STORE_2
414 || fcode == BUILT_IN_TM_STORE_4
415 || fcode == BUILT_IN_TM_STORE_8
416 || fcode == BUILT_IN_TM_STORE_FLOAT
417 || fcode == BUILT_IN_TM_STORE_DOUBLE
418 || fcode == BUILT_IN_TM_STORE_LDOUBLE
419 || fcode == BUILT_IN_TM_STORE_M64
420 || fcode == BUILT_IN_TM_STORE_M128
421 || fcode == BUILT_IN_TM_STORE_M256);
422 }
423 return false;
424 }
425
426 /* Return true if FNDECL is BUILT_IN_TM_ABORT. */
427
428 static bool
429 is_tm_abort (tree fndecl)
430 {
431 return (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_TM_ABORT));
432 }
433
434 /* Build a GENERIC tree for a user abort. This is called by front ends
435 while transforming the __tm_abort statement. */
436
437 tree
438 build_tm_abort_call (location_t loc, bool is_outer)
439 {
440 return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
441 build_int_cst (integer_type_node,
442 AR_USERABORT
443 | (is_outer ? AR_OUTERABORT : 0)));
444 }
445 \f
446 /* Map for arbitrary function replacement under TM, as created
447 by the tm_wrap attribute. */
448
449 struct tm_wrapper_hasher : ggc_cache_ptr_hash<tree_map>
450 {
451 static inline hashval_t hash (tree_map *m) { return m->hash; }
452 static inline bool
453 equal (tree_map *a, tree_map *b)
454 {
455 return a->base.from == b->base.from;
456 }
457
458 static int
459 keep_cache_entry (tree_map *&m)
460 {
461 return ggc_marked_p (m->base.from);
462 }
463 };
464
465 static GTY((cache)) hash_table<tm_wrapper_hasher> *tm_wrap_map;
466
467 void
468 record_tm_replacement (tree from, tree to)
469 {
470 struct tree_map **slot, *h;
471
472 /* Do not inline wrapper functions that will get replaced in the TM
473 pass.
474
475 Suppose you have foo() that will get replaced into tmfoo(). Make
476 sure the inliner doesn't try to outsmart us and inline foo()
477 before we get a chance to do the TM replacement. */
478 DECL_UNINLINABLE (from) = 1;
479
480 if (tm_wrap_map == NULL)
481 tm_wrap_map = hash_table<tm_wrapper_hasher>::create_ggc (32);
482
483 h = ggc_alloc<tree_map> ();
484 h->hash = htab_hash_pointer (from);
485 h->base.from = from;
486 h->to = to;
487
488 slot = tm_wrap_map->find_slot_with_hash (h, h->hash, INSERT);
489 *slot = h;
490 }
491
492 /* Return a TM-aware replacement function for DECL. */
493
494 static tree
495 find_tm_replacement_function (tree fndecl)
496 {
497 if (tm_wrap_map)
498 {
499 struct tree_map *h, in;
500
501 in.base.from = fndecl;
502 in.hash = htab_hash_pointer (fndecl);
503 h = tm_wrap_map->find_with_hash (&in, in.hash);
504 if (h)
505 return h->to;
506 }
507
508 /* ??? We may well want TM versions of most of the common <string.h>
509 functions. For now, we've already these two defined. */
510 /* Adjust expand_call_tm() attributes as necessary for the cases
511 handled here: */
512 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
513 switch (DECL_FUNCTION_CODE (fndecl))
514 {
515 case BUILT_IN_MEMCPY:
516 return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
517 case BUILT_IN_MEMMOVE:
518 return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
519 case BUILT_IN_MEMSET:
520 return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
521 default:
522 return NULL;
523 }
524
525 return NULL;
526 }
527
528 /* When appropriate, record TM replacement for memory allocation functions.
529
530 FROM is the FNDECL to wrap. */
531 void
532 tm_malloc_replacement (tree from)
533 {
534 const char *str;
535 tree to;
536
537 if (TREE_CODE (from) != FUNCTION_DECL)
538 return;
539
540 /* If we have a previous replacement, the user must be explicitly
541 wrapping malloc/calloc/free. They better know what they're
542 doing... */
543 if (find_tm_replacement_function (from))
544 return;
545
546 str = IDENTIFIER_POINTER (DECL_NAME (from));
547
548 if (!strcmp (str, "malloc"))
549 to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
550 else if (!strcmp (str, "calloc"))
551 to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
552 else if (!strcmp (str, "free"))
553 to = builtin_decl_explicit (BUILT_IN_TM_FREE);
554 else
555 return;
556
557 TREE_NOTHROW (to) = 0;
558
559 record_tm_replacement (from, to);
560 }
561 \f
562 /* Diagnostics for tm_safe functions/regions. Called by the front end
563 once we've lowered the function to high-gimple. */
564
565 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
566 Process exactly one statement. WI->INFO is set to non-null when in
567 the context of a tm_safe function, and null for a __transaction block. */
568
569 #define DIAG_TM_OUTER 1
570 #define DIAG_TM_SAFE 2
571 #define DIAG_TM_RELAXED 4
572
573 struct diagnose_tm
574 {
575 unsigned int summary_flags : 8;
576 unsigned int block_flags : 8;
577 unsigned int func_flags : 8;
578 unsigned int saw_volatile : 1;
579 gimple *stmt;
580 };
581
582 /* Return true if T is a volatile lvalue of some kind. */
583
584 static bool
585 volatile_lvalue_p (tree t)
586 {
587 return ((SSA_VAR_P (t) || REFERENCE_CLASS_P (t))
588 && TREE_THIS_VOLATILE (TREE_TYPE (t)));
589 }
590
591 /* Tree callback function for diagnose_tm pass. */
592
593 static tree
594 diagnose_tm_1_op (tree *tp, int *walk_subtrees, void *data)
595 {
596 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
597 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
598
599 if (TYPE_P (*tp))
600 *walk_subtrees = false;
601 else if (volatile_lvalue_p (*tp)
602 && !d->saw_volatile)
603 {
604 d->saw_volatile = 1;
605 if (d->block_flags & DIAG_TM_SAFE)
606 error_at (gimple_location (d->stmt),
607 "invalid use of volatile lvalue inside transaction");
608 else if (d->func_flags & DIAG_TM_SAFE)
609 error_at (gimple_location (d->stmt),
610 "invalid use of volatile lvalue inside %<transaction_safe%> "
611 "function");
612 }
613
614 return NULL_TREE;
615 }
616
617 static inline bool
618 is_tm_safe_or_pure (const_tree x)
619 {
620 return is_tm_safe (x) || is_tm_pure (x);
621 }
622
623 static tree
624 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
625 struct walk_stmt_info *wi)
626 {
627 gimple *stmt = gsi_stmt (*gsi);
628 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
629
630 /* Save stmt for use in leaf analysis. */
631 d->stmt = stmt;
632
633 switch (gimple_code (stmt))
634 {
635 case GIMPLE_CALL:
636 {
637 tree fn = gimple_call_fn (stmt);
638
639 if ((d->summary_flags & DIAG_TM_OUTER) == 0
640 && is_tm_may_cancel_outer (fn))
641 error_at (gimple_location (stmt),
642 "%<transaction_may_cancel_outer%> function call not within"
643 " outer transaction or %<transaction_may_cancel_outer%>");
644
645 if (d->summary_flags & DIAG_TM_SAFE)
646 {
647 bool is_safe, direct_call_p;
648 tree replacement;
649
650 if (TREE_CODE (fn) == ADDR_EXPR
651 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
652 {
653 direct_call_p = true;
654 replacement = TREE_OPERAND (fn, 0);
655 replacement = find_tm_replacement_function (replacement);
656 if (replacement)
657 fn = replacement;
658 }
659 else
660 {
661 direct_call_p = false;
662 replacement = NULL_TREE;
663 }
664
665 if (is_tm_safe_or_pure (fn))
666 is_safe = true;
667 else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
668 {
669 /* A function explicitly marked transaction_callable as
670 opposed to transaction_safe is being defined to be
671 unsafe as part of its ABI, regardless of its contents. */
672 is_safe = false;
673 }
674 else if (direct_call_p)
675 {
676 if (IS_TYPE_OR_DECL_P (fn)
677 && flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
678 is_safe = true;
679 else if (replacement)
680 {
681 /* ??? At present we've been considering replacements
682 merely transaction_callable, and therefore might
683 enter irrevocable. The tm_wrap attribute has not
684 yet made it into the new language spec. */
685 is_safe = false;
686 }
687 else
688 {
689 /* ??? Diagnostics for unmarked direct calls moved into
690 the IPA pass. Section 3.2 of the spec details how
691 functions not marked should be considered "implicitly
692 safe" based on having examined the function body. */
693 is_safe = true;
694 }
695 }
696 else
697 {
698 /* An unmarked indirect call. Consider it unsafe even
699 though optimization may yet figure out how to inline. */
700 is_safe = false;
701 }
702
703 if (!is_safe)
704 {
705 if (TREE_CODE (fn) == ADDR_EXPR)
706 fn = TREE_OPERAND (fn, 0);
707 if (d->block_flags & DIAG_TM_SAFE)
708 {
709 if (direct_call_p)
710 error_at (gimple_location (stmt),
711 "unsafe function call %qD within "
712 "atomic transaction", fn);
713 else
714 {
715 if ((!DECL_P (fn) || DECL_NAME (fn))
716 && TREE_CODE (fn) != SSA_NAME)
717 error_at (gimple_location (stmt),
718 "unsafe function call %qE within "
719 "atomic transaction", fn);
720 else
721 error_at (gimple_location (stmt),
722 "unsafe indirect function call within "
723 "atomic transaction");
724 }
725 }
726 else
727 {
728 if (direct_call_p)
729 error_at (gimple_location (stmt),
730 "unsafe function call %qD within "
731 "%<transaction_safe%> function", fn);
732 else
733 {
734 if ((!DECL_P (fn) || DECL_NAME (fn))
735 && TREE_CODE (fn) != SSA_NAME)
736 error_at (gimple_location (stmt),
737 "unsafe function call %qE within "
738 "%<transaction_safe%> function", fn);
739 else
740 error_at (gimple_location (stmt),
741 "unsafe indirect function call within "
742 "%<transaction_safe%> function");
743 }
744 }
745 }
746 }
747 }
748 break;
749
750 case GIMPLE_ASM:
751 /* ??? We ought to come up with a way to add attributes to
752 asm statements, and then add "transaction_safe" to it.
753 Either that or get the language spec to resurrect __tm_waiver. */
754 if (d->block_flags & DIAG_TM_SAFE)
755 error_at (gimple_location (stmt),
756 "%<asm%> not allowed in atomic transaction");
757 else if (d->func_flags & DIAG_TM_SAFE)
758 error_at (gimple_location (stmt),
759 "%<asm%> not allowed in %<transaction_safe%> function");
760 break;
761
762 case GIMPLE_TRANSACTION:
763 {
764 gtransaction *trans_stmt = as_a <gtransaction *> (stmt);
765 unsigned char inner_flags = DIAG_TM_SAFE;
766
767 if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_RELAXED)
768 {
769 if (d->block_flags & DIAG_TM_SAFE)
770 error_at (gimple_location (stmt),
771 "relaxed transaction in atomic transaction");
772 else if (d->func_flags & DIAG_TM_SAFE)
773 error_at (gimple_location (stmt),
774 "relaxed transaction in %<transaction_safe%> function");
775 inner_flags = DIAG_TM_RELAXED;
776 }
777 else if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_OUTER)
778 {
779 if (d->block_flags)
780 error_at (gimple_location (stmt),
781 "outer transaction in transaction");
782 else if (d->func_flags & DIAG_TM_OUTER)
783 error_at (gimple_location (stmt),
784 "outer transaction in "
785 "%<transaction_may_cancel_outer%> function");
786 else if (d->func_flags & DIAG_TM_SAFE)
787 error_at (gimple_location (stmt),
788 "outer transaction in %<transaction_safe%> function");
789 inner_flags |= DIAG_TM_OUTER;
790 }
791
792 *handled_ops_p = true;
793 if (gimple_transaction_body (trans_stmt))
794 {
795 struct walk_stmt_info wi_inner;
796 struct diagnose_tm d_inner;
797
798 memset (&d_inner, 0, sizeof (d_inner));
799 d_inner.func_flags = d->func_flags;
800 d_inner.block_flags = d->block_flags | inner_flags;
801 d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
802
803 memset (&wi_inner, 0, sizeof (wi_inner));
804 wi_inner.info = &d_inner;
805
806 walk_gimple_seq (gimple_transaction_body (trans_stmt),
807 diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
808 }
809 }
810 break;
811
812 default:
813 break;
814 }
815
816 return NULL_TREE;
817 }
818
819 static unsigned int
820 diagnose_tm_blocks (void)
821 {
822 struct walk_stmt_info wi;
823 struct diagnose_tm d;
824
825 memset (&d, 0, sizeof (d));
826 if (is_tm_may_cancel_outer (current_function_decl))
827 d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
828 else if (is_tm_safe (current_function_decl))
829 d.func_flags = DIAG_TM_SAFE;
830 d.summary_flags = d.func_flags;
831
832 memset (&wi, 0, sizeof (wi));
833 wi.info = &d;
834
835 walk_gimple_seq (gimple_body (current_function_decl),
836 diagnose_tm_1, diagnose_tm_1_op, &wi);
837
838 return 0;
839 }
840
841 namespace {
842
843 const pass_data pass_data_diagnose_tm_blocks =
844 {
845 GIMPLE_PASS, /* type */
846 "*diagnose_tm_blocks", /* name */
847 OPTGROUP_NONE, /* optinfo_flags */
848 TV_TRANS_MEM, /* tv_id */
849 PROP_gimple_any, /* properties_required */
850 0, /* properties_provided */
851 0, /* properties_destroyed */
852 0, /* todo_flags_start */
853 0, /* todo_flags_finish */
854 };
855
856 class pass_diagnose_tm_blocks : public gimple_opt_pass
857 {
858 public:
859 pass_diagnose_tm_blocks (gcc::context *ctxt)
860 : gimple_opt_pass (pass_data_diagnose_tm_blocks, ctxt)
861 {}
862
863 /* opt_pass methods: */
864 virtual bool gate (function *) { return flag_tm; }
865 virtual unsigned int execute (function *) { return diagnose_tm_blocks (); }
866
867 }; // class pass_diagnose_tm_blocks
868
869 } // anon namespace
870
871 gimple_opt_pass *
872 make_pass_diagnose_tm_blocks (gcc::context *ctxt)
873 {
874 return new pass_diagnose_tm_blocks (ctxt);
875 }
876 \f
877 /* Instead of instrumenting thread private memory, we save the
878 addresses in a log which we later use to save/restore the addresses
879 upon transaction start/restart.
880
881 The log is keyed by address, where each element contains individual
882 statements among different code paths that perform the store.
883
884 This log is later used to generate either plain save/restore of the
885 addresses upon transaction start/restart, or calls to the ITM_L*
886 logging functions.
887
888 So for something like:
889
890 struct large { int x[1000]; };
891 struct large lala = { 0 };
892 __transaction {
893 lala.x[i] = 123;
894 ...
895 }
896
897 We can either save/restore:
898
899 lala = { 0 };
900 trxn = _ITM_startTransaction ();
901 if (trxn & a_saveLiveVariables)
902 tmp_lala1 = lala.x[i];
903 else if (a & a_restoreLiveVariables)
904 lala.x[i] = tmp_lala1;
905
906 or use the logging functions:
907
908 lala = { 0 };
909 trxn = _ITM_startTransaction ();
910 _ITM_LU4 (&lala.x[i]);
911
912 Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
913 far up the dominator tree to shadow all of the writes to a given
914 location (thus reducing the total number of logging calls), but not
915 so high as to be called on a path that does not perform a
916 write. */
917
918 /* One individual log entry. We may have multiple statements for the
919 same location if neither dominate each other (on different
920 execution paths). */
921 struct tm_log_entry
922 {
923 /* Address to save. */
924 tree addr;
925 /* Entry block for the transaction this address occurs in. */
926 basic_block entry_block;
927 /* Dominating statements the store occurs in. */
928 vec<gimple *> stmts;
929 /* Initially, while we are building the log, we place a nonzero
930 value here to mean that this address *will* be saved with a
931 save/restore sequence. Later, when generating the save sequence
932 we place the SSA temp generated here. */
933 tree save_var;
934 };
935
936
937 /* Log entry hashtable helpers. */
938
939 struct log_entry_hasher : pointer_hash <tm_log_entry>
940 {
941 static inline hashval_t hash (const tm_log_entry *);
942 static inline bool equal (const tm_log_entry *, const tm_log_entry *);
943 static inline void remove (tm_log_entry *);
944 };
945
946 /* Htab support. Return hash value for a `tm_log_entry'. */
947 inline hashval_t
948 log_entry_hasher::hash (const tm_log_entry *log)
949 {
950 return iterative_hash_expr (log->addr, 0);
951 }
952
953 /* Htab support. Return true if two log entries are the same. */
954 inline bool
955 log_entry_hasher::equal (const tm_log_entry *log1, const tm_log_entry *log2)
956 {
957 /* FIXME:
958
959 rth: I suggest that we get rid of the component refs etc.
960 I.e. resolve the reference to base + offset.
961
962 We may need to actually finish a merge with mainline for this,
963 since we'd like to be presented with Richi's MEM_REF_EXPRs more
964 often than not. But in the meantime your tm_log_entry could save
965 the results of get_inner_reference.
966
967 See: g++.dg/tm/pr46653.C
968 */
969
970 /* Special case plain equality because operand_equal_p() below will
971 return FALSE if the addresses are equal but they have
972 side-effects (e.g. a volatile address). */
973 if (log1->addr == log2->addr)
974 return true;
975
976 return operand_equal_p (log1->addr, log2->addr, 0);
977 }
978
979 /* Htab support. Free one tm_log_entry. */
980 inline void
981 log_entry_hasher::remove (tm_log_entry *lp)
982 {
983 lp->stmts.release ();
984 free (lp);
985 }
986
987
988 /* The actual log. */
989 static hash_table<log_entry_hasher> *tm_log;
990
991 /* Addresses to log with a save/restore sequence. These should be in
992 dominator order. */
993 static vec<tree> tm_log_save_addresses;
994
995 enum thread_memory_type
996 {
997 mem_non_local = 0,
998 mem_thread_local,
999 mem_transaction_local,
1000 mem_max
1001 };
1002
1003 struct tm_new_mem_map
1004 {
1005 /* SSA_NAME being dereferenced. */
1006 tree val;
1007 enum thread_memory_type local_new_memory;
1008 };
1009
1010 /* Hashtable helpers. */
1011
1012 struct tm_mem_map_hasher : free_ptr_hash <tm_new_mem_map>
1013 {
1014 static inline hashval_t hash (const tm_new_mem_map *);
1015 static inline bool equal (const tm_new_mem_map *, const tm_new_mem_map *);
1016 };
1017
1018 inline hashval_t
1019 tm_mem_map_hasher::hash (const tm_new_mem_map *v)
1020 {
1021 return (intptr_t)v->val >> 4;
1022 }
1023
1024 inline bool
1025 tm_mem_map_hasher::equal (const tm_new_mem_map *v, const tm_new_mem_map *c)
1026 {
1027 return v->val == c->val;
1028 }
1029
1030 /* Map for an SSA_NAME originally pointing to a non aliased new piece
1031 of memory (malloc, alloc, etc). */
1032 static hash_table<tm_mem_map_hasher> *tm_new_mem_hash;
1033
1034 /* Initialize logging data structures. */
1035 static void
1036 tm_log_init (void)
1037 {
1038 tm_log = new hash_table<log_entry_hasher> (10);
1039 tm_new_mem_hash = new hash_table<tm_mem_map_hasher> (5);
1040 tm_log_save_addresses.create (5);
1041 }
1042
1043 /* Free logging data structures. */
1044 static void
1045 tm_log_delete (void)
1046 {
1047 delete tm_log;
1048 tm_log = NULL;
1049 delete tm_new_mem_hash;
1050 tm_new_mem_hash = NULL;
1051 tm_log_save_addresses.release ();
1052 }
1053
1054 /* Return true if MEM is a transaction invariant memory for the TM
1055 region starting at REGION_ENTRY_BLOCK. */
1056 static bool
1057 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
1058 {
1059 if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
1060 && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
1061 {
1062 basic_block def_bb;
1063
1064 def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
1065 return def_bb != region_entry_block
1066 && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
1067 }
1068
1069 mem = strip_invariant_refs (mem);
1070 return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
1071 }
1072
1073 /* Given an address ADDR in STMT, find it in the memory log or add it,
1074 making sure to keep only the addresses highest in the dominator
1075 tree.
1076
1077 ENTRY_BLOCK is the entry_block for the transaction.
1078
1079 If we find the address in the log, make sure it's either the same
1080 address, or an equivalent one that dominates ADDR.
1081
1082 If we find the address, but neither ADDR dominates the found
1083 address, nor the found one dominates ADDR, we're on different
1084 execution paths. Add it.
