]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-cfg.c
re PR middle-end/42834 (memcpy folding overeager)
[thirdparty/gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "toplev.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
130
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
133 {
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
144
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
151
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
156
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
161 }
162
163 void
164 init_empty_tree_cfg (void)
165 {
166 init_empty_tree_cfg_for_function (cfun);
167 }
168
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
172
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
175
176 static void
177 build_gimple_cfg (gimple_seq seq)
178 {
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
181
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
183
184 init_empty_tree_cfg ();
185
186 found_computed_goto = 0;
187 make_blocks (seq);
188
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
196
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
200
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
204
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
207
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
212
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
219
220 /* Debugging dumps. */
221
222 /* Write the flowgraph to a VCG file. */
223 {
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
227 {
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
230 }
231 }
232
233 #ifdef ENABLE_CHECKING
234 verify_stmts ();
235 #endif
236 }
237
238 static unsigned int
239 execute_build_cfg (void)
240 {
241 gimple_seq body = gimple_body (current_function_decl);
242
243 build_gimple_cfg (body);
244 gimple_set_body (current_function_decl, NULL);
245 if (dump_file && (dump_flags & TDF_DETAILS))
246 {
247 fprintf (dump_file, "Scope blocks:\n");
248 dump_scope_blocks (dump_file, dump_flags);
249 }
250 return 0;
251 }
252
253 struct gimple_opt_pass pass_build_cfg =
254 {
255 {
256 GIMPLE_PASS,
257 "cfg", /* name */
258 NULL, /* gate */
259 execute_build_cfg, /* execute */
260 NULL, /* sub */
261 NULL, /* next */
262 0, /* static_pass_number */
263 TV_TREE_CFG, /* tv_id */
264 PROP_gimple_leh, /* properties_required */
265 PROP_cfg, /* properties_provided */
266 0, /* properties_destroyed */
267 0, /* todo_flags_start */
268 TODO_verify_stmts | TODO_cleanup_cfg
269 | TODO_dump_func /* todo_flags_finish */
270 }
271 };
272
273
274 /* Return true if T is a computed goto. */
275
276 static bool
277 computed_goto_p (gimple t)
278 {
279 return (gimple_code (t) == GIMPLE_GOTO
280 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
281 }
282
283
284 /* Search the CFG for any computed gotos. If found, factor them to a
285 common computed goto site. Also record the location of that site so
286 that we can un-factor the gotos after we have converted back to
287 normal form. */
288
289 static void
290 factor_computed_gotos (void)
291 {
292 basic_block bb;
293 tree factored_label_decl = NULL;
294 tree var = NULL;
295 gimple factored_computed_goto_label = NULL;
296 gimple factored_computed_goto = NULL;
297
298 /* We know there are one or more computed gotos in this function.
299 Examine the last statement in each basic block to see if the block
300 ends with a computed goto. */
301
302 FOR_EACH_BB (bb)
303 {
304 gimple_stmt_iterator gsi = gsi_last_bb (bb);
305 gimple last;
306
307 if (gsi_end_p (gsi))
308 continue;
309
310 last = gsi_stmt (gsi);
311
312 /* Ignore the computed goto we create when we factor the original
313 computed gotos. */
314 if (last == factored_computed_goto)
315 continue;
316
317 /* If the last statement is a computed goto, factor it. */
318 if (computed_goto_p (last))
319 {
320 gimple assignment;
321
322 /* The first time we find a computed goto we need to create
323 the factored goto block and the variable each original
324 computed goto will use for their goto destination. */
325 if (!factored_computed_goto)
326 {
327 basic_block new_bb = create_empty_bb (bb);
328 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
329
330 /* Create the destination of the factored goto. Each original
331 computed goto will put its desired destination into this
332 variable and jump to the label we create immediately
333 below. */
334 var = create_tmp_var (ptr_type_node, "gotovar");
335
336 /* Build a label for the new block which will contain the
337 factored computed goto. */
338 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
339 factored_computed_goto_label
340 = gimple_build_label (factored_label_decl);
341 gsi_insert_after (&new_gsi, factored_computed_goto_label,
342 GSI_NEW_STMT);
343
344 /* Build our new computed goto. */
345 factored_computed_goto = gimple_build_goto (var);
346 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
347 }
348
349 /* Copy the original computed goto's destination into VAR. */
350 assignment = gimple_build_assign (var, gimple_goto_dest (last));
351 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
352
353 /* And re-vector the computed goto to the new destination. */
354 gimple_goto_set_dest (last, factored_label_decl);
355 }
356 }
357 }
358
359
360 /* Build a flowgraph for the sequence of stmts SEQ. */
361
362 static void
363 make_blocks (gimple_seq seq)
364 {
365 gimple_stmt_iterator i = gsi_start (seq);
366 gimple stmt = NULL;
367 bool start_new_block = true;
368 bool first_stmt_of_seq = true;
369 basic_block bb = ENTRY_BLOCK_PTR;
370
371 while (!gsi_end_p (i))
372 {
373 gimple prev_stmt;
374
375 prev_stmt = stmt;
376 stmt = gsi_stmt (i);
377
378 /* If the statement starts a new basic block or if we have determined
379 in a previous pass that we need to create a new block for STMT, do
380 so now. */
381 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
382 {
383 if (!first_stmt_of_seq)
384 seq = gsi_split_seq_before (&i);
385 bb = create_basic_block (seq, NULL, bb);
386 start_new_block = false;
387 }
388
389 /* Now add STMT to BB and create the subgraphs for special statement
390 codes. */
391 gimple_set_bb (stmt, bb);
392
393 if (computed_goto_p (stmt))
394 found_computed_goto = true;
395
396 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
397 next iteration. */
398 if (stmt_ends_bb_p (stmt))
399 {
400 /* If the stmt can make abnormal goto use a new temporary
401 for the assignment to the LHS. This makes sure the old value
402 of the LHS is available on the abnormal edge. Otherwise
403 we will end up with overlapping life-ranges for abnormal
404 SSA names. */
405 if (gimple_has_lhs (stmt)
406 && stmt_can_make_abnormal_goto (stmt)
407 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
408 {
409 tree lhs = gimple_get_lhs (stmt);
410 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
411 gimple s = gimple_build_assign (lhs, tmp);
412 gimple_set_location (s, gimple_location (stmt));
413 gimple_set_block (s, gimple_block (stmt));
414 gimple_set_lhs (stmt, tmp);
415 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
416 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
417 DECL_GIMPLE_REG_P (tmp) = 1;
418 gsi_insert_after (&i, s, GSI_SAME_STMT);
419 }
420 start_new_block = true;
421 }
422
423 gsi_next (&i);
424 first_stmt_of_seq = false;
425 }
426 }
427
428
429 /* Create and return a new empty basic block after bb AFTER. */
430
431 static basic_block
432 create_bb (void *h, void *e, basic_block after)
433 {
434 basic_block bb;
435
436 gcc_assert (!e);
437
438 /* Create and initialize a new basic block. Since alloc_block uses
439 GC allocation that clears memory to allocate a basic block, we do
440 not have to clear the newly allocated basic block here. */
441 bb = alloc_block ();
442
443 bb->index = last_basic_block;
444 bb->flags = BB_NEW;
445 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
446 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
447
448 /* Add the new block to the linked list of blocks. */
449 link_block (bb, after);
450
451 /* Grow the basic block array if needed. */
452 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
453 {
454 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
455 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
456 }
457
458 /* Add the newly created block to the array. */
459 SET_BASIC_BLOCK (last_basic_block, bb);
460
461 n_basic_blocks++;
462 last_basic_block++;
463
464 return bb;
465 }
466
467
468 /*---------------------------------------------------------------------------
469 Edge creation
470 ---------------------------------------------------------------------------*/
471
472 /* Fold COND_EXPR_COND of each COND_EXPR. */
473
474 void
475 fold_cond_expr_cond (void)
476 {
477 basic_block bb;
478
479 FOR_EACH_BB (bb)
480 {
481 gimple stmt = last_stmt (bb);
482
483 if (stmt && gimple_code (stmt) == GIMPLE_COND)
484 {
485 location_t loc = gimple_location (stmt);
486 tree cond;
487 bool zerop, onep;
488
489 fold_defer_overflow_warnings ();
490 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
491 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
492 if (cond)
493 {
494 zerop = integer_zerop (cond);
495 onep = integer_onep (cond);
496 }
497 else
498 zerop = onep = false;
499
500 fold_undefer_overflow_warnings (zerop || onep,
501 stmt,
502 WARN_STRICT_OVERFLOW_CONDITIONAL);
503 if (zerop)
504 gimple_cond_make_false (stmt);
505 else if (onep)
506 gimple_cond_make_true (stmt);
507 }
508 }
509 }
510
511 /* Join all the blocks in the flowgraph. */
512
513 static void
514 make_edges (void)
515 {
516 basic_block bb;
517 struct omp_region *cur_region = NULL;
518
519 /* Create an edge from entry to the first block with executable
520 statements in it. */
521 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
522
523 /* Traverse the basic block array placing edges. */
524 FOR_EACH_BB (bb)
525 {
526 gimple last = last_stmt (bb);
527 bool fallthru;
528
529 if (last)
530 {
531 enum gimple_code code = gimple_code (last);
532 switch (code)
533 {
534 case GIMPLE_GOTO:
535 make_goto_expr_edges (bb);
536 fallthru = false;
537 break;
538 case GIMPLE_RETURN:
539 make_edge (bb, EXIT_BLOCK_PTR, 0);
540 fallthru = false;
541 break;
542 case GIMPLE_COND:
543 make_cond_expr_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_SWITCH:
547 make_gimple_switch_edges (bb);
548 fallthru = false;
549 break;
550 case GIMPLE_RESX:
551 make_eh_edges (last);
552 fallthru = false;
553 break;
554 case GIMPLE_EH_DISPATCH:
555 fallthru = make_eh_dispatch_edges (last);
556 break;
557
558 case GIMPLE_CALL:
559 /* If this function receives a nonlocal goto, then we need to
560 make edges from this call site to all the nonlocal goto
561 handlers. */
562 if (stmt_can_make_abnormal_goto (last))
563 make_abnormal_goto_edges (bb, true);
564
565 /* If this statement has reachable exception handlers, then
566 create abnormal edges to them. */
567 make_eh_edges (last);
568
569 /* BUILTIN_RETURN is really a return statement. */
570 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
571 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
572 /* Some calls are known not to return. */
573 else
574 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
575 break;
576
577 case GIMPLE_ASSIGN:
578 /* A GIMPLE_ASSIGN may throw internally and thus be considered
579 control-altering. */
580 if (is_ctrl_altering_stmt (last))
581 make_eh_edges (last);
582 fallthru = true;
583 break;
584
585 case GIMPLE_ASM:
586 make_gimple_asm_edges (bb);
587 fallthru = true;
588 break;
589
590 case GIMPLE_OMP_PARALLEL:
591 case GIMPLE_OMP_TASK:
592 case GIMPLE_OMP_FOR:
593 case GIMPLE_OMP_SINGLE:
594 case GIMPLE_OMP_MASTER:
595 case GIMPLE_OMP_ORDERED:
596 case GIMPLE_OMP_CRITICAL:
597 case GIMPLE_OMP_SECTION:
598 cur_region = new_omp_region (bb, code, cur_region);
599 fallthru = true;
600 break;
601
602 case GIMPLE_OMP_SECTIONS:
603 cur_region = new_omp_region (bb, code, cur_region);
604 fallthru = true;
605 break;
606
607 case GIMPLE_OMP_SECTIONS_SWITCH:
608 fallthru = false;
609 break;
610
611 case GIMPLE_OMP_ATOMIC_LOAD:
612 case GIMPLE_OMP_ATOMIC_STORE:
613 fallthru = true;
614 break;
615
616 case GIMPLE_OMP_RETURN:
617 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
618 somewhere other than the next block. This will be
619 created later. */
620 cur_region->exit = bb;
621 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
622 cur_region = cur_region->outer;
623 break;
624
625 case GIMPLE_OMP_CONTINUE:
626 cur_region->cont = bb;
627 switch (cur_region->type)
628 {
629 case GIMPLE_OMP_FOR:
630 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
631 succs edges as abnormal to prevent splitting
632 them. */
633 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
634 /* Make the loopback edge. */
635 make_edge (bb, single_succ (cur_region->entry),
636 EDGE_ABNORMAL);
637
638 /* Create an edge from GIMPLE_OMP_FOR to exit, which
639 corresponds to the case that the body of the loop
640 is not executed at all. */
641 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
642 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
643 fallthru = false;
644 break;
645
646 case GIMPLE_OMP_SECTIONS:
647 /* Wire up the edges into and out of the nested sections. */
648 {
649 basic_block switch_bb = single_succ (cur_region->entry);
650
651 struct omp_region *i;
652 for (i = cur_region->inner; i ; i = i->next)
653 {
654 gcc_assert (i->type == GIMPLE_OMP_SECTION);
655 make_edge (switch_bb, i->entry, 0);
656 make_edge (i->exit, bb, EDGE_FALLTHRU);
657 }
658
659 /* Make the loopback edge to the block with
660 GIMPLE_OMP_SECTIONS_SWITCH. */
661 make_edge (bb, switch_bb, 0);
662
663 /* Make the edge from the switch to exit. */
664 make_edge (switch_bb, bb->next_bb, 0);
665 fallthru = false;
666 }
667 break;
668
669 default:
670 gcc_unreachable ();
671 }
672 break;
673
674 default:
675 gcc_assert (!stmt_ends_bb_p (last));
676 fallthru = true;
677 }
678 }
679 else
680 fallthru = true;
681
682 if (fallthru)
683 {
684 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
685 if (last)
686 assign_discriminator (gimple_location (last), bb->next_bb);
687 }
688 }
689
690 if (root_omp_region)
691 free_omp_regions ();
692
693 /* Fold COND_EXPR_COND of each COND_EXPR. */
694 fold_cond_expr_cond ();
695 }
696
697 /* Trivial hash function for a location_t. ITEM is a pointer to
698 a hash table entry that maps a location_t to a discriminator. */
699
700 static unsigned int
701 locus_map_hash (const void *item)
702 {
703 return ((const struct locus_discrim_map *) item)->locus;
704 }
705
706 /* Equality function for the locus-to-discriminator map. VA and VB
707 point to the two hash table entries to compare. */
708
709 static int
710 locus_map_eq (const void *va, const void *vb)
711 {
712 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
713 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
714 return a->locus == b->locus;
715 }
716
717 /* Find the next available discriminator value for LOCUS. The
718 discriminator distinguishes among several basic blocks that
719 share a common locus, allowing for more accurate sample-based
720 profiling. */
721
722 static int
723 next_discriminator_for_locus (location_t locus)
724 {
725 struct locus_discrim_map item;
726 struct locus_discrim_map **slot;
727
728 item.locus = locus;
729 item.discriminator = 0;
730 slot = (struct locus_discrim_map **)
731 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
732 (hashval_t) locus, INSERT);
733 gcc_assert (slot);
734 if (*slot == HTAB_EMPTY_ENTRY)
735 {
736 *slot = XNEW (struct locus_discrim_map);
737 gcc_assert (*slot);
738 (*slot)->locus = locus;
739 (*slot)->discriminator = 0;
740 }
741 (*slot)->discriminator++;
742 return (*slot)->discriminator;
743 }
744
745 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
746
747 static bool
748 same_line_p (location_t locus1, location_t locus2)
749 {
750 expanded_location from, to;
751
752 if (locus1 == locus2)
753 return true;
754
755 from = expand_location (locus1);
756 to = expand_location (locus2);
757
758 if (from.line != to.line)
759 return false;
760 if (from.file == to.file)
761 return true;
762 return (from.file != NULL
763 && to.file != NULL
764 && strcmp (from.file, to.file) == 0);
765 }
766
767 /* Assign a unique discriminator value to block BB if it begins at the same
768 LOCUS as its predecessor block. */
769
770 static void
771 assign_discriminator (location_t locus, basic_block bb)
772 {
773 gimple first_in_to_bb, last_in_to_bb;
774
775 if (locus == 0 || bb->discriminator != 0)
776 return;
777
778 first_in_to_bb = first_non_label_stmt (bb);
779 last_in_to_bb = last_stmt (bb);
780 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
781 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
782 bb->discriminator = next_discriminator_for_locus (locus);
783 }
784
785 /* Create the edges for a GIMPLE_COND starting at block BB. */
786
787 static void
788 make_cond_expr_edges (basic_block bb)
789 {
790 gimple entry = last_stmt (bb);
791 gimple then_stmt, else_stmt;
792 basic_block then_bb, else_bb;
793 tree then_label, else_label;
794 edge e;
795 location_t entry_locus;
796
797 gcc_assert (entry);
798 gcc_assert (gimple_code (entry) == GIMPLE_COND);
799
800 entry_locus = gimple_location (entry);
801
802 /* Entry basic blocks for each component. */
803 then_label = gimple_cond_true_label (entry);
804 else_label = gimple_cond_false_label (entry);
805 then_bb = label_to_block (then_label);
806 else_bb = label_to_block (else_label);
807 then_stmt = first_stmt (then_bb);
808 else_stmt = first_stmt (else_bb);
809
810 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
811 assign_discriminator (entry_locus, then_bb);
812 e->goto_locus = gimple_location (then_stmt);
813 if (e->goto_locus)
814 e->goto_block = gimple_block (then_stmt);
815 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
816 if (e)
817 {
818 assign_discriminator (entry_locus, else_bb);
819 e->goto_locus = gimple_location (else_stmt);
820 if (e->goto_locus)
821 e->goto_block = gimple_block (else_stmt);
822 }
823
824 /* We do not need the labels anymore. */
825 gimple_cond_set_true_label (entry, NULL_TREE);
826 gimple_cond_set_false_label (entry, NULL_TREE);
827 }
828
829
830 /* Called for each element in the hash table (P) as we delete the
831 edge to cases hash table.
832
833 Clear all the TREE_CHAINs to prevent problems with copying of
834 SWITCH_EXPRs and structure sharing rules, then free the hash table
835 element. */
836
837 static bool
838 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
839 void *data ATTRIBUTE_UNUSED)
840 {
841 tree t, next;
842
843 for (t = (tree) *value; t; t = next)
844 {
845 next = TREE_CHAIN (t);
846 TREE_CHAIN (t) = NULL;
847 }
848
849 *value = NULL;
850 return false;
851 }
852
853 /* Start recording information mapping edges to case labels. */
854
855 void
856 start_recording_case_labels (void)
857 {
858 gcc_assert (edge_to_cases == NULL);
859 edge_to_cases = pointer_map_create ();
860 touched_switch_bbs = BITMAP_ALLOC (NULL);
861 }
862
863 /* Return nonzero if we are recording information for case labels. */
864
865 static bool
866 recording_case_labels_p (void)
867 {
868 return (edge_to_cases != NULL);
869 }
870
871 /* Stop recording information mapping edges to case labels and
872 remove any information we have recorded. */
873 void
874 end_recording_case_labels (void)
875 {
876 bitmap_iterator bi;
877 unsigned i;
878 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
879 pointer_map_destroy (edge_to_cases);
880 edge_to_cases = NULL;
881 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
882 {
883 basic_block bb = BASIC_BLOCK (i);
884 if (bb)
885 {
886 gimple stmt = last_stmt (bb);
887 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
888 group_case_labels_stmt (stmt);
889 }
890 }
891 BITMAP_FREE (touched_switch_bbs);
892 }
893
894 /* If we are inside a {start,end}_recording_cases block, then return
895 a chain of CASE_LABEL_EXPRs from T which reference E.
896
897 Otherwise return NULL. */
898
899 static tree
900 get_cases_for_edge (edge e, gimple t)
901 {
902 void **slot;
903 size_t i, n;
904
905 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
906 chains available. Return NULL so the caller can detect this case. */
907 if (!recording_case_labels_p ())
908 return NULL;
909
910 slot = pointer_map_contains (edge_to_cases, e);
911 if (slot)
912 return (tree) *slot;
913
914 /* If we did not find E in the hash table, then this must be the first
915 time we have been queried for information about E & T. Add all the
916 elements from T to the hash table then perform the query again. */
917
918 n = gimple_switch_num_labels (t);
919 for (i = 0; i < n; i++)
920 {
921 tree elt = gimple_switch_label (t, i);
922 tree lab = CASE_LABEL (elt);
923 basic_block label_bb = label_to_block (lab);
924 edge this_edge = find_edge (e->src, label_bb);
925
926 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
927 a new chain. */
928 slot = pointer_map_insert (edge_to_cases, this_edge);
929 TREE_CHAIN (elt) = (tree) *slot;
930 *slot = elt;
931 }
932
933 return (tree) *pointer_map_contains (edge_to_cases, e);
934 }
935
936 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
937
938 static void
939 make_gimple_switch_edges (basic_block bb)
940 {
941 gimple entry = last_stmt (bb);
942 location_t entry_locus;
943 size_t i, n;
944
945 entry_locus = gimple_location (entry);
946
947 n = gimple_switch_num_labels (entry);
948
949 for (i = 0; i < n; ++i)
950 {
951 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
952 basic_block label_bb = label_to_block (lab);
953 make_edge (bb, label_bb, 0);
954 assign_discriminator (entry_locus, label_bb);
955 }
956 }
957
958
959 /* Return the basic block holding label DEST. */
960
961 basic_block
962 label_to_block_fn (struct function *ifun, tree dest)
963 {
964 int uid = LABEL_DECL_UID (dest);
965
966 /* We would die hard when faced by an undefined label. Emit a label to
967 the very first basic block. This will hopefully make even the dataflow
968 and undefined variable warnings quite right. */
969 if (seen_error () && uid < 0)
970 {
971 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
972 gimple stmt;
973
974 stmt = gimple_build_label (dest);
975 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
976 uid = LABEL_DECL_UID (dest);
977 }
978 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
979 <= (unsigned int) uid)
980 return NULL;
981 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
982 }
983
984 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
985 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
986
987 void
988 make_abnormal_goto_edges (basic_block bb, bool for_call)
989 {
990 basic_block target_bb;
991 gimple_stmt_iterator gsi;
992
993 FOR_EACH_BB (target_bb)
994 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
995 {
996 gimple label_stmt = gsi_stmt (gsi);
997 tree target;
998
999 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1000 break;
1001
1002 target = gimple_label_label (label_stmt);
1003
1004 /* Make an edge to every label block that has been marked as a
1005 potential target for a computed goto or a non-local goto. */
1006 if ((FORCED_LABEL (target) && !for_call)
1007 || (DECL_NONLOCAL (target) && for_call))
1008 {
1009 make_edge (bb, target_bb, EDGE_ABNORMAL);
1010 break;
1011 }
1012 }
1013 }
1014
1015 /* Create edges for a goto statement at block BB. */
1016
1017 static void
1018 make_goto_expr_edges (basic_block bb)
1019 {
1020 gimple_stmt_iterator last = gsi_last_bb (bb);
1021 gimple goto_t = gsi_stmt (last);
1022
1023 /* A simple GOTO creates normal edges. */
1024 if (simple_goto_p (goto_t))
1025 {
1026 tree dest = gimple_goto_dest (goto_t);
1027 basic_block label_bb = label_to_block (dest);
1028 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1029 e->goto_locus = gimple_location (goto_t);
1030 assign_discriminator (e->goto_locus, label_bb);
1031 if (e->goto_locus)
1032 e->goto_block = gimple_block (goto_t);
1033 gsi_remove (&last, true);
1034 return;
1035 }
1036
1037 /* A computed GOTO creates abnormal edges. */
1038 make_abnormal_goto_edges (bb, false);
1039 }
1040
1041 /* Create edges for an asm statement with labels at block BB. */
1042
1043 static void
1044 make_gimple_asm_edges (basic_block bb)
1045 {
1046 gimple stmt = last_stmt (bb);
1047 location_t stmt_loc = gimple_location (stmt);
1048 int i, n = gimple_asm_nlabels (stmt);
1049
1050 for (i = 0; i < n; ++i)
1051 {
1052 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1053 basic_block label_bb = label_to_block (label);
1054 make_edge (bb, label_bb, 0);
1055 assign_discriminator (stmt_loc, label_bb);
1056 }
1057 }
1058
1059 /*---------------------------------------------------------------------------
1060 Flowgraph analysis
1061 ---------------------------------------------------------------------------*/
1062
1063 /* Cleanup useless labels in basic blocks. This is something we wish
1064 to do early because it allows us to group case labels before creating
1065 the edges for the CFG, and it speeds up block statement iterators in
1066 all passes later on.
1067 We rerun this pass after CFG is created, to get rid of the labels that
1068 are no longer referenced. After then we do not run it any more, since
1069 (almost) no new labels should be created. */
1070
1071 /* A map from basic block index to the leading label of that block. */
1072 static struct label_record
1073 {
1074 /* The label. */
1075 tree label;
1076
1077 /* True if the label is referenced from somewhere. */
1078 bool used;
1079 } *label_for_bb;
1080
1081 /* Given LABEL return the first label in the same basic block. */
1082
1083 static tree
1084 main_block_label (tree label)
1085 {
1086 basic_block bb = label_to_block (label);
1087 tree main_label = label_for_bb[bb->index].label;
1088
1089 /* label_to_block possibly inserted undefined label into the chain. */
1090 if (!main_label)
1091 {
1092 label_for_bb[bb->index].label = label;
1093 main_label = label;
1094 }
1095
1096 label_for_bb[bb->index].used = true;
1097 return main_label;
1098 }
1099
1100 /* Clean up redundant labels within the exception tree. */
1101
1102 static void
1103 cleanup_dead_labels_eh (void)
1104 {
1105 eh_landing_pad lp;
1106 eh_region r;
1107 tree lab;
1108 int i;
1109
1110 if (cfun->eh == NULL)
1111 return;
1112
1113 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1114 if (lp && lp->post_landing_pad)
1115 {
1116 lab = main_block_label (lp->post_landing_pad);
1117 if (lab != lp->post_landing_pad)
1118 {
1119 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1120 EH_LANDING_PAD_NR (lab) = lp->index;
1121 }
1122 }
1123
1124 FOR_ALL_EH_REGION (r)
1125 switch (r->type)
1126 {
1127 case ERT_CLEANUP:
1128 case ERT_MUST_NOT_THROW:
1129 break;
1130
1131 case ERT_TRY:
1132 {
1133 eh_catch c;
1134 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1135 {
1136 lab = c->label;
1137 if (lab)
1138 c->label = main_block_label (lab);
1139 }
1140 }
1141 break;
1142
1143 case ERT_ALLOWED_EXCEPTIONS:
1144 lab = r->u.allowed.label;
1145 if (lab)
1146 r->u.allowed.label = main_block_label (lab);
1147 break;
1148 }
1149 }
1150
1151
1152 /* Cleanup redundant labels. This is a three-step process:
1153 1) Find the leading label for each block.
