]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-cfg.cc
Implement flat loop profile detection
[thirdparty/gcc.git] / gcc / tree-cfg.cc
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2023 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-iterator.h"
41 #include "gimple-fold.h"
42 #include "tree-eh.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "tree-ssa-dce.h"
58 #include "omp-general.h"
59 #include "omp-expand.h"
60 #include "tree-cfgcleanup.h"
61 #include "gimplify.h"
62 #include "attribs.h"
63 #include "selftest.h"
64 #include "opts.h"
65 #include "asan.h"
66 #include "profile.h"
67 #include "sreal.h"
68
69 /* This file contains functions for building the Control Flow Graph (CFG)
70 for a function tree. */
71
72 /* Local declarations. */
73
74 /* Initial capacity for the basic block array. */
75 static const int initial_cfg_capacity = 20;
76
77 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
78 which use a particular edge. The CASE_LABEL_EXPRs are chained together
79 via their CASE_CHAIN field, which we clear after we're done with the
80 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
81
82 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
83 update the case vector in response to edge redirections.
84
85 Right now this table is set up and torn down at key points in the
86 compilation process. It would be nice if we could make the table
87 more persistent. The key is getting notification of changes to
88 the CFG (particularly edge removal, creation and redirection). */
89
90 static hash_map<edge, tree> *edge_to_cases;
91
92 /* If we record edge_to_cases, this bitmap will hold indexes
93 of basic blocks that end in a GIMPLE_SWITCH which we touched
94 due to edge manipulations. */
95
96 static bitmap touched_switch_bbs;
97
98 /* OpenMP region idxs for blocks during cfg pass. */
99 static vec<int> bb_to_omp_idx;
100
101 /* CFG statistics. */
102 struct cfg_stats_d
103 {
104 long num_merged_labels;
105 };
106
107 static struct cfg_stats_d cfg_stats;
108
109 /* Data to pass to replace_block_vars_by_duplicates_1. */
110 struct replace_decls_d
111 {
112 hash_map<tree, tree> *vars_map;
113 tree to_context;
114 };
115
116 /* Hash table to store last discriminator assigned for each locus. */
117 struct locus_discrim_map
118 {
119 int location_line;
120 int discriminator;
121 };
122
123 /* Hashtable helpers. */
124
125 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
126 {
127 static inline hashval_t hash (const locus_discrim_map *);
128 static inline bool equal (const locus_discrim_map *,
129 const locus_discrim_map *);
130 };
131
132 /* Trivial hash function for a location_t. ITEM is a pointer to
133 a hash table entry that maps a location_t to a discriminator. */
134
135 inline hashval_t
136 locus_discrim_hasher::hash (const locus_discrim_map *item)
137 {
138 return item->location_line;
139 }
140
141 /* Equality function for the locus-to-discriminator map. A and B
142 point to the two hash table entries to compare. */
143
144 inline bool
145 locus_discrim_hasher::equal (const locus_discrim_map *a,
146 const locus_discrim_map *b)
147 {
148 return a->location_line == b->location_line;
149 }
150
151 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
152
153 /* Basic blocks and flowgraphs. */
154 static void make_blocks (gimple_seq);
155
156 /* Edges. */
157 static void make_edges (void);
158 static void assign_discriminators (void);
159 static void make_cond_expr_edges (basic_block);
160 static void make_gimple_switch_edges (gswitch *, basic_block);
161 static bool make_goto_expr_edges (basic_block);
162 static void make_gimple_asm_edges (basic_block);
163 static edge gimple_redirect_edge_and_branch (edge, basic_block);
164 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
165
166 /* Various helpers. */
167 static inline bool stmt_starts_bb_p (gimple *, gimple *);
168 static bool gimple_verify_flow_info (void);
169 static void gimple_make_forwarder_block (edge);
170 static gimple *first_non_label_stmt (basic_block);
171 static bool verify_gimple_transaction (gtransaction *);
172 static bool call_can_make_abnormal_goto (gimple *);
173
174 /* Flowgraph optimization and cleanup. */
175 static void gimple_merge_blocks (basic_block, basic_block);
176 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
177 static void remove_bb (basic_block);
178 static edge find_taken_edge_computed_goto (basic_block, tree);
179 static edge find_taken_edge_cond_expr (const gcond *, tree);
180
181 void
182 init_empty_tree_cfg_for_function (struct function *fn)
183 {
184 /* Initialize the basic block array. */
185 init_flow (fn);
186 profile_status_for_fn (fn) = PROFILE_ABSENT;
187 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
188 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
189 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
190 initial_cfg_capacity, true);
191
192 /* Build a mapping of labels to their associated blocks. */
193 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
194 initial_cfg_capacity, true);
195
196 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
197 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
198
199 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
200 = EXIT_BLOCK_PTR_FOR_FN (fn);
201 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
202 = ENTRY_BLOCK_PTR_FOR_FN (fn);
203 }
204
205 void
206 init_empty_tree_cfg (void)
207 {
208 init_empty_tree_cfg_for_function (cfun);
209 }
210
211 /*---------------------------------------------------------------------------
212 Create basic blocks
213 ---------------------------------------------------------------------------*/
214
215 /* Entry point to the CFG builder for trees. SEQ is the sequence of
216 statements to be added to the flowgraph. */
217
218 static void
219 build_gimple_cfg (gimple_seq seq)
220 {
221 /* Register specific gimple functions. */
222 gimple_register_cfg_hooks ();
223
224 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
225
226 init_empty_tree_cfg ();
227
228 make_blocks (seq);
229
230 /* Make sure there is always at least one block, even if it's empty. */
231 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
232 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233
234 /* Adjust the size of the array. */
235 if (basic_block_info_for_fn (cfun)->length ()
236 < (size_t) n_basic_blocks_for_fn (cfun))
237 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
238 n_basic_blocks_for_fn (cfun));
239
240 /* To speed up statement iterator walks, we first purge dead labels. */
241 cleanup_dead_labels ();
242
243 /* Group case nodes to reduce the number of edges.
244 We do this after cleaning up dead labels because otherwise we miss
245 a lot of obvious case merging opportunities. */
246 group_case_labels ();
247
248 /* Create the edges of the flowgraph. */
249 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
250 make_edges ();
251 assign_discriminators ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus;
254 discriminator_per_locus = NULL;
255 }
256
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
260
261 static void
262 replace_loop_annotate_in_block (basic_block bb, class loop *loop)
263 {
264 gimple_stmt_iterator gsi = gsi_last_bb (bb);
265 gimple *stmt = gsi_stmt (gsi);
266
267 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
268 return;
269
270 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
271 {
272 stmt = gsi_stmt (gsi);
273 if (gimple_code (stmt) != GIMPLE_CALL)
274 break;
275 if (!gimple_call_internal_p (stmt)
276 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
277 break;
278
279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
280 {
281 case annot_expr_ivdep_kind:
282 loop->safelen = INT_MAX;
283 break;
284 case annot_expr_unroll_kind:
285 loop->unroll
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
287 cfun->has_unroll = true;
288 break;
289 case annot_expr_no_vector_kind:
290 loop->dont_vectorize = true;
291 break;
292 case annot_expr_vector_kind:
293 loop->force_vectorize = true;
294 cfun->has_force_vectorize_loops = true;
295 break;
296 case annot_expr_parallel_kind:
297 loop->can_be_parallel = true;
298 loop->safelen = INT_MAX;
299 break;
300 default:
301 gcc_unreachable ();
302 }
303
304 stmt = gimple_build_assign (gimple_call_lhs (stmt),
305 gimple_call_arg (stmt, 0));
306 gsi_replace (&gsi, stmt, true);
307 }
308 }
309
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
313
314 static void
315 replace_loop_annotate (void)
316 {
317 basic_block bb;
318 gimple_stmt_iterator gsi;
319 gimple *stmt;
320
321 for (auto loop : loops_list (cfun, 0))
322 {
323 /* First look into the header. */
324 replace_loop_annotate_in_block (loop->header, loop);
325
326 /* Then look into the latch, if any. */
327 if (loop->latch)
328 replace_loop_annotate_in_block (loop->latch, loop);
329
330 /* Push the global flag_finite_loops state down to individual loops. */
331 loop->finite_p = flag_finite_loops;
332 }
333
334 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
335 FOR_EACH_BB_FN (bb, cfun)
336 {
337 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
338 {
339 stmt = gsi_stmt (gsi);
340 if (gimple_code (stmt) != GIMPLE_CALL)
341 continue;
342 if (!gimple_call_internal_p (stmt)
343 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
344 continue;
345
346 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
347 {
348 case annot_expr_ivdep_kind:
349 case annot_expr_unroll_kind:
350 case annot_expr_no_vector_kind:
351 case annot_expr_vector_kind:
352 case annot_expr_parallel_kind:
353 break;
354 default:
355 gcc_unreachable ();
356 }
357
358 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
359 stmt = gimple_build_assign (gimple_call_lhs (stmt),
360 gimple_call_arg (stmt, 0));
361 gsi_replace (&gsi, stmt, true);
362 }
363 }
364 }
365
366 static unsigned int
367 execute_build_cfg (void)
368 {
369 gimple_seq body = gimple_body (current_function_decl);
370
371 build_gimple_cfg (body);
372 gimple_set_body (current_function_decl, NULL);
373 if (dump_file && (dump_flags & TDF_DETAILS))
374 {
375 fprintf (dump_file, "Scope blocks:\n");
376 dump_scope_blocks (dump_file, dump_flags);
377 }
378 cleanup_tree_cfg ();
379
380 bb_to_omp_idx.release ();
381
382 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
383 replace_loop_annotate ();
384 return 0;
385 }
386
387 namespace {
388
389 const pass_data pass_data_build_cfg =
390 {
391 GIMPLE_PASS, /* type */
392 "cfg", /* name */
393 OPTGROUP_NONE, /* optinfo_flags */
394 TV_TREE_CFG, /* tv_id */
395 PROP_gimple_leh, /* properties_required */
396 ( PROP_cfg | PROP_loops ), /* properties_provided */
397 0, /* properties_destroyed */
398 0, /* todo_flags_start */
399 0, /* todo_flags_finish */
400 };
401
402 class pass_build_cfg : public gimple_opt_pass
403 {
404 public:
405 pass_build_cfg (gcc::context *ctxt)
406 : gimple_opt_pass (pass_data_build_cfg, ctxt)
407 {}
408
409 /* opt_pass methods: */
410 unsigned int execute (function *) final override
411 {
412 return execute_build_cfg ();
413 }
414
415 }; // class pass_build_cfg
416
417 } // anon namespace
418
419 gimple_opt_pass *
420 make_pass_build_cfg (gcc::context *ctxt)
421 {
422 return new pass_build_cfg (ctxt);
423 }
424
425
426 /* Return true if T is a computed goto. */
427
428 bool
429 computed_goto_p (gimple *t)
430 {
431 return (gimple_code (t) == GIMPLE_GOTO
432 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
433 }
434
435 /* Returns true if the sequence of statements STMTS only contains
436 a call to __builtin_unreachable (). */
437
438 bool
439 gimple_seq_unreachable_p (gimple_seq stmts)
440 {
441 if (stmts == NULL
442 /* Return false if -fsanitize=unreachable, we don't want to
443 optimize away those calls, but rather turn them into
444 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
445 later. */
446 || sanitize_flags_p (SANITIZE_UNREACHABLE))
447 return false;
448
449 gimple_stmt_iterator gsi = gsi_last (stmts);
450
451 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
452 return false;
453
454 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
455 {
456 gimple *stmt = gsi_stmt (gsi);
457 if (gimple_code (stmt) != GIMPLE_LABEL
458 && !is_gimple_debug (stmt)
459 && !gimple_clobber_p (stmt))
460 return false;
461 }
462 return true;
463 }
464
465 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
466 the other edge points to a bb with just __builtin_unreachable ().
467 I.e. return true for C->M edge in:
468 <bb C>:
469 ...
470 if (something)
471 goto <bb N>;
472 else
473 goto <bb M>;
474 <bb N>:
475 __builtin_unreachable ();
476 <bb M>: */
477
478 bool
479 assert_unreachable_fallthru_edge_p (edge e)
480 {
481 basic_block pred_bb = e->src;
482 if (safe_is_a <gcond *> (*gsi_last_bb (pred_bb)))
483 {
484 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
485 if (other_bb == e->dest)
486 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
487 if (EDGE_COUNT (other_bb->succs) == 0)
488 return gimple_seq_unreachable_p (bb_seq (other_bb));
489 }
490 return false;
491 }
492
493
494 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
495 could alter control flow except via eh. We initialize the flag at
496 CFG build time and only ever clear it later. */
497
498 static void
499 gimple_call_initialize_ctrl_altering (gimple *stmt)
500 {
501 int flags = gimple_call_flags (stmt);
502
503 /* A call alters control flow if it can make an abnormal goto. */
504 if (call_can_make_abnormal_goto (stmt)
505 /* A call also alters control flow if it does not return. */
506 || flags & ECF_NORETURN
507 /* TM ending statements have backedges out of the transaction.
508 Return true so we split the basic block containing them.
509 Note that the TM_BUILTIN test is merely an optimization. */
510 || ((flags & ECF_TM_BUILTIN)
511 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
512 /* BUILT_IN_RETURN call is same as return statement. */
513 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
514 /* IFN_UNIQUE should be the last insn, to make checking for it
515 as cheap as possible. */
516 || (gimple_call_internal_p (stmt)
517 && gimple_call_internal_unique_p (stmt)))
518 gimple_call_set_ctrl_altering (stmt, true);
519 else
520 gimple_call_set_ctrl_altering (stmt, false);
521 }
522
523
524 /* Insert SEQ after BB and build a flowgraph. */
525
526 static basic_block
527 make_blocks_1 (gimple_seq seq, basic_block bb)
528 {
529 gimple_stmt_iterator i = gsi_start (seq);
530 gimple *stmt = NULL;
531 gimple *prev_stmt = NULL;
532 bool start_new_block = true;
533 bool first_stmt_of_seq = true;
534
535 while (!gsi_end_p (i))
536 {
537 /* PREV_STMT should only be set to a debug stmt if the debug
538 stmt is before nondebug stmts. Once stmt reaches a nondebug
539 nonlabel, prev_stmt will be set to it, so that
540 stmt_starts_bb_p will know to start a new block if a label is
541 found. However, if stmt was a label after debug stmts only,
542 keep the label in prev_stmt even if we find further debug
543 stmts, for there may be other labels after them, and they
544 should land in the same block. */
545 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
546 prev_stmt = stmt;
547 stmt = gsi_stmt (i);
548
549 if (stmt && is_gimple_call (stmt))
550 gimple_call_initialize_ctrl_altering (stmt);
551
552 /* If the statement starts a new basic block or if we have determined
553 in a previous pass that we need to create a new block for STMT, do
554 so now. */
555 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
556 {
557 if (!first_stmt_of_seq)
558 gsi_split_seq_before (&i, &seq);
559 bb = create_basic_block (seq, bb);
560 start_new_block = false;
561 prev_stmt = NULL;
562 }
563
564 /* Now add STMT to BB and create the subgraphs for special statement
565 codes. */
566 gimple_set_bb (stmt, bb);
567
568 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
569 next iteration. */
570 if (stmt_ends_bb_p (stmt))
571 {
572 /* If the stmt can make abnormal goto use a new temporary
573 for the assignment to the LHS. This makes sure the old value
574 of the LHS is available on the abnormal edge. Otherwise
575 we will end up with overlapping life-ranges for abnormal
576 SSA names. */
577 if (gimple_has_lhs (stmt)
578 && stmt_can_make_abnormal_goto (stmt)
579 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
580 {
581 tree lhs = gimple_get_lhs (stmt);
582 tree tmp = create_tmp_var (TREE_TYPE (lhs));
583 gimple *s = gimple_build_assign (lhs, tmp);
584 gimple_set_location (s, gimple_location (stmt));
585 gimple_set_block (s, gimple_block (stmt));
586 gimple_set_lhs (stmt, tmp);
587 gsi_insert_after (&i, s, GSI_SAME_STMT);
588 }
589 start_new_block = true;
590 }
591
592 gsi_next (&i);
593 first_stmt_of_seq = false;
594 }
595 return bb;
596 }
597
598 /* Build a flowgraph for the sequence of stmts SEQ. */
599
600 static void
601 make_blocks (gimple_seq seq)
602 {
603 /* Look for debug markers right before labels, and move the debug
604 stmts after the labels. Accepting labels among debug markers
605 adds no value, just complexity; if we wanted to annotate labels
606 with view numbers (so sequencing among markers would matter) or
607 somesuch, we're probably better off still moving the labels, but
608 adding other debug annotations in their original positions or
609 emitting nonbind or bind markers associated with the labels in
610 the original position of the labels.
611
612 Moving labels would probably be simpler, but we can't do that:
613 moving labels assigns label ids to them, and doing so because of
614 debug markers makes for -fcompare-debug and possibly even codegen
615 differences. So, we have to move the debug stmts instead. To
616 that end, we scan SEQ backwards, marking the position of the
617 latest (earliest we find) label, and moving debug stmts that are
618 not separated from it by nondebug nonlabel stmts after the
619 label. */
620 if (MAY_HAVE_DEBUG_MARKER_STMTS)
621 {
622 gimple_stmt_iterator label = gsi_none ();
623
624 for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i))
625 {
626 gimple *stmt = gsi_stmt (i);
627
628 /* If this is the first label we encounter (latest in SEQ)
629 before nondebug stmts, record its position. */
630 if (is_a <glabel *> (stmt))
631 {
632 if (gsi_end_p (label))
633 label = i;
634 continue;
635 }
636
637 /* Without a recorded label position to move debug stmts to,
638 there's nothing to do. */
639 if (gsi_end_p (label))
640 continue;
641
642 /* Move the debug stmt at I after LABEL. */
643 if (is_gimple_debug (stmt))
644 {
645 gcc_assert (gimple_debug_nonbind_marker_p (stmt));
646 /* As STMT is removed, I advances to the stmt after
647 STMT, so the gsi_prev in the for "increment"
648 expression gets us to the stmt we're to visit after
649 STMT. LABEL, however, would advance to the moved
650 stmt if we passed it to gsi_move_after, so pass it a
651 copy instead, so as to keep LABEL pointing to the
652 LABEL. */
653 gimple_stmt_iterator copy = label;
654 gsi_move_after (&i, &copy);
655 continue;
656 }
657
658 /* There aren't any (more?) debug stmts before label, so
659 there isn't anything else to move after it. */
660 label = gsi_none ();
661 }
662 }
663
664 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
665 }
666
667 /* Create and return a new empty basic block after bb AFTER. */
668
669 static basic_block
670 create_bb (void *h, void *e, basic_block after)
671 {
672 basic_block bb;
673
674 gcc_assert (!e);
675
676 /* Create and initialize a new basic block. Since alloc_block uses
677 GC allocation that clears memory to allocate a basic block, we do
678 not have to clear the newly allocated basic block here. */
679 bb = alloc_block ();
680
681 bb->index = last_basic_block_for_fn (cfun);
682 bb->flags = BB_NEW;
683 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
684
685 /* Add the new block to the linked list of blocks. */
686 link_block (bb, after);
687
688 /* Grow the basic block array if needed. */
689 if ((size_t) last_basic_block_for_fn (cfun)
690 == basic_block_info_for_fn (cfun)->length ())
691 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
692 last_basic_block_for_fn (cfun) + 1);
693
694 /* Add the newly created block to the array. */
695 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
696
697 n_basic_blocks_for_fn (cfun)++;
698 last_basic_block_for_fn (cfun)++;
699
700 return bb;
701 }
702
703
704 /*---------------------------------------------------------------------------
705 Edge creation
706 ---------------------------------------------------------------------------*/
707
708 /* If basic block BB has an abnormal edge to a basic block
709 containing IFN_ABNORMAL_DISPATCHER internal call, return
710 that the dispatcher's basic block, otherwise return NULL. */
711
712 basic_block
713 get_abnormal_succ_dispatcher (basic_block bb)
714 {
715 edge e;
716 edge_iterator ei;
717
718 FOR_EACH_EDGE (e, ei, bb->succs)
719 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
720 {
721 gimple_stmt_iterator gsi
722 = gsi_start_nondebug_after_labels_bb (e->dest);
723 gimple *g = gsi_stmt (gsi);
724 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
725 return e->dest;
726 }
727 return NULL;
728 }
729
730 /* Helper function for make_edges. Create a basic block with
731 with ABNORMAL_DISPATCHER internal call in it if needed, and
732 create abnormal edges from BBS to it and from it to FOR_BB
733 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
734
735 static void
736 handle_abnormal_edges (basic_block *dispatcher_bbs, basic_block for_bb,
737 auto_vec<basic_block> *bbs, bool computed_goto)
738 {
739 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
740 unsigned int idx = 0;
741 basic_block bb;
742 bool inner = false;
743
744 if (!bb_to_omp_idx.is_empty ())
745 {
746 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
747 if (bb_to_omp_idx[for_bb->index] != 0)
748 inner = true;
749 }
750
751 /* If the dispatcher has been created already, then there are basic
752 blocks with abnormal edges to it, so just make a new edge to
753 for_bb. */
754 if (*dispatcher == NULL)
755 {
756 /* Check if there are any basic blocks that need to have
757 abnormal edges to this dispatcher. If there are none, return
758 early. */
759 if (bb_to_omp_idx.is_empty ())
760 {
761 if (bbs->is_empty ())
762 return;
763 }
764 else
765 {
766 FOR_EACH_VEC_ELT (*bbs, idx, bb)
767 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
768 break;
769 if (bb == NULL)
770 return;
771 }
772
773 /* Create the dispatcher bb. */
774 *dispatcher = create_basic_block (NULL, for_bb);
775 if (computed_goto)
776 {
777 /* Factor computed gotos into a common computed goto site. Also
778 record the location of that site so that we can un-factor the
779 gotos after we have converted back to normal form. */
780 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
781
782 /* Create the destination of the factored goto. Each original
783 computed goto will put its desired destination into this
784 variable and jump to the label we create immediately below. */
785 tree var = create_tmp_var (ptr_type_node, "gotovar");
786
787 /* Build a label for the new block which will contain the
788 factored computed goto. */
789 tree factored_label_decl
790 = create_artificial_label (UNKNOWN_LOCATION);
791 gimple *factored_computed_goto_label
792 = gimple_build_label (factored_label_decl);
793 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
794
795 /* Build our new computed goto. */
796 gimple *factored_computed_goto = gimple_build_goto (var);
797 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
798
799 FOR_EACH_VEC_ELT (*bbs, idx, bb)
800 {
801 if (!bb_to_omp_idx.is_empty ()
802 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
803 continue;
804
805 gsi = gsi_last_bb (bb);
806 gimple *last = gsi_stmt (gsi);
807
808 gcc_assert (computed_goto_p (last));
809
810 /* Copy the original computed goto's destination into VAR. */
811 gimple *assignment
812 = gimple_build_assign (var, gimple_goto_dest (last));
813 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
814
815 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
816 e->goto_locus = gimple_location (last);
817 gsi_remove (&gsi, true);
818 }
819 }
820 else
821 {
822 tree arg = inner ? boolean_true_node : boolean_false_node;
823 gcall *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
824 1, arg);
825 gimple_call_set_ctrl_altering (g, true);
826 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
827 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
828
829 /* Create predecessor edges of the dispatcher. */
830 FOR_EACH_VEC_ELT (*bbs, idx, bb)
831 {
832 if (!bb_to_omp_idx.is_empty ()
833 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
834 continue;
835 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
836 }
837 }
838 }
839
840 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
841 }
842
843 /* Creates outgoing edges for BB. Returns 1 when it ends with an
844 computed goto, returns 2 when it ends with a statement that
845 might return to this function via an nonlocal goto, otherwise
846 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
847
848 static int
849 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
850 {
851 gimple *last = *gsi_last_bb (bb);
852 bool fallthru = false;
853 int ret = 0;
854
855 if (!last)
856 return ret;
857
858 switch (gimple_code (last))
859 {
860 case GIMPLE_GOTO:
861 if (make_goto_expr_edges (bb))
862 ret = 1;
863 fallthru = false;
864 break;
865 case GIMPLE_RETURN:
866 {
867 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
868 e->goto_locus = gimple_location (last);
869 fallthru = false;
870 }
871 break;
872 case GIMPLE_COND:
873 make_cond_expr_edges (bb);
874 fallthru = false;
875 break;
876 case GIMPLE_SWITCH:
877 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
878 fallthru = false;
879 break;
880 case GIMPLE_RESX:
881 make_eh_edges (last);
882 fallthru = false;
883 break;
884 case GIMPLE_EH_DISPATCH:
885 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
886 break;
887
888 case GIMPLE_CALL:
889 /* If this function receives a nonlocal goto, then we need to
890 make edges from this call site to all the nonlocal goto
891 handlers. */
892 if (stmt_can_make_abnormal_goto (last))
893 ret = 2;
894
895 /* If this statement has reachable exception handlers, then
896 create abnormal edges to them. */
897 make_eh_edges (last);
898
899 /* BUILTIN_RETURN is really a return statement. */
900 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
901 {
902 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
903 fallthru = false;
904 }
905 /* Some calls are known not to return. */
906 else
907 fallthru = !gimple_call_noreturn_p (last);
908 break;
909
910 case GIMPLE_ASSIGN:
911 /* A GIMPLE_ASSIGN may throw internally and thus be considered
912 control-altering. */
913 if (is_ctrl_altering_stmt (last))
914 make_eh_edges (last);
915 fallthru = true;
916 break;
917
918 case GIMPLE_ASM:
919 make_gimple_asm_edges (bb);
920 fallthru = true;
921 break;
922
923 CASE_GIMPLE_OMP:
924 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
925 break;
926
927 case GIMPLE_TRANSACTION:
928 {
929 gtransaction *txn = as_a <gtransaction *> (last);
930 tree label1 = gimple_transaction_label_norm (txn);
931 tree label2 = gimple_transaction_label_uninst (txn);
932
933 if (label1)
934 make_edge (bb, label_to_block (cfun, label1), EDGE_FALLTHRU);
935 if (label2)
936 make_edge (bb, label_to_block (cfun, label2),
937 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
938
939 tree label3 = gimple_transaction_label_over (txn);
940 if (gimple_transaction_subcode (txn)
941 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
942 make_edge (bb, label_to_block (cfun, label3), EDGE_TM_ABORT);
943
944 fallthru = false;
945 }
946 break;
947
948 default:
949 gcc_assert (!stmt_ends_bb_p (last));
950 fallthru = true;
951 break;
952 }
953
954 if (fallthru)
955 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
956
957 return ret;
958 }
959
960 /* Join all the blocks in the flowgraph. */
961
962 static void
963 make_edges (void)
964 {
965 basic_block bb;
966 struct omp_region *cur_region = NULL;
967 auto_vec<basic_block> ab_edge_goto;
968 auto_vec<basic_block> ab_edge_call;
969 int cur_omp_region_idx = 0;
970
971 /* Create an edge from entry to the first block with executable
972 statements in it. */
973 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
974 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
975 EDGE_FALLTHRU);
976
977 /* Traverse the basic block array placing edges. */
978 FOR_EACH_BB_FN (bb, cfun)
979 {
980 int mer;
981
982 if (!bb_to_omp_idx.is_empty ())
983 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
984
985 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
986 if (mer == 1)
987 ab_edge_goto.safe_push (bb);
988 else if (mer == 2)
989 ab_edge_call.safe_push (bb);
990
991 if (cur_region && bb_to_omp_idx.is_empty ())
992 bb_to_omp_idx.safe_grow_cleared (n_basic_blocks_for_fn (cfun), true);
993 }
994
995 /* Computed gotos are hell to deal with, especially if there are
996 lots of them with a large number of destinations. So we factor
997 them to a common computed goto location before we build the
998 edge list. After we convert back to normal form, we will un-factor
999 the computed gotos since factoring introduces an unwanted jump.