1085
1086 If known, ENTRY_BLOCK is the entry block for the region, otherwise
1087 NULL. */
1088 static void
1089 tm_log_add (basic_block entry_block, tree addr, gimple *stmt)
1090 {
1091 tm_log_entry **slot;
1092 struct tm_log_entry l, *lp;
1093
1094 l.addr = addr;
1095 slot = tm_log->find_slot (&l, INSERT);
1096 if (!*slot)
1097 {
1098 tree type = TREE_TYPE (addr);
1099
1100 lp = XNEW (struct tm_log_entry);
1101 lp->addr = addr;
1102 *slot = lp;
1103
1104 /* Small invariant addresses can be handled as save/restores. */
1105 if (entry_block
1106 && transaction_invariant_address_p (lp->addr, entry_block)
1107 && TYPE_SIZE_UNIT (type) != NULL
1108 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
1109 && ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE_UNIT (type))
1110 < param_tm_max_aggregate_size)
1111 /* We must be able to copy this type normally. I.e., no
1112 special constructors and the like. */
1113 && !TREE_ADDRESSABLE (type))
1114 {
1115 lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
1116 lp->stmts.create (0);
1117 lp->entry_block = entry_block;
1118 /* Save addresses separately in dominator order so we don't
1119 get confused by overlapping addresses in the save/restore
1120 sequence. */
1121 tm_log_save_addresses.safe_push (lp->addr);
1122 }
1123 else
1124 {
1125 /* Use the logging functions. */
1126 lp->stmts.create (5);
1127 lp->stmts.quick_push (stmt);
1128 lp->save_var = NULL;
1129 }
1130 }
1131 else
1132 {
1133 size_t i;
1134 gimple *oldstmt;
1135
1136 lp = *slot;
1137
1138 /* If we're generating a save/restore sequence, we don't care
1139 about statements. */
1140 if (lp->save_var)
1141 return;
1142
1143 for (i = 0; lp->stmts.iterate (i, &oldstmt); ++i)
1144 {
1145 if (stmt == oldstmt)
1146 return;
1147 /* We already have a store to the same address, higher up the
1148 dominator tree. Nothing to do. */
1149 if (dominated_by_p (CDI_DOMINATORS,
1150 gimple_bb (stmt), gimple_bb (oldstmt)))
1151 return;
1152 /* We should be processing blocks in dominator tree order. */
1153 gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1154 gimple_bb (oldstmt), gimple_bb (stmt)));
1155 }
1156 /* Store is on a different code path. */
1157 lp->stmts.safe_push (stmt);
1158 }
1159 }
1160
1161 /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
1162 result, insert the new statements before GSI. */
1163
1164 static tree
1165 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1166 {
1167 if (TREE_CODE (x) == TARGET_MEM_REF)
1168 x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1169 else
1170 x = build_fold_addr_expr (x);
1171 return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1172 }
1173
1174 /* Instrument one address with the logging functions.
1175 ADDR is the address to save.
1176 STMT is the statement before which to place it. */
1177 static void
1178 tm_log_emit_stmt (tree addr, gimple *stmt)
1179 {
1180 tree type = TREE_TYPE (addr);
1181 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1182 gimple *log;
1183 enum built_in_function code = BUILT_IN_TM_LOG;
1184
1185 if (type == float_type_node)
1186 code = BUILT_IN_TM_LOG_FLOAT;
1187 else if (type == double_type_node)
1188 code = BUILT_IN_TM_LOG_DOUBLE;
1189 else if (type == long_double_type_node)
1190 code = BUILT_IN_TM_LOG_LDOUBLE;
1191 else if (TYPE_SIZE (type) != NULL
1192 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1193 {
1194 unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
1195
1196 if (TREE_CODE (type) == VECTOR_TYPE)
1197 {
1198 switch (type_size)
1199 {
1200 case 64:
1201 code = BUILT_IN_TM_LOG_M64;
1202 break;
1203 case 128:
1204 code = BUILT_IN_TM_LOG_M128;
1205 break;
1206 case 256:
1207 code = BUILT_IN_TM_LOG_M256;
1208 break;
1209 default:
1210 goto unhandled_vec;
1211 }
1212 if (!builtin_decl_explicit_p (code))
1213 goto unhandled_vec;
1214 }
1215 else
1216 {
1217 unhandled_vec:
1218 switch (type_size)
1219 {
1220 case 8:
1221 code = BUILT_IN_TM_LOG_1;
1222 break;
1223 case 16:
1224 code = BUILT_IN_TM_LOG_2;
1225 break;
1226 case 32:
1227 code = BUILT_IN_TM_LOG_4;
1228 break;
1229 case 64:
1230 code = BUILT_IN_TM_LOG_8;
1231 break;
1232 }
1233 }
1234 }
1235
1236 if (code != BUILT_IN_TM_LOG && !builtin_decl_explicit_p (code))
1237 code = BUILT_IN_TM_LOG;
1238 tree decl = builtin_decl_explicit (code);
1239
1240 addr = gimplify_addr (&gsi, addr);
1241 if (code == BUILT_IN_TM_LOG)
1242 log = gimple_build_call (decl, 2, addr, TYPE_SIZE_UNIT (type));
1243 else
1244 log = gimple_build_call (decl, 1, addr);
1245 gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1246 }
1247
1248 /* Go through the log and instrument address that must be instrumented
1249 with the logging functions. Leave the save/restore addresses for
1250 later. */
1251 static void
1252 tm_log_emit (void)
1253 {
1254 hash_table<log_entry_hasher>::iterator hi;
1255 struct tm_log_entry *lp;
1256
1257 FOR_EACH_HASH_TABLE_ELEMENT (*tm_log, lp, tm_log_entry_t, hi)
1258 {
1259 size_t i;
1260 gimple *stmt;
1261
1262 if (dump_file)
1263 {
1264 fprintf (dump_file, "TM thread private mem logging: ");
1265 print_generic_expr (dump_file, lp->addr);
1266 fprintf (dump_file, "\n");
1267 }
1268
1269 if (lp->save_var)
1270 {
1271 if (dump_file)
1272 fprintf (dump_file, "DUMPING to variable\n");
1273 continue;
1274 }
1275 else
1276 {
1277 if (dump_file)
1278 fprintf (dump_file, "DUMPING with logging functions\n");
1279 for (i = 0; lp->stmts.iterate (i, &stmt); ++i)
1280 tm_log_emit_stmt (lp->addr, stmt);
1281 }
1282 }
1283 }
1284
1285 /* Emit the save sequence for the corresponding addresses in the log.
1286 ENTRY_BLOCK is the entry block for the transaction.
1287 BB is the basic block to insert the code in. */
1288 static void
1289 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1290 {
1291 size_t i;
1292 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1293 gimple *stmt;
1294 struct tm_log_entry l, *lp;
1295
1296 for (i = 0; i < tm_log_save_addresses.length (); ++i)
1297 {
1298 l.addr = tm_log_save_addresses[i];
1299 lp = *(tm_log->find_slot (&l, NO_INSERT));
1300 gcc_assert (lp->save_var != NULL);
1301
1302 /* We only care about variables in the current transaction. */
1303 if (lp->entry_block != entry_block)
1304 continue;
1305
1306 stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1307
1308 /* Make sure we can create an SSA_NAME for this type. For
1309 instance, aggregates aren't allowed, in which case the system
1310 will create a VOP for us and everything will just work. */
1311 if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1312 {
1313 lp->save_var = make_ssa_name (lp->save_var, stmt);
1314 gimple_assign_set_lhs (stmt, lp->save_var);
1315 }
1316
1317 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1318 }
1319 }
1320
1321 /* Emit the restore sequence for the corresponding addresses in the log.
1322 ENTRY_BLOCK is the entry block for the transaction.
1323 BB is the basic block to insert the code in. */
1324 static void
1325 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1326 {
1327 int i;
1328 struct tm_log_entry l, *lp;
1329 gimple_stmt_iterator gsi;
1330 gimple *stmt;
1331
1332 for (i = tm_log_save_addresses.length () - 1; i >= 0; i--)
1333 {
1334 l.addr = tm_log_save_addresses[i];
1335 lp = *(tm_log->find_slot (&l, NO_INSERT));
1336 gcc_assert (lp->save_var != NULL);
1337
1338 /* We only care about variables in the current transaction. */
1339 if (lp->entry_block != entry_block)
1340 continue;
1341
1342 /* Restores are in LIFO order from the saves in case we have
1343 overlaps. */
1344 gsi = gsi_start_bb (bb);
1345
1346 stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1347 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1348 }
1349 }
1350
1351 \f
1352 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1353 struct walk_stmt_info *);
1354 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1355 struct walk_stmt_info *);
1356
1357 /* Evaluate an address X being dereferenced and determine if it
1358 originally points to a non aliased new chunk of memory (malloc,
1359 alloca, etc).
1360
1361 Return MEM_THREAD_LOCAL if it points to a thread-local address.
1362 Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1363 Return MEM_NON_LOCAL otherwise.
1364
1365 ENTRY_BLOCK is the entry block to the transaction containing the
1366 dereference of X. */
1367 static enum thread_memory_type
1368 thread_private_new_memory (basic_block entry_block, tree x)
1369 {
1370 gimple *stmt = NULL;
1371 enum tree_code code;
1372 tm_new_mem_map **slot;
1373 tm_new_mem_map elt, *elt_p;
1374 tree val = x;
1375 enum thread_memory_type retval = mem_transaction_local;
1376
1377 if (!entry_block
1378 || TREE_CODE (x) != SSA_NAME
1379 /* Possible uninitialized use, or a function argument. In
1380 either case, we don't care. */
1381 || SSA_NAME_IS_DEFAULT_DEF (x))
1382 return mem_non_local;
1383
1384 /* Look in cache first. */
1385 elt.val = x;
1386 slot = tm_new_mem_hash->find_slot (&elt, INSERT);
1387 elt_p = *slot;
1388 if (elt_p)
1389 return elt_p->local_new_memory;
1390
1391 /* Optimistically assume the memory is transaction local during
1392 processing. This catches recursion into this variable. */
1393 *slot = elt_p = XNEW (tm_new_mem_map);
1394 elt_p->val = val;
1395 elt_p->local_new_memory = mem_transaction_local;
1396
1397 /* Search DEF chain to find the original definition of this address. */
1398 do
1399 {
1400 if (ptr_deref_may_alias_global_p (x))
1401 {
1402 /* Address escapes. This is not thread-private. */
1403 retval = mem_non_local;
1404 goto new_memory_ret;
1405 }
1406
1407 stmt = SSA_NAME_DEF_STMT (x);
1408
1409 /* If the malloc call is outside the transaction, this is
1410 thread-local. */
1411 if (retval != mem_thread_local
1412 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1413 retval = mem_thread_local;
1414
1415 if (is_gimple_assign (stmt))
1416 {
1417 code = gimple_assign_rhs_code (stmt);
1418 /* x = foo ==> foo */
1419 if (code == SSA_NAME)
1420 x = gimple_assign_rhs1 (stmt);
1421 /* x = foo + n ==> foo */
1422 else if (code == POINTER_PLUS_EXPR)
1423 x = gimple_assign_rhs1 (stmt);
1424 /* x = (cast*) foo ==> foo */
1425 else if (code == VIEW_CONVERT_EXPR || CONVERT_EXPR_CODE_P (code))
1426 x = gimple_assign_rhs1 (stmt);
1427 /* x = c ? op1 : op2 == > op1 or op2 just like a PHI */
1428 else if (code == COND_EXPR)
1429 {
1430 tree op1 = gimple_assign_rhs2 (stmt);
1431 tree op2 = gimple_assign_rhs3 (stmt);
1432 enum thread_memory_type mem;
1433 retval = thread_private_new_memory (entry_block, op1);
1434 if (retval == mem_non_local)
1435 goto new_memory_ret;
1436 mem = thread_private_new_memory (entry_block, op2);
1437 retval = MIN (retval, mem);
1438 goto new_memory_ret;
1439 }
1440 else
1441 {
1442 retval = mem_non_local;
1443 goto new_memory_ret;
1444 }
1445 }
1446 else
1447 {
1448 if (gimple_code (stmt) == GIMPLE_PHI)
1449 {
1450 unsigned int i;
1451 enum thread_memory_type mem;
1452 tree phi_result = gimple_phi_result (stmt);
1453
1454 /* If any of the ancestors are non-local, we are sure to
1455 be non-local. Otherwise we can avoid doing anything
1456 and inherit what has already been generated. */
1457 retval = mem_max;
1458 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1459 {
1460 tree op = PHI_ARG_DEF (stmt, i);
1461
1462 /* Exclude self-assignment. */
1463 if (phi_result == op)
1464 continue;
1465
1466 mem = thread_private_new_memory (entry_block, op);
1467 if (mem == mem_non_local)
1468 {
1469 retval = mem;
1470 goto new_memory_ret;
1471 }
1472 retval = MIN (retval, mem);
1473 }
1474 goto new_memory_ret;
1475 }
1476 break;
1477 }
1478 }
1479 while (TREE_CODE (x) == SSA_NAME);
1480
1481 if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1482 /* Thread-local or transaction-local. */
1483 ;
1484 else
1485 retval = mem_non_local;
1486
1487 new_memory_ret:
1488 elt_p->local_new_memory = retval;
1489 return retval;
1490 }
1491
1492 /* Determine whether X has to be instrumented using a read
1493 or write barrier.
1494
1495 ENTRY_BLOCK is the entry block for the region where stmt resides
1496 in. NULL if unknown.
1497
1498 STMT is the statement in which X occurs in. It is used for thread
1499 private memory instrumentation. If no TPM instrumentation is
1500 desired, STMT should be null. */
1501 static bool
1502 requires_barrier (basic_block entry_block, tree x, gimple *stmt)
1503 {
1504 tree orig = x;
1505 while (handled_component_p (x))
1506 x = TREE_OPERAND (x, 0);
1507
1508 switch (TREE_CODE (x))
1509 {
1510 case INDIRECT_REF:
1511 case MEM_REF:
1512 {
1513 enum thread_memory_type ret;
1514
1515 ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1516 if (ret == mem_non_local)
1517 return true;
1518 if (stmt && ret == mem_thread_local)
1519 /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
1520 tm_log_add (entry_block, orig, stmt);
1521
1522 /* Transaction-locals require nothing at all. For malloc, a
1523 transaction restart frees the memory and we reallocate.
1524 For alloca, the stack pointer gets reset by the retry and
1525 we reallocate. */
1526 return false;
1527 }
1528
1529 case TARGET_MEM_REF:
1530 if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1531 return true;
1532 x = TREE_OPERAND (TMR_BASE (x), 0);
1533 if (TREE_CODE (x) == PARM_DECL)
1534 return false;
1535 gcc_assert (VAR_P (x));
1536 /* FALLTHRU */
1537
1538 case PARM_DECL:
1539 case RESULT_DECL:
1540 case VAR_DECL:
1541 if (DECL_BY_REFERENCE (x))
1542 {
1543 /* ??? This value is a pointer, but aggregate_value_p has been
1544 jigged to return true which confuses needs_to_live_in_memory.
1545 This ought to be cleaned up generically.
1546
1547 FIXME: Verify this still happens after the next mainline
1548 merge. Testcase ie g++.dg/tm/pr47554.C.
1549 */
1550 return false;
1551 }
1552
1553 if (is_global_var (x))
1554 return !TREE_READONLY (x);
1555 if (/* FIXME: This condition should actually go below in the
1556 tm_log_add() call, however is_call_clobbered() depends on
1557 aliasing info which is not available during
1558 gimplification. Since requires_barrier() gets called
1559 during lower_sequence_tm/gimplification, leave the call
1560 to needs_to_live_in_memory until we eliminate
1561 lower_sequence_tm altogether. */
1562 needs_to_live_in_memory (x))
1563 return true;
1564 else
1565 {
1566 /* For local memory that doesn't escape (aka thread private
1567 memory), we can either save the value at the beginning of
1568 the transaction and restore on restart, or call a tm
1569 function to dynamically save and restore on restart
1570 (ITM_L*). */
1571 if (stmt)
1572 tm_log_add (entry_block, orig, stmt);
1573 return false;
1574 }
1575
1576 default:
1577 return false;
1578 }
1579 }
1580
1581 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1582 a transaction region. */
1583
1584 static void
1585 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1586 {
1587 gimple *stmt = gsi_stmt (*gsi);
1588
1589 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1590 *state |= GTMA_HAVE_LOAD;
1591 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1592 *state |= GTMA_HAVE_STORE;
1593 }
1594
1595 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
1596
1597 static void
1598 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1599 {
1600 gimple *stmt = gsi_stmt (*gsi);
1601 tree fn;
1602
1603 if (is_tm_pure_call (stmt))
1604 return;
1605
1606 /* Check if this call is a transaction abort. */
1607 fn = gimple_call_fndecl (stmt);
1608 if (is_tm_abort (fn))
1609 *state |= GTMA_HAVE_ABORT;
1610
1611 /* Note that something may happen. */
1612 *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1613 }
1614
1615 /* Iterate through the statements in the sequence, moving labels
1616 (and thus edges) of transactions from "label_norm" to "label_uninst". */
1617
1618 static tree
1619 make_tm_uninst (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1620 struct walk_stmt_info *)
1621 {
1622 gimple *stmt = gsi_stmt (*gsi);
1623
1624 if (gtransaction *txn = dyn_cast <gtransaction *> (stmt))
1625 {
1626 *handled_ops_p = true;
1627 txn->label_uninst = txn->label_norm;
1628 txn->label_norm = NULL;
1629 }
1630 else
1631 *handled_ops_p = !gimple_has_substatements (stmt);
1632
1633 return NULL_TREE;
1634 }
1635
1636 /* Lower a GIMPLE_TRANSACTION statement. */
1637
1638 static void
1639 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1640 {
1641 gimple *g;
1642 gtransaction *stmt = as_a <gtransaction *> (gsi_stmt (*gsi));
1643 unsigned int *outer_state = (unsigned int *) wi->info;
1644 unsigned int this_state = 0;
1645 struct walk_stmt_info this_wi;
1646
1647 /* First, lower the body. The scanning that we do inside gives
1648 us some idea of what we're dealing with. */
1649 memset (&this_wi, 0, sizeof (this_wi));
1650 this_wi.info = (void *) &this_state;
1651 walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
1652 lower_sequence_tm, NULL, &this_wi);
1653
1654 /* If there was absolutely nothing transaction related inside the
1655 transaction, we may elide it. Likewise if this is a nested
1656 transaction and does not contain an abort. */
1657 if (this_state == 0
1658 || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1659 {
1660 if (outer_state)
1661 *outer_state |= this_state;
1662
1663 gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1664 GSI_SAME_STMT);
1665 gimple_transaction_set_body (stmt, NULL);
1666
1667 gsi_remove (gsi, true);
1668 wi->removed_stmt = true;
1669 return;
1670 }
1671
1672 /* Wrap the body of the transaction in a try-finally node so that
1673 the commit call is always properly called. */
1674 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1675 if (flag_exceptions)
1676 {
1677 tree ptr;
1678 gimple_seq n_seq, e_seq;
1679
1680 n_seq = gimple_seq_alloc_with_stmt (g);
1681 e_seq = NULL;
1682
1683 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1684 1, integer_zero_node);
1685 ptr = create_tmp_var (ptr_type_node);
1686 gimple_call_set_lhs (g, ptr);
1687 gimple_seq_add_stmt (&e_seq, g);
1688
1689 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1690 1, ptr);
1691 gimple_seq_add_stmt (&e_seq, g);
1692
1693 g = gimple_build_eh_else (n_seq, e_seq);
1694 }
1695
1696 g = gimple_build_try (gimple_transaction_body (stmt),
1697 gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1698
1699 /* For a (potentially) outer transaction, create two paths. */
1700 gimple_seq uninst = NULL;
1701 if (outer_state == NULL)
1702 {
1703 uninst = copy_gimple_seq_and_replace_locals (g);
1704 /* In the uninstrumented copy, reset inner transactions to have only
1705 an uninstrumented code path. */
1706 memset (&this_wi, 0, sizeof (this_wi));
1707 walk_gimple_seq (uninst, make_tm_uninst, NULL, &this_wi);
1708 }
1709
1710 tree label1 = create_artificial_label (UNKNOWN_LOCATION);
1711 gsi_insert_after (gsi, gimple_build_label (label1), GSI_CONTINUE_LINKING);
1712 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1713 gimple_transaction_set_label_norm (stmt, label1);
1714
1715 /* If the transaction calls abort or if this is an outer transaction,
1716 add an "over" label afterwards. */
1717 tree label3 = NULL;
1718 if ((this_state & GTMA_HAVE_ABORT)
1719 || outer_state == NULL
1720 || (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER))
1721 {
1722 label3 = create_artificial_label (UNKNOWN_LOCATION);
1723 gimple_transaction_set_label_over (stmt, label3);
1724 }
1725
1726 if (uninst != NULL)
1727 {
1728 gsi_insert_after (gsi, gimple_build_goto (label3), GSI_CONTINUE_LINKING);
1729
1730 tree label2 = create_artificial_label (UNKNOWN_LOCATION);
1731 gsi_insert_after (gsi, gimple_build_label (label2), GSI_CONTINUE_LINKING);
1732 gsi_insert_seq_after (gsi, uninst, GSI_CONTINUE_LINKING);
1733 gimple_transaction_set_label_uninst (stmt, label2);
1734 }
1735
1736 if (label3 != NULL)
1737 gsi_insert_after (gsi, gimple_build_label (label3), GSI_CONTINUE_LINKING);
1738
1739 gimple_transaction_set_body (stmt, NULL);
1740
1741 /* Record the set of operations found for use later. */
1742 this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1743 gimple_transaction_set_subcode (stmt, this_state);
1744 }
1745
1746 /* Iterate through the statements in the sequence, lowering them all
1747 as appropriate for being in a transaction. */
1748
1749 static tree
1750 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1751 struct walk_stmt_info *wi)
1752 {
1753 unsigned int *state = (unsigned int *) wi->info;
1754 gimple *stmt = gsi_stmt (*gsi);
1755
1756 *handled_ops_p = true;
1757 switch (gimple_code (stmt))
1758 {
1759 case GIMPLE_ASSIGN:
1760 /* Only memory reads/writes need to be instrumented. */
1761 if (gimple_assign_single_p (stmt))
1762 examine_assign_tm (state, gsi);
1763 break;
1764
1765 case GIMPLE_CALL:
1766 examine_call_tm (state, gsi);
1767 break;
1768
1769 case GIMPLE_ASM:
1770 *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1771 break;
1772
1773 case GIMPLE_TRANSACTION:
1774 lower_transaction (gsi, wi);
1775 break;
1776
1777 default:
1778 *handled_ops_p = !gimple_has_substatements (stmt);
1779 break;
1780 }
1781
1782 return NULL_TREE;
1783 }
1784
1785 /* Iterate through the statements in the sequence, lowering them all
1786 as appropriate for being outside of a transaction. */
1787
1788 static tree
1789 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1790 struct walk_stmt_info * wi)
1791 {
1792 gimple *stmt = gsi_stmt (*gsi);
1793
1794 if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1795 {
1796 *handled_ops_p = true;
1797 lower_transaction (gsi, wi);
1798 }
1799 else
1800 *handled_ops_p = !gimple_has_substatements (stmt);
1801
1802 return NULL_TREE;
1803 }
1804
1805 /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
1806 this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1807 been moved out, and all the data required for constructing a proper
1808 CFG has been recorded. */
1809
1810 static unsigned int
1811 execute_lower_tm (void)
1812 {
1813 struct walk_stmt_info wi;
1814 gimple_seq body;
1815
1816 /* Transactional clones aren't created until a later pass. */
1817 gcc_assert (!decl_is_tm_clone (current_function_decl));
1818
1819 body = gimple_body (current_function_decl);
1820 memset (&wi, 0, sizeof (wi));
1821 walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi);
1822 gimple_set_body (current_function_decl, body);
1823
1824 return 0;
1825 }
1826
1827 namespace {
1828
1829 const pass_data pass_data_lower_tm =
1830 {
1831 GIMPLE_PASS, /* type */
1832 "tmlower", /* name */
1833 OPTGROUP_NONE, /* optinfo_flags */
1834 TV_TRANS_MEM, /* tv_id */
1835 PROP_gimple_lcf, /* properties_required */
1836 0, /* properties_provided */
1837 0, /* properties_destroyed */
1838 0, /* todo_flags_start */
1839 0, /* todo_flags_finish */
1840 };
1841
1842 class pass_lower_tm : public gimple_opt_pass
1843 {
1844 public:
1845 pass_lower_tm (gcc::context *ctxt)
1846 : gimple_opt_pass (pass_data_lower_tm, ctxt)
1847 {}
1848
1849 /* opt_pass methods: */
1850 virtual bool gate (function *) { return flag_tm; }
1851 virtual unsigned int execute (function *) { return execute_lower_tm (); }
1852
1853 }; // class pass_lower_tm
1854
1855 } // anon namespace
1856
1857 gimple_opt_pass *
1858 make_pass_lower_tm (gcc::context *ctxt)
1859 {
1860 return new pass_lower_tm (ctxt);
1861 }
1862 \f
1863 /* Collect region information for each transaction. */
1864
1865 struct tm_region
1866 {
1867 public:
1868
1869 /* The field "transaction_stmt" is initially a gtransaction *,
1870 but eventually gets lowered to a gcall *(to BUILT_IN_TM_START).