1154 2) Redirect all references to labels to the leading labels.
1155 3) Cleanup all useless labels. */
1156
1157 void
1158 cleanup_dead_labels (void)
1159 {
1160 basic_block bb;
1161 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1162
1163 /* Find a suitable label for each block. We use the first user-defined
1164 label if there is one, or otherwise just the first label we see. */
1165 FOR_EACH_BB (bb)
1166 {
1167 gimple_stmt_iterator i;
1168
1169 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1170 {
1171 tree label;
1172 gimple stmt = gsi_stmt (i);
1173
1174 if (gimple_code (stmt) != GIMPLE_LABEL)
1175 break;
1176
1177 label = gimple_label_label (stmt);
1178
1179 /* If we have not yet seen a label for the current block,
1180 remember this one and see if there are more labels. */
1181 if (!label_for_bb[bb->index].label)
1182 {
1183 label_for_bb[bb->index].label = label;
1184 continue;
1185 }
1186
1187 /* If we did see a label for the current block already, but it
1188 is an artificially created label, replace it if the current
1189 label is a user defined label. */
1190 if (!DECL_ARTIFICIAL (label)
1191 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1192 {
1193 label_for_bb[bb->index].label = label;
1194 break;
1195 }
1196 }
1197 }
1198
1199 /* Now redirect all jumps/branches to the selected label.
1200 First do so for each block ending in a control statement. */
1201 FOR_EACH_BB (bb)
1202 {
1203 gimple stmt = last_stmt (bb);
1204 if (!stmt)
1205 continue;
1206
1207 switch (gimple_code (stmt))
1208 {
1209 case GIMPLE_COND:
1210 {
1211 tree true_label = gimple_cond_true_label (stmt);
1212 tree false_label = gimple_cond_false_label (stmt);
1213
1214 if (true_label)
1215 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1216 if (false_label)
1217 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1218 break;
1219 }
1220
1221 case GIMPLE_SWITCH:
1222 {
1223 size_t i, n = gimple_switch_num_labels (stmt);
1224
1225 /* Replace all destination labels. */
1226 for (i = 0; i < n; ++i)
1227 {
1228 tree case_label = gimple_switch_label (stmt, i);
1229 tree label = main_block_label (CASE_LABEL (case_label));
1230 CASE_LABEL (case_label) = label;
1231 }
1232 break;
1233 }
1234
1235 case GIMPLE_ASM:
1236 {
1237 int i, n = gimple_asm_nlabels (stmt);
1238
1239 for (i = 0; i < n; ++i)
1240 {
1241 tree cons = gimple_asm_label_op (stmt, i);
1242 tree label = main_block_label (TREE_VALUE (cons));
1243 TREE_VALUE (cons) = label;
1244 }
1245 break;
1246 }
1247
1248 /* We have to handle gotos until they're removed, and we don't
1249 remove them until after we've created the CFG edges. */
1250 case GIMPLE_GOTO:
1251 if (!computed_goto_p (stmt))
1252 {
1253 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1254 gimple_goto_set_dest (stmt, new_dest);
1255 }
1256 break;
1257
1258 default:
1259 break;
1260 }
1261 }
1262
1263 /* Do the same for the exception region tree labels. */
1264 cleanup_dead_labels_eh ();
1265
1266 /* Finally, purge dead labels. All user-defined labels and labels that
1267 can be the target of non-local gotos and labels which have their
1268 address taken are preserved. */
1269 FOR_EACH_BB (bb)
1270 {
1271 gimple_stmt_iterator i;
1272 tree label_for_this_bb = label_for_bb[bb->index].label;
1273
1274 if (!label_for_this_bb)
1275 continue;
1276
1277 /* If the main label of the block is unused, we may still remove it. */
1278 if (!label_for_bb[bb->index].used)
1279 label_for_this_bb = NULL;
1280
1281 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1282 {
1283 tree label;
1284 gimple stmt = gsi_stmt (i);
1285
1286 if (gimple_code (stmt) != GIMPLE_LABEL)
1287 break;
1288
1289 label = gimple_label_label (stmt);
1290
1291 if (label == label_for_this_bb
1292 || !DECL_ARTIFICIAL (label)
1293 || DECL_NONLOCAL (label)
1294 || FORCED_LABEL (label))
1295 gsi_next (&i);
1296 else
1297 gsi_remove (&i, true);
1298 }
1299 }
1300
1301 free (label_for_bb);
1302 }
1303
1304 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1305 the ones jumping to the same label.
1306 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1307
1308 static void
1309 group_case_labels_stmt (gimple stmt)
1310 {
1311 int old_size = gimple_switch_num_labels (stmt);
1312 int i, j, new_size = old_size;
1313 tree default_case = NULL_TREE;
1314 tree default_label = NULL_TREE;
1315 bool has_default;
1316
1317 /* The default label is always the first case in a switch
1318 statement after gimplification if it was not optimized
1319 away */
1320 if (!CASE_LOW (gimple_switch_default_label (stmt))
1321 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1322 {
1323 default_case = gimple_switch_default_label (stmt);
1324 default_label = CASE_LABEL (default_case);
1325 has_default = true;
1326 }
1327 else
1328 has_default = false;
1329
1330 /* Look for possible opportunities to merge cases. */
1331 if (has_default)
1332 i = 1;
1333 else
1334 i = 0;
1335 while (i < old_size)
1336 {
1337 tree base_case, base_label, base_high;
1338 base_case = gimple_switch_label (stmt, i);
1339
1340 gcc_assert (base_case);
1341 base_label = CASE_LABEL (base_case);
1342
1343 /* Discard cases that have the same destination as the
1344 default case. */
1345 if (base_label == default_label)
1346 {
1347 gimple_switch_set_label (stmt, i, NULL_TREE);
1348 i++;
1349 new_size--;
1350 continue;
1351 }
1352
1353 base_high = CASE_HIGH (base_case)
1354 ? CASE_HIGH (base_case)
1355 : CASE_LOW (base_case);
1356 i++;
1357
1358 /* Try to merge case labels. Break out when we reach the end
1359 of the label vector or when we cannot merge the next case
1360 label with the current one. */
1361 while (i < old_size)
1362 {
1363 tree merge_case = gimple_switch_label (stmt, i);
1364 tree merge_label = CASE_LABEL (merge_case);
1365 tree t = int_const_binop (PLUS_EXPR, base_high,
1366 integer_one_node, 1);
1367
1368 /* Merge the cases if they jump to the same place,
1369 and their ranges are consecutive. */
1370 if (merge_label == base_label
1371 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1372 {
1373 base_high = CASE_HIGH (merge_case) ?
1374 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1375 CASE_HIGH (base_case) = base_high;
1376 gimple_switch_set_label (stmt, i, NULL_TREE);
1377 new_size--;
1378 i++;
1379 }
1380 else
1381 break;
1382 }
1383 }
1384
1385 /* Compress the case labels in the label vector, and adjust the
1386 length of the vector. */
1387 for (i = 0, j = 0; i < new_size; i++)
1388 {
1389 while (! gimple_switch_label (stmt, j))
1390 j++;
1391 gimple_switch_set_label (stmt, i,
1392 gimple_switch_label (stmt, j++));
1393 }
1394
1395 gcc_assert (new_size <= old_size);
1396 gimple_switch_set_num_labels (stmt, new_size);
1397 }
1398
1399 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1400 and scan the sorted vector of cases. Combine the ones jumping to the
1401 same label. */
1402
1403 void
1404 group_case_labels (void)
1405 {
1406 basic_block bb;
1407
1408 FOR_EACH_BB (bb)
1409 {
1410 gimple stmt = last_stmt (bb);
1411 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1412 group_case_labels_stmt (stmt);
1413 }
1414 }
1415
1416 /* Checks whether we can merge block B into block A. */
1417
1418 static bool
1419 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1420 {
1421 gimple stmt;
1422 gimple_stmt_iterator gsi;
1423 gimple_seq phis;
1424
1425 if (!single_succ_p (a))
1426 return false;
1427
1428 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1429 return false;
1430
1431 if (single_succ (a) != b)
1432 return false;
1433
1434 if (!single_pred_p (b))
1435 return false;
1436
1437 if (b == EXIT_BLOCK_PTR)
1438 return false;
1439
1440 /* If A ends by a statement causing exceptions or something similar, we
1441 cannot merge the blocks. */
1442 stmt = last_stmt (a);
1443 if (stmt && stmt_ends_bb_p (stmt))
1444 return false;
1445
1446 /* Do not allow a block with only a non-local label to be merged. */
1447 if (stmt
1448 && gimple_code (stmt) == GIMPLE_LABEL
1449 && DECL_NONLOCAL (gimple_label_label (stmt)))
1450 return false;
1451
1452 /* Examine the labels at the beginning of B. */
1453 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1454 {
1455 tree lab;
1456 stmt = gsi_stmt (gsi);
1457 if (gimple_code (stmt) != GIMPLE_LABEL)
1458 break;
1459 lab = gimple_label_label (stmt);
1460
1461 /* Do not remove user labels. */
1462 if (!DECL_ARTIFICIAL (lab))
1463 return false;
1464 }
1465
1466 /* Protect the loop latches. */
1467 if (current_loops && b->loop_father->latch == b)
1468 return false;
1469
1470 /* It must be possible to eliminate all phi nodes in B. If ssa form
1471 is not up-to-date and a name-mapping is registered, we cannot eliminate
1472 any phis. Symbols marked for renaming are never a problem though. */
1473 phis = phi_nodes (b);
1474 if (!gimple_seq_empty_p (phis)
1475 && name_mappings_registered_p ())
1476 return false;
1477
1478 /* When not optimizing, don't merge if we'd lose goto_locus. */
1479 if (!optimize
1480 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1481 {
1482 location_t goto_locus = single_succ_edge (a)->goto_locus;
1483 gimple_stmt_iterator prev, next;
1484 prev = gsi_last_nondebug_bb (a);
1485 next = gsi_after_labels (b);
1486 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1487 gsi_next_nondebug (&next);
1488 if ((gsi_end_p (prev)
1489 || gimple_location (gsi_stmt (prev)) != goto_locus)
1490 && (gsi_end_p (next)
1491 || gimple_location (gsi_stmt (next)) != goto_locus))
1492 return false;
1493 }
1494
1495 return true;
1496 }
1497
1498 /* Return true if the var whose chain of uses starts at PTR has no
1499 nondebug uses. */
1500 bool
1501 has_zero_uses_1 (const ssa_use_operand_t *head)
1502 {
1503 const ssa_use_operand_t *ptr;
1504
1505 for (ptr = head->next; ptr != head; ptr = ptr->next)
1506 if (!is_gimple_debug (USE_STMT (ptr)))
1507 return false;
1508
1509 return true;
1510 }
1511
1512 /* Return true if the var whose chain of uses starts at PTR has a
1513 single nondebug use. Set USE_P and STMT to that single nondebug
1514 use, if so, or to NULL otherwise. */
1515 bool
1516 single_imm_use_1 (const ssa_use_operand_t *head,
1517 use_operand_p *use_p, gimple *stmt)
1518 {
1519 ssa_use_operand_t *ptr, *single_use = 0;
1520
1521 for (ptr = head->next; ptr != head; ptr = ptr->next)
1522 if (!is_gimple_debug (USE_STMT (ptr)))
1523 {
1524 if (single_use)
1525 {
1526 single_use = NULL;
1527 break;
1528 }
1529 single_use = ptr;
1530 }
1531
1532 if (use_p)
1533 *use_p = single_use;
1534
1535 if (stmt)
1536 *stmt = single_use ? single_use->loc.stmt : NULL;
1537
1538 return !!single_use;
1539 }
1540
1541 /* Replaces all uses of NAME by VAL. */
1542
1543 void
1544 replace_uses_by (tree name, tree val)
1545 {
1546 imm_use_iterator imm_iter;
1547 use_operand_p use;
1548 gimple stmt;
1549 edge e;
1550
1551 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1552 {
1553 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1554 {
1555 replace_exp (use, val);
1556
1557 if (gimple_code (stmt) == GIMPLE_PHI)
1558 {
1559 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1560 if (e->flags & EDGE_ABNORMAL)
1561 {
1562 /* This can only occur for virtual operands, since
1563 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1564 would prevent replacement. */
1565 gcc_assert (!is_gimple_reg (name));
1566 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1567 }
1568 }
1569 }
1570
1571 if (gimple_code (stmt) != GIMPLE_PHI)
1572 {
1573 size_t i;
1574
1575 fold_stmt_inplace (stmt);
1576 if (cfgcleanup_altered_bbs)
1577 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1578
1579 /* FIXME. This should go in update_stmt. */
1580 for (i = 0; i < gimple_num_ops (stmt); i++)
1581 {
1582 tree op = gimple_op (stmt, i);
1583 /* Operands may be empty here. For example, the labels
1584 of a GIMPLE_COND are nulled out following the creation
1585 of the corresponding CFG edges. */
1586 if (op && TREE_CODE (op) == ADDR_EXPR)
1587 recompute_tree_invariant_for_addr_expr (op);
1588 }
1589
1590 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1591 update_stmt (stmt);
1592 }
1593 }
1594
1595 gcc_assert (has_zero_uses (name));
1596
1597 /* Also update the trees stored in loop structures. */
1598 if (current_loops)
1599 {
1600 struct loop *loop;
1601 loop_iterator li;
1602
1603 FOR_EACH_LOOP (li, loop, 0)
1604 {
1605 substitute_in_loop_info (loop, name, val);
1606 }
1607 }
1608 }
1609
1610 /* Merge block B into block A. */
1611
1612 static void
1613 gimple_merge_blocks (basic_block a, basic_block b)
1614 {
1615 gimple_stmt_iterator last, gsi, psi;
1616 gimple_seq phis = phi_nodes (b);
1617
1618 if (dump_file)
1619 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1620
1621 /* Remove all single-valued PHI nodes from block B of the form
1622 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1623 gsi = gsi_last_bb (a);
1624 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1625 {
1626 gimple phi = gsi_stmt (psi);
1627 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1628 gimple copy;
1629 bool may_replace_uses = !is_gimple_reg (def)
1630 || may_propagate_copy (def, use);
1631
1632 /* In case we maintain loop closed ssa form, do not propagate arguments
1633 of loop exit phi nodes. */
1634 if (current_loops
1635 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1636 && is_gimple_reg (def)
1637 && TREE_CODE (use) == SSA_NAME
1638 && a->loop_father != b->loop_father)
1639 may_replace_uses = false;
1640
1641 if (!may_replace_uses)
1642 {
1643 gcc_assert (is_gimple_reg (def));
1644
1645 /* Note that just emitting the copies is fine -- there is no problem
1646 with ordering of phi nodes. This is because A is the single
1647 predecessor of B, therefore results of the phi nodes cannot
1648 appear as arguments of the phi nodes. */
1649 copy = gimple_build_assign (def, use);
1650 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1651 remove_phi_node (&psi, false);
1652 }
1653 else
1654 {
1655 /* If we deal with a PHI for virtual operands, we can simply
1656 propagate these without fussing with folding or updating
1657 the stmt. */
1658 if (!is_gimple_reg (def))
1659 {
1660 imm_use_iterator iter;
1661 use_operand_p use_p;
1662 gimple stmt;
1663
1664 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1665 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1666 SET_USE (use_p, use);
1667
1668 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1669 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1670 }
1671 else
1672 replace_uses_by (def, use);
1673
1674 remove_phi_node (&psi, true);
1675 }
1676 }
1677
1678 /* Ensure that B follows A. */
1679 move_block_after (b, a);
1680
1681 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1682 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1683
1684 /* Remove labels from B and set gimple_bb to A for other statements. */
1685 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1686 {
1687 gimple stmt = gsi_stmt (gsi);
1688 if (gimple_code (stmt) == GIMPLE_LABEL)
1689 {
1690 tree label = gimple_label_label (stmt);
1691 int lp_nr;
1692
1693 gsi_remove (&gsi, false);
1694
1695 /* Now that we can thread computed gotos, we might have
1696 a situation where we have a forced label in block B
1697 However, the label at the start of block B might still be
1698 used in other ways (think about the runtime checking for
1699 Fortran assigned gotos). So we can not just delete the
1700 label. Instead we move the label to the start of block A. */
1701 if (FORCED_LABEL (label))
1702 {
1703 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1704 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1705 }
1706
1707 lp_nr = EH_LANDING_PAD_NR (label);
1708 if (lp_nr)
1709 {
1710 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1711 lp->post_landing_pad = NULL;
1712 }
1713 }
1714 else
1715 {
1716 gimple_set_bb (stmt, a);
1717 gsi_next (&gsi);
1718 }
1719 }
1720
1721 /* Merge the sequences. */
1722 last = gsi_last_bb (a);
1723 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1724 set_bb_seq (b, NULL);
1725
1726 if (cfgcleanup_altered_bbs)
1727 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1728 }
1729
1730
1731 /* Return the one of two successors of BB that is not reachable by a
1732 complex edge, if there is one. Else, return BB. We use
1733 this in optimizations that use post-dominators for their heuristics,
1734 to catch the cases in C++ where function calls are involved. */
1735
1736 basic_block
1737 single_noncomplex_succ (basic_block bb)
1738 {
1739 edge e0, e1;
1740 if (EDGE_COUNT (bb->succs) != 2)
1741 return bb;
1742
1743 e0 = EDGE_SUCC (bb, 0);
1744 e1 = EDGE_SUCC (bb, 1);
1745 if (e0->flags & EDGE_COMPLEX)
1746 return e1->dest;
1747 if (e1->flags & EDGE_COMPLEX)
1748 return e0->dest;
1749
1750 return bb;
1751 }
1752
1753 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1754
1755 void
1756 notice_special_calls (gimple call)
1757 {
1758 int flags = gimple_call_flags (call);
1759
1760 if (flags & ECF_MAY_BE_ALLOCA)
1761 cfun->calls_alloca = true;
1762 if (flags & ECF_RETURNS_TWICE)
1763 cfun->calls_setjmp = true;
1764 }
1765
1766
1767 /* Clear flags set by notice_special_calls. Used by dead code removal
1768 to update the flags. */
1769
1770 void
1771 clear_special_calls (void)
1772 {
1773 cfun->calls_alloca = false;
1774 cfun->calls_setjmp = false;
1775 }
1776
1777 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1778
1779 static void
1780 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1781 {
1782 /* Since this block is no longer reachable, we can just delete all
1783 of its PHI nodes. */
1784 remove_phi_nodes (bb);
1785
1786 /* Remove edges to BB's successors. */
1787 while (EDGE_COUNT (bb->succs) > 0)
1788 remove_edge (EDGE_SUCC (bb, 0));
1789 }
1790
1791
1792 /* Remove statements of basic block BB. */
1793
1794 static void
1795 remove_bb (basic_block bb)
1796 {
1797 gimple_stmt_iterator i;
1798
1799 if (dump_file)
1800 {
1801 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1802 if (dump_flags & TDF_DETAILS)
1803 {
1804 dump_bb (bb, dump_file, 0);
1805 fprintf (dump_file, "\n");
1806 }
1807 }
1808
1809 if (current_loops)
1810 {
1811 struct loop *loop = bb->loop_father;
1812
1813 /* If a loop gets removed, clean up the information associated
1814 with it. */
1815 if (loop->latch == bb
1816 || loop->header == bb)
1817 free_numbers_of_iterations_estimates_loop (loop);
1818 }
1819
1820 /* Remove all the instructions in the block. */
1821 if (bb_seq (bb) != NULL)
1822 {
1823 /* Walk backwards so as to get a chance to substitute all
1824 released DEFs into debug stmts. See
1825 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1826 details. */
1827 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1828 {
1829 gimple stmt = gsi_stmt (i);
1830 if (gimple_code (stmt) == GIMPLE_LABEL
1831 && (FORCED_LABEL (gimple_label_label (stmt))
1832 || DECL_NONLOCAL (gimple_label_label (stmt))))
1833 {
1834 basic_block new_bb;
1835 gimple_stmt_iterator new_gsi;
1836
1837 /* A non-reachable non-local label may still be referenced.
1838 But it no longer needs to carry the extra semantics of
1839 non-locality. */
1840 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1841 {
1842 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1843 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1844 }
1845
1846 new_bb = bb->prev_bb;
1847 new_gsi = gsi_start_bb (new_bb);
1848 gsi_remove (&i, false);
1849 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1850 }
1851 else
1852 {
1853 /* Release SSA definitions if we are in SSA. Note that we
1854 may be called when not in SSA. For example,
1855 final_cleanup calls this function via
1856 cleanup_tree_cfg. */
1857 if (gimple_in_ssa_p (cfun))
1858 release_defs (stmt);
1859
1860 gsi_remove (&i, true);
1861 }
1862
1863 if (gsi_end_p (i))
1864 i = gsi_last_bb (bb);
1865 else
1866 gsi_prev (&i);
1867 }
1868 }
1869
1870 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1871 bb->il.gimple = NULL;
1872 }
1873
1874
1875 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1876 predicate VAL, return the edge that will be taken out of the block.
1877 If VAL does not match a unique edge, NULL is returned. */
1878
1879 edge
1880 find_taken_edge (basic_block bb, tree val)
1881 {
1882 gimple stmt;
1883
1884 stmt = last_stmt (bb);
1885
1886 gcc_assert (stmt);
1887 gcc_assert (is_ctrl_stmt (stmt));
1888
1889 if (val == NULL)
1890 return NULL;
1891
1892 if (!is_gimple_min_invariant (val))
1893 return NULL;
1894
1895 if (gimple_code (stmt) == GIMPLE_COND)
1896 return find_taken_edge_cond_expr (bb, val);
1897
1898 if (gimple_code (stmt) == GIMPLE_SWITCH)
1899 return find_taken_edge_switch_expr (bb, val);
1900
1901 if (computed_goto_p (stmt))
1902 {
1903 /* Only optimize if the argument is a label, if the argument is
1904 not a label then we can not construct a proper CFG.
1905
1906 It may be the case that we only need to allow the LABEL_REF to
1907 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1908 appear inside a LABEL_EXPR just to be safe. */
1909 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1910 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1911 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1912 return NULL;
1913 }
1914
1915 gcc_unreachable ();
1916 }
1917
1918 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1919 statement, determine which of the outgoing edges will be taken out of the
1920 block. Return NULL if either edge may be taken. */
1921
1922 static edge
1923 find_taken_edge_computed_goto (basic_block bb, tree val)
1924 {
1925 basic_block dest;
1926 edge e = NULL;
1927
1928 dest = label_to_block (val);
1929 if (dest)
1930 {
1931 e = find_edge (bb, dest);
1932 gcc_assert (e != NULL);
1933 }
1934
1935 return e;
1936 }
1937
1938 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1939 statement, determine which of the two edges will be taken out of the
1940 block. Return NULL if either edge may be taken. */
1941
1942 static edge
1943 find_taken_edge_cond_expr (basic_block bb, tree val)
1944 {
1945 edge true_edge, false_edge;
1946
1947 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1948
1949 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1950 return (integer_zerop (val) ? false_edge : true_edge);
1951 }
1952
1953 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1954 statement, determine which edge will be taken out of the block. Return
1955 NULL if any edge may be taken. */
1956
1957 static edge
1958 find_taken_edge_switch_expr (basic_block bb, tree val)
1959 {
1960 basic_block dest_bb;
1961 edge e;
1962 gimple switch_stmt;
1963 tree taken_case;
1964
1965 switch_stmt = last_stmt (bb);
1966 taken_case = find_case_label_for_value (switch_stmt, val);
1967 dest_bb = label_to_block (CASE_LABEL (taken_case));
1968
1969 e = find_edge (bb, dest_bb);
1970 gcc_assert (e);
1971 return e;
1972 }
1973
1974
1975 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1976 We can make optimal use here of the fact that the case labels are
1977 sorted: We can do a binary search for a case matching VAL. */
1978
1979 static tree
1980 find_case_label_for_value (gimple switch_stmt, tree val)
1981 {
1982 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1983 tree default_case = gimple_switch_default_label (switch_stmt);
1984
1985 for (low = 0, high = n; high - low > 1; )
1986 {
1987 size_t i = (high + low) / 2;
1988 tree t = gimple_switch_label (switch_stmt, i);
1989 int cmp;
1990
1991 /* Cache the result of comparing CASE_LOW and val. */
1992 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1993
1994 if (cmp > 0)
1995 high = i;
1996 else
1997 low = i;
1998
1999 if (CASE_HIGH (t) == NULL)
2000 {
2001 /* A singe-valued case label. */
2002 if (cmp == 0)
2003 return t;
2004 }
2005 else
2006 {
2007 /* A case range. We can only handle integer ranges. */
2008 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2009 return t;
2010 }
2011 }
2012
2013 return default_case;
2014 }
2015
2016
2017 /* Dump a basic block on stderr. */
2018
2019 void
2020 gimple_debug_bb (basic_block bb)
2021 {
2022 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2023 }
2024
2025
2026 /* Dump basic block with index N on stderr. */
2027
2028 basic_block
2029 gimple_debug_bb_n (int n)
2030 {
2031 gimple_debug_bb (BASIC_BLOCK (n));
2032 return BASIC_BLOCK (n);
2033 }
2034
2035
2036 /* Dump the CFG on stderr.
2037
2038 FLAGS are the same used by the tree dumping functions
2039 (see TDF_* in tree-pass.h). */
2040
2041 void
2042 gimple_debug_cfg (int flags)
2043 {
2044 gimple_dump_cfg (stderr, flags);
2045 }
2046
2047
2048 /* Dump the program showing basic block boundaries on the given FILE.