1000 For non-local gotos and abnormal edges from calls to calls that return
1001 twice or forced labels, factor the abnormal edges too, by having all
1002 abnormal edges from the calls go to a common artificial basic block
1003 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1004 basic block to all forced labels and calls returning twice.
1005 We do this per-OpenMP structured block, because those regions
1006 are guaranteed to be single entry single exit by the standard,
1007 so it is not allowed to enter or exit such regions abnormally this way,
1008 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1009 must not transfer control across SESE region boundaries. */
1010 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
1011 {
1012 gimple_stmt_iterator gsi;
1013 basic_block dispatcher_bb_array[2] = { NULL, NULL };
1014 basic_block *dispatcher_bbs = dispatcher_bb_array;
1015 int count = n_basic_blocks_for_fn (cfun);
1016
1017 if (!bb_to_omp_idx.is_empty ())
1018 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1019
1020 FOR_EACH_BB_FN (bb, cfun)
1021 {
1022 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1023 {
1024 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1025 tree target;
1026
1027 if (!label_stmt)
1028 break;
1029
1030 target = gimple_label_label (label_stmt);
1031
1032 /* Make an edge to every label block that has been marked as a
1033 potential target for a computed goto or a non-local goto. */
1034 if (FORCED_LABEL (target))
1035 handle_abnormal_edges (dispatcher_bbs, bb, &ab_edge_goto,
1036 true);
1037 if (DECL_NONLOCAL (target))
1038 {
1039 handle_abnormal_edges (dispatcher_bbs, bb, &ab_edge_call,
1040 false);
1041 break;
1042 }
1043 }
1044
1045 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1046 gsi_next_nondebug (&gsi);
1047 if (!gsi_end_p (gsi))
1048 {
1049 /* Make an edge to every setjmp-like call. */
1050 gimple *call_stmt = gsi_stmt (gsi);
1051 if (is_gimple_call (call_stmt)
1052 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1053 || gimple_call_builtin_p (call_stmt,
1054 BUILT_IN_SETJMP_RECEIVER)))
1055 handle_abnormal_edges (dispatcher_bbs, bb, &ab_edge_call,
1056 false);
1057 }
1058 }
1059
1060 if (!bb_to_omp_idx.is_empty ())
1061 XDELETE (dispatcher_bbs);
1062 }
1063
1064 omp_free_regions ();
1065 }
1066
1067 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1068 needed. Returns true if new bbs were created.
1069 Note: This is transitional code, and should not be used for new code. We
1070 should be able to get rid of this by rewriting all target va-arg
1071 gimplification hooks to use an interface gimple_build_cond_value as described
1072 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1073
1074 bool
1075 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1076 {
1077 gimple *stmt = gsi_stmt (*gsi);
1078 basic_block bb = gimple_bb (stmt);
1079 basic_block lastbb, afterbb;
1080 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1081 edge e;
1082 lastbb = make_blocks_1 (seq, bb);
1083 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1084 return false;
1085 e = split_block (bb, stmt);
1086 /* Move e->dest to come after the new basic blocks. */
1087 afterbb = e->dest;
1088 unlink_block (afterbb);
1089 link_block (afterbb, lastbb);
1090 redirect_edge_succ (e, bb->next_bb);
1091 bb = bb->next_bb;
1092 while (bb != afterbb)
1093 {
1094 struct omp_region *cur_region = NULL;
1095 profile_count cnt = profile_count::zero ();
1096 bool all = true;
1097
1098 int cur_omp_region_idx = 0;
1099 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1100 gcc_assert (!mer && !cur_region);
1101 add_bb_to_loop (bb, afterbb->loop_father);
1102
1103 edge e;
1104 edge_iterator ei;
1105 FOR_EACH_EDGE (e, ei, bb->preds)
1106 {
1107 if (e->count ().initialized_p ())
1108 cnt += e->count ();
1109 else
1110 all = false;
1111 }
1112 tree_guess_outgoing_edge_probabilities (bb);
1113 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1114 bb->count = cnt;
1115
1116 bb = bb->next_bb;
1117 }
1118 return true;
1119 }
1120
1121 /* Find the next available discriminator value for LOCUS. The
1122 discriminator distinguishes among several basic blocks that
1123 share a common locus, allowing for more accurate sample-based
1124 profiling. */
1125
1126 static int
1127 next_discriminator_for_locus (int line)
1128 {
1129 struct locus_discrim_map item;
1130 struct locus_discrim_map **slot;
1131
1132 item.location_line = line;
1133 item.discriminator = 0;
1134 slot = discriminator_per_locus->find_slot_with_hash (&item, line, INSERT);
1135 gcc_assert (slot);
1136 if (*slot == HTAB_EMPTY_ENTRY)
1137 {
1138 *slot = XNEW (struct locus_discrim_map);
1139 gcc_assert (*slot);
1140 (*slot)->location_line = line;
1141 (*slot)->discriminator = 0;
1142 }
1143 (*slot)->discriminator++;
1144 return (*slot)->discriminator;
1145 }
1146
1147 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1148
1149 static bool
1150 same_line_p (location_t locus1, expanded_location *from, location_t locus2)
1151 {
1152 expanded_location to;
1153
1154 if (locus1 == locus2)
1155 return true;
1156
1157 to = expand_location (locus2);
1158
1159 if (from->line != to.line)
1160 return false;
1161 if (from->file == to.file)
1162 return true;
1163 return (from->file != NULL
1164 && to.file != NULL
1165 && filename_cmp (from->file, to.file) == 0);
1166 }
1167
1168 /* Assign a unique discriminator value to all statements in block bb that
1169 have the same line number as locus. */
1170
1171 static void
1172 assign_discriminator (location_t locus, basic_block bb)
1173 {
1174 gimple_stmt_iterator gsi;
1175 int discriminator;
1176
1177 if (locus == UNKNOWN_LOCATION)
1178 return;
1179
1180 expanded_location locus_e = expand_location (locus);
1181
1182 discriminator = next_discriminator_for_locus (locus_e.line);
1183
1184 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1185 {
1186 gimple *stmt = gsi_stmt (gsi);
1187 location_t stmt_locus = gimple_location (stmt);
1188 if (same_line_p (locus, &locus_e, stmt_locus))
1189 gimple_set_location (stmt,
1190 location_with_discriminator (stmt_locus, discriminator));
1191 }
1192 }
1193
1194 /* Assign discriminators to statement locations. */
1195
1196 static void
1197 assign_discriminators (void)
1198 {
1199 basic_block bb;
1200
1201 FOR_EACH_BB_FN (bb, cfun)
1202 {
1203 edge e;
1204 edge_iterator ei;
1205 gimple_stmt_iterator gsi;
1206 location_t curr_locus = UNKNOWN_LOCATION;
1207 expanded_location curr_locus_e = {};
1208 int curr_discr = 0;
1209
1210 /* Traverse the basic block, if two function calls within a basic block
1211 are mapped to the same line, assign a new discriminator because a call
1212 stmt could be a split point of a basic block. */
1213 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1214 {
1215 gimple *stmt = gsi_stmt (gsi);
1216
1217 if (curr_locus == UNKNOWN_LOCATION)
1218 {
1219 curr_locus = gimple_location (stmt);
1220 curr_locus_e = expand_location (curr_locus);
1221 }
1222 else if (!same_line_p (curr_locus, &curr_locus_e, gimple_location (stmt)))
1223 {
1224 curr_locus = gimple_location (stmt);
1225 curr_locus_e = expand_location (curr_locus);
1226 curr_discr = 0;
1227 }
1228 else if (curr_discr != 0)
1229 {
1230 location_t loc = gimple_location (stmt);
1231 location_t dloc = location_with_discriminator (loc, curr_discr);
1232 gimple_set_location (stmt, dloc);
1233 }
1234 /* Allocate a new discriminator for CALL stmt. */
1235 if (gimple_code (stmt) == GIMPLE_CALL)
1236 curr_discr = next_discriminator_for_locus (curr_locus);
1237 }
1238
1239 gimple *last = last_nondebug_stmt (bb);
1240 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1241 if (locus == UNKNOWN_LOCATION)
1242 continue;
1243
1244 expanded_location locus_e = expand_location (locus);
1245
1246 FOR_EACH_EDGE (e, ei, bb->succs)
1247 {
1248 gimple *first = first_non_label_stmt (e->dest);
1249 gimple *last = last_nondebug_stmt (e->dest);
1250
1251 gimple *stmt_on_same_line = NULL;
1252 if (first && same_line_p (locus, &locus_e,
1253 gimple_location (first)))
1254 stmt_on_same_line = first;
1255 else if (last && same_line_p (locus, &locus_e,
1256 gimple_location (last)))
1257 stmt_on_same_line = last;
1258
1259 if (stmt_on_same_line)
1260 {
1261 if (has_discriminator (gimple_location (stmt_on_same_line))
1262 && !has_discriminator (locus))
1263 assign_discriminator (locus, bb);
1264 else
1265 assign_discriminator (locus, e->dest);
1266 }
1267 }
1268 }
1269 }
1270
1271 /* Create the edges for a GIMPLE_COND starting at block BB. */
1272
1273 static void
1274 make_cond_expr_edges (basic_block bb)
1275 {
1276 gcond *entry = as_a <gcond *> (*gsi_last_bb (bb));
1277 gimple *then_stmt, *else_stmt;
1278 basic_block then_bb, else_bb;
1279 tree then_label, else_label;
1280 edge e;
1281
1282 gcc_assert (entry);
1283
1284 /* Entry basic blocks for each component. */
1285 then_label = gimple_cond_true_label (entry);
1286 else_label = gimple_cond_false_label (entry);
1287 then_bb = label_to_block (cfun, then_label);
1288 else_bb = label_to_block (cfun, else_label);
1289 then_stmt = first_stmt (then_bb);
1290 else_stmt = first_stmt (else_bb);
1291
1292 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1293 e->goto_locus = gimple_location (then_stmt);
1294 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1295 if (e)
1296 e->goto_locus = gimple_location (else_stmt);
1297
1298 /* We do not need the labels anymore. */
1299 gimple_cond_set_true_label (entry, NULL_TREE);
1300 gimple_cond_set_false_label (entry, NULL_TREE);
1301 }
1302
1303
1304 /* Called for each element in the hash table (P) as we delete the
1305 edge to cases hash table.
1306
1307 Clear all the CASE_CHAINs to prevent problems with copying of
1308 SWITCH_EXPRs and structure sharing rules, then free the hash table
1309 element. */
1310
1311 bool
1312 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1313 {
1314 tree t, next;
1315
1316 for (t = value; t; t = next)
1317 {
1318 next = CASE_CHAIN (t);
1319 CASE_CHAIN (t) = NULL;
1320 }
1321
1322 return true;
1323 }
1324
1325 /* Start recording information mapping edges to case labels. */
1326
1327 void
1328 start_recording_case_labels (void)
1329 {
1330 gcc_assert (edge_to_cases == NULL);
1331 edge_to_cases = new hash_map<edge, tree>;
1332 touched_switch_bbs = BITMAP_ALLOC (NULL);
1333 }
1334
1335 /* Return nonzero if we are recording information for case labels. */
1336
1337 static bool
1338 recording_case_labels_p (void)
1339 {
1340 return (edge_to_cases != NULL);
1341 }
1342
1343 /* Stop recording information mapping edges to case labels and
1344 remove any information we have recorded. */
1345 void
1346 end_recording_case_labels (void)
1347 {
1348 bitmap_iterator bi;
1349 unsigned i;
1350 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1351 delete edge_to_cases;
1352 edge_to_cases = NULL;
1353 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1354 {
1355 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1356 if (bb)
1357 {
1358 if (gswitch *stmt = safe_dyn_cast <gswitch *> (*gsi_last_bb (bb)))
1359 group_case_labels_stmt (stmt);
1360 }
1361 }
1362 BITMAP_FREE (touched_switch_bbs);
1363 }
1364
1365 /* If we are inside a {start,end}_recording_cases block, then return
1366 a chain of CASE_LABEL_EXPRs from T which reference E.
1367
1368 Otherwise return NULL. */
1369
1370 tree
1371 get_cases_for_edge (edge e, gswitch *t)
1372 {
1373 tree *slot;
1374 size_t i, n;
1375
1376 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1377 chains available. Return NULL so the caller can detect this case. */
1378 if (!recording_case_labels_p ())
1379 return NULL;
1380
1381 slot = edge_to_cases->get (e);
1382 if (slot)
1383 return *slot;
1384
1385 /* If we did not find E in the hash table, then this must be the first
1386 time we have been queried for information about E & T. Add all the
1387 elements from T to the hash table then perform the query again. */
1388
1389 n = gimple_switch_num_labels (t);
1390 for (i = 0; i < n; i++)
1391 {
1392 tree elt = gimple_switch_label (t, i);
1393 tree lab = CASE_LABEL (elt);
1394 basic_block label_bb = label_to_block (cfun, lab);
1395 edge this_edge = find_edge (e->src, label_bb);
1396
1397 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1398 a new chain. */
1399 tree &s = edge_to_cases->get_or_insert (this_edge);
1400 CASE_CHAIN (elt) = s;
1401 s = elt;
1402 }
1403
1404 return *edge_to_cases->get (e);
1405 }
1406
1407 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1408
1409 static void
1410 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1411 {
1412 size_t i, n;
1413
1414 n = gimple_switch_num_labels (entry);
1415
1416 for (i = 0; i < n; ++i)
1417 {
1418 basic_block label_bb = gimple_switch_label_bb (cfun, entry, i);
1419 make_edge (bb, label_bb, 0);
1420 }
1421 }
1422
1423
1424 /* Return the basic block holding label DEST. */
1425
1426 basic_block
1427 label_to_block (struct function *ifun, tree dest)
1428 {
1429 int uid = LABEL_DECL_UID (dest);
1430
1431 /* We would die hard when faced by an undefined label. Emit a label to
1432 the very first basic block. This will hopefully make even the dataflow
1433 and undefined variable warnings quite right. */
1434 if (seen_error () && uid < 0)
1435 {
1436 gimple_stmt_iterator gsi =
1437 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1438 gimple *stmt;
1439
1440 stmt = gimple_build_label (dest);
1441 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1442 uid = LABEL_DECL_UID (dest);
1443 }
1444 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1445 return NULL;
1446 return (*ifun->cfg->x_label_to_block_map)[uid];
1447 }
1448
1449 /* Create edges for a goto statement at block BB. Returns true
1450 if abnormal edges should be created. */
1451
1452 static bool
1453 make_goto_expr_edges (basic_block bb)
1454 {
1455 gimple_stmt_iterator last = gsi_last_bb (bb);
1456 gimple *goto_t = gsi_stmt (last);
1457
1458 /* A simple GOTO creates normal edges. */
1459 if (simple_goto_p (goto_t))
1460 {
1461 tree dest = gimple_goto_dest (goto_t);
1462 basic_block label_bb = label_to_block (cfun, dest);
1463 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1464 e->goto_locus = gimple_location (goto_t);
1465 gsi_remove (&last, true);
1466 return false;
1467 }
1468
1469 /* A computed GOTO creates abnormal edges. */
1470 return true;
1471 }
1472
1473 /* Create edges for an asm statement with labels at block BB. */
1474
1475 static void
1476 make_gimple_asm_edges (basic_block bb)
1477 {
1478 gasm *stmt = as_a <gasm *> (*gsi_last_bb (bb));
1479 int i, n = gimple_asm_nlabels (stmt);
1480
1481 for (i = 0; i < n; ++i)
1482 {
1483 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1484 basic_block label_bb = label_to_block (cfun, label);
1485 make_edge (bb, label_bb, 0);
1486 }
1487 }
1488
1489 /*---------------------------------------------------------------------------
1490 Flowgraph analysis
1491 ---------------------------------------------------------------------------*/
1492
1493 /* Cleanup useless labels in basic blocks. This is something we wish
1494 to do early because it allows us to group case labels before creating
1495 the edges for the CFG, and it speeds up block statement iterators in
1496 all passes later on.
1497 We rerun this pass after CFG is created, to get rid of the labels that
1498 are no longer referenced. After then we do not run it any more, since
1499 (almost) no new labels should be created. */
1500
1501 /* A map from basic block index to the leading label of that block. */
1502 struct label_record
1503 {
1504 /* The label. */
1505 tree label;
1506
1507 /* True if the label is referenced from somewhere. */
1508 bool used;
1509 };
1510
1511 /* Given LABEL return the first label in the same basic block. */
1512
1513 static tree
1514 main_block_label (tree label, label_record *label_for_bb)
1515 {
1516 basic_block bb = label_to_block (cfun, label);
1517 tree main_label = label_for_bb[bb->index].label;
1518
1519 /* label_to_block possibly inserted undefined label into the chain. */
1520 if (!main_label)
1521 {
1522 label_for_bb[bb->index].label = label;
1523 main_label = label;
1524 }
1525
1526 label_for_bb[bb->index].used = true;
1527 return main_label;
1528 }
1529
1530 /* Clean up redundant labels within the exception tree. */
1531
1532 static void
1533 cleanup_dead_labels_eh (label_record *label_for_bb)
1534 {
1535 eh_landing_pad lp;
1536 eh_region r;
1537 tree lab;
1538 int i;
1539
1540 if (cfun->eh == NULL)
1541 return;
1542
1543 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1544 if (lp && lp->post_landing_pad)
1545 {
1546 lab = main_block_label (lp->post_landing_pad, label_for_bb);
1547 if (lab != lp->post_landing_pad)
1548 {
1549 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1550 lp->post_landing_pad = lab;
1551 EH_LANDING_PAD_NR (lab) = lp->index;
1552 }
1553 }
1554
1555 FOR_ALL_EH_REGION (r)
1556 switch (r->type)
1557 {
1558 case ERT_CLEANUP:
1559 case ERT_MUST_NOT_THROW:
1560 break;
1561
1562 case ERT_TRY:
1563 {
1564 eh_catch c;
1565 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1566 {
1567 lab = c->label;
1568 if (lab)
1569 c->label = main_block_label (lab, label_for_bb);
1570 }
1571 }
1572 break;
1573
1574 case ERT_ALLOWED_EXCEPTIONS:
1575 lab = r->u.allowed.label;
1576 if (lab)
1577 r->u.allowed.label = main_block_label (lab, label_for_bb);
1578 break;
1579 }
1580 }
1581
1582
1583 /* Cleanup redundant labels. This is a three-step process:
1584 1) Find the leading label for each block.
1585 2) Redirect all references to labels to the leading labels.
1586 3) Cleanup all useless labels. */
1587
1588 void
1589 cleanup_dead_labels (void)
1590 {
1591 basic_block bb;
1592 label_record *label_for_bb = XCNEWVEC (struct label_record,
1593 last_basic_block_for_fn (cfun));
1594
1595 /* Find a suitable label for each block. We use the first user-defined
1596 label if there is one, or otherwise just the first label we see. */
1597 FOR_EACH_BB_FN (bb, cfun)
1598 {
1599 gimple_stmt_iterator i;
1600
1601 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1602 {
1603 tree label;
1604 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1605
1606 if (!label_stmt)
1607 break;
1608
1609 label = gimple_label_label (label_stmt);
1610
1611 /* If we have not yet seen a label for the current block,
1612 remember this one and see if there are more labels. */
1613 if (!label_for_bb[bb->index].label)
1614 {
1615 label_for_bb[bb->index].label = label;
1616 continue;
1617 }
1618
1619 /* If we did see a label for the current block already, but it
1620 is an artificially created label, replace it if the current
1621 label is a user defined label. */
1622 if (!DECL_ARTIFICIAL (label)
1623 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1624 {
1625 label_for_bb[bb->index].label = label;
1626 break;
1627 }
1628 }
1629 }
1630
1631 /* Now redirect all jumps/branches to the selected label.
1632 First do so for each block ending in a control statement. */
1633 FOR_EACH_BB_FN (bb, cfun)
1634 {
1635 gimple *stmt = *gsi_last_bb (bb);
1636 tree label, new_label;
1637
1638 if (!stmt)
1639 continue;
1640
1641 switch (gimple_code (stmt))
1642 {
1643 case GIMPLE_COND:
1644 {
1645 gcond *cond_stmt = as_a <gcond *> (stmt);
1646 label = gimple_cond_true_label (cond_stmt);
1647 if (label)
1648 {
1649 new_label = main_block_label (label, label_for_bb);
1650 if (new_label != label)
1651 gimple_cond_set_true_label (cond_stmt, new_label);
1652 }
1653
1654 label = gimple_cond_false_label (cond_stmt);
1655 if (label)
1656 {
1657 new_label = main_block_label (label, label_for_bb);
1658 if (new_label != label)
1659 gimple_cond_set_false_label (cond_stmt, new_label);
1660 }
1661 }
1662 break;
1663
1664 case GIMPLE_SWITCH:
1665 {
1666 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1667 size_t i, n = gimple_switch_num_labels (switch_stmt);
1668
1669 /* Replace all destination labels. */
1670 for (i = 0; i < n; ++i)
1671 {
1672 tree case_label = gimple_switch_label (switch_stmt, i);
1673 label = CASE_LABEL (case_label);
1674 new_label = main_block_label (label, label_for_bb);
1675 if (new_label != label)
1676 CASE_LABEL (case_label) = new_label;
1677 }
1678 break;
1679 }
1680
1681 case GIMPLE_ASM:
1682 {
1683 gasm *asm_stmt = as_a <gasm *> (stmt);
1684 int i, n = gimple_asm_nlabels (asm_stmt);
1685
1686 for (i = 0; i < n; ++i)
1687 {
1688 tree cons = gimple_asm_label_op (asm_stmt, i);
1689 tree label = main_block_label (TREE_VALUE (cons), label_for_bb);
1690 TREE_VALUE (cons) = label;
1691 }
1692 break;
1693 }
1694
1695 /* We have to handle gotos until they're removed, and we don't
1696 remove them until after we've created the CFG edges. */
1697 case GIMPLE_GOTO:
1698 if (!computed_goto_p (stmt))
1699 {
1700 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1701 label = gimple_goto_dest (goto_stmt);
1702 new_label = main_block_label (label, label_for_bb);
1703 if (new_label != label)
1704 gimple_goto_set_dest (goto_stmt, new_label);
1705 }
1706 break;
1707
1708 case GIMPLE_TRANSACTION:
1709 {
1710 gtransaction *txn = as_a <gtransaction *> (stmt);
1711
1712 label = gimple_transaction_label_norm (txn);
1713 if (label)
1714 {
1715 new_label = main_block_label (label, label_for_bb);
1716 if (new_label != label)
1717 gimple_transaction_set_label_norm (txn, new_label);
1718 }
1719
1720 label = gimple_transaction_label_uninst (txn);
1721 if (label)
1722 {
1723 new_label = main_block_label (label, label_for_bb);
1724 if (new_label != label)
1725 gimple_transaction_set_label_uninst (txn, new_label);
1726 }
1727
1728 label = gimple_transaction_label_over (txn);
1729 if (label)
1730 {
1731 new_label = main_block_label (label, label_for_bb);
1732 if (new_label != label)
1733 gimple_transaction_set_label_over (txn, new_label);
1734 }
1735 }
1736 break;
1737
1738 default:
1739 break;
1740 }
1741 }
1742
1743 /* Do the same for the exception region tree labels. */
1744 cleanup_dead_labels_eh (label_for_bb);
1745
1746 /* Finally, purge dead labels. All user-defined labels and labels that
1747 can be the target of non-local gotos and labels which have their
1748 address taken are preserved. */
1749 FOR_EACH_BB_FN (bb, cfun)
1750 {
1751 gimple_stmt_iterator i;
1752 tree label_for_this_bb = label_for_bb[bb->index].label;
1753
1754 if (!label_for_this_bb)
1755 continue;
1756
1757 /* If the main label of the block is unused, we may still remove it. */
1758 if (!label_for_bb[bb->index].used)
1759 label_for_this_bb = NULL;
1760
1761 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1762 {
1763 tree label;
1764 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1765
1766 if (!label_stmt)
1767 break;
1768
1769 label = gimple_label_label (label_stmt);
1770
1771 if (label == label_for_this_bb
1772 || !DECL_ARTIFICIAL (label)
1773 || DECL_NONLOCAL (label)
1774 || FORCED_LABEL (label))
1775 gsi_next (&i);
1776 else
1777 {
1778 gcc_checking_assert (EH_LANDING_PAD_NR (label) == 0);
1779 gsi_remove (&i, true);
1780 }
1781 }
1782 }
1783
1784 free (label_for_bb);
1785 }
1786
1787 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1788 the ones jumping to the same label.