1871
1872 Helper method to get it as a gtransaction *, with code-checking
1873 in a checked-build. */
1874
1875 gtransaction *
1876 get_transaction_stmt () const
1877 {
1878 return as_a <gtransaction *> (transaction_stmt);
1879 }
1880
1881 public:
1882
1883 /* Link to the next unnested transaction. */
1884 struct tm_region *next;
1885
1886 /* Link to the next inner transaction. */
1887 struct tm_region *inner;
1888
1889 /* Link to the next outer transaction. */
1890 struct tm_region *outer;
1891
1892 /* The GIMPLE_TRANSACTION statement beginning this transaction.
1893 After TM_MARK, this gets replaced by a call to
1894 BUILT_IN_TM_START.
1895 Hence this will be either a gtransaction *or a gcall *. */
1896 gimple *transaction_stmt;
1897
1898 /* After TM_MARK expands the GIMPLE_TRANSACTION into a call to
1899 BUILT_IN_TM_START, this field is true if the transaction is an
1900 outer transaction. */
1901 bool original_transaction_was_outer;
1902
1903 /* Return value from BUILT_IN_TM_START. */
1904 tree tm_state;
1905
1906 /* The entry block to this region. This will always be the first
1907 block of the body of the transaction. */
1908 basic_block entry_block;
1909
1910 /* The first block after an expanded call to _ITM_beginTransaction. */
1911 basic_block restart_block;
1912
1913 /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1914 These blocks are still a part of the region (i.e., the border is
1915 inclusive). Note that this set is only complete for paths in the CFG
1916 starting at ENTRY_BLOCK, and that there is no exit block recorded for
1917 the edge to the "over" label. */
1918 bitmap exit_blocks;
1919
1920 /* The set of all blocks that have an TM_IRREVOCABLE call. */
1921 bitmap irr_blocks;
1922 };
1923
1924 /* True if there are pending edge statements to be committed for the
1925 current function being scanned in the tmmark pass. */
1926 bool pending_edge_inserts_p;
1927
1928 static struct tm_region *all_tm_regions;
1929 static bitmap_obstack tm_obstack;
1930
1931
1932 /* A subroutine of tm_region_init. Record the existence of the
1933 GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
1934
1935 static struct tm_region *
1936 tm_region_init_0 (struct tm_region *outer, basic_block bb,
1937 gtransaction *stmt)
1938 {
1939 struct tm_region *region;
1940
1941 region = (struct tm_region *)
1942 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1943
1944 if (outer)
1945 {
1946 region->next = outer->inner;
1947 outer->inner = region;
1948 }
1949 else
1950 {
1951 region->next = all_tm_regions;
1952 all_tm_regions = region;
1953 }
1954 region->inner = NULL;
1955 region->outer = outer;
1956
1957 region->transaction_stmt = stmt;
1958 region->original_transaction_was_outer = false;
1959 region->tm_state = NULL;
1960
1961 /* There are either one or two edges out of the block containing
1962 the GIMPLE_TRANSACTION, one to the actual region and one to the
1963 "over" label if the region contains an abort. The former will
1964 always be the one marked FALLTHRU. */
1965 region->entry_block = FALLTHRU_EDGE (bb)->dest;
1966
1967 region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1968 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1969
1970 return region;
1971 }
1972
1973 /* A subroutine of tm_region_init. Record all the exit and
1974 irrevocable blocks in BB into the region's exit_blocks and
1975 irr_blocks bitmaps. Returns the new region being scanned. */
1976
1977 static struct tm_region *
1978 tm_region_init_1 (struct tm_region *region, basic_block bb)
1979 {
1980 gimple_stmt_iterator gsi;
1981 gimple *g;
1982
1983 if (!region
1984 || (!region->irr_blocks && !region->exit_blocks))
1985 return region;
1986
1987 /* Check to see if this is the end of a region by seeing if it
1988 contains a call to __builtin_tm_commit{,_eh}. Note that the
1989 outermost region for DECL_IS_TM_CLONE need not collect this. */
1990 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1991 {
1992 g = gsi_stmt (gsi);
1993 if (gimple_code (g) == GIMPLE_CALL)
1994 {
1995 tree fn = gimple_call_fndecl (g);
1996 if (fn && fndecl_built_in_p (fn, BUILT_IN_NORMAL))
1997 {
1998 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
1999 || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
2000 && region->exit_blocks)
2001 {
2002 bitmap_set_bit (region->exit_blocks, bb->index);
2003 region = region->outer;
2004 break;
2005 }
2006 if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
2007 bitmap_set_bit (region->irr_blocks, bb->index);
2008 }
2009 }
2010 }
2011 return region;
2012 }
2013
2014 /* Collect all of the transaction regions within the current function
2015 and record them in ALL_TM_REGIONS. The REGION parameter may specify
2016 an "outermost" region for use by tm clones. */
2017
2018 static void
2019 tm_region_init (struct tm_region *region)
2020 {
2021 gimple *g;
2022 edge_iterator ei;
2023 edge e;
2024 basic_block bb;
2025 auto_vec<basic_block> queue;
2026 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2027 struct tm_region *old_region;
2028 auto_vec<tm_region *> bb_regions;
2029
2030 /* We could store this information in bb->aux, but we may get called
2031 through get_all_tm_blocks() from another pass that may be already
2032 using bb->aux. */
2033 bb_regions.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
2034
2035 all_tm_regions = region;
2036 bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2037 queue.safe_push (bb);
2038 bitmap_set_bit (visited_blocks, bb->index);
2039 bb_regions[bb->index] = region;
2040
2041 do
2042 {
2043 bb = queue.pop ();
2044 region = bb_regions[bb->index];
2045 bb_regions[bb->index] = NULL;
2046
2047 /* Record exit and irrevocable blocks. */
2048 region = tm_region_init_1 (region, bb);
2049
2050 /* Check for the last statement in the block beginning a new region. */
2051 g = last_stmt (bb);
2052 old_region = region;
2053 if (g)
2054 if (gtransaction *trans_stmt = dyn_cast <gtransaction *> (g))
2055 region = tm_region_init_0 (region, bb, trans_stmt);
2056
2057 /* Process subsequent blocks. */
2058 FOR_EACH_EDGE (e, ei, bb->succs)
2059 if (!bitmap_bit_p (visited_blocks, e->dest->index))
2060 {
2061 bitmap_set_bit (visited_blocks, e->dest->index);
2062 queue.safe_push (e->dest);
2063
2064 /* If the current block started a new region, make sure that only
2065 the entry block of the new region is associated with this region.
2066 Other successors are still part of the old region. */
2067 if (old_region != region && e->dest != region->entry_block)
2068 bb_regions[e->dest->index] = old_region;
2069 else
2070 bb_regions[e->dest->index] = region;
2071 }
2072 }
2073 while (!queue.is_empty ());
2074 BITMAP_FREE (visited_blocks);
2075 }
2076
2077 /* The "gate" function for all transactional memory expansion and optimization
2078 passes. We collect region information for each top-level transaction, and
2079 if we don't find any, we skip all of the TM passes. Each region will have
2080 all of the exit blocks recorded, and the originating statement. */
2081
2082 static bool
2083 gate_tm_init (void)
2084 {
2085 if (!flag_tm)
2086 return false;
2087
2088 calculate_dominance_info (CDI_DOMINATORS);
2089 bitmap_obstack_initialize (&tm_obstack);
2090
2091 /* If the function is a TM_CLONE, then the entire function is the region. */
2092 if (decl_is_tm_clone (current_function_decl))
2093 {
2094 struct tm_region *region = (struct tm_region *)
2095 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
2096 memset (region, 0, sizeof (*region));
2097 region->entry_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2098 /* For a clone, the entire function is the region. But even if
2099 we don't need to record any exit blocks, we may need to
2100 record irrevocable blocks. */
2101 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
2102
2103 tm_region_init (region);
2104 }
2105 else
2106 {
2107 tm_region_init (NULL);
2108
2109 /* If we didn't find any regions, cleanup and skip the whole tree
2110 of tm-related optimizations. */
2111 if (all_tm_regions == NULL)
2112 {
2113 bitmap_obstack_release (&tm_obstack);
2114 return false;
2115 }
2116 }
2117
2118 return true;
2119 }
2120
2121 namespace {
2122
2123 const pass_data pass_data_tm_init =
2124 {
2125 GIMPLE_PASS, /* type */
2126 "*tminit", /* name */
2127 OPTGROUP_NONE, /* optinfo_flags */
2128 TV_TRANS_MEM, /* tv_id */
2129 ( PROP_ssa | PROP_cfg ), /* properties_required */
2130 0, /* properties_provided */
2131 0, /* properties_destroyed */
2132 0, /* todo_flags_start */
2133 0, /* todo_flags_finish */
2134 };
2135
2136 class pass_tm_init : public gimple_opt_pass
2137 {
2138 public:
2139 pass_tm_init (gcc::context *ctxt)
2140 : gimple_opt_pass (pass_data_tm_init, ctxt)
2141 {}
2142
2143 /* opt_pass methods: */
2144 virtual bool gate (function *) { return gate_tm_init (); }
2145
2146 }; // class pass_tm_init
2147
2148 } // anon namespace
2149
2150 gimple_opt_pass *
2151 make_pass_tm_init (gcc::context *ctxt)
2152 {
2153 return new pass_tm_init (ctxt);
2154 }
2155 \f
2156 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
2157 represented by STATE. */
2158
2159 static inline void
2160 transaction_subcode_ior (struct tm_region *region, unsigned flags)
2161 {
2162 if (region && region->transaction_stmt)
2163 {
2164 gtransaction *transaction_stmt = region->get_transaction_stmt ();
2165 flags |= gimple_transaction_subcode (transaction_stmt);
2166 gimple_transaction_set_subcode (transaction_stmt, flags);
2167 }
2168 }
2169
2170 /* Construct a memory load in a transactional context. Return the
2171 gimple statement performing the load, or NULL if there is no
2172 TM_LOAD builtin of the appropriate size to do the load.
2173
2174 LOC is the location to use for the new statement(s). */
2175
2176 static gcall *
2177 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2178 {
2179 tree t, type = TREE_TYPE (rhs);
2180 gcall *gcall;
2181
2182 built_in_function code;
2183 if (type == float_type_node)
2184 code = BUILT_IN_TM_LOAD_FLOAT;
2185 else if (type == double_type_node)
2186 code = BUILT_IN_TM_LOAD_DOUBLE;
2187 else if (type == long_double_type_node)
2188 code = BUILT_IN_TM_LOAD_LDOUBLE;
2189 else
2190 {
2191 if (TYPE_SIZE (type) == NULL || !tree_fits_uhwi_p (TYPE_SIZE (type)))
2192 return NULL;
2193 unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
2194
2195 if (TREE_CODE (type) == VECTOR_TYPE)
2196 {
2197 switch (type_size)
2198 {
2199 case 64:
2200 code = BUILT_IN_TM_LOAD_M64;
2201 break;
2202 case 128:
2203 code = BUILT_IN_TM_LOAD_M128;
2204 break;
2205 case 256:
2206 code = BUILT_IN_TM_LOAD_M256;
2207 break;
2208 default:
2209 goto unhandled_vec;
2210 }
2211 if (!builtin_decl_explicit_p (code))
2212 goto unhandled_vec;
2213 }
2214 else
2215 {
2216 unhandled_vec:
2217 switch (type_size)
2218 {
2219 case 8:
2220 code = BUILT_IN_TM_LOAD_1;
2221 break;
2222 case 16:
2223 code = BUILT_IN_TM_LOAD_2;
2224 break;
2225 case 32:
2226 code = BUILT_IN_TM_LOAD_4;
2227 break;
2228 case 64:
2229 code = BUILT_IN_TM_LOAD_8;
2230 break;
2231 default:
2232 return NULL;
2233 }
2234 }
2235 }
2236
2237 tree decl = builtin_decl_explicit (code);
2238 gcc_assert (decl);
2239
2240 t = gimplify_addr (gsi, rhs);
2241 gcall = gimple_build_call (decl, 1, t);
2242 gimple_set_location (gcall, loc);
2243
2244 t = TREE_TYPE (TREE_TYPE (decl));
2245 if (useless_type_conversion_p (type, t))
2246 {
2247 gimple_call_set_lhs (gcall, lhs);
2248 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2249 }
2250 else
2251 {
2252 gimple *g;
2253 tree temp;
2254
2255 temp = create_tmp_reg (t);
2256 gimple_call_set_lhs (gcall, temp);
2257 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2258
2259 t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2260 g = gimple_build_assign (lhs, t);
2261 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2262 }
2263
2264 return gcall;
2265 }
2266
2267
2268 /* Similarly for storing TYPE in a transactional context. */
2269
2270 static gcall *
2271 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2272 {
2273 tree t, fn, type = TREE_TYPE (rhs), simple_type;
2274 gcall *gcall;
2275
2276 built_in_function code;
2277 if (type == float_type_node)
2278 code = BUILT_IN_TM_STORE_FLOAT;
2279 else if (type == double_type_node)
2280 code = BUILT_IN_TM_STORE_DOUBLE;
2281 else if (type == long_double_type_node)
2282 code = BUILT_IN_TM_STORE_LDOUBLE;
2283 else
2284 {
2285 if (TYPE_SIZE (type) == NULL || !tree_fits_uhwi_p (TYPE_SIZE (type)))
2286 return NULL;
2287 unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
2288
2289 if (TREE_CODE (type) == VECTOR_TYPE)
2290 {
2291 switch (type_size)
2292 {
2293 case 64:
2294 code = BUILT_IN_TM_STORE_M64;
2295 break;
2296 case 128:
2297 code = BUILT_IN_TM_STORE_M128;
2298 break;
2299 case 256:
2300 code = BUILT_IN_TM_STORE_M256;
2301 break;
2302 default:
2303 goto unhandled_vec;
2304 }
2305 if (!builtin_decl_explicit_p (code))
2306 goto unhandled_vec;
2307 }
2308 else
2309 {
2310 unhandled_vec:
2311 switch (type_size)
2312 {
2313 case 8:
2314 code = BUILT_IN_TM_STORE_1;
2315 break;
2316 case 16:
2317 code = BUILT_IN_TM_STORE_2;
2318 break;
2319 case 32:
2320 code = BUILT_IN_TM_STORE_4;
2321 break;
2322 case 64:
2323 code = BUILT_IN_TM_STORE_8;
2324 break;
2325 default:
2326 return NULL;
2327 }
2328 }
2329 }
2330
2331 fn = builtin_decl_explicit (code);
2332 gcc_assert (fn);
2333
2334 simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2335
2336 if (TREE_CODE (rhs) == CONSTRUCTOR)
2337 {
2338 /* Handle the easy initialization to zero. */
2339 if (!CONSTRUCTOR_ELTS (rhs))
2340 rhs = build_int_cst (simple_type, 0);
2341 else
2342 {
2343 /* ...otherwise punt to the caller and probably use
2344 BUILT_IN_TM_MEMMOVE, because we can't wrap a
2345 VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2346 valid gimple. */
2347 return NULL;
2348 }
2349 }
2350 else if (!useless_type_conversion_p (simple_type, type))
2351 {
2352 gimple *g;
2353 tree temp;
2354
2355 temp = create_tmp_reg (simple_type);
2356 t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2357 g = gimple_build_assign (temp, t);
2358 gimple_set_location (g, loc);
2359 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2360
2361 rhs = temp;
2362 }
2363
2364 t = gimplify_addr (gsi, lhs);
2365 gcall = gimple_build_call (fn, 2, t, rhs);
2366 gimple_set_location (gcall, loc);
2367 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2368
2369 return gcall;
2370 }
2371
2372
2373 /* Expand an assignment statement into transactional builtins. */
2374
2375 static void
2376 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2377 {
2378 gimple *stmt = gsi_stmt (*gsi);
2379 location_t loc = gimple_location (stmt);
2380 tree lhs = gimple_assign_lhs (stmt);
2381 tree rhs = gimple_assign_rhs1 (stmt);
2382 bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2383 bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2384 gimple *gcall = NULL;
2385
2386 if (!load_p && !store_p)
2387 {
2388 /* Add thread private addresses to log if applicable. */
2389 requires_barrier (region->entry_block, lhs, stmt);
2390 gsi_next (gsi);
2391 return;
2392 }
2393
2394 if (load_p)
2395 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2396 if (store_p)
2397 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2398
2399 // Remove original load/store statement.
2400 gsi_remove (gsi, true);
2401
2402 // Attempt to use a simple load/store helper function.
2403 if (load_p && !store_p)
2404 gcall = build_tm_load (loc, lhs, rhs, gsi);
2405 else if (store_p && !load_p)
2406 gcall = build_tm_store (loc, lhs, rhs, gsi);
2407
2408 // If gcall has not been set, then we do not have a simple helper
2409 // function available for the type. This may be true of larger
2410 // structures, vectors, and non-standard float types.
2411 if (!gcall)
2412 {
2413 tree lhs_addr, rhs_addr, ltmp = NULL, copy_fn;
2414
2415 // If this is a type that we couldn't handle above, but it's
2416 // in a register, we must spill it to memory for the copy.
2417 if (is_gimple_reg (lhs))
2418 {
2419 ltmp = create_tmp_var (TREE_TYPE (lhs));
2420 lhs_addr = build_fold_addr_expr (ltmp);
2421 }
2422 else
2423 lhs_addr = gimplify_addr (gsi, lhs);
2424 if (is_gimple_reg (rhs))
2425 {
2426 tree rtmp = create_tmp_var (TREE_TYPE (rhs));
2427 TREE_ADDRESSABLE (rtmp) = 1;
2428 rhs_addr = build_fold_addr_expr (rtmp);
2429 gcall = gimple_build_assign (rtmp, rhs);
2430 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2431 }
2432 else
2433 rhs_addr = gimplify_addr (gsi, rhs);
2434
2435 // Choose the appropriate memory transfer function.
2436 if (load_p && store_p)
2437 {
2438 // ??? Figure out if there's any possible overlap between
2439 // the LHS and the RHS and if not, use MEMCPY.
2440 copy_fn = builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
2441 }
2442 else if (load_p)
2443 {
2444 // Note that the store is non-transactional and cannot overlap.
2445 copy_fn = builtin_decl_explicit (BUILT_IN_TM_MEMCPY_RTWN);
2446 }
2447 else
2448 {
2449 // Note that the load is non-transactional and cannot overlap.