2049
2050 FLAGS are the same used by the tree dumping functions (see TDF_* in
2051 tree.h). */
2052
2053 void
2054 gimple_dump_cfg (FILE *file, int flags)
2055 {
2056 if (flags & TDF_DETAILS)
2057 {
2058 const char *funcname
2059 = lang_hooks.decl_printable_name (current_function_decl, 2);
2060
2061 fputc ('\n', file);
2062 fprintf (file, ";; Function %s\n\n", funcname);
2063 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2064 n_basic_blocks, n_edges, last_basic_block);
2065
2066 brief_dump_cfg (file);
2067 fprintf (file, "\n");
2068 }
2069
2070 if (flags & TDF_STATS)
2071 dump_cfg_stats (file);
2072
2073 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2074 }
2075
2076
2077 /* Dump CFG statistics on FILE. */
2078
2079 void
2080 dump_cfg_stats (FILE *file)
2081 {
2082 static long max_num_merged_labels = 0;
2083 unsigned long size, total = 0;
2084 long num_edges;
2085 basic_block bb;
2086 const char * const fmt_str = "%-30s%-13s%12s\n";
2087 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2088 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2089 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2090 const char *funcname
2091 = lang_hooks.decl_printable_name (current_function_decl, 2);
2092
2093
2094 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2095
2096 fprintf (file, "---------------------------------------------------------\n");
2097 fprintf (file, fmt_str, "", " Number of ", "Memory");
2098 fprintf (file, fmt_str, "", " instances ", "used ");
2099 fprintf (file, "---------------------------------------------------------\n");
2100
2101 size = n_basic_blocks * sizeof (struct basic_block_def);
2102 total += size;
2103 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2104 SCALE (size), LABEL (size));
2105
2106 num_edges = 0;
2107 FOR_EACH_BB (bb)
2108 num_edges += EDGE_COUNT (bb->succs);
2109 size = num_edges * sizeof (struct edge_def);
2110 total += size;
2111 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2112
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2115 LABEL (total));
2116 fprintf (file, "---------------------------------------------------------\n");
2117 fprintf (file, "\n");
2118
2119 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2120 max_num_merged_labels = cfg_stats.num_merged_labels;
2121
2122 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2123 cfg_stats.num_merged_labels, max_num_merged_labels);
2124
2125 fprintf (file, "\n");
2126 }
2127
2128
2129 /* Dump CFG statistics on stderr. Keep extern so that it's always
2130 linked in the final executable. */
2131
2132 DEBUG_FUNCTION void
2133 debug_cfg_stats (void)
2134 {
2135 dump_cfg_stats (stderr);
2136 }
2137
2138
2139 /* Dump the flowgraph to a .vcg FILE. */
2140
2141 static void
2142 gimple_cfg2vcg (FILE *file)
2143 {
2144 edge e;
2145 edge_iterator ei;
2146 basic_block bb;
2147 const char *funcname
2148 = lang_hooks.decl_printable_name (current_function_decl, 2);
2149
2150 /* Write the file header. */
2151 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2152 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2153 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2154
2155 /* Write blocks and edges. */
2156 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2157 {
2158 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2159 e->dest->index);
2160
2161 if (e->flags & EDGE_FAKE)
2162 fprintf (file, " linestyle: dotted priority: 10");
2163 else
2164 fprintf (file, " linestyle: solid priority: 100");
2165
2166 fprintf (file, " }\n");
2167 }
2168 fputc ('\n', file);
2169
2170 FOR_EACH_BB (bb)
2171 {
2172 enum gimple_code head_code, end_code;
2173 const char *head_name, *end_name;
2174 int head_line = 0;
2175 int end_line = 0;
2176 gimple first = first_stmt (bb);
2177 gimple last = last_stmt (bb);
2178
2179 if (first)
2180 {
2181 head_code = gimple_code (first);
2182 head_name = gimple_code_name[head_code];
2183 head_line = get_lineno (first);
2184 }
2185 else
2186 head_name = "no-statement";
2187
2188 if (last)
2189 {
2190 end_code = gimple_code (last);
2191 end_name = gimple_code_name[end_code];
2192 end_line = get_lineno (last);
2193 }
2194 else
2195 end_name = "no-statement";
2196
2197 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2198 bb->index, bb->index, head_name, head_line, end_name,
2199 end_line);
2200
2201 FOR_EACH_EDGE (e, ei, bb->succs)
2202 {
2203 if (e->dest == EXIT_BLOCK_PTR)
2204 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2205 else
2206 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2207
2208 if (e->flags & EDGE_FAKE)
2209 fprintf (file, " priority: 10 linestyle: dotted");
2210 else
2211 fprintf (file, " priority: 100 linestyle: solid");
2212
2213 fprintf (file, " }\n");
2214 }
2215
2216 if (bb->next_bb != EXIT_BLOCK_PTR)
2217 fputc ('\n', file);
2218 }
2219
2220 fputs ("}\n\n", file);
2221 }
2222
2223
2224
2225 /*---------------------------------------------------------------------------
2226 Miscellaneous helpers
2227 ---------------------------------------------------------------------------*/
2228
2229 /* Return true if T represents a stmt that always transfers control. */
2230
2231 bool
2232 is_ctrl_stmt (gimple t)
2233 {
2234 switch (gimple_code (t))
2235 {
2236 case GIMPLE_COND:
2237 case GIMPLE_SWITCH:
2238 case GIMPLE_GOTO:
2239 case GIMPLE_RETURN:
2240 case GIMPLE_RESX:
2241 return true;
2242 default:
2243 return false;
2244 }
2245 }
2246
2247
2248 /* Return true if T is a statement that may alter the flow of control
2249 (e.g., a call to a non-returning function). */
2250
2251 bool
2252 is_ctrl_altering_stmt (gimple t)
2253 {
2254 gcc_assert (t);
2255
2256 switch (gimple_code (t))
2257 {
2258 case GIMPLE_CALL:
2259 {
2260 int flags = gimple_call_flags (t);
2261
2262 /* A non-pure/const call alters flow control if the current
2263 function has nonlocal labels. */
2264 if (!(flags & (ECF_CONST | ECF_PURE)) && cfun->has_nonlocal_label)
2265 return true;
2266
2267 /* A call also alters control flow if it does not return. */
2268 if (flags & ECF_NORETURN)
2269 return true;
2270
2271 /* BUILT_IN_RETURN call is same as return statement. */
2272 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2273 return true;
2274 }
2275 break;
2276
2277 case GIMPLE_EH_DISPATCH:
2278 /* EH_DISPATCH branches to the individual catch handlers at
2279 this level of a try or allowed-exceptions region. It can
2280 fallthru to the next statement as well. */
2281 return true;
2282
2283 case GIMPLE_ASM:
2284 if (gimple_asm_nlabels (t) > 0)
2285 return true;
2286 break;
2287
2288 CASE_GIMPLE_OMP:
2289 /* OpenMP directives alter control flow. */
2290 return true;
2291
2292 default:
2293 break;
2294 }
2295
2296 /* If a statement can throw, it alters control flow. */
2297 return stmt_can_throw_internal (t);
2298 }
2299
2300
2301 /* Return true if T is a simple local goto. */
2302
2303 bool
2304 simple_goto_p (gimple t)
2305 {
2306 return (gimple_code (t) == GIMPLE_GOTO
2307 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2308 }
2309
2310
2311 /* Return true if T can make an abnormal transfer of control flow.
2312 Transfers of control flow associated with EH are excluded. */
2313
2314 bool
2315 stmt_can_make_abnormal_goto (gimple t)
2316 {
2317 if (computed_goto_p (t))
2318 return true;
2319 if (is_gimple_call (t))
2320 return gimple_has_side_effects (t) && cfun->has_nonlocal_label;
2321 return false;
2322 }
2323
2324
2325 /* Return true if STMT should start a new basic block. PREV_STMT is
2326 the statement preceding STMT. It is used when STMT is a label or a
2327 case label. Labels should only start a new basic block if their
2328 previous statement wasn't a label. Otherwise, sequence of labels
2329 would generate unnecessary basic blocks that only contain a single
2330 label. */
2331
2332 static inline bool
2333 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2334 {
2335 if (stmt == NULL)
2336 return false;
2337
2338 /* Labels start a new basic block only if the preceding statement
2339 wasn't a label of the same type. This prevents the creation of
2340 consecutive blocks that have nothing but a single label. */
2341 if (gimple_code (stmt) == GIMPLE_LABEL)
2342 {
2343 /* Nonlocal and computed GOTO targets always start a new block. */
2344 if (DECL_NONLOCAL (gimple_label_label (stmt))
2345 || FORCED_LABEL (gimple_label_label (stmt)))
2346 return true;
2347
2348 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2349 {
2350 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2351 return true;
2352
2353 cfg_stats.num_merged_labels++;
2354 return false;
2355 }
2356 else
2357 return true;
2358 }
2359
2360 return false;
2361 }
2362
2363
2364 /* Return true if T should end a basic block. */
2365
2366 bool
2367 stmt_ends_bb_p (gimple t)
2368 {
2369 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2370 }
2371
2372 /* Remove block annotations and other data structures. */
2373
2374 void
2375 delete_tree_cfg_annotations (void)
2376 {
2377 label_to_block_map = NULL;
2378 }
2379
2380
2381 /* Return the first statement in basic block BB. */
2382
2383 gimple
2384 first_stmt (basic_block bb)
2385 {
2386 gimple_stmt_iterator i = gsi_start_bb (bb);
2387 gimple stmt = NULL;
2388
2389 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2390 {
2391 gsi_next (&i);
2392 stmt = NULL;
2393 }
2394 return stmt;
2395 }
2396
2397 /* Return the first non-label statement in basic block BB. */
2398
2399 static gimple
2400 first_non_label_stmt (basic_block bb)
2401 {
2402 gimple_stmt_iterator i = gsi_start_bb (bb);
2403 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2404 gsi_next (&i);
2405 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2406 }
2407
2408 /* Return the last statement in basic block BB. */
2409
2410 gimple
2411 last_stmt (basic_block bb)
2412 {
2413 gimple_stmt_iterator i = gsi_last_bb (bb);
2414 gimple stmt = NULL;
2415
2416 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2417 {
2418 gsi_prev (&i);
2419 stmt = NULL;
2420 }
2421 return stmt;
2422 }
2423
2424 /* Return the last statement of an otherwise empty block. Return NULL
2425 if the block is totally empty, or if it contains more than one
2426 statement. */
2427
2428 gimple
2429 last_and_only_stmt (basic_block bb)
2430 {
2431 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2432 gimple last, prev;
2433
2434 if (gsi_end_p (i))
2435 return NULL;
2436
2437 last = gsi_stmt (i);
2438 gsi_prev_nondebug (&i);
2439 if (gsi_end_p (i))
2440 return last;
2441
2442 /* Empty statements should no longer appear in the instruction stream.
2443 Everything that might have appeared before should be deleted by
2444 remove_useless_stmts, and the optimizers should just gsi_remove
2445 instead of smashing with build_empty_stmt.
2446
2447 Thus the only thing that should appear here in a block containing
2448 one executable statement is a label. */
2449 prev = gsi_stmt (i);
2450 if (gimple_code (prev) == GIMPLE_LABEL)
2451 return last;
2452 else
2453 return NULL;
2454 }
2455
2456 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2457
2458 static void
2459 reinstall_phi_args (edge new_edge, edge old_edge)
2460 {
2461 edge_var_map_vector v;
2462 edge_var_map *vm;
2463 int i;
2464 gimple_stmt_iterator phis;
2465
2466 v = redirect_edge_var_map_vector (old_edge);
2467 if (!v)
2468 return;
2469
2470 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2471 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2472 i++, gsi_next (&phis))
2473 {
2474 gimple phi = gsi_stmt (phis);
2475 tree result = redirect_edge_var_map_result (vm);
2476 tree arg = redirect_edge_var_map_def (vm);
2477
2478 gcc_assert (result == gimple_phi_result (phi));
2479
2480 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2481 }
2482
2483 redirect_edge_var_map_clear (old_edge);
2484 }
2485
2486 /* Returns the basic block after which the new basic block created
2487 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2488 near its "logical" location. This is of most help to humans looking
2489 at debugging dumps. */
2490
2491 static basic_block
2492 split_edge_bb_loc (edge edge_in)
2493 {
2494 basic_block dest = edge_in->dest;
2495 basic_block dest_prev = dest->prev_bb;
2496
2497 if (dest_prev)
2498 {
2499 edge e = find_edge (dest_prev, dest);
2500 if (e && !(e->flags & EDGE_COMPLEX))
2501 return edge_in->src;
2502 }
2503 return dest_prev;
2504 }
2505
2506 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2507 Abort on abnormal edges. */
2508
2509 static basic_block
2510 gimple_split_edge (edge edge_in)
2511 {
2512 basic_block new_bb, after_bb, dest;
2513 edge new_edge, e;
2514
2515 /* Abnormal edges cannot be split. */
2516 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2517
2518 dest = edge_in->dest;
2519
2520 after_bb = split_edge_bb_loc (edge_in);
2521
2522 new_bb = create_empty_bb (after_bb);
2523 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2524 new_bb->count = edge_in->count;
2525 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2526 new_edge->probability = REG_BR_PROB_BASE;
2527 new_edge->count = edge_in->count;
2528
2529 e = redirect_edge_and_branch (edge_in, new_bb);
2530 gcc_assert (e == edge_in);
2531 reinstall_phi_args (new_edge, e);
2532
2533 return new_bb;
2534 }
2535
2536
2537 /* Verify properties of the address expression T with base object BASE. */
2538
2539 static tree
2540 verify_address (tree t, tree base)
2541 {
2542 bool old_constant;
2543 bool old_side_effects;
2544 bool new_constant;
2545 bool new_side_effects;
2546
2547 old_constant = TREE_CONSTANT (t);
2548 old_side_effects = TREE_SIDE_EFFECTS (t);
2549
2550 recompute_tree_invariant_for_addr_expr (t);
2551 new_side_effects = TREE_SIDE_EFFECTS (t);
2552 new_constant = TREE_CONSTANT (t);
2553
2554 if (old_constant != new_constant)
2555 {
2556 error ("constant not recomputed when ADDR_EXPR changed");
2557 return t;
2558 }
2559 if (old_side_effects != new_side_effects)
2560 {
2561 error ("side effects not recomputed when ADDR_EXPR changed");
2562 return t;
2563 }
2564
2565 if (!(TREE_CODE (base) == VAR_DECL
2566 || TREE_CODE (base) == PARM_DECL
2567 || TREE_CODE (base) == RESULT_DECL))
2568 return NULL_TREE;
2569
2570 if (DECL_GIMPLE_REG_P (base))
2571 {
2572 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2573 return base;
2574 }
2575
2576 return NULL_TREE;
2577 }
2578
2579 /* Callback for walk_tree, check that all elements with address taken are
2580 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2581 inside a PHI node. */
2582
2583 static tree
2584 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2585 {
2586 tree t = *tp, x;
2587
2588 if (TYPE_P (t))
2589 *walk_subtrees = 0;
2590
2591 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2592 #define CHECK_OP(N, MSG) \
2593 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2594 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2595
2596 switch (TREE_CODE (t))
2597 {
2598 case SSA_NAME:
2599 if (SSA_NAME_IN_FREE_LIST (t))
2600 {
2601 error ("SSA name in freelist but still referenced");
2602 return *tp;
2603 }
2604 break;
2605
2606 case INDIRECT_REF:
2607 error ("INDIRECT_REF in gimple IL");
2608 return t;
2609
2610 case MEM_REF:
2611 x = TREE_OPERAND (t, 0);
2612 if (!is_gimple_mem_ref_addr (x))
2613 {
2614 error ("Invalid first operand of MEM_REF.");
2615 return x;
2616 }
2617 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2618 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2619 {
2620 error ("Invalid offset operand of MEM_REF.");
2621 return TREE_OPERAND (t, 1);
2622 }
2623 if (TREE_CODE (x) == ADDR_EXPR
2624 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2625 return x;
2626 *walk_subtrees = 0;
2627 break;
2628
2629 case ASSERT_EXPR:
2630 x = fold (ASSERT_EXPR_COND (t));
2631 if (x == boolean_false_node)
2632 {
2633 error ("ASSERT_EXPR with an always-false condition");
2634 return *tp;
2635 }
2636 break;
2637
2638 case MODIFY_EXPR:
2639 error ("MODIFY_EXPR not expected while having tuples.");
2640 return *tp;
2641
2642 case ADDR_EXPR:
2643 {
2644 tree tem;
2645
2646 gcc_assert (is_gimple_address (t));
2647
2648 /* Skip any references (they will be checked when we recurse down the
2649 tree) and ensure that any variable used as a prefix is marked
2650 addressable. */
2651 for (x = TREE_OPERAND (t, 0);
2652 handled_component_p (x);
2653 x = TREE_OPERAND (x, 0))
2654 ;
2655
2656 if ((tem = verify_address (t, x)))
2657 return tem;
2658
2659 if (!(TREE_CODE (x) == VAR_DECL
2660 || TREE_CODE (x) == PARM_DECL
2661 || TREE_CODE (x) == RESULT_DECL))
2662 return NULL;
2663
2664 if (!TREE_ADDRESSABLE (x))
2665 {
2666 error ("address taken, but ADDRESSABLE bit not set");
2667 return x;
2668 }
2669
2670 break;
2671 }
2672
2673 case COND_EXPR:
2674 x = COND_EXPR_COND (t);
2675 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2676 {
2677 error ("non-integral used in condition");
2678 return x;
2679 }
2680 if (!is_gimple_condexpr (x))
2681 {
2682 error ("invalid conditional operand");
2683 return x;
2684 }
2685 break;
2686
2687 case NON_LVALUE_EXPR:
2688 gcc_unreachable ();
2689
2690 CASE_CONVERT:
2691 case FIX_TRUNC_EXPR:
2692 case FLOAT_EXPR:
2693 case NEGATE_EXPR:
2694 case ABS_EXPR:
2695 case BIT_NOT_EXPR:
2696 case TRUTH_NOT_EXPR:
2697 CHECK_OP (0, "invalid operand to unary operator");
2698 break;
2699
2700 case REALPART_EXPR:
2701 case IMAGPART_EXPR:
2702 case COMPONENT_REF:
2703 case ARRAY_REF:
2704 case ARRAY_RANGE_REF:
2705 case BIT_FIELD_REF:
2706 case VIEW_CONVERT_EXPR:
2707 /* We have a nest of references. Verify that each of the operands
2708 that determine where to reference is either a constant or a variable,
2709 verify that the base is valid, and then show we've already checked
2710 the subtrees. */
2711 while (handled_component_p (t))
2712 {
2713 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2714 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2715 else if (TREE_CODE (t) == ARRAY_REF
2716 || TREE_CODE (t) == ARRAY_RANGE_REF)
2717 {
2718 CHECK_OP (1, "invalid array index");
2719 if (TREE_OPERAND (t, 2))
2720 CHECK_OP (2, "invalid array lower bound");
2721 if (TREE_OPERAND (t, 3))
2722 CHECK_OP (3, "invalid array stride");
2723 }
2724 else if (TREE_CODE (t) == BIT_FIELD_REF)
2725 {
2726 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2727 || !host_integerp (TREE_OPERAND (t, 2), 1))
2728 {
2729 error ("invalid position or size operand to BIT_FIELD_REF");
2730 return t;
2731 }
2732 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2733 && (TYPE_PRECISION (TREE_TYPE (t))
2734 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2735 {
2736 error ("integral result type precision does not match "
2737 "field size of BIT_FIELD_REF");
2738 return t;
2739 }
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2741 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2742 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2743 {
2744 error ("mode precision of non-integral result does not "
2745 "match field size of BIT_FIELD_REF");
2746 return t;
2747 }
2748 }
2749
2750 t = TREE_OPERAND (t, 0);
2751 }
2752
2753 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2754 {
2755 error ("invalid reference prefix");
2756 return t;
2757 }
2758 *walk_subtrees = 0;
2759 break;
2760 case PLUS_EXPR:
2761 case MINUS_EXPR:
2762 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2763 POINTER_PLUS_EXPR. */
2764 if (POINTER_TYPE_P (TREE_TYPE (t)))
2765 {
2766 error ("invalid operand to plus/minus, type is a pointer");
2767 return t;
2768 }
2769 CHECK_OP (0, "invalid operand to binary operator");
2770 CHECK_OP (1, "invalid operand to binary operator");
2771 break;
2772
2773 case POINTER_PLUS_EXPR:
2774 /* Check to make sure the first operand is a pointer or reference type. */
2775 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2776 {
2777 error ("invalid operand to pointer plus, first operand is not a pointer");
2778 return t;
2779 }
2780 /* Check to make sure the second operand is an integer with type of
2781 sizetype. */
2782 if (!useless_type_conversion_p (sizetype,
2783 TREE_TYPE (TREE_OPERAND (t, 1))))
2784 {
2785 error ("invalid operand to pointer plus, second operand is not an "
2786 "integer with type of sizetype.");
2787 return t;
2788 }
2789 /* FALLTHROUGH */
2790 case LT_EXPR:
2791 case LE_EXPR:
2792 case GT_EXPR:
2793 case GE_EXPR:
2794 case EQ_EXPR:
2795 case NE_EXPR:
2796 case UNORDERED_EXPR:
2797 case ORDERED_EXPR:
2798 case UNLT_EXPR:
2799 case UNLE_EXPR:
2800 case UNGT_EXPR:
2801 case UNGE_EXPR:
2802 case UNEQ_EXPR:
2803 case LTGT_EXPR:
2804 case MULT_EXPR:
2805 case TRUNC_DIV_EXPR:
2806 case CEIL_DIV_EXPR:
2807 case FLOOR_DIV_EXPR:
2808 case ROUND_DIV_EXPR:
2809 case TRUNC_MOD_EXPR:
2810 case CEIL_MOD_EXPR:
2811 case FLOOR_MOD_EXPR:
2812 case ROUND_MOD_EXPR:
2813 case RDIV_EXPR:
2814 case EXACT_DIV_EXPR:
2815 case MIN_EXPR:
2816 case MAX_EXPR:
2817 case LSHIFT_EXPR:
2818 case RSHIFT_EXPR:
2819 case LROTATE_EXPR:
2820 case RROTATE_EXPR:
2821 case BIT_IOR_EXPR:
2822 case BIT_XOR_EXPR:
2823 case BIT_AND_EXPR:
2824 CHECK_OP (0, "invalid operand to binary operator");
2825 CHECK_OP (1, "invalid operand to binary operator");
2826 break;
2827
2828 case CONSTRUCTOR:
2829 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2830 *walk_subtrees = 0;
2831 break;
2832
2833 default:
2834 break;
2835 }
2836 return NULL;
2837
2838 #undef CHECK_OP
2839 }
2840
2841
2842 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2843 Returns true if there is an error, otherwise false. */
2844
2845 static bool
2846 verify_types_in_gimple_min_lval (tree expr)
2847 {
2848 tree op;
2849
2850 if (is_gimple_id (expr))
2851 return false;
2852
2853 if (TREE_CODE (expr) != ALIGN_INDIRECT_REF
2854 && TREE_CODE (expr) != MISALIGNED_INDIRECT_REF
2855 && TREE_CODE (expr) != TARGET_MEM_REF
2856 && TREE_CODE (expr) != MEM_REF)
2857 {
2858 error ("invalid expression for min lvalue");
2859 return true;
2860 }
2861
2862 /* TARGET_MEM_REFs are strange beasts. */
2863 if (TREE_CODE (expr) == TARGET_MEM_REF)
2864 return false;
2865
2866 op = TREE_OPERAND (expr, 0);
2867 if (!is_gimple_val (op))
2868 {
2869 error ("invalid operand in indirect reference");
2870 debug_generic_stmt (op);
2871 return true;
2872 }
2873 /* Memory references now generally can involve a value conversion. */
2874
2875 return false;
2876 }
2877
2878 /* Verify if EXPR is a valid GIMPLE reference expression. If
2879 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2880 if there is an error, otherwise false. */
2881
2882 static bool
2883 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2884 {
2885 while (handled_component_p (expr))
2886 {
2887 tree op = TREE_OPERAND (expr, 0);
2888
2889 if (TREE_CODE (expr) == ARRAY_REF
2890 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2891 {
2892 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2893 || (TREE_OPERAND (expr, 2)
2894 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2895 || (TREE_OPERAND (expr, 3)
2896 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2897 {
2898 error ("invalid operands to array reference");
2899 debug_generic_stmt (expr);
2900 return true;
2901 }
2902 }
2903
2904 /* Verify if the reference array element types are compatible. */
2905 if (TREE_CODE (expr) == ARRAY_REF
2906 && !useless_type_conversion_p (TREE_TYPE (expr),
2907 TREE_TYPE (TREE_TYPE (op))))
2908 {
2909 error ("type mismatch in array reference");
2910 debug_generic_stmt (TREE_TYPE (expr));
2911 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2912 return true;
2913 }
2914 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2915 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2916 TREE_TYPE (TREE_TYPE (op))))
2917 {
2918 error ("type mismatch in array range reference");
2919 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2920 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2921 return true;
2922 }
2923
2924 if ((TREE_CODE (expr) == REALPART_EXPR
2925 || TREE_CODE (expr) == IMAGPART_EXPR)
2926 && !useless_type_conversion_p (TREE_TYPE (expr),
2927 TREE_TYPE (TREE_TYPE (op))))
2928 {
2929 error ("type mismatch in real/imagpart reference");
2930 debug_generic_stmt (TREE_TYPE (expr));
2931 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2932 return true;
2933 }
2934
2935 if (TREE_CODE (expr) == COMPONENT_REF
2936 && !useless_type_conversion_p (TREE_TYPE (expr),
2937 TREE_TYPE (TREE_OPERAND (expr, 1))))
2938 {
2939 error ("type mismatch in component reference");
2940 debug_generic_stmt (TREE_TYPE (expr));
2941 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2942 return true;
2943 }
2944
2945 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2946 {
2947 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2948 that their operand is not an SSA name or an invariant when
2949 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2950 bug). Otherwise there is nothing to verify, gross mismatches at
2951 most invoke undefined behavior. */
2952 if (require_lvalue
2953 && (TREE_CODE (op) == SSA_NAME
2954 || is_gimple_min_invariant (op)))
2955 {
2956 error ("Conversion of an SSA_NAME on the left hand side.");
2957 debug_generic_stmt (expr);
2958 return true;
2959 }
2960 else if (TREE_CODE (op) == SSA_NAME
2961 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2962 {
2963 error ("Conversion of register to a different size.");
2964 debug_generic_stmt (expr);
2965 return true;
2966 }
2967 else if (!handled_component_p (op))
2968 return false;
2969 }
2970
2971 expr = op;
2972 }
2973
2974 if (TREE_CODE (expr) == MEM_REF)
2975 {
2976 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2977 {
2978 error ("Invalid address operand in MEM_REF.");
2979 debug_generic_stmt (expr);
2980 return true;
2981 }
2982 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2983 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2984 {
2985 error ("Invalid offset operand in MEM_REF.");
2986 debug_generic_stmt (expr);
2987 return true;
2988 }
2989 }
2990
2991 return ((require_lvalue || !is_gimple_min_invariant (expr))
2992 && verify_types_in_gimple_min_lval (expr));
2993 }
2994
2995 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
2996 list of pointer-to types that is trivially convertible to DEST. */
2997
2998 static bool
2999 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3000 {
3001 tree src;
3002
3003 if (!TYPE_POINTER_TO (src_obj))
3004 return true;
3005
3006 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3007 if (useless_type_conversion_p (dest, src))
3008 return true;
3009
3010 return false;
3011 }
3012
3013 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3014 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3015
3016 static bool
3017 valid_fixed_convert_types_p (tree type1, tree type2)
3018 {
3019 return (FIXED_POINT_TYPE_P (type1)
3020 && (INTEGRAL_TYPE_P (type2)
3021 || SCALAR_FLOAT_TYPE_P (type2)
3022 || FIXED_POINT_TYPE_P (type2)));
3023 }
3024
3025 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3026 is a problem, otherwise false. */
3027
3028 static bool
3029 verify_gimple_call (gimple stmt)
3030 {
3031 tree fn = gimple_call_fn (stmt);
3032 tree fntype;
3033 unsigned i;
3034
3035 if (TREE_CODE (fn) != OBJ_TYPE_REF
3036 && !is_gimple_val (fn))
3037 {
3038 error ("invalid function in gimple call");
3039 debug_generic_stmt (fn);
3040 return true;
3041 }
3042
3043 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3044 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3045 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3046 {
3047 error ("non-function in gimple call");
3048 return true;
3049 }
3050
3051 if (gimple_call_lhs (stmt)
3052 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3053 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3054 {
3055 error ("invalid LHS in gimple call");
3056 return true;
3057 }
3058
3059 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3060 {
3061 error ("LHS in noreturn call");
3062 return true;
3063 }
3064
3065 fntype = TREE_TYPE (TREE_TYPE (fn));
3066 if (gimple_call_lhs (stmt)
3067 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3068 TREE_TYPE (fntype))
3069 /* ??? At least C++ misses conversions at assignments from
3070 void * call results.
