]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/trans-mem.c
Add default value for last argument of dump functions.
[thirdparty/gcc.git] / gcc / trans-mem.c
1 /* Passes for transactional memory support.
2 Copyright (C) 2008-2017 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "cgraph.h"
34 #include "gimple-pretty-print.h"
35 #include "diagnostic-core.h"
36 #include "fold-const.h"
37 #include "tree-eh.h"
38 #include "calls.h"
39 #include "gimplify.h"
40 #include "gimple-iterator.h"
41 #include "gimplify-me.h"
42 #include "gimple-walk.h"
43 #include "tree-cfg.h"
44 #include "tree-into-ssa.h"
45 #include "tree-inline.h"
46 #include "demangle.h"
47 #include "output.h"
48 #include "trans-mem.h"
49 #include "params.h"
50 #include "langhooks.h"
51 #include "cfgloop.h"
52 #include "tree-ssa-address.h"
53
54
55 #define A_RUNINSTRUMENTEDCODE 0x0001
56 #define A_RUNUNINSTRUMENTEDCODE 0x0002
57 #define A_SAVELIVEVARIABLES 0x0004
58 #define A_RESTORELIVEVARIABLES 0x0008
59 #define A_ABORTTRANSACTION 0x0010
60
61 #define AR_USERABORT 0x0001
62 #define AR_USERRETRY 0x0002
63 #define AR_TMCONFLICT 0x0004
64 #define AR_EXCEPTIONBLOCKABORT 0x0008
65 #define AR_OUTERABORT 0x0010
66
67 #define MODE_SERIALIRREVOCABLE 0x0000
68
69
70 /* The representation of a transaction changes several times during the
71 lowering process. In the beginning, in the front-end we have the
72 GENERIC tree TRANSACTION_EXPR. For example,
73
74 __transaction {
75 local++;
76 if (++global == 10)
77 __tm_abort;
78 }
79
80 During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
81 trivially replaced with a GIMPLE_TRANSACTION node.
82
83 During pass_lower_tm, we examine the body of transactions looking
84 for aborts. Transactions that do not contain an abort may be
85 merged into an outer transaction. We also add a TRY-FINALLY node
86 to arrange for the transaction to be committed on any exit.
87
88 [??? Think about how this arrangement affects throw-with-commit
89 and throw-with-abort operations. In this case we want the TRY to
90 handle gotos, but not to catch any exceptions because the transaction
91 will already be closed.]
92
93 GIMPLE_TRANSACTION [label=NULL] {
94 try {
95 local = local + 1;
96 t0 = global;
97 t1 = t0 + 1;
98 global = t1;
99 if (t1 == 10)
100 __builtin___tm_abort ();
101 } finally {
102 __builtin___tm_commit ();
103 }
104 }
105
106 During pass_lower_eh, we create EH regions for the transactions,
107 intermixed with the regular EH stuff. This gives us a nice persistent
108 mapping (all the way through rtl) from transactional memory operation
109 back to the transaction, which allows us to get the abnormal edges
110 correct to model transaction aborts and restarts:
111
112 GIMPLE_TRANSACTION [label=over]
113 local = local + 1;
114 t0 = global;
115 t1 = t0 + 1;
116 global = t1;
117 if (t1 == 10)
118 __builtin___tm_abort ();
119 __builtin___tm_commit ();
120 over:
121
122 This is the end of all_lowering_passes, and so is what is present
123 during the IPA passes, and through all of the optimization passes.
124
125 During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
126 functions and mark functions for cloning.
127
128 At the end of gimple optimization, before exiting SSA form,
129 pass_tm_edges replaces statements that perform transactional
130 memory operations with the appropriate TM builtins, and swap
131 out function calls with their transactional clones. At this
132 point we introduce the abnormal transaction restart edges and
133 complete lowering of the GIMPLE_TRANSACTION node.
134
135 x = __builtin___tm_start (MAY_ABORT);
136 eh_label:
137 if (x & abort_transaction)
138 goto over;
139 local = local + 1;
140 t0 = __builtin___tm_load (global);
141 t1 = t0 + 1;
142 __builtin___tm_store (&global, t1);
143 if (t1 == 10)
144 __builtin___tm_abort ();
145 __builtin___tm_commit ();
146 over:
147 */
148
149 static void *expand_regions (struct tm_region *,
150 void *(*callback)(struct tm_region *, void *),
151 void *, bool);
152
153 \f
154 /* Return the attributes we want to examine for X, or NULL if it's not
155 something we examine. We look at function types, but allow pointers
156 to function types and function decls and peek through. */
157
158 static tree
159 get_attrs_for (const_tree x)
160 {
161 if (x == NULL_TREE)
162 return NULL_TREE;
163
164 switch (TREE_CODE (x))
165 {
166 case FUNCTION_DECL:
167 return TYPE_ATTRIBUTES (TREE_TYPE (x));
168
169 default:
170 if (TYPE_P (x))
171 return NULL_TREE;
172 x = TREE_TYPE (x);
173 if (TREE_CODE (x) != POINTER_TYPE)
174 return NULL_TREE;
175 /* FALLTHRU */
176
177 case POINTER_TYPE:
178 x = TREE_TYPE (x);
179 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
180 return NULL_TREE;
181 /* FALLTHRU */
182
183 case FUNCTION_TYPE:
184 case METHOD_TYPE:
185 return TYPE_ATTRIBUTES (x);
186 }
187 }
188
189 /* Return true if X has been marked TM_PURE. */
190
191 bool
192 is_tm_pure (const_tree x)
193 {
194 unsigned flags;
195
196 switch (TREE_CODE (x))
197 {
198 case FUNCTION_DECL:
199 case FUNCTION_TYPE:
200 case METHOD_TYPE:
201 break;
202
203 default:
204 if (TYPE_P (x))
205 return false;
206 x = TREE_TYPE (x);
207 if (TREE_CODE (x) != POINTER_TYPE)
208 return false;
209 /* FALLTHRU */
210
211 case POINTER_TYPE:
212 x = TREE_TYPE (x);
213 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
214 return false;
215 break;
216 }
217
218 flags = flags_from_decl_or_type (x);
219 return (flags & ECF_TM_PURE) != 0;
220 }
221
222 /* Return true if X has been marked TM_IRREVOCABLE. */
223
224 static bool
225 is_tm_irrevocable (tree x)
226 {
227 tree attrs = get_attrs_for (x);
228
229 if (attrs && lookup_attribute ("transaction_unsafe", attrs))
230 return true;
231
232 /* A call to the irrevocable builtin is by definition,
233 irrevocable. */
234 if (TREE_CODE (x) == ADDR_EXPR)
235 x = TREE_OPERAND (x, 0);
236 if (TREE_CODE (x) == FUNCTION_DECL
237 && DECL_BUILT_IN_CLASS (x) == BUILT_IN_NORMAL
238 && DECL_FUNCTION_CODE (x) == BUILT_IN_TM_IRREVOCABLE)
239 return true;
240
241 return false;
242 }
243
244 /* Return true if X has been marked TM_SAFE. */
245
246 bool
247 is_tm_safe (const_tree x)
248 {
249 if (flag_tm)
250 {
251 tree attrs = get_attrs_for (x);
252 if (attrs)
253 {
254 if (lookup_attribute ("transaction_safe", attrs))
255 return true;
256 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
257 return true;
258 }
259 }
260 return false;
261 }
262
263 /* Return true if CALL is const, or tm_pure. */
264
265 static bool
266 is_tm_pure_call (gimple *call)
267 {
268 if (gimple_call_internal_p (call))
269 return (gimple_call_flags (call) & (ECF_CONST | ECF_TM_PURE)) != 0;
270
271 tree fn = gimple_call_fn (call);
272
273 if (TREE_CODE (fn) == ADDR_EXPR)
274 {
275 fn = TREE_OPERAND (fn, 0);
276 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
277 }
278 else
279 fn = TREE_TYPE (fn);
280
281 return is_tm_pure (fn);
282 }
283
284 /* Return true if X has been marked TM_CALLABLE. */
285
286 static bool
287 is_tm_callable (tree x)
288 {
289 tree attrs = get_attrs_for (x);
290 if (attrs)
291 {
292 if (lookup_attribute ("transaction_callable", attrs))
293 return true;
294 if (lookup_attribute ("transaction_safe", attrs))
295 return true;
296 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
297 return true;
298 }
299 return false;
300 }
301
302 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
303
304 bool
305 is_tm_may_cancel_outer (tree x)
306 {
307 tree attrs = get_attrs_for (x);
308 if (attrs)
309 return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
310 return false;
311 }
312
313 /* Return true for built in functions that "end" a transaction. */
314
315 bool
316 is_tm_ending_fndecl (tree fndecl)
317 {
318 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
319 switch (DECL_FUNCTION_CODE (fndecl))
320 {
321 case BUILT_IN_TM_COMMIT:
322 case BUILT_IN_TM_COMMIT_EH:
323 case BUILT_IN_TM_ABORT:
324 case BUILT_IN_TM_IRREVOCABLE:
325 return true;
326 default:
327 break;
328 }
329
330 return false;
331 }
332
333 /* Return true if STMT is a built in function call that "ends" a
334 transaction. */
335
336 bool
337 is_tm_ending (gimple *stmt)
338 {
339 tree fndecl;
340
341 if (gimple_code (stmt) != GIMPLE_CALL)
342 return false;
343
344 fndecl = gimple_call_fndecl (stmt);
345 return (fndecl != NULL_TREE
346 && is_tm_ending_fndecl (fndecl));
347 }
348
349 /* Return true if STMT is a TM load. */
350
351 static bool
352 is_tm_load (gimple *stmt)
353 {
354 tree fndecl;
355
356 if (gimple_code (stmt) != GIMPLE_CALL)
357 return false;
358
359 fndecl = gimple_call_fndecl (stmt);
360 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
361 && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
362 }
363
364 /* Same as above, but for simple TM loads, that is, not the
365 after-write, after-read, etc optimized variants. */
366
367 static bool
368 is_tm_simple_load (gimple *stmt)
369 {
370 tree fndecl;
371
372 if (gimple_code (stmt) != GIMPLE_CALL)
373 return false;
374
375 fndecl = gimple_call_fndecl (stmt);
376 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
377 {
378 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
379 return (fcode == BUILT_IN_TM_LOAD_1
380 || fcode == BUILT_IN_TM_LOAD_2
381 || fcode == BUILT_IN_TM_LOAD_4
382 || fcode == BUILT_IN_TM_LOAD_8
383 || fcode == BUILT_IN_TM_LOAD_FLOAT
384 || fcode == BUILT_IN_TM_LOAD_DOUBLE
385 || fcode == BUILT_IN_TM_LOAD_LDOUBLE
386 || fcode == BUILT_IN_TM_LOAD_M64
387 || fcode == BUILT_IN_TM_LOAD_M128
388 || fcode == BUILT_IN_TM_LOAD_M256);
389 }
390 return false;
391 }
392
393 /* Return true if STMT is a TM store. */
394
395 static bool
396 is_tm_store (gimple *stmt)
397 {
398 tree fndecl;
399
400 if (gimple_code (stmt) != GIMPLE_CALL)
401 return false;
402
403 fndecl = gimple_call_fndecl (stmt);
404 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
405 && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
406 }
407
408 /* Same as above, but for simple TM stores, that is, not the
409 after-write, after-read, etc optimized variants. */
410
411 static bool
412 is_tm_simple_store (gimple *stmt)
413 {
414 tree fndecl;
415
416 if (gimple_code (stmt) != GIMPLE_CALL)
417 return false;
418
419 fndecl = gimple_call_fndecl (stmt);
420 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
421 {
422 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
423 return (fcode == BUILT_IN_TM_STORE_1
424 || fcode == BUILT_IN_TM_STORE_2
425 || fcode == BUILT_IN_TM_STORE_4
426 || fcode == BUILT_IN_TM_STORE_8
427 || fcode == BUILT_IN_TM_STORE_FLOAT
428 || fcode == BUILT_IN_TM_STORE_DOUBLE
429 || fcode == BUILT_IN_TM_STORE_LDOUBLE
430 || fcode == BUILT_IN_TM_STORE_M64
431 || fcode == BUILT_IN_TM_STORE_M128
432 || fcode == BUILT_IN_TM_STORE_M256);
433 }
434 return false;
435 }
436
437 /* Return true if FNDECL is BUILT_IN_TM_ABORT. */
438
439 static bool
440 is_tm_abort (tree fndecl)
441 {
442 return (fndecl
443 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
444 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_TM_ABORT);
445 }
446
447 /* Build a GENERIC tree for a user abort. This is called by front ends
448 while transforming the __tm_abort statement. */
449
450 tree
451 build_tm_abort_call (location_t loc, bool is_outer)
452 {
453 return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
454 build_int_cst (integer_type_node,
455 AR_USERABORT
456 | (is_outer ? AR_OUTERABORT : 0)));
457 }
458 \f
459 /* Map for arbitrary function replacement under TM, as created
460 by the tm_wrap attribute. */
461
462 struct tm_wrapper_hasher : ggc_cache_ptr_hash<tree_map>
463 {
464 static inline hashval_t hash (tree_map *m) { return m->hash; }
465 static inline bool
466 equal (tree_map *a, tree_map *b)
467 {
468 return a->base.from == b->base.from;
469 }
470
471 static int
472 keep_cache_entry (tree_map *&m)
473 {
474 return ggc_marked_p (m->base.from);
475 }
476 };
477
478 static GTY((cache)) hash_table<tm_wrapper_hasher> *tm_wrap_map;
479
480 void
481 record_tm_replacement (tree from, tree to)
482 {
483 struct tree_map **slot, *h;
484
485 /* Do not inline wrapper functions that will get replaced in the TM
486 pass.
487
488 Suppose you have foo() that will get replaced into tmfoo(). Make
489 sure the inliner doesn't try to outsmart us and inline foo()
490 before we get a chance to do the TM replacement. */
491 DECL_UNINLINABLE (from) = 1;
492
493 if (tm_wrap_map == NULL)
494 tm_wrap_map = hash_table<tm_wrapper_hasher>::create_ggc (32);
495
496 h = ggc_alloc<tree_map> ();
497 h->hash = htab_hash_pointer (from);
498 h->base.from = from;
499 h->to = to;
500
501 slot = tm_wrap_map->find_slot_with_hash (h, h->hash, INSERT);
502 *slot = h;
503 }
504
505 /* Return a TM-aware replacement function for DECL. */
506
507 static tree
508 find_tm_replacement_function (tree fndecl)
509 {
510 if (tm_wrap_map)
511 {
512 struct tree_map *h, in;
513
514 in.base.from = fndecl;
515 in.hash = htab_hash_pointer (fndecl);
516 h = tm_wrap_map->find_with_hash (&in, in.hash);
517 if (h)
518 return h->to;
519 }
520
521 /* ??? We may well want TM versions of most of the common <string.h>
522 functions. For now, we've already these two defined. */
523 /* Adjust expand_call_tm() attributes as necessary for the cases
524 handled here: */
525 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
526 switch (DECL_FUNCTION_CODE (fndecl))
527 {
528 case BUILT_IN_MEMCPY:
529 return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
530 case BUILT_IN_MEMMOVE:
531 return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
532 case BUILT_IN_MEMSET:
533 return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
534 default:
535 return NULL;
536 }
537
538 return NULL;
539 }
540
541 /* When appropriate, record TM replacement for memory allocation functions.
542
543 FROM is the FNDECL to wrap. */
544 void
545 tm_malloc_replacement (tree from)
546 {
547 const char *str;
548 tree to;
549
550 if (TREE_CODE (from) != FUNCTION_DECL)
551 return;
552
553 /* If we have a previous replacement, the user must be explicitly
554 wrapping malloc/calloc/free. They better know what they're
555 doing... */
556 if (find_tm_replacement_function (from))
557 return;
558
559 str = IDENTIFIER_POINTER (DECL_NAME (from));
560
561 if (!strcmp (str, "malloc"))
562 to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
563 else if (!strcmp (str, "calloc"))
564 to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
565 else if (!strcmp (str, "free"))
566 to = builtin_decl_explicit (BUILT_IN_TM_FREE);
567 else
568 return;
569
570 TREE_NOTHROW (to) = 0;
571
572 record_tm_replacement (from, to);
573 }
574 \f
575 /* Diagnostics for tm_safe functions/regions. Called by the front end
576 once we've lowered the function to high-gimple. */
577
578 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
579 Process exactly one statement. WI->INFO is set to non-null when in
580 the context of a tm_safe function, and null for a __transaction block. */
581
582 #define DIAG_TM_OUTER 1
583 #define DIAG_TM_SAFE 2
584 #define DIAG_TM_RELAXED 4
585
586 struct diagnose_tm
587 {
588 unsigned int summary_flags : 8;
589 unsigned int block_flags : 8;
590 unsigned int func_flags : 8;
591 unsigned int saw_volatile : 1;
592 gimple *stmt;
593 };
594
595 /* Return true if T is a volatile lvalue of some kind. */
596
597 static bool
598 volatile_lvalue_p (tree t)
599 {
600 return ((SSA_VAR_P (t) || REFERENCE_CLASS_P (t))
601 && TREE_THIS_VOLATILE (TREE_TYPE (t)));
602 }
603
604 /* Tree callback function for diagnose_tm pass. */
605
606 static tree
607 diagnose_tm_1_op (tree *tp, int *walk_subtrees, void *data)
608 {
609 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
610 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
611
612 if (TYPE_P (*tp))
613 *walk_subtrees = false;
614 else if (volatile_lvalue_p (*tp)
615 && !d->saw_volatile)
616 {
617 d->saw_volatile = 1;
618 if (d->block_flags & DIAG_TM_SAFE)
619 error_at (gimple_location (d->stmt),
620 "invalid use of volatile lvalue inside transaction");
621 else if (d->func_flags & DIAG_TM_SAFE)
622 error_at (gimple_location (d->stmt),
623 "invalid use of volatile lvalue inside %<transaction_safe%> "
624 "function");
625 }
626
627 return NULL_TREE;
628 }
629
630 static inline bool
631 is_tm_safe_or_pure (const_tree x)
632 {
633 return is_tm_safe (x) || is_tm_pure (x);
634 }
635
636 static tree
637 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
638 struct walk_stmt_info *wi)
639 {
640 gimple *stmt = gsi_stmt (*gsi);
641 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
642
643 /* Save stmt for use in leaf analysis. */
644 d->stmt = stmt;
645
646 switch (gimple_code (stmt))
647 {
648 case GIMPLE_CALL:
649 {
650 tree fn = gimple_call_fn (stmt);
651
652 if ((d->summary_flags & DIAG_TM_OUTER) == 0
653 && is_tm_may_cancel_outer (fn))
654 error_at (gimple_location (stmt),
655 "%<transaction_may_cancel_outer%> function call not within"
656 " outer transaction or %<transaction_may_cancel_outer%>");
657
658 if (d->summary_flags & DIAG_TM_SAFE)
659 {
660 bool is_safe, direct_call_p;
661 tree replacement;
662
663 if (TREE_CODE (fn) == ADDR_EXPR
664 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
665 {
666 direct_call_p = true;
667 replacement = TREE_OPERAND (fn, 0);
668 replacement = find_tm_replacement_function (replacement);
669 if (replacement)
670 fn = replacement;
671 }
672 else
673 {
674 direct_call_p = false;
675 replacement = NULL_TREE;
676 }
677
678 if (is_tm_safe_or_pure (fn))
679 is_safe = true;
680 else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
681 {
682 /* A function explicitly marked transaction_callable as
683 opposed to transaction_safe is being defined to be
684 unsafe as part of its ABI, regardless of its contents. */
685 is_safe = false;
686 }
687 else if (direct_call_p)
688 {
689 if (IS_TYPE_OR_DECL_P (fn)
690 && flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
691 is_safe = true;
692 else if (replacement)
693 {
694 /* ??? At present we've been considering replacements
695 merely transaction_callable, and therefore might
696 enter irrevocable. The tm_wrap attribute has not
697 yet made it into the new language spec. */
698 is_safe = false;
699 }
700 else
701 {
702 /* ??? Diagnostics for unmarked direct calls moved into
703 the IPA pass. Section 3.2 of the spec details how
704 functions not marked should be considered "implicitly
705 safe" based on having examined the function body. */
706 is_safe = true;
707 }
708 }
709 else
710 {
711 /* An unmarked indirect call. Consider it unsafe even
712 though optimization may yet figure out how to inline. */
713 is_safe = false;
714 }
715
716 if (!is_safe)
717 {
718 if (TREE_CODE (fn) == ADDR_EXPR)
719 fn = TREE_OPERAND (fn, 0);
720 if (d->block_flags & DIAG_TM_SAFE)
721 {
722 if (direct_call_p)
723 error_at (gimple_location (stmt),
724 "unsafe function call %qD within "
725 "atomic transaction", fn);
726 else
727 {
728 if ((!DECL_P (fn) || DECL_NAME (fn))
729 && TREE_CODE (fn) != SSA_NAME)
730 error_at (gimple_location (stmt),
731 "unsafe function call %qE within "
732 "atomic transaction", fn);
733 else
734 error_at (gimple_location (stmt),
735 "unsafe indirect function call within "
736 "atomic transaction");
737 }
738 }
739 else
740 {
741 if (direct_call_p)
742 error_at (gimple_location (stmt),
743 "unsafe function call %qD within "
744 "%<transaction_safe%> function", fn);
745 else
746 {
747 if ((!DECL_P (fn) || DECL_NAME (fn))
748 && TREE_CODE (fn) != SSA_NAME)
749 error_at (gimple_location (stmt),
750 "unsafe function call %qE within "
751 "%<transaction_safe%> function", fn);
752 else
753 error_at (gimple_location (stmt),
754 "unsafe indirect function call within "
755 "%<transaction_safe%> function");
756 }
757 }
758 }
759 }
760 }
761 break;
762
763 case GIMPLE_ASM:
764 /* ??? We ought to come up with a way to add attributes to
765 asm statements, and then add "transaction_safe" to it.