1789 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1790
1791 bool
1792 group_case_labels_stmt (gswitch *stmt)
1793 {
1794 int old_size = gimple_switch_num_labels (stmt);
1795 int i, next_index, new_size;
1796 basic_block default_bb = NULL;
1797 hash_set<tree> *removed_labels = NULL;
1798
1799 default_bb = gimple_switch_default_bb (cfun, stmt);
1800
1801 /* Look for possible opportunities to merge cases. */
1802 new_size = i = 1;
1803 while (i < old_size)
1804 {
1805 tree base_case, base_high;
1806 basic_block base_bb;
1807
1808 base_case = gimple_switch_label (stmt, i);
1809
1810 gcc_assert (base_case);
1811 base_bb = label_to_block (cfun, CASE_LABEL (base_case));
1812
1813 /* Discard cases that have the same destination as the default case or
1814 whose destination blocks have already been removed as unreachable. */
1815 if (base_bb == NULL
1816 || base_bb == default_bb
1817 || (removed_labels
1818 && removed_labels->contains (CASE_LABEL (base_case))))
1819 {
1820 i++;
1821 continue;
1822 }
1823
1824 base_high = CASE_HIGH (base_case)
1825 ? CASE_HIGH (base_case)
1826 : CASE_LOW (base_case);
1827 next_index = i + 1;
1828
1829 /* Try to merge case labels. Break out when we reach the end
1830 of the label vector or when we cannot merge the next case
1831 label with the current one. */
1832 while (next_index < old_size)
1833 {
1834 tree merge_case = gimple_switch_label (stmt, next_index);
1835 basic_block merge_bb = label_to_block (cfun, CASE_LABEL (merge_case));
1836 wide_int bhp1 = wi::to_wide (base_high) + 1;
1837
1838 /* Merge the cases if they jump to the same place,
1839 and their ranges are consecutive. */
1840 if (merge_bb == base_bb
1841 && (removed_labels == NULL
1842 || !removed_labels->contains (CASE_LABEL (merge_case)))
1843 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1844 {
1845 base_high
1846 = (CASE_HIGH (merge_case)
1847 ? CASE_HIGH (merge_case) : CASE_LOW (merge_case));
1848 CASE_HIGH (base_case) = base_high;
1849 next_index++;
1850 }
1851 else
1852 break;
1853 }
1854
1855 /* Discard cases that have an unreachable destination block. */
1856 if (EDGE_COUNT (base_bb->succs) == 0
1857 && gimple_seq_unreachable_p (bb_seq (base_bb))
1858 /* Don't optimize this if __builtin_unreachable () is the
1859 implicitly added one by the C++ FE too early, before
1860 -Wreturn-type can be diagnosed. We'll optimize it later
1861 during switchconv pass or any other cfg cleanup. */
1862 && (gimple_in_ssa_p (cfun)
1863 || (LOCATION_LOCUS (gimple_location (last_nondebug_stmt (base_bb)))
1864 != BUILTINS_LOCATION)))
1865 {
1866 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1867 if (base_edge != NULL)
1868 {
1869 for (gimple_stmt_iterator gsi = gsi_start_bb (base_bb);
1870 !gsi_end_p (gsi); gsi_next (&gsi))
1871 if (glabel *stmt = dyn_cast <glabel *> (gsi_stmt (gsi)))
1872 {
1873 if (FORCED_LABEL (gimple_label_label (stmt))
1874 || DECL_NONLOCAL (gimple_label_label (stmt)))
1875 {
1876 /* Forced/non-local labels aren't going to be removed,
1877 but they will be moved to some neighbouring basic
1878 block. If some later case label refers to one of
1879 those labels, we should throw that case away rather
1880 than keeping it around and refering to some random
1881 other basic block without an edge to it. */
1882 if (removed_labels == NULL)
1883 removed_labels = new hash_set<tree>;
1884 removed_labels->add (gimple_label_label (stmt));
1885 }
1886 }
1887 else
1888 break;
1889 remove_edge_and_dominated_blocks (base_edge);
1890 }
1891 i = next_index;
1892 continue;
1893 }
1894
1895 if (new_size < i)
1896 gimple_switch_set_label (stmt, new_size,
1897 gimple_switch_label (stmt, i));
1898 i = next_index;
1899 new_size++;
1900 }
1901
1902 gcc_assert (new_size <= old_size);
1903
1904 if (new_size < old_size)
1905 gimple_switch_set_num_labels (stmt, new_size);
1906
1907 delete removed_labels;
1908 return new_size < old_size;
1909 }
1910
1911 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1912 and scan the sorted vector of cases. Combine the ones jumping to the
1913 same label. */
1914
1915 bool
1916 group_case_labels (void)
1917 {
1918 basic_block bb;
1919 bool changed = false;
1920
1921 FOR_EACH_BB_FN (bb, cfun)
1922 {
1923 if (gswitch *stmt = safe_dyn_cast <gswitch *> (*gsi_last_bb (bb)))
1924 changed |= group_case_labels_stmt (stmt);
1925 }
1926
1927 return changed;
1928 }
1929
1930 /* Checks whether we can merge block B into block A. */
1931
1932 static bool
1933 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1934 {
1935 gimple *stmt;
1936
1937 if (!single_succ_p (a))
1938 return false;
1939
1940 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1941 return false;
1942
1943 if (single_succ (a) != b)
1944 return false;
1945
1946 if (!single_pred_p (b))
1947 return false;
1948
1949 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1950 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1951 return false;
1952
1953 /* If A ends by a statement causing exceptions or something similar, we
1954 cannot merge the blocks. */
1955 stmt = *gsi_last_bb (a);
1956 if (stmt && stmt_ends_bb_p (stmt))
1957 return false;
1958
1959 /* Examine the labels at the beginning of B. */
1960 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1961 gsi_next (&gsi))
1962 {
1963 tree lab;
1964 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1965 if (!label_stmt)
1966 break;
1967 lab = gimple_label_label (label_stmt);
1968
1969 /* Do not remove user forced labels or for -O0 any user labels. */
1970 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1971 return false;
1972 }
1973
1974 /* Protect simple loop latches. We only want to avoid merging
1975 the latch with the loop header or with a block in another
1976 loop in this case. */
1977 if (current_loops
1978 && b->loop_father->latch == b
1979 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1980 && (b->loop_father->header == a
1981 || b->loop_father != a->loop_father))
1982 return false;
1983
1984 /* It must be possible to eliminate all phi nodes in B. If ssa form
1985 is not up-to-date and a name-mapping is registered, we cannot eliminate
1986 any phis. Symbols marked for renaming are never a problem though. */
1987 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1988 gsi_next (&gsi))
1989 {
1990 gphi *phi = gsi.phi ();
1991 /* Technically only new names matter. */
1992 if (name_registered_for_update_p (PHI_RESULT (phi)))
1993 return false;
1994 }
1995
1996 /* When not optimizing, don't merge if we'd lose goto_locus. */
1997 if (!optimize
1998 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1999 {
2000 location_t goto_locus = single_succ_edge (a)->goto_locus;
2001 gimple_stmt_iterator prev, next;
2002 prev = gsi_last_nondebug_bb (a);
2003 next = gsi_after_labels (b);
2004 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
2005 gsi_next_nondebug (&next);
2006 if ((gsi_end_p (prev)
2007 || gimple_location (gsi_stmt (prev)) != goto_locus)
2008 && (gsi_end_p (next)
2009 || gimple_location (gsi_stmt (next)) != goto_locus))
2010 return false;
2011 }
2012
2013 return true;
2014 }
2015
2016 /* Replaces all uses of NAME by VAL. */
2017
2018 void
2019 replace_uses_by (tree name, tree val)
2020 {
2021 imm_use_iterator imm_iter;
2022 use_operand_p use;
2023 gimple *stmt;
2024 edge e;
2025
2026 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
2027 {
2028 /* Mark the block if we change the last stmt in it. */
2029 if (cfgcleanup_altered_bbs
2030 && stmt_ends_bb_p (stmt))
2031 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
2032
2033 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
2034 {
2035 replace_exp (use, val);
2036
2037 if (gimple_code (stmt) == GIMPLE_PHI)
2038 {
2039 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
2040 PHI_ARG_INDEX_FROM_USE (use));
2041 if (e->flags & EDGE_ABNORMAL
2042 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
2043 {
2044 /* This can only occur for virtual operands, since
2045 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2046 would prevent replacement. */
2047 gcc_checking_assert (virtual_operand_p (name));
2048 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
2049 }
2050 }
2051 }
2052
2053 if (gimple_code (stmt) != GIMPLE_PHI)
2054 {
2055 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2056 gimple *orig_stmt = stmt;
2057 size_t i;
2058
2059 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2060 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2061 only change sth from non-invariant to invariant, and only
2062 when propagating constants. */
2063 if (is_gimple_min_invariant (val))
2064 for (i = 0; i < gimple_num_ops (stmt); i++)
2065 {
2066 tree op = gimple_op (stmt, i);
2067 /* Operands may be empty here. For example, the labels
2068 of a GIMPLE_COND are nulled out following the creation
2069 of the corresponding CFG edges. */
2070 if (op && TREE_CODE (op) == ADDR_EXPR)
2071 recompute_tree_invariant_for_addr_expr (op);
2072 }
2073
2074 if (fold_stmt (&gsi))
2075 stmt = gsi_stmt (gsi);
2076
2077 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
2078 gimple_purge_dead_eh_edges (gimple_bb (stmt));
2079
2080 update_stmt (stmt);
2081 }
2082 }
2083
2084 gcc_checking_assert (has_zero_uses (name));
2085
2086 /* Also update the trees stored in loop structures. */
2087 if (current_loops)
2088 {
2089 for (auto loop : loops_list (cfun, 0))
2090 substitute_in_loop_info (loop, name, val);
2091 }
2092 }
2093
2094 /* Merge block B into block A. */
2095
2096 static void
2097 gimple_merge_blocks (basic_block a, basic_block b)
2098 {
2099 gimple_stmt_iterator last, gsi;
2100 gphi_iterator psi;
2101
2102 if (dump_file)
2103 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2104
2105 /* Remove all single-valued PHI nodes from block B of the form
2106 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2107 gsi = gsi_last_bb (a);
2108 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2109 {
2110 gimple *phi = gsi_stmt (psi);
2111 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2112 gimple *copy;
2113 bool may_replace_uses = (virtual_operand_p (def)
2114 || may_propagate_copy (def, use));
2115
2116 /* In case we maintain loop closed ssa form, do not propagate arguments
2117 of loop exit phi nodes. */
2118 if (current_loops
2119 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2120 && !virtual_operand_p (def)
2121 && TREE_CODE (use) == SSA_NAME
2122 && a->loop_father != b->loop_father)
2123 may_replace_uses = false;
2124
2125 if (!may_replace_uses)
2126 {
2127 gcc_assert (!virtual_operand_p (def));
2128
2129 /* Note that just emitting the copies is fine -- there is no problem
2130 with ordering of phi nodes. This is because A is the single
2131 predecessor of B, therefore results of the phi nodes cannot
2132 appear as arguments of the phi nodes. */
2133 copy = gimple_build_assign (def, use);
2134 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2135 remove_phi_node (&psi, false);
2136 }
2137 else
2138 {
2139 /* If we deal with a PHI for virtual operands, we can simply
2140 propagate these without fussing with folding or updating
2141 the stmt. */
2142 if (virtual_operand_p (def))
2143 {
2144 imm_use_iterator iter;
2145 use_operand_p use_p;
2146 gimple *stmt;
2147
2148 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2149 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2150 SET_USE (use_p, use);
2151
2152 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2153 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2154 }
2155 else
2156 replace_uses_by (def, use);
2157
2158 remove_phi_node (&psi, true);
2159 }
2160 }
2161
2162 /* Ensure that B follows A. */
2163 move_block_after (b, a);
2164
2165 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2166 gcc_assert (!*gsi_last_bb (a)
2167 || !stmt_ends_bb_p (*gsi_last_bb (a)));
2168
2169 /* Remove labels from B and set gimple_bb to A for other statements. */
2170 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2171 {
2172 gimple *stmt = gsi_stmt (gsi);
2173 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2174 {
2175 tree label = gimple_label_label (label_stmt);
2176 int lp_nr;
2177
2178 gsi_remove (&gsi, false);
2179
2180 /* Now that we can thread computed gotos, we might have
2181 a situation where we have a forced label in block B
2182 However, the label at the start of block B might still be
2183 used in other ways (think about the runtime checking for
2184 Fortran assigned gotos). So we cannot just delete the
2185 label. Instead we move the label to the start of block A. */
2186 if (FORCED_LABEL (label))
2187 {
2188 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2189 tree first_label = NULL_TREE;
2190 if (!gsi_end_p (dest_gsi))
2191 if (glabel *first_label_stmt
2192 = dyn_cast <glabel *> (gsi_stmt (dest_gsi)))
2193 first_label = gimple_label_label (first_label_stmt);
2194 if (first_label
2195 && (DECL_NONLOCAL (first_label)
2196 || EH_LANDING_PAD_NR (first_label) != 0))
2197 gsi_insert_after (&dest_gsi, stmt, GSI_NEW_STMT);
2198 else
2199 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2200 }
2201 /* Other user labels keep around in a form of a debug stmt. */
2202 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2203 {
2204 gimple *dbg = gimple_build_debug_bind (label,
2205 integer_zero_node,
2206 stmt);
2207 gimple_debug_bind_reset_value (dbg);
2208 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2209 }
2210
2211 lp_nr = EH_LANDING_PAD_NR (label);
2212 if (lp_nr)
2213 {
2214 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2215 lp->post_landing_pad = NULL;
2216 }
2217 }
2218 else
2219 {
2220 gimple_set_bb (stmt, a);
2221 gsi_next (&gsi);
2222 }
2223 }
2224
2225 /* When merging two BBs, if their counts are different, the larger count
2226 is selected as the new bb count. This is to handle inconsistent
2227 profiles. */
2228 if (a->loop_father == b->loop_father)
2229 {
2230 a->count = a->count.merge (b->count);
2231 }
2232
2233 /* Merge the sequences. */
2234 last = gsi_last_bb (a);
2235 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2236 set_bb_seq (b, NULL);
2237
2238 if (cfgcleanup_altered_bbs)
2239 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2240 }
2241
2242
2243 /* Return the one of two successors of BB that is not reachable by a
2244 complex edge, if there is one. Else, return BB. We use
2245 this in optimizations that use post-dominators for their heuristics,
2246 to catch the cases in C++ where function calls are involved. */
2247
2248 basic_block
2249 single_noncomplex_succ (basic_block bb)
2250 {
2251 edge e0, e1;
2252 if (EDGE_COUNT (bb->succs) != 2)
2253 return bb;
2254
2255 e0 = EDGE_SUCC (bb, 0);
2256 e1 = EDGE_SUCC (bb, 1);
2257 if (e0->flags & EDGE_COMPLEX)
2258 return e1->dest;
2259 if (e1->flags & EDGE_COMPLEX)
2260 return e0->dest;
2261
2262 return bb;
2263 }
2264
2265 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2266
2267 void
2268 notice_special_calls (gcall *call)
2269 {
2270 int flags = gimple_call_flags (call);
2271
2272 if (flags & ECF_MAY_BE_ALLOCA)
2273 cfun->calls_alloca = true;
2274 if (flags & ECF_RETURNS_TWICE)
2275 cfun->calls_setjmp = true;
2276 }
2277
2278
2279 /* Clear flags set by notice_special_calls. Used by dead code removal
2280 to update the flags. */
2281
2282 void
2283 clear_special_calls (void)
2284 {
2285 cfun->calls_alloca = false;
2286 cfun->calls_setjmp = false;
2287 }
2288
2289 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2290
2291 static void
2292 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2293 {
2294 /* Since this block is no longer reachable, we can just delete all
2295 of its PHI nodes. */
2296 remove_phi_nodes (bb);
2297
2298 /* Remove edges to BB's successors. */
2299 while (EDGE_COUNT (bb->succs) > 0)
2300 remove_edge (EDGE_SUCC (bb, 0));
2301 }
2302
2303
2304 /* Remove statements of basic block BB. */
2305
2306 static void
2307 remove_bb (basic_block bb)
2308 {
2309 gimple_stmt_iterator i;
2310
2311 if (dump_file)
2312 {
2313 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2314 if (dump_flags & TDF_DETAILS)
2315 {
2316 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2317 fprintf (dump_file, "\n");
2318 }
2319 }
2320
2321 if (current_loops)
2322 {
2323 class loop *loop = bb->loop_father;
2324
2325 /* If a loop gets removed, clean up the information associated
2326 with it. */
2327 if (loop->latch == bb
2328 || loop->header == bb)
2329 free_numbers_of_iterations_estimates (loop);
2330 }
2331
2332 /* Remove all the instructions in the block. */
2333 if (bb_seq (bb) != NULL)
2334 {
2335 /* Walk backwards so as to get a chance to substitute all
2336 released DEFs into debug stmts. See
2337 eliminate_unnecessary_stmts() in tree-ssa-dce.cc for more
2338 details. */
2339 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2340 {
2341 gimple *stmt = gsi_stmt (i);
2342 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2343 if (label_stmt
2344 && (FORCED_LABEL (gimple_label_label (label_stmt))
2345 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2346 {
2347 basic_block new_bb;
2348 gimple_stmt_iterator new_gsi;
2349
2350 /* A non-reachable non-local label may still be referenced.
2351 But it no longer needs to carry the extra semantics of
2352 non-locality. */
2353 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2354 {
2355 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2356 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2357 }
2358
2359 new_bb = bb->prev_bb;
2360 /* Don't move any labels into ENTRY block. */
2361 if (new_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2362 {
2363 new_bb = single_succ (new_bb);
2364 gcc_assert (new_bb != bb);
2365 }
2366 if ((unsigned) bb->index < bb_to_omp_idx.length ()
2367 && ((unsigned) new_bb->index >= bb_to_omp_idx.length ()
2368 || (bb_to_omp_idx[bb->index]
2369 != bb_to_omp_idx[new_bb->index])))
2370 {
2371 /* During cfg pass make sure to put orphaned labels
2372 into the right OMP region. */
2373 unsigned int i;
2374 int idx;
2375 new_bb = NULL;
2376 FOR_EACH_VEC_ELT (bb_to_omp_idx, i, idx)
2377 if (i >= NUM_FIXED_BLOCKS
2378 && idx == bb_to_omp_idx[bb->index]
2379 && i != (unsigned) bb->index)
2380 {
2381 new_bb = BASIC_BLOCK_FOR_FN (cfun, i);
2382 break;
2383 }
2384 if (new_bb == NULL)
2385 {
2386 new_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2387 gcc_assert (new_bb != bb);
2388 }
2389 }
2390 new_gsi = gsi_after_labels (new_bb);
2391 gsi_remove (&i, false);
2392 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2393 }
2394 else
2395 {
2396 /* Release SSA definitions. */
2397 release_defs (stmt);
2398 gsi_remove (&i, true);
2399 }
2400
2401 if (gsi_end_p (i))
2402 i = gsi_last_bb (bb);
2403 else
2404 gsi_prev (&i);
2405 }
2406 }
2407
2408 if ((unsigned) bb->index < bb_to_omp_idx.length ())
2409 bb_to_omp_idx[bb->index] = -1;
2410 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2411 bb->il.gimple.seq = NULL;
2412 bb->il.gimple.phi_nodes = NULL;
2413 }
2414
2415
2416 /* Given a basic block BB and a value VAL for use in the final statement
2417 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2418 the edge that will be taken out of the block.
2419 If VAL is NULL_TREE, then the current value of the final statement's
2420 predicate or index is used.
2421 If the value does not match a unique edge, NULL is returned. */
2422
2423 edge
2424 find_taken_edge (basic_block bb, tree val)
2425 {
2426 gimple *stmt;
2427
2428 stmt = *gsi_last_bb (bb);
2429
2430 /* Handle ENTRY and EXIT. */
2431 if (!stmt)
2432 ;
2433
2434 else if (gimple_code (stmt) == GIMPLE_COND)
2435 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2436
2437 else if (gimple_code (stmt) == GIMPLE_SWITCH)
2438 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2439
2440 else if (computed_goto_p (stmt))
2441 {
2442 /* Only optimize if the argument is a label, if the argument is
2443 not a label then we cannot construct a proper CFG.
2444
2445 It may be the case that we only need to allow the LABEL_REF to
2446 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2447 appear inside a LABEL_EXPR just to be safe. */
2448 if (val
2449 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2450 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2451 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2452 }
2453
2454 /* Otherwise we only know the taken successor edge if it's unique. */
2455 return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2456 }
2457
2458 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2459 statement, determine which of the outgoing edges will be taken out of the
2460 block. Return NULL if either edge may be taken. */
2461
2462 static edge
2463 find_taken_edge_computed_goto (basic_block bb, tree val)
2464 {
2465 basic_block dest;
2466 edge e = NULL;
2467
2468 dest = label_to_block (cfun, val);
2469 if (dest)
2470 e = find_edge (bb, dest);
2471
2472 /* It's possible for find_edge to return NULL here on invalid code
2473 that abuses the labels-as-values extension (e.g. code that attempts to
2474 jump *between* functions via stored labels-as-values; PR 84136).
2475 If so, then we simply return that NULL for the edge.
2476 We don't currently have a way of detecting such invalid code, so we
2477 can't assert that it was the case when a NULL edge occurs here. */
2478
2479 return e;
2480 }
2481
2482 /* Given COND_STMT and a constant value VAL for use as the predicate,
2483 determine which of the two edges will be taken out of
2484 the statement's block. Return NULL if either edge may be taken.
2485 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2486 is used. */
2487
2488 static edge
2489 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2490 {
2491 edge true_edge, false_edge;
2492
2493 if (val == NULL_TREE)
2494 {
2495 /* Use the current value of the predicate. */
2496 if (gimple_cond_true_p (cond_stmt))
2497 val = integer_one_node;
2498 else if (gimple_cond_false_p (cond_stmt))
2499 val = integer_zero_node;
2500 else
2501 return NULL;
2502 }
2503 else if (TREE_CODE (val) != INTEGER_CST)
2504 return NULL;
2505
2506 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2507 &true_edge, &false_edge);
2508
2509 return (integer_zerop (val) ? false_edge : true_edge);
2510 }
2511
2512 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2513 which edge will be taken out of the statement's block. Return NULL if any
2514 edge may be taken.
2515 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2516 is used. */
2517
2518 edge
2519 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2520 {
2521 basic_block dest_bb;
2522 edge e;
2523 tree taken_case;
2524
2525 if (gimple_switch_num_labels (switch_stmt) == 1)
2526 taken_case = gimple_switch_default_label (switch_stmt);
2527 else
2528 {
2529 if (val == NULL_TREE)
2530 val = gimple_switch_index (switch_stmt);
2531 if (TREE_CODE (val) != INTEGER_CST)
2532 return NULL;
2533 else
2534 taken_case = find_case_label_for_value (switch_stmt, val);
2535 }
2536 dest_bb = label_to_block (cfun, CASE_LABEL (taken_case));
2537
2538 e = find_edge (gimple_bb (switch_stmt), dest_bb);
2539 gcc_assert (e);
2540 return e;
2541 }
2542
2543
2544 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2545 We can make optimal use here of the fact that the case labels are
2546 sorted: We can do a binary search for a case matching VAL. */
2547
2548 tree
2549 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2550 {
2551 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2552 tree default_case = gimple_switch_default_label (switch_stmt);
2553
2554 for (low = 0, high = n; high - low > 1; )
2555 {
2556 size_t i = (high + low) / 2;
2557 tree t = gimple_switch_label (switch_stmt, i);
2558 int cmp;
2559
2560 /* Cache the result of comparing CASE_LOW and val. */
2561 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2562
2563 if (cmp > 0)
2564 high = i;
2565 else
2566 low = i;
2567
2568 if (CASE_HIGH (t) == NULL)
2569 {
2570 /* A singe-valued case label. */
2571 if (cmp == 0)
2572 return t;
2573 }
2574 else
2575 {
2576 /* A case range. We can only handle integer ranges. */
2577 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2578 return t;
2579 }
2580 }
2581
2582 return default_case;
2583 }
2584
2585
2586 /* Dump a basic block on stderr. */
2587
2588 void
2589 gimple_debug_bb (basic_block bb)
2590 {
2591 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2592 }
2593
2594
2595 /* Dump basic block with index N on stderr. */
2596
2597 basic_block
2598 gimple_debug_bb_n (int n)
2599 {
2600 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2601 return BASIC_BLOCK_FOR_FN (cfun, n);
2602 }
2603
2604
2605 /* Dump the CFG on stderr.
2606
2607 FLAGS are the same used by the tree dumping functions
2608 (see TDF_* in dumpfile.h). */
2609
2610 void
2611 gimple_debug_cfg (dump_flags_t flags)
2612 {
2613 gimple_dump_cfg (stderr, flags);
2614 }
2615
2616
2617 /* Dump the program showing basic block boundaries on the given FILE.
2618
2619 FLAGS are the same used by the tree dumping functions (see TDF_* in
2620 tree.h). */
2621
2622 void
2623 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2624 {
2625 if (flags & TDF_DETAILS)
2626 {
2627 dump_function_header (file, current_function_decl, flags);
2628 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2629 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2630 last_basic_block_for_fn (cfun));
2631
2632 brief_dump_cfg (file, flags);
2633 fprintf (file, "\n");
2634 }
2635
2636 if (flags & TDF_STATS)
2637 dump_cfg_stats (file);
2638
2639 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2640 }
2641
2642
2643 /* Dump CFG statistics on FILE. */
2644
2645 void
2646 dump_cfg_stats (FILE *file)
2647 {
2648 static long max_num_merged_labels = 0;
2649 unsigned long size, total = 0;
2650 long num_edges;
2651 basic_block bb;
2652 const char * const fmt_str = "%-30s%-13s%12s\n";
2653 const char * const fmt_str_1 = "%-30s%13d" PRsa (11) "\n";
2654 const char * const fmt_str_2 = "%-30s%13ld" PRsa (11) "\n";
2655 const char * const fmt_str_3 = "%-43s" PRsa (11) "\n";
2656 const char *funcname = current_function_name ();
2657
2658 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2659
2660 fprintf (file, "---------------------------------------------------------\n");
2661 fprintf (file, fmt_str, "", " Number of ", "Memory");
2662 fprintf (file, fmt_str, "", " instances ", "used ");
2663 fprintf (file, "---------------------------------------------------------\n");
2664
2665 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2666 total += size;
2667 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2668 SIZE_AMOUNT (size));
2669
2670 num_edges = 0;
2671 FOR_EACH_BB_FN (bb, cfun)
2672 num_edges += EDGE_COUNT (bb->succs);
2673 size = num_edges * sizeof (class edge_def);
2674 total += size;
2675 fprintf (file, fmt_str_2, "Edges", num_edges, SIZE_AMOUNT (size));
2676
2677 fprintf (file, "---------------------------------------------------------\n");
2678 fprintf (file, fmt_str_3, "Total memory used by CFG data",
2679 SIZE_AMOUNT (total));
2680 fprintf (file, "---------------------------------------------------------\n");
2681 fprintf (file, "\n");
2682
2683 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2684 max_num_merged_labels = cfg_stats.num_merged_labels;
2685
2686 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2687 cfg_stats.num_merged_labels, max_num_merged_labels);
2688
2689 fprintf (file, "\n");
2690 }
2691
2692
2693 /* Dump CFG statistics on stderr. Keep extern so that it's always
2694 linked in the final executable. */
2695
2696 DEBUG_FUNCTION void
2697 debug_cfg_stats (void)
2698 {
2699 dump_cfg_stats (stderr);
2700 }
2701
2702 /*---------------------------------------------------------------------------
2703 Miscellaneous helpers
2704 ---------------------------------------------------------------------------*/
2705
2706 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2707 flow. Transfers of control flow associated with EH are excluded. */
2708
2709 static bool
2710 call_can_make_abnormal_goto (gimple *t)
2711 {
2712 /* If the function has no non-local labels, then a call cannot make an
2713 abnormal transfer of control. */
2714 if (!cfun->has_nonlocal_label
2715 && !cfun->calls_setjmp)
2716 return false;
2717
2718 /* Likewise if the call has no side effects. */
2719 if (!gimple_has_side_effects (t))
2720 return false;
2721
2722 /* Likewise if the called function is leaf. */
2723 if (gimple_call_flags (t) & ECF_LEAF)
2724 return false;
2725
2726 return true;
2727 }
2728
2729
2730 /* Return true if T can make an abnormal transfer of control flow.