3071 ??? Java is completely off. Especially with functions
3072 returning java.lang.Object.
3073 For now simply allow arbitrary pointer type conversions. */
3074 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3075 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3076 {
3077 error ("invalid conversion in gimple call");
3078 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3079 debug_generic_stmt (TREE_TYPE (fntype));
3080 return true;
3081 }
3082
3083 if (gimple_call_chain (stmt)
3084 && !is_gimple_val (gimple_call_chain (stmt)))
3085 {
3086 error ("invalid static chain in gimple call");
3087 debug_generic_stmt (gimple_call_chain (stmt));
3088 return true;
3089 }
3090
3091 /* If there is a static chain argument, this should not be an indirect
3092 call, and the decl should have DECL_STATIC_CHAIN set. */
3093 if (gimple_call_chain (stmt))
3094 {
3095 if (TREE_CODE (fn) != ADDR_EXPR
3096 || TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL)
3097 {
3098 error ("static chain in indirect gimple call");
3099 return true;
3100 }
3101 fn = TREE_OPERAND (fn, 0);
3102
3103 if (!DECL_STATIC_CHAIN (fn))
3104 {
3105 error ("static chain with function that doesn't use one");
3106 return true;
3107 }
3108 }
3109
3110 /* ??? The C frontend passes unpromoted arguments in case it
3111 didn't see a function declaration before the call. So for now
3112 leave the call arguments mostly unverified. Once we gimplify
3113 unit-at-a-time we have a chance to fix this. */
3114
3115 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3116 {
3117 tree arg = gimple_call_arg (stmt, i);
3118 if (!is_gimple_operand (arg))
3119 {
3120 error ("invalid argument to gimple call");
3121 debug_generic_expr (arg);
3122 }
3123 }
3124
3125 return false;
3126 }
3127
3128 /* Verifies the gimple comparison with the result type TYPE and
3129 the operands OP0 and OP1. */
3130
3131 static bool
3132 verify_gimple_comparison (tree type, tree op0, tree op1)
3133 {
3134 tree op0_type = TREE_TYPE (op0);
3135 tree op1_type = TREE_TYPE (op1);
3136
3137 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3138 {
3139 error ("invalid operands in gimple comparison");
3140 return true;
3141 }
3142
3143 /* For comparisons we do not have the operations type as the
3144 effective type the comparison is carried out in. Instead
3145 we require that either the first operand is trivially
3146 convertible into the second, or the other way around.
3147 The resulting type of a comparison may be any integral type.
3148 Because we special-case pointers to void we allow
3149 comparisons of pointers with the same mode as well. */
3150 if ((!useless_type_conversion_p (op0_type, op1_type)
3151 && !useless_type_conversion_p (op1_type, op0_type)
3152 && (!POINTER_TYPE_P (op0_type)
3153 || !POINTER_TYPE_P (op1_type)
3154 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3155 || !INTEGRAL_TYPE_P (type))
3156 {
3157 error ("type mismatch in comparison expression");
3158 debug_generic_expr (type);
3159 debug_generic_expr (op0_type);
3160 debug_generic_expr (op1_type);
3161 return true;
3162 }
3163
3164 return false;
3165 }
3166
3167 /* Verify a gimple assignment statement STMT with an unary rhs.
3168 Returns true if anything is wrong. */
3169
3170 static bool
3171 verify_gimple_assign_unary (gimple stmt)
3172 {
3173 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3174 tree lhs = gimple_assign_lhs (stmt);
3175 tree lhs_type = TREE_TYPE (lhs);
3176 tree rhs1 = gimple_assign_rhs1 (stmt);
3177 tree rhs1_type = TREE_TYPE (rhs1);
3178
3179 if (!is_gimple_reg (lhs)
3180 && !(optimize == 0
3181 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3182 {
3183 error ("non-register as LHS of unary operation");
3184 return true;
3185 }
3186
3187 if (!is_gimple_val (rhs1))
3188 {
3189 error ("invalid operand in unary operation");
3190 return true;
3191 }
3192
3193 /* First handle conversions. */
3194 switch (rhs_code)
3195 {
3196 CASE_CONVERT:
3197 {
3198 /* Allow conversions between integral types and pointers only if
3199 there is no sign or zero extension involved.
3200 For targets were the precision of sizetype doesn't match that
3201 of pointers we need to allow arbitrary conversions from and
3202 to sizetype. */
3203 if ((POINTER_TYPE_P (lhs_type)
3204 && INTEGRAL_TYPE_P (rhs1_type)
3205 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3206 || rhs1_type == sizetype))
3207 || (POINTER_TYPE_P (rhs1_type)
3208 && INTEGRAL_TYPE_P (lhs_type)
3209 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3210 || lhs_type == sizetype)))
3211 return false;
3212
3213 /* Allow conversion from integer to offset type and vice versa. */
3214 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3215 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3216 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3217 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3218 return false;
3219
3220 /* Otherwise assert we are converting between types of the
3221 same kind. */
3222 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3223 {
3224 error ("invalid types in nop conversion");
3225 debug_generic_expr (lhs_type);
3226 debug_generic_expr (rhs1_type);
3227 return true;
3228 }
3229
3230 return false;
3231 }
3232
3233 case ADDR_SPACE_CONVERT_EXPR:
3234 {
3235 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3236 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3237 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3238 {
3239 error ("invalid types in address space conversion");
3240 debug_generic_expr (lhs_type);
3241 debug_generic_expr (rhs1_type);
3242 return true;
3243 }
3244
3245 return false;
3246 }
3247
3248 case FIXED_CONVERT_EXPR:
3249 {
3250 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3251 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3252 {
3253 error ("invalid types in fixed-point conversion");
3254 debug_generic_expr (lhs_type);
3255 debug_generic_expr (rhs1_type);
3256 return true;
3257 }
3258
3259 return false;
3260 }
3261
3262 case FLOAT_EXPR:
3263 {
3264 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3265 {
3266 error ("invalid types in conversion to floating point");
3267 debug_generic_expr (lhs_type);
3268 debug_generic_expr (rhs1_type);
3269 return true;
3270 }
3271
3272 return false;
3273 }
3274
3275 case FIX_TRUNC_EXPR:
3276 {
3277 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3278 {
3279 error ("invalid types in conversion to integer");
3280 debug_generic_expr (lhs_type);
3281 debug_generic_expr (rhs1_type);
3282 return true;
3283 }
3284
3285 return false;
3286 }
3287
3288 case VEC_UNPACK_HI_EXPR:
3289 case VEC_UNPACK_LO_EXPR:
3290 case REDUC_MAX_EXPR:
3291 case REDUC_MIN_EXPR:
3292 case REDUC_PLUS_EXPR:
3293 case VEC_UNPACK_FLOAT_HI_EXPR:
3294 case VEC_UNPACK_FLOAT_LO_EXPR:
3295 /* FIXME. */
3296 return false;
3297
3298 case TRUTH_NOT_EXPR:
3299 case NEGATE_EXPR:
3300 case ABS_EXPR:
3301 case BIT_NOT_EXPR:
3302 case PAREN_EXPR:
3303 case NON_LVALUE_EXPR:
3304 case CONJ_EXPR:
3305 break;
3306
3307 default:
3308 gcc_unreachable ();
3309 }
3310
3311 /* For the remaining codes assert there is no conversion involved. */
3312 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3313 {
3314 error ("non-trivial conversion in unary operation");
3315 debug_generic_expr (lhs_type);
3316 debug_generic_expr (rhs1_type);
3317 return true;
3318 }
3319
3320 return false;
3321 }
3322
3323 /* Verify a gimple assignment statement STMT with a binary rhs.
3324 Returns true if anything is wrong. */
3325
3326 static bool
3327 verify_gimple_assign_binary (gimple stmt)
3328 {
3329 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3330 tree lhs = gimple_assign_lhs (stmt);
3331 tree lhs_type = TREE_TYPE (lhs);
3332 tree rhs1 = gimple_assign_rhs1 (stmt);
3333 tree rhs1_type = TREE_TYPE (rhs1);
3334 tree rhs2 = gimple_assign_rhs2 (stmt);
3335 tree rhs2_type = TREE_TYPE (rhs2);
3336
3337 if (!is_gimple_reg (lhs)
3338 && !(optimize == 0
3339 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3340 {
3341 error ("non-register as LHS of binary operation");
3342 return true;
3343 }
3344
3345 if (!is_gimple_val (rhs1)
3346 || !is_gimple_val (rhs2))
3347 {
3348 error ("invalid operands in binary operation");
3349 return true;
3350 }
3351
3352 /* First handle operations that involve different types. */
3353 switch (rhs_code)
3354 {
3355 case COMPLEX_EXPR:
3356 {
3357 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3358 || !(INTEGRAL_TYPE_P (rhs1_type)
3359 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3360 || !(INTEGRAL_TYPE_P (rhs2_type)
3361 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3362 {
3363 error ("type mismatch in complex expression");
3364 debug_generic_expr (lhs_type);
3365 debug_generic_expr (rhs1_type);
3366 debug_generic_expr (rhs2_type);
3367 return true;
3368 }
3369
3370 return false;
3371 }
3372
3373 case LSHIFT_EXPR:
3374 case RSHIFT_EXPR:
3375 case LROTATE_EXPR:
3376 case RROTATE_EXPR:
3377 {
3378 /* Shifts and rotates are ok on integral types, fixed point
3379 types and integer vector types. */
3380 if ((!INTEGRAL_TYPE_P (rhs1_type)
3381 && !FIXED_POINT_TYPE_P (rhs1_type)
3382 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3383 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3384 || (!INTEGRAL_TYPE_P (rhs2_type)
3385 /* Vector shifts of vectors are also ok. */
3386 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3387 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3388 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3389 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3390 || !useless_type_conversion_p (lhs_type, rhs1_type))
3391 {
3392 error ("type mismatch in shift expression");
3393 debug_generic_expr (lhs_type);
3394 debug_generic_expr (rhs1_type);
3395 debug_generic_expr (rhs2_type);
3396 return true;
3397 }
3398
3399 return false;
3400 }
3401
3402 case VEC_LSHIFT_EXPR:
3403 case VEC_RSHIFT_EXPR:
3404 {
3405 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3406 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3407 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3408 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3409 || (!INTEGRAL_TYPE_P (rhs2_type)
3410 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3411 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3412 || !useless_type_conversion_p (lhs_type, rhs1_type))
3413 {
3414 error ("type mismatch in vector shift expression");
3415 debug_generic_expr (lhs_type);
3416 debug_generic_expr (rhs1_type);
3417 debug_generic_expr (rhs2_type);
3418 return true;
3419 }
3420 /* For shifting a vector of floating point components we
3421 only allow shifting by a constant multiple of the element size. */
3422 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
3423 && (TREE_CODE (rhs2) != INTEGER_CST
3424 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3425 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3426 {
3427 error ("non-element sized vector shift of floating point vector");
3428 return true;
3429 }
3430
3431 return false;
3432 }
3433
3434 case PLUS_EXPR:
3435 {
3436 /* We use regular PLUS_EXPR for vectors.
3437 ??? This just makes the checker happy and may not be what is
3438 intended. */
3439 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3440 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3441 {
3442 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3443 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3444 {
3445 error ("invalid non-vector operands to vector valued plus");
3446 return true;
3447 }
3448 lhs_type = TREE_TYPE (lhs_type);
3449 rhs1_type = TREE_TYPE (rhs1_type);
3450 rhs2_type = TREE_TYPE (rhs2_type);
3451 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3452 the pointer to 2nd place. */
3453 if (POINTER_TYPE_P (rhs2_type))
3454 {
3455 tree tem = rhs1_type;
3456 rhs1_type = rhs2_type;
3457 rhs2_type = tem;
3458 }
3459 goto do_pointer_plus_expr_check;
3460 }
3461 }
3462 /* Fallthru. */
3463 case MINUS_EXPR:
3464 {
3465 if (POINTER_TYPE_P (lhs_type)
3466 || POINTER_TYPE_P (rhs1_type)
3467 || POINTER_TYPE_P (rhs2_type))
3468 {
3469 error ("invalid (pointer) operands to plus/minus");
3470 return true;
3471 }
3472
3473 /* Continue with generic binary expression handling. */
3474 break;
3475 }
3476
3477 case POINTER_PLUS_EXPR:
3478 {
3479 do_pointer_plus_expr_check:
3480 if (!POINTER_TYPE_P (rhs1_type)
3481 || !useless_type_conversion_p (lhs_type, rhs1_type)
3482 || !useless_type_conversion_p (sizetype, rhs2_type))
3483 {
3484 error ("type mismatch in pointer plus expression");
3485 debug_generic_stmt (lhs_type);
3486 debug_generic_stmt (rhs1_type);
3487 debug_generic_stmt (rhs2_type);
3488 return true;
3489 }
3490
3491 return false;
3492 }
3493
3494 case TRUTH_ANDIF_EXPR:
3495 case TRUTH_ORIF_EXPR:
3496 gcc_unreachable ();
3497
3498 case TRUTH_AND_EXPR:
3499 case TRUTH_OR_EXPR:
3500 case TRUTH_XOR_EXPR:
3501 {
3502 /* We allow any kind of integral typed argument and result. */
3503 if (!INTEGRAL_TYPE_P (rhs1_type)
3504 || !INTEGRAL_TYPE_P (rhs2_type)
3505 || !INTEGRAL_TYPE_P (lhs_type))
3506 {
3507 error ("type mismatch in binary truth expression");
3508 debug_generic_expr (lhs_type);
3509 debug_generic_expr (rhs1_type);
3510 debug_generic_expr (rhs2_type);
3511 return true;
3512 }
3513
3514 return false;
3515 }
3516
3517 case LT_EXPR:
3518 case LE_EXPR:
3519 case GT_EXPR:
3520 case GE_EXPR:
3521 case EQ_EXPR:
3522 case NE_EXPR:
3523 case UNORDERED_EXPR:
3524 case ORDERED_EXPR:
3525 case UNLT_EXPR:
3526 case UNLE_EXPR:
3527 case UNGT_EXPR:
3528 case UNGE_EXPR:
3529 case UNEQ_EXPR:
3530 case LTGT_EXPR:
3531 /* Comparisons are also binary, but the result type is not
3532 connected to the operand types. */
3533 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3534
3535 case WIDEN_MULT_EXPR:
3536 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3537 return true;
3538 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3539 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3540
3541 case WIDEN_SUM_EXPR:
3542 case VEC_WIDEN_MULT_HI_EXPR:
3543 case VEC_WIDEN_MULT_LO_EXPR:
3544 case VEC_PACK_TRUNC_EXPR:
3545 case VEC_PACK_SAT_EXPR:
3546 case VEC_PACK_FIX_TRUNC_EXPR:
3547 case VEC_EXTRACT_EVEN_EXPR:
3548 case VEC_EXTRACT_ODD_EXPR:
3549 case VEC_INTERLEAVE_HIGH_EXPR:
3550 case VEC_INTERLEAVE_LOW_EXPR:
3551 /* FIXME. */
3552 return false;
3553
3554 case MULT_EXPR:
3555 case TRUNC_DIV_EXPR:
3556 case CEIL_DIV_EXPR:
3557 case FLOOR_DIV_EXPR:
3558 case ROUND_DIV_EXPR:
3559 case TRUNC_MOD_EXPR:
3560 case CEIL_MOD_EXPR:
3561 case FLOOR_MOD_EXPR:
3562 case ROUND_MOD_EXPR:
3563 case RDIV_EXPR:
3564 case EXACT_DIV_EXPR:
3565 case MIN_EXPR:
3566 case MAX_EXPR:
3567 case BIT_IOR_EXPR:
3568 case BIT_XOR_EXPR:
3569 case BIT_AND_EXPR:
3570 /* Continue with generic binary expression handling. */
3571 break;
3572
3573 default:
3574 gcc_unreachable ();
3575 }
3576
3577 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3578 || !useless_type_conversion_p (lhs_type, rhs2_type))
3579 {
3580 error ("type mismatch in binary expression");
3581 debug_generic_stmt (lhs_type);
3582 debug_generic_stmt (rhs1_type);
3583 debug_generic_stmt (rhs2_type);
3584 return true;
3585 }
3586
3587 return false;
3588 }
3589
3590 /* Verify a gimple assignment statement STMT with a ternary rhs.
3591 Returns true if anything is wrong. */
3592
3593 static bool
3594 verify_gimple_assign_ternary (gimple stmt)
3595 {
3596 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3597 tree lhs = gimple_assign_lhs (stmt);
3598 tree lhs_type = TREE_TYPE (lhs);
3599 tree rhs1 = gimple_assign_rhs1 (stmt);
3600 tree rhs1_type = TREE_TYPE (rhs1);
3601 tree rhs2 = gimple_assign_rhs2 (stmt);
3602 tree rhs2_type = TREE_TYPE (rhs2);
3603 tree rhs3 = gimple_assign_rhs3 (stmt);
3604 tree rhs3_type = TREE_TYPE (rhs3);
3605
3606 if (!is_gimple_reg (lhs)
3607 && !(optimize == 0
3608 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3609 {
3610 error ("non-register as LHS of ternary operation");
3611 return true;
3612 }
3613
3614 if (!is_gimple_val (rhs1)
3615 || !is_gimple_val (rhs2)
3616 || !is_gimple_val (rhs3))
3617 {
3618 error ("invalid operands in ternary operation");
3619 return true;
3620 }
3621
3622 /* First handle operations that involve different types. */
3623 switch (rhs_code)
3624 {
3625 case WIDEN_MULT_PLUS_EXPR:
3626 case WIDEN_MULT_MINUS_EXPR:
3627 if ((!INTEGRAL_TYPE_P (rhs1_type)
3628 && !FIXED_POINT_TYPE_P (rhs1_type))
3629 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3630 || !useless_type_conversion_p (lhs_type, rhs3_type)
3631 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3632 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3633 {
3634 error ("type mismatch in widening multiply-accumulate expression");
3635 debug_generic_expr (lhs_type);
3636 debug_generic_expr (rhs1_type);
3637 debug_generic_expr (rhs2_type);
3638 debug_generic_expr (rhs3_type);
3639 return true;
3640 }
3641 break;
3642
3643 default:
3644 gcc_unreachable ();
3645 }
3646 return false;
3647 }
3648
3649 /* Verify a gimple assignment statement STMT with a single rhs.
3650 Returns true if anything is wrong. */
3651
3652 static bool
3653 verify_gimple_assign_single (gimple stmt)
3654 {
3655 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3656 tree lhs = gimple_assign_lhs (stmt);
3657 tree lhs_type = TREE_TYPE (lhs);
3658 tree rhs1 = gimple_assign_rhs1 (stmt);
3659 tree rhs1_type = TREE_TYPE (rhs1);
3660 bool res = false;
3661
3662 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3663 {
3664 error ("non-trivial conversion at assignment");
3665 debug_generic_expr (lhs_type);
3666 debug_generic_expr (rhs1_type);
3667 return true;
3668 }
3669
3670 if (handled_component_p (lhs))
3671 res |= verify_types_in_gimple_reference (lhs, true);
3672
3673 /* Special codes we cannot handle via their class. */
3674 switch (rhs_code)
3675 {
3676 case ADDR_EXPR:
3677 {
3678 tree op = TREE_OPERAND (rhs1, 0);
3679 if (!is_gimple_addressable (op))
3680 {
3681 error ("invalid operand in unary expression");
3682 return true;
3683 }
3684
3685 if (!types_compatible_p (TREE_TYPE (op), TREE_TYPE (TREE_TYPE (rhs1)))
3686 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3687 TREE_TYPE (op)))
3688 {
3689 error ("type mismatch in address expression");
3690 debug_generic_stmt (TREE_TYPE (rhs1));
3691 debug_generic_stmt (TREE_TYPE (op));
3692 return true;
3693 }
3694
3695 return verify_types_in_gimple_reference (op, true);
3696 }
3697
3698 /* tcc_reference */
3699 case INDIRECT_REF:
3700 error ("INDIRECT_REF in gimple IL");
3701 return true;
3702
3703 case COMPONENT_REF:
3704 case BIT_FIELD_REF:
3705 case ALIGN_INDIRECT_REF:
3706 case MISALIGNED_INDIRECT_REF:
3707 case ARRAY_REF:
3708 case ARRAY_RANGE_REF:
3709 case VIEW_CONVERT_EXPR:
3710 case REALPART_EXPR:
3711 case IMAGPART_EXPR:
3712 case TARGET_MEM_REF:
3713 case MEM_REF:
3714 if (!is_gimple_reg (lhs)
3715 && is_gimple_reg_type (TREE_TYPE (lhs)))
3716 {
3717 error ("invalid rhs for gimple memory store");
3718 debug_generic_stmt (lhs);
3719 debug_generic_stmt (rhs1);
3720 return true;
3721 }
3722 return res || verify_types_in_gimple_reference (rhs1, false);
3723
3724 /* tcc_constant */
3725 case SSA_NAME:
3726 case INTEGER_CST:
3727 case REAL_CST:
3728 case FIXED_CST:
3729 case COMPLEX_CST:
3730 case VECTOR_CST:
3731 case STRING_CST:
3732 return res;
3733
3734 /* tcc_declaration */
3735 case CONST_DECL:
3736 return res;
3737 case VAR_DECL:
3738 case PARM_DECL:
3739 if (!is_gimple_reg (lhs)
3740 && !is_gimple_reg (rhs1)
3741 && is_gimple_reg_type (TREE_TYPE (lhs)))
3742 {
3743 error ("invalid rhs for gimple memory store");
3744 debug_generic_stmt (lhs);
3745 debug_generic_stmt (rhs1);
3746 return true;
3747 }
3748 return res;
3749
3750 case COND_EXPR:
3751 if (!is_gimple_reg (lhs)
3752 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3753 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3754 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3755 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3756 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3757 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3758 {
3759 error ("invalid COND_EXPR in gimple assignment");
3760 debug_generic_stmt (rhs1);
3761 return true;
3762 }
3763 return res;
3764
3765 case CONSTRUCTOR:
3766 case OBJ_TYPE_REF:
3767 case ASSERT_EXPR:
3768 case WITH_SIZE_EXPR:
3769 case POLYNOMIAL_CHREC:
3770 case DOT_PROD_EXPR:
3771 case VEC_COND_EXPR:
3772 case REALIGN_LOAD_EXPR:
3773 /* FIXME. */
3774 return res;
3775
3776 default:;
3777 }
3778
3779 return res;
3780 }
3781
3782 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3783 is a problem, otherwise false. */
3784
3785 static bool
3786 verify_gimple_assign (gimple stmt)
3787 {
3788 switch (gimple_assign_rhs_class (stmt))
3789 {
3790 case GIMPLE_SINGLE_RHS:
3791 return verify_gimple_assign_single (stmt);
3792
3793 case GIMPLE_UNARY_RHS:
3794 return verify_gimple_assign_unary (stmt);
3795
3796 case GIMPLE_BINARY_RHS:
3797 return verify_gimple_assign_binary (stmt);
3798
3799 case GIMPLE_TERNARY_RHS:
3800 return verify_gimple_assign_ternary (stmt);
3801
3802 default:
3803 gcc_unreachable ();
3804 }
3805 }
3806
3807 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3808 is a problem, otherwise false. */
3809
3810 static bool
3811 verify_gimple_return (gimple stmt)
3812 {
3813 tree op = gimple_return_retval (stmt);
3814 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3815
3816 /* We cannot test for present return values as we do not fix up missing
3817 return values from the original source. */
3818 if (op == NULL)
3819 return false;
3820
3821 if (!is_gimple_val (op)
3822 && TREE_CODE (op) != RESULT_DECL)
3823 {
3824 error ("invalid operand in return statement");
3825 debug_generic_stmt (op);
3826 return true;
3827 }
3828
3829 if (!useless_type_conversion_p (restype, TREE_TYPE (op))
3830 /* ??? With C++ we can have the situation that the result
3831 decl is a reference type while the return type is an aggregate. */
3832 && !(TREE_CODE (op) == RESULT_DECL
3833 && TREE_CODE (TREE_TYPE (op)) == REFERENCE_TYPE
3834 && useless_type_conversion_p (restype, TREE_TYPE (TREE_TYPE (op)))))
3835 {
3836 error ("invalid conversion in return statement");
3837 debug_generic_stmt (restype);
3838 debug_generic_stmt (TREE_TYPE (op));
3839 return true;
3840 }
3841
3842 return false;
3843 }
3844
3845
3846 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3847 is a problem, otherwise false. */
3848
3849 static bool
3850 verify_gimple_goto (gimple stmt)
3851 {
3852 tree dest = gimple_goto_dest (stmt);
3853
3854 /* ??? We have two canonical forms of direct goto destinations, a
3855 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3856 if (TREE_CODE (dest) != LABEL_DECL
3857 && (!is_gimple_val (dest)
3858 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3859 {
3860 error ("goto destination is neither a label nor a pointer");
3861 return true;
3862 }
3863
3864 return false;
3865 }
3866
3867 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3868 is a problem, otherwise false. */
3869
3870 static bool
3871 verify_gimple_switch (gimple stmt)
3872 {
3873 if (!is_gimple_val (gimple_switch_index (stmt)))
3874 {
3875 error ("invalid operand to switch statement");
3876 debug_generic_stmt (gimple_switch_index (stmt));
3877 return true;
3878 }
3879
3880 return false;
3881 }
3882
3883
3884 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3885 and false otherwise. */
3886
3887 static bool
3888 verify_gimple_phi (gimple stmt)
3889 {
3890 tree type = TREE_TYPE (gimple_phi_result (stmt));
3891 unsigned i;
3892
3893 if (TREE_CODE (gimple_phi_result (stmt)) != SSA_NAME)
3894 {
3895 error ("Invalid PHI result");
3896 return true;
3897 }
3898
3899 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3900 {
3901 tree arg = gimple_phi_arg_def (stmt, i);
3902 if ((is_gimple_reg (gimple_phi_result (stmt))
3903 && !is_gimple_val (arg))
3904 || (!is_gimple_reg (gimple_phi_result (stmt))
3905 && !is_gimple_addressable (arg)))
3906 {
3907 error ("Invalid PHI argument");
3908 debug_generic_stmt (arg);
3909 return true;
3910 }
3911 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3912 {
3913 error ("Incompatible types in PHI argument %u", i);
3914 debug_generic_stmt (type);
3915 debug_generic_stmt (TREE_TYPE (arg));
3916 return true;
3917 }
3918 }
3919
3920 return false;
3921 }
3922
3923
3924 /* Verify a gimple debug statement STMT.