2450 copy_fn = builtin_decl_explicit (BUILT_IN_TM_MEMCPY_RNWT);
2451 }
2452
2453 gcall = gimple_build_call (copy_fn, 3, lhs_addr, rhs_addr,
2454 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2455 gimple_set_location (gcall, loc);
2456 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2457
2458 if (ltmp)
2459 {
2460 gcall = gimple_build_assign (lhs, ltmp);
2461 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2462 }
2463 }
2464
2465 // Now that we have the load/store in its instrumented form, add
2466 // thread private addresses to the log if applicable.
2467 if (!store_p)
2468 requires_barrier (region->entry_block, lhs, gcall);
2469 }
2470
2471
2472 /* Expand a call statement as appropriate for a transaction. That is,
2473 either verify that the call does not affect the transaction, or
2474 redirect the call to a clone that handles transactions, or change
2475 the transaction state to IRREVOCABLE. Return true if the call is
2476 one of the builtins that end a transaction. */
2477
2478 static bool
2479 expand_call_tm (struct tm_region *region,
2480 gimple_stmt_iterator *gsi)
2481 {
2482 gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
2483 tree lhs = gimple_call_lhs (stmt);
2484 tree fn_decl;
2485 struct cgraph_node *node;
2486 bool retval = false;
2487
2488 fn_decl = gimple_call_fndecl (stmt);
2489
2490 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2491 || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2492 transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2493 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2494 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2495
2496 if (is_tm_pure_call (stmt))
2497 return false;
2498
2499 if (fn_decl)
2500 retval = is_tm_ending_fndecl (fn_decl);
2501 if (!retval)
2502 {
2503 /* Assume all non-const/pure calls write to memory, except
2504 transaction ending builtins. */
2505 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2506 }
2507
2508 /* For indirect calls, we already generated a call into the runtime. */
2509 if (!fn_decl)
2510 {
2511 tree fn = gimple_call_fn (stmt);
2512
2513 /* We are guaranteed never to go irrevocable on a safe or pure
2514 call, and the pure call was handled above. */
2515 if (is_tm_safe (fn))
2516 return false;
2517 else
2518 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2519
2520 return false;
2521 }
2522
2523 node = cgraph_node::get (fn_decl);
2524 /* All calls should have cgraph here. */
2525 if (!node)
2526 {
2527 /* We can have a nodeless call here if some pass after IPA-tm
2528 added uninstrumented calls. For example, loop distribution
2529 can transform certain loop constructs into __builtin_mem*
2530 calls. In this case, see if we have a suitable TM
2531 replacement and fill in the gaps. */
2532 gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL);
2533 enum built_in_function code = DECL_FUNCTION_CODE (fn_decl);
2534 gcc_assert (code == BUILT_IN_MEMCPY
2535 || code == BUILT_IN_MEMMOVE
2536 || code == BUILT_IN_MEMSET);
2537
2538 tree repl = find_tm_replacement_function (fn_decl);
2539 if (repl)
2540 {
2541 gimple_call_set_fndecl (stmt, repl);
2542 update_stmt (stmt);
2543 node = cgraph_node::create (repl);
2544 node->tm_may_enter_irr = false;
2545 return expand_call_tm (region, gsi);
2546 }
2547 gcc_unreachable ();
2548 }
2549 if (node->tm_may_enter_irr)
2550 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2551
2552 if (is_tm_abort (fn_decl))
2553 {
2554 transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2555 return true;
2556 }
2557
2558 /* Instrument the store if needed.
2559
2560 If the assignment happens inside the function call (return slot
2561 optimization), there is no instrumentation to be done, since
2562 the callee should have done the right thing. */
2563 if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2564 && !gimple_call_return_slot_opt_p (stmt))
2565 {
2566 tree tmp = create_tmp_reg (TREE_TYPE (lhs));
2567 location_t loc = gimple_location (stmt);
2568 edge fallthru_edge = NULL;
2569 gassign *assign_stmt;
2570
2571 /* Remember if the call was going to throw. */
2572 if (stmt_can_throw_internal (cfun, stmt))
2573 {
2574 edge_iterator ei;
2575 edge e;
2576 basic_block bb = gimple_bb (stmt);
2577
2578 FOR_EACH_EDGE (e, ei, bb->succs)
2579 if (e->flags & EDGE_FALLTHRU)
2580 {
2581 fallthru_edge = e;
2582 break;
2583 }
2584 }
2585
2586 gimple_call_set_lhs (stmt, tmp);
2587 update_stmt (stmt);
2588 assign_stmt = gimple_build_assign (lhs, tmp);
2589 gimple_set_location (assign_stmt, loc);
2590
2591 /* We cannot throw in the middle of a BB. If the call was going
2592 to throw, place the instrumentation on the fallthru edge, so
2593 the call remains the last statement in the block. */
2594 if (fallthru_edge)
2595 {
2596 gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (assign_stmt);
2597 gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2598 expand_assign_tm (region, &fallthru_gsi);
2599 gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2600 pending_edge_inserts_p = true;
2601 }
2602 else
2603 {
2604 gsi_insert_after (gsi, assign_stmt, GSI_CONTINUE_LINKING);
2605 expand_assign_tm (region, gsi);
2606 }
2607
2608 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2609 }
2610
2611 return retval;
2612 }
2613
2614
2615 /* Expand all statements in BB as appropriate for being inside
2616 a transaction. */
2617
2618 static void
2619 expand_block_tm (struct tm_region *region, basic_block bb)
2620 {
2621 gimple_stmt_iterator gsi;
2622
2623 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2624 {
2625 gimple *stmt = gsi_stmt (gsi);
2626 switch (gimple_code (stmt))
2627 {
2628 case GIMPLE_ASSIGN:
2629 /* Only memory reads/writes need to be instrumented. */
2630 if (gimple_assign_single_p (stmt)
2631 && !gimple_clobber_p (stmt))
2632 {
2633 expand_assign_tm (region, &gsi);
2634 continue;
2635 }
2636 break;
2637
2638 case GIMPLE_CALL:
2639 if (expand_call_tm (region, &gsi))
2640 return;
2641 break;
2642
2643 case GIMPLE_ASM:
2644 gcc_unreachable ();
2645
2646 default:
2647 break;
2648 }
2649 if (!gsi_end_p (gsi))
2650 gsi_next (&gsi);
2651 }
2652 }
2653
2654 /* Return the list of basic-blocks in REGION.
2655
2656 STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2657 following a TM_IRREVOCABLE call.
2658
2659 INCLUDE_UNINSTRUMENTED_P is TRUE if we should include the
2660 uninstrumented code path blocks in the list of basic blocks
2661 returned, false otherwise. */
2662
2663 static vec<basic_block>
2664 get_tm_region_blocks (basic_block entry_block,
2665 bitmap exit_blocks,
2666 bitmap irr_blocks,
2667 bitmap all_region_blocks,
2668 bool stop_at_irrevocable_p,
2669 bool include_uninstrumented_p = true)
2670 {
2671 vec<basic_block> bbs = vNULL;
2672 unsigned i;
2673 edge e;
2674 edge_iterator ei;
2675 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2676
2677 i = 0;
2678 bbs.safe_push (entry_block);
2679 bitmap_set_bit (visited_blocks, entry_block->index);
2680
2681 do
2682 {
2683 basic_block bb = bbs[i++];
2684
2685 if (exit_blocks &&
2686 bitmap_bit_p (exit_blocks, bb->index))
2687 continue;
2688
2689 if (stop_at_irrevocable_p
2690 && irr_blocks
2691 && bitmap_bit_p (irr_blocks, bb->index))
2692 continue;
2693
2694 FOR_EACH_EDGE (e, ei, bb->succs)
2695 if ((include_uninstrumented_p
2696 || !(e->flags & EDGE_TM_UNINSTRUMENTED))
2697 && !bitmap_bit_p (visited_blocks, e->dest->index))
2698 {
2699 bitmap_set_bit (visited_blocks, e->dest->index);
2700 bbs.safe_push (e->dest);
2701 }
2702 }
2703 while (i < bbs.length ());
2704
2705 if (all_region_blocks)
2706 bitmap_ior_into (all_region_blocks, visited_blocks);
2707
2708 BITMAP_FREE (visited_blocks);
2709 return bbs;
2710 }
2711
2712 // Callback data for collect_bb2reg.
2713 struct bb2reg_stuff
2714 {
2715 vec<tm_region *> *bb2reg;
2716 bool include_uninstrumented_p;
2717 };
2718
2719 // Callback for expand_regions, collect innermost region data for each bb.
2720 static void *
2721 collect_bb2reg (struct tm_region *region, void *data)
2722 {
2723 struct bb2reg_stuff *stuff = (struct bb2reg_stuff *)data;
2724 vec<tm_region *> *bb2reg = stuff->bb2reg;
2725 vec<basic_block> queue;
2726 unsigned int i;
2727 basic_block bb;
2728
2729 queue = get_tm_region_blocks (region->entry_block,
2730 region->exit_blocks,
2731 region->irr_blocks,
2732 NULL,
2733 /*stop_at_irr_p=*/true,
2734 stuff->include_uninstrumented_p);
2735
2736 // We expect expand_region to perform a post-order traversal of the region
2737 // tree. Therefore the last region seen for any bb is the innermost.
2738 FOR_EACH_VEC_ELT (queue, i, bb)
2739 (*bb2reg)[bb->index] = region;
2740
2741 queue.release ();
2742 return NULL;
2743 }
2744
2745 // Returns a vector, indexed by BB->INDEX, of the innermost tm_region to
2746 // which a basic block belongs. Note that we only consider the instrumented
2747 // code paths for the region; the uninstrumented code paths are ignored if
2748 // INCLUDE_UNINSTRUMENTED_P is false.
2749 //
2750 // ??? This data is very similar to the bb_regions array that is collected
2751 // during tm_region_init. Or, rather, this data is similar to what could
2752 // be used within tm_region_init. The actual computation in tm_region_init
2753 // begins and ends with bb_regions entirely full of NULL pointers, due to
2754 // the way in which pointers are swapped in and out of the array.
2755 //
2756 // ??? Our callers expect that blocks are not shared between transactions.
2757 // When the optimizers get too smart, and blocks are shared, then during
2758 // the tm_mark phase we'll add log entries to only one of the two transactions,
2759 // and in the tm_edge phase we'll add edges to the CFG that create invalid
2760 // cycles. The symptom being SSA defs that do not dominate their uses.
2761 // Note that the optimizers were locally correct with their transformation,
2762 // as we have no info within the program that suggests that the blocks cannot
2763 // be shared.
2764 //
2765 // ??? There is currently a hack inside tree-ssa-pre.c to work around the
2766 // only known instance of this block sharing.
2767
2768 static vec<tm_region *>
2769 get_bb_regions_instrumented (bool traverse_clones,
2770 bool include_uninstrumented_p)
2771 {
2772 unsigned n = last_basic_block_for_fn (cfun);
2773 struct bb2reg_stuff stuff;
2774 vec<tm_region *> ret;
2775
2776 ret.create (n);
2777 ret.safe_grow_cleared (n, true);
2778 stuff.bb2reg = &ret;
2779 stuff.include_uninstrumented_p = include_uninstrumented_p;
2780 expand_regions (all_tm_regions, collect_bb2reg, &stuff, traverse_clones);
2781
2782 return ret;
2783 }
2784
2785 /* Set the IN_TRANSACTION for all gimple statements that appear in a
2786 transaction. */
2787
2788 void
2789 compute_transaction_bits (void)
2790 {
2791 struct tm_region *region;
2792 vec<basic_block> queue;
2793 unsigned int i;
2794 basic_block bb;
2795
2796 /* ?? Perhaps we need to abstract gate_tm_init further, because we
2797 certainly don't need it to calculate CDI_DOMINATOR info. */
2798 gate_tm_init ();
2799
2800 FOR_EACH_BB_FN (bb, cfun)
2801 bb->flags &= ~BB_IN_TRANSACTION;
2802
2803 for (region = all_tm_regions; region; region = region->next)
2804 {
2805 queue = get_tm_region_blocks (region->entry_block,
2806 region->exit_blocks,
2807 region->irr_blocks,
2808 NULL,
2809 /*stop_at_irr_p=*/true);
2810 for (i = 0; queue.iterate (i, &bb); ++i)
2811 bb->flags |= BB_IN_TRANSACTION;
2812 queue.release ();
2813 }
2814
2815 if (all_tm_regions)
2816 bitmap_obstack_release (&tm_obstack);
2817 }
2818
2819 /* Replace the GIMPLE_TRANSACTION in this region with the corresponding
2820 call to BUILT_IN_TM_START. */
2821
2822 static void *
2823 expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2824 {
2825 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2826 basic_block transaction_bb = gimple_bb (region->transaction_stmt);
2827 tree tm_state = region->tm_state;
2828 tree tm_state_type = TREE_TYPE (tm_state);
2829 edge abort_edge = NULL;
2830 edge inst_edge = NULL;
2831 edge uninst_edge = NULL;
2832 edge fallthru_edge = NULL;
2833
2834 // Identify the various successors of the transaction start.
2835 {
2836 edge_iterator i;
2837 edge e;
2838 FOR_EACH_EDGE (e, i, transaction_bb->succs)
2839 {
2840 if (e->flags & EDGE_TM_ABORT)
2841 abort_edge = e;
2842 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
2843 uninst_edge = e;
2844 else
2845 inst_edge = e;
2846 if (e->flags & EDGE_FALLTHRU)
2847 fallthru_edge = e;
2848 }
2849 }
2850
2851 /* ??? There are plenty of bits here we're not computing. */
2852 {
2853 int subcode = gimple_transaction_subcode (region->get_transaction_stmt ());
2854 int flags = 0;
2855 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2856 flags |= PR_DOESGOIRREVOCABLE;
2857 if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2858 flags |= PR_HASNOIRREVOCABLE;
2859 /* If the transaction does not have an abort in lexical scope and is not
2860 marked as an outer transaction, then it will never abort. */
2861 if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0)
2862 flags |= PR_HASNOABORT;
2863 if ((subcode & GTMA_HAVE_STORE) == 0)
2864 flags |= PR_READONLY;
2865 if (inst_edge && !(subcode & GTMA_HAS_NO_INSTRUMENTATION))
2866 flags |= PR_INSTRUMENTEDCODE;
2867 if (uninst_edge)
2868 flags |= PR_UNINSTRUMENTEDCODE;
2869 if (subcode & GTMA_IS_OUTER)
2870 region->original_transaction_was_outer = true;
2871 tree t = build_int_cst (tm_state_type, flags);
2872 gcall *call = gimple_build_call (tm_start, 1, t);
2873 gimple_call_set_lhs (call, tm_state);
2874 gimple_set_location (call, gimple_location (region->transaction_stmt));
2875
2876 // Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START.
2877 gimple_stmt_iterator gsi = gsi_last_bb (transaction_bb);
2878 gcc_assert (gsi_stmt (gsi) == region->transaction_stmt);
2879 gsi_insert_before (&gsi, call, GSI_SAME_STMT);
2880 gsi_remove (&gsi, true);
2881 region->transaction_stmt = call;
2882 }
2883
2884 // Generate log saves.
2885 if (!tm_log_save_addresses.is_empty ())
2886 tm_log_emit_saves (region->entry_block, transaction_bb);
2887
2888 // In the beginning, we've no tests to perform on transaction restart.
2889 // Note that after this point, transaction_bb becomes the "most recent
2890 // block containing tests for the transaction".
2891 region->restart_block = region->entry_block;
2892
2893 // Generate log restores.
2894 if (!tm_log_save_addresses.is_empty ())
2895 {
2896 basic_block test_bb = create_empty_bb (transaction_bb);
2897 basic_block code_bb = create_empty_bb (test_bb);
2898 basic_block join_bb = create_empty_bb (code_bb);
2899 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2900 add_bb_to_loop (code_bb, transaction_bb->loop_father);
2901 add_bb_to_loop (join_bb, transaction_bb->loop_father);
2902 if (region->restart_block == region->entry_block)
2903 region->restart_block = test_bb;
2904
2905 tree t1 = create_tmp_reg (tm_state_type);
2906 tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES);
2907 gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2908 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2909 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2910
2911 t2 = build_int_cst (tm_state_type, 0);
2912 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2913 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2914
2915 tm_log_emit_restores (region->entry_block, code_bb);
2916
2917 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2918 edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE);
2919 edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE);
2920 redirect_edge_pred (fallthru_edge, join_bb);
2921
2922 join_bb->count = test_bb->count = transaction_bb->count;
2923
2924 ei->probability = profile_probability::always ();
2925 et->probability = profile_probability::likely ();
2926 ef->probability = profile_probability::unlikely ();
2927
2928 code_bb->count = et->count ();
2929
2930 transaction_bb = join_bb;
2931 }
2932
2933 // If we have an ABORT edge, create a test to perform the abort.
2934 if (abort_edge)
2935 {
2936 basic_block test_bb = create_empty_bb (transaction_bb);
2937 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2938 if (region->restart_block == region->entry_block)
2939 region->restart_block = test_bb;
2940
2941 tree t1 = create_tmp_reg (tm_state_type);
2942 tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION);
2943 gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2944 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2945 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2946
2947 t2 = build_int_cst (tm_state_type, 0);
2948 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2949 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2950
2951 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2952 test_bb->count = transaction_bb->count;
2953 ei->probability = profile_probability::always ();
2954
2955 // Not abort edge. If both are live, chose one at random as we'll
2956 // we'll be fixing that up below.
2957 redirect_edge_pred (fallthru_edge, test_bb);
2958 fallthru_edge->flags = EDGE_FALSE_VALUE;
2959 fallthru_edge->probability = profile_probability::very_likely ();
2960
2961 // Abort/over edge.
2962 redirect_edge_pred (abort_edge, test_bb);
2963 abort_edge->flags = EDGE_TRUE_VALUE;
2964 abort_edge->probability = profile_probability::unlikely ();
2965
2966 transaction_bb = test_bb;
2967 }
2968
2969 // If we have both instrumented and uninstrumented code paths, select one.
2970 if (inst_edge && uninst_edge)
2971 {
2972 basic_block test_bb = create_empty_bb (transaction_bb);
2973 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2974 if (region->restart_block == region->entry_block)
2975 region->restart_block = test_bb;
2976
2977 tree t1 = create_tmp_reg (tm_state_type);
2978 tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE);
2979
2980 gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2981 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2982 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2983
2984 t2 = build_int_cst (tm_state_type, 0);
2985 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2986 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2987
2988 // Create the edge into test_bb first, as we want to copy values
2989 // out of the fallthru edge.
2990 edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags);
2991 e->probability = fallthru_edge->probability;
2992 test_bb->count = fallthru_edge->count ();
2993
2994 // Now update the edges to the inst/uninist implementations.
2995 // For now assume that the paths are equally likely. When using HTM,
2996 // we'll try the uninst path first and fallback to inst path if htm
2997 // buffers are exceeded. Without HTM we start with the inst path and
2998 // use the uninst path when falling back to serial mode.
2999 redirect_edge_pred (inst_edge, test_bb);
3000 inst_edge->flags = EDGE_FALSE_VALUE;
3001 inst_edge->probability = profile_probability::even ();
3002
3003 redirect_edge_pred (uninst_edge, test_bb);
3004 uninst_edge->flags = EDGE_TRUE_VALUE;
3005 uninst_edge->probability = profile_probability::even ();
3006 }
3007
3008 // If we have no previous special cases, and we have PHIs at the beginning
3009 // of the atomic region, this means we have a loop at the beginning of the
3010 // atomic region that shares the first block. This can cause problems with
3011 // the transaction restart abnormal edges to be added in the tm_edges pass.
3012 // Solve this by adding a new empty block to receive the abnormal edges.
3013 if (region->restart_block == region->entry_block
3014 && phi_nodes (region->entry_block))
3015 {
3016 basic_block empty_bb = create_empty_bb (transaction_bb);
3017 region->restart_block = empty_bb;
3018 add_bb_to_loop (empty_bb, transaction_bb->loop_father);
3019
3020 redirect_edge_pred (fallthru_edge, empty_bb);
3021 make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU);
3022 }
3023
3024 return NULL;
3025 }
3026
3027 /* Generate the temporary to be used for the return value of
3028 BUILT_IN_TM_START. */
3029
3030 static void *
3031 generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
3032 {
3033 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
3034 region->tm_state =
3035 create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
3036
3037 // Reset the subcode, post optimizations. We'll fill this in
3038 // again as we process blocks.
3039 if (region->exit_blocks)
3040 {
3041 gtransaction *transaction_stmt = region->get_transaction_stmt ();
3042 unsigned int subcode = gimple_transaction_subcode (transaction_stmt);
3043
3044 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
3045 subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
3046 | GTMA_MAY_ENTER_IRREVOCABLE
3047 | GTMA_HAS_NO_INSTRUMENTATION);
3048 else
3049 subcode &= GTMA_DECLARATION_MASK;
3050 gimple_transaction_set_subcode (transaction_stmt, subcode);
3051 }
3052
3053 return NULL;
3054 }
3055
3056 // Propagate flags from inner transactions outwards.