2731 Transfers of control flow associated with EH are excluded. */
2732
2733 bool
2734 stmt_can_make_abnormal_goto (gimple *t)
2735 {
2736 if (computed_goto_p (t))
2737 return true;
2738 if (is_gimple_call (t))
2739 return call_can_make_abnormal_goto (t);
2740 return false;
2741 }
2742
2743
2744 /* Return true if T represents a stmt that always transfers control. */
2745
2746 bool
2747 is_ctrl_stmt (gimple *t)
2748 {
2749 switch (gimple_code (t))
2750 {
2751 case GIMPLE_COND:
2752 case GIMPLE_SWITCH:
2753 case GIMPLE_GOTO:
2754 case GIMPLE_RETURN:
2755 case GIMPLE_RESX:
2756 return true;
2757 default:
2758 return false;
2759 }
2760 }
2761
2762
2763 /* Return true if T is a statement that may alter the flow of control
2764 (e.g., a call to a non-returning function). */
2765
2766 bool
2767 is_ctrl_altering_stmt (gimple *t)
2768 {
2769 gcc_assert (t);
2770
2771 switch (gimple_code (t))
2772 {
2773 case GIMPLE_CALL:
2774 /* Per stmt call flag indicates whether the call could alter
2775 controlflow. */
2776 if (gimple_call_ctrl_altering_p (t))
2777 return true;
2778 break;
2779
2780 case GIMPLE_EH_DISPATCH:
2781 /* EH_DISPATCH branches to the individual catch handlers at
2782 this level of a try or allowed-exceptions region. It can
2783 fallthru to the next statement as well. */
2784 return true;
2785
2786 case GIMPLE_ASM:
2787 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2788 return true;
2789 break;
2790
2791 CASE_GIMPLE_OMP:
2792 /* OpenMP directives alter control flow. */
2793 return true;
2794
2795 case GIMPLE_TRANSACTION:
2796 /* A transaction start alters control flow. */
2797 return true;
2798
2799 default:
2800 break;
2801 }
2802
2803 /* If a statement can throw, it alters control flow. */
2804 return stmt_can_throw_internal (cfun, t);
2805 }
2806
2807
2808 /* Return true if T is a simple local goto. */
2809
2810 bool
2811 simple_goto_p (gimple *t)
2812 {
2813 return (gimple_code (t) == GIMPLE_GOTO
2814 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2815 }
2816
2817
2818 /* Return true if STMT should start a new basic block. PREV_STMT is
2819 the statement preceding STMT. It is used when STMT is a label or a
2820 case label. Labels should only start a new basic block if their
2821 previous statement wasn't a label. Otherwise, sequence of labels
2822 would generate unnecessary basic blocks that only contain a single
2823 label. */
2824
2825 static inline bool
2826 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2827 {
2828 if (stmt == NULL)
2829 return false;
2830
2831 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2832 any nondebug stmts in the block. We don't want to start another
2833 block in this case: the debug stmt will already have started the
2834 one STMT would start if we weren't outputting debug stmts. */
2835 if (prev_stmt && is_gimple_debug (prev_stmt))
2836 return false;
2837
2838 /* Labels start a new basic block only if the preceding statement
2839 wasn't a label of the same type. This prevents the creation of
2840 consecutive blocks that have nothing but a single label. */
2841 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2842 {
2843 /* Nonlocal and computed GOTO targets always start a new block. */
2844 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2845 || FORCED_LABEL (gimple_label_label (label_stmt)))
2846 return true;
2847
2848 if (glabel *plabel = safe_dyn_cast <glabel *> (prev_stmt))
2849 {
2850 if (DECL_NONLOCAL (gimple_label_label (plabel))
2851 || !DECL_ARTIFICIAL (gimple_label_label (plabel)))
2852 return true;
2853
2854 cfg_stats.num_merged_labels++;
2855 return false;
2856 }
2857 else
2858 return true;
2859 }
2860 else if (gimple_code (stmt) == GIMPLE_CALL)
2861 {
2862 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2863 /* setjmp acts similar to a nonlocal GOTO target and thus should
2864 start a new block. */
2865 return true;
2866 if (gimple_call_internal_p (stmt, IFN_PHI)
2867 && prev_stmt
2868 && gimple_code (prev_stmt) != GIMPLE_LABEL
2869 && (gimple_code (prev_stmt) != GIMPLE_CALL
2870 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2871 /* PHI nodes start a new block unless preceeded by a label
2872 or another PHI. */
2873 return true;
2874 }
2875
2876 return false;
2877 }
2878
2879
2880 /* Return true if T should end a basic block. */
2881
2882 bool
2883 stmt_ends_bb_p (gimple *t)
2884 {
2885 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2886 }
2887
2888 /* Remove block annotations and other data structures. */
2889
2890 void
2891 delete_tree_cfg_annotations (struct function *fn)
2892 {
2893 vec_free (label_to_block_map_for_fn (fn));
2894 }
2895
2896 /* Return the virtual phi in BB. */
2897
2898 gphi *
2899 get_virtual_phi (basic_block bb)
2900 {
2901 for (gphi_iterator gsi = gsi_start_phis (bb);
2902 !gsi_end_p (gsi);
2903 gsi_next (&gsi))
2904 {
2905 gphi *phi = gsi.phi ();
2906
2907 if (virtual_operand_p (PHI_RESULT (phi)))
2908 return phi;
2909 }
2910
2911 return NULL;
2912 }
2913
2914 /* Return the first statement in basic block BB. */
2915
2916 gimple *
2917 first_stmt (basic_block bb)
2918 {
2919 gimple_stmt_iterator i = gsi_start_bb (bb);
2920 gimple *stmt = NULL;
2921
2922 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2923 {
2924 gsi_next (&i);
2925 stmt = NULL;
2926 }
2927 return stmt;
2928 }
2929
2930 /* Return the first non-label statement in basic block BB. */
2931
2932 static gimple *
2933 first_non_label_stmt (basic_block bb)
2934 {
2935 gimple_stmt_iterator i = gsi_start_bb (bb);
2936 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2937 gsi_next (&i);
2938 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2939 }
2940
2941 /* Return the last statement in basic block BB. */
2942
2943 gimple *
2944 last_nondebug_stmt (basic_block bb)
2945 {
2946 gimple_stmt_iterator i = gsi_last_bb (bb);
2947 gimple *stmt = NULL;
2948
2949 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2950 {
2951 gsi_prev (&i);
2952 stmt = NULL;
2953 }
2954 return stmt;
2955 }
2956
2957 /* Return the last statement of an otherwise empty block. Return NULL
2958 if the block is totally empty, or if it contains more than one
2959 statement. */
2960
2961 gimple *
2962 last_and_only_stmt (basic_block bb)
2963 {
2964 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2965 gimple *last, *prev;
2966
2967 if (gsi_end_p (i))
2968 return NULL;
2969
2970 last = gsi_stmt (i);
2971 gsi_prev_nondebug (&i);
2972 if (gsi_end_p (i))
2973 return last;
2974
2975 /* Empty statements should no longer appear in the instruction stream.
2976 Everything that might have appeared before should be deleted by
2977 remove_useless_stmts, and the optimizers should just gsi_remove
2978 instead of smashing with build_empty_stmt.
2979
2980 Thus the only thing that should appear here in a block containing
2981 one executable statement is a label. */
2982 prev = gsi_stmt (i);
2983 if (gimple_code (prev) == GIMPLE_LABEL)
2984 return last;
2985 else
2986 return NULL;
2987 }
2988
2989 /* Returns the basic block after which the new basic block created
2990 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2991 near its "logical" location. This is of most help to humans looking
2992 at debugging dumps. */
2993
2994 basic_block
2995 split_edge_bb_loc (edge edge_in)
2996 {
2997 basic_block dest = edge_in->dest;
2998 basic_block dest_prev = dest->prev_bb;
2999
3000 if (dest_prev)
3001 {
3002 edge e = find_edge (dest_prev, dest);
3003 if (e && !(e->flags & EDGE_COMPLEX))
3004 return edge_in->src;
3005 }
3006 return dest_prev;
3007 }
3008
3009 /* Split a (typically critical) edge EDGE_IN. Return the new block.
3010 Abort on abnormal edges. */
3011
3012 static basic_block
3013 gimple_split_edge (edge edge_in)
3014 {
3015 basic_block new_bb, after_bb, dest;
3016 edge new_edge, e;
3017
3018 /* Abnormal edges cannot be split. */
3019 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
3020
3021 dest = edge_in->dest;
3022
3023 after_bb = split_edge_bb_loc (edge_in);
3024
3025 new_bb = create_empty_bb (after_bb);
3026 new_bb->count = edge_in->count ();
3027
3028 /* We want to avoid re-allocating PHIs when we first
3029 add the fallthru edge from new_bb to dest but we also
3030 want to avoid changing PHI argument order when
3031 first redirecting edge_in away from dest. The former
3032 avoids changing PHI argument order by adding them
3033 last and then the redirection swapping it back into
3034 place by means of unordered remove.
3035 So hack around things by temporarily removing all PHIs
3036 from the destination during the edge redirection and then
3037 making sure the edges stay in order. */
3038 gimple_seq saved_phis = phi_nodes (dest);
3039 unsigned old_dest_idx = edge_in->dest_idx;
3040 set_phi_nodes (dest, NULL);
3041 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
3042 e = redirect_edge_and_branch (edge_in, new_bb);
3043 gcc_assert (e == edge_in && new_edge->dest_idx == old_dest_idx);
3044 /* set_phi_nodes sets the BB of the PHI nodes, so do it manually here. */
3045 dest->il.gimple.phi_nodes = saved_phis;
3046
3047 return new_bb;
3048 }
3049
3050
3051 /* Verify properties of the address expression T whose base should be
3052 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
3053
3054 static bool
3055 verify_address (tree t, bool verify_addressable)
3056 {
3057 bool old_constant;
3058 bool old_side_effects;
3059 bool new_constant;
3060 bool new_side_effects;
3061
3062 old_constant = TREE_CONSTANT (t);
3063 old_side_effects = TREE_SIDE_EFFECTS (t);
3064
3065 recompute_tree_invariant_for_addr_expr (t);
3066 new_side_effects = TREE_SIDE_EFFECTS (t);
3067 new_constant = TREE_CONSTANT (t);
3068
3069 if (old_constant != new_constant)
3070 {
3071 error ("constant not recomputed when %<ADDR_EXPR%> changed");
3072 return true;
3073 }
3074 if (old_side_effects != new_side_effects)
3075 {
3076 error ("side effects not recomputed when %<ADDR_EXPR%> changed");
3077 return true;
3078 }
3079
3080 tree base = TREE_OPERAND (t, 0);
3081 while (handled_component_p (base))
3082 base = TREE_OPERAND (base, 0);
3083
3084 if (!(VAR_P (base)
3085 || TREE_CODE (base) == PARM_DECL
3086 || TREE_CODE (base) == RESULT_DECL))
3087 return false;
3088
3089 if (verify_addressable && !TREE_ADDRESSABLE (base))
3090 {
3091 error ("address taken but %<TREE_ADDRESSABLE%> bit not set");
3092 return true;
3093 }
3094
3095 return false;
3096 }
3097
3098
3099 /* Verify if EXPR is a valid GIMPLE reference expression. If
3100 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3101 if there is an error, otherwise false. */
3102
3103 static bool
3104 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3105 {
3106 const char *code_name = get_tree_code_name (TREE_CODE (expr));
3107
3108 if (TREE_CODE (expr) == REALPART_EXPR
3109 || TREE_CODE (expr) == IMAGPART_EXPR
3110 || TREE_CODE (expr) == BIT_FIELD_REF
3111 || TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3112 {
3113 tree op = TREE_OPERAND (expr, 0);
3114 if (TREE_CODE (expr) != VIEW_CONVERT_EXPR
3115 && !is_gimple_reg_type (TREE_TYPE (expr)))
3116 {
3117 error ("non-scalar %qs", code_name);
3118 return true;
3119 }
3120
3121 if (TREE_CODE (expr) == BIT_FIELD_REF)
3122 {
3123 tree t1 = TREE_OPERAND (expr, 1);
3124 tree t2 = TREE_OPERAND (expr, 2);
3125 poly_uint64 size, bitpos;
3126 if (!poly_int_tree_p (t1, &size)
3127 || !poly_int_tree_p (t2, &bitpos)
3128 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3129 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3130 {
3131 error ("invalid position or size operand to %qs", code_name);
3132 return true;
3133 }
3134 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
3135 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr)), size))
3136 {
3137 error ("integral result type precision does not match "
3138 "field size of %qs", code_name);
3139 return true;
3140 }
3141 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
3142 && TYPE_MODE (TREE_TYPE (expr)) != BLKmode
3143 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr))),
3144 size))
3145 {
3146 error ("mode size of non-integral result does not "
3147 "match field size of %qs",
3148 code_name);
3149 return true;
3150 }
3151 if (INTEGRAL_TYPE_P (TREE_TYPE (op))
3152 && !type_has_mode_precision_p (TREE_TYPE (op)))
3153 {
3154 error ("%qs of non-mode-precision operand", code_name);
3155 return true;
3156 }
3157 if (!AGGREGATE_TYPE_P (TREE_TYPE (op))
3158 && maybe_gt (size + bitpos,
3159 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op)))))
3160 {
3161 error ("position plus size exceeds size of referenced object in "
3162 "%qs", code_name);
3163 return true;
3164 }
3165 }
3166
3167 if ((TREE_CODE (expr) == REALPART_EXPR
3168 || TREE_CODE (expr) == IMAGPART_EXPR)
3169 && !useless_type_conversion_p (TREE_TYPE (expr),
3170 TREE_TYPE (TREE_TYPE (op))))
3171 {
3172 error ("type mismatch in %qs reference", code_name);
3173 debug_generic_stmt (TREE_TYPE (expr));
3174 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3175 return true;
3176 }
3177
3178 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3179 {
3180 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3181 that their operand is not a register an invariant when
3182 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3183 bug). Otherwise there is nothing to verify, gross mismatches at
3184 most invoke undefined behavior. */
3185 if (require_lvalue
3186 && (is_gimple_reg (op) || is_gimple_min_invariant (op)))
3187 {
3188 error ("conversion of %qs on the left hand side of %qs",
3189 get_tree_code_name (TREE_CODE (op)), code_name);
3190 debug_generic_stmt (expr);
3191 return true;
3192 }
3193 else if (is_gimple_reg (op)
3194 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3195 {
3196 error ("conversion of register to a different size in %qs",
3197 code_name);
3198 debug_generic_stmt (expr);
3199 return true;
3200 }
3201 }
3202
3203 expr = op;
3204 }
3205
3206 bool require_non_reg = false;
3207 while (handled_component_p (expr))
3208 {
3209 require_non_reg = true;
3210 code_name = get_tree_code_name (TREE_CODE (expr));
3211
3212 if (TREE_CODE (expr) == REALPART_EXPR
3213 || TREE_CODE (expr) == IMAGPART_EXPR
3214 || TREE_CODE (expr) == BIT_FIELD_REF)
3215 {
3216 error ("non-top-level %qs", code_name);
3217 return true;
3218 }
3219
3220 tree op = TREE_OPERAND (expr, 0);
3221
3222 if (TREE_CODE (expr) == ARRAY_REF
3223 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3224 {
3225 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3226 || (TREE_OPERAND (expr, 2)
3227 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3228 || (TREE_OPERAND (expr, 3)
3229 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3230 {
3231 error ("invalid operands to %qs", code_name);
3232 debug_generic_stmt (expr);
3233 return true;
3234 }
3235 }
3236
3237 /* Verify if the reference array element types are compatible. */
3238 if (TREE_CODE (expr) == ARRAY_REF
3239 && !useless_type_conversion_p (TREE_TYPE (expr),
3240 TREE_TYPE (TREE_TYPE (op))))
3241 {
3242 error ("type mismatch in %qs", code_name);
3243 debug_generic_stmt (TREE_TYPE (expr));
3244 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3245 return true;
3246 }
3247 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3248 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3249 TREE_TYPE (TREE_TYPE (op))))
3250 {
3251 error ("type mismatch in %qs", code_name);
3252 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3253 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3254 return true;
3255 }
3256
3257 if (TREE_CODE (expr) == COMPONENT_REF)
3258 {
3259 if (TREE_OPERAND (expr, 2)
3260 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3261 {
3262 error ("invalid %qs offset operator", code_name);
3263 return true;
3264 }
3265 if (!useless_type_conversion_p (TREE_TYPE (expr),
3266 TREE_TYPE (TREE_OPERAND (expr, 1))))
3267 {
3268 error ("type mismatch in %qs", code_name);
3269 debug_generic_stmt (TREE_TYPE (expr));
3270 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3271 return true;
3272 }
3273 }
3274
3275 expr = op;
3276 }
3277
3278 code_name = get_tree_code_name (TREE_CODE (expr));
3279
3280 if (TREE_CODE (expr) == MEM_REF)
3281 {
3282 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0))
3283 || (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
3284 && verify_address (TREE_OPERAND (expr, 0), false)))
3285 {
3286 error ("invalid address operand in %qs", code_name);
3287 debug_generic_stmt (expr);
3288 return true;
3289 }
3290 if (!poly_int_tree_p (TREE_OPERAND (expr, 1))
3291 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3292 {
3293 error ("invalid offset operand in %qs", code_name);
3294 debug_generic_stmt (expr);
3295 return true;
3296 }
3297 if (MR_DEPENDENCE_CLIQUE (expr) != 0
3298 && MR_DEPENDENCE_CLIQUE (expr) > cfun->last_clique)
3299 {
3300 error ("invalid clique in %qs", code_name);
3301 debug_generic_stmt (expr);
3302 return true;
3303 }
3304 }
3305 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3306 {
3307 if (!TMR_BASE (expr)
3308 || !is_gimple_mem_ref_addr (TMR_BASE (expr))
3309 || (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
3310 && verify_address (TMR_BASE (expr), false)))
3311 {
3312 error ("invalid address operand in %qs", code_name);
3313 return true;
3314 }
3315 if (!TMR_OFFSET (expr)
3316 || !poly_int_tree_p (TMR_OFFSET (expr))
3317 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3318 {
3319 error ("invalid offset operand in %qs", code_name);
3320 debug_generic_stmt (expr);
3321 return true;
3322 }
3323 if (MR_DEPENDENCE_CLIQUE (expr) != 0
3324 && MR_DEPENDENCE_CLIQUE (expr) > cfun->last_clique)
3325 {
3326 error ("invalid clique in %qs", code_name);
3327 debug_generic_stmt (expr);
3328 return true;
3329 }
3330 }
3331 else if (INDIRECT_REF_P (expr))
3332 {
3333 error ("%qs in gimple IL", code_name);
3334 debug_generic_stmt (expr);
3335 return true;
3336 }
3337 else if (require_non_reg
3338 && (is_gimple_reg (expr)
3339 || (is_gimple_min_invariant (expr)
3340 /* STRING_CSTs are representatives of the string table
3341 entry which lives in memory. */
3342 && TREE_CODE (expr) != STRING_CST)))
3343 {
3344 error ("%qs as base where non-register is required", code_name);
3345 debug_generic_stmt (expr);
3346 return true;
3347 }
3348
3349 if (!require_lvalue
3350 && (is_gimple_reg (expr) || is_gimple_min_invariant (expr)))
3351 return false;
3352
3353 if (TREE_CODE (expr) != SSA_NAME && is_gimple_id (expr))
3354 return false;
3355
3356 if (TREE_CODE (expr) != TARGET_MEM_REF
3357 && TREE_CODE (expr) != MEM_REF)
3358 {
3359 error ("invalid expression for min lvalue");
3360 return true;
3361 }
3362
3363 return false;
3364 }
3365
3366 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3367 list of pointer-to types that is trivially convertible to DEST. */
3368
3369 static bool
3370 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3371 {
3372 tree src;
3373
3374 if (!TYPE_POINTER_TO (src_obj))
3375 return true;
3376
3377 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3378 if (useless_type_conversion_p (dest, src))
3379 return true;
3380
3381 return false;
3382 }
3383
3384 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3385 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3386
3387 static bool
3388 valid_fixed_convert_types_p (tree type1, tree type2)
3389 {
3390 return (FIXED_POINT_TYPE_P (type1)
3391 && (INTEGRAL_TYPE_P (type2)
3392 || SCALAR_FLOAT_TYPE_P (type2)
3393 || FIXED_POINT_TYPE_P (type2)));
3394 }
3395
3396 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3397 is a problem, otherwise false. */
3398
3399 static bool
3400 verify_gimple_call (gcall *stmt)
3401 {
3402 tree fn = gimple_call_fn (stmt);
3403 tree fntype, fndecl;
3404 unsigned i;
3405
3406 if (gimple_call_internal_p (stmt))
3407 {
3408 if (fn)
3409 {
3410 error ("gimple call has two targets");
3411 debug_generic_stmt (fn);
3412 return true;
3413 }
3414 }
3415 else
3416 {
3417 if (!fn)
3418 {
3419 error ("gimple call has no target");
3420 return true;
3421 }
3422 }
3423
3424 if (fn && !is_gimple_call_addr (fn))
3425 {
3426 error ("invalid function in gimple call");
3427 debug_generic_stmt (fn);
3428 return true;
3429 }
3430
3431 if (fn
3432 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3433 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3434 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3435 {
3436 error ("non-function in gimple call");
3437 return true;
3438 }
3439
3440 fndecl = gimple_call_fndecl (stmt);
3441 if (fndecl
3442 && TREE_CODE (fndecl) == FUNCTION_DECL
3443 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3444 && !DECL_PURE_P (fndecl)
3445 && !TREE_READONLY (fndecl))
3446 {
3447 error ("invalid pure const state for function");
3448 return true;
3449 }
3450
3451 tree lhs = gimple_call_lhs (stmt);
3452 if (lhs
3453 && (!is_gimple_reg (lhs)
3454 && (!is_gimple_lvalue (lhs)
3455 || verify_types_in_gimple_reference
3456 (TREE_CODE (lhs) == WITH_SIZE_EXPR
3457 ? TREE_OPERAND (lhs, 0) : lhs, true))))
3458 {
3459 error ("invalid LHS in gimple call");
3460 return true;
3461 }
3462
3463 if (gimple_call_ctrl_altering_p (stmt)
3464 && gimple_call_noreturn_p (stmt)
3465 && should_remove_lhs_p (lhs))
3466 {
3467 error ("LHS in %<noreturn%> call");
3468 return true;
3469 }
3470
3471 fntype = gimple_call_fntype (stmt);
3472 if (fntype
3473 && lhs
3474 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3475 /* ??? At least C++ misses conversions at assignments from
3476 void * call results.
3477 For now simply allow arbitrary pointer type conversions. */
3478 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3479 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3480 {
3481 error ("invalid conversion in gimple call");
3482 debug_generic_stmt (TREE_TYPE (lhs));
3483 debug_generic_stmt (TREE_TYPE (fntype));
3484 return true;
3485 }
3486
3487 if (gimple_call_chain (stmt)
3488 && !is_gimple_val (gimple_call_chain (stmt)))
3489 {
3490 error ("invalid static chain in gimple call");
3491 debug_generic_stmt (gimple_call_chain (stmt));
3492 return true;
3493 }
3494
3495 /* If there is a static chain argument, the call should either be
3496 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3497 if (gimple_call_chain (stmt)
3498 && fndecl
3499 && !DECL_STATIC_CHAIN (fndecl))
3500 {
3501 error ("static chain with function that doesn%'t use one");
3502 return true;
3503 }
3504
3505 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
3506 {
3507 switch (DECL_FUNCTION_CODE (fndecl))
3508 {
3509 case BUILT_IN_UNREACHABLE:
3510 case BUILT_IN_UNREACHABLE_TRAP:
3511 case BUILT_IN_TRAP:
3512 if (gimple_call_num_args (stmt) > 0)
3513 {
3514 /* Built-in unreachable with parameters might not be caught by
3515 undefined behavior sanitizer. Front-ends do check users do not
3516 call them that way but we also produce calls to
3517 __builtin_unreachable internally, for example when IPA figures
3518 out a call cannot happen in a legal program. In such cases,
3519 we must make sure arguments are stripped off. */
3520 error ("%<__builtin_unreachable%> or %<__builtin_trap%> call "
3521 "with arguments");
3522 return true;
3523 }
3524 break;
3525 default:
3526 break;
3527 }
3528 }
3529
3530 /* For a call to .DEFERRED_INIT,
3531 LHS = DEFERRED_INIT (SIZE of the DECL, INIT_TYPE, NAME of the DECL)
3532 we should guarantee that when the 1st argument is a constant, it should
3533 be the same as the size of the LHS. */
3534
3535 if (gimple_call_internal_p (stmt, IFN_DEFERRED_INIT))
3536 {
3537 tree size_of_arg0 = gimple_call_arg (stmt, 0);
3538 tree size_of_lhs = TYPE_SIZE_UNIT (TREE_TYPE (lhs));
3539
3540 if (TREE_CODE (lhs) == SSA_NAME)
3541 lhs = SSA_NAME_VAR (lhs);
3542
3543 poly_uint64 size_from_arg0, size_from_lhs;
3544 bool is_constant_size_arg0 = poly_int_tree_p (size_of_arg0,
3545 &size_from_arg0);
3546 bool is_constant_size_lhs = poly_int_tree_p (size_of_lhs,
3547 &size_from_lhs);
3548 if (is_constant_size_arg0 && is_constant_size_lhs)
3549 if (maybe_ne (size_from_arg0, size_from_lhs))
3550 {
3551 error ("%<DEFERRED_INIT%> calls should have same "
3552 "constant size for the first argument and LHS");
3553 return true;
3554 }
3555 }
3556
3557 /* ??? The C frontend passes unpromoted arguments in case it
3558 didn't see a function declaration before the call. So for now
3559 leave the call arguments mostly unverified. Once we gimplify
3560 unit-at-a-time we have a chance to fix this. */
3561 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3562 {
3563 tree arg = gimple_call_arg (stmt, i);
3564 if ((is_gimple_reg_type (TREE_TYPE (arg))
3565 && !is_gimple_val (arg))
3566 || (!is_gimple_reg_type (TREE_TYPE (arg))
3567 && !is_gimple_lvalue (arg)))
3568 {
3569 error ("invalid argument to gimple call");
3570 debug_generic_expr (arg);
3571 return true;
3572 }
3573 if (!is_gimple_reg (arg))
3574 {
3575 if (TREE_CODE (arg) == WITH_SIZE_EXPR)
3576 arg = TREE_OPERAND (arg, 0);
3577 if (verify_types_in_gimple_reference (arg, false))
3578 return true;
3579 }
3580 }
3581
3582 return false;
3583 }
3584
3585 /* Verifies the gimple comparison with the result type TYPE and
3586 the operands OP0 and OP1, comparison code is CODE. */
3587
3588 static bool
3589 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3590 {
3591 tree op0_type = TREE_TYPE (op0);
3592 tree op1_type = TREE_TYPE (op1);
3593
3594 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3595 {
3596 error ("invalid operands in gimple comparison");
3597 return true;
3598 }
3599
3600 /* For comparisons we do not have the operations type as the
3601 effective type the comparison is carried out in. Instead
3602 we require that either the first operand is trivially
3603 convertible into the second, or the other way around. */
3604 if (!useless_type_conversion_p (op0_type, op1_type)
3605 && !useless_type_conversion_p (op1_type, op0_type))
3606 {
3607 error ("mismatching comparison operand types");
3608 debug_generic_expr (op0_type);
3609 debug_generic_expr (op1_type);
3610 return true;
3611 }
3612
3613 /* The resulting type of a comparison may be an effective boolean type. */
3614 if (INTEGRAL_TYPE_P (type)
3615 && (TREE_CODE (type) == BOOLEAN_TYPE
3616 || TYPE_PRECISION (type) == 1))
3617 {
3618 if ((VECTOR_TYPE_P (op0_type)
3619 || VECTOR_TYPE_P (op1_type))
3620 && code != EQ_EXPR && code != NE_EXPR
3621 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3622 && !VECTOR_INTEGER_TYPE_P (op0_type))
3623 {
3624 error ("unsupported operation or type for vector comparison"
3625 " returning a boolean");
3626 debug_generic_expr (op0_type);
3627 debug_generic_expr (op1_type);
3628 return true;
3629 }
3630 }
3631 /* Or a boolean vector type with the same element count
3632 as the comparison operand types. */
3633 else if (VECTOR_TYPE_P (type)
3634 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3635 {
3636 if (TREE_CODE (op0_type) != VECTOR_TYPE
3637 || TREE_CODE (op1_type) != VECTOR_TYPE)
3638 {
3639 error ("non-vector operands in vector comparison");
3640 debug_generic_expr (op0_type);
3641 debug_generic_expr (op1_type);
3642 return true;
3643 }
3644
3645 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type),
3646 TYPE_VECTOR_SUBPARTS (op0_type)))
3647 {
3648 error ("invalid vector comparison resulting type");
3649 debug_generic_expr (type);
3650 return true;
3651 }
3652 }
3653 else
3654 {
3655 error ("bogus comparison result type");
3656 debug_generic_expr (type);
3657 return true;
3658 }
3659
3660 return false;
3661 }
3662
3663 /* Verify a gimple assignment statement STMT with an unary rhs.