3925 Returns true if anything is wrong. */
3926
3927 static bool
3928 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3929 {
3930 /* There isn't much that could be wrong in a gimple debug stmt. A
3931 gimple debug bind stmt, for example, maps a tree, that's usually
3932 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3933 component or member of an aggregate type, to another tree, that
3934 can be an arbitrary expression. These stmts expand into debug
3935 insns, and are converted to debug notes by var-tracking.c. */
3936 return false;
3937 }
3938
3939
3940 /* Verify the GIMPLE statement STMT. Returns true if there is an
3941 error, otherwise false. */
3942
3943 static bool
3944 verify_types_in_gimple_stmt (gimple stmt)
3945 {
3946 switch (gimple_code (stmt))
3947 {
3948 case GIMPLE_ASSIGN:
3949 return verify_gimple_assign (stmt);
3950
3951 case GIMPLE_LABEL:
3952 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3953
3954 case GIMPLE_CALL:
3955 return verify_gimple_call (stmt);
3956
3957 case GIMPLE_COND:
3958 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
3959 {
3960 error ("invalid comparison code in gimple cond");
3961 return true;
3962 }
3963 if (!(!gimple_cond_true_label (stmt)
3964 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
3965 || !(!gimple_cond_false_label (stmt)
3966 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
3967 {
3968 error ("invalid labels in gimple cond");
3969 return true;
3970 }
3971
3972 return verify_gimple_comparison (boolean_type_node,
3973 gimple_cond_lhs (stmt),
3974 gimple_cond_rhs (stmt));
3975
3976 case GIMPLE_GOTO:
3977 return verify_gimple_goto (stmt);
3978
3979 case GIMPLE_SWITCH:
3980 return verify_gimple_switch (stmt);
3981
3982 case GIMPLE_RETURN:
3983 return verify_gimple_return (stmt);
3984
3985 case GIMPLE_ASM:
3986 return false;
3987
3988 case GIMPLE_PHI:
3989 return verify_gimple_phi (stmt);
3990
3991 /* Tuples that do not have tree operands. */
3992 case GIMPLE_NOP:
3993 case GIMPLE_PREDICT:
3994 case GIMPLE_RESX:
3995 case GIMPLE_EH_DISPATCH:
3996 case GIMPLE_EH_MUST_NOT_THROW:
3997 return false;
3998
3999 CASE_GIMPLE_OMP:
4000 /* OpenMP directives are validated by the FE and never operated
4001 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4002 non-gimple expressions when the main index variable has had
4003 its address taken. This does not affect the loop itself
4004 because the header of an GIMPLE_OMP_FOR is merely used to determine
4005 how to setup the parallel iteration. */
4006 return false;
4007
4008 case GIMPLE_DEBUG:
4009 return verify_gimple_debug (stmt);
4010
4011 default:
4012 gcc_unreachable ();
4013 }
4014 }
4015
4016 /* Verify the GIMPLE statements inside the sequence STMTS. */
4017
4018 static bool
4019 verify_types_in_gimple_seq_2 (gimple_seq stmts)
4020 {
4021 gimple_stmt_iterator ittr;
4022 bool err = false;
4023
4024 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4025 {
4026 gimple stmt = gsi_stmt (ittr);
4027
4028 switch (gimple_code (stmt))
4029 {
4030 case GIMPLE_BIND:
4031 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
4032 break;
4033
4034 case GIMPLE_TRY:
4035 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
4036 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
4037 break;
4038
4039 case GIMPLE_EH_FILTER:
4040 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
4041 break;
4042
4043 case GIMPLE_CATCH:
4044 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
4045 break;
4046
4047 default:
4048 {
4049 bool err2 = verify_types_in_gimple_stmt (stmt);
4050 if (err2)
4051 debug_gimple_stmt (stmt);
4052 err |= err2;
4053 }
4054 }
4055 }
4056
4057 return err;
4058 }
4059
4060
4061 /* Verify the GIMPLE statements inside the statement list STMTS. */
4062
4063 void
4064 verify_types_in_gimple_seq (gimple_seq stmts)
4065 {
4066 if (verify_types_in_gimple_seq_2 (stmts))
4067 internal_error ("verify_gimple failed");
4068 }
4069
4070
4071 /* Verify STMT, return true if STMT is not in GIMPLE form.
4072 TODO: Implement type checking. */
4073
4074 static bool
4075 verify_stmt (gimple_stmt_iterator *gsi)
4076 {
4077 tree addr;
4078 struct walk_stmt_info wi;
4079 bool last_in_block = gsi_one_before_end_p (*gsi);
4080 gimple stmt = gsi_stmt (*gsi);
4081 int lp_nr;
4082
4083 if (is_gimple_omp (stmt))
4084 {
4085 /* OpenMP directives are validated by the FE and never operated
4086 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4087 non-gimple expressions when the main index variable has had
4088 its address taken. This does not affect the loop itself
4089 because the header of an GIMPLE_OMP_FOR is merely used to determine
4090 how to setup the parallel iteration. */
4091 return false;
4092 }
4093
4094 /* FIXME. The C frontend passes unpromoted arguments in case it
4095 didn't see a function declaration before the call. */
4096 if (is_gimple_call (stmt))
4097 {
4098 tree decl;
4099
4100 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4101 {
4102 error ("invalid function in call statement");
4103 return true;
4104 }
4105
4106 decl = gimple_call_fndecl (stmt);
4107 if (decl
4108 && TREE_CODE (decl) == FUNCTION_DECL
4109 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4110 && (!DECL_PURE_P (decl))
4111 && (!TREE_READONLY (decl)))
4112 {
4113 error ("invalid pure const state for function");
4114 return true;
4115 }
4116 }
4117
4118 if (is_gimple_debug (stmt))
4119 return false;
4120
4121 memset (&wi, 0, sizeof (wi));
4122 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4123 if (addr)
4124 {
4125 debug_generic_expr (addr);
4126 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
4127 debug_gimple_stmt (stmt);
4128 return true;
4129 }
4130
4131 /* If the statement is marked as part of an EH region, then it is
4132 expected that the statement could throw. Verify that when we
4133 have optimizations that simplify statements such that we prove
4134 that they cannot throw, that we update other data structures
4135 to match. */
4136 lp_nr = lookup_stmt_eh_lp (stmt);
4137 if (lp_nr != 0)
4138 {
4139 if (!stmt_could_throw_p (stmt))
4140 {
4141 error ("statement marked for throw, but doesn%'t");
4142 goto fail;
4143 }
4144 else if (lp_nr > 0 && !last_in_block && stmt_can_throw_internal (stmt))
4145 {
4146 error ("statement marked for throw in middle of block");
4147 goto fail;
4148 }
4149 }
4150
4151 return false;
4152
4153 fail:
4154 debug_gimple_stmt (stmt);
4155 return true;
4156 }
4157
4158
4159 /* Return true when the T can be shared. */
4160
4161 bool
4162 tree_node_can_be_shared (tree t)
4163 {
4164 if (IS_TYPE_OR_DECL_P (t)
4165 || is_gimple_min_invariant (t)
4166 || TREE_CODE (t) == SSA_NAME
4167 || t == error_mark_node
4168 || TREE_CODE (t) == IDENTIFIER_NODE)
4169 return true;
4170
4171 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4172 return true;
4173
4174 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4175 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4176 || TREE_CODE (t) == COMPONENT_REF
4177 || TREE_CODE (t) == REALPART_EXPR
4178 || TREE_CODE (t) == IMAGPART_EXPR)
4179 t = TREE_OPERAND (t, 0);
4180
4181 if (DECL_P (t))
4182 return true;
4183
4184 return false;
4185 }
4186
4187
4188 /* Called via walk_gimple_stmt. Verify tree sharing. */
4189
4190 static tree
4191 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4192 {
4193 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4194 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4195
4196 if (tree_node_can_be_shared (*tp))
4197 {
4198 *walk_subtrees = false;
4199 return NULL;
4200 }
4201
4202 if (pointer_set_insert (visited, *tp))
4203 return *tp;
4204
4205 return NULL;
4206 }
4207
4208
4209 static bool eh_error_found;
4210 static int
4211 verify_eh_throw_stmt_node (void **slot, void *data)
4212 {
4213 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4214 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4215
4216 if (!pointer_set_contains (visited, node->stmt))
4217 {
4218 error ("Dead STMT in EH table");
4219 debug_gimple_stmt (node->stmt);
4220 eh_error_found = true;
4221 }
4222 return 1;
4223 }
4224
4225
4226 /* Verify the GIMPLE statements in every basic block. */
4227
4228 DEBUG_FUNCTION void
4229 verify_stmts (void)
4230 {
4231 basic_block bb;
4232 gimple_stmt_iterator gsi;
4233 bool err = false;
4234 struct pointer_set_t *visited, *visited_stmts;
4235 tree addr;
4236 struct walk_stmt_info wi;
4237
4238 timevar_push (TV_TREE_STMT_VERIFY);
4239 visited = pointer_set_create ();
4240 visited_stmts = pointer_set_create ();
4241
4242 memset (&wi, 0, sizeof (wi));
4243 wi.info = (void *) visited;
4244
4245 FOR_EACH_BB (bb)
4246 {
4247 gimple phi;
4248 size_t i;
4249
4250 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4251 {
4252 phi = gsi_stmt (gsi);
4253 pointer_set_insert (visited_stmts, phi);
4254 if (gimple_bb (phi) != bb)
4255 {
4256 error ("gimple_bb (phi) is set to a wrong basic block");
4257 err |= true;
4258 }
4259
4260 for (i = 0; i < gimple_phi_num_args (phi); i++)
4261 {
4262 tree t = gimple_phi_arg_def (phi, i);
4263 tree addr;
4264
4265 if (!t)
4266 {
4267 error ("missing PHI def");
4268 debug_gimple_stmt (phi);
4269 err |= true;
4270 continue;
4271 }
4272 /* Addressable variables do have SSA_NAMEs but they
4273 are not considered gimple values. */
4274 else if (TREE_CODE (t) != SSA_NAME
4275 && TREE_CODE (t) != FUNCTION_DECL
4276 && !is_gimple_min_invariant (t))
4277 {
4278 error ("PHI argument is not a GIMPLE value");
4279 debug_gimple_stmt (phi);
4280 debug_generic_expr (t);
4281 err |= true;
4282 }
4283
4284 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4285 if (addr)
4286 {
4287 error ("incorrect sharing of tree nodes");
4288 debug_gimple_stmt (phi);
4289 debug_generic_expr (addr);
4290 err |= true;
4291 }
4292 }
4293
4294 #ifdef ENABLE_TYPES_CHECKING
4295 if (verify_gimple_phi (phi))
4296 {
4297 debug_gimple_stmt (phi);
4298 err |= true;
4299 }
4300 #endif
4301 }
4302
4303 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4304 {
4305 gimple stmt = gsi_stmt (gsi);
4306
4307 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4308 || gimple_code (stmt) == GIMPLE_BIND)
4309 {
4310 error ("invalid GIMPLE statement");
4311 debug_gimple_stmt (stmt);
4312 err |= true;
4313 }
4314
4315 pointer_set_insert (visited_stmts, stmt);
4316
4317 if (gimple_bb (stmt) != bb)
4318 {
4319 error ("gimple_bb (stmt) is set to a wrong basic block");
4320 debug_gimple_stmt (stmt);
4321 err |= true;
4322 }
4323
4324 if (gimple_code (stmt) == GIMPLE_LABEL)
4325 {
4326 tree decl = gimple_label_label (stmt);
4327 int uid = LABEL_DECL_UID (decl);
4328
4329 if (uid == -1
4330 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4331 {
4332 error ("incorrect entry in label_to_block_map");
4333 err |= true;
4334 }
4335
4336 uid = EH_LANDING_PAD_NR (decl);
4337 if (uid)
4338 {
4339 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4340 if (decl != lp->post_landing_pad)
4341 {
4342 error ("incorrect setting of landing pad number");
4343 err |= true;
4344 }
4345 }
4346 }
4347
4348 err |= verify_stmt (&gsi);
4349
4350 #ifdef ENABLE_TYPES_CHECKING
4351 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4352 {
4353 debug_gimple_stmt (stmt);
4354 err |= true;
4355 }
4356 #endif
4357 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4358 if (addr)
4359 {
4360 error ("incorrect sharing of tree nodes");
4361 debug_gimple_stmt (stmt);
4362 debug_generic_expr (addr);
4363 err |= true;
4364 }
4365 gsi_next (&gsi);
4366 }
4367 }
4368
4369 eh_error_found = false;
4370 if (get_eh_throw_stmt_table (cfun))
4371 htab_traverse (get_eh_throw_stmt_table (cfun),
4372 verify_eh_throw_stmt_node,
4373 visited_stmts);
4374
4375 if (err | eh_error_found)
4376 internal_error ("verify_stmts failed");
4377
4378 pointer_set_destroy (visited);
4379 pointer_set_destroy (visited_stmts);
4380 verify_histograms ();
4381 timevar_pop (TV_TREE_STMT_VERIFY);
4382 }
4383
4384
4385 /* Verifies that the flow information is OK. */
4386
4387 static int
4388 gimple_verify_flow_info (void)
4389 {
4390 int err = 0;
4391 basic_block bb;
4392 gimple_stmt_iterator gsi;
4393 gimple stmt;
4394 edge e;
4395 edge_iterator ei;
4396
4397 if (ENTRY_BLOCK_PTR->il.gimple)
4398 {
4399 error ("ENTRY_BLOCK has IL associated with it");
4400 err = 1;
4401 }
4402
4403 if (EXIT_BLOCK_PTR->il.gimple)
4404 {
4405 error ("EXIT_BLOCK has IL associated with it");
4406 err = 1;
4407 }
4408
4409 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4410 if (e->flags & EDGE_FALLTHRU)
4411 {
4412 error ("fallthru to exit from bb %d", e->src->index);
4413 err = 1;
4414 }
4415
4416 FOR_EACH_BB (bb)
4417 {
4418 bool found_ctrl_stmt = false;
4419
4420 stmt = NULL;
4421
4422 /* Skip labels on the start of basic block. */
4423 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4424 {
4425 tree label;
4426 gimple prev_stmt = stmt;
4427
4428 stmt = gsi_stmt (gsi);
4429
4430 if (gimple_code (stmt) != GIMPLE_LABEL)
4431 break;
4432
4433 label = gimple_label_label (stmt);
4434 if (prev_stmt && DECL_NONLOCAL (label))
4435 {
4436 error ("nonlocal label ");
4437 print_generic_expr (stderr, label, 0);
4438 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4439 bb->index);
4440 err = 1;
4441 }
4442
4443 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4444 {
4445 error ("EH landing pad label ");
4446 print_generic_expr (stderr, label, 0);
4447 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4448 bb->index);
4449 err = 1;
4450 }
4451
4452 if (label_to_block (label) != bb)
4453 {
4454 error ("label ");
4455 print_generic_expr (stderr, label, 0);
4456 fprintf (stderr, " to block does not match in bb %d",
4457 bb->index);
4458 err = 1;
4459 }
4460
4461 if (decl_function_context (label) != current_function_decl)
4462 {
4463 error ("label ");
4464 print_generic_expr (stderr, label, 0);
4465 fprintf (stderr, " has incorrect context in bb %d",
4466 bb->index);
4467 err = 1;
4468 }
4469 }
4470
4471 /* Verify that body of basic block BB is free of control flow. */
4472 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4473 {
4474 gimple stmt = gsi_stmt (gsi);
4475
4476 if (found_ctrl_stmt)
4477 {
4478 error ("control flow in the middle of basic block %d",
4479 bb->index);
4480 err = 1;
4481 }
4482
4483 if (stmt_ends_bb_p (stmt))
4484 found_ctrl_stmt = true;
4485
4486 if (gimple_code (stmt) == GIMPLE_LABEL)
4487 {
4488 error ("label ");
4489 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4490 fprintf (stderr, " in the middle of basic block %d", bb->index);
4491 err = 1;
4492 }
4493 }
4494
4495 gsi = gsi_last_bb (bb);
4496 if (gsi_end_p (gsi))
4497 continue;
4498
4499 stmt = gsi_stmt (gsi);
4500
4501 if (gimple_code (stmt) == GIMPLE_LABEL)
4502 continue;
4503
4504 err |= verify_eh_edges (stmt);
4505
4506 if (is_ctrl_stmt (stmt))
4507 {
4508 FOR_EACH_EDGE (e, ei, bb->succs)
4509 if (e->flags & EDGE_FALLTHRU)
4510 {
4511 error ("fallthru edge after a control statement in bb %d",
4512 bb->index);
4513 err = 1;
4514 }
4515 }
4516
4517 if (gimple_code (stmt) != GIMPLE_COND)
4518 {
4519 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4520 after anything else but if statement. */
4521 FOR_EACH_EDGE (e, ei, bb->succs)
4522 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4523 {
4524 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4525 bb->index);
4526 err = 1;
4527 }
4528 }
4529
4530 switch (gimple_code (stmt))
4531 {
4532 case GIMPLE_COND:
4533 {
4534 edge true_edge;
4535 edge false_edge;
4536
4537 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4538
4539 if (!true_edge
4540 || !false_edge
4541 || !(true_edge->flags & EDGE_TRUE_VALUE)
4542 || !(false_edge->flags & EDGE_FALSE_VALUE)
4543 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4544 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4545 || EDGE_COUNT (bb->succs) >= 3)
4546 {
4547 error ("wrong outgoing edge flags at end of bb %d",
4548 bb->index);
4549 err = 1;
4550 }
4551 }
4552 break;
4553
4554 case GIMPLE_GOTO:
4555 if (simple_goto_p (stmt))
4556 {
4557 error ("explicit goto at end of bb %d", bb->index);
4558 err = 1;
4559 }
4560 else
4561 {
4562 /* FIXME. We should double check that the labels in the
4563 destination blocks have their address taken. */
4564 FOR_EACH_EDGE (e, ei, bb->succs)
4565 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4566 | EDGE_FALSE_VALUE))
4567 || !(e->flags & EDGE_ABNORMAL))
4568 {
4569 error ("wrong outgoing edge flags at end of bb %d",
4570 bb->index);
4571 err = 1;
4572 }
4573 }
4574 break;
4575
4576 case GIMPLE_CALL:
4577 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4578 break;
4579 /* ... fallthru ... */
4580 case GIMPLE_RETURN:
4581 if (!single_succ_p (bb)
4582 || (single_succ_edge (bb)->flags
4583 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4584 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4585 {
4586 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4587 err = 1;
4588 }
4589 if (single_succ (bb) != EXIT_BLOCK_PTR)
4590 {
4591 error ("return edge does not point to exit in bb %d",
4592 bb->index);
4593 err = 1;
4594 }
4595 break;
4596
4597 case GIMPLE_SWITCH:
4598 {
4599 tree prev;
4600 edge e;
4601 size_t i, n;
4602
4603 n = gimple_switch_num_labels (stmt);
4604
4605 /* Mark all the destination basic blocks. */
4606 for (i = 0; i < n; ++i)
4607 {
4608 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4609 basic_block label_bb = label_to_block (lab);
4610 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4611 label_bb->aux = (void *)1;
4612 }
4613
4614 /* Verify that the case labels are sorted. */
4615 prev = gimple_switch_label (stmt, 0);
4616 for (i = 1; i < n; ++i)
4617 {
4618 tree c = gimple_switch_label (stmt, i);
4619 if (!CASE_LOW (c))
4620 {
4621 error ("found default case not at the start of "
4622 "case vector");
4623 err = 1;
4624 continue;
4625 }
4626 if (CASE_LOW (prev)
4627 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4628 {
4629 error ("case labels not sorted: ");
4630 print_generic_expr (stderr, prev, 0);
4631 fprintf (stderr," is greater than ");
4632 print_generic_expr (stderr, c, 0);
4633 fprintf (stderr," but comes before it.\n");
4634 err = 1;
4635 }
4636 prev = c;
4637 }
4638 /* VRP will remove the default case if it can prove it will
4639 never be executed. So do not verify there always exists
4640 a default case here. */
4641
4642 FOR_EACH_EDGE (e, ei, bb->succs)
4643 {
4644 if (!e->dest->aux)
4645 {
4646 error ("extra outgoing edge %d->%d",
4647 bb->index, e->dest->index);
4648 err = 1;
4649 }
4650
4651 e->dest->aux = (void *)2;
4652 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4653 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4654 {
4655 error ("wrong outgoing edge flags at end of bb %d",
4656 bb->index);
4657 err = 1;
4658 }
4659 }
4660
4661 /* Check that we have all of them. */
4662 for (i = 0; i < n; ++i)
4663 {
4664 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4665 basic_block label_bb = label_to_block (lab);
4666
4667 if (label_bb->aux != (void *)2)
4668 {
4669 error ("missing edge %i->%i", bb->index, label_bb->index);
4670 err = 1;
4671 }
4672 }
4673
4674 FOR_EACH_EDGE (e, ei, bb->succs)
4675 e->dest->aux = (void *)0;
4676 }
4677 break;
4678
4679 case GIMPLE_EH_DISPATCH:
4680 err |= verify_eh_dispatch_edge (stmt);
4681 break;
4682
4683 default:
4684 break;
4685 }
4686 }
4687
4688 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4689 verify_dominators (CDI_DOMINATORS);
4690
4691 return err;
4692 }
4693
4694
4695 /* Updates phi nodes after creating a forwarder block joined
4696 by edge FALLTHRU. */
4697
4698 static void
4699 gimple_make_forwarder_block (edge fallthru)
4700 {
4701 edge e;
4702 edge_iterator ei;
4703 basic_block dummy, bb;
4704 tree var;
4705 gimple_stmt_iterator gsi;
4706
4707 dummy = fallthru->src;
4708 bb = fallthru->dest;
4709
4710 if (single_pred_p (bb))
4711 return;
4712
4713 /* If we redirected a branch we must create new PHI nodes at the
4714 start of BB. */
4715 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4716 {
4717 gimple phi, new_phi;
4718
4719 phi = gsi_stmt (gsi);
4720 var = gimple_phi_result (phi);
4721 new_phi = create_phi_node (var, bb);
4722 SSA_NAME_DEF_STMT (var) = new_phi;
4723 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4724 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4725 UNKNOWN_LOCATION);
4726 }
4727
4728 /* Add the arguments we have stored on edges. */
4729 FOR_EACH_EDGE (e, ei, bb->preds)
4730 {
4731 if (e == fallthru)
4732 continue;
4733
4734 flush_pending_stmts (e);
4735 }
4736 }
4737
4738
4739 /* Return a non-special label in the head of basic block BLOCK.
4740 Create one if it doesn't exist. */
4741
4742 tree
4743 gimple_block_label (basic_block bb)
4744 {
4745 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4746 bool first = true;
4747 tree label;
4748 gimple stmt;
4749
4750 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4751 {
4752 stmt = gsi_stmt (i);
4753 if (gimple_code (stmt) != GIMPLE_LABEL)
4754 break;
4755 label = gimple_label_label (stmt);
4756 if (!DECL_NONLOCAL (label))
4757 {
4758 if (!first)
4759 gsi_move_before (&i, &s);
4760 return label;
4761 }
4762 }
4763
4764 label = create_artificial_label (UNKNOWN_LOCATION);
4765 stmt = gimple_build_label (label);
4766 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4767 return label;
4768 }
4769
4770
4771 /* Attempt to perform edge redirection by replacing a possibly complex
4772 jump instruction by a goto or by removing the jump completely.