3057 static void
3058 propagate_tm_flags_out (struct tm_region *region)
3059 {
3060 if (region == NULL)
3061 return;
3062 propagate_tm_flags_out (region->inner);
3063
3064 if (region->outer && region->outer->transaction_stmt)
3065 {
3066 unsigned s
3067 = gimple_transaction_subcode (region->get_transaction_stmt ());
3068 s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE
3069 | GTMA_MAY_ENTER_IRREVOCABLE);
3070 s |= gimple_transaction_subcode (region->outer->get_transaction_stmt ());
3071 gimple_transaction_set_subcode (region->outer->get_transaction_stmt (),
3072 s);
3073 }
3074
3075 propagate_tm_flags_out (region->next);
3076 }
3077
3078 /* Entry point to the MARK phase of TM expansion. Here we replace
3079 transactional memory statements with calls to builtins, and function
3080 calls with their transactional clones (if available). But we don't
3081 yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
3082
3083 static unsigned int
3084 execute_tm_mark (void)
3085 {
3086 pending_edge_inserts_p = false;
3087
3088 expand_regions (all_tm_regions, generate_tm_state, NULL,
3089 /*traverse_clones=*/true);
3090
3091 tm_log_init ();
3092
3093 vec<tm_region *> bb_regions
3094 = get_bb_regions_instrumented (/*traverse_clones=*/true,
3095 /*include_uninstrumented_p=*/false);
3096 struct tm_region *r;
3097 unsigned i;
3098
3099 // Expand memory operations into calls into the runtime.
3100 // This collects log entries as well.
3101 FOR_EACH_VEC_ELT (bb_regions, i, r)
3102 {
3103 if (r != NULL)
3104 {
3105 if (r->transaction_stmt)
3106 {
3107 unsigned sub
3108 = gimple_transaction_subcode (r->get_transaction_stmt ());
3109
3110 /* If we're sure to go irrevocable, there won't be
3111 anything to expand, since the run-time will go
3112 irrevocable right away. */
3113 if (sub & GTMA_DOES_GO_IRREVOCABLE
3114 && sub & GTMA_MAY_ENTER_IRREVOCABLE)
3115 continue;
3116 }
3117 expand_block_tm (r, BASIC_BLOCK_FOR_FN (cfun, i));
3118 }
3119 }
3120
3121 bb_regions.release ();
3122
3123 // Propagate flags from inner transactions outwards.
3124 propagate_tm_flags_out (all_tm_regions);
3125
3126 // Expand GIMPLE_TRANSACTIONs into calls into the runtime.
3127 expand_regions (all_tm_regions, expand_transaction, NULL,
3128 /*traverse_clones=*/false);
3129
3130 tm_log_emit ();
3131 tm_log_delete ();
3132
3133 if (pending_edge_inserts_p)
3134 gsi_commit_edge_inserts ();
3135 free_dominance_info (CDI_DOMINATORS);
3136 return 0;
3137 }
3138
3139 namespace {
3140
3141 const pass_data pass_data_tm_mark =
3142 {
3143 GIMPLE_PASS, /* type */
3144 "tmmark", /* name */
3145 OPTGROUP_NONE, /* optinfo_flags */
3146 TV_TRANS_MEM, /* tv_id */
3147 ( PROP_ssa | PROP_cfg ), /* properties_required */
3148 0, /* properties_provided */
3149 0, /* properties_destroyed */
3150 0, /* todo_flags_start */
3151 TODO_update_ssa, /* todo_flags_finish */
3152 };
3153
3154 class pass_tm_mark : public gimple_opt_pass
3155 {
3156 public:
3157 pass_tm_mark (gcc::context *ctxt)
3158 : gimple_opt_pass (pass_data_tm_mark, ctxt)
3159 {}
3160
3161 /* opt_pass methods: */
3162 virtual unsigned int execute (function *) { return execute_tm_mark (); }
3163
3164 }; // class pass_tm_mark
3165
3166 } // anon namespace
3167
3168 gimple_opt_pass *
3169 make_pass_tm_mark (gcc::context *ctxt)
3170 {
3171 return new pass_tm_mark (ctxt);
3172 }
3173 \f
3174
3175 /* Create an abnormal edge from STMT at iter, splitting the block
3176 as necessary. Adjust *PNEXT as needed for the split block. */
3177
3178 static inline void
3179 split_bb_make_tm_edge (gimple *stmt, basic_block dest_bb,
3180 gimple_stmt_iterator iter, gimple_stmt_iterator *pnext)
3181 {
3182 basic_block bb = gimple_bb (stmt);
3183 if (!gsi_one_before_end_p (iter))
3184 {
3185 edge e = split_block (bb, stmt);
3186 *pnext = gsi_start_bb (e->dest);
3187 }
3188 edge e = make_edge (bb, dest_bb, EDGE_ABNORMAL);
3189 if (e)
3190 e->probability = profile_probability::guessed_never ();
3191
3192 // Record the need for the edge for the benefit of the rtl passes.
3193 if (cfun->gimple_df->tm_restart == NULL)
3194 cfun->gimple_df->tm_restart
3195 = hash_table<tm_restart_hasher>::create_ggc (31);
3196
3197 struct tm_restart_node dummy;
3198 dummy.stmt = stmt;
3199 dummy.label_or_list = gimple_block_label (dest_bb);
3200
3201 tm_restart_node **slot = cfun->gimple_df->tm_restart->find_slot (&dummy,
3202 INSERT);
3203 struct tm_restart_node *n = *slot;
3204 if (n == NULL)
3205 {
3206 n = ggc_alloc<tm_restart_node> ();
3207 *n = dummy;
3208 }
3209 else
3210 {
3211 tree old = n->label_or_list;
3212 if (TREE_CODE (old) == LABEL_DECL)
3213 old = tree_cons (NULL, old, NULL);
3214 n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
3215 }
3216 }
3217
3218 /* Split block BB as necessary for every builtin function we added, and
3219 wire up the abnormal back edges implied by the transaction restart. */
3220
3221 static void
3222 expand_block_edges (struct tm_region *const region, basic_block bb)
3223 {
3224 gimple_stmt_iterator gsi, next_gsi;
3225
3226 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi = next_gsi)
3227 {
3228 gimple *stmt = gsi_stmt (gsi);
3229 gcall *call_stmt;
3230
3231 next_gsi = gsi;
3232 gsi_next (&next_gsi);
3233
3234 // ??? Shouldn't we split for any non-pure, non-irrevocable function?
3235 call_stmt = dyn_cast <gcall *> (stmt);
3236 if ((!call_stmt)
3237 || (gimple_call_flags (call_stmt) & ECF_TM_BUILTIN) == 0)
3238 continue;
3239
3240 if (gimple_call_builtin_p (call_stmt, BUILT_IN_TM_ABORT))
3241 {
3242 // If we have a ``_transaction_cancel [[outer]]'', there is only
3243 // one abnormal edge: to the transaction marked OUTER.
3244 // All compiler-generated instances of BUILT_IN_TM_ABORT have a
3245 // constant argument, which we can examine here. Users invoking
3246 // TM_ABORT directly get what they deserve.
3247 tree arg = gimple_call_arg (call_stmt, 0);
3248 if (TREE_CODE (arg) == INTEGER_CST
3249 && (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0
3250 && !decl_is_tm_clone (current_function_decl))
3251 {
3252 // Find the GTMA_IS_OUTER transaction.
3253 for (struct tm_region *o = region; o; o = o->outer)
3254 if (o->original_transaction_was_outer)
3255 {
3256 split_bb_make_tm_edge (call_stmt, o->restart_block,
3257 gsi, &next_gsi);
3258 break;
3259 }
3260
3261 // Otherwise, the front-end should have semantically checked
3262 // outer aborts, but in either case the target region is not
3263 // within this function.
3264 continue;
3265 }
3266
3267 // Non-outer, TM aborts have an abnormal edge to the inner-most
3268 // transaction, the one being aborted;
3269 split_bb_make_tm_edge (call_stmt, region->restart_block, gsi,
3270 &next_gsi);
3271 }
3272
3273 // All TM builtins have an abnormal edge to the outer-most transaction.
3274 // We never restart inner transactions. For tm clones, we know a-priori
3275 // that the outer-most transaction is outside the function.
3276 if (decl_is_tm_clone (current_function_decl))
3277 continue;
3278
3279 if (cfun->gimple_df->tm_restart == NULL)
3280 cfun->gimple_df->tm_restart
3281 = hash_table<tm_restart_hasher>::create_ggc (31);
3282
3283 // All TM builtins have an abnormal edge to the outer-most transaction.
3284 // We never restart inner transactions.
3285 for (struct tm_region *o = region; o; o = o->outer)
3286 if (!o->outer)
3287 {
3288 split_bb_make_tm_edge (call_stmt, o->restart_block, gsi, &next_gsi);
3289 break;
3290 }
3291
3292 // Delete any tail-call annotation that may have been added.
3293 // The tail-call pass may have mis-identified the commit as being
3294 // a candidate because we had not yet added this restart edge.
3295 gimple_call_set_tail (call_stmt, false);
3296 }
3297 }
3298
3299 /* Entry point to the final expansion of transactional nodes. */
3300
3301 namespace {
3302
3303 const pass_data pass_data_tm_edges =
3304 {
3305 GIMPLE_PASS, /* type */
3306 "tmedge", /* name */
3307 OPTGROUP_NONE, /* optinfo_flags */
3308 TV_TRANS_MEM, /* tv_id */
3309 ( PROP_ssa | PROP_cfg ), /* properties_required */
3310 0, /* properties_provided */
3311 0, /* properties_destroyed */
3312 0, /* todo_flags_start */
3313 TODO_update_ssa, /* todo_flags_finish */
3314 };
3315
3316 class pass_tm_edges : public gimple_opt_pass
3317 {
3318 public:
3319 pass_tm_edges (gcc::context *ctxt)
3320 : gimple_opt_pass (pass_data_tm_edges, ctxt)
3321 {}
3322
3323 /* opt_pass methods: */
3324 virtual unsigned int execute (function *);
3325
3326 }; // class pass_tm_edges
3327
3328 unsigned int
3329 pass_tm_edges::execute (function *fun)
3330 {
3331 vec<tm_region *> bb_regions
3332 = get_bb_regions_instrumented (/*traverse_clones=*/false,
3333 /*include_uninstrumented_p=*/true);
3334 struct tm_region *r;
3335 unsigned i;
3336
3337 FOR_EACH_VEC_ELT (bb_regions, i, r)
3338 if (r != NULL)
3339 expand_block_edges (r, BASIC_BLOCK_FOR_FN (fun, i));
3340
3341 bb_regions.release ();
3342
3343 /* We've got to release the dominance info now, to indicate that it
3344 must be rebuilt completely. Otherwise we'll crash trying to update
3345 the SSA web in the TODO section following this pass. */
3346 free_dominance_info (CDI_DOMINATORS);
3347 /* We'ge also wrecked loops badly with inserting of abnormal edges. */
3348 loops_state_set (LOOPS_NEED_FIXUP);
3349 bitmap_obstack_release (&tm_obstack);
3350 all_tm_regions = NULL;
3351
3352 return 0;
3353 }
3354
3355 } // anon namespace
3356
3357 gimple_opt_pass *
3358 make_pass_tm_edges (gcc::context *ctxt)
3359 {
3360 return new pass_tm_edges (ctxt);
3361 }
3362 \f
3363 /* Helper function for expand_regions. Expand REGION and recurse to
3364 the inner region. Call CALLBACK on each region. CALLBACK returns
3365 NULL to continue the traversal, otherwise a non-null value which
3366 this function will return as well. TRAVERSE_CLONES is true if we
3367 should traverse transactional clones. */
3368
3369 static void *
3370 expand_regions_1 (struct tm_region *region,
3371 void *(*callback)(struct tm_region *, void *),
3372 void *data,
3373 bool traverse_clones)
3374 {
3375 void *retval = NULL;
3376 if (region->exit_blocks
3377 || (traverse_clones && decl_is_tm_clone (current_function_decl)))
3378 {
3379 retval = callback (region, data);
3380 if (retval)
3381 return retval;
3382 }
3383 if (region->inner)
3384 {
3385 retval = expand_regions (region->inner, callback, data, traverse_clones);
3386 if (retval)
3387 return retval;
3388 }
3389 return retval;
3390 }
3391
3392 /* Traverse the regions enclosed and including REGION. Execute
3393 CALLBACK for each region, passing DATA. CALLBACK returns NULL to
3394 continue the traversal, otherwise a non-null value which this
3395 function will return as well. TRAVERSE_CLONES is true if we should
3396 traverse transactional clones. */
3397
3398 static void *
3399 expand_regions (struct tm_region *region,
3400 void *(*callback)(struct tm_region *, void *),
3401 void *data,
3402 bool traverse_clones)
3403 {
3404 void *retval = NULL;
3405 while (region)
3406 {
3407 retval = expand_regions_1 (region, callback, data, traverse_clones);
3408 if (retval)
3409 return retval;
3410 region = region->next;
3411 }
3412 return retval;
3413 }
3414
3415 \f
3416 /* A unique TM memory operation. */
3417 struct tm_memop
3418 {
3419 /* Unique ID that all memory operations to the same location have. */
3420 unsigned int value_id;
3421 /* Address of load/store. */
3422 tree addr;
3423 };
3424
3425 /* TM memory operation hashtable helpers. */
3426
3427 struct tm_memop_hasher : free_ptr_hash <tm_memop>
3428 {
3429 static inline hashval_t hash (const tm_memop *);
3430 static inline bool equal (const tm_memop *, const tm_memop *);
3431 };
3432
3433 /* Htab support. Return a hash value for a `tm_memop'. */
3434 inline hashval_t
3435 tm_memop_hasher::hash (const tm_memop *mem)
3436 {
3437 tree addr = mem->addr;
3438 /* We drill down to the SSA_NAME/DECL for the hash, but equality is
3439 actually done with operand_equal_p (see tm_memop_eq). */
3440 if (TREE_CODE (addr) == ADDR_EXPR)
3441 addr = TREE_OPERAND (addr, 0);
3442 return iterative_hash_expr (addr, 0);
3443 }
3444
3445 /* Htab support. Return true if two tm_memop's are the same. */
3446 inline bool
3447 tm_memop_hasher::equal (const tm_memop *mem1, const tm_memop *mem2)
3448 {
3449 return operand_equal_p (mem1->addr, mem2->addr, 0);
3450 }
3451
3452 /* Sets for solving data flow equations in the memory optimization pass. */
3453 struct tm_memopt_bitmaps
3454 {
3455 /* Stores available to this BB upon entry. Basically, stores that
3456 dominate this BB. */
3457 bitmap store_avail_in;
3458 /* Stores available at the end of this BB. */
3459 bitmap store_avail_out;
3460 bitmap store_antic_in;
3461 bitmap store_antic_out;
3462 /* Reads available to this BB upon entry. Basically, reads that
3463 dominate this BB. */
3464 bitmap read_avail_in;
3465 /* Reads available at the end of this BB. */
3466 bitmap read_avail_out;
3467 /* Reads performed in this BB. */
3468 bitmap read_local;
3469 /* Writes performed in this BB. */
3470 bitmap store_local;
3471
3472 /* Temporary storage for pass. */
3473 /* Is the current BB in the worklist? */
3474 bool avail_in_worklist_p;
3475 /* Have we visited this BB? */
3476 bool visited_p;
3477 };
3478
3479 static bitmap_obstack tm_memopt_obstack;
3480
3481 /* Unique counter for TM loads and stores. Loads and stores of the
3482 same address get the same ID. */
3483 static unsigned int tm_memopt_value_id;
3484 static hash_table<tm_memop_hasher> *tm_memopt_value_numbers;
3485
3486 #define STORE_AVAIL_IN(BB) \
3487 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
3488 #define STORE_AVAIL_OUT(BB) \
3489 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
3490 #define STORE_ANTIC_IN(BB) \
3491 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
3492 #define STORE_ANTIC_OUT(BB) \
3493 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
3494 #define READ_AVAIL_IN(BB) \
3495 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
3496 #define READ_AVAIL_OUT(BB) \
3497 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
3498 #define READ_LOCAL(BB) \
3499 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
3500 #define STORE_LOCAL(BB) \
3501 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
3502 #define AVAIL_IN_WORKLIST_P(BB) \
3503 ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
3504 #define BB_VISITED_P(BB) \
3505 ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
3506
3507 /* Given a TM load/store in STMT, return the value number for the address
3508 it accesses. */
3509
3510 static unsigned int
3511 tm_memopt_value_number (gimple *stmt, enum insert_option op)
3512 {
3513 struct tm_memop tmpmem, *mem;
3514 tm_memop **slot;
3515
3516 gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
3517 tmpmem.addr = gimple_call_arg (stmt, 0);
3518 slot = tm_memopt_value_numbers->find_slot (&tmpmem, op);
3519 if (*slot)
3520 mem = *slot;
3521 else if (op == INSERT)
3522 {
3523 mem = XNEW (struct tm_memop);
3524 *slot = mem;
3525 mem->value_id = tm_memopt_value_id++;
3526 mem->addr = tmpmem.addr;
3527 }
3528 else
3529 gcc_unreachable ();
3530 return mem->value_id;
3531 }
3532
3533 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
3534
3535 static void
3536 tm_memopt_accumulate_memops (basic_block bb)
3537 {
3538 gimple_stmt_iterator gsi;
3539
3540 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3541 {
3542 gimple *stmt = gsi_stmt (gsi);
3543 bitmap bits;
3544 unsigned int loc;
3545
3546 if (is_tm_store (stmt))
3547 bits = STORE_LOCAL (bb);
3548 else if (is_tm_load (stmt))
3549 bits = READ_LOCAL (bb);
3550 else
3551 continue;
3552
3553 loc = tm_memopt_value_number (stmt, INSERT);
3554 bitmap_set_bit (bits, loc);
3555 if (dump_file)
3556 {
3557 fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
3558 is_tm_load (stmt) ? "LOAD" : "STORE", loc,
3559 gimple_bb (stmt)->index);
3560 print_generic_expr (dump_file, gimple_call_arg (stmt, 0));
3561 fprintf (dump_file, "\n");
3562 }
3563 }
3564 }
3565
3566 /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
3567
3568 static void
3569 dump_tm_memopt_set (const char *set_name, bitmap bits)
3570 {
3571 unsigned i;
3572 bitmap_iterator bi;
3573 const char *comma = "";
3574
3575 fprintf (dump_file, "TM memopt: %s: [", set_name);
3576 EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
3577 {
3578 hash_table<tm_memop_hasher>::iterator hi;
3579 struct tm_memop *mem = NULL;
3580
3581 /* Yeah, yeah, yeah. Whatever. This is just for debugging. */
3582 FOR_EACH_HASH_TABLE_ELEMENT (*tm_memopt_value_numbers, mem, tm_memop_t, hi)
3583 if (mem->value_id == i)
3584 break;
3585 gcc_assert (mem->value_id == i);
3586 fprintf (dump_file, "%s", comma);
3587 comma = ", ";
3588 print_generic_expr (dump_file, mem->addr);
3589 }
3590 fprintf (dump_file, "]\n");
3591 }
3592
3593 /* Prettily dump all of the memopt sets in BLOCKS. */
3594
3595 static void
3596 dump_tm_memopt_sets (vec<basic_block> blocks)
3597 {
3598 size_t i;
3599 basic_block bb;
3600
3601 for (i = 0; blocks.iterate (i, &bb); ++i)
3602 {
3603 fprintf (dump_file, "------------BB %d---------\n", bb->index);
3604 dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
3605 dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
3606 dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
3607 dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
3608 dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
3609 dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
3610 }
3611 }
3612
3613 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
3614
3615 static void
3616 tm_memopt_compute_avin (basic_block bb)
3617 {
3618 edge e;
3619 unsigned ix;
3620
3621 /* Seed with the AVOUT of any predecessor. */
3622 for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
3623 {
3624 e = EDGE_PRED (bb, ix);
3625 /* Make sure we have already visited this BB, and is thus
3626 initialized.
3627
3628 If e->src->aux is NULL, this predecessor is actually on an
3629 enclosing transaction. We only care about the current
3630 transaction, so ignore it. */
3631 if (e->src->aux && BB_VISITED_P (e->src))
3632 {
3633 bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3634 bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3635 break;
3636 }
3637 }
3638
3639 for (; ix < EDGE_COUNT (bb->preds); ix++)
3640 {
3641 e = EDGE_PRED (bb, ix);
3642 if (e->src->aux && BB_VISITED_P (e->src))
3643 {
3644 bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3645 bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3646 }
3647 }
3648
3649 BB_VISITED_P (bb) = true;
3650 }
3651
3652 /* Compute the STORE_ANTIC_IN for the basic block BB. */
3653
3654 static void
3655 tm_memopt_compute_antin (basic_block bb)
3656 {
3657 edge e;
3658 unsigned ix;
3659
3660 /* Seed with the ANTIC_OUT of any successor. */
3661 for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
3662 {
3663 e = EDGE_SUCC (bb, ix);
3664 /* Make sure we have already visited this BB, and is thus
3665 initialized. */
3666 if (BB_VISITED_P (e->dest))
3667 {
3668 bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3669 break;
3670 }
3671 }
3672
3673 for (; ix < EDGE_COUNT (bb->succs); ix++)
3674 {
3675 e = EDGE_SUCC (bb, ix);
3676 if (BB_VISITED_P (e->dest))
3677 bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3678 }
3679
3680 BB_VISITED_P (bb) = true;
3681 }
3682
3683 /* Compute the AVAIL sets for every basic block in BLOCKS.
3684
3685 We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3686
3687 AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3688 AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
3689
3690 This is basically what we do in lcm's compute_available(), but here
3691 we calculate two sets of sets (one for STOREs and one for READs),
3692 and we work on a region instead of the entire CFG.