766 Either that or get the language spec to resurrect __tm_waiver. */
767 if (d->block_flags & DIAG_TM_SAFE)
768 error_at (gimple_location (stmt),
769 "asm not allowed in atomic transaction");
770 else if (d->func_flags & DIAG_TM_SAFE)
771 error_at (gimple_location (stmt),
772 "asm not allowed in %<transaction_safe%> function");
773 break;
774
775 case GIMPLE_TRANSACTION:
776 {
777 gtransaction *trans_stmt = as_a <gtransaction *> (stmt);
778 unsigned char inner_flags = DIAG_TM_SAFE;
779
780 if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_RELAXED)
781 {
782 if (d->block_flags & DIAG_TM_SAFE)
783 error_at (gimple_location (stmt),
784 "relaxed transaction in atomic transaction");
785 else if (d->func_flags & DIAG_TM_SAFE)
786 error_at (gimple_location (stmt),
787 "relaxed transaction in %<transaction_safe%> function");
788 inner_flags = DIAG_TM_RELAXED;
789 }
790 else if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_OUTER)
791 {
792 if (d->block_flags)
793 error_at (gimple_location (stmt),
794 "outer transaction in transaction");
795 else if (d->func_flags & DIAG_TM_OUTER)
796 error_at (gimple_location (stmt),
797 "outer transaction in "
798 "%<transaction_may_cancel_outer%> function");
799 else if (d->func_flags & DIAG_TM_SAFE)
800 error_at (gimple_location (stmt),
801 "outer transaction in %<transaction_safe%> function");
802 inner_flags |= DIAG_TM_OUTER;
803 }
804
805 *handled_ops_p = true;
806 if (gimple_transaction_body (trans_stmt))
807 {
808 struct walk_stmt_info wi_inner;
809 struct diagnose_tm d_inner;
810
811 memset (&d_inner, 0, sizeof (d_inner));
812 d_inner.func_flags = d->func_flags;
813 d_inner.block_flags = d->block_flags | inner_flags;
814 d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
815
816 memset (&wi_inner, 0, sizeof (wi_inner));
817 wi_inner.info = &d_inner;
818
819 walk_gimple_seq (gimple_transaction_body (trans_stmt),
820 diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
821 }
822 }
823 break;
824
825 default:
826 break;
827 }
828
829 return NULL_TREE;
830 }
831
832 static unsigned int
833 diagnose_tm_blocks (void)
834 {
835 struct walk_stmt_info wi;
836 struct diagnose_tm d;
837
838 memset (&d, 0, sizeof (d));
839 if (is_tm_may_cancel_outer (current_function_decl))
840 d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
841 else if (is_tm_safe (current_function_decl))
842 d.func_flags = DIAG_TM_SAFE;
843 d.summary_flags = d.func_flags;
844
845 memset (&wi, 0, sizeof (wi));
846 wi.info = &d;
847
848 walk_gimple_seq (gimple_body (current_function_decl),
849 diagnose_tm_1, diagnose_tm_1_op, &wi);
850
851 return 0;
852 }
853
854 namespace {
855
856 const pass_data pass_data_diagnose_tm_blocks =
857 {
858 GIMPLE_PASS, /* type */
859 "*diagnose_tm_blocks", /* name */
860 OPTGROUP_NONE, /* optinfo_flags */
861 TV_TRANS_MEM, /* tv_id */
862 PROP_gimple_any, /* properties_required */
863 0, /* properties_provided */
864 0, /* properties_destroyed */
865 0, /* todo_flags_start */
866 0, /* todo_flags_finish */
867 };
868
869 class pass_diagnose_tm_blocks : public gimple_opt_pass
870 {
871 public:
872 pass_diagnose_tm_blocks (gcc::context *ctxt)
873 : gimple_opt_pass (pass_data_diagnose_tm_blocks, ctxt)
874 {}
875
876 /* opt_pass methods: */
877 virtual bool gate (function *) { return flag_tm; }
878 virtual unsigned int execute (function *) { return diagnose_tm_blocks (); }
879
880 }; // class pass_diagnose_tm_blocks
881
882 } // anon namespace
883
884 gimple_opt_pass *
885 make_pass_diagnose_tm_blocks (gcc::context *ctxt)
886 {
887 return new pass_diagnose_tm_blocks (ctxt);
888 }
889 \f
890 /* Instead of instrumenting thread private memory, we save the
891 addresses in a log which we later use to save/restore the addresses
892 upon transaction start/restart.
893
894 The log is keyed by address, where each element contains individual
895 statements among different code paths that perform the store.
896
897 This log is later used to generate either plain save/restore of the
898 addresses upon transaction start/restart, or calls to the ITM_L*
899 logging functions.
900
901 So for something like:
902
903 struct large { int x[1000]; };
904 struct large lala = { 0 };
905 __transaction {
906 lala.x[i] = 123;
907 ...
908 }
909
910 We can either save/restore:
911
912 lala = { 0 };
913 trxn = _ITM_startTransaction ();
914 if (trxn & a_saveLiveVariables)
915 tmp_lala1 = lala.x[i];
916 else if (a & a_restoreLiveVariables)
917 lala.x[i] = tmp_lala1;
918
919 or use the logging functions:
920
921 lala = { 0 };
922 trxn = _ITM_startTransaction ();
923 _ITM_LU4 (&lala.x[i]);
924
925 Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
926 far up the dominator tree to shadow all of the writes to a given
927 location (thus reducing the total number of logging calls), but not
928 so high as to be called on a path that does not perform a
929 write. */
930
931 /* One individual log entry. We may have multiple statements for the
932 same location if neither dominate each other (on different
933 execution paths). */
934 struct tm_log_entry
935 {
936 /* Address to save. */
937 tree addr;
938 /* Entry block for the transaction this address occurs in. */
939 basic_block entry_block;
940 /* Dominating statements the store occurs in. */
941 vec<gimple *> stmts;
942 /* Initially, while we are building the log, we place a nonzero
943 value here to mean that this address *will* be saved with a
944 save/restore sequence. Later, when generating the save sequence
945 we place the SSA temp generated here. */
946 tree save_var;
947 };
948
949
950 /* Log entry hashtable helpers. */
951
952 struct log_entry_hasher : pointer_hash <tm_log_entry>
953 {
954 static inline hashval_t hash (const tm_log_entry *);
955 static inline bool equal (const tm_log_entry *, const tm_log_entry *);
956 static inline void remove (tm_log_entry *);
957 };
958
959 /* Htab support. Return hash value for a `tm_log_entry'. */
960 inline hashval_t
961 log_entry_hasher::hash (const tm_log_entry *log)
962 {
963 return iterative_hash_expr (log->addr, 0);
964 }
965
966 /* Htab support. Return true if two log entries are the same. */
967 inline bool
968 log_entry_hasher::equal (const tm_log_entry *log1, const tm_log_entry *log2)
969 {
970 /* FIXME:
971
972 rth: I suggest that we get rid of the component refs etc.
973 I.e. resolve the reference to base + offset.
974
975 We may need to actually finish a merge with mainline for this,
976 since we'd like to be presented with Richi's MEM_REF_EXPRs more
977 often than not. But in the meantime your tm_log_entry could save
978 the results of get_inner_reference.
979
980 See: g++.dg/tm/pr46653.C
981 */
982
983 /* Special case plain equality because operand_equal_p() below will
984 return FALSE if the addresses are equal but they have
985 side-effects (e.g. a volatile address). */
986 if (log1->addr == log2->addr)
987 return true;
988
989 return operand_equal_p (log1->addr, log2->addr, 0);
990 }
991
992 /* Htab support. Free one tm_log_entry. */
993 inline void
994 log_entry_hasher::remove (tm_log_entry *lp)
995 {
996 lp->stmts.release ();
997 free (lp);
998 }
999
1000
1001 /* The actual log. */
1002 static hash_table<log_entry_hasher> *tm_log;
1003
1004 /* Addresses to log with a save/restore sequence. These should be in
1005 dominator order. */
1006 static vec<tree> tm_log_save_addresses;
1007
1008 enum thread_memory_type
1009 {
1010 mem_non_local = 0,
1011 mem_thread_local,
1012 mem_transaction_local,
1013 mem_max
1014 };
1015
1016 struct tm_new_mem_map
1017 {
1018 /* SSA_NAME being dereferenced. */
1019 tree val;
1020 enum thread_memory_type local_new_memory;
1021 };
1022
1023 /* Hashtable helpers. */
1024
1025 struct tm_mem_map_hasher : free_ptr_hash <tm_new_mem_map>
1026 {
1027 static inline hashval_t hash (const tm_new_mem_map *);
1028 static inline bool equal (const tm_new_mem_map *, const tm_new_mem_map *);
1029 };
1030
1031 inline hashval_t
1032 tm_mem_map_hasher::hash (const tm_new_mem_map *v)
1033 {
1034 return (intptr_t)v->val >> 4;
1035 }
1036
1037 inline bool
1038 tm_mem_map_hasher::equal (const tm_new_mem_map *v, const tm_new_mem_map *c)
1039 {
1040 return v->val == c->val;
1041 }
1042
1043 /* Map for an SSA_NAME originally pointing to a non aliased new piece
1044 of memory (malloc, alloc, etc). */
1045 static hash_table<tm_mem_map_hasher> *tm_new_mem_hash;
1046
1047 /* Initialize logging data structures. */
1048 static void
1049 tm_log_init (void)
1050 {
1051 tm_log = new hash_table<log_entry_hasher> (10);
1052 tm_new_mem_hash = new hash_table<tm_mem_map_hasher> (5);
1053 tm_log_save_addresses.create (5);
1054 }
1055
1056 /* Free logging data structures. */
1057 static void
1058 tm_log_delete (void)
1059 {
1060 delete tm_log;
1061 tm_log = NULL;
1062 delete tm_new_mem_hash;
1063 tm_new_mem_hash = NULL;
1064 tm_log_save_addresses.release ();
1065 }
1066
1067 /* Return true if MEM is a transaction invariant memory for the TM
1068 region starting at REGION_ENTRY_BLOCK. */
1069 static bool
1070 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
1071 {
1072 if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
1073 && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
1074 {
1075 basic_block def_bb;
1076
1077 def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
1078 return def_bb != region_entry_block
1079 && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
1080 }
1081
1082 mem = strip_invariant_refs (mem);
1083 return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
1084 }
1085
1086 /* Given an address ADDR in STMT, find it in the memory log or add it,
1087 making sure to keep only the addresses highest in the dominator
1088 tree.
1089
1090 ENTRY_BLOCK is the entry_block for the transaction.
1091
1092 If we find the address in the log, make sure it's either the same
1093 address, or an equivalent one that dominates ADDR.
1094
1095 If we find the address, but neither ADDR dominates the found
1096 address, nor the found one dominates ADDR, we're on different
1097 execution paths. Add it.
1098
1099 If known, ENTRY_BLOCK is the entry block for the region, otherwise
1100 NULL. */
1101 static void
1102 tm_log_add (basic_block entry_block, tree addr, gimple *stmt)
1103 {
1104 tm_log_entry **slot;
1105 struct tm_log_entry l, *lp;
1106
1107 l.addr = addr;
1108 slot = tm_log->find_slot (&l, INSERT);
1109 if (!*slot)
1110 {
1111 tree type = TREE_TYPE (addr);
1112
1113 lp = XNEW (struct tm_log_entry);
1114 lp->addr = addr;
1115 *slot = lp;
1116
1117 /* Small invariant addresses can be handled as save/restores. */
1118 if (entry_block
1119 && transaction_invariant_address_p (lp->addr, entry_block)
1120 && TYPE_SIZE_UNIT (type) != NULL
1121 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
1122 && ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE_UNIT (type))
1123 < PARAM_VALUE (PARAM_TM_MAX_AGGREGATE_SIZE))
1124 /* We must be able to copy this type normally. I.e., no
1125 special constructors and the like. */
1126 && !TREE_ADDRESSABLE (type))
1127 {
1128 lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
1129 lp->stmts.create (0);
1130 lp->entry_block = entry_block;
1131 /* Save addresses separately in dominator order so we don't
1132 get confused by overlapping addresses in the save/restore
1133 sequence. */
1134 tm_log_save_addresses.safe_push (lp->addr);
1135 }
1136 else
1137 {
1138 /* Use the logging functions. */
1139 lp->stmts.create (5);
1140 lp->stmts.quick_push (stmt);
1141 lp->save_var = NULL;
1142 }
1143 }
1144 else
1145 {
1146 size_t i;
1147 gimple *oldstmt;
1148
1149 lp = *slot;
1150
1151 /* If we're generating a save/restore sequence, we don't care
1152 about statements. */
1153 if (lp->save_var)
1154 return;
1155
1156 for (i = 0; lp->stmts.iterate (i, &oldstmt); ++i)
1157 {
1158 if (stmt == oldstmt)
1159 return;
1160 /* We already have a store to the same address, higher up the
1161 dominator tree. Nothing to do. */
1162 if (dominated_by_p (CDI_DOMINATORS,
1163 gimple_bb (stmt), gimple_bb (oldstmt)))
1164 return;
1165 /* We should be processing blocks in dominator tree order. */
1166 gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1167 gimple_bb (oldstmt), gimple_bb (stmt)));
1168 }
1169 /* Store is on a different code path. */
1170 lp->stmts.safe_push (stmt);
1171 }
1172 }
1173
1174 /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
1175 result, insert the new statements before GSI. */
1176
1177 static tree
1178 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1179 {
1180 if (TREE_CODE (x) == TARGET_MEM_REF)
1181 x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1182 else
1183 x = build_fold_addr_expr (x);
1184 return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1185 }
1186
1187 /* Instrument one address with the logging functions.
1188 ADDR is the address to save.
1189 STMT is the statement before which to place it. */
1190 static void
1191 tm_log_emit_stmt (tree addr, gimple *stmt)
1192 {
1193 tree type = TREE_TYPE (addr);
1194 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1195 gimple *log;
1196 enum built_in_function code = BUILT_IN_TM_LOG;
1197
1198 if (type == float_type_node)
1199 code = BUILT_IN_TM_LOG_FLOAT;
1200 else if (type == double_type_node)
1201 code = BUILT_IN_TM_LOG_DOUBLE;
1202 else if (type == long_double_type_node)
1203 code = BUILT_IN_TM_LOG_LDOUBLE;
1204 else if (TYPE_SIZE (type) != NULL
1205 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1206 {
1207 unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
1208
1209 if (TREE_CODE (type) == VECTOR_TYPE)
1210 {
1211 switch (type_size)
1212 {
1213 case 64:
1214 code = BUILT_IN_TM_LOG_M64;
1215 break;
1216 case 128:
1217 code = BUILT_IN_TM_LOG_M128;
1218 break;
1219 case 256:
1220 code = BUILT_IN_TM_LOG_M256;
1221 break;
1222 default:
1223 goto unhandled_vec;
1224 }
1225 if (!builtin_decl_explicit_p (code))
1226 goto unhandled_vec;
1227 }
1228 else
1229 {
1230 unhandled_vec:
1231 switch (type_size)
1232 {
1233 case 8:
1234 code = BUILT_IN_TM_LOG_1;
1235 break;
1236 case 16:
1237 code = BUILT_IN_TM_LOG_2;
1238 break;
1239 case 32:
1240 code = BUILT_IN_TM_LOG_4;
1241 break;
1242 case 64:
1243 code = BUILT_IN_TM_LOG_8;
1244 break;
1245 }
1246 }
1247 }
1248
1249 if (code != BUILT_IN_TM_LOG && !builtin_decl_explicit_p (code))
1250 code = BUILT_IN_TM_LOG;
1251 tree decl = builtin_decl_explicit (code);
1252
1253 addr = gimplify_addr (&gsi, addr);
1254 if (code == BUILT_IN_TM_LOG)
1255 log = gimple_build_call (decl, 2, addr, TYPE_SIZE_UNIT (type));
1256 else
1257 log = gimple_build_call (decl, 1, addr);
1258 gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1259 }
1260
1261 /* Go through the log and instrument address that must be instrumented
1262 with the logging functions. Leave the save/restore addresses for
1263 later. */
1264 static void
1265 tm_log_emit (void)
1266 {
1267 hash_table<log_entry_hasher>::iterator hi;
1268 struct tm_log_entry *lp;
1269
1270 FOR_EACH_HASH_TABLE_ELEMENT (*tm_log, lp, tm_log_entry_t, hi)
1271 {
1272 size_t i;
1273 gimple *stmt;
1274
1275 if (dump_file)
1276 {
1277 fprintf (dump_file, "TM thread private mem logging: ");
1278 print_generic_expr (dump_file, lp->addr);
1279 fprintf (dump_file, "\n");
1280 }
1281
1282 if (lp->save_var)
1283 {
1284 if (dump_file)
1285 fprintf (dump_file, "DUMPING to variable\n");
1286 continue;
1287 }
1288 else
1289 {
1290 if (dump_file)
1291 fprintf (dump_file, "DUMPING with logging functions\n");
1292 for (i = 0; lp->stmts.iterate (i, &stmt); ++i)
1293 tm_log_emit_stmt (lp->addr, stmt);
1294 }
1295 }
1296 }
1297
1298 /* Emit the save sequence for the corresponding addresses in the log.
1299 ENTRY_BLOCK is the entry block for the transaction.
1300 BB is the basic block to insert the code in. */
1301 static void
1302 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1303 {
1304 size_t i;
1305 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1306 gimple *stmt;
1307 struct tm_log_entry l, *lp;
1308
1309 for (i = 0; i < tm_log_save_addresses.length (); ++i)
1310 {
1311 l.addr = tm_log_save_addresses[i];
1312 lp = *(tm_log->find_slot (&l, NO_INSERT));
1313 gcc_assert (lp->save_var != NULL);
1314
1315 /* We only care about variables in the current transaction. */
1316 if (lp->entry_block != entry_block)
1317 continue;
1318
1319 stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1320
1321 /* Make sure we can create an SSA_NAME for this type. For
1322 instance, aggregates aren't allowed, in which case the system
1323 will create a VOP for us and everything will just work. */
1324 if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1325 {
1326 lp->save_var = make_ssa_name (lp->save_var, stmt);
1327 gimple_assign_set_lhs (stmt, lp->save_var);
1328 }
1329
1330 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1331 }
1332 }
1333
1334 /* Emit the restore sequence for the corresponding addresses in the log.
1335 ENTRY_BLOCK is the entry block for the transaction.
1336 BB is the basic block to insert the code in. */
1337 static void
1338 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1339 {
1340 int i;
1341 struct tm_log_entry l, *lp;
1342 gimple_stmt_iterator gsi;
1343 gimple *stmt;
1344
1345 for (i = tm_log_save_addresses.length () - 1; i >= 0; i--)
1346 {
1347 l.addr = tm_log_save_addresses[i];
1348 lp = *(tm_log->find_slot (&l, NO_INSERT));
1349 gcc_assert (lp->save_var != NULL);
1350
1351 /* We only care about variables in the current transaction. */
1352 if (lp->entry_block != entry_block)
1353 continue;
1354
1355 /* Restores are in LIFO order from the saves in case we have
1356 overlaps. */
1357 gsi = gsi_start_bb (bb);
1358
1359 stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1360 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1361 }
1362 }
1363
1364 \f
1365 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1366 struct walk_stmt_info *);
1367 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1368 struct walk_stmt_info *);
1369
1370 /* Evaluate an address X being dereferenced and determine if it
1371 originally points to a non aliased new chunk of memory (malloc,
1372 alloca, etc).
1373
1374 Return MEM_THREAD_LOCAL if it points to a thread-local address.
1375 Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1376 Return MEM_NON_LOCAL otherwise.
1377
1378 ENTRY_BLOCK is the entry block to the transaction containing the
1379 dereference of X. */
1380 static enum thread_memory_type
1381 thread_private_new_memory (basic_block entry_block, tree x)
1382 {
1383 gimple *stmt = NULL;
1384 enum tree_code code;
1385 tm_new_mem_map **slot;
1386 tm_new_mem_map elt, *elt_p;
1387 tree val = x;
1388 enum thread_memory_type retval = mem_transaction_local;
1389
1390 if (!entry_block
1391 || TREE_CODE (x) != SSA_NAME
1392 /* Possible uninitialized use, or a function argument. In
1393 either case, we don't care. */
1394 || SSA_NAME_IS_DEFAULT_DEF (x))
1395 return mem_non_local;
1396
1397 /* Look in cache first. */
1398 elt.val = x;
1399 slot = tm_new_mem_hash->find_slot (&elt, INSERT);
1400 elt_p = *slot;
1401 if (elt_p)
1402 return elt_p->local_new_memory;
1403
1404 /* Optimistically assume the memory is transaction local during
1405 processing. This catches recursion into this variable. */
1406 *slot = elt_p = XNEW (tm_new_mem_map);
1407 elt_p->val = val;
1408 elt_p->local_new_memory = mem_transaction_local;
1409
1410 /* Search DEF chain to find the original definition of this address. */
1411 do
1412 {
1413 if (ptr_deref_may_alias_global_p (x))
1414 {
1415 /* Address escapes. This is not thread-private. */
1416 retval = mem_non_local;
1417 goto new_memory_ret;
1418 }
1419
1420 stmt = SSA_NAME_DEF_STMT (x);
1421
1422 /* If the malloc call is outside the transaction, this is
1423 thread-local. */
1424 if (retval != mem_thread_local
1425 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1426 retval = mem_thread_local;
1427
1428 if (is_gimple_assign (stmt))
1429 {
1430 code = gimple_assign_rhs_code (stmt);
1431 /* x = foo ==> foo */
1432 if (code == SSA_NAME)
1433 x = gimple_assign_rhs1 (stmt);
1434 /* x = foo + n ==> foo */
1435 else if (code == POINTER_PLUS_EXPR)
1436 x = gimple_assign_rhs1 (stmt);
1437 /* x = (cast*) foo ==> foo */
1438 else if (code == VIEW_CONVERT_EXPR || CONVERT_EXPR_CODE_P (code))
1439 x = gimple_assign_rhs1 (stmt);
1440 /* x = c ? op1 : op2 == > op1 or op2 just like a PHI */
1441 else if (code == COND_EXPR)
1442 {
1443 tree op1 = gimple_assign_rhs2 (stmt);
1444 tree op2 = gimple_assign_rhs3 (stmt);
1445 enum thread_memory_type mem;
1446 retval = thread_private_new_memory (entry_block, op1);
1447 if (retval == mem_non_local)
1448 goto new_memory_ret;
1449 mem = thread_private_new_memory (entry_block, op2);
1450 retval = MIN (retval, mem);
1451 goto new_memory_ret;
1452 }
1453 else
1454 {
1455 retval = mem_non_local;
1456 goto new_memory_ret;
1457 }
1458 }
1459 else
1460 {
1461 if (gimple_code (stmt) == GIMPLE_PHI)
1462 {
1463 unsigned int i;
1464 enum thread_memory_type mem;
1465 tree phi_result = gimple_phi_result (stmt);
1466
1467 /* If any of the ancestors are non-local, we are sure to
1468 be non-local. Otherwise we can avoid doing anything
1469 and inherit what has already been generated. */
1470 retval = mem_max;
1471 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1472 {
1473 tree op = PHI_ARG_DEF (stmt, i);
1474
1475 /* Exclude self-assignment. */
1476 if (phi_result == op)
1477 continue;
1478
1479 mem = thread_private_new_memory (entry_block, op);
1480 if (mem == mem_non_local)
1481 {
1482 retval = mem;
1483 goto new_memory_ret;
1484 }
1485 retval = MIN (retval, mem);
1486 }
1487 goto new_memory_ret;
1488 }
1489 break;
1490 }
1491 }
1492 while (TREE_CODE (x) == SSA_NAME);
1493
1494 if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1495 /* Thread-local or transaction-local. */
1496 ;
1497 else
1498 retval = mem_non_local;
1499
1500 new_memory_ret:
1501 elt_p->local_new_memory = retval;
1502 return retval;
1503 }
1504
1505 /* Determine whether X has to be instrumented using a read
1506 or write barrier.
1507
1508 ENTRY_BLOCK is the entry block for the region where stmt resides
1509 in. NULL if unknown.