4773 This can apply only if all edges now point to the same block. The
4774 parameters and return values are equivalent to
4775 redirect_edge_and_branch. */
4776
4777 static edge
4778 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4779 {
4780 basic_block src = e->src;
4781 gimple_stmt_iterator i;
4782 gimple stmt;
4783
4784 /* We can replace or remove a complex jump only when we have exactly
4785 two edges. */
4786 if (EDGE_COUNT (src->succs) != 2
4787 /* Verify that all targets will be TARGET. Specifically, the
4788 edge that is not E must also go to TARGET. */
4789 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4790 return NULL;
4791
4792 i = gsi_last_bb (src);
4793 if (gsi_end_p (i))
4794 return NULL;
4795
4796 stmt = gsi_stmt (i);
4797
4798 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4799 {
4800 gsi_remove (&i, true);
4801 e = ssa_redirect_edge (e, target);
4802 e->flags = EDGE_FALLTHRU;
4803 return e;
4804 }
4805
4806 return NULL;
4807 }
4808
4809
4810 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4811 edge representing the redirected branch. */
4812
4813 static edge
4814 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4815 {
4816 basic_block bb = e->src;
4817 gimple_stmt_iterator gsi;
4818 edge ret;
4819 gimple stmt;
4820
4821 if (e->flags & EDGE_ABNORMAL)
4822 return NULL;
4823
4824 if (e->dest == dest)
4825 return NULL;
4826
4827 if (e->flags & EDGE_EH)
4828 return redirect_eh_edge (e, dest);
4829
4830 if (e->src != ENTRY_BLOCK_PTR)
4831 {
4832 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4833 if (ret)
4834 return ret;
4835 }
4836
4837 gsi = gsi_last_bb (bb);
4838 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4839
4840 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4841 {
4842 case GIMPLE_COND:
4843 /* For COND_EXPR, we only need to redirect the edge. */
4844 break;
4845
4846 case GIMPLE_GOTO:
4847 /* No non-abnormal edges should lead from a non-simple goto, and
4848 simple ones should be represented implicitly. */
4849 gcc_unreachable ();
4850
4851 case GIMPLE_SWITCH:
4852 {
4853 tree label = gimple_block_label (dest);
4854 tree cases = get_cases_for_edge (e, stmt);
4855
4856 /* If we have a list of cases associated with E, then use it
4857 as it's a lot faster than walking the entire case vector. */
4858 if (cases)
4859 {
4860 edge e2 = find_edge (e->src, dest);
4861 tree last, first;
4862
4863 first = cases;
4864 while (cases)
4865 {
4866 last = cases;
4867 CASE_LABEL (cases) = label;
4868 cases = TREE_CHAIN (cases);
4869 }
4870
4871 /* If there was already an edge in the CFG, then we need
4872 to move all the cases associated with E to E2. */
4873 if (e2)
4874 {
4875 tree cases2 = get_cases_for_edge (e2, stmt);
4876
4877 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4878 TREE_CHAIN (cases2) = first;
4879 }
4880 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4881 }
4882 else
4883 {
4884 size_t i, n = gimple_switch_num_labels (stmt);
4885
4886 for (i = 0; i < n; i++)
4887 {
4888 tree elt = gimple_switch_label (stmt, i);
4889 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4890 CASE_LABEL (elt) = label;
4891 }
4892 }
4893 }
4894 break;
4895
4896 case GIMPLE_ASM:
4897 {
4898 int i, n = gimple_asm_nlabels (stmt);
4899 tree label = NULL;
4900
4901 for (i = 0; i < n; ++i)
4902 {
4903 tree cons = gimple_asm_label_op (stmt, i);
4904 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4905 {
4906 if (!label)
4907 label = gimple_block_label (dest);
4908 TREE_VALUE (cons) = label;
4909 }
4910 }
4911
4912 /* If we didn't find any label matching the former edge in the
4913 asm labels, we must be redirecting the fallthrough
4914 edge. */
4915 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4916 }
4917 break;
4918
4919 case GIMPLE_RETURN:
4920 gsi_remove (&gsi, true);
4921 e->flags |= EDGE_FALLTHRU;
4922 break;
4923
4924 case GIMPLE_OMP_RETURN:
4925 case GIMPLE_OMP_CONTINUE:
4926 case GIMPLE_OMP_SECTIONS_SWITCH:
4927 case GIMPLE_OMP_FOR:
4928 /* The edges from OMP constructs can be simply redirected. */
4929 break;
4930
4931 case GIMPLE_EH_DISPATCH:
4932 if (!(e->flags & EDGE_FALLTHRU))
4933 redirect_eh_dispatch_edge (stmt, e, dest);
4934 break;
4935
4936 default:
4937 /* Otherwise it must be a fallthru edge, and we don't need to
4938 do anything besides redirecting it. */
4939 gcc_assert (e->flags & EDGE_FALLTHRU);
4940 break;
4941 }
4942
4943 /* Update/insert PHI nodes as necessary. */
4944
4945 /* Now update the edges in the CFG. */
4946 e = ssa_redirect_edge (e, dest);
4947
4948 return e;
4949 }
4950
4951 /* Returns true if it is possible to remove edge E by redirecting
4952 it to the destination of the other edge from E->src. */
4953
4954 static bool
4955 gimple_can_remove_branch_p (const_edge e)
4956 {
4957 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4958 return false;
4959
4960 return true;
4961 }
4962
4963 /* Simple wrapper, as we can always redirect fallthru edges. */
4964
4965 static basic_block
4966 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4967 {
4968 e = gimple_redirect_edge_and_branch (e, dest);
4969 gcc_assert (e);
4970
4971 return NULL;
4972 }
4973
4974
4975 /* Splits basic block BB after statement STMT (but at least after the
4976 labels). If STMT is NULL, BB is split just after the labels. */
4977
4978 static basic_block
4979 gimple_split_block (basic_block bb, void *stmt)
4980 {
4981 gimple_stmt_iterator gsi;
4982 gimple_stmt_iterator gsi_tgt;
4983 gimple act;
4984 gimple_seq list;
4985 basic_block new_bb;
4986 edge e;
4987 edge_iterator ei;
4988
4989 new_bb = create_empty_bb (bb);
4990
4991 /* Redirect the outgoing edges. */
4992 new_bb->succs = bb->succs;
4993 bb->succs = NULL;
4994 FOR_EACH_EDGE (e, ei, new_bb->succs)
4995 e->src = new_bb;
4996
4997 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
4998 stmt = NULL;
4999
5000 /* Move everything from GSI to the new basic block. */
5001 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5002 {
5003 act = gsi_stmt (gsi);
5004 if (gimple_code (act) == GIMPLE_LABEL)
5005 continue;
5006
5007 if (!stmt)
5008 break;
5009
5010 if (stmt == act)
5011 {
5012 gsi_next (&gsi);
5013 break;
5014 }
5015 }
5016
5017 if (gsi_end_p (gsi))
5018 return new_bb;
5019
5020 /* Split the statement list - avoid re-creating new containers as this
5021 brings ugly quadratic memory consumption in the inliner.
5022 (We are still quadratic since we need to update stmt BB pointers,
5023 sadly.) */
5024 list = gsi_split_seq_before (&gsi);
5025 set_bb_seq (new_bb, list);
5026 for (gsi_tgt = gsi_start (list);
5027 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5028 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5029
5030 return new_bb;
5031 }
5032
5033
5034 /* Moves basic block BB after block AFTER. */
5035
5036 static bool
5037 gimple_move_block_after (basic_block bb, basic_block after)
5038 {
5039 if (bb->prev_bb == after)
5040 return true;
5041
5042 unlink_block (bb);
5043 link_block (bb, after);
5044
5045 return true;
5046 }
5047
5048
5049 /* Return true if basic_block can be duplicated. */
5050
5051 static bool
5052 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5053 {
5054 return true;
5055 }
5056
5057 /* Create a duplicate of the basic block BB. NOTE: This does not
5058 preserve SSA form. */
5059
5060 static basic_block
5061 gimple_duplicate_bb (basic_block bb)
5062 {
5063 basic_block new_bb;
5064 gimple_stmt_iterator gsi, gsi_tgt;
5065 gimple_seq phis = phi_nodes (bb);
5066 gimple phi, stmt, copy;
5067
5068 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5069
5070 /* Copy the PHI nodes. We ignore PHI node arguments here because
5071 the incoming edges have not been setup yet. */
5072 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5073 {
5074 phi = gsi_stmt (gsi);
5075 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5076 create_new_def_for (gimple_phi_result (copy), copy,
5077 gimple_phi_result_ptr (copy));
5078 }
5079
5080 gsi_tgt = gsi_start_bb (new_bb);
5081 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5082 {
5083 def_operand_p def_p;
5084 ssa_op_iter op_iter;
5085
5086 stmt = gsi_stmt (gsi);
5087 if (gimple_code (stmt) == GIMPLE_LABEL)
5088 continue;
5089
5090 /* Create a new copy of STMT and duplicate STMT's virtual
5091 operands. */
5092 copy = gimple_copy (stmt);
5093 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5094
5095 maybe_duplicate_eh_stmt (copy, stmt);
5096 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5097
5098 /* Create new names for all the definitions created by COPY and
5099 add replacement mappings for each new name. */
5100 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5101 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5102 }
5103
5104 return new_bb;
5105 }
5106
5107 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5108
5109 static void
5110 add_phi_args_after_copy_edge (edge e_copy)
5111 {
5112 basic_block bb, bb_copy = e_copy->src, dest;
5113 edge e;
5114 edge_iterator ei;
5115 gimple phi, phi_copy;
5116 tree def;
5117 gimple_stmt_iterator psi, psi_copy;
5118
5119 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5120 return;
5121
5122 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5123
5124 if (e_copy->dest->flags & BB_DUPLICATED)
5125 dest = get_bb_original (e_copy->dest);
5126 else
5127 dest = e_copy->dest;
5128
5129 e = find_edge (bb, dest);
5130 if (!e)
5131 {
5132 /* During loop unrolling the target of the latch edge is copied.
5133 In this case we are not looking for edge to dest, but to
5134 duplicated block whose original was dest. */
5135 FOR_EACH_EDGE (e, ei, bb->succs)
5136 {
5137 if ((e->dest->flags & BB_DUPLICATED)
5138 && get_bb_original (e->dest) == dest)
5139 break;
5140 }
5141
5142 gcc_assert (e != NULL);
5143 }
5144
5145 for (psi = gsi_start_phis (e->dest),
5146 psi_copy = gsi_start_phis (e_copy->dest);
5147 !gsi_end_p (psi);
5148 gsi_next (&psi), gsi_next (&psi_copy))
5149 {
5150 phi = gsi_stmt (psi);
5151 phi_copy = gsi_stmt (psi_copy);
5152 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5153 add_phi_arg (phi_copy, def, e_copy,
5154 gimple_phi_arg_location_from_edge (phi, e));
5155 }
5156 }
5157
5158
5159 /* Basic block BB_COPY was created by code duplication. Add phi node
5160 arguments for edges going out of BB_COPY. The blocks that were
5161 duplicated have BB_DUPLICATED set. */
5162
5163 void
5164 add_phi_args_after_copy_bb (basic_block bb_copy)
5165 {
5166 edge e_copy;
5167 edge_iterator ei;
5168
5169 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5170 {
5171 add_phi_args_after_copy_edge (e_copy);
5172 }
5173 }
5174
5175 /* Blocks in REGION_COPY array of length N_REGION were created by
5176 duplication of basic blocks. Add phi node arguments for edges
5177 going from these blocks. If E_COPY is not NULL, also add
5178 phi node arguments for its destination.*/
5179
5180 void
5181 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5182 edge e_copy)
5183 {
5184 unsigned i;
5185
5186 for (i = 0; i < n_region; i++)
5187 region_copy[i]->flags |= BB_DUPLICATED;
5188
5189 for (i = 0; i < n_region; i++)
5190 add_phi_args_after_copy_bb (region_copy[i]);
5191 if (e_copy)
5192 add_phi_args_after_copy_edge (e_copy);
5193
5194 for (i = 0; i < n_region; i++)
5195 region_copy[i]->flags &= ~BB_DUPLICATED;
5196 }
5197
5198 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5199 important exit edge EXIT. By important we mean that no SSA name defined
5200 inside region is live over the other exit edges of the region. All entry
5201 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5202 to the duplicate of the region. SSA form, dominance and loop information
5203 is updated. The new basic blocks are stored to REGION_COPY in the same
5204 order as they had in REGION, provided that REGION_COPY is not NULL.
5205 The function returns false if it is unable to copy the region,
5206 true otherwise. */
5207
5208 bool
5209 gimple_duplicate_sese_region (edge entry, edge exit,
5210 basic_block *region, unsigned n_region,
5211 basic_block *region_copy)
5212 {
5213 unsigned i;
5214 bool free_region_copy = false, copying_header = false;
5215 struct loop *loop = entry->dest->loop_father;
5216 edge exit_copy;
5217 VEC (basic_block, heap) *doms;
5218 edge redirected;
5219 int total_freq = 0, entry_freq = 0;
5220 gcov_type total_count = 0, entry_count = 0;
5221
5222 if (!can_copy_bbs_p (region, n_region))
5223 return false;
5224
5225 /* Some sanity checking. Note that we do not check for all possible
5226 missuses of the functions. I.e. if you ask to copy something weird,
5227 it will work, but the state of structures probably will not be
5228 correct. */
5229 for (i = 0; i < n_region; i++)
5230 {
5231 /* We do not handle subloops, i.e. all the blocks must belong to the
5232 same loop. */
5233 if (region[i]->loop_father != loop)
5234 return false;
5235
5236 if (region[i] != entry->dest
5237 && region[i] == loop->header)
5238 return false;
5239 }
5240
5241 set_loop_copy (loop, loop);
5242
5243 /* In case the function is used for loop header copying (which is the primary
5244 use), ensure that EXIT and its copy will be new latch and entry edges. */
5245 if (loop->header == entry->dest)
5246 {
5247 copying_header = true;
5248 set_loop_copy (loop, loop_outer (loop));
5249
5250 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5251 return false;
5252
5253 for (i = 0; i < n_region; i++)
5254 if (region[i] != exit->src
5255 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5256 return false;
5257 }
5258
5259 if (!region_copy)
5260 {
5261 region_copy = XNEWVEC (basic_block, n_region);
5262 free_region_copy = true;
5263 }
5264
5265 gcc_assert (!need_ssa_update_p (cfun));
5266
5267 /* Record blocks outside the region that are dominated by something
5268 inside. */
5269 doms = NULL;
5270 initialize_original_copy_tables ();
5271
5272 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5273
5274 if (entry->dest->count)
5275 {
5276 total_count = entry->dest->count;
5277 entry_count = entry->count;
5278 /* Fix up corner cases, to avoid division by zero or creation of negative
5279 frequencies. */
5280 if (entry_count > total_count)
5281 entry_count = total_count;
5282 }
5283 else
5284 {
5285 total_freq = entry->dest->frequency;
5286 entry_freq = EDGE_FREQUENCY (entry);
5287 /* Fix up corner cases, to avoid division by zero or creation of negative
5288 frequencies. */
5289 if (total_freq == 0)
5290 total_freq = 1;
5291 else if (entry_freq > total_freq)
5292 entry_freq = total_freq;
5293 }
5294
5295 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5296 split_edge_bb_loc (entry));
5297 if (total_count)
5298 {
5299 scale_bbs_frequencies_gcov_type (region, n_region,
5300 total_count - entry_count,
5301 total_count);
5302 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5303 total_count);
5304 }
5305 else
5306 {
5307 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5308 total_freq);
5309 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5310 }
5311
5312 if (copying_header)
5313 {
5314 loop->header = exit->dest;
5315 loop->latch = exit->src;
5316 }
5317
5318 /* Redirect the entry and add the phi node arguments. */
5319 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5320 gcc_assert (redirected != NULL);
5321 flush_pending_stmts (entry);
5322
5323 /* Concerning updating of dominators: We must recount dominators
5324 for entry block and its copy. Anything that is outside of the
5325 region, but was dominated by something inside needs recounting as
5326 well. */
5327 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5328 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5329 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5330 VEC_free (basic_block, heap, doms);
5331
5332 /* Add the other PHI node arguments. */
5333 add_phi_args_after_copy (region_copy, n_region, NULL);
5334
5335 /* Update the SSA web. */
5336 update_ssa (TODO_update_ssa);
5337
5338 if (free_region_copy)
5339 free (region_copy);
5340
5341 free_original_copy_tables ();
5342 return true;
5343 }
5344
5345 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5346 are stored to REGION_COPY in the same order in that they appear
5347 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5348 the region, EXIT an exit from it. The condition guarding EXIT
5349 is moved to ENTRY. Returns true if duplication succeeds, false
5350 otherwise.
5351
5352 For example,
5353
5354 some_code;
5355 if (cond)
5356 A;
5357 else
5358 B;
5359
5360 is transformed to
5361
5362 if (cond)
5363 {
5364 some_code;
5365 A;
5366 }
5367 else
5368 {
5369 some_code;
5370 B;
5371 }
5372 */
5373
5374 bool
5375 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5376 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5377 basic_block *region_copy ATTRIBUTE_UNUSED)
5378 {
5379 unsigned i;
5380 bool free_region_copy = false;
5381 struct loop *loop = exit->dest->loop_father;
5382 struct loop *orig_loop = entry->dest->loop_father;
5383 basic_block switch_bb, entry_bb, nentry_bb;
5384 VEC (basic_block, heap) *doms;
5385 int total_freq = 0, exit_freq = 0;
5386 gcov_type total_count = 0, exit_count = 0;
5387 edge exits[2], nexits[2], e;
5388 gimple_stmt_iterator gsi,gsi1;
5389 gimple cond_stmt;
5390 edge sorig, snew;
5391 basic_block exit_bb;
5392 basic_block iters_bb;
5393 tree new_rhs;
5394 gimple_stmt_iterator psi;
5395 gimple phi;
5396 tree def;
5397
5398 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5399 exits[0] = exit;
5400 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5401
5402 if (!can_copy_bbs_p (region, n_region))
5403 return false;
5404
5405 initialize_original_copy_tables ();
5406 set_loop_copy (orig_loop, loop);
5407 duplicate_subloops (orig_loop, loop);
5408
5409 if (!region_copy)
5410 {
5411 region_copy = XNEWVEC (basic_block, n_region);
5412 free_region_copy = true;
5413 }
5414
5415 gcc_assert (!need_ssa_update_p (cfun));
5416
5417 /* Record blocks outside the region that are dominated by something
5418 inside. */
5419 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5420
5421 if (exit->src->count)
5422 {
5423 total_count = exit->src->count;
5424 exit_count = exit->count;
5425 /* Fix up corner cases, to avoid division by zero or creation of negative
5426 frequencies. */
5427 if (exit_count > total_count)
5428 exit_count = total_count;
5429 }
5430 else
5431 {
5432 total_freq = exit->src->frequency;
5433 exit_freq = EDGE_FREQUENCY (exit);
5434 /* Fix up corner cases, to avoid division by zero or creation of negative
5435 frequencies. */
5436 if (total_freq == 0)
5437 total_freq = 1;
5438 if (exit_freq > total_freq)
5439 exit_freq = total_freq;
5440 }
5441
5442 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5443 split_edge_bb_loc (exit));
5444 if (total_count)
5445 {
5446 scale_bbs_frequencies_gcov_type (region, n_region,
5447 total_count - exit_count,
5448 total_count);
5449 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5450 total_count);
5451 }
5452 else
5453 {
5454 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5455 total_freq);
5456 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5457 }
5458
5459 /* Create the switch block, and put the exit condition to it. */
5460 entry_bb = entry->dest;
5461 nentry_bb = get_bb_copy (entry_bb);
5462 if (!last_stmt (entry->src)
5463 || !stmt_ends_bb_p (last_stmt (entry->src)))
5464 switch_bb = entry->src;
5465 else
5466 switch_bb = split_edge (entry);
5467 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5468
5469 gsi = gsi_last_bb (switch_bb);
5470 cond_stmt = last_stmt (exit->src);
5471 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5472 cond_stmt = gimple_copy (cond_stmt);
5473
5474 /* If the block consisting of the exit condition has the latch as
5475 successor, then the body of the loop is executed before
5476 the exit condition is tested. In such case, moving the
5477 condition to the entry, causes that the loop will iterate
5478 one less iteration (which is the wanted outcome, since we
5479 peel out the last iteration). If the body is executed after
5480 the condition, moving the condition to the entry requires
5481 decrementing one iteration. */
5482 if (exits[1]->dest == orig_loop->latch)
5483 new_rhs = gimple_cond_rhs (cond_stmt);
5484 else
5485 {
5486 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5487 gimple_cond_rhs (cond_stmt),
5488 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5489
5490 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5491 {
5492 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5493 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5494 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5495 break;
5496
5497 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5498 NULL_TREE,false,GSI_CONTINUE_LINKING);
5499 }
5500 }
5501 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5502 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5503 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5504
5505 sorig = single_succ_edge (switch_bb);
5506 sorig->flags = exits[1]->flags;
5507 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5508
5509 /* Register the new edge from SWITCH_BB in loop exit lists. */
5510 rescan_loop_exit (snew, true, false);
5511
5512 /* Add the PHI node arguments. */
5513 add_phi_args_after_copy (region_copy, n_region, snew);
5514
5515 /* Get rid of now superfluous conditions and associated edges (and phi node
5516 arguments). */
5517 exit_bb = exit->dest;
5518
5519 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5520 PENDING_STMT (e) = NULL;
5521
5522 /* The latch of ORIG_LOOP was copied, and so was the backedge
5523 to the original header. We redirect this backedge to EXIT_BB. */
5524 for (i = 0; i < n_region; i++)
5525 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5526 {
5527 gcc_assert (single_succ_edge (region_copy[i]));
5528 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5529 PENDING_STMT (e) = NULL;
5530 for (psi = gsi_start_phis (exit_bb);
5531 !gsi_end_p (psi);
5532 gsi_next (&psi))
5533 {
5534 phi = gsi_stmt (psi);
5535 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5536 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5537 }
5538 }
5539 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5540 PENDING_STMT (e) = NULL;
5541
5542 /* Anything that is outside of the region, but was dominated by something
5543 inside needs to update dominance info. */
5544 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5545 VEC_free (basic_block, heap, doms);
5546 /* Update the SSA web. */
5547 update_ssa (TODO_update_ssa);
5548
5549 if (free_region_copy)
5550 free (region_copy);
5551
5552 free_original_copy_tables ();
5553 return true;
5554 }
5555
5556 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5557 adding blocks when the dominator traversal reaches EXIT. This
5558 function silently assumes that ENTRY strictly dominates EXIT. */
5559
5560 void
5561 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5562 VEC(basic_block,heap) **bbs_p)
5563 {
5564 basic_block son;
5565
5566 for (son = first_dom_son (CDI_DOMINATORS, entry);
5567 son;
5568 son = next_dom_son (CDI_DOMINATORS, son))
5569 {
5570 VEC_safe_push (basic_block, heap, *bbs_p, son);
5571 if (son != exit)
5572 gather_blocks_in_sese_region (son, exit, bbs_p);
5573 }
5574 }
5575
5576 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5577 The duplicates are recorded in VARS_MAP. */
5578
5579 static void
5580 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5581 tree to_context)
5582 {
5583 tree t = *tp, new_t;
5584 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5585 void **loc;
5586
5587 if (DECL_CONTEXT (t) == to_context)
5588 return;
5589
5590 loc = pointer_map_contains (vars_map, t);
5591
5592 if (!loc)
5593 {
5594 loc = pointer_map_insert (vars_map, t);
5595
5596 if (SSA_VAR_P (t))
5597 {
5598 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5599 f->local_decls = tree_cons (NULL_TREE, new_t, f->local_decls);
5600 }
5601 else
5602 {
5603 gcc_assert (TREE_CODE (t) == CONST_DECL);
5604 new_t = copy_node (t);
5605 }
5606 DECL_CONTEXT (new_t) = to_context;
5607
5608 *loc = new_t;
5609 }
5610 else
5611 new_t = (tree) *loc;
5612
5613 *tp = new_t;
5614 }
5615
5616
5617 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5618 VARS_MAP maps old ssa names and var_decls to the new ones. */
5619
5620 static tree
5621 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5622 tree to_context)
5623 {
5624 void **loc;
5625 tree new_name, decl = SSA_NAME_VAR (name);
5626
5627 gcc_assert (is_gimple_reg (name));
5628
5629 loc = pointer_map_contains (vars_map, name);
5630
5631 if (!loc)
5632 {
5633 replace_by_duplicate_decl (&decl, vars_map, to_context);
5634
5635 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5636 if (gimple_in_ssa_p (cfun))
5637 add_referenced_var (decl);
5638
5639 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5640 if (SSA_NAME_IS_DEFAULT_DEF (name))
5641 set_default_def (decl, new_name);
5642 pop_cfun ();
5643
5644 loc = pointer_map_insert (vars_map, name);
5645 *loc = new_name;
5646 }
5647 else
5648 new_name = (tree) *loc;
5649
5650 return new_name;
5651 }
5652
5653 struct move_stmt_d
5654 {
5655 tree orig_block;
5656 tree new_block;
5657 tree from_context;
5658 tree to_context;
5659 struct pointer_map_t *vars_map;
5660 htab_t new_label_map;
5661 struct pointer_map_t *eh_map;
5662 bool remap_decls_p;
5663 };
5664
5665 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5666 contained in *TP if it has been ORIG_BLOCK previously and change the
5667 DECL_CONTEXT of every local variable referenced in *TP. */
5668
5669 static tree
5670 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5671 {
5672 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5673 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5674 tree t = *tp;
5675
5676 if (EXPR_P (t))
5677 /* We should never have TREE_BLOCK set on non-statements. */
5678 gcc_assert (!TREE_BLOCK (t));
5679
5680 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5681 {
5682 if (TREE_CODE (t) == SSA_NAME)
5683 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5684 else if (TREE_CODE (t) == LABEL_DECL)
5685 {
5686 if (p->new_label_map)
5687 {
5688 struct tree_map in, *out;
5689 in.base.from = t;
5690 out = (struct tree_map *)
5691 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5692 if (out)
5693 *tp = t = out->to;
5694 }
5695
5696 DECL_CONTEXT (t) = p->to_context;
5697 }
5698 else if (p->remap_decls_p)
5699 {
5700 /* Replace T with its duplicate. T should no longer appear in the
5701 parent function, so this looks wasteful; however, it may appear
5702 in referenced_vars, and more importantly, as virtual operands of
5703 statements, and in alias lists of other variables. It would be
5704 quite difficult to expunge it from all those places. ??? It might
5705 suffice to do this for addressable variables. */
5706 if ((TREE_CODE (t) == VAR_DECL
5707 && !is_global_var (t))
5708 || TREE_CODE (t) == CONST_DECL)
5709 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5710
5711 if (SSA_VAR_P (t)
5712 && gimple_in_ssa_p (cfun))
5713 {
5714 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5715 add_referenced_var (*tp);
5716 pop_cfun ();
5717 }
5718 }
5719 *walk_subtrees = 0;
5720 }
5721 else if (TYPE_P (t))
5722 *walk_subtrees = 0;
5723
5724 return NULL_TREE;
5725 }
5726
5727 /* Helper for move_stmt_r. Given an EH region number for the source
5728 function, map that to the duplicate EH regio number in the dest. */
5729
5730 static int
5731 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5732 {
5733 eh_region old_r, new_r;
5734 void **slot;
5735
5736 old_r = get_eh_region_from_number (old_nr);
5737 slot = pointer_map_contains (p->eh_map, old_r);
5738 new_r = (eh_region) *slot;
5739
5740 return new_r->index;
5741 }
5742
5743 /* Similar, but operate on INTEGER_CSTs. */
5744
5745 static tree
5746 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5747 {
5748 int old_nr, new_nr;
5749
5750 old_nr = tree_low_cst (old_t_nr, 0);
5751 new_nr = move_stmt_eh_region_nr (old_nr, p);
5752
5753 return build_int_cst (NULL, new_nr);
5754 }
5755
5756 /* Like move_stmt_op, but for gimple statements.