3693
3694 REGION is the TM region.
3695 BLOCKS are the basic blocks in the region. */
3696
3697 static void
3698 tm_memopt_compute_available (struct tm_region *region,
3699 vec<basic_block> blocks)
3700 {
3701 edge e;
3702 basic_block *worklist, *qin, *qout, *qend, bb;
3703 unsigned int qlen, i;
3704 edge_iterator ei;
3705 bool changed;
3706
3707 /* Allocate a worklist array/queue. Entries are only added to the
3708 list if they were not already on the list. So the size is
3709 bounded by the number of basic blocks in the region. */
3710 gcc_assert (!blocks.is_empty ());
3711 qlen = blocks.length () - 1;
3712 qin = qout = worklist = XNEWVEC (basic_block, qlen);
3713
3714 /* Put every block in the region on the worklist. */
3715 for (i = 0; blocks.iterate (i, &bb); ++i)
3716 {
3717 /* Seed AVAIL_OUT with the LOCAL set. */
3718 bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3719 bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3720
3721 AVAIL_IN_WORKLIST_P (bb) = true;
3722 /* No need to insert the entry block, since it has an AVIN of
3723 null, and an AVOUT that has already been seeded in. */
3724 if (bb != region->entry_block)
3725 *qin++ = bb;
3726 }
3727
3728 /* The entry block has been initialized with the local sets. */
3729 BB_VISITED_P (region->entry_block) = true;
3730
3731 qin = worklist;
3732 qend = &worklist[qlen];
3733
3734 /* Iterate until the worklist is empty. */
3735 while (qlen)
3736 {
3737 /* Take the first entry off the worklist. */
3738 bb = *qout++;
3739 qlen--;
3740
3741 if (qout >= qend)
3742 qout = worklist;
3743
3744 /* This block can be added to the worklist again if necessary. */
3745 AVAIL_IN_WORKLIST_P (bb) = false;
3746 tm_memopt_compute_avin (bb);
3747
3748 /* Note: We do not add the LOCAL sets here because we already
3749 seeded the AVAIL_OUT sets with them. */
3750 changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3751 changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3752 if (changed
3753 && (region->exit_blocks == NULL
3754 || !bitmap_bit_p (region->exit_blocks, bb->index)))
3755 /* If the out state of this block changed, then we need to add
3756 its successors to the worklist if they are not already in. */
3757 FOR_EACH_EDGE (e, ei, bb->succs)
3758 if (!AVAIL_IN_WORKLIST_P (e->dest)
3759 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
3760 {
3761 *qin++ = e->dest;
3762 AVAIL_IN_WORKLIST_P (e->dest) = true;
3763 qlen++;
3764
3765 if (qin >= qend)
3766 qin = worklist;
3767 }
3768 }
3769
3770 free (worklist);
3771
3772 if (dump_file)
3773 dump_tm_memopt_sets (blocks);
3774 }
3775
3776 /* Compute ANTIC sets for every basic block in BLOCKS.
3777
3778 We compute STORE_ANTIC_OUT as follows:
3779
3780 STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3781 STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
3782
3783 REGION is the TM region.
3784 BLOCKS are the basic blocks in the region. */
3785
3786 static void
3787 tm_memopt_compute_antic (struct tm_region *region,
3788 vec<basic_block> blocks)
3789 {
3790 edge e;
3791 basic_block *worklist, *qin, *qout, *qend, bb;
3792 unsigned int qlen;
3793 int i;
3794 edge_iterator ei;
3795
3796 /* Allocate a worklist array/queue. Entries are only added to the
3797 list if they were not already on the list. So the size is
3798 bounded by the number of basic blocks in the region. */
3799 qin = qout = worklist = XNEWVEC (basic_block, blocks.length ());
3800
3801 for (qlen = 0, i = blocks.length () - 1; i >= 0; --i)
3802 {
3803 bb = blocks[i];
3804
3805 /* Seed ANTIC_OUT with the LOCAL set. */
3806 bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3807
3808 /* Put every block in the region on the worklist. */
3809 AVAIL_IN_WORKLIST_P (bb) = true;
3810 /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3811 and their ANTIC_OUT has already been seeded in. */
3812 if (region->exit_blocks
3813 && !bitmap_bit_p (region->exit_blocks, bb->index))
3814 {
3815 qlen++;
3816 *qin++ = bb;
3817 }
3818 }
3819
3820 /* The exit blocks have been initialized with the local sets. */
3821 if (region->exit_blocks)
3822 {
3823 unsigned int i;
3824 bitmap_iterator bi;
3825 EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3826 BB_VISITED_P (BASIC_BLOCK_FOR_FN (cfun, i)) = true;
3827 }
3828
3829 qin = worklist;
3830 qend = &worklist[qlen];
3831
3832 /* Iterate until the worklist is empty. */
3833 while (qlen)
3834 {
3835 /* Take the first entry off the worklist. */
3836 bb = *qout++;
3837 qlen--;
3838
3839 if (qout >= qend)
3840 qout = worklist;
3841
3842 /* This block can be added to the worklist again if necessary. */
3843 AVAIL_IN_WORKLIST_P (bb) = false;
3844 tm_memopt_compute_antin (bb);
3845
3846 /* Note: We do not add the LOCAL sets here because we already
3847 seeded the ANTIC_OUT sets with them. */
3848 if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3849 && bb != region->entry_block)
3850 /* If the out state of this block changed, then we need to add
3851 its predecessors to the worklist if they are not already in. */
3852 FOR_EACH_EDGE (e, ei, bb->preds)
3853 if (!AVAIL_IN_WORKLIST_P (e->src))
3854 {
3855 *qin++ = e->src;
3856 AVAIL_IN_WORKLIST_P (e->src) = true;
3857 qlen++;
3858
3859 if (qin >= qend)
3860 qin = worklist;
3861 }
3862 }
3863
3864 free (worklist);
3865
3866 if (dump_file)
3867 dump_tm_memopt_sets (blocks);
3868 }
3869
3870 /* Offsets of load variants from TM_LOAD. For example,
3871 BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3872 See gtm-builtins.def. */
3873 #define TRANSFORM_RAR 1
3874 #define TRANSFORM_RAW 2
3875 #define TRANSFORM_RFW 3
3876 /* Offsets of store variants from TM_STORE. */
3877 #define TRANSFORM_WAR 1
3878 #define TRANSFORM_WAW 2
3879
3880 /* Inform about a load/store optimization. */
3881
3882 static void
3883 dump_tm_memopt_transform (gimple *stmt)
3884 {
3885 if (dump_file)
3886 {
3887 fprintf (dump_file, "TM memopt: transforming: ");
3888 print_gimple_stmt (dump_file, stmt, 0);
3889 fprintf (dump_file, "\n");
3890 }
3891 }
3892
3893 /* Perform a read/write optimization. Replaces the TM builtin in STMT
3894 by a builtin that is OFFSET entries down in the builtins table in
3895 gtm-builtins.def. */
3896
3897 static void
3898 tm_memopt_transform_stmt (unsigned int offset,
3899 gcall *stmt,
3900 gimple_stmt_iterator *gsi)
3901 {
3902 tree fn = gimple_call_fn (stmt);
3903 gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3904 TREE_OPERAND (fn, 0)
3905 = builtin_decl_explicit ((enum built_in_function)
3906 (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3907 + offset));
3908 gimple_call_set_fn (stmt, fn);
3909 gsi_replace (gsi, stmt, true);
3910 dump_tm_memopt_transform (stmt);
3911 }
3912
3913 /* Perform the actual TM memory optimization transformations in the
3914 basic blocks in BLOCKS. */
3915
3916 static void
3917 tm_memopt_transform_blocks (vec<basic_block> blocks)
3918 {
3919 size_t i;
3920 basic_block bb;
3921 gimple_stmt_iterator gsi;
3922
3923 for (i = 0; blocks.iterate (i, &bb); ++i)
3924 {
3925 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3926 {
3927 gimple *stmt = gsi_stmt (gsi);
3928 bitmap read_avail = READ_AVAIL_IN (bb);
3929 bitmap store_avail = STORE_AVAIL_IN (bb);
3930 bitmap store_antic = STORE_ANTIC_OUT (bb);
3931 unsigned int loc;
3932
3933 if (is_tm_simple_load (stmt))
3934 {
3935 gcall *call_stmt = as_a <gcall *> (stmt);
3936 loc = tm_memopt_value_number (stmt, NO_INSERT);
3937 if (store_avail && bitmap_bit_p (store_avail, loc))
3938 tm_memopt_transform_stmt (TRANSFORM_RAW, call_stmt, &gsi);
3939 else if (store_antic && bitmap_bit_p (store_antic, loc))
3940 {
3941 tm_memopt_transform_stmt (TRANSFORM_RFW, call_stmt, &gsi);
3942 bitmap_set_bit (store_avail, loc);
3943 }
3944 else if (read_avail && bitmap_bit_p (read_avail, loc))
3945 tm_memopt_transform_stmt (TRANSFORM_RAR, call_stmt, &gsi);
3946 else
3947 bitmap_set_bit (read_avail, loc);
3948 }
3949 else if (is_tm_simple_store (stmt))
3950 {
3951 gcall *call_stmt = as_a <gcall *> (stmt);
3952 loc = tm_memopt_value_number (stmt, NO_INSERT);
3953 if (store_avail && bitmap_bit_p (store_avail, loc))
3954 tm_memopt_transform_stmt (TRANSFORM_WAW, call_stmt, &gsi);
3955 else
3956 {
3957 if (read_avail && bitmap_bit_p (read_avail, loc))
3958 tm_memopt_transform_stmt (TRANSFORM_WAR, call_stmt, &gsi);
3959 bitmap_set_bit (store_avail, loc);
3960 }
3961 }
3962 }
3963 }
3964 }
3965
3966 /* Return a new set of bitmaps for a BB. */
3967
3968 static struct tm_memopt_bitmaps *
3969 tm_memopt_init_sets (void)
3970 {
3971 struct tm_memopt_bitmaps *b
3972 = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3973 b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3974 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3975 b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
3976 b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
3977 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3978 b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3979 b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3980 b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
3981 b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
3982 return b;
3983 }
3984
3985 /* Free sets computed for each BB. */
3986
3987 static void
3988 tm_memopt_free_sets (vec<basic_block> blocks)
3989 {
3990 size_t i;
3991 basic_block bb;
3992
3993 for (i = 0; blocks.iterate (i, &bb); ++i)
3994 bb->aux = NULL;
3995 }
3996
3997 /* Clear the visited bit for every basic block in BLOCKS. */
3998
3999 static void
4000 tm_memopt_clear_visited (vec<basic_block> blocks)
4001 {
4002 size_t i;
4003 basic_block bb;
4004
4005 for (i = 0; blocks.iterate (i, &bb); ++i)
4006 BB_VISITED_P (bb) = false;
4007 }
4008
4009 /* Replace TM load/stores with hints for the runtime. We handle
4010 things like read-after-write, write-after-read, read-after-read,
4011 read-for-write, etc. */
4012
4013 static unsigned int
4014 execute_tm_memopt (void)
4015 {
4016 struct tm_region *region;
4017 vec<basic_block> bbs;
4018
4019 tm_memopt_value_id = 0;
4020 tm_memopt_value_numbers = new hash_table<tm_memop_hasher> (10);
4021
4022 for (region = all_tm_regions; region; region = region->next)
4023 {
4024 /* All the TM stores/loads in the current region. */
4025 size_t i;
4026 basic_block bb;
4027
4028 bitmap_obstack_initialize (&tm_memopt_obstack);
4029
4030 /* Save all BBs for the current region. */
4031 bbs = get_tm_region_blocks (region->entry_block,
4032 region->exit_blocks,
4033 region->irr_blocks,
4034 NULL,
4035 false);
4036
4037 /* Collect all the memory operations. */
4038 for (i = 0; bbs.iterate (i, &bb); ++i)
4039 {
4040 bb->aux = tm_memopt_init_sets ();
4041 tm_memopt_accumulate_memops (bb);
4042 }
4043
4044 /* Solve data flow equations and transform each block accordingly. */
4045 tm_memopt_clear_visited (bbs);
4046 tm_memopt_compute_available (region, bbs);
4047 tm_memopt_clear_visited (bbs);
4048 tm_memopt_compute_antic (region, bbs);
4049 tm_memopt_transform_blocks (bbs);
4050
4051 tm_memopt_free_sets (bbs);
4052 bbs.release ();
4053 bitmap_obstack_release (&tm_memopt_obstack);
4054 tm_memopt_value_numbers->empty ();
4055 }
4056
4057 delete tm_memopt_value_numbers;
4058 tm_memopt_value_numbers = NULL;
4059 return 0;
4060 }
4061
4062 namespace {
4063
4064 const pass_data pass_data_tm_memopt =
4065 {
4066 GIMPLE_PASS, /* type */
4067 "tmmemopt", /* name */
4068 OPTGROUP_NONE, /* optinfo_flags */
4069 TV_TRANS_MEM, /* tv_id */
4070 ( PROP_ssa | PROP_cfg ), /* properties_required */
4071 0, /* properties_provided */
4072 0, /* properties_destroyed */
4073 0, /* todo_flags_start */
4074 0, /* todo_flags_finish */
4075 };
4076
4077 class pass_tm_memopt : public gimple_opt_pass
4078 {
4079 public:
4080 pass_tm_memopt (gcc::context *ctxt)
4081 : gimple_opt_pass (pass_data_tm_memopt, ctxt)
4082 {}
4083
4084 /* opt_pass methods: */
4085 virtual bool gate (function *) { return flag_tm && optimize > 0; }
4086 virtual unsigned int execute (function *) { return execute_tm_memopt (); }
4087
4088 }; // class pass_tm_memopt
4089
4090 } // anon namespace
4091
4092 gimple_opt_pass *
4093 make_pass_tm_memopt (gcc::context *ctxt)
4094 {
4095 return new pass_tm_memopt (ctxt);
4096 }
4097
4098 \f
4099 /* Interprocedual analysis for the creation of transactional clones.
4100 The aim of this pass is to find which functions are referenced in
4101 a non-irrevocable transaction context, and for those over which
4102 we have control (or user directive), create a version of the
4103 function which uses only the transactional interface to reference
4104 protected memories. This analysis proceeds in several steps:
4105
4106 (1) Collect the set of all possible transactional clones:
4107
4108 (a) For all local public functions marked tm_callable, push
4109 it onto the tm_callee queue.
4110
4111 (b) For all local functions, scan for calls in transaction blocks.
4112 Push the caller and callee onto the tm_caller and tm_callee
4113 queues. Count the number of callers for each callee.
4114
4115 (c) For each local function on the callee list, assume we will
4116 create a transactional clone. Push *all* calls onto the
4117 callee queues; count the number of clone callers separately
4118 to the number of original callers.
4119
4120 (2) Propagate irrevocable status up the dominator tree:
4121
4122 (a) Any external function on the callee list that is not marked
4123 tm_callable is irrevocable. Push all callers of such onto
4124 a worklist.
4125
4126 (b) For each function on the worklist, mark each block that
4127 contains an irrevocable call. Use the AND operator to
4128 propagate that mark up the dominator tree.
4129
4130 (c) If we reach the entry block for a possible transactional
4131 clone, then the transactional clone is irrevocable, and
4132 we should not create the clone after all. Push all
4133 callers onto the worklist.
4134
4135 (d) Place tm_irrevocable calls at the beginning of the relevant
4136 blocks. Special case here is the entry block for the entire
4137 transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
4138 the library to begin the region in serial mode. Decrement
4139 the call count for all callees in the irrevocable region.
4140
4141 (3) Create the transactional clones:
4142
4143 Any tm_callee that still has a non-zero call count is cloned.
4144 */
4145
4146 /* This structure is stored in the AUX field of each cgraph_node. */
4147 struct tm_ipa_cg_data
4148 {
4149 /* The clone of the function that got created. */
4150 struct cgraph_node *clone;
4151
4152 /* The tm regions in the normal function. */
4153 struct tm_region *all_tm_regions;
4154
4155 /* The blocks of the normal/clone functions that contain irrevocable
4156 calls, or blocks that are post-dominated by irrevocable calls. */
4157 bitmap irrevocable_blocks_normal;
4158 bitmap irrevocable_blocks_clone;
4159
4160 /* The blocks of the normal function that are involved in transactions. */
4161 bitmap transaction_blocks_normal;
4162
4163 /* The number of callers to the transactional clone of this function
4164 from normal and transactional clones respectively. */
4165 unsigned tm_callers_normal;
4166 unsigned tm_callers_clone;
4167
4168 /* True if all calls to this function's transactional clone
4169 are irrevocable. Also automatically true if the function
4170 has no transactional clone. */
4171 bool is_irrevocable;
4172
4173 /* Flags indicating the presence of this function in various queues. */
4174 bool in_callee_queue;
4175 bool in_worklist;
4176
4177 /* Flags indicating the kind of scan desired while in the worklist. */
4178 bool want_irr_scan_normal;
4179 };
4180
4181 typedef vec<cgraph_node *> cgraph_node_queue;
4182
4183 /* Return the ipa data associated with NODE, allocating zeroed memory
4184 if necessary. TRAVERSE_ALIASES is true if we must traverse aliases
4185 and set *NODE accordingly. */
4186
4187 static struct tm_ipa_cg_data *
4188 get_cg_data (struct cgraph_node **node, bool traverse_aliases)
4189 {
4190 struct tm_ipa_cg_data *d;
4191
4192 if (traverse_aliases && (*node)->alias)
4193 *node = (*node)->get_alias_target ();
4194
4195 d = (struct tm_ipa_cg_data *) (*node)->aux;
4196
4197 if (d == NULL)
4198 {
4199 d = (struct tm_ipa_cg_data *)
4200 obstack_alloc (&tm_obstack.obstack, sizeof (*d));
4201 (*node)->aux = (void *) d;
4202 memset (d, 0, sizeof (*d));
4203 }
4204
4205 return d;
4206 }
4207
4208 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
4209 it is already present. */
4210
4211 static void
4212 maybe_push_queue (struct cgraph_node *node,
4213 cgraph_node_queue *queue_p, bool *in_queue_p)
4214 {
4215 if (!*in_queue_p)
4216 {
4217 *in_queue_p = true;
4218 queue_p->safe_push (node);
4219 }
4220 }
4221
4222 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
4223 Queue all callees within block BB. */
4224
4225 static void
4226 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
4227 basic_block bb, bool for_clone)
4228 {
4229 gimple_stmt_iterator gsi;
4230
4231 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4232 {
4233 gimple *stmt = gsi_stmt (gsi);
4234 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4235 {
4236 tree fndecl = gimple_call_fndecl (stmt);
4237 if (fndecl)
4238 {
4239 struct tm_ipa_cg_data *d;
4240 unsigned *pcallers;
4241 struct cgraph_node *node;
4242
4243 if (is_tm_ending_fndecl (fndecl))
4244 continue;
4245 if (find_tm_replacement_function (fndecl))
4246 continue;
4247
4248 node = cgraph_node::get (fndecl);
4249 gcc_assert (node != NULL);
4250 d = get_cg_data (&node, true);
4251
4252 pcallers = (for_clone ? &d->tm_callers_clone
4253 : &d->tm_callers_normal);
4254 *pcallers += 1;
4255
4256 maybe_push_queue (node, callees_p, &d->in_callee_queue);
4257 }
4258 }
4259 }
4260 }
4261
4262 /* Scan all calls in NODE that are within a transaction region,
4263 and push the resulting nodes into the callee queue. */
4264
4265 static void
4266 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
4267 cgraph_node_queue *callees_p)
4268 {
4269 d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
4270 d->all_tm_regions = all_tm_regions;
4271
4272 for (tm_region *r = all_tm_regions; r; r = r->next)
4273 {
4274 vec<basic_block> bbs;
4275 basic_block bb;
4276 unsigned i;
4277
4278 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
4279 d->transaction_blocks_normal, false, false);
4280
4281 FOR_EACH_VEC_ELT (bbs, i, bb)
4282 ipa_tm_scan_calls_block (callees_p, bb, false);
4283
4284 bbs.release ();
4285 }
4286 }
4287
4288 /* Scan all calls in NODE as if this is the transactional clone,
4289 and push the destinations into the callee queue. */
4290
4291 static void
4292 ipa_tm_scan_calls_clone (struct cgraph_node *node,
4293 cgraph_node_queue *callees_p)
4294 {
4295 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
4296 basic_block bb;
4297
4298 FOR_EACH_BB_FN (bb, fn)
4299 ipa_tm_scan_calls_block (callees_p, bb, true);
4300 }
4301
4302 /* The function NODE has been detected to be irrevocable. Push all
4303 of its callers onto WORKLIST for the purpose of re-scanning them. */
4304
4305 static void
4306 ipa_tm_note_irrevocable (struct cgraph_node *node,
4307 cgraph_node_queue *worklist_p)
4308 {
4309 struct tm_ipa_cg_data *d = get_cg_data (&node, true);
4310 struct cgraph_edge *e;
4311
4312 d->is_irrevocable = true;
4313
4314 for (e = node->callers; e ; e = e->next_caller)
4315 {
4316 basic_block bb;
4317 struct cgraph_node *caller;
4318
4319 /* Don't examine recursive calls. */
4320 if (e->caller == node)
4321 continue;
4322 /* Even if we think we can go irrevocable, believe the user
4323 above all. */
4324 if (is_tm_safe_or_pure (e->caller->decl))
4325 continue;
4326
4327 caller = e->caller;
4328 d = get_cg_data (&caller, true);
4329
4330 /* Check if the callee is in a transactional region. If so,
4331 schedule the function for normal re-scan as well. */
4332 bb = gimple_bb (e->call_stmt);
4333 gcc_assert (bb != NULL);
4334 if (d->transaction_blocks_normal
4335 && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
4336 d->want_irr_scan_normal = true;
4337
4338 maybe_push_queue (caller, worklist_p, &d->in_worklist);
4339 }
4340 }
4341
4342 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
4343 within the block is irrevocable. */
4344
4345 static bool
4346 ipa_tm_scan_irr_block (basic_block bb)
4347 {
4348 gimple_stmt_iterator gsi;
4349 tree fn;
4350
4351 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4352 {
4353 gimple *stmt = gsi_stmt (gsi);
4354 switch (gimple_code (stmt))
4355 {
4356 case GIMPLE_ASSIGN:
4357 if (gimple_assign_single_p (stmt))
4358 {
4359 tree lhs = gimple_assign_lhs (stmt);
4360 tree rhs = gimple_assign_rhs1 (stmt);
4361 if (volatile_lvalue_p (lhs) || volatile_lvalue_p (rhs))
4362 return true;
4363 }
4364 break;
4365
4366 case GIMPLE_CALL:
4367 {
4368 tree lhs = gimple_call_lhs (stmt);
4369 if (lhs && volatile_lvalue_p (lhs))
4370 return true;
4371
4372 if (is_tm_pure_call (stmt))
4373 break;
4374
4375 fn = gimple_call_fn (stmt);
4376
4377 /* Functions with the attribute are by definition irrevocable. */
4378 if (is_tm_irrevocable (fn))
4379 return true;
4380
4381 /* For direct function calls, go ahead and check for replacement
4382 functions, or transitive irrevocable functions. For indirect
4383 functions, we'll ask the runtime. */
4384 if (TREE_CODE (fn) == ADDR_EXPR)
4385 {
4386 struct tm_ipa_cg_data *d;
4387 struct cgraph_node *node;
4388
4389 fn = TREE_OPERAND (fn, 0);
4390 if (is_tm_ending_fndecl (fn))
4391 break;
4392 if (find_tm_replacement_function (fn))
4393 break;
4394
4395 node = cgraph_node::get (fn);
4396 d = get_cg_data (&node, true);
4397
4398 /* Return true if irrevocable, but above all, believe
4399 the user. */
4400 if (d->is_irrevocable
4401 && !is_tm_safe_or_pure (fn))
4402 return true;
4403 }
4404 break;
4405 }
4406
4407 case GIMPLE_ASM:
4408 /* ??? The Approved Method of indicating that an inline
4409 assembly statement is not relevant to the transaction
4410 is to wrap it in a __tm_waiver block. This is not
4411 yet implemented, so we can't check for it. */
4412 if (is_tm_safe (current_function_decl))
4413 {
4414 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
4415 SET_EXPR_LOCATION (t, gimple_location (stmt));
4416 error ("%K%<asm%> not allowed in %<transaction_safe%> function",
4417 t);
4418 }
4419 return true;
4420
4421 default:
4422 break;
4423 }
4424 }
4425
4426 return false;
4427 }
4428
4429 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
4430 for new irrevocable blocks, marking them in NEW_IRR. Don't bother
4431 scanning past OLD_IRR or EXIT_BLOCKS. */
4432
4433 static bool
4434 ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr,
4435 bitmap old_irr, bitmap exit_blocks)
4436 {
4437 bool any_new_irr = false;
4438 edge e;
4439 edge_iterator ei;
4440 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4441
4442 do
4443 {
4444 basic_block bb = pqueue->pop ();
4445
4446 /* Don't re-scan blocks we know already are irrevocable. */
4447 if (old_irr && bitmap_bit_p (old_irr, bb->index))
4448 continue;
4449
4450 if (ipa_tm_scan_irr_block (bb))
4451 {
4452 bitmap_set_bit (new_irr, bb->index);
4453 any_new_irr = true;
4454 }
4455 else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
4456 {
4457 FOR_EACH_EDGE (e, ei, bb->succs)
4458 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4459 {
4460 bitmap_set_bit (visited_blocks, e->dest->index);
4461 pqueue->safe_push (e->dest);
4462 }
4463 }
4464 }
4465 while (!pqueue->is_empty ());
4466
4467 BITMAP_FREE (visited_blocks);
4468
4469 return any_new_irr;
4470 }
4471
4472 /* Propagate the irrevocable property both up and down the dominator tree.