1510
1511 STMT is the statement in which X occurs in. It is used for thread
1512 private memory instrumentation. If no TPM instrumentation is
1513 desired, STMT should be null. */
1514 static bool
1515 requires_barrier (basic_block entry_block, tree x, gimple *stmt)
1516 {
1517 tree orig = x;
1518 while (handled_component_p (x))
1519 x = TREE_OPERAND (x, 0);
1520
1521 switch (TREE_CODE (x))
1522 {
1523 case INDIRECT_REF:
1524 case MEM_REF:
1525 {
1526 enum thread_memory_type ret;
1527
1528 ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1529 if (ret == mem_non_local)
1530 return true;
1531 if (stmt && ret == mem_thread_local)
1532 /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
1533 tm_log_add (entry_block, orig, stmt);
1534
1535 /* Transaction-locals require nothing at all. For malloc, a
1536 transaction restart frees the memory and we reallocate.
1537 For alloca, the stack pointer gets reset by the retry and
1538 we reallocate. */
1539 return false;
1540 }
1541
1542 case TARGET_MEM_REF:
1543 if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1544 return true;
1545 x = TREE_OPERAND (TMR_BASE (x), 0);
1546 if (TREE_CODE (x) == PARM_DECL)
1547 return false;
1548 gcc_assert (VAR_P (x));
1549 /* FALLTHRU */
1550
1551 case PARM_DECL:
1552 case RESULT_DECL:
1553 case VAR_DECL:
1554 if (DECL_BY_REFERENCE (x))
1555 {
1556 /* ??? This value is a pointer, but aggregate_value_p has been
1557 jigged to return true which confuses needs_to_live_in_memory.
1558 This ought to be cleaned up generically.
1559
1560 FIXME: Verify this still happens after the next mainline
1561 merge. Testcase ie g++.dg/tm/pr47554.C.
1562 */
1563 return false;
1564 }
1565
1566 if (is_global_var (x))
1567 return !TREE_READONLY (x);
1568 if (/* FIXME: This condition should actually go below in the
1569 tm_log_add() call, however is_call_clobbered() depends on
1570 aliasing info which is not available during
1571 gimplification. Since requires_barrier() gets called
1572 during lower_sequence_tm/gimplification, leave the call
1573 to needs_to_live_in_memory until we eliminate
1574 lower_sequence_tm altogether. */
1575 needs_to_live_in_memory (x))
1576 return true;
1577 else
1578 {
1579 /* For local memory that doesn't escape (aka thread private
1580 memory), we can either save the value at the beginning of
1581 the transaction and restore on restart, or call a tm
1582 function to dynamically save and restore on restart
1583 (ITM_L*). */
1584 if (stmt)
1585 tm_log_add (entry_block, orig, stmt);
1586 return false;
1587 }
1588
1589 default:
1590 return false;
1591 }
1592 }
1593
1594 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1595 a transaction region. */
1596
1597 static void
1598 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1599 {
1600 gimple *stmt = gsi_stmt (*gsi);
1601
1602 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1603 *state |= GTMA_HAVE_LOAD;
1604 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1605 *state |= GTMA_HAVE_STORE;
1606 }
1607
1608 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
1609
1610 static void
1611 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1612 {
1613 gimple *stmt = gsi_stmt (*gsi);
1614 tree fn;
1615
1616 if (is_tm_pure_call (stmt))
1617 return;
1618
1619 /* Check if this call is a transaction abort. */
1620 fn = gimple_call_fndecl (stmt);
1621 if (is_tm_abort (fn))
1622 *state |= GTMA_HAVE_ABORT;
1623
1624 /* Note that something may happen. */
1625 *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1626 }
1627
1628 /* Iterate through the statements in the sequence, moving labels
1629 (and thus edges) of transactions from "label_norm" to "label_uninst". */
1630
1631 static tree
1632 make_tm_uninst (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1633 struct walk_stmt_info *)
1634 {
1635 gimple *stmt = gsi_stmt (*gsi);
1636
1637 if (gtransaction *txn = dyn_cast <gtransaction *> (stmt))
1638 {
1639 *handled_ops_p = true;
1640 txn->label_uninst = txn->label_norm;
1641 txn->label_norm = NULL;
1642 }
1643 else
1644 *handled_ops_p = !gimple_has_substatements (stmt);
1645
1646 return NULL_TREE;
1647 }
1648
1649 /* Lower a GIMPLE_TRANSACTION statement. */
1650
1651 static void
1652 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1653 {
1654 gimple *g;
1655 gtransaction *stmt = as_a <gtransaction *> (gsi_stmt (*gsi));
1656 unsigned int *outer_state = (unsigned int *) wi->info;
1657 unsigned int this_state = 0;
1658 struct walk_stmt_info this_wi;
1659
1660 /* First, lower the body. The scanning that we do inside gives
1661 us some idea of what we're dealing with. */
1662 memset (&this_wi, 0, sizeof (this_wi));
1663 this_wi.info = (void *) &this_state;
1664 walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
1665 lower_sequence_tm, NULL, &this_wi);
1666
1667 /* If there was absolutely nothing transaction related inside the
1668 transaction, we may elide it. Likewise if this is a nested
1669 transaction and does not contain an abort. */
1670 if (this_state == 0
1671 || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1672 {
1673 if (outer_state)
1674 *outer_state |= this_state;
1675
1676 gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1677 GSI_SAME_STMT);
1678 gimple_transaction_set_body (stmt, NULL);
1679
1680 gsi_remove (gsi, true);
1681 wi->removed_stmt = true;
1682 return;
1683 }
1684
1685 /* Wrap the body of the transaction in a try-finally node so that
1686 the commit call is always properly called. */
1687 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1688 if (flag_exceptions)
1689 {
1690 tree ptr;
1691 gimple_seq n_seq, e_seq;
1692
1693 n_seq = gimple_seq_alloc_with_stmt (g);
1694 e_seq = NULL;
1695
1696 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1697 1, integer_zero_node);
1698 ptr = create_tmp_var (ptr_type_node);
1699 gimple_call_set_lhs (g, ptr);
1700 gimple_seq_add_stmt (&e_seq, g);
1701
1702 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1703 1, ptr);
1704 gimple_seq_add_stmt (&e_seq, g);
1705
1706 g = gimple_build_eh_else (n_seq, e_seq);
1707 }
1708
1709 g = gimple_build_try (gimple_transaction_body (stmt),
1710 gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1711
1712 /* For a (potentially) outer transaction, create two paths. */
1713 gimple_seq uninst = NULL;
1714 if (outer_state == NULL)
1715 {
1716 uninst = copy_gimple_seq_and_replace_locals (g);
1717 /* In the uninstrumented copy, reset inner transactions to have only
1718 an uninstrumented code path. */
1719 memset (&this_wi, 0, sizeof (this_wi));
1720 walk_gimple_seq (uninst, make_tm_uninst, NULL, &this_wi);
1721 }
1722
1723 tree label1 = create_artificial_label (UNKNOWN_LOCATION);
1724 gsi_insert_after (gsi, gimple_build_label (label1), GSI_CONTINUE_LINKING);
1725 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1726 gimple_transaction_set_label_norm (stmt, label1);
1727
1728 /* If the transaction calls abort or if this is an outer transaction,
1729 add an "over" label afterwards. */
1730 tree label3 = NULL;
1731 if ((this_state & GTMA_HAVE_ABORT)
1732 || outer_state == NULL
1733 || (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER))
1734 {
1735 label3 = create_artificial_label (UNKNOWN_LOCATION);
1736 gimple_transaction_set_label_over (stmt, label3);
1737 }
1738
1739 if (uninst != NULL)
1740 {
1741 gsi_insert_after (gsi, gimple_build_goto (label3), GSI_CONTINUE_LINKING);
1742
1743 tree label2 = create_artificial_label (UNKNOWN_LOCATION);
1744 gsi_insert_after (gsi, gimple_build_label (label2), GSI_CONTINUE_LINKING);
1745 gsi_insert_seq_after (gsi, uninst, GSI_CONTINUE_LINKING);
1746 gimple_transaction_set_label_uninst (stmt, label2);
1747 }
1748
1749 if (label3 != NULL)
1750 gsi_insert_after (gsi, gimple_build_label (label3), GSI_CONTINUE_LINKING);
1751
1752 gimple_transaction_set_body (stmt, NULL);
1753
1754 /* Record the set of operations found for use later. */
1755 this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1756 gimple_transaction_set_subcode (stmt, this_state);
1757 }
1758
1759 /* Iterate through the statements in the sequence, lowering them all
1760 as appropriate for being in a transaction. */
1761
1762 static tree
1763 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1764 struct walk_stmt_info *wi)
1765 {
1766 unsigned int *state = (unsigned int *) wi->info;
1767 gimple *stmt = gsi_stmt (*gsi);
1768
1769 *handled_ops_p = true;
1770 switch (gimple_code (stmt))
1771 {
1772 case GIMPLE_ASSIGN:
1773 /* Only memory reads/writes need to be instrumented. */
1774 if (gimple_assign_single_p (stmt))
1775 examine_assign_tm (state, gsi);
1776 break;
1777
1778 case GIMPLE_CALL:
1779 examine_call_tm (state, gsi);
1780 break;
1781
1782 case GIMPLE_ASM:
1783 *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1784 break;
1785
1786 case GIMPLE_TRANSACTION:
1787 lower_transaction (gsi, wi);
1788 break;
1789
1790 default:
1791 *handled_ops_p = !gimple_has_substatements (stmt);
1792 break;
1793 }
1794
1795 return NULL_TREE;
1796 }
1797
1798 /* Iterate through the statements in the sequence, lowering them all
1799 as appropriate for being outside of a transaction. */
1800
1801 static tree
1802 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1803 struct walk_stmt_info * wi)
1804 {
1805 gimple *stmt = gsi_stmt (*gsi);
1806
1807 if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1808 {
1809 *handled_ops_p = true;
1810 lower_transaction (gsi, wi);
1811 }
1812 else
1813 *handled_ops_p = !gimple_has_substatements (stmt);
1814
1815 return NULL_TREE;
1816 }
1817
1818 /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
1819 this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1820 been moved out, and all the data required for constructing a proper
1821 CFG has been recorded. */
1822
1823 static unsigned int
1824 execute_lower_tm (void)
1825 {
1826 struct walk_stmt_info wi;
1827 gimple_seq body;
1828
1829 /* Transactional clones aren't created until a later pass. */
1830 gcc_assert (!decl_is_tm_clone (current_function_decl));
1831
1832 body = gimple_body (current_function_decl);
1833 memset (&wi, 0, sizeof (wi));
1834 walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi);
1835 gimple_set_body (current_function_decl, body);
1836
1837 return 0;
1838 }
1839
1840 namespace {
1841
1842 const pass_data pass_data_lower_tm =
1843 {
1844 GIMPLE_PASS, /* type */
1845 "tmlower", /* name */
1846 OPTGROUP_NONE, /* optinfo_flags */
1847 TV_TRANS_MEM, /* tv_id */
1848 PROP_gimple_lcf, /* properties_required */
1849 0, /* properties_provided */
1850 0, /* properties_destroyed */
1851 0, /* todo_flags_start */
1852 0, /* todo_flags_finish */
1853 };
1854
1855 class pass_lower_tm : public gimple_opt_pass
1856 {
1857 public:
1858 pass_lower_tm (gcc::context *ctxt)
1859 : gimple_opt_pass (pass_data_lower_tm, ctxt)
1860 {}
1861
1862 /* opt_pass methods: */
1863 virtual bool gate (function *) { return flag_tm; }
1864 virtual unsigned int execute (function *) { return execute_lower_tm (); }
1865
1866 }; // class pass_lower_tm
1867
1868 } // anon namespace
1869
1870 gimple_opt_pass *
1871 make_pass_lower_tm (gcc::context *ctxt)
1872 {
1873 return new pass_lower_tm (ctxt);
1874 }
1875 \f
1876 /* Collect region information for each transaction. */
1877
1878 struct tm_region
1879 {
1880 public:
1881
1882 /* The field "transaction_stmt" is initially a gtransaction *,
1883 but eventually gets lowered to a gcall *(to BUILT_IN_TM_START).
1884
1885 Helper method to get it as a gtransaction *, with code-checking
1886 in a checked-build. */
1887
1888 gtransaction *
1889 get_transaction_stmt () const
1890 {
1891 return as_a <gtransaction *> (transaction_stmt);
1892 }
1893
1894 public:
1895
1896 /* Link to the next unnested transaction. */
1897 struct tm_region *next;
1898
1899 /* Link to the next inner transaction. */
1900 struct tm_region *inner;
1901
1902 /* Link to the next outer transaction. */
1903 struct tm_region *outer;
1904
1905 /* The GIMPLE_TRANSACTION statement beginning this transaction.
1906 After TM_MARK, this gets replaced by a call to
1907 BUILT_IN_TM_START.
1908 Hence this will be either a gtransaction *or a gcall *. */
1909 gimple *transaction_stmt;
1910
1911 /* After TM_MARK expands the GIMPLE_TRANSACTION into a call to
1912 BUILT_IN_TM_START, this field is true if the transaction is an
1913 outer transaction. */
1914 bool original_transaction_was_outer;
1915
1916 /* Return value from BUILT_IN_TM_START. */
1917 tree tm_state;
1918
1919 /* The entry block to this region. This will always be the first
1920 block of the body of the transaction. */
1921 basic_block entry_block;
1922
1923 /* The first block after an expanded call to _ITM_beginTransaction. */
1924 basic_block restart_block;
1925
1926 /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1927 These blocks are still a part of the region (i.e., the border is
1928 inclusive). Note that this set is only complete for paths in the CFG
1929 starting at ENTRY_BLOCK, and that there is no exit block recorded for
1930 the edge to the "over" label. */
1931 bitmap exit_blocks;
1932
1933 /* The set of all blocks that have an TM_IRREVOCABLE call. */
1934 bitmap irr_blocks;
1935 };
1936
1937 /* True if there are pending edge statements to be committed for the
1938 current function being scanned in the tmmark pass. */
1939 bool pending_edge_inserts_p;
1940
1941 static struct tm_region *all_tm_regions;
1942 static bitmap_obstack tm_obstack;
1943
1944
1945 /* A subroutine of tm_region_init. Record the existence of the
1946 GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
1947
1948 static struct tm_region *
1949 tm_region_init_0 (struct tm_region *outer, basic_block bb,
1950 gtransaction *stmt)
1951 {
1952 struct tm_region *region;
1953
1954 region = (struct tm_region *)
1955 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1956
1957 if (outer)
1958 {
1959 region->next = outer->inner;
1960 outer->inner = region;
1961 }
1962 else
1963 {
1964 region->next = all_tm_regions;
1965 all_tm_regions = region;
1966 }
1967 region->inner = NULL;
1968 region->outer = outer;
1969
1970 region->transaction_stmt = stmt;
1971 region->original_transaction_was_outer = false;
1972 region->tm_state = NULL;
1973
1974 /* There are either one or two edges out of the block containing
1975 the GIMPLE_TRANSACTION, one to the actual region and one to the
1976 "over" label if the region contains an abort. The former will
1977 always be the one marked FALLTHRU. */
1978 region->entry_block = FALLTHRU_EDGE (bb)->dest;
1979
1980 region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1981 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1982
1983 return region;
1984 }
1985
1986 /* A subroutine of tm_region_init. Record all the exit and
1987 irrevocable blocks in BB into the region's exit_blocks and
1988 irr_blocks bitmaps. Returns the new region being scanned. */
1989
1990 static struct tm_region *
1991 tm_region_init_1 (struct tm_region *region, basic_block bb)
1992 {
1993 gimple_stmt_iterator gsi;
1994 gimple *g;
1995
1996 if (!region
1997 || (!region->irr_blocks && !region->exit_blocks))
1998 return region;
1999
2000 /* Check to see if this is the end of a region by seeing if it
2001 contains a call to __builtin_tm_commit{,_eh}. Note that the
2002 outermost region for DECL_IS_TM_CLONE need not collect this. */
2003 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
2004 {
2005 g = gsi_stmt (gsi);
2006 if (gimple_code (g) == GIMPLE_CALL)
2007 {
2008 tree fn = gimple_call_fndecl (g);
2009 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
2010 {
2011 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
2012 || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
2013 && region->exit_blocks)
2014 {
2015 bitmap_set_bit (region->exit_blocks, bb->index);
2016 region = region->outer;
2017 break;
2018 }
2019 if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
2020 bitmap_set_bit (region->irr_blocks, bb->index);
2021 }
2022 }
2023 }
2024 return region;
2025 }
2026
2027 /* Collect all of the transaction regions within the current function
2028 and record them in ALL_TM_REGIONS. The REGION parameter may specify
2029 an "outermost" region for use by tm clones. */
2030
2031 static void
2032 tm_region_init (struct tm_region *region)
2033 {
2034 gimple *g;
2035 edge_iterator ei;
2036 edge e;
2037 basic_block bb;
2038 auto_vec<basic_block> queue;
2039 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2040 struct tm_region *old_region;
2041 auto_vec<tm_region *> bb_regions;
2042
2043 /* We could store this information in bb->aux, but we may get called
2044 through get_all_tm_blocks() from another pass that may be already
2045 using bb->aux. */
2046 bb_regions.safe_grow_cleared (last_basic_block_for_fn (cfun));
2047
2048 all_tm_regions = region;
2049 bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2050 queue.safe_push (bb);
2051 bitmap_set_bit (visited_blocks, bb->index);
2052 bb_regions[bb->index] = region;
2053
2054 do
2055 {
2056 bb = queue.pop ();
2057 region = bb_regions[bb->index];
2058 bb_regions[bb->index] = NULL;
2059
2060 /* Record exit and irrevocable blocks. */
2061 region = tm_region_init_1 (region, bb);
2062
2063 /* Check for the last statement in the block beginning a new region. */
2064 g = last_stmt (bb);
2065 old_region = region;
2066 if (g)
2067 if (gtransaction *trans_stmt = dyn_cast <gtransaction *> (g))
2068 region = tm_region_init_0 (region, bb, trans_stmt);
2069
2070 /* Process subsequent blocks. */
2071 FOR_EACH_EDGE (e, ei, bb->succs)
2072 if (!bitmap_bit_p (visited_blocks, e->dest->index))
2073 {
2074 bitmap_set_bit (visited_blocks, e->dest->index);
2075 queue.safe_push (e->dest);
2076
2077 /* If the current block started a new region, make sure that only
2078 the entry block of the new region is associated with this region.
2079 Other successors are still part of the old region. */
2080 if (old_region != region && e->dest != region->entry_block)
2081 bb_regions[e->dest->index] = old_region;
2082 else
2083 bb_regions[e->dest->index] = region;
2084 }
2085 }
2086 while (!queue.is_empty ());
2087 BITMAP_FREE (visited_blocks);
2088 }
2089
2090 /* The "gate" function for all transactional memory expansion and optimization
2091 passes. We collect region information for each top-level transaction, and
2092 if we don't find any, we skip all of the TM passes. Each region will have
2093 all of the exit blocks recorded, and the originating statement. */
2094
2095 static bool
2096 gate_tm_init (void)
2097 {
2098 if (!flag_tm)
2099 return false;
2100
2101 calculate_dominance_info (CDI_DOMINATORS);
2102 bitmap_obstack_initialize (&tm_obstack);
2103
2104 /* If the function is a TM_CLONE, then the entire function is the region. */
2105 if (decl_is_tm_clone (current_function_decl))
2106 {
2107 struct tm_region *region = (struct tm_region *)
2108 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
2109 memset (region, 0, sizeof (*region));
2110 region->entry_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2111 /* For a clone, the entire function is the region. But even if
2112 we don't need to record any exit blocks, we may need to
2113 record irrevocable blocks. */
2114 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
2115
2116 tm_region_init (region);
2117 }
2118 else
2119 {
2120 tm_region_init (NULL);
2121
2122 /* If we didn't find any regions, cleanup and skip the whole tree
2123 of tm-related optimizations. */
2124 if (all_tm_regions == NULL)
2125 {
2126 bitmap_obstack_release (&tm_obstack);
2127 return false;
2128 }
2129 }
2130
2131 return true;
2132 }
2133
2134 namespace {
2135
2136 const pass_data pass_data_tm_init =
2137 {
2138 GIMPLE_PASS, /* type */
2139 "*tminit", /* name */
2140 OPTGROUP_NONE, /* optinfo_flags */
2141 TV_TRANS_MEM, /* tv_id */
2142 ( PROP_ssa | PROP_cfg ), /* properties_required */
2143 0, /* properties_provided */
2144 0, /* properties_destroyed */
2145 0, /* todo_flags_start */
2146 0, /* todo_flags_finish */
2147 };
2148
2149 class pass_tm_init : public gimple_opt_pass
2150 {
2151 public:
2152 pass_tm_init (gcc::context *ctxt)
2153 : gimple_opt_pass (pass_data_tm_init, ctxt)
2154 {}
2155
2156 /* opt_pass methods: */
2157 virtual bool gate (function *) { return gate_tm_init (); }
2158
2159 }; // class pass_tm_init
2160
2161 } // anon namespace
2162
2163 gimple_opt_pass *
2164 make_pass_tm_init (gcc::context *ctxt)
2165 {
2166 return new pass_tm_init (ctxt);
2167 }
2168 \f
2169 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
2170 represented by STATE. */
2171
2172 static inline void
2173 transaction_subcode_ior (struct tm_region *region, unsigned flags)
2174 {
2175 if (region && region->transaction_stmt)
2176 {
2177 gtransaction *transaction_stmt = region->get_transaction_stmt ();
2178 flags |= gimple_transaction_subcode (transaction_stmt);
2179 gimple_transaction_set_subcode (transaction_stmt, flags);