3664 Returns true if anything is wrong. */
3665
3666 static bool
3667 verify_gimple_assign_unary (gassign *stmt)
3668 {
3669 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3670 tree lhs = gimple_assign_lhs (stmt);
3671 tree lhs_type = TREE_TYPE (lhs);
3672 tree rhs1 = gimple_assign_rhs1 (stmt);
3673 tree rhs1_type = TREE_TYPE (rhs1);
3674
3675 if (!is_gimple_reg (lhs))
3676 {
3677 error ("non-register as LHS of unary operation");
3678 return true;
3679 }
3680
3681 if (!is_gimple_val (rhs1))
3682 {
3683 error ("invalid operand in unary operation");
3684 return true;
3685 }
3686
3687 const char* const code_name = get_tree_code_name (rhs_code);
3688
3689 /* First handle conversions. */
3690 switch (rhs_code)
3691 {
3692 CASE_CONVERT:
3693 {
3694 /* Allow conversions between vectors with the same number of elements,
3695 provided that the conversion is OK for the element types too. */
3696 if (VECTOR_TYPE_P (lhs_type)
3697 && VECTOR_TYPE_P (rhs1_type)
3698 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
3699 TYPE_VECTOR_SUBPARTS (rhs1_type)))
3700 {
3701 lhs_type = TREE_TYPE (lhs_type);
3702 rhs1_type = TREE_TYPE (rhs1_type);
3703 }
3704 else if (VECTOR_TYPE_P (lhs_type) || VECTOR_TYPE_P (rhs1_type))
3705 {
3706 error ("invalid vector types in nop conversion");
3707 debug_generic_expr (lhs_type);
3708 debug_generic_expr (rhs1_type);
3709 return true;
3710 }
3711
3712 /* Allow conversions from pointer type to integral type only if
3713 there is no sign or zero extension involved.
3714 For targets were the precision of ptrofftype doesn't match that
3715 of pointers we allow conversions to types where
3716 POINTERS_EXTEND_UNSIGNED specifies how that works. */
3717 if ((POINTER_TYPE_P (lhs_type)
3718 && INTEGRAL_TYPE_P (rhs1_type))
3719 || (POINTER_TYPE_P (rhs1_type)
3720 && INTEGRAL_TYPE_P (lhs_type)
3721 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3722 #if defined(POINTERS_EXTEND_UNSIGNED)
3723 || (TYPE_MODE (rhs1_type) == ptr_mode
3724 && (TYPE_PRECISION (lhs_type)
3725 == BITS_PER_WORD /* word_mode */
3726 || (TYPE_PRECISION (lhs_type)
3727 == GET_MODE_PRECISION (Pmode))))
3728 #endif
3729 )))
3730 return false;
3731
3732 /* Allow conversion from integral to offset type and vice versa. */
3733 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3734 && INTEGRAL_TYPE_P (rhs1_type))
3735 || (INTEGRAL_TYPE_P (lhs_type)
3736 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3737 return false;
3738
3739 /* Otherwise assert we are converting between types of the
3740 same kind. */
3741 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3742 {
3743 error ("invalid types in nop conversion");
3744 debug_generic_expr (lhs_type);
3745 debug_generic_expr (rhs1_type);
3746 return true;
3747 }
3748
3749 return false;
3750 }
3751
3752 case ADDR_SPACE_CONVERT_EXPR:
3753 {
3754 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3755 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3756 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3757 {
3758 error ("invalid types in address space conversion");
3759 debug_generic_expr (lhs_type);
3760 debug_generic_expr (rhs1_type);
3761 return true;
3762 }
3763
3764 return false;
3765 }
3766
3767 case FIXED_CONVERT_EXPR:
3768 {
3769 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3770 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3771 {
3772 error ("invalid types in fixed-point conversion");
3773 debug_generic_expr (lhs_type);
3774 debug_generic_expr (rhs1_type);
3775 return true;
3776 }
3777
3778 return false;
3779 }
3780
3781 case FLOAT_EXPR:
3782 {
3783 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3784 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3785 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3786 {
3787 error ("invalid types in conversion to floating-point");
3788 debug_generic_expr (lhs_type);
3789 debug_generic_expr (rhs1_type);
3790 return true;
3791 }
3792
3793 return false;
3794 }
3795
3796 case FIX_TRUNC_EXPR:
3797 {
3798 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3799 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3800 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3801 {
3802 error ("invalid types in conversion to integer");
3803 debug_generic_expr (lhs_type);
3804 debug_generic_expr (rhs1_type);
3805 return true;
3806 }
3807
3808 return false;
3809 }
3810
3811 case VEC_UNPACK_HI_EXPR:
3812 case VEC_UNPACK_LO_EXPR:
3813 case VEC_UNPACK_FLOAT_HI_EXPR:
3814 case VEC_UNPACK_FLOAT_LO_EXPR:
3815 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
3816 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
3817 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3818 || TREE_CODE (lhs_type) != VECTOR_TYPE
3819 || (!INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3820 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type)))
3821 || (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3822 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3823 || ((rhs_code == VEC_UNPACK_HI_EXPR
3824 || rhs_code == VEC_UNPACK_LO_EXPR)
3825 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3826 != INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3827 || ((rhs_code == VEC_UNPACK_FLOAT_HI_EXPR
3828 || rhs_code == VEC_UNPACK_FLOAT_LO_EXPR)
3829 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3830 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))))
3831 || ((rhs_code == VEC_UNPACK_FIX_TRUNC_HI_EXPR
3832 || rhs_code == VEC_UNPACK_FIX_TRUNC_LO_EXPR)
3833 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3834 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))))
3835 || (maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
3836 2 * GET_MODE_SIZE (element_mode (rhs1_type)))
3837 && (!VECTOR_BOOLEAN_TYPE_P (lhs_type)
3838 || !VECTOR_BOOLEAN_TYPE_P (rhs1_type)))
3839 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (lhs_type),
3840 TYPE_VECTOR_SUBPARTS (rhs1_type)))
3841 {
3842 error ("type mismatch in %qs expression", code_name);
3843 debug_generic_expr (lhs_type);
3844 debug_generic_expr (rhs1_type);
3845 return true;
3846 }
3847
3848 return false;
3849
3850 case NEGATE_EXPR:
3851 case ABS_EXPR:
3852 case BIT_NOT_EXPR:
3853 case PAREN_EXPR:
3854 case CONJ_EXPR:
3855 /* Disallow pointer and offset types for many of the unary gimple. */
3856 if (POINTER_TYPE_P (lhs_type)
3857 || TREE_CODE (lhs_type) == OFFSET_TYPE)
3858 {
3859 error ("invalid types for %qs", code_name);
3860 debug_generic_expr (lhs_type);
3861 debug_generic_expr (rhs1_type);
3862 return true;
3863 }
3864 break;
3865
3866 case ABSU_EXPR:
3867 if (!ANY_INTEGRAL_TYPE_P (lhs_type)
3868 || !TYPE_UNSIGNED (lhs_type)
3869 || !ANY_INTEGRAL_TYPE_P (rhs1_type)
3870 || TYPE_UNSIGNED (rhs1_type)
3871 || element_precision (lhs_type) != element_precision (rhs1_type))
3872 {
3873 error ("invalid types for %qs", code_name);
3874 debug_generic_expr (lhs_type);
3875 debug_generic_expr (rhs1_type);
3876 return true;
3877 }
3878 return false;
3879
3880 case VEC_DUPLICATE_EXPR:
3881 if (TREE_CODE (lhs_type) != VECTOR_TYPE
3882 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
3883 {
3884 error ("%qs should be from a scalar to a like vector", code_name);
3885 debug_generic_expr (lhs_type);
3886 debug_generic_expr (rhs1_type);
3887 return true;
3888 }
3889 return false;
3890
3891 default:
3892 gcc_unreachable ();
3893 }
3894
3895 /* For the remaining codes assert there is no conversion involved. */
3896 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3897 {
3898 error ("non-trivial conversion in unary operation");
3899 debug_generic_expr (lhs_type);
3900 debug_generic_expr (rhs1_type);
3901 return true;
3902 }
3903
3904 return false;
3905 }
3906
3907 /* Verify a gimple assignment statement STMT with a binary rhs.
3908 Returns true if anything is wrong. */
3909
3910 static bool
3911 verify_gimple_assign_binary (gassign *stmt)
3912 {
3913 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3914 tree lhs = gimple_assign_lhs (stmt);
3915 tree lhs_type = TREE_TYPE (lhs);
3916 tree rhs1 = gimple_assign_rhs1 (stmt);
3917 tree rhs1_type = TREE_TYPE (rhs1);
3918 tree rhs2 = gimple_assign_rhs2 (stmt);
3919 tree rhs2_type = TREE_TYPE (rhs2);
3920
3921 if (!is_gimple_reg (lhs))
3922 {
3923 error ("non-register as LHS of binary operation");
3924 return true;
3925 }
3926
3927 if (!is_gimple_val (rhs1)
3928 || !is_gimple_val (rhs2))
3929 {
3930 error ("invalid operands in binary operation");
3931 return true;
3932 }
3933
3934 const char* const code_name = get_tree_code_name (rhs_code);
3935
3936 /* First handle operations that involve different types. */
3937 switch (rhs_code)
3938 {
3939 case COMPLEX_EXPR:
3940 {
3941 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3942 || !(INTEGRAL_TYPE_P (rhs1_type)
3943 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3944 || !(INTEGRAL_TYPE_P (rhs2_type)
3945 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3946 {
3947 error ("type mismatch in %qs", code_name);
3948 debug_generic_expr (lhs_type);
3949 debug_generic_expr (rhs1_type);
3950 debug_generic_expr (rhs2_type);
3951 return true;
3952 }
3953
3954 return false;
3955 }
3956
3957 case LSHIFT_EXPR:
3958 case RSHIFT_EXPR:
3959 case LROTATE_EXPR:
3960 case RROTATE_EXPR:
3961 {
3962 /* Shifts and rotates are ok on integral types, fixed point
3963 types and integer vector types. */
3964 if ((!INTEGRAL_TYPE_P (rhs1_type)
3965 && !FIXED_POINT_TYPE_P (rhs1_type)
3966 && ! (VECTOR_TYPE_P (rhs1_type)
3967 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3968 || (!INTEGRAL_TYPE_P (rhs2_type)
3969 /* Vector shifts of vectors are also ok. */
3970 && ! (VECTOR_TYPE_P (rhs1_type)
3971 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3972 && VECTOR_TYPE_P (rhs2_type)
3973 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3974 || !useless_type_conversion_p (lhs_type, rhs1_type))
3975 {
3976 error ("type mismatch in %qs", code_name);
3977 debug_generic_expr (lhs_type);
3978 debug_generic_expr (rhs1_type);
3979 debug_generic_expr (rhs2_type);
3980 return true;
3981 }
3982
3983 return false;
3984 }
3985
3986 case WIDEN_LSHIFT_EXPR:
3987 {
3988 if (!INTEGRAL_TYPE_P (lhs_type)
3989 || !INTEGRAL_TYPE_P (rhs1_type)
3990 || TREE_CODE (rhs2) != INTEGER_CST
3991 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3992 {
3993 error ("type mismatch in %qs", code_name);
3994 debug_generic_expr (lhs_type);
3995 debug_generic_expr (rhs1_type);
3996 debug_generic_expr (rhs2_type);
3997 return true;
3998 }
3999
4000 return false;
4001 }
4002
4003 case VEC_WIDEN_LSHIFT_HI_EXPR:
4004 case VEC_WIDEN_LSHIFT_LO_EXPR:
4005 {
4006 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4007 || TREE_CODE (lhs_type) != VECTOR_TYPE
4008 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4009 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
4010 || TREE_CODE (rhs2) != INTEGER_CST
4011 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
4012 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
4013 {
4014 error ("type mismatch in %qs", code_name);
4015 debug_generic_expr (lhs_type);
4016 debug_generic_expr (rhs1_type);
4017 debug_generic_expr (rhs2_type);
4018 return true;
4019 }
4020
4021 return false;
4022 }
4023
4024 case PLUS_EXPR:
4025 case MINUS_EXPR:
4026 {
4027 tree lhs_etype = lhs_type;
4028 tree rhs1_etype = rhs1_type;
4029 tree rhs2_etype = rhs2_type;
4030 if (VECTOR_TYPE_P (lhs_type))
4031 {
4032 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4033 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
4034 {
4035 error ("invalid non-vector operands to %qs", code_name);
4036 return true;
4037 }
4038 lhs_etype = TREE_TYPE (lhs_type);
4039 rhs1_etype = TREE_TYPE (rhs1_type);
4040 rhs2_etype = TREE_TYPE (rhs2_type);
4041 }
4042 if (POINTER_TYPE_P (lhs_etype)
4043 || POINTER_TYPE_P (rhs1_etype)
4044 || POINTER_TYPE_P (rhs2_etype))
4045 {
4046 error ("invalid (pointer) operands %qs", code_name);
4047 return true;
4048 }
4049
4050 /* Continue with generic binary expression handling. */
4051 break;
4052 }
4053
4054 case POINTER_PLUS_EXPR:
4055 {
4056 if (!POINTER_TYPE_P (rhs1_type)
4057 || !useless_type_conversion_p (lhs_type, rhs1_type)
4058 || !ptrofftype_p (rhs2_type))
4059 {
4060 error ("type mismatch in %qs", code_name);
4061 debug_generic_stmt (lhs_type);
4062 debug_generic_stmt (rhs1_type);
4063 debug_generic_stmt (rhs2_type);
4064 return true;
4065 }
4066
4067 return false;
4068 }
4069
4070 case POINTER_DIFF_EXPR:
4071 {
4072 if (!POINTER_TYPE_P (rhs1_type)
4073 || !POINTER_TYPE_P (rhs2_type)
4074 /* Because we special-case pointers to void we allow difference
4075 of arbitrary pointers with the same mode. */
4076 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
4077 || !INTEGRAL_TYPE_P (lhs_type)
4078 || TYPE_UNSIGNED (lhs_type)
4079 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
4080 {
4081 error ("type mismatch in %qs", code_name);
4082 debug_generic_stmt (lhs_type);
4083 debug_generic_stmt (rhs1_type);
4084 debug_generic_stmt (rhs2_type);
4085 return true;
4086 }
4087
4088 return false;
4089 }
4090
4091 case TRUTH_ANDIF_EXPR:
4092 case TRUTH_ORIF_EXPR:
4093 case TRUTH_AND_EXPR:
4094 case TRUTH_OR_EXPR:
4095 case TRUTH_XOR_EXPR:
4096
4097 gcc_unreachable ();
4098
4099 case LT_EXPR:
4100 case LE_EXPR:
4101 case GT_EXPR:
4102 case GE_EXPR:
4103 case EQ_EXPR:
4104 case NE_EXPR:
4105 case UNORDERED_EXPR:
4106 case ORDERED_EXPR:
4107 case UNLT_EXPR:
4108 case UNLE_EXPR:
4109 case UNGT_EXPR:
4110 case UNGE_EXPR:
4111 case UNEQ_EXPR:
4112 case LTGT_EXPR:
4113 /* Comparisons are also binary, but the result type is not
4114 connected to the operand types. */
4115 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
4116
4117 case WIDEN_MULT_EXPR:
4118 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
4119 return true;
4120 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
4121 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
4122
4123 case WIDEN_SUM_EXPR:
4124 {
4125 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4126 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4127 && ((!INTEGRAL_TYPE_P (rhs1_type)
4128 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4129 || (!INTEGRAL_TYPE_P (lhs_type)
4130 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4131 || !useless_type_conversion_p (lhs_type, rhs2_type)
4132 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)),
4133 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4134 {
4135 error ("type mismatch in %qs", code_name);
4136 debug_generic_expr (lhs_type);
4137 debug_generic_expr (rhs1_type);
4138 debug_generic_expr (rhs2_type);
4139 return true;
4140 }
4141 return false;
4142 }
4143
4144 case VEC_WIDEN_MULT_HI_EXPR:
4145 case VEC_WIDEN_MULT_LO_EXPR:
4146 case VEC_WIDEN_MULT_EVEN_EXPR:
4147 case VEC_WIDEN_MULT_ODD_EXPR:
4148 {
4149 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4150 || TREE_CODE (lhs_type) != VECTOR_TYPE
4151 || !types_compatible_p (rhs1_type, rhs2_type)
4152 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
4153 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4154 {
4155 error ("type mismatch in %qs", code_name);
4156 debug_generic_expr (lhs_type);
4157 debug_generic_expr (rhs1_type);
4158 debug_generic_expr (rhs2_type);
4159 return true;
4160 }
4161 return false;
4162 }
4163
4164 case VEC_PACK_TRUNC_EXPR:
4165 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4166 vector boolean types. */
4167 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4168 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4169 && types_compatible_p (rhs1_type, rhs2_type)
4170 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
4171 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4172 return false;
4173
4174 /* Fallthru. */
4175 case VEC_PACK_SAT_EXPR:
4176 case VEC_PACK_FIX_TRUNC_EXPR:
4177 {
4178 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4179 || TREE_CODE (lhs_type) != VECTOR_TYPE
4180 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4181 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4182 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4183 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4184 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4185 || !types_compatible_p (rhs1_type, rhs2_type)
4186 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4187 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4188 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4189 TYPE_VECTOR_SUBPARTS (lhs_type)))
4190 {
4191 error ("type mismatch in %qs", code_name);
4192 debug_generic_expr (lhs_type);
4193 debug_generic_expr (rhs1_type);
4194 debug_generic_expr (rhs2_type);
4195 return true;
4196 }
4197
4198 return false;
4199 }
4200
4201 case VEC_PACK_FLOAT_EXPR:
4202 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4203 || TREE_CODE (lhs_type) != VECTOR_TYPE
4204 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4205 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))
4206 || !types_compatible_p (rhs1_type, rhs2_type)
4207 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4208 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4209 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4210 TYPE_VECTOR_SUBPARTS (lhs_type)))
4211 {
4212 error ("type mismatch in %qs", code_name);
4213 debug_generic_expr (lhs_type);
4214 debug_generic_expr (rhs1_type);
4215 debug_generic_expr (rhs2_type);
4216 return true;
4217 }
4218
4219 return false;
4220
4221 case MULT_EXPR:
4222 case MULT_HIGHPART_EXPR:
4223 case TRUNC_DIV_EXPR:
4224 case CEIL_DIV_EXPR:
4225 case FLOOR_DIV_EXPR:
4226 case ROUND_DIV_EXPR:
4227 case TRUNC_MOD_EXPR:
4228 case CEIL_MOD_EXPR:
4229 case FLOOR_MOD_EXPR:
4230 case ROUND_MOD_EXPR:
4231 case RDIV_EXPR:
4232 case EXACT_DIV_EXPR:
4233 case BIT_IOR_EXPR:
4234 case BIT_XOR_EXPR:
4235 /* Disallow pointer and offset types for many of the binary gimple. */
4236 if (POINTER_TYPE_P (lhs_type)
4237 || TREE_CODE (lhs_type) == OFFSET_TYPE)
4238 {
4239 error ("invalid types for %qs", code_name);
4240 debug_generic_expr (lhs_type);
4241 debug_generic_expr (rhs1_type);
4242 debug_generic_expr (rhs2_type);
4243 return true;
4244 }
4245 /* Continue with generic binary expression handling. */
4246 break;
4247
4248 case MIN_EXPR:
4249 case MAX_EXPR:
4250 /* Continue with generic binary expression handling. */
4251 break;
4252
4253 case BIT_AND_EXPR:
4254 if (POINTER_TYPE_P (lhs_type)
4255 && TREE_CODE (rhs2) == INTEGER_CST)
4256 break;
4257 /* Disallow pointer and offset types for many of the binary gimple. */
4258 if (POINTER_TYPE_P (lhs_type)
4259 || TREE_CODE (lhs_type) == OFFSET_TYPE)
4260 {
4261 error ("invalid types for %qs", code_name);
4262 debug_generic_expr (lhs_type);
4263 debug_generic_expr (rhs1_type);
4264 debug_generic_expr (rhs2_type);
4265 return true;
4266 }
4267 /* Continue with generic binary expression handling. */
4268 break;
4269
4270 case VEC_SERIES_EXPR:
4271 if (!useless_type_conversion_p (rhs1_type, rhs2_type))
4272 {
4273 error ("type mismatch in %qs", code_name);
4274 debug_generic_expr (rhs1_type);
4275 debug_generic_expr (rhs2_type);
4276 return true;
4277 }
4278 if (TREE_CODE (lhs_type) != VECTOR_TYPE
4279 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
4280 {
4281 error ("vector type expected in %qs", code_name);
4282 debug_generic_expr (lhs_type);
4283 return true;
4284 }
4285 return false;
4286
4287 default:
4288 gcc_unreachable ();
4289 }
4290
4291 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4292 || !useless_type_conversion_p (lhs_type, rhs2_type))
4293 {
4294 error ("type mismatch in binary expression");
4295 debug_generic_stmt (lhs_type);
4296 debug_generic_stmt (rhs1_type);
4297 debug_generic_stmt (rhs2_type);
4298 return true;
4299 }
4300
4301 return false;
4302 }
4303
4304 /* Verify a gimple assignment statement STMT with a ternary rhs.
4305 Returns true if anything is wrong. */
4306
4307 static bool
4308 verify_gimple_assign_ternary (gassign *stmt)
4309 {
4310 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4311 tree lhs = gimple_assign_lhs (stmt);
4312 tree lhs_type = TREE_TYPE (lhs);
4313 tree rhs1 = gimple_assign_rhs1 (stmt);
4314 tree rhs1_type = TREE_TYPE (rhs1);
4315 tree rhs2 = gimple_assign_rhs2 (stmt);
4316 tree rhs2_type = TREE_TYPE (rhs2);
4317 tree rhs3 = gimple_assign_rhs3 (stmt);
4318 tree rhs3_type = TREE_TYPE (rhs3);
4319
4320 if (!is_gimple_reg (lhs))
4321 {
4322 error ("non-register as LHS of ternary operation");
4323 return true;
4324 }
4325
4326 if (!is_gimple_val (rhs1)
4327 || !is_gimple_val (rhs2)
4328 || !is_gimple_val (rhs3))
4329 {
4330 error ("invalid operands in ternary operation");
4331 return true;
4332 }
4333
4334 const char* const code_name = get_tree_code_name (rhs_code);
4335
4336 /* First handle operations that involve different types. */
4337 switch (rhs_code)
4338 {
4339 case WIDEN_MULT_PLUS_EXPR:
4340 case WIDEN_MULT_MINUS_EXPR:
4341 if ((!INTEGRAL_TYPE_P (rhs1_type)
4342 && !FIXED_POINT_TYPE_P (rhs1_type))
4343 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4344 || !useless_type_conversion_p (lhs_type, rhs3_type)
4345 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4346 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4347 {
4348 error ("type mismatch in %qs", code_name);
4349 debug_generic_expr (lhs_type);
4350 debug_generic_expr (rhs1_type);
4351 debug_generic_expr (rhs2_type);
4352 debug_generic_expr (rhs3_type);
4353 return true;
4354 }
4355 break;
4356
4357 case VEC_COND_EXPR:
4358 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4359 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4360 TYPE_VECTOR_SUBPARTS (lhs_type)))
4361 {
4362 error ("the first argument of a %qs must be of a "
4363 "boolean vector type of the same number of elements "
4364 "as the result", code_name);
4365 debug_generic_expr (lhs_type);
4366 debug_generic_expr (rhs1_type);
4367 return true;
4368 }
4369 /* Fallthrough. */
4370 case COND_EXPR:
4371 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4372 || !useless_type_conversion_p (lhs_type, rhs3_type))
4373 {
4374 error ("type mismatch in %qs", code_name);
4375 debug_generic_expr (lhs_type);
4376 debug_generic_expr (rhs2_type);
4377 debug_generic_expr (rhs3_type);
4378 return true;
4379 }
4380 break;
4381
4382 case VEC_PERM_EXPR:
4383 /* If permute is constant, then we allow for lhs and rhs
4384 to have different vector types, provided:
4385 (1) lhs, rhs1, rhs2 have same element type.
4386 (2) rhs3 vector is constant and has integer element type.