5757
5758 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5759 contained in the current statement in *GSI_P and change the
5760 DECL_CONTEXT of every local variable referenced in the current
5761 statement. */
5762
5763 static tree
5764 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5765 struct walk_stmt_info *wi)
5766 {
5767 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5768 gimple stmt = gsi_stmt (*gsi_p);
5769 tree block = gimple_block (stmt);
5770
5771 if (p->orig_block == NULL_TREE
5772 || block == p->orig_block
5773 || block == NULL_TREE)
5774 gimple_set_block (stmt, p->new_block);
5775 #ifdef ENABLE_CHECKING
5776 else if (block != p->new_block)
5777 {
5778 while (block && block != p->orig_block)
5779 block = BLOCK_SUPERCONTEXT (block);
5780 gcc_assert (block);
5781 }
5782 #endif
5783
5784 switch (gimple_code (stmt))
5785 {
5786 case GIMPLE_CALL:
5787 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5788 {
5789 tree r, fndecl = gimple_call_fndecl (stmt);
5790 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5791 switch (DECL_FUNCTION_CODE (fndecl))
5792 {
5793 case BUILT_IN_EH_COPY_VALUES:
5794 r = gimple_call_arg (stmt, 1);
5795 r = move_stmt_eh_region_tree_nr (r, p);
5796 gimple_call_set_arg (stmt, 1, r);
5797 /* FALLTHRU */
5798
5799 case BUILT_IN_EH_POINTER:
5800 case BUILT_IN_EH_FILTER:
5801 r = gimple_call_arg (stmt, 0);
5802 r = move_stmt_eh_region_tree_nr (r, p);
5803 gimple_call_set_arg (stmt, 0, r);
5804 break;
5805
5806 default:
5807 break;
5808 }
5809 }
5810 break;
5811
5812 case GIMPLE_RESX:
5813 {
5814 int r = gimple_resx_region (stmt);
5815 r = move_stmt_eh_region_nr (r, p);
5816 gimple_resx_set_region (stmt, r);
5817 }
5818 break;
5819
5820 case GIMPLE_EH_DISPATCH:
5821 {
5822 int r = gimple_eh_dispatch_region (stmt);
5823 r = move_stmt_eh_region_nr (r, p);
5824 gimple_eh_dispatch_set_region (stmt, r);
5825 }
5826 break;
5827
5828 case GIMPLE_OMP_RETURN:
5829 case GIMPLE_OMP_CONTINUE:
5830 break;
5831 default:
5832 if (is_gimple_omp (stmt))
5833 {
5834 /* Do not remap variables inside OMP directives. Variables
5835 referenced in clauses and directive header belong to the
5836 parent function and should not be moved into the child
5837 function. */
5838 bool save_remap_decls_p = p->remap_decls_p;
5839 p->remap_decls_p = false;
5840 *handled_ops_p = true;
5841
5842 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5843 move_stmt_op, wi);
5844
5845 p->remap_decls_p = save_remap_decls_p;
5846 }
5847 break;
5848 }
5849
5850 return NULL_TREE;
5851 }
5852
5853 /* Move basic block BB from function CFUN to function DEST_FN. The
5854 block is moved out of the original linked list and placed after
5855 block AFTER in the new list. Also, the block is removed from the
5856 original array of blocks and placed in DEST_FN's array of blocks.
5857 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5858 updated to reflect the moved edges.
5859
5860 The local variables are remapped to new instances, VARS_MAP is used
5861 to record the mapping. */
5862
5863 static void
5864 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5865 basic_block after, bool update_edge_count_p,
5866 struct move_stmt_d *d)
5867 {
5868 struct control_flow_graph *cfg;
5869 edge_iterator ei;
5870 edge e;
5871 gimple_stmt_iterator si;
5872 unsigned old_len, new_len;
5873
5874 /* Remove BB from dominance structures. */
5875 delete_from_dominance_info (CDI_DOMINATORS, bb);
5876 if (current_loops)
5877 remove_bb_from_loops (bb);
5878
5879 /* Link BB to the new linked list. */
5880 move_block_after (bb, after);
5881
5882 /* Update the edge count in the corresponding flowgraphs. */
5883 if (update_edge_count_p)
5884 FOR_EACH_EDGE (e, ei, bb->succs)
5885 {
5886 cfun->cfg->x_n_edges--;
5887 dest_cfun->cfg->x_n_edges++;
5888 }
5889
5890 /* Remove BB from the original basic block array. */
5891 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5892 cfun->cfg->x_n_basic_blocks--;
5893
5894 /* Grow DEST_CFUN's basic block array if needed. */
5895 cfg = dest_cfun->cfg;
5896 cfg->x_n_basic_blocks++;
5897 if (bb->index >= cfg->x_last_basic_block)
5898 cfg->x_last_basic_block = bb->index + 1;
5899
5900 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5901 if ((unsigned) cfg->x_last_basic_block >= old_len)
5902 {
5903 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5904 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5905 new_len);
5906 }
5907
5908 VEC_replace (basic_block, cfg->x_basic_block_info,
5909 bb->index, bb);
5910
5911 /* Remap the variables in phi nodes. */
5912 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5913 {
5914 gimple phi = gsi_stmt (si);
5915 use_operand_p use;
5916 tree op = PHI_RESULT (phi);
5917 ssa_op_iter oi;
5918
5919 if (!is_gimple_reg (op))
5920 {
5921 /* Remove the phi nodes for virtual operands (alias analysis will be
5922 run for the new function, anyway). */
5923 remove_phi_node (&si, true);
5924 continue;
5925 }
5926
5927 SET_PHI_RESULT (phi,
5928 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5929 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5930 {
5931 op = USE_FROM_PTR (use);
5932 if (TREE_CODE (op) == SSA_NAME)
5933 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5934 }
5935
5936 gsi_next (&si);
5937 }
5938
5939 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5940 {
5941 gimple stmt = gsi_stmt (si);
5942 struct walk_stmt_info wi;
5943
5944 memset (&wi, 0, sizeof (wi));
5945 wi.info = d;
5946 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5947
5948 if (gimple_code (stmt) == GIMPLE_LABEL)
5949 {
5950 tree label = gimple_label_label (stmt);
5951 int uid = LABEL_DECL_UID (label);
5952
5953 gcc_assert (uid > -1);
5954
5955 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5956 if (old_len <= (unsigned) uid)
5957 {
5958 new_len = 3 * uid / 2 + 1;
5959 VEC_safe_grow_cleared (basic_block, gc,
5960 cfg->x_label_to_block_map, new_len);
5961 }
5962
5963 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5964 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5965
5966 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5967
5968 if (uid >= dest_cfun->cfg->last_label_uid)
5969 dest_cfun->cfg->last_label_uid = uid + 1;
5970 }
5971
5972 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5973 remove_stmt_from_eh_lp_fn (cfun, stmt);
5974
5975 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5976 gimple_remove_stmt_histograms (cfun, stmt);
5977
5978 /* We cannot leave any operands allocated from the operand caches of
5979 the current function. */
5980 free_stmt_operands (stmt);
5981 push_cfun (dest_cfun);
5982 update_stmt (stmt);
5983 pop_cfun ();
5984 }
5985
5986 FOR_EACH_EDGE (e, ei, bb->succs)
5987 if (e->goto_locus)
5988 {
5989 tree block = e->goto_block;
5990 if (d->orig_block == NULL_TREE
5991 || block == d->orig_block)
5992 e->goto_block = d->new_block;
5993 #ifdef ENABLE_CHECKING
5994 else if (block != d->new_block)
5995 {
5996 while (block && block != d->orig_block)
5997 block = BLOCK_SUPERCONTEXT (block);
5998 gcc_assert (block);
5999 }
6000 #endif
6001 }
6002 }
6003
6004 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6005 the outermost EH region. Use REGION as the incoming base EH region. */
6006
6007 static eh_region
6008 find_outermost_region_in_block (struct function *src_cfun,
6009 basic_block bb, eh_region region)
6010 {
6011 gimple_stmt_iterator si;
6012
6013 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6014 {
6015 gimple stmt = gsi_stmt (si);
6016 eh_region stmt_region;
6017 int lp_nr;
6018
6019 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6020 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6021 if (stmt_region)
6022 {
6023 if (region == NULL)
6024 region = stmt_region;
6025 else if (stmt_region != region)
6026 {
6027 region = eh_region_outermost (src_cfun, stmt_region, region);
6028 gcc_assert (region != NULL);
6029 }
6030 }
6031 }
6032
6033 return region;
6034 }
6035
6036 static tree
6037 new_label_mapper (tree decl, void *data)
6038 {
6039 htab_t hash = (htab_t) data;
6040 struct tree_map *m;
6041 void **slot;
6042
6043 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6044
6045 m = XNEW (struct tree_map);
6046 m->hash = DECL_UID (decl);
6047 m->base.from = decl;
6048 m->to = create_artificial_label (UNKNOWN_LOCATION);
6049 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6050 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6051 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6052
6053 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6054 gcc_assert (*slot == NULL);
6055
6056 *slot = m;
6057
6058 return m->to;
6059 }
6060
6061 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6062 subblocks. */
6063
6064 static void
6065 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6066 tree to_context)
6067 {
6068 tree *tp, t;
6069
6070 for (tp = &BLOCK_VARS (block); *tp; tp = &TREE_CHAIN (*tp))
6071 {
6072 t = *tp;
6073 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6074 continue;
6075 replace_by_duplicate_decl (&t, vars_map, to_context);
6076 if (t != *tp)
6077 {
6078 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6079 {
6080 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6081 DECL_HAS_VALUE_EXPR_P (t) = 1;
6082 }
6083 TREE_CHAIN (t) = TREE_CHAIN (*tp);
6084 *tp = t;
6085 }
6086 }
6087
6088 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6089 replace_block_vars_by_duplicates (block, vars_map, to_context);
6090 }
6091
6092 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6093 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6094 single basic block in the original CFG and the new basic block is
6095 returned. DEST_CFUN must not have a CFG yet.
6096
6097 Note that the region need not be a pure SESE region. Blocks inside
6098 the region may contain calls to abort/exit. The only restriction
6099 is that ENTRY_BB should be the only entry point and it must
6100 dominate EXIT_BB.
6101
6102 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6103 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6104 to the new function.
6105
6106 All local variables referenced in the region are assumed to be in
6107 the corresponding BLOCK_VARS and unexpanded variable lists
6108 associated with DEST_CFUN. */
6109
6110 basic_block
6111 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6112 basic_block exit_bb, tree orig_block)
6113 {
6114 VEC(basic_block,heap) *bbs, *dom_bbs;
6115 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6116 basic_block after, bb, *entry_pred, *exit_succ, abb;
6117 struct function *saved_cfun = cfun;
6118 int *entry_flag, *exit_flag;
6119 unsigned *entry_prob, *exit_prob;
6120 unsigned i, num_entry_edges, num_exit_edges;
6121 edge e;
6122 edge_iterator ei;
6123 htab_t new_label_map;
6124 struct pointer_map_t *vars_map, *eh_map;
6125 struct loop *loop = entry_bb->loop_father;
6126 struct move_stmt_d d;
6127
6128 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6129 region. */
6130 gcc_assert (entry_bb != exit_bb
6131 && (!exit_bb
6132 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6133
6134 /* Collect all the blocks in the region. Manually add ENTRY_BB
6135 because it won't be added by dfs_enumerate_from. */
6136 bbs = NULL;
6137 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6138 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6139
6140 /* The blocks that used to be dominated by something in BBS will now be
6141 dominated by the new block. */
6142 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6143 VEC_address (basic_block, bbs),
6144 VEC_length (basic_block, bbs));
6145
6146 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6147 the predecessor edges to ENTRY_BB and the successor edges to
6148 EXIT_BB so that we can re-attach them to the new basic block that
6149 will replace the region. */
6150 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6151 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6152 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6153 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6154 i = 0;
6155 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6156 {
6157 entry_prob[i] = e->probability;
6158 entry_flag[i] = e->flags;
6159 entry_pred[i++] = e->src;
6160 remove_edge (e);
6161 }
6162
6163 if (exit_bb)
6164 {
6165 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6166 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6167 sizeof (basic_block));
6168 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6169 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6170 i = 0;
6171 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6172 {
6173 exit_prob[i] = e->probability;
6174 exit_flag[i] = e->flags;
6175 exit_succ[i++] = e->dest;
6176 remove_edge (e);
6177 }
6178 }
6179 else
6180 {
6181 num_exit_edges = 0;
6182 exit_succ = NULL;
6183 exit_flag = NULL;
6184 exit_prob = NULL;
6185 }
6186
6187 /* Switch context to the child function to initialize DEST_FN's CFG. */
6188 gcc_assert (dest_cfun->cfg == NULL);
6189 push_cfun (dest_cfun);
6190
6191 init_empty_tree_cfg ();
6192
6193 /* Initialize EH information for the new function. */
6194 eh_map = NULL;
6195 new_label_map = NULL;
6196 if (saved_cfun->eh)
6197 {
6198 eh_region region = NULL;
6199
6200 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6201 region = find_outermost_region_in_block (saved_cfun, bb, region);
6202
6203 init_eh_for_function ();
6204 if (region != NULL)
6205 {
6206 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6207 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6208 new_label_mapper, new_label_map);
6209 }
6210 }
6211
6212 pop_cfun ();
6213
6214 /* Move blocks from BBS into DEST_CFUN. */
6215 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6216 after = dest_cfun->cfg->x_entry_block_ptr;
6217 vars_map = pointer_map_create ();
6218
6219 memset (&d, 0, sizeof (d));
6220 d.orig_block = orig_block;
6221 d.new_block = DECL_INITIAL (dest_cfun->decl);
6222 d.from_context = cfun->decl;
6223 d.to_context = dest_cfun->decl;
6224 d.vars_map = vars_map;
6225 d.new_label_map = new_label_map;
6226 d.eh_map = eh_map;
6227 d.remap_decls_p = true;
6228
6229 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6230 {
6231 /* No need to update edge counts on the last block. It has
6232 already been updated earlier when we detached the region from
6233 the original CFG. */
6234 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6235 after = bb;
6236 }
6237
6238 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6239 if (orig_block)
6240 {
6241 tree block;
6242 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6243 == NULL_TREE);
6244 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6245 = BLOCK_SUBBLOCKS (orig_block);
6246 for (block = BLOCK_SUBBLOCKS (orig_block);
6247 block; block = BLOCK_CHAIN (block))
6248 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6249 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6250 }
6251
6252 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6253 vars_map, dest_cfun->decl);
6254
6255 if (new_label_map)
6256 htab_delete (new_label_map);
6257 if (eh_map)
6258 pointer_map_destroy (eh_map);
6259 pointer_map_destroy (vars_map);
6260
6261 /* Rewire the entry and exit blocks. The successor to the entry
6262 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6263 the child function. Similarly, the predecessor of DEST_FN's
6264 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6265 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6266 various CFG manipulation function get to the right CFG.
6267
6268 FIXME, this is silly. The CFG ought to become a parameter to
6269 these helpers. */
6270 push_cfun (dest_cfun);
6271 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6272 if (exit_bb)
6273 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6274 pop_cfun ();
6275
6276 /* Back in the original function, the SESE region has disappeared,
6277 create a new basic block in its place. */
6278 bb = create_empty_bb (entry_pred[0]);
6279 if (current_loops)
6280 add_bb_to_loop (bb, loop);
6281 for (i = 0; i < num_entry_edges; i++)
6282 {
6283 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6284 e->probability = entry_prob[i];
6285 }
6286
6287 for (i = 0; i < num_exit_edges; i++)
6288 {
6289 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6290 e->probability = exit_prob[i];
6291 }
6292
6293 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6294 for (i = 0; VEC_iterate (basic_block, dom_bbs, i, abb); i++)
6295 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6296 VEC_free (basic_block, heap, dom_bbs);
6297
6298 if (exit_bb)
6299 {
6300 free (exit_prob);
6301 free (exit_flag);
6302 free (exit_succ);
6303 }
6304 free (entry_prob);
6305 free (entry_flag);
6306 free (entry_pred);
6307 VEC_free (basic_block, heap, bbs);
6308
6309 return bb;
6310 }
6311
6312
6313 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6314 */
6315
6316 void
6317 dump_function_to_file (tree fn, FILE *file, int flags)
6318 {
6319 tree arg, vars, var;
6320 struct function *dsf;
6321 bool ignore_topmost_bind = false, any_var = false;
6322 basic_block bb;
6323 tree chain;
6324
6325 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6326
6327 arg = DECL_ARGUMENTS (fn);
6328 while (arg)
6329 {
6330 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6331 fprintf (file, " ");
6332 print_generic_expr (file, arg, dump_flags);
6333 if (flags & TDF_VERBOSE)
6334 print_node (file, "", arg, 4);
6335 if (TREE_CHAIN (arg))
6336 fprintf (file, ", ");
6337 arg = TREE_CHAIN (arg);
6338 }
6339 fprintf (file, ")\n");
6340
6341 if (flags & TDF_VERBOSE)
6342 print_node (file, "", fn, 2);
6343
6344 dsf = DECL_STRUCT_FUNCTION (fn);
6345 if (dsf && (flags & TDF_EH))
6346 dump_eh_tree (file, dsf);
6347
6348 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6349 {
6350 dump_node (fn, TDF_SLIM | flags, file);
6351 return;
6352 }
6353
6354 /* Switch CFUN to point to FN. */
6355 push_cfun (DECL_STRUCT_FUNCTION (fn));
6356
6357 /* When GIMPLE is lowered, the variables are no longer available in
6358 BIND_EXPRs, so display them separately. */
6359 if (cfun && cfun->decl == fn && cfun->local_decls)
6360 {
6361 ignore_topmost_bind = true;
6362
6363 fprintf (file, "{\n");
6364 for (vars = cfun->local_decls; vars; vars = TREE_CHAIN (vars))
6365 {
6366 var = TREE_VALUE (vars);
6367
6368 print_generic_decl (file, var, flags);
6369 if (flags & TDF_VERBOSE)
6370 print_node (file, "", var, 4);
6371 fprintf (file, "\n");
6372
6373 any_var = true;
6374 }
6375 }
6376
6377 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6378 {
6379 /* If the CFG has been built, emit a CFG-based dump. */
6380 check_bb_profile (ENTRY_BLOCK_PTR, file);
6381 if (!ignore_topmost_bind)
6382 fprintf (file, "{\n");
6383
6384 if (any_var && n_basic_blocks)
6385 fprintf (file, "\n");
6386
6387 FOR_EACH_BB (bb)
6388 gimple_dump_bb (bb, file, 2, flags);
6389
6390 fprintf (file, "}\n");
6391 check_bb_profile (EXIT_BLOCK_PTR, file);
6392 }
6393 else if (DECL_SAVED_TREE (fn) == NULL)
6394 {
6395 /* The function is now in GIMPLE form but the CFG has not been
6396 built yet. Emit the single sequence of GIMPLE statements
6397 that make up its body. */
6398 gimple_seq body = gimple_body (fn);
6399
6400 if (gimple_seq_first_stmt (body)
6401 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6402 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6403 print_gimple_seq (file, body, 0, flags);
6404 else
6405 {
6406 if (!ignore_topmost_bind)
6407 fprintf (file, "{\n");
6408
6409 if (any_var)
6410 fprintf (file, "\n");
6411
6412 print_gimple_seq (file, body, 2, flags);
6413 fprintf (file, "}\n");
6414 }
6415 }
6416 else
6417 {
6418 int indent;
6419
6420 /* Make a tree based dump. */
6421 chain = DECL_SAVED_TREE (fn);
6422
6423 if (chain && TREE_CODE (chain) == BIND_EXPR)
6424 {
6425 if (ignore_topmost_bind)
6426 {
6427 chain = BIND_EXPR_BODY (chain);
6428 indent = 2;
6429 }
6430 else
6431 indent = 0;
6432 }
6433 else
6434 {
6435 if (!ignore_topmost_bind)
6436 fprintf (file, "{\n");
6437 indent = 2;
6438 }
6439
6440 if (any_var)
6441 fprintf (file, "\n");
6442
6443 print_generic_stmt_indented (file, chain, flags, indent);
6444 if (ignore_topmost_bind)
6445 fprintf (file, "}\n");
6446 }
6447
6448 fprintf (file, "\n\n");
6449
6450 /* Restore CFUN. */
6451 pop_cfun ();
6452 }
6453
6454
6455 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6456
6457 DEBUG_FUNCTION void
6458 debug_function (tree fn, int flags)
6459 {
6460 dump_function_to_file (fn, stderr, flags);
6461 }
6462
6463
6464 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6465
6466 static void
6467 print_pred_bbs (FILE *file, basic_block bb)
6468 {
6469 edge e;
6470 edge_iterator ei;
6471
6472 FOR_EACH_EDGE (e, ei, bb->preds)
6473 fprintf (file, "bb_%d ", e->src->index);
6474 }
6475
6476
6477 /* Print on FILE the indexes for the successors of basic_block BB. */
6478
6479 static void
6480 print_succ_bbs (FILE *file, basic_block bb)
6481 {
6482 edge e;
6483 edge_iterator ei;
6484
6485 FOR_EACH_EDGE (e, ei, bb->succs)
6486 fprintf (file, "bb_%d ", e->dest->index);
6487 }
6488
6489 /* Print to FILE the basic block BB following the VERBOSITY level. */
6490
6491 void
6492 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6493 {
6494 char *s_indent = (char *) alloca ((size_t) indent + 1);
6495 memset ((void *) s_indent, ' ', (size_t) indent);
6496 s_indent[indent] = '\0';
6497
6498 /* Print basic_block's header. */
6499 if (verbosity >= 2)
6500 {
6501 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6502 print_pred_bbs (file, bb);
6503 fprintf (file, "}, succs = {");
6504 print_succ_bbs (file, bb);
6505 fprintf (file, "})\n");
6506 }
6507
6508 /* Print basic_block's body. */
6509 if (verbosity >= 3)
6510 {
6511 fprintf (file, "%s {\n", s_indent);
6512 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6513 fprintf (file, "%s }\n", s_indent);
6514 }
6515 }
6516
6517 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6518
6519 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6520 VERBOSITY level this outputs the contents of the loop, or just its
6521 structure. */
6522
6523 static void
6524 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6525 {
6526 char *s_indent;
6527 basic_block bb;
6528
6529 if (loop == NULL)
6530 return;
6531
6532 s_indent = (char *) alloca ((size_t) indent + 1);
6533 memset ((void *) s_indent, ' ', (size_t) indent);
6534 s_indent[indent] = '\0';
6535
6536 /* Print loop's header. */
6537 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6538 loop->num, loop->header->index, loop->latch->index);
6539 fprintf (file, ", niter = ");
6540 print_generic_expr (file, loop->nb_iterations, 0);
6541
6542 if (loop->any_upper_bound)
6543 {
6544 fprintf (file, ", upper_bound = ");
6545 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6546 }
6547
6548 if (loop->any_estimate)
6549 {
6550 fprintf (file, ", estimate = ");
6551 dump_double_int (file, loop->nb_iterations_estimate, true);
6552 }
6553 fprintf (file, ")\n");
6554
6555 /* Print loop's body. */
6556 if (verbosity >= 1)
6557 {
6558 fprintf (file, "%s{\n", s_indent);
6559 FOR_EACH_BB (bb)
6560 if (bb->loop_father == loop)
6561 print_loops_bb (file, bb, indent, verbosity);
6562
6563 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6564 fprintf (file, "%s}\n", s_indent);
6565 }
6566 }
6567
6568 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6569 spaces. Following VERBOSITY level this outputs the contents of the
6570 loop, or just its structure. */
6571
6572 static void
6573 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6574 {
6575 if (loop == NULL)
6576 return;
6577
6578 print_loop (file, loop, indent, verbosity);
6579 print_loop_and_siblings (file, loop->next, indent, verbosity);
6580 }
6581
6582 /* Follow a CFG edge from the entry point of the program, and on entry
6583 of a loop, pretty print the loop structure on FILE. */
6584
6585 void
6586 print_loops (FILE *file, int verbosity)
6587 {
6588 basic_block bb;
6589
6590 bb = ENTRY_BLOCK_PTR;
6591 if (bb && bb->loop_father)
6592 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6593 }
6594
6595
6596 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6597
6598 DEBUG_FUNCTION void
6599 debug_loops (int verbosity)
6600 {
6601 print_loops (stderr, verbosity);
6602 }
6603
6604 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6605
6606 DEBUG_FUNCTION void
6607 debug_loop (struct loop *loop, int verbosity)
6608 {
6609 print_loop (stderr, loop, 0, verbosity);
6610 }
6611
6612 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6613 level. */
6614
6615 DEBUG_FUNCTION void
6616 debug_loop_num (unsigned num, int verbosity)
6617 {
6618 debug_loop (get_loop (num), verbosity);
6619 }
6620
6621 /* Return true if BB ends with a call, possibly followed by some
6622 instructions that must stay with the call. Return false,
6623 otherwise. */
6624
6625 static bool
6626 gimple_block_ends_with_call_p (basic_block bb)
6627 {
6628 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6629 return is_gimple_call (gsi_stmt (gsi));
6630 }
6631
6632
6633 /* Return true if BB ends with a conditional branch. Return false,
6634 otherwise. */
6635
6636 static bool
6637 gimple_block_ends_with_condjump_p (const_basic_block bb)
6638 {
6639 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6640 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6641 }
6642
6643
6644 /* Return true if we need to add fake edge to exit at statement T.