4473 BB is the current block being scanned; EXIT_BLOCKS are the edges of the
4474 TM regions; OLD_IRR are the results of a previous scan of the dominator
4475 tree which has been fully propagated; NEW_IRR is the set of new blocks
4476 which are gaining the irrevocable property during the current scan. */
4477
4478 static void
4479 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
4480 bitmap old_irr, bitmap exit_blocks)
4481 {
4482 vec<basic_block> bbs;
4483 bitmap all_region_blocks;
4484
4485 /* If this block is in the old set, no need to rescan. */
4486 if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
4487 return;
4488
4489 all_region_blocks = BITMAP_ALLOC (&tm_obstack);
4490 bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
4491 all_region_blocks, false);
4492 do
4493 {
4494 basic_block bb = bbs.pop ();
4495 bool this_irr = bitmap_bit_p (new_irr, bb->index);
4496 bool all_son_irr = false;
4497 edge_iterator ei;
4498 edge e;
4499
4500 /* Propagate up. If my children are, I am too, but we must have
4501 at least one child that is. */
4502 if (!this_irr)
4503 {
4504 FOR_EACH_EDGE (e, ei, bb->succs)
4505 {
4506 if (!bitmap_bit_p (new_irr, e->dest->index))
4507 {
4508 all_son_irr = false;
4509 break;
4510 }
4511 else
4512 all_son_irr = true;
4513 }
4514 if (all_son_irr)
4515 {
4516 /* Add block to new_irr if it hasn't already been processed. */
4517 if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
4518 {
4519 bitmap_set_bit (new_irr, bb->index);
4520 this_irr = true;
4521 }
4522 }
4523 }
4524
4525 /* Propagate down to everyone we immediately dominate. */
4526 if (this_irr)
4527 {
4528 basic_block son;
4529 for (son = first_dom_son (CDI_DOMINATORS, bb);
4530 son;
4531 son = next_dom_son (CDI_DOMINATORS, son))
4532 {
4533 /* Make sure block is actually in a TM region, and it
4534 isn't already in old_irr. */
4535 if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
4536 && bitmap_bit_p (all_region_blocks, son->index))
4537 bitmap_set_bit (new_irr, son->index);
4538 }
4539 }
4540 }
4541 while (!bbs.is_empty ());
4542
4543 BITMAP_FREE (all_region_blocks);
4544 bbs.release ();
4545 }
4546
4547 static void
4548 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
4549 {
4550 gimple_stmt_iterator gsi;
4551
4552 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4553 {
4554 gimple *stmt = gsi_stmt (gsi);
4555 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4556 {
4557 tree fndecl = gimple_call_fndecl (stmt);
4558 if (fndecl)
4559 {
4560 struct tm_ipa_cg_data *d;
4561 unsigned *pcallers;
4562 struct cgraph_node *tnode;
4563
4564 if (is_tm_ending_fndecl (fndecl))
4565 continue;
4566 if (find_tm_replacement_function (fndecl))
4567 continue;
4568
4569 tnode = cgraph_node::get (fndecl);
4570 d = get_cg_data (&tnode, true);
4571
4572 pcallers = (for_clone ? &d->tm_callers_clone
4573 : &d->tm_callers_normal);
4574
4575 gcc_assert (*pcallers > 0);
4576 *pcallers -= 1;
4577 }
4578 }
4579 }
4580 }
4581
4582 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
4583 as well as other irrevocable actions such as inline assembly. Mark all
4584 such blocks as irrevocable and decrement the number of calls to
4585 transactional clones. Return true if, for the transactional clone, the
4586 entire function is irrevocable. */
4587
4588 static bool
4589 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
4590 {
4591 struct tm_ipa_cg_data *d;
4592 bitmap new_irr, old_irr;
4593 bool ret = false;
4594
4595 /* Builtin operators (operator new, and such). */
4596 if (DECL_STRUCT_FUNCTION (node->decl) == NULL
4597 || DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL)
4598 return false;
4599
4600 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4601 calculate_dominance_info (CDI_DOMINATORS);
4602
4603 d = get_cg_data (&node, true);
4604 auto_vec<basic_block, 10> queue;
4605 new_irr = BITMAP_ALLOC (&tm_obstack);
4606
4607 /* Scan each tm region, propagating irrevocable status through the tree. */
4608 if (for_clone)
4609 {
4610 old_irr = d->irrevocable_blocks_clone;
4611 queue.quick_push (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4612 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
4613 {
4614 ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4615 new_irr,
4616 old_irr, NULL);
4617 ret = bitmap_bit_p (new_irr,
4618 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->index);
4619 }
4620 }
4621 else
4622 {
4623 struct tm_region *region;
4624
4625 old_irr = d->irrevocable_blocks_normal;
4626 for (region = d->all_tm_regions; region; region = region->next)
4627 {
4628 queue.quick_push (region->entry_block);
4629 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
4630 region->exit_blocks))
4631 ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
4632 region->exit_blocks);
4633 }
4634 }
4635
4636 /* If we found any new irrevocable blocks, reduce the call count for
4637 transactional clones within the irrevocable blocks. Save the new
4638 set of irrevocable blocks for next time. */
4639 if (!bitmap_empty_p (new_irr))
4640 {
4641 bitmap_iterator bmi;
4642 unsigned i;
4643
4644 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4645 ipa_tm_decrement_clone_counts (BASIC_BLOCK_FOR_FN (cfun, i),
4646 for_clone);
4647
4648 if (old_irr)
4649 {
4650 bitmap_ior_into (old_irr, new_irr);
4651 BITMAP_FREE (new_irr);
4652 }
4653 else if (for_clone)
4654 d->irrevocable_blocks_clone = new_irr;
4655 else
4656 d->irrevocable_blocks_normal = new_irr;
4657
4658 if (dump_file && new_irr)
4659 {
4660 const char *dname;
4661 bitmap_iterator bmi;
4662 unsigned i;
4663
4664 dname = lang_hooks.decl_printable_name (current_function_decl, 2);
4665 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4666 fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
4667 }
4668 }
4669 else
4670 BITMAP_FREE (new_irr);
4671
4672 pop_cfun ();
4673
4674 return ret;
4675 }
4676
4677 /* Return true if, for the transactional clone of NODE, any call
4678 may enter irrevocable mode. */
4679
4680 static bool
4681 ipa_tm_mayenterirr_function (struct cgraph_node *node)
4682 {
4683 struct tm_ipa_cg_data *d;
4684 tree decl;
4685 unsigned flags;
4686
4687 d = get_cg_data (&node, true);
4688 decl = node->decl;
4689 flags = flags_from_decl_or_type (decl);
4690
4691 /* Handle some TM builtins. Ordinarily these aren't actually generated
4692 at this point, but handling these functions when written in by the
4693 user makes it easier to build unit tests. */
4694 if (flags & ECF_TM_BUILTIN)
4695 return false;
4696
4697 /* Filter out all functions that are marked. */
4698 if (flags & ECF_TM_PURE)
4699 return false;
4700 if (is_tm_safe (decl))
4701 return false;
4702 if (is_tm_irrevocable (decl))
4703 return true;
4704 if (is_tm_callable (decl))
4705 return true;
4706 if (find_tm_replacement_function (decl))
4707 return true;
4708
4709 /* If we aren't seeing the final version of the function we don't
4710 know what it will contain at runtime. */
4711 if (node->get_availability () < AVAIL_AVAILABLE)
4712 return true;
4713
4714 /* If the function must go irrevocable, then of course true. */
4715 if (d->is_irrevocable)
4716 return true;
4717
4718 /* If there are any blocks marked irrevocable, then the function
4719 as a whole may enter irrevocable. */
4720 if (d->irrevocable_blocks_clone)
4721 return true;
4722
4723 /* We may have previously marked this function as tm_may_enter_irr;
4724 see pass_diagnose_tm_blocks. */
4725 if (node->tm_may_enter_irr)
4726 return true;
4727
4728 /* Recurse on the main body for aliases. In general, this will
4729 result in one of the bits above being set so that we will not
4730 have to recurse next time. */
4731 if (node->alias)
4732 return ipa_tm_mayenterirr_function (cgraph_node::get (node->thunk.alias));
4733
4734 /* What remains is unmarked local functions without items that force
4735 the function to go irrevocable. */
4736 return false;
4737 }
4738
4739 /* Diagnose calls from transaction_safe functions to unmarked
4740 functions that are determined to not be safe. */
4741
4742 static void
4743 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4744 {
4745 struct cgraph_edge *e;
4746
4747 for (e = node->callees; e ; e = e->next_callee)
4748 if (!is_tm_callable (e->callee->decl)
4749 && e->callee->tm_may_enter_irr)
4750 error_at (gimple_location (e->call_stmt),
4751 "unsafe function call %qD within "
4752 "%<transaction_safe%> function", e->callee->decl);
4753 }
4754
4755 /* Diagnose call from atomic transactions to unmarked functions
4756 that are determined to not be safe. */
4757
4758 static void
4759 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4760 struct tm_region *all_tm_regions)
4761 {
4762 struct tm_region *r;
4763
4764 for (r = all_tm_regions; r ; r = r->next)
4765 if (gimple_transaction_subcode (r->get_transaction_stmt ())
4766 & GTMA_IS_RELAXED)
4767 {
4768 /* Atomic transactions can be nested inside relaxed. */
4769 if (r->inner)
4770 ipa_tm_diagnose_transaction (node, r->inner);
4771 }
4772 else
4773 {
4774 vec<basic_block> bbs;
4775 gimple_stmt_iterator gsi;
4776 basic_block bb;
4777 size_t i;
4778
4779 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4780 r->irr_blocks, NULL, false);
4781
4782 for (i = 0; bbs.iterate (i, &bb); ++i)
4783 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4784 {
4785 gimple *stmt = gsi_stmt (gsi);
4786 tree fndecl;
4787
4788 if (gimple_code (stmt) == GIMPLE_ASM)
4789 {
4790 error_at (gimple_location (stmt),
4791 "%<asm%> not allowed in atomic transaction");
4792 continue;
4793 }
4794
4795 if (!is_gimple_call (stmt))
4796 continue;
4797 fndecl = gimple_call_fndecl (stmt);
4798
4799 /* Indirect function calls have been diagnosed already. */
4800 if (!fndecl)
4801 continue;
4802
4803 /* Stop at the end of the transaction. */
4804 if (is_tm_ending_fndecl (fndecl))
4805 {
4806 if (bitmap_bit_p (r->exit_blocks, bb->index))
4807 break;
4808 continue;
4809 }
4810
4811 /* Marked functions have been diagnosed already. */
4812 if (is_tm_pure_call (stmt))
4813 continue;
4814 if (is_tm_callable (fndecl))
4815 continue;
4816
4817 if (cgraph_node::local_info_node (fndecl)->tm_may_enter_irr)
4818 error_at (gimple_location (stmt),
4819 "unsafe function call %qD within "
4820 "atomic transaction", fndecl);
4821 }
4822
4823 bbs.release ();
4824 }
4825 }
4826
4827 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4828 OLD_DECL. The returned value is a freshly malloced pointer that
4829 should be freed by the caller. */
4830
4831 static tree
4832 tm_mangle (tree old_asm_id)
4833 {
4834 const char *old_asm_name;
4835 char *tm_name;
4836 void *alloc = NULL;
4837 struct demangle_component *dc;
4838 tree new_asm_id;
4839
4840 /* Determine if the symbol is already a valid C++ mangled name. Do this
4841 even for C, which might be interfacing with C++ code via appropriately
4842 ugly identifiers. */
4843 /* ??? We could probably do just as well checking for "_Z" and be done. */
4844 old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4845 dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4846
4847 if (dc == NULL)
4848 {
4849 char length[12];
4850
4851 do_unencoded:
4852 sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4853 tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4854 }
4855 else
4856 {
4857 old_asm_name += 2; /* Skip _Z */
4858
4859 switch (dc->type)
4860 {
4861 case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4862 case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4863 /* Don't play silly games, you! */
4864 goto do_unencoded;
4865
4866 case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4867 /* I'd really like to know if we can ever be passed one of
4868 these from the C++ front end. The Logical Thing would
4869 seem that hidden-alias should be outer-most, so that we
4870 get hidden-alias of a transaction-clone and not vice-versa. */
4871 old_asm_name += 2;
4872 break;
4873
4874 default:
4875 break;
4876 }
4877
4878 tm_name = concat ("_ZGTt", old_asm_name, NULL);
4879 }
4880 free (alloc);
4881
4882 new_asm_id = get_identifier (tm_name);
4883 free (tm_name);
4884
4885 return new_asm_id;
4886 }
4887
4888 static inline void
4889 ipa_tm_mark_force_output_node (struct cgraph_node *node)
4890 {
4891 node->mark_force_output ();
4892 node->analyzed = true;
4893 }
4894
4895 static inline void
4896 ipa_tm_mark_forced_by_abi_node (struct cgraph_node *node)
4897 {
4898 node->forced_by_abi = true;
4899 node->analyzed = true;
4900 }
4901
4902 /* Callback data for ipa_tm_create_version_alias. */
4903 struct create_version_alias_info
4904 {
4905 struct cgraph_node *old_node;
4906 tree new_decl;
4907 };
4908
4909 /* A subroutine of ipa_tm_create_version, called via
4910 cgraph_for_node_and_aliases. Create new tm clones for each of
4911 the existing aliases. */
4912 static bool
4913 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4914 {
4915 struct create_version_alias_info *info
4916 = (struct create_version_alias_info *)data;
4917 tree old_decl, new_decl, tm_name;
4918 struct cgraph_node *new_node;
4919
4920 if (!node->cpp_implicit_alias)
4921 return false;
4922
4923 old_decl = node->decl;
4924 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4925 new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4926 TREE_CODE (old_decl), tm_name,
4927 TREE_TYPE (old_decl));
4928
4929 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4930 SET_DECL_RTL (new_decl, NULL);
4931
4932 /* Based loosely on C++'s make_alias_for(). */
4933 TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4934 DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
4935 DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
4936 TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4937 DECL_EXTERNAL (new_decl) = 0;
4938 DECL_ARTIFICIAL (new_decl) = 1;
4939 TREE_ADDRESSABLE (new_decl) = 1;
4940 TREE_USED (new_decl) = 1;
4941 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4942
4943 /* Perform the same remapping to the comdat group. */
4944 if (DECL_ONE_ONLY (new_decl))
4945 varpool_node::get (new_decl)->set_comdat_group
4946 (tm_mangle (decl_comdat_group_id (old_decl)));
4947
4948 new_node = cgraph_node::create_same_body_alias (new_decl, info->new_decl);
4949 new_node->tm_clone = true;
4950 new_node->externally_visible = info->old_node->externally_visible;
4951 new_node->no_reorder = info->old_node->no_reorder;
4952 /* ?? Do not traverse aliases here. */
4953 get_cg_data (&node, false)->clone = new_node;
4954
4955 record_tm_clone_pair (old_decl, new_decl);
4956
4957 if (info->old_node->force_output
4958 || info->old_node->ref_list.first_referring ())
4959 ipa_tm_mark_force_output_node (new_node);
4960 if (info->old_node->forced_by_abi)
4961 ipa_tm_mark_forced_by_abi_node (new_node);
4962 return false;
4963 }
4964
4965 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4966 appropriate for the transactional clone. */
4967
4968 static void
4969 ipa_tm_create_version (struct cgraph_node *old_node)
4970 {
4971 tree new_decl, old_decl, tm_name;
4972 struct cgraph_node *new_node;
4973
4974 old_decl = old_node->decl;
4975 new_decl = copy_node (old_decl);
4976
4977 /* DECL_ASSEMBLER_NAME needs to be set before we call
4978 cgraph_copy_node_for_versioning below, because cgraph_node will
4979 fill the assembler_name_hash. */
4980 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4981 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4982 SET_DECL_RTL (new_decl, NULL);
4983 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4984
4985 /* Perform the same remapping to the comdat group. */
4986 if (DECL_ONE_ONLY (new_decl))
4987 varpool_node::get (new_decl)->set_comdat_group
4988 (tm_mangle (DECL_COMDAT_GROUP (old_decl)));
4989
4990 gcc_assert (!old_node->ipa_transforms_to_apply.exists ());
4991 new_node = old_node->create_version_clone (new_decl, vNULL, NULL);
4992 new_node->local = false;
4993 new_node->externally_visible = old_node->externally_visible;
4994 new_node->lowered = true;
4995 new_node->tm_clone = 1;
4996 if (!old_node->implicit_section)
4997 new_node->set_section (old_node->get_section ());
4998 get_cg_data (&old_node, true)->clone = new_node;
4999
5000 if (old_node->get_availability () >= AVAIL_INTERPOSABLE)
5001 {
5002 /* Remap extern inline to static inline. */
5003 /* ??? Is it worth trying to use make_decl_one_only? */
5004 if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
5005 {
5006 DECL_EXTERNAL (new_decl) = 0;
5007 TREE_PUBLIC (new_decl) = 0;
5008 DECL_WEAK (new_decl) = 0;
5009 }
5010
5011 tree_function_versioning (old_decl, new_decl,
5012 NULL, NULL, false, NULL, NULL);
5013 }
5014
5015 record_tm_clone_pair (old_decl, new_decl);
5016
5017 symtab->call_cgraph_insertion_hooks (new_node);
5018 if (old_node->force_output
5019 || old_node->ref_list.first_referring ())
5020 ipa_tm_mark_force_output_node (new_node);
5021 if (old_node->forced_by_abi)
5022 ipa_tm_mark_forced_by_abi_node (new_node);
5023
5024 /* Do the same thing, but for any aliases of the original node. */
5025 {
5026 struct create_version_alias_info data;
5027 data.old_node = old_node;
5028 data.new_decl = new_decl;
5029 old_node->call_for_symbol_thunks_and_aliases (ipa_tm_create_version_alias,
5030 &data, true);
5031 }
5032 }
5033
5034 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
5035
5036 static void
5037 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
5038 basic_block bb)
5039 {
5040 gimple_stmt_iterator gsi;
5041 gcall *g;
5042
5043 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5044
5045 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
5046 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
5047
5048 split_block_after_labels (bb);
5049 gsi = gsi_after_labels (bb);
5050 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
5051
5052 node->create_edge (cgraph_node::get_create
5053 (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
5054 g, gimple_bb (g)->count);
5055 }
5056
5057 /* Construct a call to TM_GETTMCLONE and insert it before GSI. */
5058
5059 static bool
5060 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
5061 struct tm_region *region,
5062 gimple_stmt_iterator *gsi, gcall *stmt)
5063 {
5064 tree gettm_fn, ret, old_fn, callfn;
5065 gcall *g;
5066 gassign *g2;
5067 bool safe;
5068
5069 old_fn = gimple_call_fn (stmt);
5070
5071 if (TREE_CODE (old_fn) == ADDR_EXPR)
5072 {
5073 tree fndecl = TREE_OPERAND (old_fn, 0);
5074 tree clone = get_tm_clone_pair (fndecl);
5075
5076 /* By transforming the call into a TM_GETTMCLONE, we are
5077 technically taking the address of the original function and
5078 its clone. Explain this so inlining will know this function
5079 is needed. */
5080 cgraph_node::get (fndecl)->mark_address_taken () ;
5081 if (clone)
5082 cgraph_node::get (clone)->mark_address_taken ();
5083 }
5084
5085 safe = is_tm_safe (TREE_TYPE (old_fn));
5086 gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
5087 : BUILT_IN_TM_GETTMCLONE_IRR);
5088 ret = create_tmp_var (ptr_type_node);
5089
5090 if (!safe)
5091 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5092
5093 /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
5094 if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
5095 old_fn = OBJ_TYPE_REF_EXPR (old_fn);
5096
5097 g = gimple_build_call (gettm_fn, 1, old_fn);
5098 ret = make_ssa_name (ret, g);
5099 gimple_call_set_lhs (g, ret);
5100
5101 gsi_insert_before (gsi, g, GSI_SAME_STMT);
5102
5103 node->create_edge (cgraph_node::get_create (gettm_fn), g, gimple_bb (g)->count);
5104
5105 /* Cast return value from tm_gettmclone* into appropriate function
5106 pointer. */
5107 callfn = create_tmp_var (TREE_TYPE (old_fn));
5108 g2 = gimple_build_assign (callfn,
5109 fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
5110 callfn = make_ssa_name (callfn, g2);
5111 gimple_assign_set_lhs (g2, callfn);
5112 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
5113
5114 /* ??? This is a hack to preserve the NOTHROW bit on the call,
5115 which we would have derived from the decl. Failure to save
5116 this bit means we might have to split the basic block. */
5117 if (gimple_call_nothrow_p (stmt))
5118 gimple_call_set_nothrow (stmt, true);
5119
5120 gimple_call_set_fn (stmt, callfn);
5121
5122 /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
5123 for a call statement. Fix it. */
5124 {
5125 tree lhs = gimple_call_lhs (stmt);
5126 tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
5127 if (lhs
5128 && !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
5129 {
5130 tree temp;
5131
5132 temp = create_tmp_reg (rettype);
5133 gimple_call_set_lhs (stmt, temp);
5134
5135 g2 = gimple_build_assign (lhs,
5136 fold_build1 (VIEW_CONVERT_EXPR,
5137 TREE_TYPE (lhs), temp));
5138 gsi_insert_after (gsi, g2, GSI_SAME_STMT);
5139 }
5140 }
5141
5142 update_stmt (stmt);
5143 cgraph_edge *e = cgraph_node::get (current_function_decl)->get_edge (stmt);
5144 if (e && e->indirect_info)
5145 e->indirect_info->polymorphic = false;
5146
5147 return true;
5148 }
5149
5150 /* Helper function for ipa_tm_transform_calls*. Given a call
5151 statement in GSI which resides inside transaction REGION, redirect
5152 the call to either its wrapper function, or its clone. */
5153
5154 static void
5155 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
5156 struct tm_region *region,
5157 gimple_stmt_iterator *gsi,
5158 bool *need_ssa_rename_p)
5159 {
5160 gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
5161 struct cgraph_node *new_node;
5162 struct cgraph_edge *e = node->get_edge (stmt);
5163 tree fndecl = gimple_call_fndecl (stmt);
5164
5165 /* For indirect calls, pass the address through the runtime. */
5166 if (fndecl == NULL)
5167 {
5168 *need_ssa_rename_p |=
5169 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5170 return;
5171 }
5172
5173 /* Handle some TM builtins. Ordinarily these aren't actually generated
5174 at this point, but handling these functions when written in by the
5175 user makes it easier to build unit tests. */
5176 if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
5177 return;
5178
5179 /* Fixup recursive calls inside clones. */
5180 /* ??? Why did cgraph_copy_node_for_versioning update the call edges
5181 for recursion but not update the call statements themselves? */
5182 if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
5183 {
5184 gimple_call_set_fndecl (stmt, current_function_decl);
5185 return;
5186 }
5187
5188 /* If there is a replacement, use it. */
5189 fndecl = find_tm_replacement_function (fndecl);
5190 if (fndecl)
5191 {
5192 new_node = cgraph_node::get_create (fndecl);
5193
5194 /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
5195
5196 We can't do this earlier in record_tm_replacement because
5197 cgraph_remove_unreachable_nodes is called before we inject
5198 references to the node. Further, we can't do this in some
5199 nice central place in ipa_tm_execute because we don't have
5200 the exact list of wrapper functions that would be used.