2180 }
2181 }
2182
2183 /* Construct a memory load in a transactional context. Return the
2184 gimple statement performing the load, or NULL if there is no
2185 TM_LOAD builtin of the appropriate size to do the load.
2186
2187 LOC is the location to use for the new statement(s). */
2188
2189 static gcall *
2190 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2191 {
2192 tree t, type = TREE_TYPE (rhs);
2193 gcall *gcall;
2194
2195 built_in_function code;
2196 if (type == float_type_node)
2197 code = BUILT_IN_TM_LOAD_FLOAT;
2198 else if (type == double_type_node)
2199 code = BUILT_IN_TM_LOAD_DOUBLE;
2200 else if (type == long_double_type_node)
2201 code = BUILT_IN_TM_LOAD_LDOUBLE;
2202 else
2203 {
2204 if (TYPE_SIZE (type) == NULL || !tree_fits_uhwi_p (TYPE_SIZE (type)))
2205 return NULL;
2206 unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
2207
2208 if (TREE_CODE (type) == VECTOR_TYPE)
2209 {
2210 switch (type_size)
2211 {
2212 case 64:
2213 code = BUILT_IN_TM_LOAD_M64;
2214 break;
2215 case 128:
2216 code = BUILT_IN_TM_LOAD_M128;
2217 break;
2218 case 256:
2219 code = BUILT_IN_TM_LOAD_M256;
2220 break;
2221 default:
2222 goto unhandled_vec;
2223 }
2224 if (!builtin_decl_explicit_p (code))
2225 goto unhandled_vec;
2226 }
2227 else
2228 {
2229 unhandled_vec:
2230 switch (type_size)
2231 {
2232 case 8:
2233 code = BUILT_IN_TM_LOAD_1;
2234 break;
2235 case 16:
2236 code = BUILT_IN_TM_LOAD_2;
2237 break;
2238 case 32:
2239 code = BUILT_IN_TM_LOAD_4;
2240 break;
2241 case 64:
2242 code = BUILT_IN_TM_LOAD_8;
2243 break;
2244 default:
2245 return NULL;
2246 }
2247 }
2248 }
2249
2250 tree decl = builtin_decl_explicit (code);
2251 gcc_assert (decl);
2252
2253 t = gimplify_addr (gsi, rhs);
2254 gcall = gimple_build_call (decl, 1, t);
2255 gimple_set_location (gcall, loc);
2256
2257 t = TREE_TYPE (TREE_TYPE (decl));
2258 if (useless_type_conversion_p (type, t))
2259 {
2260 gimple_call_set_lhs (gcall, lhs);
2261 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2262 }
2263 else
2264 {
2265 gimple *g;
2266 tree temp;
2267
2268 temp = create_tmp_reg (t);
2269 gimple_call_set_lhs (gcall, temp);
2270 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2271
2272 t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2273 g = gimple_build_assign (lhs, t);
2274 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2275 }
2276
2277 return gcall;
2278 }
2279
2280
2281 /* Similarly for storing TYPE in a transactional context. */
2282
2283 static gcall *
2284 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2285 {
2286 tree t, fn, type = TREE_TYPE (rhs), simple_type;
2287 gcall *gcall;
2288
2289 built_in_function code;
2290 if (type == float_type_node)
2291 code = BUILT_IN_TM_STORE_FLOAT;
2292 else if (type == double_type_node)
2293 code = BUILT_IN_TM_STORE_DOUBLE;
2294 else if (type == long_double_type_node)
2295 code = BUILT_IN_TM_STORE_LDOUBLE;
2296 else
2297 {
2298 if (TYPE_SIZE (type) == NULL || !tree_fits_uhwi_p (TYPE_SIZE (type)))
2299 return NULL;
2300 unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
2301
2302 if (TREE_CODE (type) == VECTOR_TYPE)
2303 {
2304 switch (type_size)
2305 {
2306 case 64:
2307 code = BUILT_IN_TM_STORE_M64;
2308 break;
2309 case 128:
2310 code = BUILT_IN_TM_STORE_M128;
2311 break;
2312 case 256:
2313 code = BUILT_IN_TM_STORE_M256;
2314 break;
2315 default:
2316 goto unhandled_vec;
2317 }
2318 if (!builtin_decl_explicit_p (code))
2319 goto unhandled_vec;
2320 }
2321 else
2322 {
2323 unhandled_vec:
2324 switch (type_size)
2325 {
2326 case 8:
2327 code = BUILT_IN_TM_STORE_1;
2328 break;
2329 case 16:
2330 code = BUILT_IN_TM_STORE_2;
2331 break;
2332 case 32:
2333 code = BUILT_IN_TM_STORE_4;
2334 break;
2335 case 64:
2336 code = BUILT_IN_TM_STORE_8;
2337 break;
2338 default:
2339 return NULL;
2340 }
2341 }
2342 }
2343
2344 fn = builtin_decl_explicit (code);
2345 gcc_assert (fn);
2346
2347 simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2348
2349 if (TREE_CODE (rhs) == CONSTRUCTOR)
2350 {
2351 /* Handle the easy initialization to zero. */
2352 if (!CONSTRUCTOR_ELTS (rhs))
2353 rhs = build_int_cst (simple_type, 0);
2354 else
2355 {
2356 /* ...otherwise punt to the caller and probably use
2357 BUILT_IN_TM_MEMMOVE, because we can't wrap a
2358 VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2359 valid gimple. */
2360 return NULL;
2361 }
2362 }
2363 else if (!useless_type_conversion_p (simple_type, type))
2364 {
2365 gimple *g;
2366 tree temp;
2367
2368 temp = create_tmp_reg (simple_type);
2369 t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2370 g = gimple_build_assign (temp, t);
2371 gimple_set_location (g, loc);
2372 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2373
2374 rhs = temp;
2375 }
2376
2377 t = gimplify_addr (gsi, lhs);
2378 gcall = gimple_build_call (fn, 2, t, rhs);
2379 gimple_set_location (gcall, loc);
2380 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2381
2382 return gcall;
2383 }
2384
2385
2386 /* Expand an assignment statement into transactional builtins. */
2387
2388 static void
2389 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2390 {
2391 gimple *stmt = gsi_stmt (*gsi);
2392 location_t loc = gimple_location (stmt);
2393 tree lhs = gimple_assign_lhs (stmt);
2394 tree rhs = gimple_assign_rhs1 (stmt);
2395 bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2396 bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2397 gimple *gcall = NULL;
2398
2399 if (!load_p && !store_p)
2400 {
2401 /* Add thread private addresses to log if applicable. */
2402 requires_barrier (region->entry_block, lhs, stmt);
2403 gsi_next (gsi);
2404 return;
2405 }
2406
2407 if (load_p)
2408 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2409 if (store_p)
2410 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2411
2412 // Remove original load/store statement.
2413 gsi_remove (gsi, true);
2414
2415 // Attempt to use a simple load/store helper function.
2416 if (load_p && !store_p)
2417 gcall = build_tm_load (loc, lhs, rhs, gsi);
2418 else if (store_p && !load_p)
2419 gcall = build_tm_store (loc, lhs, rhs, gsi);
2420
2421 // If gcall has not been set, then we do not have a simple helper
2422 // function available for the type. This may be true of larger
2423 // structures, vectors, and non-standard float types.
2424 if (!gcall)
2425 {
2426 tree lhs_addr, rhs_addr, ltmp = NULL, copy_fn;
2427
2428 // If this is a type that we couldn't handle above, but it's
2429 // in a register, we must spill it to memory for the copy.
2430 if (is_gimple_reg (lhs))
2431 {
2432 ltmp = create_tmp_var (TREE_TYPE (lhs));
2433 lhs_addr = build_fold_addr_expr (ltmp);
2434 }
2435 else
2436 lhs_addr = gimplify_addr (gsi, lhs);
2437 if (is_gimple_reg (rhs))
2438 {
2439 tree rtmp = create_tmp_var (TREE_TYPE (rhs));
2440 rhs_addr = build_fold_addr_expr (rtmp);
2441 gcall = gimple_build_assign (rtmp, rhs);
2442 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2443 }
2444 else
2445 rhs_addr = gimplify_addr (gsi, rhs);
2446
2447 // Choose the appropriate memory transfer function.
2448 if (load_p && store_p)
2449 {
2450 // ??? Figure out if there's any possible overlap between
2451 // the LHS and the RHS and if not, use MEMCPY.
2452 copy_fn = builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
2453 }
2454 else if (load_p)
2455 {
2456 // Note that the store is non-transactional and cannot overlap.
2457 copy_fn = builtin_decl_explicit (BUILT_IN_TM_MEMCPY_RTWN);
2458 }
2459 else
2460 {
2461 // Note that the load is non-transactional and cannot overlap.
2462 copy_fn = builtin_decl_explicit (BUILT_IN_TM_MEMCPY_RNWT);
2463 }
2464
2465 gcall = gimple_build_call (copy_fn, 3, lhs_addr, rhs_addr,
2466 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2467 gimple_set_location (gcall, loc);
2468 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2469
2470 if (ltmp)
2471 {
2472 gcall = gimple_build_assign (lhs, ltmp);
2473 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2474 }
2475 }
2476
2477 // Now that we have the load/store in its instrumented form, add
2478 // thread private addresses to the log if applicable.
2479 if (!store_p)
2480 requires_barrier (region->entry_block, lhs, gcall);
2481 }
2482
2483
2484 /* Expand a call statement as appropriate for a transaction. That is,
2485 either verify that the call does not affect the transaction, or
2486 redirect the call to a clone that handles transactions, or change
2487 the transaction state to IRREVOCABLE. Return true if the call is
2488 one of the builtins that end a transaction. */
2489
2490 static bool
2491 expand_call_tm (struct tm_region *region,
2492 gimple_stmt_iterator *gsi)
2493 {
2494 gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
2495 tree lhs = gimple_call_lhs (stmt);
2496 tree fn_decl;
2497 struct cgraph_node *node;
2498 bool retval = false;
2499
2500 fn_decl = gimple_call_fndecl (stmt);
2501
2502 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2503 || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2504 transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2505 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2506 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2507
2508 if (is_tm_pure_call (stmt))
2509 return false;
2510
2511 if (fn_decl)
2512 retval = is_tm_ending_fndecl (fn_decl);
2513 if (!retval)
2514 {
2515 /* Assume all non-const/pure calls write to memory, except
2516 transaction ending builtins. */
2517 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2518 }
2519
2520 /* For indirect calls, we already generated a call into the runtime. */
2521 if (!fn_decl)
2522 {
2523 tree fn = gimple_call_fn (stmt);
2524
2525 /* We are guaranteed never to go irrevocable on a safe or pure
2526 call, and the pure call was handled above. */
2527 if (is_tm_safe (fn))
2528 return false;
2529 else
2530 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2531
2532 return false;
2533 }
2534
2535 node = cgraph_node::get (fn_decl);
2536 /* All calls should have cgraph here. */
2537 if (!node)
2538 {
2539 /* We can have a nodeless call here if some pass after IPA-tm
2540 added uninstrumented calls. For example, loop distribution
2541 can transform certain loop constructs into __builtin_mem*
2542 calls. In this case, see if we have a suitable TM
2543 replacement and fill in the gaps. */
2544 gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL);
2545 enum built_in_function code = DECL_FUNCTION_CODE (fn_decl);
2546 gcc_assert (code == BUILT_IN_MEMCPY
2547 || code == BUILT_IN_MEMMOVE
2548 || code == BUILT_IN_MEMSET);
2549
2550 tree repl = find_tm_replacement_function (fn_decl);
2551 if (repl)
2552 {
2553 gimple_call_set_fndecl (stmt, repl);
2554 update_stmt (stmt);
2555 node = cgraph_node::create (repl);
2556 node->local.tm_may_enter_irr = false;
2557 return expand_call_tm (region, gsi);
2558 }
2559 gcc_unreachable ();
2560 }
2561 if (node->local.tm_may_enter_irr)
2562 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2563
2564 if (is_tm_abort (fn_decl))
2565 {
2566 transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2567 return true;
2568 }
2569
2570 /* Instrument the store if needed.
2571
2572 If the assignment happens inside the function call (return slot
2573 optimization), there is no instrumentation to be done, since
2574 the callee should have done the right thing. */
2575 if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2576 && !gimple_call_return_slot_opt_p (stmt))
2577 {
2578 tree tmp = create_tmp_reg (TREE_TYPE (lhs));
2579 location_t loc = gimple_location (stmt);
2580 edge fallthru_edge = NULL;
2581 gassign *assign_stmt;
2582
2583 /* Remember if the call was going to throw. */
2584 if (stmt_can_throw_internal (stmt))
2585 {
2586 edge_iterator ei;
2587 edge e;
2588 basic_block bb = gimple_bb (stmt);
2589
2590 FOR_EACH_EDGE (e, ei, bb->succs)
2591 if (e->flags & EDGE_FALLTHRU)
2592 {
2593 fallthru_edge = e;
2594 break;
2595 }
2596 }
2597
2598 gimple_call_set_lhs (stmt, tmp);
2599 update_stmt (stmt);
2600 assign_stmt = gimple_build_assign (lhs, tmp);
2601 gimple_set_location (assign_stmt, loc);
2602
2603 /* We cannot throw in the middle of a BB. If the call was going
2604 to throw, place the instrumentation on the fallthru edge, so
2605 the call remains the last statement in the block. */
2606 if (fallthru_edge)
2607 {
2608 gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (assign_stmt);
2609 gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2610 expand_assign_tm (region, &fallthru_gsi);
2611 gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2612 pending_edge_inserts_p = true;
2613 }
2614 else
2615 {
2616 gsi_insert_after (gsi, assign_stmt, GSI_CONTINUE_LINKING);
2617 expand_assign_tm (region, gsi);
2618 }
2619
2620 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2621 }
2622
2623 return retval;
2624 }
2625
2626
2627 /* Expand all statements in BB as appropriate for being inside
2628 a transaction. */
2629
2630 static void
2631 expand_block_tm (struct tm_region *region, basic_block bb)
2632 {
2633 gimple_stmt_iterator gsi;
2634
2635 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2636 {
2637 gimple *stmt = gsi_stmt (gsi);
2638 switch (gimple_code (stmt))
2639 {
2640 case GIMPLE_ASSIGN:
2641 /* Only memory reads/writes need to be instrumented. */
2642 if (gimple_assign_single_p (stmt)
2643 && !gimple_clobber_p (stmt))
2644 {
2645 expand_assign_tm (region, &gsi);
2646 continue;
2647 }
2648 break;
2649
2650 case GIMPLE_CALL:
2651 if (expand_call_tm (region, &gsi))
2652 return;
2653 break;
2654
2655 case GIMPLE_ASM:
2656 gcc_unreachable ();
2657
2658 default:
2659 break;
2660 }
2661 if (!gsi_end_p (gsi))
2662 gsi_next (&gsi);
2663 }
2664 }
2665
2666 /* Return the list of basic-blocks in REGION.
2667
2668 STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2669 following a TM_IRREVOCABLE call.
2670
2671 INCLUDE_UNINSTRUMENTED_P is TRUE if we should include the
2672 uninstrumented code path blocks in the list of basic blocks
2673 returned, false otherwise. */
2674
2675 static vec<basic_block>
2676 get_tm_region_blocks (basic_block entry_block,
2677 bitmap exit_blocks,
2678 bitmap irr_blocks,
2679 bitmap all_region_blocks,
2680 bool stop_at_irrevocable_p,
2681 bool include_uninstrumented_p = true)
2682 {
2683 vec<basic_block> bbs = vNULL;
2684 unsigned i;
2685 edge e;
2686 edge_iterator ei;
2687 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2688
2689 i = 0;
2690 bbs.safe_push (entry_block);
2691 bitmap_set_bit (visited_blocks, entry_block->index);
2692
2693 do
2694 {
2695 basic_block bb = bbs[i++];
2696
2697 if (exit_blocks &&
2698 bitmap_bit_p (exit_blocks, bb->index))
2699 continue;
2700
2701 if (stop_at_irrevocable_p
2702 && irr_blocks
2703 && bitmap_bit_p (irr_blocks, bb->index))
2704 continue;
2705
2706 FOR_EACH_EDGE (e, ei, bb->succs)
2707 if ((include_uninstrumented_p
2708 || !(e->flags & EDGE_TM_UNINSTRUMENTED))
2709 && !bitmap_bit_p (visited_blocks, e->dest->index))
2710 {
2711 bitmap_set_bit (visited_blocks, e->dest->index);
2712 bbs.safe_push (e->dest);
2713 }
2714 }
2715 while (i < bbs.length ());
2716
2717 if (all_region_blocks)
2718 bitmap_ior_into (all_region_blocks, visited_blocks);
2719
2720 BITMAP_FREE (visited_blocks);
2721 return bbs;
2722 }
2723
2724 // Callback data for collect_bb2reg.
2725 struct bb2reg_stuff
2726 {
2727 vec<tm_region *> *bb2reg;
2728 bool include_uninstrumented_p;
2729 };
2730
2731 // Callback for expand_regions, collect innermost region data for each bb.
2732 static void *
2733 collect_bb2reg (struct tm_region *region, void *data)
2734 {
2735 struct bb2reg_stuff *stuff = (struct bb2reg_stuff *)data;
2736 vec<tm_region *> *bb2reg = stuff->bb2reg;
2737 vec<basic_block> queue;
2738 unsigned int i;
2739 basic_block bb;
2740
2741 queue = get_tm_region_blocks (region->entry_block,
2742 region->exit_blocks,
2743 region->irr_blocks,
2744 NULL,
2745 /*stop_at_irr_p=*/true,
2746 stuff->include_uninstrumented_p);
2747
2748 // We expect expand_region to perform a post-order traversal of the region
2749 // tree. Therefore the last region seen for any bb is the innermost.
2750 FOR_EACH_VEC_ELT (queue, i, bb)
2751 (*bb2reg)[bb->index] = region;
2752
2753 queue.release ();
2754 return NULL;
2755 }
2756
2757 // Returns a vector, indexed by BB->INDEX, of the innermost tm_region to
2758 // which a basic block belongs. Note that we only consider the instrumented
2759 // code paths for the region; the uninstrumented code paths are ignored if
2760 // INCLUDE_UNINSTRUMENTED_P is false.
2761 //
2762 // ??? This data is very similar to the bb_regions array that is collected
2763 // during tm_region_init. Or, rather, this data is similar to what could
2764 // be used within tm_region_init. The actual computation in tm_region_init
2765 // begins and ends with bb_regions entirely full of NULL pointers, due to
2766 // the way in which pointers are swapped in and out of the array.
2767 //
2768 // ??? Our callers expect that blocks are not shared between transactions.
2769 // When the optimizers get too smart, and blocks are shared, then during
2770 // the tm_mark phase we'll add log entries to only one of the two transactions,
2771 // and in the tm_edge phase we'll add edges to the CFG that create invalid
2772 // cycles. The symptom being SSA defs that do not dominate their uses.
2773 // Note that the optimizers were locally correct with their transformation,
2774 // as we have no info within the program that suggests that the blocks cannot
2775 // be shared.
2776 //
2777 // ??? There is currently a hack inside tree-ssa-pre.c to work around the
2778 // only known instance of this block sharing.
2779
2780 static vec<tm_region *>
2781 get_bb_regions_instrumented (bool traverse_clones,
2782 bool include_uninstrumented_p)
2783 {
2784 unsigned n = last_basic_block_for_fn (cfun);
2785 struct bb2reg_stuff stuff;
2786 vec<tm_region *> ret;
2787
2788 ret.create (n);
2789 ret.safe_grow_cleared (n);
2790 stuff.bb2reg = &ret;
2791 stuff.include_uninstrumented_p = include_uninstrumented_p;
2792 expand_regions (all_tm_regions, collect_bb2reg, &stuff, traverse_clones);
2793
2794 return ret;
2795 }
2796
2797 /* Set the IN_TRANSACTION for all gimple statements that appear in a
2798 transaction. */
2799
2800 void
2801 compute_transaction_bits (void)
2802 {
2803 struct tm_region *region;
2804 vec<basic_block> queue;
2805 unsigned int i;
2806 basic_block bb;
2807
2808 /* ?? Perhaps we need to abstract gate_tm_init further, because we
2809 certainly don't need it to calculate CDI_DOMINATOR info. */
2810 gate_tm_init ();
2811
2812 FOR_EACH_BB_FN (bb, cfun)
2813 bb->flags &= ~BB_IN_TRANSACTION;
2814
2815 for (region = all_tm_regions; region; region = region->next)
2816 {
2817 queue = get_tm_region_blocks (region->entry_block,
2818 region->exit_blocks,
2819 region->irr_blocks,
2820 NULL,
2821 /*stop_at_irr_p=*/true);
2822 for (i = 0; queue.iterate (i, &bb); ++i)
2823 bb->flags |= BB_IN_TRANSACTION;
2824 queue.release ();
2825 }
2826
2827 if (all_tm_regions)
2828 bitmap_obstack_release (&tm_obstack);
2829 }
2830
2831 /* Replace the GIMPLE_TRANSACTION in this region with the corresponding
2832 call to BUILT_IN_TM_START. */
2833
2834 static void *
2835 expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2836 {
2837 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2838 basic_block transaction_bb = gimple_bb (region->transaction_stmt);
2839 tree tm_state = region->tm_state;
2840 tree tm_state_type = TREE_TYPE (tm_state);
2841 edge abort_edge = NULL;
2842 edge inst_edge = NULL;
2843 edge uninst_edge = NULL;
2844 edge fallthru_edge = NULL;
2845
2846 // Identify the various successors of the transaction start.
2847 {
2848 edge_iterator i;
2849 edge e;
2850 FOR_EACH_EDGE (e, i, transaction_bb->succs)
2851 {
2852 if (e->flags & EDGE_TM_ABORT)
2853 abort_edge = e;
2854 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
2855 uninst_edge = e;
2856 else
2857 inst_edge = e;
2858 if (e->flags & EDGE_FALLTHRU)
2859 fallthru_edge = e;
2860 }
2861 }
2862
2863 /* ??? There are plenty of bits here we're not computing. */
2864 {
2865 int subcode = gimple_transaction_subcode (region->get_transaction_stmt ());
2866 int flags = 0;
2867 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2868 flags |= PR_DOESGOIRREVOCABLE;
2869 if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2870 flags |= PR_HASNOIRREVOCABLE;
2871 /* If the transaction does not have an abort in lexical scope and is not
2872 marked as an outer transaction, then it will never abort. */
2873 if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0)
2874 flags |= PR_HASNOABORT;
2875 if ((subcode & GTMA_HAVE_STORE) == 0)
2876 flags |= PR_READONLY;
2877 if (inst_edge && !(subcode & GTMA_HAS_NO_INSTRUMENTATION))
2878 flags |= PR_INSTRUMENTEDCODE;
2879 if (uninst_edge)
2880 flags |= PR_UNINSTRUMENTEDCODE;
2881 if (subcode & GTMA_IS_OUTER)
2882 region->original_transaction_was_outer = true;
2883 tree t = build_int_cst (tm_state_type, flags);
2884 gcall *call = gimple_build_call (tm_start, 1, t);
2885 gimple_call_set_lhs (call, tm_state);
2886 gimple_set_location (call, gimple_location (region->transaction_stmt));
2887
2888 // Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START.
2889 gimple_stmt_iterator gsi = gsi_last_bb (transaction_bb);
2890 gcc_assert (gsi_stmt (gsi) == region->transaction_stmt);
2891 gsi_insert_before (&gsi, call, GSI_SAME_STMT);
2892 gsi_remove (&gsi, true);
2893 region->transaction_stmt = call;
2894 }
2895
2896 // Generate log saves.
2897 if (!tm_log_save_addresses.is_empty ())
2898 tm_log_emit_saves (region->entry_block, transaction_bb);
2899
2900 // In the beginning, we've no tests to perform on transaction restart.
2901 // Note that after this point, transaction_bb becomes the "most recent
2902 // block containing tests for the transaction".
2903 region->restart_block = region->entry_block;
2904
2905 // Generate log restores.
2906 if (!tm_log_save_addresses.is_empty ())
2907 {
2908 basic_block test_bb = create_empty_bb (transaction_bb);
2909 basic_block code_bb = create_empty_bb (test_bb);
2910 basic_block join_bb = create_empty_bb (code_bb);
2911 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2912 add_bb_to_loop (code_bb, transaction_bb->loop_father);
2913 add_bb_to_loop (join_bb, transaction_bb->loop_father);
2914 if (region->restart_block == region->entry_block)
2915 region->restart_block = test_bb;
2916
2917 tree t1 = create_tmp_reg (tm_state_type);
2918 tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES);
2919 gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2920 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2921 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2922
2923 t2 = build_int_cst (tm_state_type, 0);
2924 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2925 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2926
2927 tm_log_emit_restores (region->entry_block, code_bb);
2928
2929 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2930 edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE);
2931 edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE);
2932 redirect_edge_pred (fallthru_edge, join_bb);
2933
2934 join_bb->frequency = test_bb->frequency = transaction_bb->frequency;
2935 join_bb->count = test_bb->count = transaction_bb->count;
2936
2937 ei->probability = PROB_ALWAYS;
2938 et->probability = PROB_LIKELY;
2939 ef->probability = PROB_UNLIKELY;
2940 et->count = apply_probability (test_bb->count, et->probability);
2941 ef->count = apply_probability (test_bb->count, ef->probability);
2942
2943 code_bb->count = et->count;
2944 code_bb->frequency = EDGE_FREQUENCY (et);
2945
2946 transaction_bb = join_bb;
2947 }
2948
2949 // If we have an ABORT edge, create a test to perform the abort.