4387 (3) len(lhs) == len(rhs3) && len(rhs1) == len(rhs2). */
4388
4389 if (TREE_CODE (lhs_type) != VECTOR_TYPE
4390 || TREE_CODE (rhs1_type) != VECTOR_TYPE
4391 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4392 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4393 {
4394 error ("vector types expected in %qs", code_name);
4395 debug_generic_expr (lhs_type);
4396 debug_generic_expr (rhs1_type);
4397 debug_generic_expr (rhs2_type);
4398 debug_generic_expr (rhs3_type);
4399 return true;
4400 }
4401
4402 /* If rhs3 is constant, we allow lhs, rhs1 and rhs2 to be different vector types,
4403 as long as lhs, rhs1 and rhs2 have same element type. */
4404 if (TREE_CONSTANT (rhs3)
4405 ? (!useless_type_conversion_p (TREE_TYPE (lhs_type), TREE_TYPE (rhs1_type))
4406 || !useless_type_conversion_p (TREE_TYPE (lhs_type), TREE_TYPE (rhs2_type)))
4407 : (!useless_type_conversion_p (lhs_type, rhs1_type)
4408 || !useless_type_conversion_p (lhs_type, rhs2_type)))
4409 {
4410 error ("type mismatch in %qs", code_name);
4411 debug_generic_expr (lhs_type);
4412 debug_generic_expr (rhs1_type);
4413 debug_generic_expr (rhs2_type);
4414 debug_generic_expr (rhs3_type);
4415 return true;
4416 }
4417
4418 /* If rhs3 is constant, relax the check len(rhs2) == len(rhs3). */
4419 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4420 TYPE_VECTOR_SUBPARTS (rhs2_type))
4421 || (!TREE_CONSTANT(rhs3)
4422 && maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type),
4423 TYPE_VECTOR_SUBPARTS (rhs3_type)))
4424 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type),
4425 TYPE_VECTOR_SUBPARTS (lhs_type)))
4426 {
4427 error ("vectors with different element number found in %qs",
4428 code_name);
4429 debug_generic_expr (lhs_type);
4430 debug_generic_expr (rhs1_type);
4431 debug_generic_expr (rhs2_type);
4432 debug_generic_expr (rhs3_type);
4433 return true;
4434 }
4435
4436 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4437 || (TREE_CODE (rhs3) != VECTOR_CST
4438 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4439 (TREE_TYPE (rhs3_type)))
4440 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4441 (TREE_TYPE (rhs1_type))))))
4442 {
4443 error ("invalid mask type in %qs", code_name);
4444 debug_generic_expr (lhs_type);
4445 debug_generic_expr (rhs1_type);
4446 debug_generic_expr (rhs2_type);
4447 debug_generic_expr (rhs3_type);
4448 return true;
4449 }
4450
4451 return false;
4452
4453 case SAD_EXPR:
4454 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4455 || !useless_type_conversion_p (lhs_type, rhs3_type)
4456 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4457 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4458 {
4459 error ("type mismatch in %qs", code_name);
4460 debug_generic_expr (lhs_type);
4461 debug_generic_expr (rhs1_type);
4462 debug_generic_expr (rhs2_type);
4463 debug_generic_expr (rhs3_type);
4464 return true;
4465 }
4466
4467 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4468 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4469 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4470 {
4471 error ("vector types expected in %qs", code_name);
4472 debug_generic_expr (lhs_type);
4473 debug_generic_expr (rhs1_type);
4474 debug_generic_expr (rhs2_type);
4475 debug_generic_expr (rhs3_type);
4476 return true;
4477 }
4478
4479 return false;
4480
4481 case BIT_INSERT_EXPR:
4482 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4483 {
4484 error ("type mismatch in %qs", code_name);
4485 debug_generic_expr (lhs_type);
4486 debug_generic_expr (rhs1_type);
4487 return true;
4488 }
4489 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4490 && INTEGRAL_TYPE_P (rhs2_type))
4491 /* Vector element insert. */
4492 || (VECTOR_TYPE_P (rhs1_type)
4493 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))
4494 /* Aligned sub-vector insert. */
4495 || (VECTOR_TYPE_P (rhs1_type)
4496 && VECTOR_TYPE_P (rhs2_type)
4497 && types_compatible_p (TREE_TYPE (rhs1_type),
4498 TREE_TYPE (rhs2_type))
4499 && multiple_p (TYPE_VECTOR_SUBPARTS (rhs1_type),
4500 TYPE_VECTOR_SUBPARTS (rhs2_type))
4501 && multiple_p (wi::to_poly_offset (rhs3),
4502 wi::to_poly_offset (TYPE_SIZE (rhs2_type))))))
4503 {
4504 error ("not allowed type combination in %qs", code_name);
4505 debug_generic_expr (rhs1_type);
4506 debug_generic_expr (rhs2_type);
4507 return true;
4508 }
4509 if (! tree_fits_uhwi_p (rhs3)
4510 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4511 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4512 {
4513 error ("invalid position or size in %qs", code_name);
4514 return true;
4515 }
4516 if (INTEGRAL_TYPE_P (rhs1_type)
4517 && !type_has_mode_precision_p (rhs1_type))
4518 {
4519 error ("%qs into non-mode-precision operand", code_name);
4520 return true;
4521 }
4522 if (INTEGRAL_TYPE_P (rhs1_type))
4523 {
4524 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4525 if (bitpos >= TYPE_PRECISION (rhs1_type)
4526 || (bitpos + TYPE_PRECISION (rhs2_type)
4527 > TYPE_PRECISION (rhs1_type)))
4528 {
4529 error ("insertion out of range in %qs", code_name);
4530 return true;
4531 }
4532 }
4533 else if (VECTOR_TYPE_P (rhs1_type))
4534 {
4535 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4536 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4537 if (bitpos % bitsize != 0)
4538 {
4539 error ("%qs not at element boundary", code_name);
4540 return true;
4541 }
4542 }
4543 return false;
4544
4545 case DOT_PROD_EXPR:
4546 {
4547 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4548 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4549 && ((!INTEGRAL_TYPE_P (rhs1_type)
4550 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4551 || (!INTEGRAL_TYPE_P (lhs_type)
4552 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4553 /* rhs1_type and rhs2_type may differ in sign. */
4554 || !tree_nop_conversion_p (rhs1_type, rhs2_type)
4555 || !useless_type_conversion_p (lhs_type, rhs3_type)
4556 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)),
4557 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4558 {
4559 error ("type mismatch in %qs", code_name);
4560 debug_generic_expr (lhs_type);
4561 debug_generic_expr (rhs1_type);
4562 debug_generic_expr (rhs2_type);
4563 return true;
4564 }
4565 return false;
4566 }
4567
4568 case REALIGN_LOAD_EXPR:
4569 /* FIXME. */
4570 return false;
4571
4572 default:
4573 gcc_unreachable ();
4574 }
4575 return false;
4576 }
4577
4578 /* Verify a gimple assignment statement STMT with a single rhs.
4579 Returns true if anything is wrong. */
4580
4581 static bool
4582 verify_gimple_assign_single (gassign *stmt)
4583 {
4584 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4585 tree lhs = gimple_assign_lhs (stmt);
4586 tree lhs_type = TREE_TYPE (lhs);
4587 tree rhs1 = gimple_assign_rhs1 (stmt);
4588 tree rhs1_type = TREE_TYPE (rhs1);
4589 bool res = false;
4590
4591 const char* const code_name = get_tree_code_name (rhs_code);
4592
4593 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4594 {
4595 error ("non-trivial conversion in %qs", code_name);
4596 debug_generic_expr (lhs_type);
4597 debug_generic_expr (rhs1_type);
4598 return true;
4599 }
4600
4601 if (gimple_clobber_p (stmt)
4602 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4603 {
4604 error ("%qs LHS in clobber statement",
4605 get_tree_code_name (TREE_CODE (lhs)));
4606 debug_generic_expr (lhs);
4607 return true;
4608 }
4609
4610 if (TREE_CODE (lhs) == WITH_SIZE_EXPR)
4611 {
4612 error ("%qs LHS in assignment statement",
4613 get_tree_code_name (TREE_CODE (lhs)));
4614 debug_generic_expr (lhs);
4615 return true;
4616 }
4617
4618 if (handled_component_p (lhs)
4619 || TREE_CODE (lhs) == MEM_REF
4620 || TREE_CODE (lhs) == TARGET_MEM_REF)
4621 res |= verify_types_in_gimple_reference (lhs, true);
4622
4623 /* Special codes we cannot handle via their class. */
4624 switch (rhs_code)
4625 {
4626 case ADDR_EXPR:
4627 {
4628 tree op = TREE_OPERAND (rhs1, 0);
4629 if (!is_gimple_addressable (op))
4630 {
4631 error ("invalid operand in %qs", code_name);
4632 return true;
4633 }
4634
4635 /* Technically there is no longer a need for matching types, but
4636 gimple hygiene asks for this check. In LTO we can end up
4637 combining incompatible units and thus end up with addresses
4638 of globals that change their type to a common one. */
4639 if (!in_lto_p
4640 && !types_compatible_p (TREE_TYPE (op),
4641 TREE_TYPE (TREE_TYPE (rhs1)))
4642 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4643 TREE_TYPE (op)))
4644 {
4645 error ("type mismatch in %qs", code_name);
4646 debug_generic_stmt (TREE_TYPE (rhs1));
4647 debug_generic_stmt (TREE_TYPE (op));
4648 return true;
4649 }
4650
4651 return (verify_address (rhs1, true)
4652 || verify_types_in_gimple_reference (op, true));
4653 }
4654
4655 /* tcc_reference */
4656 case INDIRECT_REF:
4657 error ("%qs in gimple IL", code_name);
4658 return true;
4659
4660 case COMPONENT_REF:
4661 case BIT_FIELD_REF:
4662 case ARRAY_REF:
4663 case ARRAY_RANGE_REF:
4664 case VIEW_CONVERT_EXPR:
4665 case REALPART_EXPR:
4666 case IMAGPART_EXPR:
4667 case TARGET_MEM_REF:
4668 case MEM_REF:
4669 if (!is_gimple_reg (lhs)
4670 && is_gimple_reg_type (TREE_TYPE (lhs)))
4671 {
4672 error ("invalid RHS for gimple memory store: %qs", code_name);
4673 debug_generic_stmt (lhs);
4674 debug_generic_stmt (rhs1);
4675 return true;
4676 }
4677 return res || verify_types_in_gimple_reference (rhs1, false);
4678
4679 /* tcc_constant */
4680 case SSA_NAME:
4681 case INTEGER_CST:
4682 case REAL_CST:
4683 case FIXED_CST:
4684 case COMPLEX_CST:
4685 case VECTOR_CST:
4686 case STRING_CST:
4687 return res;
4688
4689 /* tcc_declaration */
4690 case CONST_DECL:
4691 return res;
4692 case VAR_DECL:
4693 case PARM_DECL:
4694 if (!is_gimple_reg (lhs)
4695 && !is_gimple_reg (rhs1)
4696 && is_gimple_reg_type (TREE_TYPE (lhs)))
4697 {
4698 error ("invalid RHS for gimple memory store: %qs", code_name);
4699 debug_generic_stmt (lhs);
4700 debug_generic_stmt (rhs1);
4701 return true;
4702 }
4703 return res;
4704
4705 case CONSTRUCTOR:
4706 if (VECTOR_TYPE_P (rhs1_type))
4707 {
4708 unsigned int i;
4709 tree elt_i, elt_v, elt_t = NULL_TREE;
4710
4711 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4712 return res;
4713 /* For vector CONSTRUCTORs we require that either it is empty
4714 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4715 (then the element count must be correct to cover the whole
4716 outer vector and index must be NULL on all elements, or it is
4717 a CONSTRUCTOR of scalar elements, where we as an exception allow
4718 smaller number of elements (assuming zero filling) and
4719 consecutive indexes as compared to NULL indexes (such
4720 CONSTRUCTORs can appear in the IL from FEs). */
4721 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4722 {
4723 if (elt_t == NULL_TREE)
4724 {
4725 elt_t = TREE_TYPE (elt_v);
4726 if (VECTOR_TYPE_P (elt_t))
4727 {
4728 tree elt_t = TREE_TYPE (elt_v);
4729 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4730 TREE_TYPE (elt_t)))
4731 {
4732 error ("incorrect type of vector %qs elements",
4733 code_name);
4734 debug_generic_stmt (rhs1);
4735 return true;
4736 }
4737 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1)
4738 * TYPE_VECTOR_SUBPARTS (elt_t),
4739 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4740 {
4741 error ("incorrect number of vector %qs elements",
4742 code_name);
4743 debug_generic_stmt (rhs1);
4744 return true;
4745 }
4746 }
4747 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4748 elt_t))
4749 {
4750 error ("incorrect type of vector %qs elements",
4751 code_name);
4752 debug_generic_stmt (rhs1);
4753 return true;
4754 }
4755 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1),
4756 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4757 {
4758 error ("incorrect number of vector %qs elements",
4759 code_name);
4760 debug_generic_stmt (rhs1);
4761 return true;
4762 }
4763 }
4764 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4765 {
4766 error ("incorrect type of vector CONSTRUCTOR elements");
4767 debug_generic_stmt (rhs1);
4768 return true;
4769 }
4770 if (elt_i != NULL_TREE
4771 && (VECTOR_TYPE_P (elt_t)
4772 || TREE_CODE (elt_i) != INTEGER_CST
4773 || compare_tree_int (elt_i, i) != 0))
4774 {
4775 error ("vector %qs with non-NULL element index",
4776 code_name);
4777 debug_generic_stmt (rhs1);
4778 return true;
4779 }
4780 if (!is_gimple_val (elt_v))
4781 {
4782 error ("vector %qs element is not a GIMPLE value",
4783 code_name);
4784 debug_generic_stmt (rhs1);
4785 return true;
4786 }
4787 }
4788 }
4789 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4790 {
4791 error ("non-vector %qs with elements", code_name);
4792 debug_generic_stmt (rhs1);
4793 return true;
4794 }
4795 return res;
4796
4797 case WITH_SIZE_EXPR:
4798 error ("%qs RHS in assignment statement",
4799 get_tree_code_name (rhs_code));
4800 debug_generic_expr (rhs1);
4801 return true;
4802
4803 case OBJ_TYPE_REF:
4804 /* FIXME. */
4805 return res;
4806
4807 default:;
4808 }
4809
4810 return res;
4811 }
4812
4813 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4814 is a problem, otherwise false. */
4815
4816 static bool
4817 verify_gimple_assign (gassign *stmt)
4818 {
4819 switch (gimple_assign_rhs_class (stmt))
4820 {
4821 case GIMPLE_SINGLE_RHS:
4822 return verify_gimple_assign_single (stmt);
4823
4824 case GIMPLE_UNARY_RHS:
4825 return verify_gimple_assign_unary (stmt);
4826
4827 case GIMPLE_BINARY_RHS:
4828 return verify_gimple_assign_binary (stmt);
4829
4830 case GIMPLE_TERNARY_RHS:
4831 return verify_gimple_assign_ternary (stmt);
4832
4833 default:
4834 gcc_unreachable ();
4835 }
4836 }
4837
4838 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4839 is a problem, otherwise false. */
4840
4841 static bool
4842 verify_gimple_return (greturn *stmt)
4843 {
4844 tree op = gimple_return_retval (stmt);
4845 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4846
4847 /* We cannot test for present return values as we do not fix up missing
4848 return values from the original source. */
4849 if (op == NULL)
4850 return false;
4851
4852 if (!is_gimple_val (op)
4853 && TREE_CODE (op) != RESULT_DECL)
4854 {
4855 error ("invalid operand in return statement");
4856 debug_generic_stmt (op);
4857 return true;
4858 }
4859
4860 if ((TREE_CODE (op) == RESULT_DECL
4861 && DECL_BY_REFERENCE (op))
4862 || (TREE_CODE (op) == SSA_NAME
4863 && SSA_NAME_VAR (op)
4864 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4865 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4866 op = TREE_TYPE (op);
4867
4868 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4869 {
4870 error ("invalid conversion in return statement");
4871 debug_generic_stmt (restype);
4872 debug_generic_stmt (TREE_TYPE (op));
4873 return true;
4874 }
4875
4876 return false;
4877 }
4878
4879
4880 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4881 is a problem, otherwise false. */
4882
4883 static bool
4884 verify_gimple_goto (ggoto *stmt)
4885 {
4886 tree dest = gimple_goto_dest (stmt);
4887
4888 /* ??? We have two canonical forms of direct goto destinations, a
4889 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4890 if (TREE_CODE (dest) != LABEL_DECL
4891 && (!is_gimple_val (dest)
4892 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4893 {
4894 error ("goto destination is neither a label nor a pointer");
4895 return true;
4896 }
4897
4898 return false;
4899 }
4900
4901 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4902 is a problem, otherwise false. */
4903
4904 static bool
4905 verify_gimple_switch (gswitch *stmt)
4906 {
4907 unsigned int i, n;
4908 tree elt, prev_upper_bound = NULL_TREE;
4909 tree index_type, elt_type = NULL_TREE;
4910
4911 if (!is_gimple_val (gimple_switch_index (stmt)))
4912 {
4913 error ("invalid operand to switch statement");
4914 debug_generic_stmt (gimple_switch_index (stmt));
4915 return true;
4916 }
4917
4918 index_type = TREE_TYPE (gimple_switch_index (stmt));
4919 if (! INTEGRAL_TYPE_P (index_type))
4920 {
4921 error ("non-integral type switch statement");
4922 debug_generic_expr (index_type);
4923 return true;
4924 }
4925
4926 elt = gimple_switch_label (stmt, 0);
4927 if (CASE_LOW (elt) != NULL_TREE
4928 || CASE_HIGH (elt) != NULL_TREE
4929 || CASE_CHAIN (elt) != NULL_TREE)
4930 {
4931 error ("invalid default case label in switch statement");
4932 debug_generic_expr (elt);
4933 return true;
4934 }
4935
4936 n = gimple_switch_num_labels (stmt);
4937 for (i = 1; i < n; i++)
4938 {
4939 elt = gimple_switch_label (stmt, i);
4940
4941 if (CASE_CHAIN (elt))
4942 {
4943 error ("invalid %<CASE_CHAIN%>");
4944 debug_generic_expr (elt);
4945 return true;
4946 }
4947 if (! CASE_LOW (elt))
4948 {
4949 error ("invalid case label in switch statement");
4950 debug_generic_expr (elt);
4951 return true;
4952 }
4953 if (CASE_HIGH (elt)
4954 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4955 {
4956 error ("invalid case range in switch statement");
4957 debug_generic_expr (elt);
4958 return true;
4959 }
4960
4961 if (! elt_type)
4962 {
4963 elt_type = TREE_TYPE (CASE_LOW (elt));
4964 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4965 {
4966 error ("type precision mismatch in switch statement");
4967 return true;
4968 }
4969 }
4970 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4971 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4972 {
4973 error ("type mismatch for case label in switch statement");
4974 debug_generic_expr (elt);
4975 return true;
4976 }
4977
4978 if (prev_upper_bound)
4979 {
4980 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4981 {
4982 error ("case labels not sorted in switch statement");
4983 return true;
4984 }
4985 }
4986
4987 prev_upper_bound = CASE_HIGH (elt);
4988 if (! prev_upper_bound)
4989 prev_upper_bound = CASE_LOW (elt);
4990 }
4991
4992 return false;
4993 }
4994
4995 /* Verify a gimple debug statement STMT.
4996 Returns true if anything is wrong. */
4997
4998 static bool
4999 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
5000 {
5001 /* There isn't much that could be wrong in a gimple debug stmt. A
5002 gimple debug bind stmt, for example, maps a tree, that's usually
5003 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
5004 component or member of an aggregate type, to another tree, that
5005 can be an arbitrary expression. These stmts expand into debug
5006 insns, and are converted to debug notes by var-tracking.cc. */
5007 return false;
5008 }
5009
5010 /* Verify a gimple label statement STMT.
5011 Returns true if anything is wrong. */
5012
5013 static bool
5014 verify_gimple_label (glabel *stmt)
5015 {
5016 tree decl = gimple_label_label (stmt);
5017 int uid;
5018 bool err = false;
5019
5020 if (TREE_CODE (decl) != LABEL_DECL)
5021 return true;
5022 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
5023 && DECL_CONTEXT (decl) != current_function_decl)
5024 {
5025 error ("label context is not the current function declaration");
5026 err |= true;
5027 }
5028
5029 uid = LABEL_DECL_UID (decl);
5030 if (cfun->cfg
5031 && (uid == -1
5032 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
5033 {
5034 error ("incorrect entry in %<label_to_block_map%>");
5035 err |= true;
5036 }
5037
5038 uid = EH_LANDING_PAD_NR (decl);
5039 if (uid)
5040 {
5041 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
5042 if (decl != lp->post_landing_pad)
5043 {
5044 error ("incorrect setting of landing pad number");
5045 err |= true;
5046 }
5047 }
5048
5049 return err;
5050 }
5051
5052 /* Verify a gimple cond statement STMT.