6645 Helper function for gimple_flow_call_edges_add. */
6646
6647 static bool
6648 need_fake_edge_p (gimple t)
6649 {
6650 tree fndecl = NULL_TREE;
6651 int call_flags = 0;
6652
6653 /* NORETURN and LONGJMP calls already have an edge to exit.
6654 CONST and PURE calls do not need one.
6655 We don't currently check for CONST and PURE here, although
6656 it would be a good idea, because those attributes are
6657 figured out from the RTL in mark_constant_function, and
6658 the counter incrementation code from -fprofile-arcs
6659 leads to different results from -fbranch-probabilities. */
6660 if (is_gimple_call (t))
6661 {
6662 fndecl = gimple_call_fndecl (t);
6663 call_flags = gimple_call_flags (t);
6664 }
6665
6666 if (is_gimple_call (t)
6667 && fndecl
6668 && DECL_BUILT_IN (fndecl)
6669 && (call_flags & ECF_NOTHROW)
6670 && !(call_flags & ECF_RETURNS_TWICE)
6671 /* fork() doesn't really return twice, but the effect of
6672 wrapping it in __gcov_fork() which calls __gcov_flush()
6673 and clears the counters before forking has the same
6674 effect as returning twice. Force a fake edge. */
6675 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6676 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6677 return false;
6678
6679 if (is_gimple_call (t)
6680 && !(call_flags & ECF_NORETURN))
6681 return true;
6682
6683 if (gimple_code (t) == GIMPLE_ASM
6684 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6685 return true;
6686
6687 return false;
6688 }
6689
6690
6691 /* Add fake edges to the function exit for any non constant and non
6692 noreturn calls, volatile inline assembly in the bitmap of blocks
6693 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6694 the number of blocks that were split.
6695
6696 The goal is to expose cases in which entering a basic block does
6697 not imply that all subsequent instructions must be executed. */
6698
6699 static int
6700 gimple_flow_call_edges_add (sbitmap blocks)
6701 {
6702 int i;
6703 int blocks_split = 0;
6704 int last_bb = last_basic_block;
6705 bool check_last_block = false;
6706
6707 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6708 return 0;
6709
6710 if (! blocks)
6711 check_last_block = true;
6712 else
6713 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6714
6715 /* In the last basic block, before epilogue generation, there will be
6716 a fallthru edge to EXIT. Special care is required if the last insn
6717 of the last basic block is a call because make_edge folds duplicate
6718 edges, which would result in the fallthru edge also being marked
6719 fake, which would result in the fallthru edge being removed by
6720 remove_fake_edges, which would result in an invalid CFG.
6721
6722 Moreover, we can't elide the outgoing fake edge, since the block
6723 profiler needs to take this into account in order to solve the minimal
6724 spanning tree in the case that the call doesn't return.
6725
6726 Handle this by adding a dummy instruction in a new last basic block. */
6727 if (check_last_block)
6728 {
6729 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6730 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6731 gimple t = NULL;
6732
6733 if (!gsi_end_p (gsi))
6734 t = gsi_stmt (gsi);
6735
6736 if (t && need_fake_edge_p (t))
6737 {
6738 edge e;
6739
6740 e = find_edge (bb, EXIT_BLOCK_PTR);
6741 if (e)
6742 {
6743 gsi_insert_on_edge (e, gimple_build_nop ());
6744 gsi_commit_edge_inserts ();
6745 }
6746 }
6747 }
6748
6749 /* Now add fake edges to the function exit for any non constant
6750 calls since there is no way that we can determine if they will
6751 return or not... */
6752 for (i = 0; i < last_bb; i++)
6753 {
6754 basic_block bb = BASIC_BLOCK (i);
6755 gimple_stmt_iterator gsi;
6756 gimple stmt, last_stmt;
6757
6758 if (!bb)
6759 continue;
6760
6761 if (blocks && !TEST_BIT (blocks, i))
6762 continue;
6763
6764 gsi = gsi_last_bb (bb);
6765 if (!gsi_end_p (gsi))
6766 {
6767 last_stmt = gsi_stmt (gsi);
6768 do
6769 {
6770 stmt = gsi_stmt (gsi);
6771 if (need_fake_edge_p (stmt))
6772 {
6773 edge e;
6774
6775 /* The handling above of the final block before the
6776 epilogue should be enough to verify that there is
6777 no edge to the exit block in CFG already.
6778 Calling make_edge in such case would cause us to
6779 mark that edge as fake and remove it later. */
6780 #ifdef ENABLE_CHECKING
6781 if (stmt == last_stmt)
6782 {
6783 e = find_edge (bb, EXIT_BLOCK_PTR);
6784 gcc_assert (e == NULL);
6785 }
6786 #endif
6787
6788 /* Note that the following may create a new basic block
6789 and renumber the existing basic blocks. */
6790 if (stmt != last_stmt)
6791 {
6792 e = split_block (bb, stmt);
6793 if (e)
6794 blocks_split++;
6795 }
6796 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6797 }
6798 gsi_prev (&gsi);
6799 }
6800 while (!gsi_end_p (gsi));
6801 }
6802 }
6803
6804 if (blocks_split)
6805 verify_flow_info ();
6806
6807 return blocks_split;
6808 }
6809
6810 /* Purge dead abnormal call edges from basic block BB. */
6811
6812 bool
6813 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6814 {
6815 bool changed = gimple_purge_dead_eh_edges (bb);
6816
6817 if (cfun->has_nonlocal_label)
6818 {
6819 gimple stmt = last_stmt (bb);
6820 edge_iterator ei;
6821 edge e;
6822
6823 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
6824 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6825 {
6826 if (e->flags & EDGE_ABNORMAL)
6827 {
6828 remove_edge (e);
6829 changed = true;
6830 }
6831 else
6832 ei_next (&ei);
6833 }
6834
6835 /* See gimple_purge_dead_eh_edges below. */
6836 if (changed)
6837 free_dominance_info (CDI_DOMINATORS);
6838 }
6839
6840 return changed;
6841 }
6842
6843 /* Removes edge E and all the blocks dominated by it, and updates dominance
6844 information. The IL in E->src needs to be updated separately.
6845 If dominance info is not available, only the edge E is removed.*/
6846
6847 void
6848 remove_edge_and_dominated_blocks (edge e)
6849 {
6850 VEC (basic_block, heap) *bbs_to_remove = NULL;
6851 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6852 bitmap df, df_idom;
6853 edge f;
6854 edge_iterator ei;
6855 bool none_removed = false;
6856 unsigned i;
6857 basic_block bb, dbb;
6858 bitmap_iterator bi;
6859
6860 if (!dom_info_available_p (CDI_DOMINATORS))
6861 {
6862 remove_edge (e);
6863 return;
6864 }
6865
6866 /* No updating is needed for edges to exit. */
6867 if (e->dest == EXIT_BLOCK_PTR)
6868 {
6869 if (cfgcleanup_altered_bbs)
6870 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6871 remove_edge (e);
6872 return;
6873 }
6874
6875 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6876 that is not dominated by E->dest, then this set is empty. Otherwise,
6877 all the basic blocks dominated by E->dest are removed.
6878
6879 Also, to DF_IDOM we store the immediate dominators of the blocks in
6880 the dominance frontier of E (i.e., of the successors of the
6881 removed blocks, if there are any, and of E->dest otherwise). */
6882 FOR_EACH_EDGE (f, ei, e->dest->preds)
6883 {
6884 if (f == e)
6885 continue;
6886
6887 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6888 {
6889 none_removed = true;
6890 break;
6891 }
6892 }
6893
6894 df = BITMAP_ALLOC (NULL);
6895 df_idom = BITMAP_ALLOC (NULL);
6896
6897 if (none_removed)
6898 bitmap_set_bit (df_idom,
6899 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6900 else
6901 {
6902 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6903 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6904 {
6905 FOR_EACH_EDGE (f, ei, bb->succs)
6906 {
6907 if (f->dest != EXIT_BLOCK_PTR)
6908 bitmap_set_bit (df, f->dest->index);
6909 }
6910 }
6911 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6912 bitmap_clear_bit (df, bb->index);
6913
6914 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6915 {
6916 bb = BASIC_BLOCK (i);
6917 bitmap_set_bit (df_idom,
6918 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6919 }
6920 }
6921
6922 if (cfgcleanup_altered_bbs)
6923 {
6924 /* Record the set of the altered basic blocks. */
6925 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6926 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6927 }
6928
6929 /* Remove E and the cancelled blocks. */
6930 if (none_removed)
6931 remove_edge (e);
6932 else
6933 {
6934 /* Walk backwards so as to get a chance to substitute all
6935 released DEFs into debug stmts. See
6936 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6937 details. */
6938 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6939 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6940 }
6941
6942 /* Update the dominance information. The immediate dominator may change only
6943 for blocks whose immediate dominator belongs to DF_IDOM:
6944
6945 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6946 removal. Let Z the arbitrary block such that idom(Z) = Y and
6947 Z dominates X after the removal. Before removal, there exists a path P
6948 from Y to X that avoids Z. Let F be the last edge on P that is
6949 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6950 dominates W, and because of P, Z does not dominate W), and W belongs to
6951 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6952 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6953 {
6954 bb = BASIC_BLOCK (i);
6955 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6956 dbb;
6957 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6958 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6959 }
6960
6961 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6962
6963 BITMAP_FREE (df);
6964 BITMAP_FREE (df_idom);
6965 VEC_free (basic_block, heap, bbs_to_remove);
6966 VEC_free (basic_block, heap, bbs_to_fix_dom);
6967 }
6968
6969 /* Purge dead EH edges from basic block BB. */
6970
6971 bool
6972 gimple_purge_dead_eh_edges (basic_block bb)
6973 {
6974 bool changed = false;
6975 edge e;
6976 edge_iterator ei;
6977 gimple stmt = last_stmt (bb);
6978
6979 if (stmt && stmt_can_throw_internal (stmt))
6980 return false;
6981
6982 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6983 {
6984 if (e->flags & EDGE_EH)
6985 {
6986 remove_edge_and_dominated_blocks (e);
6987 changed = true;
6988 }
6989 else
6990 ei_next (&ei);
6991 }
6992
6993 return changed;
6994 }
6995
6996 bool
6997 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6998 {
6999 bool changed = false;
7000 unsigned i;
7001 bitmap_iterator bi;
7002
7003 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7004 {
7005 basic_block bb = BASIC_BLOCK (i);
7006
7007 /* Earlier gimple_purge_dead_eh_edges could have removed
7008 this basic block already. */
7009 gcc_assert (bb || changed);
7010 if (bb != NULL)
7011 changed |= gimple_purge_dead_eh_edges (bb);
7012 }
7013
7014 return changed;
7015 }
7016
7017 /* This function is called whenever a new edge is created or
7018 redirected. */
7019
7020 static void
7021 gimple_execute_on_growing_pred (edge e)
7022 {
7023 basic_block bb = e->dest;
7024
7025 if (!gimple_seq_empty_p (phi_nodes (bb)))
7026 reserve_phi_args_for_new_edge (bb);
7027 }
7028
7029 /* This function is called immediately before edge E is removed from
7030 the edge vector E->dest->preds. */
7031
7032 static void
7033 gimple_execute_on_shrinking_pred (edge e)
7034 {
7035 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7036 remove_phi_args (e);
7037 }
7038
7039 /*---------------------------------------------------------------------------
7040 Helper functions for Loop versioning
7041 ---------------------------------------------------------------------------*/
7042
7043 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7044 of 'first'. Both of them are dominated by 'new_head' basic block. When
7045 'new_head' was created by 'second's incoming edge it received phi arguments
7046 on the edge by split_edge(). Later, additional edge 'e' was created to
7047 connect 'new_head' and 'first'. Now this routine adds phi args on this
7048 additional edge 'e' that new_head to second edge received as part of edge
7049 splitting. */
7050
7051 static void
7052 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7053 basic_block new_head, edge e)
7054 {
7055 gimple phi1, phi2;
7056 gimple_stmt_iterator psi1, psi2;
7057 tree def;
7058 edge e2 = find_edge (new_head, second);
7059
7060 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7061 edge, we should always have an edge from NEW_HEAD to SECOND. */
7062 gcc_assert (e2 != NULL);
7063
7064 /* Browse all 'second' basic block phi nodes and add phi args to
7065 edge 'e' for 'first' head. PHI args are always in correct order. */
7066
7067 for (psi2 = gsi_start_phis (second),
7068 psi1 = gsi_start_phis (first);
7069 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7070 gsi_next (&psi2), gsi_next (&psi1))
7071 {
7072 phi1 = gsi_stmt (psi1);
7073 phi2 = gsi_stmt (psi2);
7074 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7075 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7076 }
7077 }
7078
7079
7080 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7081 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7082 the destination of the ELSE part. */
7083
7084 static void
7085 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7086 basic_block second_head ATTRIBUTE_UNUSED,
7087 basic_block cond_bb, void *cond_e)
7088 {
7089 gimple_stmt_iterator gsi;
7090 gimple new_cond_expr;
7091 tree cond_expr = (tree) cond_e;
7092 edge e0;
7093
7094 /* Build new conditional expr */
7095 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7096 NULL_TREE, NULL_TREE);
7097
7098 /* Add new cond in cond_bb. */
7099 gsi = gsi_last_bb (cond_bb);
7100 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7101
7102 /* Adjust edges appropriately to connect new head with first head
7103 as well as second head. */
7104 e0 = single_succ_edge (cond_bb);
7105 e0->flags &= ~EDGE_FALLTHRU;
7106 e0->flags |= EDGE_FALSE_VALUE;
7107 }
7108
7109 struct cfg_hooks gimple_cfg_hooks = {
7110 "gimple",
7111 gimple_verify_flow_info,
7112 gimple_dump_bb, /* dump_bb */
7113 create_bb, /* create_basic_block */
7114 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7115 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7116 gimple_can_remove_branch_p, /* can_remove_branch_p */
7117 remove_bb, /* delete_basic_block */
7118 gimple_split_block, /* split_block */
7119 gimple_move_block_after, /* move_block_after */
7120 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7121 gimple_merge_blocks, /* merge_blocks */
7122 gimple_predict_edge, /* predict_edge */
7123 gimple_predicted_by_p, /* predicted_by_p */
7124 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7125 gimple_duplicate_bb, /* duplicate_block */
7126 gimple_split_edge, /* split_edge */
7127 gimple_make_forwarder_block, /* make_forward_block */
7128 NULL, /* tidy_fallthru_edge */
7129 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7130 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7131 gimple_flow_call_edges_add, /* flow_call_edges_add */
7132 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7133 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7134 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7135 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7136 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7137 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7138 flush_pending_stmts /* flush_pending_stmts */
7139 };
7140
7141
7142 /* Split all critical edges. */
7143
7144 static unsigned int
7145 split_critical_edges (void)
7146 {
7147 basic_block bb;
7148 edge e;
7149 edge_iterator ei;
7150
7151 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7152 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7153 mappings around the calls to split_edge. */
7154 start_recording_case_labels ();
7155 FOR_ALL_BB (bb)
7156 {
7157 FOR_EACH_EDGE (e, ei, bb->succs)
7158 {
7159 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7160 split_edge (e);
7161 /* PRE inserts statements to edges and expects that
7162 since split_critical_edges was done beforehand, committing edge
7163 insertions will not split more edges. In addition to critical
7164 edges we must split edges that have multiple successors and
7165 end by control flow statements, such as RESX.
7166 Go ahead and split them too. This matches the logic in
7167 gimple_find_edge_insert_loc. */
7168 else if ((!single_pred_p (e->dest)
7169 || !gimple_seq_empty_p (phi_nodes (e->dest))
7170 || e->dest == EXIT_BLOCK_PTR)
7171 && e->src != ENTRY_BLOCK_PTR
7172 && !(e->flags & EDGE_ABNORMAL))
7173 {
7174 gimple_stmt_iterator gsi;
7175
7176 gsi = gsi_last_bb (e->src);
7177 if (!gsi_end_p (gsi)
7178 && stmt_ends_bb_p (gsi_stmt (gsi))
7179 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7180 && !gimple_call_builtin_p (gsi_stmt (gsi),
7181 BUILT_IN_RETURN)))
7182 split_edge (e);
7183 }
7184 }
7185 }
7186 end_recording_case_labels ();
7187 return 0;
7188 }
7189
7190 struct gimple_opt_pass pass_split_crit_edges =
7191 {
7192 {
7193 GIMPLE_PASS,
7194 "crited", /* name */
7195 NULL, /* gate */
7196 split_critical_edges, /* execute */
7197 NULL, /* sub */
7198 NULL, /* next */
7199 0, /* static_pass_number */
7200 TV_TREE_SPLIT_EDGES, /* tv_id */
7201 PROP_cfg, /* properties required */
7202 PROP_no_crit_edges, /* properties_provided */
7203 0, /* properties_destroyed */
7204 0, /* todo_flags_start */
7205 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7206 }
7207 };
7208
7209
7210 /* Build a ternary operation and gimplify it. Emit code before GSI.
7211 Return the gimple_val holding the result. */
7212
7213 tree
7214 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7215 tree type, tree a, tree b, tree c)
7216 {
7217 tree ret;
7218 location_t loc = gimple_location (gsi_stmt (*gsi));
7219
7220 ret = fold_build3_loc (loc, code, type, a, b, c);
7221 STRIP_NOPS (ret);
7222
7223 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7224 GSI_SAME_STMT);
7225 }
7226
7227 /* Build a binary operation and gimplify it. Emit code before GSI.
7228 Return the gimple_val holding the result. */
7229
7230 tree
7231 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7232 tree type, tree a, tree b)
7233 {
7234 tree ret;
7235
7236 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7237 STRIP_NOPS (ret);
7238
7239 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7240 GSI_SAME_STMT);
7241 }
7242
7243 /* Build a unary operation and gimplify it. Emit code before GSI.
7244 Return the gimple_val holding the result. */
7245
7246 tree
7247 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7248 tree a)
7249 {
7250 tree ret;
7251
7252 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7253 STRIP_NOPS (ret);
7254
7255 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7256 GSI_SAME_STMT);
7257 }
7258
7259
7260 \f
7261 /* Emit return warnings. */
7262
7263 static unsigned int
7264 execute_warn_function_return (void)
7265 {
7266 source_location location;
7267 gimple last;
7268 edge e;
7269 edge_iterator ei;
7270
7271 /* If we have a path to EXIT, then we do return. */
7272 if (TREE_THIS_VOLATILE (cfun->decl)
7273 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7274 {
7275 location = UNKNOWN_LOCATION;
7276 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7277 {
7278 last = last_stmt (e->src);
7279 if ((gimple_code (last) == GIMPLE_RETURN
7280 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7281 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7282 break;
7283 }
7284 if (location == UNKNOWN_LOCATION)
7285 location = cfun->function_end_locus;
7286 warning_at (location, 0, "%<noreturn%> function does return");
7287 }
7288
7289 /* If we see "return;" in some basic block, then we do reach the end
7290 without returning a value. */
7291 else if (warn_return_type
7292 && !TREE_NO_WARNING (cfun->decl)
7293 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7294 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7295 {
7296 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7297 {
7298 gimple last = last_stmt (e->src);
7299 if (gimple_code (last) == GIMPLE_RETURN
7300 && gimple_return_retval (last) == NULL
7301 && !gimple_no_warning_p (last))
7302 {
7303 location = gimple_location (last);
7304 if (location == UNKNOWN_LOCATION)
7305 location = cfun->function_end_locus;
7306 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7307 TREE_NO_WARNING (cfun->decl) = 1;
7308 break;
7309 }
7310 }
7311 }
7312 return 0;
7313 }
7314
7315
7316 /* Given a basic block B which ends with a conditional and has
7317 precisely two successors, determine which of the edges is taken if
7318 the conditional is true and which is taken if the conditional is
7319 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7320
7321 void
7322 extract_true_false_edges_from_block (basic_block b,
7323 edge *true_edge,
7324 edge *false_edge)
7325 {
7326 edge e = EDGE_SUCC (b, 0);
7327
7328 if (e->flags & EDGE_TRUE_VALUE)
7329 {
7330 *true_edge = e;
7331 *false_edge = EDGE_SUCC (b, 1);
7332 }
7333 else
7334 {
7335 *false_edge = e;
7336 *true_edge = EDGE_SUCC (b, 1);
7337 }
7338 }
7339
7340 struct gimple_opt_pass pass_warn_function_return =
7341 {
7342 {
7343 GIMPLE_PASS,
7344 "*warn_function_return", /* name */
7345 NULL, /* gate */
7346 execute_warn_function_return, /* execute */
7347 NULL, /* sub */
7348 NULL, /* next */
7349 0, /* static_pass_number */
7350 TV_NONE, /* tv_id */
7351 PROP_cfg, /* properties_required */
7352 0, /* properties_provided */
7353 0, /* properties_destroyed */
7354 0, /* todo_flags_start */
7355 0 /* todo_flags_finish */
7356 }
7357 };
7358
7359 /* Emit noreturn warnings. */
7360
7361 static unsigned int
7362 execute_warn_function_noreturn (void)
7363 {
7364 if (!TREE_THIS_VOLATILE (current_function_decl)
7365 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7366 warn_function_noreturn (current_function_decl);
7367 return 0;
7368 }
7369
7370 static bool
7371 gate_warn_function_noreturn (void)
7372 {
7373 return warn_suggest_attribute_noreturn;
7374 }
7375
7376 struct gimple_opt_pass pass_warn_function_noreturn =
7377 {
7378 {
7379 GIMPLE_PASS,
7380 "*warn_function_noreturn", /* name */
7381 gate_warn_function_noreturn, /* gate */
7382 execute_warn_function_noreturn, /* execute */
7383 NULL, /* sub */
7384 NULL, /* next */
7385 0, /* static_pass_number */
7386 TV_NONE, /* tv_id */
7387 PROP_cfg, /* properties_required */
7388 0, /* properties_provided */
7389 0, /* properties_destroyed */
7390 0, /* todo_flags_start */
7391 0 /* todo_flags_finish */
7392 }
7393 };
7394
7395
7396 /* Walk a gimplified function and warn for functions whose return value is
7397 ignored and attribute((warn_unused_result)) is set. This is done before
7398 inlining, so we don't have to worry about that. */
7399
7400 static void
7401 do_warn_unused_result (gimple_seq seq)
7402 {
7403 tree fdecl, ftype;
7404 gimple_stmt_iterator i;
7405
7406 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7407 {
7408 gimple g = gsi_stmt (i);
7409
7410 switch (gimple_code (g))
7411 {
7412 case GIMPLE_BIND:
7413 do_warn_unused_result (gimple_bind_body (g));
7414 break;
7415 case GIMPLE_TRY:
7416 do_warn_unused_result (gimple_try_eval (g));
7417 do_warn_unused_result (gimple_try_cleanup (g));
7418 break;
7419 case GIMPLE_CATCH:
7420 do_warn_unused_result (gimple_catch_handler (g));
7421 break;
7422 case GIMPLE_EH_FILTER:
7423 do_warn_unused_result (gimple_eh_filter_failure (g));
7424 break;
7425
7426 case GIMPLE_CALL:
7427 if (gimple_call_lhs (g))
7428 break;
7429
7430 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7431 LHS. All calls whose value is ignored should be
7432 represented like this. Look for the attribute. */
7433 fdecl = gimple_call_fndecl (g);
7434 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7435
7436 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7437 {
7438 location_t loc = gimple_location (g);
7439
7440 if (fdecl)
7441 warning_at (loc, OPT_Wunused_result,
7442 "ignoring return value of %qD, "
7443 "declared with attribute warn_unused_result",
7444 fdecl);
7445 else
7446 warning_at (loc, OPT_Wunused_result,
7447 "ignoring return value of function "
7448 "declared with attribute warn_unused_result");
7449 }
7450 break;
7451
7452 default:
7453 /* Not a container, not a call, or a call whose value is used. */
7454 break;
7455 }
7456 }
7457 }
7458
7459 static unsigned int
7460 run_warn_unused_result (void)
7461 {
7462 do_warn_unused_result (gimple_body (current_function_decl));
7463 return 0;
7464 }
7465
7466 static bool
7467 gate_warn_unused_result (void)
7468 {
7469 return flag_warn_unused_result;
7470 }
7471
7472 struct gimple_opt_pass pass_warn_unused_result =
7473 {
7474 {
7475 GIMPLE_PASS,
7476 "*warn_unused_result", /* name */
7477 gate_warn_unused_result, /* gate */
7478 run_warn_unused_result, /* execute */
7479 NULL, /* sub */
7480 NULL, /* next */
7481 0, /* static_pass_number */
7482 TV_NONE, /* tv_id */
7483 PROP_gimple_any, /* properties_required */
7484 0, /* properties_provided */
7485 0, /* properties_destroyed */
7486 0, /* todo_flags_start */
7487 0, /* todo_flags_finish */
7488 }
7489 };
7490