2950 if (abort_edge)
2951 {
2952 basic_block test_bb = create_empty_bb (transaction_bb);
2953 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2954 if (region->restart_block == region->entry_block)
2955 region->restart_block = test_bb;
2956
2957 tree t1 = create_tmp_reg (tm_state_type);
2958 tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION);
2959 gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2960 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2961 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2962
2963 t2 = build_int_cst (tm_state_type, 0);
2964 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2965 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2966
2967 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2968 test_bb->frequency = transaction_bb->frequency;
2969 test_bb->count = transaction_bb->count;
2970 ei->probability = PROB_ALWAYS;
2971
2972 // Not abort edge. If both are live, chose one at random as we'll
2973 // we'll be fixing that up below.
2974 redirect_edge_pred (fallthru_edge, test_bb);
2975 fallthru_edge->flags = EDGE_FALSE_VALUE;
2976 fallthru_edge->probability = PROB_VERY_LIKELY;
2977 fallthru_edge->count
2978 = apply_probability (test_bb->count, fallthru_edge->probability);
2979
2980 // Abort/over edge.
2981 redirect_edge_pred (abort_edge, test_bb);
2982 abort_edge->flags = EDGE_TRUE_VALUE;
2983 abort_edge->probability = PROB_VERY_UNLIKELY;
2984 abort_edge->count
2985 = apply_probability (test_bb->count, abort_edge->probability);
2986
2987 transaction_bb = test_bb;
2988 }
2989
2990 // If we have both instrumented and uninstrumented code paths, select one.
2991 if (inst_edge && uninst_edge)
2992 {
2993 basic_block test_bb = create_empty_bb (transaction_bb);
2994 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2995 if (region->restart_block == region->entry_block)
2996 region->restart_block = test_bb;
2997
2998 tree t1 = create_tmp_reg (tm_state_type);
2999 tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE);
3000
3001 gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
3002 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
3003 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
3004
3005 t2 = build_int_cst (tm_state_type, 0);
3006 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
3007 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
3008
3009 // Create the edge into test_bb first, as we want to copy values
3010 // out of the fallthru edge.
3011 edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags);
3012 e->probability = fallthru_edge->probability;
3013 test_bb->count = e->count = fallthru_edge->count;
3014 test_bb->frequency = EDGE_FREQUENCY (e);
3015
3016 // Now update the edges to the inst/uninist implementations.
3017 // For now assume that the paths are equally likely. When using HTM,
3018 // we'll try the uninst path first and fallback to inst path if htm
3019 // buffers are exceeded. Without HTM we start with the inst path and
3020 // use the uninst path when falling back to serial mode.
3021 redirect_edge_pred (inst_edge, test_bb);
3022 inst_edge->flags = EDGE_FALSE_VALUE;
3023 inst_edge->probability = REG_BR_PROB_BASE / 2;
3024 inst_edge->count
3025 = apply_probability (test_bb->count, inst_edge->probability);
3026
3027 redirect_edge_pred (uninst_edge, test_bb);
3028 uninst_edge->flags = EDGE_TRUE_VALUE;
3029 uninst_edge->probability = REG_BR_PROB_BASE / 2;
3030 uninst_edge->count
3031 = apply_probability (test_bb->count, uninst_edge->probability);
3032 }
3033
3034 // If we have no previous special cases, and we have PHIs at the beginning
3035 // of the atomic region, this means we have a loop at the beginning of the
3036 // atomic region that shares the first block. This can cause problems with
3037 // the transaction restart abnormal edges to be added in the tm_edges pass.
3038 // Solve this by adding a new empty block to receive the abnormal edges.
3039 if (region->restart_block == region->entry_block
3040 && phi_nodes (region->entry_block))
3041 {
3042 basic_block empty_bb = create_empty_bb (transaction_bb);
3043 region->restart_block = empty_bb;
3044 add_bb_to_loop (empty_bb, transaction_bb->loop_father);
3045
3046 redirect_edge_pred (fallthru_edge, empty_bb);
3047 make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU);
3048 }
3049
3050 return NULL;
3051 }
3052
3053 /* Generate the temporary to be used for the return value of
3054 BUILT_IN_TM_START. */
3055
3056 static void *
3057 generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
3058 {
3059 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
3060 region->tm_state =
3061 create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
3062
3063 // Reset the subcode, post optimizations. We'll fill this in
3064 // again as we process blocks.
3065 if (region->exit_blocks)
3066 {
3067 gtransaction *transaction_stmt = region->get_transaction_stmt ();
3068 unsigned int subcode = gimple_transaction_subcode (transaction_stmt);
3069
3070 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
3071 subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
3072 | GTMA_MAY_ENTER_IRREVOCABLE
3073 | GTMA_HAS_NO_INSTRUMENTATION);
3074 else
3075 subcode &= GTMA_DECLARATION_MASK;
3076 gimple_transaction_set_subcode (transaction_stmt, subcode);
3077 }
3078
3079 return NULL;
3080 }
3081
3082 // Propagate flags from inner transactions outwards.
3083 static void
3084 propagate_tm_flags_out (struct tm_region *region)
3085 {
3086 if (region == NULL)
3087 return;
3088 propagate_tm_flags_out (region->inner);
3089
3090 if (region->outer && region->outer->transaction_stmt)
3091 {
3092 unsigned s
3093 = gimple_transaction_subcode (region->get_transaction_stmt ());
3094 s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE
3095 | GTMA_MAY_ENTER_IRREVOCABLE);
3096 s |= gimple_transaction_subcode (region->outer->get_transaction_stmt ());
3097 gimple_transaction_set_subcode (region->outer->get_transaction_stmt (),
3098 s);
3099 }
3100
3101 propagate_tm_flags_out (region->next);
3102 }
3103
3104 /* Entry point to the MARK phase of TM expansion. Here we replace
3105 transactional memory statements with calls to builtins, and function
3106 calls with their transactional clones (if available). But we don't
3107 yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
3108
3109 static unsigned int
3110 execute_tm_mark (void)
3111 {
3112 pending_edge_inserts_p = false;
3113
3114 expand_regions (all_tm_regions, generate_tm_state, NULL,
3115 /*traverse_clones=*/true);
3116
3117 tm_log_init ();
3118
3119 vec<tm_region *> bb_regions
3120 = get_bb_regions_instrumented (/*traverse_clones=*/true,
3121 /*include_uninstrumented_p=*/false);
3122 struct tm_region *r;
3123 unsigned i;
3124
3125 // Expand memory operations into calls into the runtime.
3126 // This collects log entries as well.
3127 FOR_EACH_VEC_ELT (bb_regions, i, r)
3128 {
3129 if (r != NULL)
3130 {
3131 if (r->transaction_stmt)
3132 {
3133 unsigned sub
3134 = gimple_transaction_subcode (r->get_transaction_stmt ());
3135
3136 /* If we're sure to go irrevocable, there won't be
3137 anything to expand, since the run-time will go
3138 irrevocable right away. */
3139 if (sub & GTMA_DOES_GO_IRREVOCABLE
3140 && sub & GTMA_MAY_ENTER_IRREVOCABLE)
3141 continue;
3142 }
3143 expand_block_tm (r, BASIC_BLOCK_FOR_FN (cfun, i));
3144 }
3145 }
3146
3147 bb_regions.release ();
3148
3149 // Propagate flags from inner transactions outwards.
3150 propagate_tm_flags_out (all_tm_regions);
3151
3152 // Expand GIMPLE_TRANSACTIONs into calls into the runtime.
3153 expand_regions (all_tm_regions, expand_transaction, NULL,
3154 /*traverse_clones=*/false);
3155
3156 tm_log_emit ();
3157 tm_log_delete ();
3158
3159 if (pending_edge_inserts_p)
3160 gsi_commit_edge_inserts ();
3161 free_dominance_info (CDI_DOMINATORS);
3162 return 0;
3163 }
3164
3165 namespace {
3166
3167 const pass_data pass_data_tm_mark =
3168 {
3169 GIMPLE_PASS, /* type */
3170 "tmmark", /* name */
3171 OPTGROUP_NONE, /* optinfo_flags */
3172 TV_TRANS_MEM, /* tv_id */
3173 ( PROP_ssa | PROP_cfg ), /* properties_required */
3174 0, /* properties_provided */
3175 0, /* properties_destroyed */
3176 0, /* todo_flags_start */
3177 TODO_update_ssa, /* todo_flags_finish */
3178 };
3179
3180 class pass_tm_mark : public gimple_opt_pass
3181 {
3182 public:
3183 pass_tm_mark (gcc::context *ctxt)
3184 : gimple_opt_pass (pass_data_tm_mark, ctxt)
3185 {}
3186
3187 /* opt_pass methods: */
3188 virtual unsigned int execute (function *) { return execute_tm_mark (); }
3189
3190 }; // class pass_tm_mark
3191
3192 } // anon namespace
3193
3194 gimple_opt_pass *
3195 make_pass_tm_mark (gcc::context *ctxt)
3196 {
3197 return new pass_tm_mark (ctxt);
3198 }
3199 \f
3200
3201 /* Create an abnormal edge from STMT at iter, splitting the block
3202 as necessary. Adjust *PNEXT as needed for the split block. */
3203
3204 static inline void
3205 split_bb_make_tm_edge (gimple *stmt, basic_block dest_bb,
3206 gimple_stmt_iterator iter, gimple_stmt_iterator *pnext)
3207 {
3208 basic_block bb = gimple_bb (stmt);
3209 if (!gsi_one_before_end_p (iter))
3210 {
3211 edge e = split_block (bb, stmt);
3212 *pnext = gsi_start_bb (e->dest);
3213 }
3214 make_edge (bb, dest_bb, EDGE_ABNORMAL);
3215
3216 // Record the need for the edge for the benefit of the rtl passes.
3217 if (cfun->gimple_df->tm_restart == NULL)
3218 cfun->gimple_df->tm_restart
3219 = hash_table<tm_restart_hasher>::create_ggc (31);
3220
3221 struct tm_restart_node dummy;
3222 dummy.stmt = stmt;
3223 dummy.label_or_list = gimple_block_label (dest_bb);
3224
3225 tm_restart_node **slot = cfun->gimple_df->tm_restart->find_slot (&dummy,
3226 INSERT);
3227 struct tm_restart_node *n = *slot;
3228 if (n == NULL)
3229 {
3230 n = ggc_alloc<tm_restart_node> ();
3231 *n = dummy;
3232 }
3233 else
3234 {
3235 tree old = n->label_or_list;
3236 if (TREE_CODE (old) == LABEL_DECL)
3237 old = tree_cons (NULL, old, NULL);
3238 n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
3239 }
3240 }
3241
3242 /* Split block BB as necessary for every builtin function we added, and
3243 wire up the abnormal back edges implied by the transaction restart. */
3244
3245 static void
3246 expand_block_edges (struct tm_region *const region, basic_block bb)
3247 {
3248 gimple_stmt_iterator gsi, next_gsi;
3249
3250 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi = next_gsi)
3251 {
3252 gimple *stmt = gsi_stmt (gsi);
3253 gcall *call_stmt;
3254
3255 next_gsi = gsi;
3256 gsi_next (&next_gsi);
3257
3258 // ??? Shouldn't we split for any non-pure, non-irrevocable function?
3259 call_stmt = dyn_cast <gcall *> (stmt);
3260 if ((!call_stmt)
3261 || (gimple_call_flags (call_stmt) & ECF_TM_BUILTIN) == 0)
3262 continue;
3263
3264 if (DECL_FUNCTION_CODE (gimple_call_fndecl (call_stmt))
3265 == BUILT_IN_TM_ABORT)
3266 {
3267 // If we have a ``_transaction_cancel [[outer]]'', there is only
3268 // one abnormal edge: to the transaction marked OUTER.
3269 // All compiler-generated instances of BUILT_IN_TM_ABORT have a
3270 // constant argument, which we can examine here. Users invoking
3271 // TM_ABORT directly get what they deserve.
3272 tree arg = gimple_call_arg (call_stmt, 0);
3273 if (TREE_CODE (arg) == INTEGER_CST
3274 && (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0
3275 && !decl_is_tm_clone (current_function_decl))
3276 {
3277 // Find the GTMA_IS_OUTER transaction.
3278 for (struct tm_region *o = region; o; o = o->outer)
3279 if (o->original_transaction_was_outer)
3280 {
3281 split_bb_make_tm_edge (call_stmt, o->restart_block,
3282 gsi, &next_gsi);
3283 break;
3284 }
3285
3286 // Otherwise, the front-end should have semantically checked
3287 // outer aborts, but in either case the target region is not
3288 // within this function.
3289 continue;
3290 }
3291
3292 // Non-outer, TM aborts have an abnormal edge to the inner-most
3293 // transaction, the one being aborted;
3294 split_bb_make_tm_edge (call_stmt, region->restart_block, gsi,
3295 &next_gsi);
3296 }
3297
3298 // All TM builtins have an abnormal edge to the outer-most transaction.
3299 // We never restart inner transactions. For tm clones, we know a-priori
3300 // that the outer-most transaction is outside the function.
3301 if (decl_is_tm_clone (current_function_decl))
3302 continue;
3303
3304 if (cfun->gimple_df->tm_restart == NULL)
3305 cfun->gimple_df->tm_restart
3306 = hash_table<tm_restart_hasher>::create_ggc (31);
3307
3308 // All TM builtins have an abnormal edge to the outer-most transaction.
3309 // We never restart inner transactions.
3310 for (struct tm_region *o = region; o; o = o->outer)
3311 if (!o->outer)
3312 {
3313 split_bb_make_tm_edge (call_stmt, o->restart_block, gsi, &next_gsi);
3314 break;
3315 }
3316
3317 // Delete any tail-call annotation that may have been added.
3318 // The tail-call pass may have mis-identified the commit as being
3319 // a candidate because we had not yet added this restart edge.
3320 gimple_call_set_tail (call_stmt, false);
3321 }
3322 }
3323
3324 /* Entry point to the final expansion of transactional nodes. */
3325
3326 namespace {
3327
3328 const pass_data pass_data_tm_edges =
3329 {
3330 GIMPLE_PASS, /* type */
3331 "tmedge", /* name */
3332 OPTGROUP_NONE, /* optinfo_flags */
3333 TV_TRANS_MEM, /* tv_id */
3334 ( PROP_ssa | PROP_cfg ), /* properties_required */
3335 0, /* properties_provided */
3336 0, /* properties_destroyed */
3337 0, /* todo_flags_start */
3338 TODO_update_ssa, /* todo_flags_finish */
3339 };
3340
3341 class pass_tm_edges : public gimple_opt_pass
3342 {
3343 public:
3344 pass_tm_edges (gcc::context *ctxt)
3345 : gimple_opt_pass (pass_data_tm_edges, ctxt)
3346 {}
3347
3348 /* opt_pass methods: */
3349 virtual unsigned int execute (function *);
3350
3351 }; // class pass_tm_edges
3352
3353 unsigned int
3354 pass_tm_edges::execute (function *fun)
3355 {
3356 vec<tm_region *> bb_regions
3357 = get_bb_regions_instrumented (/*traverse_clones=*/false,
3358 /*include_uninstrumented_p=*/true);
3359 struct tm_region *r;
3360 unsigned i;
3361
3362 FOR_EACH_VEC_ELT (bb_regions, i, r)
3363 if (r != NULL)
3364 expand_block_edges (r, BASIC_BLOCK_FOR_FN (fun, i));
3365
3366 bb_regions.release ();
3367
3368 /* We've got to release the dominance info now, to indicate that it
3369 must be rebuilt completely. Otherwise we'll crash trying to update
3370 the SSA web in the TODO section following this pass. */
3371 free_dominance_info (CDI_DOMINATORS);
3372 /* We'ge also wrecked loops badly with inserting of abnormal edges. */
3373 loops_state_set (LOOPS_NEED_FIXUP);
3374 bitmap_obstack_release (&tm_obstack);
3375 all_tm_regions = NULL;
3376
3377 return 0;
3378 }
3379
3380 } // anon namespace
3381
3382 gimple_opt_pass *
3383 make_pass_tm_edges (gcc::context *ctxt)
3384 {
3385 return new pass_tm_edges (ctxt);
3386 }
3387 \f
3388 /* Helper function for expand_regions. Expand REGION and recurse to
3389 the inner region. Call CALLBACK on each region. CALLBACK returns
3390 NULL to continue the traversal, otherwise a non-null value which
3391 this function will return as well. TRAVERSE_CLONES is true if we
3392 should traverse transactional clones. */
3393
3394 static void *
3395 expand_regions_1 (struct tm_region *region,
3396 void *(*callback)(struct tm_region *, void *),
3397 void *data,
3398 bool traverse_clones)
3399 {
3400 void *retval = NULL;
3401 if (region->exit_blocks
3402 || (traverse_clones && decl_is_tm_clone (current_function_decl)))
3403 {
3404 retval = callback (region, data);
3405 if (retval)
3406 return retval;
3407 }
3408 if (region->inner)
3409 {
3410 retval = expand_regions (region->inner, callback, data, traverse_clones);
3411 if (retval)
3412 return retval;
3413 }
3414 return retval;
3415 }
3416
3417 /* Traverse the regions enclosed and including REGION. Execute
3418 CALLBACK for each region, passing DATA. CALLBACK returns NULL to
3419 continue the traversal, otherwise a non-null value which this
3420 function will return as well. TRAVERSE_CLONES is true if we should
3421 traverse transactional clones. */
3422
3423 static void *
3424 expand_regions (struct tm_region *region,
3425 void *(*callback)(struct tm_region *, void *),
3426 void *data,
3427 bool traverse_clones)
3428 {
3429 void *retval = NULL;
3430 while (region)
3431 {
3432 retval = expand_regions_1 (region, callback, data, traverse_clones);
3433 if (retval)
3434 return retval;
3435 region = region->next;
3436 }
3437 return retval;
3438 }
3439
3440 \f
3441 /* A unique TM memory operation. */
3442 struct tm_memop
3443 {
3444 /* Unique ID that all memory operations to the same location have. */
3445 unsigned int value_id;
3446 /* Address of load/store. */
3447 tree addr;
3448 };
3449
3450 /* TM memory operation hashtable helpers. */
3451
3452 struct tm_memop_hasher : free_ptr_hash <tm_memop>
3453 {
3454 static inline hashval_t hash (const tm_memop *);
3455 static inline bool equal (const tm_memop *, const tm_memop *);
3456 };
3457
3458 /* Htab support. Return a hash value for a `tm_memop'. */
3459 inline hashval_t
3460 tm_memop_hasher::hash (const tm_memop *mem)
3461 {
3462 tree addr = mem->addr;
3463 /* We drill down to the SSA_NAME/DECL for the hash, but equality is
3464 actually done with operand_equal_p (see tm_memop_eq). */
3465 if (TREE_CODE (addr) == ADDR_EXPR)
3466 addr = TREE_OPERAND (addr, 0);
3467 return iterative_hash_expr (addr, 0);
3468 }
3469
3470 /* Htab support. Return true if two tm_memop's are the same. */
3471 inline bool
3472 tm_memop_hasher::equal (const tm_memop *mem1, const tm_memop *mem2)
3473 {
3474 return operand_equal_p (mem1->addr, mem2->addr, 0);
3475 }
3476
3477 /* Sets for solving data flow equations in the memory optimization pass. */
3478 struct tm_memopt_bitmaps
3479 {
3480 /* Stores available to this BB upon entry. Basically, stores that
3481 dominate this BB. */
3482 bitmap store_avail_in;
3483 /* Stores available at the end of this BB. */
3484 bitmap store_avail_out;
3485 bitmap store_antic_in;
3486 bitmap store_antic_out;
3487 /* Reads available to this BB upon entry. Basically, reads that
3488 dominate this BB. */
3489 bitmap read_avail_in;
3490 /* Reads available at the end of this BB. */
3491 bitmap read_avail_out;
3492 /* Reads performed in this BB. */
3493 bitmap read_local;
3494 /* Writes performed in this BB. */
3495 bitmap store_local;
3496
3497 /* Temporary storage for pass. */
3498 /* Is the current BB in the worklist? */
3499 bool avail_in_worklist_p;
3500 /* Have we visited this BB? */
3501 bool visited_p;
3502 };
3503
3504 static bitmap_obstack tm_memopt_obstack;
3505
3506 /* Unique counter for TM loads and stores. Loads and stores of the
3507 same address get the same ID. */
3508 static unsigned int tm_memopt_value_id;
3509 static hash_table<tm_memop_hasher> *tm_memopt_value_numbers;
3510
3511 #define STORE_AVAIL_IN(BB) \
3512 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
3513 #define STORE_AVAIL_OUT(BB) \
3514 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
3515 #define STORE_ANTIC_IN(BB) \
3516 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
3517 #define STORE_ANTIC_OUT(BB) \
3518 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
3519 #define READ_AVAIL_IN(BB) \
3520 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
3521 #define READ_AVAIL_OUT(BB) \
3522 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
3523 #define READ_LOCAL(BB) \
3524 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
3525 #define STORE_LOCAL(BB) \
3526 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
3527 #define AVAIL_IN_WORKLIST_P(BB) \
3528 ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
3529 #define BB_VISITED_P(BB) \
3530 ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
3531
3532 /* Given a TM load/store in STMT, return the value number for the address
3533 it accesses. */
3534
3535 static unsigned int
3536 tm_memopt_value_number (gimple *stmt, enum insert_option op)
3537 {
3538 struct tm_memop tmpmem, *mem;
3539 tm_memop **slot;
3540
3541 gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
3542 tmpmem.addr = gimple_call_arg (stmt, 0);
3543 slot = tm_memopt_value_numbers->find_slot (&tmpmem, op);
3544 if (*slot)
3545 mem = *slot;
3546 else if (op == INSERT)
3547 {
3548 mem = XNEW (struct tm_memop);
3549 *slot = mem;
3550 mem->value_id = tm_memopt_value_id++;
3551 mem->addr = tmpmem.addr;
3552 }
3553 else
3554 gcc_unreachable ();
3555 return mem->value_id;
3556 }
3557
3558 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
3559
3560 static void
3561 tm_memopt_accumulate_memops (basic_block bb)
3562 {
3563 gimple_stmt_iterator gsi;
3564
3565 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3566 {
3567 gimple *stmt = gsi_stmt (gsi);
3568 bitmap bits;
3569 unsigned int loc;
3570
3571 if (is_tm_store (stmt))
3572 bits = STORE_LOCAL (bb);
3573 else if (is_tm_load (stmt))
3574 bits = READ_LOCAL (bb);
3575 else
3576 continue;
3577
3578 loc = tm_memopt_value_number (stmt, INSERT);
3579 bitmap_set_bit (bits, loc);
3580 if (dump_file)
3581 {
3582 fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
3583 is_tm_load (stmt) ? "LOAD" : "STORE", loc,
3584 gimple_bb (stmt)->index);
3585 print_generic_expr (dump_file, gimple_call_arg (stmt, 0));
3586 fprintf (dump_file, "\n");
3587 }
3588 }
3589 }
3590
3591 /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
3592
3593 static void
3594 dump_tm_memopt_set (const char *set_name, bitmap bits)
3595 {
3596 unsigned i;
3597 bitmap_iterator bi;
3598 const char *comma = "";
3599
3600 fprintf (dump_file, "TM memopt: %s: [", set_name);
3601 EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
3602 {
3603 hash_table<tm_memop_hasher>::iterator hi;
3604 struct tm_memop *mem = NULL;
3605
3606 /* Yeah, yeah, yeah. Whatever. This is just for debugging. */
3607 FOR_EACH_HASH_TABLE_ELEMENT (*tm_memopt_value_numbers, mem, tm_memop_t, hi)
3608 if (mem->value_id == i)
3609 break;
3610 gcc_assert (mem->value_id == i);
3611 fprintf (dump_file, "%s", comma);
3612 comma = ", ";
3613 print_generic_expr (dump_file, mem->addr);
3614 }
3615 fprintf (dump_file, "]\n");
3616 }
3617
3618 /* Prettily dump all of the memopt sets in BLOCKS. */
3619
3620 static void
3621 dump_tm_memopt_sets (vec<basic_block> blocks)
3622 {
3623 size_t i;
3624 basic_block bb;
3625
3626 for (i = 0; blocks.iterate (i, &bb); ++i)
3627 {
3628 fprintf (dump_file, "------------BB %d---------\n", bb->index);
3629 dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
3630 dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
3631 dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
3632 dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
3633 dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
3634 dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
3635 }
3636 }
3637
3638 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
3639
3640 static void
3641 tm_memopt_compute_avin (basic_block bb)
3642 {
3643 edge e;
3644 unsigned ix;
3645
3646 /* Seed with the AVOUT of any predecessor. */
3647 for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
3648 {
3649 e = EDGE_PRED (bb, ix);
3650 /* Make sure we have already visited this BB, and is thus
3651 initialized.