5053 Returns true if anything is wrong. */
5054
5055 static bool
5056 verify_gimple_cond (gcond *stmt)
5057 {
5058 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
5059 {
5060 error ("invalid comparison code in gimple cond");
5061 return true;
5062 }
5063 if (!(!gimple_cond_true_label (stmt)
5064 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
5065 || !(!gimple_cond_false_label (stmt)
5066 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
5067 {
5068 error ("invalid labels in gimple cond");
5069 return true;
5070 }
5071
5072 return verify_gimple_comparison (boolean_type_node,
5073 gimple_cond_lhs (stmt),
5074 gimple_cond_rhs (stmt),
5075 gimple_cond_code (stmt));
5076 }
5077
5078 /* Verify the GIMPLE statement STMT. Returns true if there is an
5079 error, otherwise false. */
5080
5081 static bool
5082 verify_gimple_stmt (gimple *stmt)
5083 {
5084 switch (gimple_code (stmt))
5085 {
5086 case GIMPLE_ASSIGN:
5087 return verify_gimple_assign (as_a <gassign *> (stmt));
5088
5089 case GIMPLE_LABEL:
5090 return verify_gimple_label (as_a <glabel *> (stmt));
5091
5092 case GIMPLE_CALL:
5093 return verify_gimple_call (as_a <gcall *> (stmt));
5094
5095 case GIMPLE_COND:
5096 return verify_gimple_cond (as_a <gcond *> (stmt));
5097
5098 case GIMPLE_GOTO:
5099 return verify_gimple_goto (as_a <ggoto *> (stmt));
5100
5101 case GIMPLE_SWITCH:
5102 return verify_gimple_switch (as_a <gswitch *> (stmt));
5103
5104 case GIMPLE_RETURN:
5105 return verify_gimple_return (as_a <greturn *> (stmt));
5106
5107 case GIMPLE_ASM:
5108 return false;
5109
5110 case GIMPLE_TRANSACTION:
5111 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
5112
5113 /* Tuples that do not have tree operands. */
5114 case GIMPLE_NOP:
5115 case GIMPLE_PREDICT:
5116 case GIMPLE_RESX:
5117 case GIMPLE_EH_DISPATCH:
5118 case GIMPLE_EH_MUST_NOT_THROW:
5119 return false;
5120
5121 CASE_GIMPLE_OMP:
5122 /* OpenMP directives are validated by the FE and never operated
5123 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
5124 non-gimple expressions when the main index variable has had
5125 its address taken. This does not affect the loop itself
5126 because the header of an GIMPLE_OMP_FOR is merely used to determine
5127 how to setup the parallel iteration. */
5128 return false;
5129
5130 case GIMPLE_ASSUME:
5131 return false;
5132
5133 case GIMPLE_DEBUG:
5134 return verify_gimple_debug (stmt);
5135
5136 default:
5137 gcc_unreachable ();
5138 }
5139 }
5140
5141 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
5142 and false otherwise. */
5143
5144 static bool
5145 verify_gimple_phi (gphi *phi)
5146 {
5147 bool err = false;
5148 unsigned i;
5149 tree phi_result = gimple_phi_result (phi);
5150 bool virtual_p;
5151
5152 if (!phi_result)
5153 {
5154 error ("invalid %<PHI%> result");
5155 return true;
5156 }
5157
5158 virtual_p = virtual_operand_p (phi_result);
5159 if (TREE_CODE (phi_result) != SSA_NAME
5160 || (virtual_p
5161 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
5162 {
5163 error ("invalid %<PHI%> result");
5164 err = true;
5165 }
5166
5167 for (i = 0; i < gimple_phi_num_args (phi); i++)
5168 {
5169 tree t = gimple_phi_arg_def (phi, i);
5170
5171 if (!t)
5172 {
5173 error ("missing %<PHI%> def");
5174 err |= true;
5175 continue;
5176 }
5177 /* Addressable variables do have SSA_NAMEs but they
5178 are not considered gimple values. */
5179 else if ((TREE_CODE (t) == SSA_NAME
5180 && virtual_p != virtual_operand_p (t))
5181 || (virtual_p
5182 && (TREE_CODE (t) != SSA_NAME
5183 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
5184 || (!virtual_p
5185 && !is_gimple_val (t)))
5186 {
5187 error ("invalid %<PHI%> argument");
5188 debug_generic_expr (t);
5189 err |= true;
5190 }
5191 #ifdef ENABLE_TYPES_CHECKING
5192 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
5193 {
5194 error ("incompatible types in %<PHI%> argument %u", i);
5195 debug_generic_stmt (TREE_TYPE (phi_result));
5196 debug_generic_stmt (TREE_TYPE (t));
5197 err |= true;
5198 }
5199 #endif
5200 }
5201
5202 return err;
5203 }
5204
5205 /* Verify the GIMPLE statements inside the sequence STMTS. */
5206
5207 static bool
5208 verify_gimple_in_seq_2 (gimple_seq stmts)
5209 {
5210 gimple_stmt_iterator ittr;
5211 bool err = false;
5212
5213 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
5214 {
5215 gimple *stmt = gsi_stmt (ittr);
5216
5217 switch (gimple_code (stmt))
5218 {
5219 case GIMPLE_BIND:
5220 err |= verify_gimple_in_seq_2 (
5221 gimple_bind_body (as_a <gbind *> (stmt)));
5222 break;
5223
5224 case GIMPLE_TRY:
5225 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5226 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5227 break;
5228
5229 case GIMPLE_EH_FILTER:
5230 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5231 break;
5232
5233 case GIMPLE_EH_ELSE:
5234 {
5235 geh_else *eh_else = as_a <geh_else *> (stmt);
5236 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5237 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5238 }
5239 break;
5240
5241 case GIMPLE_CATCH:
5242 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5243 as_a <gcatch *> (stmt)));
5244 break;
5245
5246 case GIMPLE_ASSUME:
5247 err |= verify_gimple_in_seq_2 (gimple_assume_body (stmt));
5248 break;
5249
5250 case GIMPLE_TRANSACTION:
5251 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5252 break;
5253
5254 default:
5255 {
5256 bool err2 = verify_gimple_stmt (stmt);
5257 if (err2)
5258 debug_gimple_stmt (stmt);
5259 err |= err2;
5260 }
5261 }
5262 }
5263
5264 return err;
5265 }
5266
5267 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5268 is a problem, otherwise false. */
5269
5270 static bool
5271 verify_gimple_transaction (gtransaction *stmt)
5272 {
5273 tree lab;
5274
5275 lab = gimple_transaction_label_norm (stmt);
5276 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5277 return true;
5278 lab = gimple_transaction_label_uninst (stmt);
5279 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5280 return true;
5281 lab = gimple_transaction_label_over (stmt);
5282 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5283 return true;
5284
5285 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5286 }
5287
5288
5289 /* Verify the GIMPLE statements inside the statement list STMTS. */
5290
5291 DEBUG_FUNCTION bool
5292 verify_gimple_in_seq (gimple_seq stmts, bool ice)
5293 {
5294 timevar_push (TV_TREE_STMT_VERIFY);
5295 bool res = verify_gimple_in_seq_2 (stmts);
5296 if (res && ice)
5297 internal_error ("%<verify_gimple%> failed");
5298 timevar_pop (TV_TREE_STMT_VERIFY);
5299 return res;
5300 }
5301
5302 /* Return true when the T can be shared. */
5303
5304 static bool
5305 tree_node_can_be_shared (tree t)
5306 {
5307 if (IS_TYPE_OR_DECL_P (t)
5308 || TREE_CODE (t) == SSA_NAME
5309 || TREE_CODE (t) == IDENTIFIER_NODE
5310 || TREE_CODE (t) == CASE_LABEL_EXPR
5311 || is_gimple_min_invariant (t))
5312 return true;
5313
5314 if (t == error_mark_node)
5315 return true;
5316
5317 return false;
5318 }
5319
5320 /* Called via walk_tree. Verify tree sharing. */
5321
5322 static tree
5323 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5324 {
5325 hash_set<void *> *visited = (hash_set<void *> *) data;
5326
5327 if (tree_node_can_be_shared (*tp))
5328 {
5329 *walk_subtrees = false;
5330 return NULL;
5331 }
5332
5333 if (visited->add (*tp))
5334 return *tp;
5335
5336 return NULL;
5337 }
5338
5339 /* Called via walk_gimple_stmt. Verify tree sharing. */
5340
5341 static tree
5342 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5343 {
5344 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5345 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5346 }
5347
5348 static bool eh_error_found;
5349 bool
5350 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5351 hash_set<gimple *> *visited)
5352 {
5353 if (!visited->contains (stmt))
5354 {
5355 error ("dead statement in EH table");
5356 debug_gimple_stmt (stmt);
5357 eh_error_found = true;
5358 }
5359 return true;
5360 }
5361
5362 /* Verify if the location LOCs block is in BLOCKS. */
5363
5364 static bool
5365 verify_location (hash_set<tree> *blocks, location_t loc)
5366 {
5367 tree block = LOCATION_BLOCK (loc);
5368 if (block != NULL_TREE
5369 && !blocks->contains (block))
5370 {
5371 error ("location references block not in block tree");
5372 return true;
5373 }
5374 if (block != NULL_TREE)
5375 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5376 return false;
5377 }
5378
5379 /* Called via walk_tree. Verify that expressions have no blocks. */
5380
5381 static tree
5382 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5383 {
5384 if (!EXPR_P (*tp))
5385 {
5386 *walk_subtrees = false;
5387 return NULL;
5388 }
5389
5390 location_t loc = EXPR_LOCATION (*tp);
5391 if (LOCATION_BLOCK (loc) != NULL)
5392 return *tp;
5393
5394 return NULL;
5395 }
5396
5397 /* Called via walk_tree. Verify locations of expressions. */
5398
5399 static tree
5400 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5401 {
5402 hash_set<tree> *blocks = (hash_set<tree> *) data;
5403 tree t = *tp;
5404
5405 /* ??? This doesn't really belong here but there's no good place to
5406 stick this remainder of old verify_expr. */
5407 /* ??? This barfs on debug stmts which contain binds to vars with
5408 different function context. */
5409 #if 0
5410 if (VAR_P (t)
5411 || TREE_CODE (t) == PARM_DECL
5412 || TREE_CODE (t) == RESULT_DECL)
5413 {
5414 tree context = decl_function_context (t);
5415 if (context != cfun->decl
5416 && !SCOPE_FILE_SCOPE_P (context)
5417 && !TREE_STATIC (t)
5418 && !DECL_EXTERNAL (t))
5419 {
5420 error ("local declaration from a different function");
5421 return t;
5422 }
5423 }
5424 #endif
5425
5426 if (VAR_P (t) && DECL_HAS_DEBUG_EXPR_P (t))
5427 {
5428 tree x = DECL_DEBUG_EXPR (t);
5429 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5430 if (addr)
5431 return addr;
5432 }
5433 if ((VAR_P (t)
5434 || TREE_CODE (t) == PARM_DECL
5435 || TREE_CODE (t) == RESULT_DECL)
5436 && DECL_HAS_VALUE_EXPR_P (t))
5437 {
5438 tree x = DECL_VALUE_EXPR (t);
5439 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5440 if (addr)
5441 return addr;
5442 }
5443
5444 if (!EXPR_P (t))
5445 {
5446 *walk_subtrees = false;
5447 return NULL;
5448 }
5449
5450 location_t loc = EXPR_LOCATION (t);
5451 if (verify_location (blocks, loc))
5452 return t;
5453
5454 return NULL;
5455 }
5456
5457 /* Called via walk_gimple_op. Verify locations of expressions. */
5458
5459 static tree
5460 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5461 {
5462 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5463 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5464 }
5465
5466 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5467
5468 static void
5469 collect_subblocks (hash_set<tree> *blocks, tree block)
5470 {
5471 tree t;
5472 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5473 {
5474 blocks->add (t);
5475 collect_subblocks (blocks, t);
5476 }
5477 }
5478
5479 /* Disable warnings about missing quoting in GCC diagnostics for
5480 the verification errors. Their format strings don't follow
5481 GCC diagnostic conventions and trigger an ICE in the end. */
5482 #if __GNUC__ >= 10
5483 # pragma GCC diagnostic push
5484 # pragma GCC diagnostic ignored "-Wformat-diag"
5485 #endif
5486
5487 /* Verify the GIMPLE statements in the CFG of FN. */
5488
5489 DEBUG_FUNCTION bool
5490 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow, bool ice)
5491 {
5492 basic_block bb;
5493 bool err = false;
5494
5495 timevar_push (TV_TREE_STMT_VERIFY);
5496 hash_set<void *> visited;
5497 hash_set<gimple *> visited_throwing_stmts;
5498
5499 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5500 hash_set<tree> blocks;
5501 if (DECL_INITIAL (fn->decl))
5502 {
5503 blocks.add (DECL_INITIAL (fn->decl));
5504 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5505 }
5506
5507 FOR_EACH_BB_FN (bb, fn)
5508 {
5509 gimple_stmt_iterator gsi;
5510 edge_iterator ei;
5511 edge e;
5512
5513 for (gphi_iterator gpi = gsi_start_phis (bb);
5514 !gsi_end_p (gpi);
5515 gsi_next (&gpi))
5516 {
5517 gphi *phi = gpi.phi ();
5518 bool err2 = false;
5519 unsigned i;
5520
5521 if (gimple_bb (phi) != bb)
5522 {
5523 error ("gimple_bb (phi) is set to a wrong basic block");
5524 err2 = true;
5525 }
5526
5527 err2 |= verify_gimple_phi (phi);
5528
5529 /* Only PHI arguments have locations. */
5530 if (gimple_location (phi) != UNKNOWN_LOCATION)
5531 {
5532 error ("PHI node with location");
5533 err2 = true;
5534 }
5535
5536 for (i = 0; i < gimple_phi_num_args (phi); i++)
5537 {
5538 tree arg = gimple_phi_arg_def (phi, i);
5539 tree addr = walk_tree (&arg, verify_node_sharing_1,
5540 &visited, NULL);
5541 if (addr)
5542 {
5543 error ("incorrect sharing of tree nodes");
5544 debug_generic_expr (addr);
5545 err2 |= true;
5546 }
5547 location_t loc = gimple_phi_arg_location (phi, i);
5548 if (virtual_operand_p (gimple_phi_result (phi))
5549 && loc != UNKNOWN_LOCATION)
5550 {
5551 error ("virtual PHI with argument locations");
5552 err2 = true;
5553 }
5554 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5555 if (addr)
5556 {
5557 debug_generic_expr (addr);
5558 err2 = true;
5559 }
5560 err2 |= verify_location (&blocks, loc);
5561 }
5562
5563 if (err2)
5564 debug_gimple_stmt (phi);
5565 err |= err2;
5566 }
5567
5568 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5569 {
5570 gimple *stmt = gsi_stmt (gsi);
5571 bool err2 = false;
5572 struct walk_stmt_info wi;
5573 tree addr;
5574 int lp_nr;
5575
5576 if (gimple_bb (stmt) != bb)
5577 {
5578 error ("gimple_bb (stmt) is set to a wrong basic block");
5579 err2 = true;
5580 }
5581
5582 err2 |= verify_gimple_stmt (stmt);
5583 err2 |= verify_location (&blocks, gimple_location (stmt));
5584
5585 memset (&wi, 0, sizeof (wi));
5586 wi.info = (void *) &visited;
5587 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5588 if (addr)
5589 {
5590 error ("incorrect sharing of tree nodes");
5591 debug_generic_expr (addr);
5592 err2 |= true;
5593 }
5594
5595 memset (&wi, 0, sizeof (wi));
5596 wi.info = (void *) &blocks;
5597 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5598 if (addr)
5599 {
5600 debug_generic_expr (addr);
5601 err2 |= true;
5602 }
5603
5604 /* If the statement is marked as part of an EH region, then it is
5605 expected that the statement could throw. Verify that when we
5606 have optimizations that simplify statements such that we prove
5607 that they cannot throw, that we update other data structures
5608 to match. */
5609 lp_nr = lookup_stmt_eh_lp (stmt);
5610 if (lp_nr != 0)
5611 visited_throwing_stmts.add (stmt);
5612 if (lp_nr > 0)
5613 {
5614 if (!stmt_could_throw_p (cfun, stmt))
5615 {
5616 if (verify_nothrow)
5617 {
5618 error ("statement marked for throw, but doesn%'t");
5619 err2 |= true;
5620 }
5621 }
5622 else if (!gsi_one_before_end_p (gsi))
5623 {
5624 error ("statement marked for throw in middle of block");
5625 err2 |= true;
5626 }
5627 }
5628
5629 if (err2)
5630 debug_gimple_stmt (stmt);
5631 err |= err2;
5632 }
5633
5634 FOR_EACH_EDGE (e, ei, bb->succs)
5635 if (e->goto_locus != UNKNOWN_LOCATION)
5636 err |= verify_location (&blocks, e->goto_locus);
5637 }
5638
5639 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5640 eh_error_found = false;
5641 if (eh_table)
5642 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5643 (&visited_throwing_stmts);
5644
5645 if (ice && (err || eh_error_found))
5646 internal_error ("verify_gimple failed");
5647
5648 verify_histograms ();
5649 timevar_pop (TV_TREE_STMT_VERIFY);
5650
5651 return (err || eh_error_found);
5652 }
5653
5654
5655 /* Verifies that the flow information is OK. */
5656
5657 static bool
5658 gimple_verify_flow_info (void)
5659 {
5660 bool err = false;
5661 basic_block bb;
5662 gimple_stmt_iterator gsi;
5663 gimple *stmt;
5664 edge e;
5665 edge_iterator ei;
5666
5667 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5668 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5669 {
5670 error ("ENTRY_BLOCK has IL associated with it");
5671 err = true;
5672 }
5673
5674 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5675 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5676 {
5677 error ("EXIT_BLOCK has IL associated with it");
5678 err = true;
5679 }
5680
5681 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5682 if (e->flags & EDGE_FALLTHRU)
5683 {
5684 error ("fallthru to exit from bb %d", e->src->index);
5685 err = true;
5686 }
5687
5688 FOR_EACH_BB_FN (bb, cfun)
5689 {
5690 bool found_ctrl_stmt = false;
5691
5692 stmt = NULL;
5693
5694 /* Skip labels on the start of basic block. */
5695 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5696 {
5697 tree label;
5698 gimple *prev_stmt = stmt;
5699
5700 stmt = gsi_stmt (gsi);
5701
5702 if (gimple_code (stmt) != GIMPLE_LABEL)
5703 break;
5704
5705 label = gimple_label_label (as_a <glabel *> (stmt));
5706 if (prev_stmt && DECL_NONLOCAL (label))
5707 {
5708 error ("nonlocal label %qD is not first in a sequence "
5709 "of labels in bb %d", label, bb->index);
5710 err = true;
5711 }
5712
5713 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5714 {
5715 error ("EH landing pad label %qD is not first in a sequence "
5716 "of labels in bb %d", label, bb->index);
5717 err = true;
5718 }
5719
5720 if (label_to_block (cfun, label) != bb)
5721 {
5722 error ("label %qD to block does not match in bb %d",
5723 label, bb->index);
5724 err = true;
5725 }
5726
5727 if (decl_function_context (label) != current_function_decl)
5728 {
5729 error ("label %qD has incorrect context in bb %d",
5730 label, bb->index);
5731 err = true;
5732 }
5733 }
5734
5735 /* Verify that body of basic block BB is free of control flow. */
5736 bool seen_nondebug_stmt = false;
5737 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5738 {
5739 gimple *stmt = gsi_stmt (gsi);
5740
5741 if (found_ctrl_stmt)
5742 {
5743 error ("control flow in the middle of basic block %d",
5744 bb->index);
5745 err = true;
5746 }
5747
5748 if (stmt_ends_bb_p (stmt))
5749 found_ctrl_stmt = true;
5750
5751 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5752 {
5753 error ("label %qD in the middle of basic block %d",
5754 gimple_label_label (label_stmt), bb->index);
5755 err = true;
5756 }
5757
5758 /* Check that no statements appear between a returns_twice call
5759 and its associated abnormal edge. */
5760 if (gimple_code (stmt) == GIMPLE_CALL
5761 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
5762 {
5763 const char *misplaced = NULL;
5764 /* TM is an exception: it points abnormal edges just after the
5765 call that starts a transaction, i.e. it must end the BB. */
5766 if (gimple_call_builtin_p (stmt, BUILT_IN_TM_START))
5767 {
5768 if (single_succ_p (bb)
5769 && bb_has_abnormal_pred (single_succ (bb))
5770 && !gsi_one_nondebug_before_end_p (gsi))
5771 misplaced = "not last";
5772 }
5773 else
5774 {
5775 if (seen_nondebug_stmt
5776 && bb_has_abnormal_pred (bb))
5777 misplaced = "not first";
5778 }
5779 if (misplaced)
5780 {
5781 error ("returns_twice call is %s in basic block %d",
5782 misplaced, bb->index);
5783 print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
5784 err = true;
5785 }
5786 }
5787 if (!is_gimple_debug (stmt))
5788 seen_nondebug_stmt = true;
5789 }
5790
5791 gsi = gsi_last_nondebug_bb (bb);
5792 if (gsi_end_p (gsi))
5793 continue;
5794
5795 stmt = gsi_stmt (gsi);
5796
5797 if (gimple_code (stmt) == GIMPLE_LABEL)
5798 continue;
5799
5800 if (verify_eh_edges (stmt))
5801 err = true;
5802
5803 if (is_ctrl_stmt (stmt))
5804 {
5805 FOR_EACH_EDGE (e, ei, bb->succs)
5806 if (e->flags & EDGE_FALLTHRU)
5807 {
5808 error ("fallthru edge after a control statement in bb %d",
5809 bb->index);
5810 err = true;
5811 }
5812 }
5813
5814 if (gimple_code (stmt) != GIMPLE_COND)
5815 {
5816 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5817 after anything else but if statement. */
5818 FOR_EACH_EDGE (e, ei, bb->succs)
5819 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5820 {
5821 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5822 bb->index);
5823 err = true;
5824 }
5825 }
5826
5827 switch (gimple_code (stmt))
5828 {
5829 case GIMPLE_COND:
5830 {
5831 edge true_edge;
5832 edge false_edge;
5833
5834 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5835
5836 if (!true_edge
5837 || !false_edge
5838 || !(true_edge->flags & EDGE_TRUE_VALUE)
5839 || !(false_edge->flags & EDGE_FALSE_VALUE)
5840 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5841 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5842 || EDGE_COUNT (bb->succs) >= 3)
5843 {
5844 error ("wrong outgoing edge flags at end of bb %d",
5845 bb->index);
5846 err = true;
5847 }
5848 }
5849 break;
5850
5851 case GIMPLE_GOTO:
5852 if (simple_goto_p (stmt))
5853 {
5854 error ("explicit goto at end of bb %d", bb->index);
5855 err = true;
5856 }
5857 else
5858 {
5859 /* FIXME. We should double check that the labels in the
5860 destination blocks have their address taken. */
5861 FOR_EACH_EDGE (e, ei, bb->succs)
5862 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5863 | EDGE_FALSE_VALUE))
5864 || !(e->flags & EDGE_ABNORMAL))
5865 {
5866 error ("wrong outgoing edge flags at end of bb %d",
5867 bb->index);
5868 err = true;
5869 }
5870 }
5871 break;
5872
5873 case GIMPLE_CALL:
5874 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5875 break;
5876 /* fallthru */
5877 case GIMPLE_RETURN:
5878 if (!single_succ_p (bb)
5879 || (single_succ_edge (bb)->flags
5880 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5881 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5882 {
5883 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5884 err = true;
5885 }
5886 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5887 {
5888 error ("return edge does not point to exit in bb %d",
5889 bb->index);
5890 err = true;
5891 }
5892 break;
5893
5894 case GIMPLE_SWITCH:
5895 {
5896 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5897 tree prev;
5898 edge e;
5899 size_t i, n;
5900
5901 n = gimple_switch_num_labels (switch_stmt);
5902
5903 /* Mark all the destination basic blocks. */
5904 for (i = 0; i < n; ++i)
5905 {
5906 basic_block label_bb = gimple_switch_label_bb (cfun, switch_stmt, i);
5907 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5908 label_bb->aux = (void *)1;
5909 }
5910
5911 /* Verify that the case labels are sorted. */
5912 prev = gimple_switch_label (switch_stmt, 0);
5913 for (i = 1; i < n; ++i)
5914 {
5915 tree c = gimple_switch_label (switch_stmt, i);
5916 if (!CASE_LOW (c))
5917 {
5918 error ("found default case not at the start of "
5919 "case vector");
5920 err = true;
5921 continue;
5922 }
5923 if (CASE_LOW (prev)
5924 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5925 {
5926 error ("case labels not sorted: ");
5927 print_generic_expr (stderr, prev);
5928 fprintf (stderr," is greater than ");
5929 print_generic_expr (stderr, c);
5930 fprintf (stderr," but comes before it.\n");
5931 err = true;
5932 }
5933 prev = c;
5934 }
5935 /* VRP will remove the default case if it can prove it will
5936 never be executed. So do not verify there always exists
5937 a default case here. */
5938
5939 FOR_EACH_EDGE (e, ei, bb->succs)
5940 {
5941 if (!e->dest->aux)
5942 {
5943 error ("extra outgoing edge %d->%d",
5944 bb->index, e->dest->index);
5945 err = true;
5946 }
5947
5948 e->dest->aux = (void *)2;
5949 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5950 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5951 {
5952 error ("wrong outgoing edge flags at end of bb %d",
5953 bb->index);
5954 err = true;
5955 }
5956 }
5957
5958 /* Check that we have all of them. */
5959 for (i = 0; i < n; ++i)
5960 {
5961 basic_block label_bb = gimple_switch_label_bb (cfun,
5962 switch_stmt, i);
5963
5964 if (label_bb->aux != (void *)2)
5965 {
5966 error ("missing edge %i->%i", bb->index, label_bb->index);
5967 err = true;
5968 }
5969 }
5970
5971 FOR_EACH_EDGE (e, ei, bb->succs)
5972 e->dest->aux = (void *)0;
5973 }
5974 break;
5975
5976 case GIMPLE_EH_DISPATCH:
5977 if (verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt)))
5978 err = true;
5979 break;
5980
5981 default:
5982 break;
5983 }
5984 }
5985
5986 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5987 verify_dominators (CDI_DOMINATORS);
5988
5989 return err;
5990 }
5991
5992 #if __GNUC__ >= 10
5993 # pragma GCC diagnostic pop
5994 #endif
5995
5996 /* Updates phi nodes after creating a forwarder block joined
5997 by edge FALLTHRU. */
5998
5999 static void
6000 gimple_make_forwarder_block (edge fallthru)
6001 {
6002 edge e;
6003 edge_iterator ei;
6004 basic_block dummy, bb;
6005 tree var;
6006 gphi_iterator gsi;
6007 bool forward_location_p;
6008
6009 dummy = fallthru->src;
6010 bb = fallthru->dest;
6011
6012 if (single_pred_p (bb))
6013 return;
6014
6015 /* We can forward location info if we have only one predecessor. */
6016 forward_location_p = single_pred_p (dummy);
6017
6018 /* If we redirected a branch we must create new PHI nodes at the
6019 start of BB. */
6020 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
6021 {
6022 gphi *phi, *new_phi;
6023
6024 phi = gsi.phi ();
6025 var = gimple_phi_result (phi);
6026 new_phi = create_phi_node (var, bb);
6027 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
6028 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
6029 forward_location_p
6030 ? gimple_phi_arg_location (phi, 0) : UNKNOWN_LOCATION);
6031 }
6032
6033 /* Add the arguments we have stored on edges. */
6034 FOR_EACH_EDGE (e, ei, bb->preds)
6035 {
6036 if (e == fallthru)
6037 continue;
6038
6039 flush_pending_stmts (e);
6040 }
6041 }
6042
6043
6044 /* Return a non-special label in the head of basic block BLOCK.
6045 Create one if it doesn't exist. */
6046
6047 tree
6048 gimple_block_label (basic_block bb)
6049 {
6050 gimple_stmt_iterator i, s = gsi_start_bb (bb);
6051 bool first = true;
6052 tree label;
6053 glabel *stmt;
6054
6055 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
6056 {
6057 stmt = dyn_cast <glabel *> (gsi_stmt (i));
6058 if (!stmt)
6059 break;
6060 label = gimple_label_label (stmt);
6061 if (!DECL_NONLOCAL (label))
6062 {
6063 if (!first)
6064 gsi_move_before (&i, &s);
6065 return label;
6066 }
6067 }
6068
6069 label = create_artificial_label (UNKNOWN_LOCATION);
6070 stmt = gimple_build_label (label);
6071 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
6072 return label;
6073 }
6074
6075
6076 /* Attempt to perform edge redirection by replacing a possibly complex
6077 jump instruction by a goto or by removing the jump completely.
6078 This can apply only if all edges now point to the same block. The
6079 parameters and return values are equivalent to
6080 redirect_edge_and_branch. */
6081
6082 static edge
6083 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
6084 {
6085 basic_block src = e->src;
6086 gimple_stmt_iterator i;
6087 gimple *stmt;
6088
6089 /* We can replace or remove a complex jump only when we have exactly
6090 two edges. */
6091 if (EDGE_COUNT (src->succs) != 2
6092 /* Verify that all targets will be TARGET. Specifically, the
6093 edge that is not E must also go to TARGET. */
6094 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
6095 return NULL;
6096
6097 i = gsi_last_bb (src);
6098 if (gsi_end_p (i))
6099 return NULL;
6100
6101 stmt = gsi_stmt (i);
6102
6103 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
6104 {
6105 gsi_remove (&i, true);
6106 e = ssa_redirect_edge (e, target);
6107 e->flags = EDGE_FALLTHRU;
6108 return e;
6109 }
6110
6111 return NULL;
6112 }
6113
6114
6115 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
6116 edge representing the redirected branch. */
6117
6118 static edge
6119 gimple_redirect_edge_and_branch (edge e, basic_block dest)
6120 {
6121 basic_block bb = e->src;
6122 gimple_stmt_iterator gsi;
6123 edge ret;
6124 gimple *stmt;
6125
6126 if (e->flags & EDGE_ABNORMAL)
6127 return NULL;
6128
6129 if (e->dest == dest)
6130 return NULL;
6131
6132 if (e->flags & EDGE_EH)
6133 return redirect_eh_edge (e, dest);
6134
6135 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
6136 {
6137 ret = gimple_try_redirect_by_replacing_jump (e, dest);
6138 if (ret)
6139 return ret;
6140 }
6141
6142 gsi = gsi_last_nondebug_bb (bb);
6143 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
6144
6145 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
6146 {
6147 case GIMPLE_COND:
6148 /* For COND_EXPR, we only need to redirect the edge. */
6149 break;
6150
6151 case GIMPLE_GOTO:
6152 /* No non-abnormal edges should lead from a non-simple goto, and
6153 simple ones should be represented implicitly. */
6154 gcc_unreachable ();
6155
6156 case GIMPLE_SWITCH:
6157 {
6158 gswitch *switch_stmt = as_a <gswitch *> (stmt);
6159 tree label = gimple_block_label (dest);
6160 tree cases = get_cases_for_edge (e, switch_stmt);
6161
6162 /* If we have a list of cases associated with E, then use it
6163 as it's a lot faster than walking the entire case vector. */
6164 if (cases)
6165 {
6166 edge e2 = find_edge (e->src, dest);
6167 tree last, first;
6168
6169 first = cases;
6170 while (cases)
6171 {
6172 last = cases;
6173 CASE_LABEL (cases) = label;
6174 cases = CASE_CHAIN (cases);
6175 }
6176
6177 /* If there was already an edge in the CFG, then we need
6178 to move all the cases associated with E to E2. */
6179 if (e2)
6180 {
6181 tree cases2 = get_cases_for_edge (e2, switch_stmt);
6182
6183 CASE_CHAIN (last) = CASE_CHAIN (cases2);
6184 CASE_CHAIN (cases2) = first;
6185 }
6186 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
6187 }
6188 else
6189 {
6190 size_t i, n = gimple_switch_num_labels (switch_stmt);
6191
6192 for (i = 0; i < n; i++)
6193 {
6194 tree elt = gimple_switch_label (switch_stmt, i);
6195 if (label_to_block (cfun, CASE_LABEL (elt)) == e->dest)
6196 CASE_LABEL (elt) = label;
6197 }
6198 }
6199 }
6200 break;
6201
6202 case GIMPLE_ASM:
6203 {
6204 gasm *asm_stmt = as_a <gasm *> (stmt);
6205 int i, n = gimple_asm_nlabels (asm_stmt);
6206 tree label = NULL;
6207
6208 for (i = 0; i < n; ++i)
6209 {
6210 tree cons = gimple_asm_label_op (asm_stmt, i);
6211 if (label_to_block (cfun, TREE_VALUE (cons)) == e->dest)
6212 {
6213 if (!label)
6214 label = gimple_block_label (dest);
6215 TREE_VALUE (cons) = label;
6216 }
6217 }
6218
6219 /* If we didn't find any label matching the former edge in the
6220 asm labels, we must be redirecting the fallthrough
6221 edge. */
6222 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
6223 }
6224 break;
6225
6226 case GIMPLE_RETURN:
6227 gsi_remove (&gsi, true);
6228 e->flags |= EDGE_FALLTHRU;
6229 break;
6230
6231 case GIMPLE_OMP_RETURN:
6232 case GIMPLE_OMP_CONTINUE:
6233 case GIMPLE_OMP_SECTIONS_SWITCH:
6234 case GIMPLE_OMP_FOR:
6235 /* The edges from OMP constructs can be simply redirected. */
6236 break;
6237
6238 case GIMPLE_EH_DISPATCH:
6239 if (!(e->flags & EDGE_FALLTHRU))
6240 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
6241 break;
6242
6243 case GIMPLE_TRANSACTION:
6244 if (e->flags & EDGE_TM_ABORT)
6245 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
6246 gimple_block_label (dest));
6247 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
6248 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
6249 gimple_block_label (dest));
6250 else
6251 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
6252 gimple_block_label (dest));
6253 break;
6254
6255 default:
6256 /* Otherwise it must be a fallthru edge, and we don't need to
6257 do anything besides redirecting it. */
6258 gcc_assert (e->flags & EDGE_FALLTHRU);
6259 break;
6260 }
6261
6262 /* Update/insert PHI nodes as necessary. */
6263
6264 /* Now update the edges in the CFG. */
6265 e = ssa_redirect_edge (e, dest);
6266
6267 return e;
6268 }
6269
6270 /* Returns true if it is possible to remove edge E by redirecting
6271 it to the destination of the other edge from E->src. */
6272
6273 static bool
6274 gimple_can_remove_branch_p (const_edge e)
6275 {
6276 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
6277 return false;
6278
6279 return true;
6280 }
6281
6282 /* Simple wrapper, as we can always redirect fallthru edges. */
6283
6284 static basic_block
6285 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6286 {
6287 e = gimple_redirect_edge_and_branch (e, dest);
6288 gcc_assert (e);
6289
6290 return NULL;
6291 }
6292
6293
6294 /* Splits basic block BB after statement STMT (but at least after the
6295 labels). If STMT is NULL, BB is split just after the labels. */
6296
6297 static basic_block
6298 gimple_split_block (basic_block bb, void *stmt)
6299 {
6300 gimple_stmt_iterator gsi;
6301 gimple_stmt_iterator gsi_tgt;
6302 gimple_seq list;
6303 basic_block new_bb;
6304 edge e;
6305 edge_iterator ei;
6306
6307 new_bb = create_empty_bb (bb);
6308
6309 /* Redirect the outgoing edges. */
6310 new_bb->succs = bb->succs;
6311 bb->succs = NULL;
6312 FOR_EACH_EDGE (e, ei, new_bb->succs)
6313 e->src = new_bb;
6314
6315 /* Get a stmt iterator pointing to the first stmt to move. */
6316 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6317 gsi = gsi_after_labels (bb);
6318 else
6319 {
6320 gsi = gsi_for_stmt ((gimple *) stmt);
6321 gsi_next (&gsi);
6322 }
6323
6324 /* Move everything from GSI to the new basic block. */
6325 if (gsi_end_p (gsi))
6326 return new_bb;
6327
6328 /* Split the statement list - avoid re-creating new containers as this
6329 brings ugly quadratic memory consumption in the inliner.