5201 Marking more wrappers than necessary results in the creation
5202 of unnecessary cgraph_nodes, which can cause some of the
5203 other IPA passes to crash.
5204
5205 We do need to mark these nodes so that we get the proper
5206 result in expand_call_tm. */
5207 /* ??? This seems broken. How is it that we're marking the
5208 CALLEE as may_enter_irr? Surely we should be marking the
5209 CALLER. Also note that find_tm_replacement_function also
5210 contains mappings into the TM runtime, e.g. memcpy. These
5211 we know won't go irrevocable. */
5212 new_node->tm_may_enter_irr = 1;
5213 }
5214 else
5215 {
5216 struct tm_ipa_cg_data *d;
5217 struct cgraph_node *tnode = e->callee;
5218
5219 d = get_cg_data (&tnode, true);
5220 new_node = d->clone;
5221
5222 /* As we've already skipped pure calls and appropriate builtins,
5223 and we've already marked irrevocable blocks, if we can't come
5224 up with a static replacement, then ask the runtime. */
5225 if (new_node == NULL)
5226 {
5227 *need_ssa_rename_p |=
5228 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5229 return;
5230 }
5231
5232 fndecl = new_node->decl;
5233 }
5234
5235 e->redirect_callee (new_node);
5236 gimple_call_set_fndecl (stmt, fndecl);
5237 }
5238
5239 /* Helper function for ipa_tm_transform_calls. For a given BB,
5240 install calls to tm_irrevocable when IRR_BLOCKS are reached,
5241 redirect other calls to the generated transactional clone. */
5242
5243 static bool
5244 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
5245 basic_block bb, bitmap irr_blocks)
5246 {
5247 gimple_stmt_iterator gsi;
5248 bool need_ssa_rename = false;
5249
5250 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5251 {
5252 ipa_tm_insert_irr_call (node, region, bb);
5253 return true;
5254 }
5255
5256 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5257 {
5258 gimple *stmt = gsi_stmt (gsi);
5259
5260 if (!is_gimple_call (stmt))
5261 continue;
5262 if (is_tm_pure_call (stmt))
5263 continue;
5264
5265 /* Redirect edges to the appropriate replacement or clone. */
5266 ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
5267 }
5268
5269 return need_ssa_rename;
5270 }
5271
5272 /* Walk the CFG for REGION, beginning at BB. Install calls to
5273 tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
5274 the generated transactional clone. */
5275
5276 static bool
5277 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
5278 basic_block bb, bitmap irr_blocks)
5279 {
5280 bool need_ssa_rename = false;
5281 edge e;
5282 edge_iterator ei;
5283 auto_vec<basic_block> queue;
5284 bitmap visited_blocks = BITMAP_ALLOC (NULL);
5285
5286 queue.safe_push (bb);
5287 do
5288 {
5289 bb = queue.pop ();
5290
5291 need_ssa_rename |=
5292 ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
5293
5294 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5295 continue;
5296
5297 if (region && bitmap_bit_p (region->exit_blocks, bb->index))
5298 continue;
5299
5300 FOR_EACH_EDGE (e, ei, bb->succs)
5301 if (!bitmap_bit_p (visited_blocks, e->dest->index))
5302 {
5303 bitmap_set_bit (visited_blocks, e->dest->index);
5304 queue.safe_push (e->dest);
5305 }
5306 }
5307 while (!queue.is_empty ());
5308
5309 BITMAP_FREE (visited_blocks);
5310
5311 return need_ssa_rename;
5312 }
5313
5314 /* Transform the calls within the TM regions within NODE. */
5315
5316 static void
5317 ipa_tm_transform_transaction (struct cgraph_node *node)
5318 {
5319 struct tm_ipa_cg_data *d;
5320 struct tm_region *region;
5321 bool need_ssa_rename = false;
5322
5323 d = get_cg_data (&node, true);
5324
5325 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5326 calculate_dominance_info (CDI_DOMINATORS);
5327
5328 for (region = d->all_tm_regions; region; region = region->next)
5329 {
5330 /* If we're sure to go irrevocable, don't transform anything. */
5331 if (d->irrevocable_blocks_normal
5332 && bitmap_bit_p (d->irrevocable_blocks_normal,
5333 region->entry_block->index))
5334 {
5335 transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE
5336 | GTMA_MAY_ENTER_IRREVOCABLE
5337 | GTMA_HAS_NO_INSTRUMENTATION);
5338 continue;
5339 }
5340
5341 need_ssa_rename |=
5342 ipa_tm_transform_calls (node, region, region->entry_block,
5343 d->irrevocable_blocks_normal);
5344 }
5345
5346 if (need_ssa_rename)
5347 update_ssa (TODO_update_ssa_only_virtuals);
5348
5349 pop_cfun ();
5350 }
5351
5352 /* Transform the calls within the transactional clone of NODE. */
5353
5354 static void
5355 ipa_tm_transform_clone (struct cgraph_node *node)
5356 {
5357 struct tm_ipa_cg_data *d;
5358 bool need_ssa_rename;
5359
5360 d = get_cg_data (&node, true);
5361
5362 /* If this function makes no calls and has no irrevocable blocks,
5363 then there's nothing to do. */
5364 /* ??? Remove non-aborting top-level transactions. */
5365 if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone)
5366 return;
5367
5368 push_cfun (DECL_STRUCT_FUNCTION (d->clone->decl));
5369 calculate_dominance_info (CDI_DOMINATORS);
5370
5371 need_ssa_rename =
5372 ipa_tm_transform_calls (d->clone, NULL,
5373 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
5374 d->irrevocable_blocks_clone);
5375
5376 if (need_ssa_rename)
5377 update_ssa (TODO_update_ssa_only_virtuals);
5378
5379 pop_cfun ();
5380 }
5381
5382 /* Main entry point for the transactional memory IPA pass. */
5383
5384 static unsigned int
5385 ipa_tm_execute (void)
5386 {
5387 cgraph_node_queue tm_callees = cgraph_node_queue ();
5388 /* List of functions that will go irrevocable. */
5389 cgraph_node_queue irr_worklist = cgraph_node_queue ();
5390
5391 struct cgraph_node *node;
5392 struct tm_ipa_cg_data *d;
5393 enum availability a;
5394 unsigned int i;
5395
5396 cgraph_node::checking_verify_cgraph_nodes ();
5397
5398 bitmap_obstack_initialize (&tm_obstack);
5399 initialize_original_copy_tables ();
5400
5401 /* For all local functions marked tm_callable, queue them. */
5402 FOR_EACH_DEFINED_FUNCTION (node)
5403 if (is_tm_callable (node->decl)
5404 && node->get_availability () >= AVAIL_INTERPOSABLE)
5405 {
5406 d = get_cg_data (&node, true);
5407 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5408 }
5409
5410 /* For all local reachable functions... */
5411 FOR_EACH_DEFINED_FUNCTION (node)
5412 if (node->lowered
5413 && node->get_availability () >= AVAIL_INTERPOSABLE)
5414 {
5415 /* ... marked tm_pure, record that fact for the runtime by
5416 indicating that the pure function is its own tm_callable.
5417 No need to do this if the function's address can't be taken. */
5418 if (is_tm_pure (node->decl))
5419 {
5420 if (!node->local)
5421 record_tm_clone_pair (node->decl, node->decl);
5422 continue;
5423 }
5424
5425 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5426 calculate_dominance_info (CDI_DOMINATORS);
5427
5428 tm_region_init (NULL);
5429 if (all_tm_regions)
5430 {
5431 d = get_cg_data (&node, true);
5432
5433 /* Scan for calls that are in each transaction, and
5434 generate the uninstrumented code path. */
5435 ipa_tm_scan_calls_transaction (d, &tm_callees);
5436
5437 /* Put it in the worklist so we can scan the function
5438 later (ipa_tm_scan_irr_function) and mark the
5439 irrevocable blocks. */
5440 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5441 d->want_irr_scan_normal = true;
5442 }
5443
5444 pop_cfun ();
5445 }
5446
5447 /* For every local function on the callee list, scan as if we will be
5448 creating a transactional clone, queueing all new functions we find
5449 along the way. */
5450 for (i = 0; i < tm_callees.length (); ++i)
5451 {
5452 node = tm_callees[i];
5453 a = node->get_availability ();
5454 d = get_cg_data (&node, true);
5455
5456 /* Put it in the worklist so we can scan the function later
5457 (ipa_tm_scan_irr_function) and mark the irrevocable
5458 blocks. */
5459 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5460
5461 /* Some callees cannot be arbitrarily cloned. These will always be
5462 irrevocable. Mark these now, so that we need not scan them. */
5463 if (is_tm_irrevocable (node->decl))
5464 ipa_tm_note_irrevocable (node, &irr_worklist);
5465 else if (a <= AVAIL_NOT_AVAILABLE
5466 && !is_tm_safe_or_pure (node->decl))
5467 ipa_tm_note_irrevocable (node, &irr_worklist);
5468 else if (a >= AVAIL_INTERPOSABLE)
5469 {
5470 if (!tree_versionable_function_p (node->decl))
5471 ipa_tm_note_irrevocable (node, &irr_worklist);
5472 else if (!d->is_irrevocable)
5473 {
5474 /* If this is an alias, make sure its base is queued as well.
5475 we need not scan the callees now, as the base will do. */
5476 if (node->alias)
5477 {
5478 node = cgraph_node::get (node->thunk.alias);
5479 d = get_cg_data (&node, true);
5480 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5481 continue;
5482 }
5483
5484 /* Add all nodes called by this function into
5485 tm_callees as well. */
5486 ipa_tm_scan_calls_clone (node, &tm_callees);
5487 }
5488 }
5489 }
5490
5491 /* Iterate scans until no more work to be done. Prefer not to use
5492 vec::pop because the worklist tends to follow a breadth-first
5493 search of the callgraph, which should allow convergance with a
5494 minimum number of scans. But we also don't want the worklist
5495 array to grow without bound, so we shift the array up periodically. */
5496 for (i = 0; i < irr_worklist.length (); ++i)
5497 {
5498 if (i > 256 && i == irr_worklist.length () / 8)
5499 {
5500 irr_worklist.block_remove (0, i);
5501 i = 0;
5502 }
5503
5504 node = irr_worklist[i];
5505 d = get_cg_data (&node, true);
5506 d->in_worklist = false;
5507
5508 if (d->want_irr_scan_normal)
5509 {
5510 d->want_irr_scan_normal = false;
5511 ipa_tm_scan_irr_function (node, false);
5512 }
5513 if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
5514 ipa_tm_note_irrevocable (node, &irr_worklist);
5515 }
5516
5517 /* For every function on the callee list, collect the tm_may_enter_irr
5518 bit on the node. */
5519 irr_worklist.truncate (0);
5520 for (i = 0; i < tm_callees.length (); ++i)
5521 {
5522 node = tm_callees[i];
5523 if (ipa_tm_mayenterirr_function (node))
5524 {
5525 d = get_cg_data (&node, true);
5526 gcc_assert (d->in_worklist == false);
5527 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5528 }
5529 }
5530
5531 /* Propagate the tm_may_enter_irr bit to callers until stable. */
5532 for (i = 0; i < irr_worklist.length (); ++i)
5533 {
5534 struct cgraph_node *caller;
5535 struct cgraph_edge *e;
5536 struct ipa_ref *ref;
5537
5538 if (i > 256 && i == irr_worklist.length () / 8)
5539 {
5540 irr_worklist.block_remove (0, i);
5541 i = 0;
5542 }
5543
5544 node = irr_worklist[i];
5545 d = get_cg_data (&node, true);
5546 d->in_worklist = false;
5547 node->tm_may_enter_irr = true;
5548
5549 /* Propagate back to normal callers. */
5550 for (e = node->callers; e ; e = e->next_caller)
5551 {
5552 caller = e->caller;
5553 if (!is_tm_safe_or_pure (caller->decl)
5554 && !caller->tm_may_enter_irr)
5555 {
5556 d = get_cg_data (&caller, true);
5557 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5558 }
5559 }
5560
5561 /* Propagate back to referring aliases as well. */
5562 FOR_EACH_ALIAS (node, ref)
5563 {
5564 caller = dyn_cast<cgraph_node *> (ref->referring);
5565 if (!caller->tm_may_enter_irr)
5566 {
5567 /* ?? Do not traverse aliases here. */
5568 d = get_cg_data (&caller, false);
5569 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5570 }
5571 }
5572 }
5573
5574 /* Now validate all tm_safe functions, and all atomic regions in
5575 other functions. */
5576 FOR_EACH_DEFINED_FUNCTION (node)
5577 if (node->lowered
5578 && node->get_availability () >= AVAIL_INTERPOSABLE)
5579 {
5580 d = get_cg_data (&node, true);
5581 if (is_tm_safe (node->decl))
5582 ipa_tm_diagnose_tm_safe (node);
5583 else if (d->all_tm_regions)
5584 ipa_tm_diagnose_transaction (node, d->all_tm_regions);
5585 }
5586
5587 /* Create clones. Do those that are not irrevocable and have a
5588 positive call count. Do those publicly visible functions that
5589 the user directed us to clone. */
5590 for (i = 0; i < tm_callees.length (); ++i)
5591 {
5592 bool doit = false;
5593
5594 node = tm_callees[i];
5595 if (node->cpp_implicit_alias)
5596 continue;
5597
5598 a = node->get_availability ();
5599 d = get_cg_data (&node, true);
5600
5601 if (a <= AVAIL_NOT_AVAILABLE)
5602 doit = is_tm_callable (node->decl);
5603 else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
5604 doit = true;
5605 else if (!d->is_irrevocable
5606 && d->tm_callers_normal + d->tm_callers_clone > 0)
5607 doit = true;
5608
5609 if (doit)
5610 ipa_tm_create_version (node);
5611 }
5612
5613 /* Redirect calls to the new clones, and insert irrevocable marks. */
5614 for (i = 0; i < tm_callees.length (); ++i)
5615 {
5616 node = tm_callees[i];
5617 if (node->analyzed)
5618 {
5619 d = get_cg_data (&node, true);
5620 if (d->clone)
5621 ipa_tm_transform_clone (node);
5622 }
5623 }
5624 FOR_EACH_DEFINED_FUNCTION (node)
5625 if (node->lowered
5626 && node->get_availability () >= AVAIL_INTERPOSABLE)
5627 {
5628 d = get_cg_data (&node, true);
5629 if (d->all_tm_regions)
5630 ipa_tm_transform_transaction (node);
5631 }
5632
5633 /* Free and clear all data structures. */
5634 tm_callees.release ();
5635 irr_worklist.release ();
5636 bitmap_obstack_release (&tm_obstack);
5637 free_original_copy_tables ();
5638
5639 FOR_EACH_FUNCTION (node)
5640 node->aux = NULL;
5641
5642 cgraph_node::checking_verify_cgraph_nodes ();
5643
5644 return 0;
5645 }
5646
5647 namespace {
5648
5649 const pass_data pass_data_ipa_tm =
5650 {
5651 SIMPLE_IPA_PASS, /* type */
5652 "tmipa", /* name */
5653 OPTGROUP_NONE, /* optinfo_flags */
5654 TV_TRANS_MEM, /* tv_id */
5655 ( PROP_ssa | PROP_cfg ), /* properties_required */
5656 0, /* properties_provided */
5657 0, /* properties_destroyed */
5658 0, /* todo_flags_start */
5659 0, /* todo_flags_finish */
5660 };
5661
5662 class pass_ipa_tm : public simple_ipa_opt_pass
5663 {
5664 public:
5665 pass_ipa_tm (gcc::context *ctxt)
5666 : simple_ipa_opt_pass (pass_data_ipa_tm, ctxt)
5667 {}
5668
5669 /* opt_pass methods: */
5670 virtual bool gate (function *) { return flag_tm; }
5671 virtual unsigned int execute (function *) { return ipa_tm_execute (); }
5672
5673 }; // class pass_ipa_tm
5674
5675 } // anon namespace
5676
5677 simple_ipa_opt_pass *
5678 make_pass_ipa_tm (gcc::context *ctxt)
5679 {
5680 return new pass_ipa_tm (ctxt);
5681 }
5682
5683 #include "gt-trans-mem.h"