3652
3653 If e->src->aux is NULL, this predecessor is actually on an
3654 enclosing transaction. We only care about the current
3655 transaction, so ignore it. */
3656 if (e->src->aux && BB_VISITED_P (e->src))
3657 {
3658 bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3659 bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3660 break;
3661 }
3662 }
3663
3664 for (; ix < EDGE_COUNT (bb->preds); ix++)
3665 {
3666 e = EDGE_PRED (bb, ix);
3667 if (e->src->aux && BB_VISITED_P (e->src))
3668 {
3669 bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3670 bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3671 }
3672 }
3673
3674 BB_VISITED_P (bb) = true;
3675 }
3676
3677 /* Compute the STORE_ANTIC_IN for the basic block BB. */
3678
3679 static void
3680 tm_memopt_compute_antin (basic_block bb)
3681 {
3682 edge e;
3683 unsigned ix;
3684
3685 /* Seed with the ANTIC_OUT of any successor. */
3686 for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
3687 {
3688 e = EDGE_SUCC (bb, ix);
3689 /* Make sure we have already visited this BB, and is thus
3690 initialized. */
3691 if (BB_VISITED_P (e->dest))
3692 {
3693 bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3694 break;
3695 }
3696 }
3697
3698 for (; ix < EDGE_COUNT (bb->succs); ix++)
3699 {
3700 e = EDGE_SUCC (bb, ix);
3701 if (BB_VISITED_P (e->dest))
3702 bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3703 }
3704
3705 BB_VISITED_P (bb) = true;
3706 }
3707
3708 /* Compute the AVAIL sets for every basic block in BLOCKS.
3709
3710 We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3711
3712 AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3713 AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
3714
3715 This is basically what we do in lcm's compute_available(), but here
3716 we calculate two sets of sets (one for STOREs and one for READs),
3717 and we work on a region instead of the entire CFG.
3718
3719 REGION is the TM region.
3720 BLOCKS are the basic blocks in the region. */
3721
3722 static void
3723 tm_memopt_compute_available (struct tm_region *region,
3724 vec<basic_block> blocks)
3725 {
3726 edge e;
3727 basic_block *worklist, *qin, *qout, *qend, bb;
3728 unsigned int qlen, i;
3729 edge_iterator ei;
3730 bool changed;
3731
3732 /* Allocate a worklist array/queue. Entries are only added to the
3733 list if they were not already on the list. So the size is
3734 bounded by the number of basic blocks in the region. */
3735 qlen = blocks.length () - 1;
3736 qin = qout = worklist =
3737 XNEWVEC (basic_block, qlen);
3738
3739 /* Put every block in the region on the worklist. */
3740 for (i = 0; blocks.iterate (i, &bb); ++i)
3741 {
3742 /* Seed AVAIL_OUT with the LOCAL set. */
3743 bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3744 bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3745
3746 AVAIL_IN_WORKLIST_P (bb) = true;
3747 /* No need to insert the entry block, since it has an AVIN of
3748 null, and an AVOUT that has already been seeded in. */
3749 if (bb != region->entry_block)
3750 *qin++ = bb;
3751 }
3752
3753 /* The entry block has been initialized with the local sets. */
3754 BB_VISITED_P (region->entry_block) = true;
3755
3756 qin = worklist;
3757 qend = &worklist[qlen];
3758
3759 /* Iterate until the worklist is empty. */
3760 while (qlen)
3761 {
3762 /* Take the first entry off the worklist. */
3763 bb = *qout++;
3764 qlen--;
3765
3766 if (qout >= qend)
3767 qout = worklist;
3768
3769 /* This block can be added to the worklist again if necessary. */
3770 AVAIL_IN_WORKLIST_P (bb) = false;
3771 tm_memopt_compute_avin (bb);
3772
3773 /* Note: We do not add the LOCAL sets here because we already
3774 seeded the AVAIL_OUT sets with them. */
3775 changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3776 changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3777 if (changed
3778 && (region->exit_blocks == NULL
3779 || !bitmap_bit_p (region->exit_blocks, bb->index)))
3780 /* If the out state of this block changed, then we need to add
3781 its successors to the worklist if they are not already in. */
3782 FOR_EACH_EDGE (e, ei, bb->succs)
3783 if (!AVAIL_IN_WORKLIST_P (e->dest)
3784 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
3785 {
3786 *qin++ = e->dest;
3787 AVAIL_IN_WORKLIST_P (e->dest) = true;
3788 qlen++;
3789
3790 if (qin >= qend)
3791 qin = worklist;
3792 }
3793 }
3794
3795 free (worklist);
3796
3797 if (dump_file)
3798 dump_tm_memopt_sets (blocks);
3799 }
3800
3801 /* Compute ANTIC sets for every basic block in BLOCKS.
3802
3803 We compute STORE_ANTIC_OUT as follows:
3804
3805 STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3806 STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
3807
3808 REGION is the TM region.
3809 BLOCKS are the basic blocks in the region. */
3810
3811 static void
3812 tm_memopt_compute_antic (struct tm_region *region,
3813 vec<basic_block> blocks)
3814 {
3815 edge e;
3816 basic_block *worklist, *qin, *qout, *qend, bb;
3817 unsigned int qlen;
3818 int i;
3819 edge_iterator ei;
3820
3821 /* Allocate a worklist array/queue. Entries are only added to the
3822 list if they were not already on the list. So the size is
3823 bounded by the number of basic blocks in the region. */
3824 qin = qout = worklist = XNEWVEC (basic_block, blocks.length ());
3825
3826 for (qlen = 0, i = blocks.length () - 1; i >= 0; --i)
3827 {
3828 bb = blocks[i];
3829
3830 /* Seed ANTIC_OUT with the LOCAL set. */
3831 bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3832
3833 /* Put every block in the region on the worklist. */
3834 AVAIL_IN_WORKLIST_P (bb) = true;
3835 /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3836 and their ANTIC_OUT has already been seeded in. */
3837 if (region->exit_blocks
3838 && !bitmap_bit_p (region->exit_blocks, bb->index))
3839 {
3840 qlen++;
3841 *qin++ = bb;
3842 }
3843 }
3844
3845 /* The exit blocks have been initialized with the local sets. */
3846 if (region->exit_blocks)
3847 {
3848 unsigned int i;
3849 bitmap_iterator bi;
3850 EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3851 BB_VISITED_P (BASIC_BLOCK_FOR_FN (cfun, i)) = true;
3852 }
3853
3854 qin = worklist;
3855 qend = &worklist[qlen];
3856
3857 /* Iterate until the worklist is empty. */
3858 while (qlen)
3859 {
3860 /* Take the first entry off the worklist. */
3861 bb = *qout++;
3862 qlen--;
3863
3864 if (qout >= qend)
3865 qout = worklist;
3866
3867 /* This block can be added to the worklist again if necessary. */
3868 AVAIL_IN_WORKLIST_P (bb) = false;
3869 tm_memopt_compute_antin (bb);
3870
3871 /* Note: We do not add the LOCAL sets here because we already
3872 seeded the ANTIC_OUT sets with them. */
3873 if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3874 && bb != region->entry_block)
3875 /* If the out state of this block changed, then we need to add
3876 its predecessors to the worklist if they are not already in. */
3877 FOR_EACH_EDGE (e, ei, bb->preds)
3878 if (!AVAIL_IN_WORKLIST_P (e->src))
3879 {
3880 *qin++ = e->src;
3881 AVAIL_IN_WORKLIST_P (e->src) = true;
3882 qlen++;
3883
3884 if (qin >= qend)
3885 qin = worklist;
3886 }
3887 }
3888
3889 free (worklist);
3890
3891 if (dump_file)
3892 dump_tm_memopt_sets (blocks);
3893 }
3894
3895 /* Offsets of load variants from TM_LOAD. For example,
3896 BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3897 See gtm-builtins.def. */
3898 #define TRANSFORM_RAR 1
3899 #define TRANSFORM_RAW 2
3900 #define TRANSFORM_RFW 3
3901 /* Offsets of store variants from TM_STORE. */
3902 #define TRANSFORM_WAR 1
3903 #define TRANSFORM_WAW 2
3904
3905 /* Inform about a load/store optimization. */
3906
3907 static void
3908 dump_tm_memopt_transform (gimple *stmt)
3909 {
3910 if (dump_file)
3911 {
3912 fprintf (dump_file, "TM memopt: transforming: ");
3913 print_gimple_stmt (dump_file, stmt, 0);
3914 fprintf (dump_file, "\n");
3915 }
3916 }
3917
3918 /* Perform a read/write optimization. Replaces the TM builtin in STMT
3919 by a builtin that is OFFSET entries down in the builtins table in
3920 gtm-builtins.def. */
3921
3922 static void
3923 tm_memopt_transform_stmt (unsigned int offset,
3924 gcall *stmt,
3925 gimple_stmt_iterator *gsi)
3926 {
3927 tree fn = gimple_call_fn (stmt);
3928 gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3929 TREE_OPERAND (fn, 0)
3930 = builtin_decl_explicit ((enum built_in_function)
3931 (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3932 + offset));
3933 gimple_call_set_fn (stmt, fn);
3934 gsi_replace (gsi, stmt, true);
3935 dump_tm_memopt_transform (stmt);
3936 }
3937
3938 /* Perform the actual TM memory optimization transformations in the
3939 basic blocks in BLOCKS. */
3940
3941 static void
3942 tm_memopt_transform_blocks (vec<basic_block> blocks)
3943 {
3944 size_t i;
3945 basic_block bb;
3946 gimple_stmt_iterator gsi;
3947
3948 for (i = 0; blocks.iterate (i, &bb); ++i)
3949 {
3950 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3951 {
3952 gimple *stmt = gsi_stmt (gsi);
3953 bitmap read_avail = READ_AVAIL_IN (bb);
3954 bitmap store_avail = STORE_AVAIL_IN (bb);
3955 bitmap store_antic = STORE_ANTIC_OUT (bb);
3956 unsigned int loc;
3957
3958 if (is_tm_simple_load (stmt))
3959 {
3960 gcall *call_stmt = as_a <gcall *> (stmt);
3961 loc = tm_memopt_value_number (stmt, NO_INSERT);
3962 if (store_avail && bitmap_bit_p (store_avail, loc))
3963 tm_memopt_transform_stmt (TRANSFORM_RAW, call_stmt, &gsi);
3964 else if (store_antic && bitmap_bit_p (store_antic, loc))
3965 {
3966 tm_memopt_transform_stmt (TRANSFORM_RFW, call_stmt, &gsi);
3967 bitmap_set_bit (store_avail, loc);
3968 }
3969 else if (read_avail && bitmap_bit_p (read_avail, loc))
3970 tm_memopt_transform_stmt (TRANSFORM_RAR, call_stmt, &gsi);
3971 else
3972 bitmap_set_bit (read_avail, loc);
3973 }
3974 else if (is_tm_simple_store (stmt))
3975 {
3976 gcall *call_stmt = as_a <gcall *> (stmt);
3977 loc = tm_memopt_value_number (stmt, NO_INSERT);
3978 if (store_avail && bitmap_bit_p (store_avail, loc))
3979 tm_memopt_transform_stmt (TRANSFORM_WAW, call_stmt, &gsi);
3980 else
3981 {
3982 if (read_avail && bitmap_bit_p (read_avail, loc))
3983 tm_memopt_transform_stmt (TRANSFORM_WAR, call_stmt, &gsi);
3984 bitmap_set_bit (store_avail, loc);
3985 }
3986 }
3987 }
3988 }
3989 }
3990
3991 /* Return a new set of bitmaps for a BB. */
3992
3993 static struct tm_memopt_bitmaps *
3994 tm_memopt_init_sets (void)
3995 {
3996 struct tm_memopt_bitmaps *b
3997 = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3998 b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3999 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
4000 b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
4001 b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
4002 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
4003 b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
4004 b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
4005 b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
4006 b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
4007 return b;
4008 }
4009
4010 /* Free sets computed for each BB. */
4011
4012 static void
4013 tm_memopt_free_sets (vec<basic_block> blocks)
4014 {
4015 size_t i;
4016 basic_block bb;
4017
4018 for (i = 0; blocks.iterate (i, &bb); ++i)
4019 bb->aux = NULL;
4020 }
4021
4022 /* Clear the visited bit for every basic block in BLOCKS. */
4023
4024 static void
4025 tm_memopt_clear_visited (vec<basic_block> blocks)
4026 {
4027 size_t i;
4028 basic_block bb;
4029
4030 for (i = 0; blocks.iterate (i, &bb); ++i)
4031 BB_VISITED_P (bb) = false;
4032 }
4033
4034 /* Replace TM load/stores with hints for the runtime. We handle
4035 things like read-after-write, write-after-read, read-after-read,
4036 read-for-write, etc. */
4037
4038 static unsigned int
4039 execute_tm_memopt (void)
4040 {
4041 struct tm_region *region;
4042 vec<basic_block> bbs;
4043
4044 tm_memopt_value_id = 0;
4045 tm_memopt_value_numbers = new hash_table<tm_memop_hasher> (10);
4046
4047 for (region = all_tm_regions; region; region = region->next)
4048 {
4049 /* All the TM stores/loads in the current region. */
4050 size_t i;
4051 basic_block bb;
4052
4053 bitmap_obstack_initialize (&tm_memopt_obstack);
4054
4055 /* Save all BBs for the current region. */
4056 bbs = get_tm_region_blocks (region->entry_block,
4057 region->exit_blocks,
4058 region->irr_blocks,
4059 NULL,
4060 false);
4061
4062 /* Collect all the memory operations. */
4063 for (i = 0; bbs.iterate (i, &bb); ++i)
4064 {
4065 bb->aux = tm_memopt_init_sets ();
4066 tm_memopt_accumulate_memops (bb);
4067 }
4068
4069 /* Solve data flow equations and transform each block accordingly. */
4070 tm_memopt_clear_visited (bbs);
4071 tm_memopt_compute_available (region, bbs);
4072 tm_memopt_clear_visited (bbs);
4073 tm_memopt_compute_antic (region, bbs);
4074 tm_memopt_transform_blocks (bbs);
4075
4076 tm_memopt_free_sets (bbs);
4077 bbs.release ();
4078 bitmap_obstack_release (&tm_memopt_obstack);
4079 tm_memopt_value_numbers->empty ();
4080 }
4081
4082 delete tm_memopt_value_numbers;
4083 tm_memopt_value_numbers = NULL;
4084 return 0;
4085 }
4086
4087 namespace {
4088
4089 const pass_data pass_data_tm_memopt =
4090 {
4091 GIMPLE_PASS, /* type */
4092 "tmmemopt", /* name */
4093 OPTGROUP_NONE, /* optinfo_flags */
4094 TV_TRANS_MEM, /* tv_id */
4095 ( PROP_ssa | PROP_cfg ), /* properties_required */
4096 0, /* properties_provided */
4097 0, /* properties_destroyed */
4098 0, /* todo_flags_start */
4099 0, /* todo_flags_finish */
4100 };
4101
4102 class pass_tm_memopt : public gimple_opt_pass
4103 {
4104 public:
4105 pass_tm_memopt (gcc::context *ctxt)
4106 : gimple_opt_pass (pass_data_tm_memopt, ctxt)
4107 {}
4108
4109 /* opt_pass methods: */
4110 virtual bool gate (function *) { return flag_tm && optimize > 0; }
4111 virtual unsigned int execute (function *) { return execute_tm_memopt (); }
4112
4113 }; // class pass_tm_memopt
4114
4115 } // anon namespace
4116
4117 gimple_opt_pass *
4118 make_pass_tm_memopt (gcc::context *ctxt)
4119 {
4120 return new pass_tm_memopt (ctxt);
4121 }
4122
4123 \f
4124 /* Interprocedual analysis for the creation of transactional clones.
4125 The aim of this pass is to find which functions are referenced in
4126 a non-irrevocable transaction context, and for those over which
4127 we have control (or user directive), create a version of the
4128 function which uses only the transactional interface to reference
4129 protected memories. This analysis proceeds in several steps:
4130
4131 (1) Collect the set of all possible transactional clones:
4132
4133 (a) For all local public functions marked tm_callable, push
4134 it onto the tm_callee queue.
4135
4136 (b) For all local functions, scan for calls in transaction blocks.
4137 Push the caller and callee onto the tm_caller and tm_callee
4138 queues. Count the number of callers for each callee.
4139
4140 (c) For each local function on the callee list, assume we will
4141 create a transactional clone. Push *all* calls onto the
4142 callee queues; count the number of clone callers separately
4143 to the number of original callers.
4144
4145 (2) Propagate irrevocable status up the dominator tree:
4146
4147 (a) Any external function on the callee list that is not marked
4148 tm_callable is irrevocable. Push all callers of such onto
4149 a worklist.
4150
4151 (b) For each function on the worklist, mark each block that
4152 contains an irrevocable call. Use the AND operator to
4153 propagate that mark up the dominator tree.
4154
4155 (c) If we reach the entry block for a possible transactional
4156 clone, then the transactional clone is irrevocable, and
4157 we should not create the clone after all. Push all
4158 callers onto the worklist.
4159
4160 (d) Place tm_irrevocable calls at the beginning of the relevant
4161 blocks. Special case here is the entry block for the entire
4162 transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
4163 the library to begin the region in serial mode. Decrement
4164 the call count for all callees in the irrevocable region.
4165
4166 (3) Create the transactional clones:
4167
4168 Any tm_callee that still has a non-zero call count is cloned.
4169 */
4170
4171 /* This structure is stored in the AUX field of each cgraph_node. */
4172 struct tm_ipa_cg_data
4173 {
4174 /* The clone of the function that got created. */
4175 struct cgraph_node *clone;
4176
4177 /* The tm regions in the normal function. */
4178 struct tm_region *all_tm_regions;
4179
4180 /* The blocks of the normal/clone functions that contain irrevocable
4181 calls, or blocks that are post-dominated by irrevocable calls. */
4182 bitmap irrevocable_blocks_normal;
4183 bitmap irrevocable_blocks_clone;
4184
4185 /* The blocks of the normal function that are involved in transactions. */
4186 bitmap transaction_blocks_normal;
4187
4188 /* The number of callers to the transactional clone of this function
4189 from normal and transactional clones respectively. */
4190 unsigned tm_callers_normal;
4191 unsigned tm_callers_clone;
4192
4193 /* True if all calls to this function's transactional clone
4194 are irrevocable. Also automatically true if the function
4195 has no transactional clone. */
4196 bool is_irrevocable;
4197
4198 /* Flags indicating the presence of this function in various queues. */
4199 bool in_callee_queue;
4200 bool in_worklist;
4201
4202 /* Flags indicating the kind of scan desired while in the worklist. */
4203 bool want_irr_scan_normal;
4204 };
4205
4206 typedef vec<cgraph_node *> cgraph_node_queue;
4207
4208 /* Return the ipa data associated with NODE, allocating zeroed memory
4209 if necessary. TRAVERSE_ALIASES is true if we must traverse aliases
4210 and set *NODE accordingly. */
4211
4212 static struct tm_ipa_cg_data *
4213 get_cg_data (struct cgraph_node **node, bool traverse_aliases)
4214 {
4215 struct tm_ipa_cg_data *d;
4216
4217 if (traverse_aliases && (*node)->alias)
4218 *node = (*node)->get_alias_target ();
4219
4220 d = (struct tm_ipa_cg_data *) (*node)->aux;
4221
4222 if (d == NULL)
4223 {
4224 d = (struct tm_ipa_cg_data *)
4225 obstack_alloc (&tm_obstack.obstack, sizeof (*d));
4226 (*node)->aux = (void *) d;
4227 memset (d, 0, sizeof (*d));
4228 }
4229
4230 return d;
4231 }
4232
4233 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
4234 it is already present. */
4235
4236 static void
4237 maybe_push_queue (struct cgraph_node *node,
4238 cgraph_node_queue *queue_p, bool *in_queue_p)
4239 {
4240 if (!*in_queue_p)
4241 {
4242 *in_queue_p = true;
4243 queue_p->safe_push (node);
4244 }
4245 }
4246
4247 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
4248 Queue all callees within block BB. */
4249
4250 static void
4251 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
4252 basic_block bb, bool for_clone)
4253 {
4254 gimple_stmt_iterator gsi;
4255
4256 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4257 {
4258 gimple *stmt = gsi_stmt (gsi);
4259 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4260 {
4261 tree fndecl = gimple_call_fndecl (stmt);
4262 if (fndecl)
4263 {
4264 struct tm_ipa_cg_data *d;
4265 unsigned *pcallers;
4266 struct cgraph_node *node;
4267
4268 if (is_tm_ending_fndecl (fndecl))
4269 continue;
4270 if (find_tm_replacement_function (fndecl))
4271 continue;
4272
4273 node = cgraph_node::get (fndecl);
4274 gcc_assert (node != NULL);
4275 d = get_cg_data (&node, true);
4276
4277 pcallers = (for_clone ? &d->tm_callers_clone
4278 : &d->tm_callers_normal);
4279 *pcallers += 1;
4280
4281 maybe_push_queue (node, callees_p, &d->in_callee_queue);
4282 }
4283 }
4284 }
4285 }
4286
4287 /* Scan all calls in NODE that are within a transaction region,
4288 and push the resulting nodes into the callee queue. */
4289
4290 static void
4291 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
4292 cgraph_node_queue *callees_p)
4293 {
4294 d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
4295 d->all_tm_regions = all_tm_regions;
4296
4297 for (tm_region *r = all_tm_regions; r; r = r->next)
4298 {
4299 vec<basic_block> bbs;
4300 basic_block bb;
4301 unsigned i;
4302
4303 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
4304 d->transaction_blocks_normal, false, false);
4305
4306 FOR_EACH_VEC_ELT (bbs, i, bb)
4307 ipa_tm_scan_calls_block (callees_p, bb, false);
4308
4309 bbs.release ();
4310 }
4311 }
4312
4313 /* Scan all calls in NODE as if this is the transactional clone,
4314 and push the destinations into the callee queue. */
4315
4316 static void
4317 ipa_tm_scan_calls_clone (struct cgraph_node *node,
4318 cgraph_node_queue *callees_p)
4319 {
4320 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
4321 basic_block bb;
4322
4323 FOR_EACH_BB_FN (bb, fn)
4324 ipa_tm_scan_calls_block (callees_p, bb, true);
4325 }
4326
4327 /* The function NODE has been detected to be irrevocable. Push all
4328 of its callers onto WORKLIST for the purpose of re-scanning them. */
4329
4330 static void
4331 ipa_tm_note_irrevocable (struct cgraph_node *node,
4332 cgraph_node_queue *worklist_p)
4333 {
4334 struct tm_ipa_cg_data *d = get_cg_data (&node, true);
4335 struct cgraph_edge *e;
4336
4337 d->is_irrevocable = true;
4338
4339 for (e = node->callers; e ; e = e->next_caller)
4340 {
4341 basic_block bb;
4342 struct cgraph_node *caller;
4343
4344 /* Don't examine recursive calls. */
4345 if (e->caller == node)
4346 continue;
4347 /* Even if we think we can go irrevocable, believe the user
4348 above all. */
4349 if (is_tm_safe_or_pure (e->caller->decl))
4350 continue;
4351
4352 caller = e->caller;
4353 d = get_cg_data (&caller, true);
4354
4355 /* Check if the callee is in a transactional region. If so,
4356 schedule the function for normal re-scan as well. */
4357 bb = gimple_bb (e->call_stmt);
4358 gcc_assert (bb != NULL);
4359 if (d->transaction_blocks_normal
4360 && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
4361 d->want_irr_scan_normal = true;
4362
4363 maybe_push_queue (caller, worklist_p, &d->in_worklist);
4364 }
4365 }
4366
4367 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
4368 within the block is irrevocable. */
4369
4370 static bool
4371 ipa_tm_scan_irr_block (basic_block bb)
4372 {
4373 gimple_stmt_iterator gsi;
4374 tree fn;
4375
4376 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4377 {
4378 gimple *stmt = gsi_stmt (gsi);
4379 switch (gimple_code (stmt))
4380 {
4381 case GIMPLE_ASSIGN:
4382 if (gimple_assign_single_p (stmt))
4383 {
4384 tree lhs = gimple_assign_lhs (stmt);
4385 tree rhs = gimple_assign_rhs1 (stmt);
4386 if (volatile_lvalue_p (lhs) || volatile_lvalue_p (rhs))
4387 return true;
4388 }
4389 break;
4390
4391 case GIMPLE_CALL:
4392 {
4393 tree lhs = gimple_call_lhs (stmt);
4394 if (lhs && volatile_lvalue_p (lhs))
4395 return true;
4396
4397 if (is_tm_pure_call (stmt))
4398 break;
4399
4400 fn = gimple_call_fn (stmt);
4401
4402 /* Functions with the attribute are by definition irrevocable. */
4403 if (is_tm_irrevocable (fn))
4404 return true;
4405
4406 /* For direct function calls, go ahead and check for replacement
4407 functions, or transitive irrevocable functions. For indirect
4408 functions, we'll ask the runtime. */
4409 if (TREE_CODE (fn) == ADDR_EXPR)
4410 {
4411 struct tm_ipa_cg_data *d;
4412 struct cgraph_node *node;
4413
4414 fn = TREE_OPERAND (fn, 0);
4415 if (is_tm_ending_fndecl (fn))
4416 break;
4417 if (find_tm_replacement_function (fn))
4418 break;
4419
4420 node = cgraph_node::get (fn);
4421 d = get_cg_data (&node, true);
4422
4423 /* Return true if irrevocable, but above all, believe
4424 the user. */
4425 if (d->is_irrevocable
4426 && !is_tm_safe_or_pure (fn))
4427 return true;
4428 }
4429 break;
4430 }
4431
4432 case GIMPLE_ASM:
4433 /* ??? The Approved Method of indicating that an inline
4434 assembly statement is not relevant to the transaction
4435 is to wrap it in a __tm_waiver block. This is not
4436 yet implemented, so we can't check for it. */
4437 if (is_tm_safe (current_function_decl))
4438 {
4439 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
4440 SET_EXPR_LOCATION (t, gimple_location (stmt));
4441 error ("%Kasm not allowed in %<transaction_safe%> function", t);
4442 }
4443 return true;
4444
4445 default:
4446 break;
4447 }
4448 }
4449
4450 return false;
4451 }
4452
4453 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
4454 for new irrevocable blocks, marking them in NEW_IRR. Don't bother
4455 scanning past OLD_IRR or EXIT_BLOCKS. */
4456
4457 static bool
4458 ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr,
4459 bitmap old_irr, bitmap exit_blocks)
4460 {
4461 bool any_new_irr = false;
4462 edge e;
4463 edge_iterator ei;
4464 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4465
4466 do
4467 {
4468 basic_block bb = pqueue->pop ();
4469
4470 /* Don't re-scan blocks we know already are irrevocable. */
4471 if (old_irr && bitmap_bit_p (old_irr, bb->index))
4472 continue;
4473
4474 if (ipa_tm_scan_irr_block (bb))
4475 {
4476 bitmap_set_bit (new_irr, bb->index);
4477 any_new_irr = true;
4478 }
4479 else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
4480 {
4481 FOR_EACH_EDGE (e, ei, bb->succs)
4482 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4483 {
4484 bitmap_set_bit (visited_blocks, e->dest->index);
4485 pqueue->safe_push (e->dest);
4486 }
4487 }
4488 }
4489 while (!pqueue->is_empty ());
4490
4491 BITMAP_FREE (visited_blocks);
4492
4493 return any_new_irr;
4494 }
4495
4496 /* Propagate the irrevocable property both up and down the dominator tree.
4497 BB is the current block being scanned; EXIT_BLOCKS are the edges of the
4498 TM regions; OLD_IRR are the results of a previous scan of the dominator
4499 tree which has been fully propagated; NEW_IRR is the set of new blocks
4500 which are gaining the irrevocable property during the current scan. */
4501
4502 static void
4503 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
4504 bitmap old_irr, bitmap exit_blocks)
4505 {
4506 vec<basic_block> bbs;
4507 bitmap all_region_blocks;
4508
4509 /* If this block is in the old set, no need to rescan. */
4510 if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
4511 return;
4512
4513 all_region_blocks = BITMAP_ALLOC (&tm_obstack);
4514 bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
4515 all_region_blocks, false);
4516 do
4517 {
4518 basic_block bb = bbs.pop ();
4519 bool this_irr = bitmap_bit_p (new_irr, bb->index);
4520 bool all_son_irr = false;
4521 edge_iterator ei;
4522 edge e;
4523
4524 /* Propagate up. If my children are, I am too, but we must have
4525 at least one child that is. */
4526 if (!this_irr)
4527 {
4528 FOR_EACH_EDGE (e, ei, bb->succs)
4529 {
4530 if (!bitmap_bit_p (new_irr, e->dest->index))
4531 {
4532 all_son_irr = false;
4533 break;
4534 }
4535 else
4536 all_son_irr = true;
4537 }
4538 if (all_son_irr)
4539 {
4540 /* Add block to new_irr if it hasn't already been processed. */
4541 if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
4542 {
4543 bitmap_set_bit (new_irr, bb->index);
4544 this_irr = true;
4545 }
4546 }
4547 }
4548
4549 /* Propagate down to everyone we immediately dominate. */
4550 if (this_irr)
4551 {
4552 basic_block son;
4553 for (son = first_dom_son (CDI_DOMINATORS, bb);
4554 son;
4555 son = next_dom_son (CDI_DOMINATORS, son))
4556 {
4557 /* Make sure block is actually in a TM region, and it
4558 isn't already in old_irr. */
4559 if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
4560 && bitmap_bit_p (all_region_blocks, son->index))
4561 bitmap_set_bit (new_irr, son->index);
4562 }
4563 }
4564 }
4565 while (!bbs.is_empty ());
4566
4567 BITMAP_FREE (all_region_blocks);
4568 bbs.release ();
4569 }
4570
4571 static void
4572 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
4573 {
4574 gimple_stmt_iterator gsi;
4575
4576 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4577 {
4578 gimple *stmt = gsi_stmt (gsi);
4579 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4580 {
4581 tree fndecl = gimple_call_fndecl (stmt);
4582 if (fndecl)
4583 {
4584 struct tm_ipa_cg_data *d;
4585 unsigned *pcallers;
4586 struct cgraph_node *tnode;
4587
4588 if (is_tm_ending_fndecl (fndecl))
4589 continue;
4590 if (find_tm_replacement_function (fndecl))
4591 continue;
4592
4593 tnode = cgraph_node::get (fndecl);
4594 d = get_cg_data (&tnode, true);
4595
4596 pcallers = (for_clone ? &d->tm_callers_clone
4597 : &d->tm_callers_normal);
4598
4599 gcc_assert (*pcallers > 0);
4600 *pcallers -= 1;
4601 }
4602 }
4603 }
4604 }
4605
4606 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
4607 as well as other irrevocable actions such as inline assembly. Mark all
4608 such blocks as irrevocable and decrement the number of calls to
4609 transactional clones. Return true if, for the transactional clone, the
4610 entire function is irrevocable. */
4611
4612 static bool
4613 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
4614 {
4615 struct tm_ipa_cg_data *d;
4616 bitmap new_irr, old_irr;
4617 bool ret = false;
4618
4619 /* Builtin operators (operator new, and such). */
4620 if (DECL_STRUCT_FUNCTION (node->decl) == NULL
4621 || DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL)
4622 return false;
4623
4624 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4625 calculate_dominance_info (CDI_DOMINATORS);
4626
4627 d = get_cg_data (&node, true);
4628 auto_vec<basic_block, 10> queue;
4629 new_irr = BITMAP_ALLOC (&tm_obstack);
4630
4631 /* Scan each tm region, propagating irrevocable status through the tree. */
4632 if (for_clone)
4633 {
4634 old_irr = d->irrevocable_blocks_clone;
4635 queue.quick_push (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4636 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
4637 {
4638 ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4639 new_irr,
4640 old_irr, NULL);
4641 ret = bitmap_bit_p (new_irr,
4642 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->index);
4643 }
4644 }
4645 else
4646 {
4647 struct tm_region *region;
4648
4649 old_irr = d->irrevocable_blocks_normal;
4650 for (region = d->all_tm_regions; region; region = region->next)
4651 {
4652 queue.quick_push (region->entry_block);
4653 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
4654 region->exit_blocks))
4655 ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
4656 region->exit_blocks);
4657 }
4658 }
4659
4660 /* If we found any new irrevocable blocks, reduce the call count for
4661 transactional clones within the irrevocable blocks. Save the new
4662 set of irrevocable blocks for next time. */
4663 if (!bitmap_empty_p (new_irr))
4664 {
4665 bitmap_iterator bmi;
4666 unsigned i;
4667
4668 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4669 ipa_tm_decrement_clone_counts (BASIC_BLOCK_FOR_FN (cfun, i),
4670 for_clone);
4671
4672 if (old_irr)
4673 {
4674 bitmap_ior_into (old_irr, new_irr);
4675 BITMAP_FREE (new_irr);
4676 }
4677 else if (for_clone)
4678 d->irrevocable_blocks_clone = new_irr;
4679 else
4680 d->irrevocable_blocks_normal = new_irr;
4681
4682 if (dump_file && new_irr)
4683 {
4684 const char *dname;
4685 bitmap_iterator bmi;
4686 unsigned i;
4687
4688 dname = lang_hooks.decl_printable_name (current_function_decl, 2);
4689 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4690 fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
4691 }
4692 }
4693 else
4694 BITMAP_FREE (new_irr);
4695
4696 pop_cfun ();
4697
4698 return ret;
4699 }
4700
4701 /* Return true if, for the transactional clone of NODE, any call
4702 may enter irrevocable mode. */
4703
4704 static bool
4705 ipa_tm_mayenterirr_function (struct cgraph_node *node)
4706 {
4707 struct tm_ipa_cg_data *d;
4708 tree decl;
4709 unsigned flags;
4710
4711 d = get_cg_data (&node, true);
4712 decl = node->decl;
4713 flags = flags_from_decl_or_type (decl);
4714
4715 /* Handle some TM builtins. Ordinarily these aren't actually generated
4716 at this point, but handling these functions when written in by the
4717 user makes it easier to build unit tests. */
4718 if (flags & ECF_TM_BUILTIN)
4719 return false;
4720
4721 /* Filter out all functions that are marked. */
4722 if (flags & ECF_TM_PURE)
4723 return false;
4724 if (is_tm_safe (decl))
4725 return false;
4726 if (is_tm_irrevocable (decl))
4727 return true;
4728 if (is_tm_callable (decl))
4729 return true;
4730 if (find_tm_replacement_function (decl))
4731 return true;
4732
4733 /* If we aren't seeing the final version of the function we don't
4734 know what it will contain at runtime. */
4735 if (node->get_availability () < AVAIL_AVAILABLE)
4736 return true;
4737
4738 /* If the function must go irrevocable, then of course true. */
4739 if (d->is_irrevocable)
4740 return true;
4741
4742 /* If there are any blocks marked irrevocable, then the function
4743 as a whole may enter irrevocable. */
4744 if (d->irrevocable_blocks_clone)
4745 return true;
4746
4747 /* We may have previously marked this function as tm_may_enter_irr;
4748 see pass_diagnose_tm_blocks. */
4749 if (node->local.tm_may_enter_irr)
4750 return true;
4751
4752 /* Recurse on the main body for aliases. In general, this will
4753 result in one of the bits above being set so that we will not
4754 have to recurse next time. */
4755 if (node->alias)
4756 return ipa_tm_mayenterirr_function (cgraph_node::get (node->thunk.alias));
4757
4758 /* What remains is unmarked local functions without items that force
4759 the function to go irrevocable. */
4760 return false;
4761 }
4762
4763 /* Diagnose calls from transaction_safe functions to unmarked
4764 functions that are determined to not be safe. */
4765
4766 static void
4767 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4768 {
4769 struct cgraph_edge *e;
4770
4771 for (e = node->callees; e ; e = e->next_callee)
4772 if (!is_tm_callable (e->callee->decl)
4773 && e->callee->local.tm_may_enter_irr)
4774 error_at (gimple_location (e->call_stmt),
4775 "unsafe function call %qD within "
4776 "%<transaction_safe%> function", e->callee->decl);
4777 }
4778
4779 /* Diagnose call from atomic transactions to unmarked functions
4780 that are determined to not be safe. */
4781
4782 static void
4783 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4784 struct tm_region *all_tm_regions)
4785 {
4786 struct tm_region *r;
4787
4788 for (r = all_tm_regions; r ; r = r->next)
4789 if (gimple_transaction_subcode (r->get_transaction_stmt ())
4790 & GTMA_IS_RELAXED)
4791 {
4792 /* Atomic transactions can be nested inside relaxed. */
4793 if (r->inner)
4794 ipa_tm_diagnose_transaction (node, r->inner);
4795 }
4796 else
4797 {
4798 vec<basic_block> bbs;
4799 gimple_stmt_iterator gsi;
4800 basic_block bb;
4801 size_t i;
4802
4803 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4804 r->irr_blocks, NULL, false);
4805
4806 for (i = 0; bbs.iterate (i, &bb); ++i)
4807 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4808 {
4809 gimple *stmt = gsi_stmt (gsi);
4810 tree fndecl;
4811
4812 if (gimple_code (stmt) == GIMPLE_ASM)
4813 {
4814 error_at (gimple_location (stmt),
4815 "asm not allowed in atomic transaction");
4816 continue;
4817 }
4818
4819 if (!is_gimple_call (stmt))
4820 continue;
4821 fndecl = gimple_call_fndecl (stmt);
4822
4823 /* Indirect function calls have been diagnosed already. */
4824 if (!fndecl)
4825 continue;
4826
4827 /* Stop at the end of the transaction. */
4828 if (is_tm_ending_fndecl (fndecl))
4829 {
4830 if (bitmap_bit_p (r->exit_blocks, bb->index))
4831 break;
4832 continue;
4833 }
4834
4835 /* Marked functions have been diagnosed already. */
4836 if (is_tm_pure_call (stmt))
4837 continue;
4838 if (is_tm_callable (fndecl))
4839 continue;
4840
4841 if (cgraph_node::local_info (fndecl)->tm_may_enter_irr)
4842 error_at (gimple_location (stmt),
4843 "unsafe function call %qD within "
4844 "atomic transaction", fndecl);
4845 }
4846
4847 bbs.release ();
4848 }
4849 }
4850
4851 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4852 OLD_DECL. The returned value is a freshly malloced pointer that
4853 should be freed by the caller. */
4854
4855 static tree
4856 tm_mangle (tree old_asm_id)
4857 {
4858 const char *old_asm_name;
4859 char *tm_name;
4860 void *alloc = NULL;
4861 struct demangle_component *dc;
4862 tree new_asm_id;
4863
4864 /* Determine if the symbol is already a valid C++ mangled name. Do this
4865 even for C, which might be interfacing with C++ code via appropriately
4866 ugly identifiers. */
4867 /* ??? We could probably do just as well checking for "_Z" and be done. */
4868 old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4869 dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4870
4871 if (dc == NULL)
4872 {
4873 char length[8];
4874
4875 do_unencoded:
4876 sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4877 tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4878 }
4879 else
4880 {
4881 old_asm_name += 2; /* Skip _Z */
4882
4883 switch (dc->type)
4884 {
4885 case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4886 case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4887 /* Don't play silly games, you! */
4888 goto do_unencoded;
4889
4890 case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4891 /* I'd really like to know if we can ever be passed one of
4892 these from the C++ front end. The Logical Thing would
4893 seem that hidden-alias should be outer-most, so that we
4894 get hidden-alias of a transaction-clone and not vice-versa. */
4895 old_asm_name += 2;
4896 break;
4897
4898 default:
4899 break;
4900 }
4901
4902 tm_name = concat ("_ZGTt", old_asm_name, NULL);
4903 }
4904 free (alloc);
4905
4906 new_asm_id = get_identifier (tm_name);
4907 free (tm_name);
4908
4909 return new_asm_id;
4910 }
4911
4912 static inline void
4913 ipa_tm_mark_force_output_node (struct cgraph_node *node)
4914 {
4915 node->mark_force_output ();
4916 node->analyzed = true;
4917 }
4918
4919 static inline void
4920 ipa_tm_mark_forced_by_abi_node (struct cgraph_node *node)
4921 {
4922 node->forced_by_abi = true;
4923 node->analyzed = true;
4924 }
4925
4926 /* Callback data for ipa_tm_create_version_alias. */
4927 struct create_version_alias_info
4928 {
4929 struct cgraph_node *old_node;
4930 tree new_decl;
4931 };
4932
4933 /* A subroutine of ipa_tm_create_version, called via
4934 cgraph_for_node_and_aliases. Create new tm clones for each of
4935 the existing aliases. */
4936 static bool
4937 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4938 {
4939 struct create_version_alias_info *info
4940 = (struct create_version_alias_info *)data;
4941 tree old_decl, new_decl, tm_name;
4942 struct cgraph_node *new_node;
4943
4944 if (!node->cpp_implicit_alias)
4945 return false;
4946
4947 old_decl = node->decl;
4948 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4949 new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4950 TREE_CODE (old_decl), tm_name,
4951 TREE_TYPE (old_decl));
4952
4953 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4954 SET_DECL_RTL (new_decl, NULL);
4955
4956 /* Based loosely on C++'s make_alias_for(). */
4957 TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4958 DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
4959 DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
4960 TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4961 DECL_EXTERNAL (new_decl) = 0;
4962 DECL_ARTIFICIAL (new_decl) = 1;
4963 TREE_ADDRESSABLE (new_decl) = 1;
4964 TREE_USED (new_decl) = 1;
4965 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4966
4967 /* Perform the same remapping to the comdat group. */
4968 if (DECL_ONE_ONLY (new_decl))
4969 varpool_node::get (new_decl)->set_comdat_group
4970 (tm_mangle (decl_comdat_group_id (old_decl)));
4971
4972 new_node = cgraph_node::create_same_body_alias (new_decl, info->new_decl);
4973 new_node->tm_clone = true;
4974 new_node->externally_visible = info->old_node->externally_visible;
4975 new_node->no_reorder = info->old_node->no_reorder;
4976 /* ?? Do not traverse aliases here. */
4977 get_cg_data (&node, false)->clone = new_node;
4978
4979 record_tm_clone_pair (old_decl, new_decl);
4980
4981 if (info->old_node->force_output
4982 || info->old_node->ref_list.first_referring ())
4983 ipa_tm_mark_force_output_node (new_node);
4984 if (info->old_node->forced_by_abi)
4985 ipa_tm_mark_forced_by_abi_node (new_node);
4986 return false;
4987 }
4988
4989 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4990 appropriate for the transactional clone. */
4991
4992 static void
4993 ipa_tm_create_version (struct cgraph_node *old_node)
4994 {
4995 tree new_decl, old_decl, tm_name;
4996 struct cgraph_node *new_node;
4997
4998 old_decl = old_node->decl;
4999 new_decl = copy_node (old_decl);
5000
5001 /* DECL_ASSEMBLER_NAME needs to be set before we call
5002 cgraph_copy_node_for_versioning below, because cgraph_node will
5003 fill the assembler_name_hash. */
5004 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
5005 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
5006 SET_DECL_RTL (new_decl, NULL);
5007 TREE_SYMBOL_REFERENCED (tm_name) = 1;
5008
5009 /* Perform the same remapping to the comdat group. */
5010 if (DECL_ONE_ONLY (new_decl))
5011 varpool_node::get (new_decl)->set_comdat_group
5012 (tm_mangle (DECL_COMDAT_GROUP (old_decl)));
5013
5014 gcc_assert (!old_node->ipa_transforms_to_apply.exists ());
5015 new_node = old_node->create_version_clone (new_decl, vNULL, NULL);
5016 new_node->local.local = false;
5017 new_node->externally_visible = old_node->externally_visible;
5018 new_node->lowered = true;
5019 new_node->tm_clone = 1;
5020 if (!old_node->implicit_section)
5021 new_node->set_section (old_node->get_section ());
5022 get_cg_data (&old_node, true)->clone = new_node;
5023
5024 if (old_node->get_availability () >= AVAIL_INTERPOSABLE)
5025 {
5026 /* Remap extern inline to static inline. */
5027 /* ??? Is it worth trying to use make_decl_one_only? */
5028 if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
5029 {
5030 DECL_EXTERNAL (new_decl) = 0;
5031 TREE_PUBLIC (new_decl) = 0;
5032 DECL_WEAK (new_decl) = 0;
5033 }
5034
5035 tree_function_versioning (old_decl, new_decl,
5036 NULL, false, NULL,
5037 false, NULL, NULL);
5038 }
5039
5040 record_tm_clone_pair (old_decl, new_decl);
5041
5042 symtab->call_cgraph_insertion_hooks (new_node);
5043 if (old_node->force_output
5044 || old_node->ref_list.first_referring ())
5045 ipa_tm_mark_force_output_node (new_node);
5046 if (old_node->forced_by_abi)
5047 ipa_tm_mark_forced_by_abi_node (new_node);
5048
5049 /* Do the same thing, but for any aliases of the original node. */
5050 {
5051 struct create_version_alias_info data;
5052 data.old_node = old_node;
5053 data.new_decl = new_decl;
5054 old_node->call_for_symbol_thunks_and_aliases (ipa_tm_create_version_alias,
5055 &data, true);
5056 }
5057 }
5058
5059 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
5060
5061 static void
5062 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
5063 basic_block bb)
5064 {
5065 gimple_stmt_iterator gsi;
5066 gcall *g;
5067
5068 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5069
5070 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
5071 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
5072
5073 split_block_after_labels (bb);
5074 gsi = gsi_after_labels (bb);
5075 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
5076
5077 node->create_edge (cgraph_node::get_create
5078 (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
5079 g, 0,
5080 compute_call_stmt_bb_frequency (node->decl,
5081 gimple_bb (g)));
5082 }
5083
5084 /* Construct a call to TM_GETTMCLONE and insert it before GSI. */
5085
5086 static bool
5087 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
5088 struct tm_region *region,
5089 gimple_stmt_iterator *gsi, gcall *stmt)
5090 {
5091 tree gettm_fn, ret, old_fn, callfn;
5092 gcall *g;
5093 gassign *g2;
5094 bool safe;
5095
5096 old_fn = gimple_call_fn (stmt);
5097
5098 if (TREE_CODE (old_fn) == ADDR_EXPR)
5099 {
5100 tree fndecl = TREE_OPERAND (old_fn, 0);
5101 tree clone = get_tm_clone_pair (fndecl);
5102
5103 /* By transforming the call into a TM_GETTMCLONE, we are
5104 technically taking the address of the original function and
5105 its clone. Explain this so inlining will know this function
5106 is needed. */
5107 cgraph_node::get (fndecl)->mark_address_taken () ;
5108 if (clone)
5109 cgraph_node::get (clone)->mark_address_taken ();
5110 }
5111
5112 safe = is_tm_safe (TREE_TYPE (old_fn));
5113 gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
5114 : BUILT_IN_TM_GETTMCLONE_IRR);
5115 ret = create_tmp_var (ptr_type_node);
5116
5117 if (!safe)
5118 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5119
5120 /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
5121 if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
5122 old_fn = OBJ_TYPE_REF_EXPR (old_fn);
5123
5124 g = gimple_build_call (gettm_fn, 1, old_fn);
5125 ret = make_ssa_name (ret, g);
5126 gimple_call_set_lhs (g, ret);
5127
5128 gsi_insert_before (gsi, g, GSI_SAME_STMT);
5129
5130 node->create_edge (cgraph_node::get_create (gettm_fn), g, 0,
5131 compute_call_stmt_bb_frequency (node->decl,
5132 gimple_bb (g)));
5133
5134 /* Cast return value from tm_gettmclone* into appropriate function
5135 pointer. */
5136 callfn = create_tmp_var (TREE_TYPE (old_fn));
5137 g2 = gimple_build_assign (callfn,
5138 fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
5139 callfn = make_ssa_name (callfn, g2);
5140 gimple_assign_set_lhs (g2, callfn);
5141 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
5142
5143 /* ??? This is a hack to preserve the NOTHROW bit on the call,
5144 which we would have derived from the decl. Failure to save
5145 this bit means we might have to split the basic block. */
5146 if (gimple_call_nothrow_p (stmt))
5147 gimple_call_set_nothrow (stmt, true);
5148
5149 gimple_call_set_fn (stmt, callfn);
5150
5151 /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
5152 for a call statement. Fix it. */
5153 {
5154 tree lhs = gimple_call_lhs (stmt);
5155 tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
5156 if (lhs
5157 && !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
5158 {
5159 tree temp;
5160
5161 temp = create_tmp_reg (rettype);
5162 gimple_call_set_lhs (stmt, temp);
5163
5164 g2 = gimple_build_assign (lhs,
5165 fold_build1 (VIEW_CONVERT_EXPR,
5166 TREE_TYPE (lhs), temp));
5167 gsi_insert_after (gsi, g2, GSI_SAME_STMT);
5168 }
5169 }
5170
5171 update_stmt (stmt);
5172 cgraph_edge *e = cgraph_node::get (current_function_decl)->get_edge (stmt);
5173 if (e && e->indirect_info)
5174 e->indirect_info->polymorphic = false;
5175
5176 return true;
5177 }
5178
5179 /* Helper function for ipa_tm_transform_calls*. Given a call
5180 statement in GSI which resides inside transaction REGION, redirect
5181 the call to either its wrapper function, or its clone. */
5182
5183 static void
5184 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
5185 struct tm_region *region,
5186 gimple_stmt_iterator *gsi,
5187 bool *need_ssa_rename_p)
5188 {
5189 gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
5190 struct cgraph_node *new_node;
5191 struct cgraph_edge *e = node->get_edge (stmt);
5192 tree fndecl = gimple_call_fndecl (stmt);
5193
5194 /* For indirect calls, pass the address through the runtime. */
5195 if (fndecl == NULL)
5196 {
5197 *need_ssa_rename_p |=
5198 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5199 return;
5200 }
5201
5202 /* Handle some TM builtins. Ordinarily these aren't actually generated
5203 at this point, but handling these functions when written in by the
5204 user makes it easier to build unit tests. */
5205 if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
5206 return;
5207
5208 /* Fixup recursive calls inside clones. */
5209 /* ??? Why did cgraph_copy_node_for_versioning update the call edges
5210 for recursion but not update the call statements themselves? */
5211 if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
5212 {
5213 gimple_call_set_fndecl (stmt, current_function_decl);
5214 return;
5215 }
5216
5217 /* If there is a replacement, use it. */
5218 fndecl = find_tm_replacement_function (fndecl);
5219 if (fndecl)
5220 {
5221 new_node = cgraph_node::get_create (fndecl);
5222
5223 /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
5224
5225 We can't do this earlier in record_tm_replacement because
5226 cgraph_remove_unreachable_nodes is called before we inject
5227 references to the node. Further, we can't do this in some
5228 nice central place in ipa_tm_execute because we don't have
5229 the exact list of wrapper functions that would be used.
5230 Marking more wrappers than necessary results in the creation
5231 of unnecessary cgraph_nodes, which can cause some of the
5232 other IPA passes to crash.
5233
5234 We do need to mark these nodes so that we get the proper
5235 result in expand_call_tm. */
5236 /* ??? This seems broken. How is it that we're marking the
5237 CALLEE as may_enter_irr? Surely we should be marking the
5238 CALLER. Also note that find_tm_replacement_function also
5239 contains mappings into the TM runtime, e.g. memcpy. These
5240 we know won't go irrevocable. */
5241 new_node->local.tm_may_enter_irr = 1;
5242 }
5243 else
5244 {
5245 struct tm_ipa_cg_data *d;
5246 struct cgraph_node *tnode = e->callee;
5247
5248 d = get_cg_data (&tnode, true);
5249 new_node = d->clone;
5250
5251 /* As we've already skipped pure calls and appropriate builtins,
5252 and we've already marked irrevocable blocks, if we can't come
5253 up with a static replacement, then ask the runtime. */
5254 if (new_node == NULL)
5255 {
5256 *need_ssa_rename_p |=
5257 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5258 return;
5259 }
5260
5261 fndecl = new_node->decl;
5262 }
5263
5264 e->redirect_callee (new_node);
5265 gimple_call_set_fndecl (stmt, fndecl);
5266 }
5267
5268 /* Helper function for ipa_tm_transform_calls. For a given BB,
5269 install calls to tm_irrevocable when IRR_BLOCKS are reached,
5270 redirect other calls to the generated transactional clone. */
5271
5272 static bool
5273 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
5274 basic_block bb, bitmap irr_blocks)
5275 {
5276 gimple_stmt_iterator gsi;
5277 bool need_ssa_rename = false;
5278
5279 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5280 {
5281 ipa_tm_insert_irr_call (node, region, bb);
5282 return true;
5283 }
5284
5285 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5286 {
5287 gimple *stmt = gsi_stmt (gsi);
5288
5289 if (!is_gimple_call (stmt))
5290 continue;
5291 if (is_tm_pure_call (stmt))
5292 continue;
5293
5294 /* Redirect edges to the appropriate replacement or clone. */
5295 ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
5296 }
5297
5298 return need_ssa_rename;
5299 }
5300
5301 /* Walk the CFG for REGION, beginning at BB. Install calls to
5302 tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
5303 the generated transactional clone. */
5304
5305 static bool
5306 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
5307 basic_block bb, bitmap irr_blocks)
5308 {
5309 bool need_ssa_rename = false;
5310 edge e;
5311 edge_iterator ei;
5312 auto_vec<basic_block> queue;
5313 bitmap visited_blocks = BITMAP_ALLOC (NULL);
5314
5315 queue.safe_push (bb);
5316 do
5317 {
5318 bb = queue.pop ();
5319
5320 need_ssa_rename |=
5321 ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
5322
5323 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5324 continue;
5325
5326 if (region && bitmap_bit_p (region->exit_blocks, bb->index))
5327 continue;
5328
5329 FOR_EACH_EDGE (e, ei, bb->succs)
5330 if (!bitmap_bit_p (visited_blocks, e->dest->index))
5331 {
5332 bitmap_set_bit (visited_blocks, e->dest->index);
5333 queue.safe_push (e->dest);
5334 }
5335 }
5336 while (!queue.is_empty ());
5337
5338 BITMAP_FREE (visited_blocks);
5339
5340 return need_ssa_rename;
5341 }
5342
5343 /* Transform the calls within the TM regions within NODE. */
5344
5345 static void
5346 ipa_tm_transform_transaction (struct cgraph_node *node)
5347 {
5348 struct tm_ipa_cg_data *d;
5349 struct tm_region *region;
5350 bool need_ssa_rename = false;
5351
5352 d = get_cg_data (&node, true);
5353
5354 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5355 calculate_dominance_info (CDI_DOMINATORS);
5356
5357 for (region = d->all_tm_regions; region; region = region->next)
5358 {
5359 /* If we're sure to go irrevocable, don't transform anything. */
5360 if (d->irrevocable_blocks_normal
5361 && bitmap_bit_p (d->irrevocable_blocks_normal,
5362 region->entry_block->index))
5363 {
5364 transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE
5365 | GTMA_MAY_ENTER_IRREVOCABLE
5366 | GTMA_HAS_NO_INSTRUMENTATION);
5367 continue;
5368 }
5369
5370 need_ssa_rename |=
5371 ipa_tm_transform_calls (node, region, region->entry_block,
5372 d->irrevocable_blocks_normal);
5373 }
5374
5375 if (need_ssa_rename)
5376 update_ssa (TODO_update_ssa_only_virtuals);
5377
5378 pop_cfun ();
5379 }
5380
5381 /* Transform the calls within the transactional clone of NODE. */
5382
5383 static void
5384 ipa_tm_transform_clone (struct cgraph_node *node)
5385 {
5386 struct tm_ipa_cg_data *d;
5387 bool need_ssa_rename;
5388
5389 d = get_cg_data (&node, true);
5390
5391 /* If this function makes no calls and has no irrevocable blocks,
5392 then there's nothing to do. */
5393 /* ??? Remove non-aborting top-level transactions. */
5394 if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone)
5395 return;
5396
5397 push_cfun (DECL_STRUCT_FUNCTION (d->clone->decl));
5398 calculate_dominance_info (CDI_DOMINATORS);
5399
5400 need_ssa_rename =
5401 ipa_tm_transform_calls (d->clone, NULL,
5402 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
5403 d->irrevocable_blocks_clone);
5404
5405 if (need_ssa_rename)
5406 update_ssa (TODO_update_ssa_only_virtuals);
5407
5408 pop_cfun ();
5409 }
5410
5411 /* Main entry point for the transactional memory IPA pass. */
5412
5413 static unsigned int
5414 ipa_tm_execute (void)
5415 {
5416 cgraph_node_queue tm_callees = cgraph_node_queue ();
5417 /* List of functions that will go irrevocable. */
5418 cgraph_node_queue irr_worklist = cgraph_node_queue ();
5419
5420 struct cgraph_node *node;
5421 struct tm_ipa_cg_data *d;
5422 enum availability a;
5423 unsigned int i;
5424
5425 cgraph_node::checking_verify_cgraph_nodes ();
5426
5427 bitmap_obstack_initialize (&tm_obstack);
5428 initialize_original_copy_tables ();
5429
5430 /* For all local functions marked tm_callable, queue them. */
5431 FOR_EACH_DEFINED_FUNCTION (node)
5432 if (is_tm_callable (node->decl)
5433 && node->get_availability () >= AVAIL_INTERPOSABLE)
5434 {
5435 d = get_cg_data (&node, true);
5436 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5437 }
5438
5439 /* For all local reachable functions... */
5440 FOR_EACH_DEFINED_FUNCTION (node)
5441 if (node->lowered
5442 && node->get_availability () >= AVAIL_INTERPOSABLE)
5443 {
5444 /* ... marked tm_pure, record that fact for the runtime by
5445 indicating that the pure function is its own tm_callable.
5446 No need to do this if the function's address can't be taken. */
5447 if (is_tm_pure (node->decl))
5448 {
5449 if (!node->local.local)
5450 record_tm_clone_pair (node->decl, node->decl);
5451 continue;
5452 }
5453
5454 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5455 calculate_dominance_info (CDI_DOMINATORS);
5456
5457 tm_region_init (NULL);
5458 if (all_tm_regions)
5459 {
5460 d = get_cg_data (&node, true);
5461
5462 /* Scan for calls that are in each transaction, and
5463 generate the uninstrumented code path. */
5464 ipa_tm_scan_calls_transaction (d, &tm_callees);
5465
5466 /* Put it in the worklist so we can scan the function
5467 later (ipa_tm_scan_irr_function) and mark the
5468 irrevocable blocks. */
5469 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5470 d->want_irr_scan_normal = true;
5471 }
5472
5473 pop_cfun ();
5474 }
5475
5476 /* For every local function on the callee list, scan as if we will be
5477 creating a transactional clone, queueing all new functions we find
5478 along the way. */
5479 for (i = 0; i < tm_callees.length (); ++i)
5480 {
5481 node = tm_callees[i];
5482 a = node->get_availability ();
5483 d = get_cg_data (&node, true);
5484
5485 /* Put it in the worklist so we can scan the function later
5486 (ipa_tm_scan_irr_function) and mark the irrevocable
5487 blocks. */
5488 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5489
5490 /* Some callees cannot be arbitrarily cloned. These will always be
5491 irrevocable. Mark these now, so that we need not scan them. */
5492 if (is_tm_irrevocable (node->decl))
5493 ipa_tm_note_irrevocable (node, &irr_worklist);
5494 else if (a <= AVAIL_NOT_AVAILABLE
5495 && !is_tm_safe_or_pure (node->decl))
5496 ipa_tm_note_irrevocable (node, &irr_worklist);
5497 else if (a >= AVAIL_INTERPOSABLE)
5498 {
5499 if (!tree_versionable_function_p (node->decl))
5500 ipa_tm_note_irrevocable (node, &irr_worklist);
5501 else if (!d->is_irrevocable)
5502 {
5503 /* If this is an alias, make sure its base is queued as well.
5504 we need not scan the callees now, as the base will do. */
5505 if (node->alias)
5506 {
5507 node = cgraph_node::get (node->thunk.alias);
5508 d = get_cg_data (&node, true);
5509 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5510 continue;
5511 }
5512
5513 /* Add all nodes called by this function into
5514 tm_callees as well. */
5515 ipa_tm_scan_calls_clone (node, &tm_callees);
5516 }
5517 }
5518 }
5519
5520 /* Iterate scans until no more work to be done. Prefer not to use
5521 vec::pop because the worklist tends to follow a breadth-first
5522 search of the callgraph, which should allow convergance with a
5523 minimum number of scans. But we also don't want the worklist
5524 array to grow without bound, so we shift the array up periodically. */
5525 for (i = 0; i < irr_worklist.length (); ++i)
5526 {
5527 if (i > 256 && i == irr_worklist.length () / 8)
5528 {
5529 irr_worklist.block_remove (0, i);
5530 i = 0;
5531 }
5532
5533 node = irr_worklist[i];
5534 d = get_cg_data (&node, true);
5535 d->in_worklist = false;
5536
5537 if (d->want_irr_scan_normal)
5538 {
5539 d->want_irr_scan_normal = false;
5540 ipa_tm_scan_irr_function (node, false);
5541 }
5542 if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
5543 ipa_tm_note_irrevocable (node, &irr_worklist);
5544 }
5545
5546 /* For every function on the callee list, collect the tm_may_enter_irr
5547 bit on the node. */
5548 irr_worklist.truncate (0);
5549 for (i = 0; i < tm_callees.length (); ++i)
5550 {
5551 node = tm_callees[i];
5552 if (ipa_tm_mayenterirr_function (node))
5553 {
5554 d = get_cg_data (&node, true);
5555 gcc_assert (d->in_worklist == false);
5556 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5557 }
5558 }
5559
5560 /* Propagate the tm_may_enter_irr bit to callers until stable. */
5561 for (i = 0; i < irr_worklist.length (); ++i)
5562 {
5563 struct cgraph_node *caller;
5564 struct cgraph_edge *e;
5565 struct ipa_ref *ref;
5566
5567 if (i > 256 && i == irr_worklist.length () / 8)
5568 {
5569 irr_worklist.block_remove (0, i);
5570 i = 0;
5571 }
5572
5573 node = irr_worklist[i];
5574 d = get_cg_data (&node, true);
5575 d->in_worklist = false;
5576 node->local.tm_may_enter_irr = true;
5577
5578 /* Propagate back to normal callers. */
5579 for (e = node->callers; e ; e = e->next_caller)
5580 {
5581 caller = e->caller;
5582 if (!is_tm_safe_or_pure (caller->decl)
5583 && !caller->local.tm_may_enter_irr)
5584 {
5585 d = get_cg_data (&caller, true);
5586 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5587 }
5588 }
5589
5590 /* Propagate back to referring aliases as well. */
5591 FOR_EACH_ALIAS (node, ref)
5592 {
5593 caller = dyn_cast<cgraph_node *> (ref->referring);
5594 if (!caller->local.tm_may_enter_irr)
5595 {
5596 /* ?? Do not traverse aliases here. */
5597 d = get_cg_data (&caller, false);
5598 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5599 }
5600 }
5601 }
5602
5603 /* Now validate all tm_safe functions, and all atomic regions in
5604 other functions. */
5605 FOR_EACH_DEFINED_FUNCTION (node)
5606 if (node->lowered
5607 && node->get_availability () >= AVAIL_INTERPOSABLE)
5608 {
5609 d = get_cg_data (&node, true);
5610 if (is_tm_safe (node->decl))
5611 ipa_tm_diagnose_tm_safe (node);
5612 else if (d->all_tm_regions)
5613 ipa_tm_diagnose_transaction (node, d->all_tm_regions);
5614 }
5615
5616 /* Create clones. Do those that are not irrevocable and have a
5617 positive call count. Do those publicly visible functions that
5618 the user directed us to clone. */
5619 for (i = 0; i < tm_callees.length (); ++i)
5620 {
5621 bool doit = false;
5622
5623 node = tm_callees[i];
5624 if (node->cpp_implicit_alias)
5625 continue;
5626
5627 a = node->get_availability ();
5628 d = get_cg_data (&node, true);
5629
5630 if (a <= AVAIL_NOT_AVAILABLE)
5631 doit = is_tm_callable (node->decl);
5632 else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
5633 doit = true;
5634 else if (!d->is_irrevocable
5635 && d->tm_callers_normal + d->tm_callers_clone > 0)
5636 doit = true;
5637
5638 if (doit)
5639 ipa_tm_create_version (node);
5640 }
5641
5642 /* Redirect calls to the new clones, and insert irrevocable marks. */
5643 for (i = 0; i < tm_callees.length (); ++i)
5644 {
5645 node = tm_callees[i];
5646 if (node->analyzed)
5647 {
5648 d = get_cg_data (&node, true);
5649 if (d->clone)
5650 ipa_tm_transform_clone (node);
5651 }
5652 }
5653 FOR_EACH_DEFINED_FUNCTION (node)
5654 if (node->lowered
5655 && node->get_availability () >= AVAIL_INTERPOSABLE)
5656 {
5657 d = get_cg_data (&node, true);
5658 if (d->all_tm_regions)
5659 ipa_tm_transform_transaction (node);
5660 }
5661
5662 /* Free and clear all data structures. */
5663 tm_callees.release ();
5664 irr_worklist.release ();
5665 bitmap_obstack_release (&tm_obstack);
5666 free_original_copy_tables ();
5667
5668 FOR_EACH_FUNCTION (node)
5669 node->aux = NULL;
5670
5671 cgraph_node::checking_verify_cgraph_nodes ();
5672
5673 return 0;
5674 }
5675
5676 namespace {
5677
5678 const pass_data pass_data_ipa_tm =
5679 {
5680 SIMPLE_IPA_PASS, /* type */
5681 "tmipa", /* name */
5682 OPTGROUP_NONE, /* optinfo_flags */
5683 TV_TRANS_MEM, /* tv_id */
5684 ( PROP_ssa | PROP_cfg ), /* properties_required */
5685 0, /* properties_provided */
5686 0, /* properties_destroyed */
5687 0, /* todo_flags_start */
5688 0, /* todo_flags_finish */
5689 };
5690
5691 class pass_ipa_tm : public simple_ipa_opt_pass
5692 {
5693 public:
5694 pass_ipa_tm (gcc::context *ctxt)
5695 : simple_ipa_opt_pass (pass_data_ipa_tm, ctxt)
5696 {}
5697
5698 /* opt_pass methods: */
5699 virtual bool gate (function *) { return flag_tm; }
5700 virtual unsigned int execute (function *) { return ipa_tm_execute (); }
5701
5702 }; // class pass_ipa_tm
5703
5704 } // anon namespace
5705
5706 simple_ipa_opt_pass *
5707 make_pass_ipa_tm (gcc::context *ctxt)
5708 {
5709 return new pass_ipa_tm (ctxt);
5710 }
5711
5712 #include "gt-trans-mem.h"