6330 (We are still quadratic since we need to update stmt BB pointers,
6331 sadly.) */
6332 gsi_split_seq_before (&gsi, &list);
6333 set_bb_seq (new_bb, list);
6334 for (gsi_tgt = gsi_start (list);
6335 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6336 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6337
6338 return new_bb;
6339 }
6340
6341
6342 /* Moves basic block BB after block AFTER. */
6343
6344 static bool
6345 gimple_move_block_after (basic_block bb, basic_block after)
6346 {
6347 if (bb->prev_bb == after)
6348 return true;
6349
6350 unlink_block (bb);
6351 link_block (bb, after);
6352
6353 return true;
6354 }
6355
6356
6357 /* Return TRUE if block BB has no executable statements, otherwise return
6358 FALSE. */
6359
6360 static bool
6361 gimple_empty_block_p (basic_block bb)
6362 {
6363 /* BB must have no executable statements. */
6364 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6365 if (phi_nodes (bb))
6366 return false;
6367 while (!gsi_end_p (gsi))
6368 {
6369 gimple *stmt = gsi_stmt (gsi);
6370 if (is_gimple_debug (stmt))
6371 ;
6372 else if (gimple_code (stmt) == GIMPLE_NOP
6373 || gimple_code (stmt) == GIMPLE_PREDICT)
6374 ;
6375 else
6376 return false;
6377 gsi_next (&gsi);
6378 }
6379 return true;
6380 }
6381
6382
6383 /* Split a basic block if it ends with a conditional branch and if the
6384 other part of the block is not empty. */
6385
6386 static basic_block
6387 gimple_split_block_before_cond_jump (basic_block bb)
6388 {
6389 gimple *last, *split_point;
6390 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6391 if (gsi_end_p (gsi))
6392 return NULL;
6393 last = gsi_stmt (gsi);
6394 if (gimple_code (last) != GIMPLE_COND
6395 && gimple_code (last) != GIMPLE_SWITCH)
6396 return NULL;
6397 gsi_prev (&gsi);
6398 split_point = gsi_stmt (gsi);
6399 return split_block (bb, split_point)->dest;
6400 }
6401
6402
6403 /* Return true if basic_block can be duplicated. */
6404
6405 static bool
6406 gimple_can_duplicate_bb_p (const_basic_block bb)
6407 {
6408 gimple *last = last_nondebug_stmt (CONST_CAST_BB (bb));
6409
6410 /* Do checks that can only fail for the last stmt, to minimize the work in the
6411 stmt loop. */
6412 if (last) {
6413 /* A transaction is a single entry multiple exit region. It
6414 must be duplicated in its entirety or not at all. */
6415 if (gimple_code (last) == GIMPLE_TRANSACTION)
6416 return false;
6417
6418 /* An IFN_UNIQUE call must be duplicated as part of its group,
6419 or not at all. */
6420 if (is_gimple_call (last)
6421 && gimple_call_internal_p (last)
6422 && gimple_call_internal_unique_p (last))
6423 return false;
6424 }
6425
6426 for (gimple_stmt_iterator gsi = gsi_start_bb (CONST_CAST_BB (bb));
6427 !gsi_end_p (gsi); gsi_next (&gsi))
6428 {
6429 gimple *g = gsi_stmt (gsi);
6430
6431 /* Prohibit duplication of returns_twice calls, otherwise associated
6432 abnormal edges also need to be duplicated properly.
6433 An IFN_GOMP_SIMT_ENTER_ALLOC/IFN_GOMP_SIMT_EXIT call must be
6434 duplicated as part of its group, or not at all.
6435 The IFN_GOMP_SIMT_VOTE_ANY and IFN_GOMP_SIMT_XCHG_* are part of such a
6436 group, so the same holds there. */
6437 if (is_gimple_call (g)
6438 && (gimple_call_flags (g) & ECF_RETURNS_TWICE
6439 || gimple_call_internal_p (g, IFN_GOMP_SIMT_ENTER_ALLOC)
6440 || gimple_call_internal_p (g, IFN_GOMP_SIMT_EXIT)
6441 || gimple_call_internal_p (g, IFN_GOMP_SIMT_VOTE_ANY)
6442 || gimple_call_internal_p (g, IFN_GOMP_SIMT_XCHG_BFLY)
6443 || gimple_call_internal_p (g, IFN_GOMP_SIMT_XCHG_IDX)))
6444 return false;
6445 }
6446
6447 return true;
6448 }
6449
6450 /* Create a duplicate of the basic block BB. NOTE: This does not
6451 preserve SSA form. */
6452
6453 static basic_block
6454 gimple_duplicate_bb (basic_block bb, copy_bb_data *id)
6455 {
6456 basic_block new_bb;
6457 gimple_stmt_iterator gsi_tgt;
6458
6459 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6460
6461 /* Copy the PHI nodes. We ignore PHI node arguments here because
6462 the incoming edges have not been setup yet. */
6463 for (gphi_iterator gpi = gsi_start_phis (bb);
6464 !gsi_end_p (gpi);
6465 gsi_next (&gpi))
6466 {
6467 gphi *phi, *copy;
6468 phi = gpi.phi ();
6469 copy = create_phi_node (NULL_TREE, new_bb);
6470 create_new_def_for (gimple_phi_result (phi), copy,
6471 gimple_phi_result_ptr (copy));
6472 gimple_set_uid (copy, gimple_uid (phi));
6473 }
6474
6475 gsi_tgt = gsi_start_bb (new_bb);
6476 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6477 !gsi_end_p (gsi);
6478 gsi_next (&gsi))
6479 {
6480 def_operand_p def_p;
6481 ssa_op_iter op_iter;
6482 tree lhs;
6483 gimple *stmt, *copy;
6484
6485 stmt = gsi_stmt (gsi);
6486 if (gimple_code (stmt) == GIMPLE_LABEL)
6487 continue;
6488
6489 /* Don't duplicate label debug stmts. */
6490 if (gimple_debug_bind_p (stmt)
6491 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6492 == LABEL_DECL)
6493 continue;
6494
6495 /* Create a new copy of STMT and duplicate STMT's virtual
6496 operands. */
6497 copy = gimple_copy (stmt);
6498 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6499
6500 maybe_duplicate_eh_stmt (copy, stmt);
6501 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6502
6503 /* When copying around a stmt writing into a local non-user
6504 aggregate, make sure it won't share stack slot with other
6505 vars. */
6506 lhs = gimple_get_lhs (stmt);
6507 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6508 {
6509 tree base = get_base_address (lhs);
6510 if (base
6511 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6512 && DECL_IGNORED_P (base)
6513 && !TREE_STATIC (base)
6514 && !DECL_EXTERNAL (base)
6515 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6516 DECL_NONSHAREABLE (base) = 1;
6517 }
6518
6519 /* If requested remap dependence info of cliques brought in
6520 via inlining. */
6521 if (id)
6522 for (unsigned i = 0; i < gimple_num_ops (copy); ++i)
6523 {
6524 tree op = gimple_op (copy, i);
6525 if (!op)
6526 continue;
6527 if (TREE_CODE (op) == ADDR_EXPR
6528 || TREE_CODE (op) == WITH_SIZE_EXPR)
6529 op = TREE_OPERAND (op, 0);
6530 while (handled_component_p (op))
6531 op = TREE_OPERAND (op, 0);
6532 if ((TREE_CODE (op) == MEM_REF
6533 || TREE_CODE (op) == TARGET_MEM_REF)
6534 && MR_DEPENDENCE_CLIQUE (op) > 1
6535 && MR_DEPENDENCE_CLIQUE (op) != bb->loop_father->owned_clique)
6536 {
6537 if (!id->dependence_map)
6538 id->dependence_map = new hash_map<dependence_hash,
6539 unsigned short>;
6540 bool existed;
6541 unsigned short &newc = id->dependence_map->get_or_insert
6542 (MR_DEPENDENCE_CLIQUE (op), &existed);
6543 if (!existed)
6544 {
6545 gcc_assert (MR_DEPENDENCE_CLIQUE (op) <= cfun->last_clique);
6546 newc = ++cfun->last_clique;
6547 }
6548 MR_DEPENDENCE_CLIQUE (op) = newc;
6549 }
6550 }
6551
6552 /* Create new names for all the definitions created by COPY and
6553 add replacement mappings for each new name. */
6554 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6555 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6556 }
6557
6558 return new_bb;
6559 }
6560
6561 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6562
6563 static void
6564 add_phi_args_after_copy_edge (edge e_copy)
6565 {
6566 basic_block bb, bb_copy = e_copy->src, dest;
6567 edge e;
6568 edge_iterator ei;
6569 gphi *phi, *phi_copy;
6570 tree def;
6571 gphi_iterator psi, psi_copy;
6572
6573 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6574 return;
6575
6576 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6577
6578 if (e_copy->dest->flags & BB_DUPLICATED)
6579 dest = get_bb_original (e_copy->dest);
6580 else
6581 dest = e_copy->dest;
6582
6583 e = find_edge (bb, dest);
6584 if (!e)
6585 {
6586 /* During loop unrolling the target of the latch edge is copied.
6587 In this case we are not looking for edge to dest, but to
6588 duplicated block whose original was dest. */
6589 FOR_EACH_EDGE (e, ei, bb->succs)
6590 {
6591 if ((e->dest->flags & BB_DUPLICATED)
6592 && get_bb_original (e->dest) == dest)
6593 break;
6594 }
6595
6596 gcc_assert (e != NULL);
6597 }
6598
6599 for (psi = gsi_start_phis (e->dest),
6600 psi_copy = gsi_start_phis (e_copy->dest);
6601 !gsi_end_p (psi);
6602 gsi_next (&psi), gsi_next (&psi_copy))
6603 {
6604 phi = psi.phi ();
6605 phi_copy = psi_copy.phi ();
6606 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6607 add_phi_arg (phi_copy, def, e_copy,
6608 gimple_phi_arg_location_from_edge (phi, e));
6609 }
6610 }
6611
6612
6613 /* Basic block BB_COPY was created by code duplication. Add phi node
6614 arguments for edges going out of BB_COPY. The blocks that were
6615 duplicated have BB_DUPLICATED set. */
6616
6617 void
6618 add_phi_args_after_copy_bb (basic_block bb_copy)
6619 {
6620 edge e_copy;
6621 edge_iterator ei;
6622
6623 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6624 {
6625 add_phi_args_after_copy_edge (e_copy);
6626 }
6627 }
6628
6629 /* Blocks in REGION_COPY array of length N_REGION were created by
6630 duplication of basic blocks. Add phi node arguments for edges
6631 going from these blocks. If E_COPY is not NULL, also add
6632 phi node arguments for its destination.*/
6633
6634 void
6635 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6636 edge e_copy)
6637 {
6638 unsigned i;
6639
6640 for (i = 0; i < n_region; i++)
6641 region_copy[i]->flags |= BB_DUPLICATED;
6642
6643 for (i = 0; i < n_region; i++)
6644 add_phi_args_after_copy_bb (region_copy[i]);
6645 if (e_copy)
6646 add_phi_args_after_copy_edge (e_copy);
6647
6648 for (i = 0; i < n_region; i++)
6649 region_copy[i]->flags &= ~BB_DUPLICATED;
6650 }
6651
6652 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6653 important exit edge EXIT. By important we mean that no SSA name defined
6654 inside region is live over the other exit edges of the region. All entry
6655 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6656 to the duplicate of the region. Dominance and loop information is
6657 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6658 UPDATE_DOMINANCE is false then we assume that the caller will update the
6659 dominance information after calling this function. The new basic
6660 blocks are stored to REGION_COPY in the same order as they had in REGION,
6661 provided that REGION_COPY is not NULL.
6662 The function returns false if it is unable to copy the region,
6663 true otherwise.
6664
6665 It is callers responsibility to update profile. */
6666
6667 bool
6668 gimple_duplicate_seme_region (edge entry, edge exit,
6669 basic_block *region, unsigned n_region,
6670 basic_block *region_copy,
6671 bool update_dominance)
6672 {
6673 unsigned i;
6674 bool free_region_copy = false, copying_header = false;
6675 class loop *loop = entry->dest->loop_father;
6676 edge exit_copy;
6677 edge redirected;
6678
6679 if (!can_copy_bbs_p (region, n_region))
6680 return false;
6681
6682 /* Some sanity checking. Note that we do not check for all possible
6683 missuses of the functions. I.e. if you ask to copy something weird,
6684 it will work, but the state of structures probably will not be
6685 correct. */
6686 for (i = 0; i < n_region; i++)
6687 {
6688 /* We do not handle subloops, i.e. all the blocks must belong to the
6689 same loop. */
6690 if (region[i]->loop_father != loop)
6691 return false;
6692
6693 if (region[i] != entry->dest
6694 && region[i] == loop->header)
6695 return false;
6696 }
6697
6698 /* In case the function is used for loop header copying (which is the primary
6699 use), ensure that EXIT and its copy will be new latch and entry edges. */
6700 if (loop->header == entry->dest)
6701 {
6702 copying_header = true;
6703
6704 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6705 return false;
6706
6707 for (i = 0; i < n_region; i++)
6708 if (region[i] != exit->src
6709 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6710 return false;
6711 }
6712
6713 initialize_original_copy_tables ();
6714
6715 if (copying_header)
6716 set_loop_copy (loop, loop_outer (loop));
6717 else
6718 set_loop_copy (loop, loop);
6719
6720 if (!region_copy)
6721 {
6722 region_copy = XNEWVEC (basic_block, n_region);
6723 free_region_copy = true;
6724 }
6725
6726 /* Record blocks outside the region that are dominated by something
6727 inside. */
6728 auto_vec<basic_block> doms;
6729 if (update_dominance)
6730 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6731
6732 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6733 split_edge_bb_loc (entry), update_dominance);
6734
6735 if (copying_header)
6736 {
6737 loop->header = exit->dest;
6738 loop->latch = exit->src;
6739 }
6740
6741 /* Redirect the entry and add the phi node arguments. */
6742 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6743 gcc_assert (redirected != NULL);
6744 flush_pending_stmts (entry);
6745
6746 /* Concerning updating of dominators: We must recount dominators
6747 for entry block and its copy. Anything that is outside of the
6748 region, but was dominated by something inside needs recounting as
6749 well. */
6750 if (update_dominance)
6751 {
6752 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6753 doms.safe_push (get_bb_original (entry->dest));
6754 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6755 }
6756
6757 /* Add the other PHI node arguments. */
6758 add_phi_args_after_copy (region_copy, n_region, NULL);
6759
6760 if (free_region_copy)
6761 free (region_copy);
6762
6763 free_original_copy_tables ();
6764 return true;
6765 }
6766
6767 /* Checks if BB is part of the region defined by N_REGION BBS. */
6768 static bool
6769 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6770 {
6771 unsigned int n;
6772
6773 for (n = 0; n < n_region; n++)
6774 {
6775 if (bb == bbs[n])
6776 return true;
6777 }
6778 return false;
6779 }
6780
6781
6782 /* For each PHI in BB, copy the argument associated with SRC_E to TGT_E.
6783 Assuming the argument exists, just does not have a value. */
6784
6785 void
6786 copy_phi_arg_into_existing_phi (edge src_e, edge tgt_e)
6787 {
6788 int src_idx = src_e->dest_idx;
6789 int tgt_idx = tgt_e->dest_idx;
6790
6791 /* Iterate over each PHI in e->dest. */
6792 for (gphi_iterator gsi = gsi_start_phis (src_e->dest),
6793 gsi2 = gsi_start_phis (tgt_e->dest);
6794 !gsi_end_p (gsi);
6795 gsi_next (&gsi), gsi_next (&gsi2))
6796 {
6797 gphi *src_phi = gsi.phi ();
6798 gphi *dest_phi = gsi2.phi ();
6799 tree val = gimple_phi_arg_def (src_phi, src_idx);
6800 location_t locus = gimple_phi_arg_location (src_phi, src_idx);
6801
6802 SET_PHI_ARG_DEF (dest_phi, tgt_idx, val);
6803 gimple_phi_arg_set_location (dest_phi, tgt_idx, locus);
6804 }
6805 }
6806
6807 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6808 are stored to REGION_COPY in the same order in that they appear
6809 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6810 the region, EXIT an exit from it. The condition guarding EXIT
6811 is moved to ENTRY. Returns true if duplication succeeds, false
6812 otherwise.
6813
6814 For example,
6815
6816 some_code;
6817 if (cond)
6818 A;
6819 else
6820 B;
6821
6822 is transformed to
6823
6824 if (cond)
6825 {
6826 some_code;
6827 A;
6828 }
6829 else
6830 {
6831 some_code;
6832 B;
6833 }
6834 */
6835
6836 bool
6837 gimple_duplicate_sese_tail (edge entry, edge exit,
6838 basic_block *region, unsigned n_region,
6839 basic_block *region_copy)
6840 {
6841 unsigned i;
6842 bool free_region_copy = false;
6843 class loop *loop = exit->dest->loop_father;
6844 class loop *orig_loop = entry->dest->loop_father;
6845 basic_block switch_bb, entry_bb, nentry_bb;
6846 profile_count total_count = profile_count::uninitialized (),
6847 exit_count = profile_count::uninitialized ();
6848 edge exits[2], nexits[2], e;
6849 gimple_stmt_iterator gsi;
6850 edge sorig, snew;
6851 basic_block exit_bb;
6852 class loop *target, *aloop, *cloop;
6853
6854 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6855 exits[0] = exit;
6856 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6857
6858 if (!can_copy_bbs_p (region, n_region))
6859 return false;
6860
6861 initialize_original_copy_tables ();
6862 set_loop_copy (orig_loop, loop);
6863
6864 target= loop;
6865 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6866 {
6867 if (bb_part_of_region_p (aloop->header, region, n_region))
6868 {
6869 cloop = duplicate_loop (aloop, target);
6870 duplicate_subloops (aloop, cloop);
6871 }
6872 }
6873
6874 if (!region_copy)
6875 {
6876 region_copy = XNEWVEC (basic_block, n_region);
6877 free_region_copy = true;
6878 }
6879
6880 gcc_assert (!need_ssa_update_p (cfun));
6881
6882 /* Record blocks outside the region that are dominated by something
6883 inside. */
6884 auto_vec<basic_block> doms = get_dominated_by_region (CDI_DOMINATORS, region,
6885 n_region);
6886
6887 total_count = exit->src->count;
6888 exit_count = exit->count ();
6889 /* Fix up corner cases, to avoid division by zero or creation of negative
6890 frequencies. */
6891 if (exit_count > total_count)
6892 exit_count = total_count;
6893
6894 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6895 split_edge_bb_loc (exit), true);
6896 if (total_count.initialized_p () && exit_count.initialized_p ())
6897 {
6898 scale_bbs_frequencies_profile_count (region, n_region,
6899 total_count - exit_count,
6900 total_count);
6901 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6902 total_count);
6903 }
6904
6905 /* Create the switch block, and put the exit condition to it. */
6906 entry_bb = entry->dest;
6907 nentry_bb = get_bb_copy (entry_bb);
6908 if (!*gsi_last_bb (entry->src)
6909 || !stmt_ends_bb_p (*gsi_last_bb (entry->src)))
6910 switch_bb = entry->src;
6911 else
6912 switch_bb = split_edge (entry);
6913 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6914
6915 gcond *cond_stmt = as_a <gcond *> (*gsi_last_bb (exit->src));
6916 cond_stmt = as_a <gcond *> (gimple_copy (cond_stmt));
6917
6918 gsi = gsi_last_bb (switch_bb);
6919 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6920
6921 sorig = single_succ_edge (switch_bb);
6922 sorig->flags = exits[1]->flags;
6923 sorig->probability = exits[1]->probability;
6924 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6925 snew->probability = exits[0]->probability;
6926
6927
6928 /* Register the new edge from SWITCH_BB in loop exit lists. */
6929 rescan_loop_exit (snew, true, false);
6930
6931 /* Add the PHI node arguments. */
6932 add_phi_args_after_copy (region_copy, n_region, snew);
6933
6934 /* Get rid of now superfluous conditions and associated edges (and phi node
6935 arguments). */
6936 exit_bb = exit->dest;
6937
6938 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6939 PENDING_STMT (e) = NULL;
6940
6941 /* The latch of ORIG_LOOP was copied, and so was the backedge
6942 to the original header. We redirect this backedge to EXIT_BB. */
6943 for (i = 0; i < n_region; i++)
6944 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6945 {
6946 gcc_assert (single_succ_edge (region_copy[i]));
6947 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6948 PENDING_STMT (e) = NULL;
6949 copy_phi_arg_into_existing_phi (nexits[0], e);
6950 }
6951 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6952 PENDING_STMT (e) = NULL;
6953
6954 /* Anything that is outside of the region, but was dominated by something
6955 inside needs to update dominance info. */
6956 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6957
6958 if (free_region_copy)
6959 free (region_copy);
6960
6961 free_original_copy_tables ();
6962 return true;
6963 }
6964
6965 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6966 adding blocks when the dominator traversal reaches EXIT. This
6967 function silently assumes that ENTRY strictly dominates EXIT. */
6968
6969 void
6970 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6971 vec<basic_block> *bbs_p)
6972 {
6973 basic_block son;
6974
6975 for (son = first_dom_son (CDI_DOMINATORS, entry);
6976 son;
6977 son = next_dom_son (CDI_DOMINATORS, son))
6978 {
6979 bbs_p->safe_push (son);
6980 if (son != exit)
6981 gather_blocks_in_sese_region (son, exit, bbs_p);
6982 }
6983 }
6984
6985 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6986 The duplicates are recorded in VARS_MAP. */
6987
6988 static void
6989 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6990 tree to_context)
6991 {
6992 tree t = *tp, new_t;
6993 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6994
6995 if (DECL_CONTEXT (t) == to_context)
6996 return;
6997
6998 bool existed;
6999 tree &loc = vars_map->get_or_insert (t, &existed);
7000
7001 if (!existed)
7002 {
7003 if (SSA_VAR_P (t))
7004 {
7005 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
7006 add_local_decl (f, new_t);
7007 }
7008 else
7009 {
7010 gcc_assert (TREE_CODE (t) == CONST_DECL);
7011 new_t = copy_node (t);
7012 }
7013 DECL_CONTEXT (new_t) = to_context;
7014
7015 loc = new_t;
7016 }
7017 else
7018 new_t = loc;
7019
7020 *tp = new_t;
7021 }
7022
7023
7024 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
7025 VARS_MAP maps old ssa names and var_decls to the new ones. */
7026
7027 static tree
7028 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
7029 tree to_context)
7030 {
7031 tree new_name;
7032
7033 gcc_assert (!virtual_operand_p (name));
7034
7035 tree *loc = vars_map->get (name);
7036
7037 if (!loc)
7038 {
7039 tree decl = SSA_NAME_VAR (name);
7040 if (decl)
7041 {
7042 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
7043 replace_by_duplicate_decl (&decl, vars_map, to_context);
7044 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
7045 decl, SSA_NAME_DEF_STMT (name));
7046 }
7047 else
7048 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
7049 name, SSA_NAME_DEF_STMT (name));
7050
7051 /* Now that we've used the def stmt to define new_name, make sure it
7052 doesn't define name anymore. */
7053 SSA_NAME_DEF_STMT (name) = NULL;
7054
7055 vars_map->put (name, new_name);
7056 }
7057 else
7058 new_name = *loc;
7059
7060 return new_name;
7061 }
7062
7063 struct move_stmt_d
7064 {
7065 tree orig_block;
7066 tree new_block;
7067 tree from_context;
7068 tree to_context;
7069 hash_map<tree, tree> *vars_map;
7070 htab_t new_label_map;
7071 hash_map<void *, void *> *eh_map;
7072 bool remap_decls_p;
7073 };
7074
7075 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
7076 contained in *TP if it has been ORIG_BLOCK previously and change the
7077 DECL_CONTEXT of every local variable referenced in *TP. */
7078
7079 static tree
7080 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
7081 {
7082 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
7083 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
7084 tree t = *tp;
7085
7086 if (EXPR_P (t))
7087 {
7088 tree block = TREE_BLOCK (t);
7089 if (block == NULL_TREE)
7090 ;
7091 else if (block == p->orig_block
7092 || p->orig_block == NULL_TREE)
7093 {
7094 /* tree_node_can_be_shared says we can share invariant
7095 addresses but unshare_expr copies them anyways. Make sure
7096 to unshare before adjusting the block in place - we do not
7097 always see a copy here. */
7098 if (TREE_CODE (t) == ADDR_EXPR
7099 && is_gimple_min_invariant (t))
7100 *tp = t = unshare_expr (t);
7101 TREE_SET_BLOCK (t, p->new_block);
7102 }
7103 else if (flag_checking)
7104 {
7105 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
7106 block = BLOCK_SUPERCONTEXT (block);
7107 gcc_assert (block == p->orig_block);
7108 }
7109 }
7110 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
7111 {
7112 if (TREE_CODE (t) == SSA_NAME)
7113 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
7114 else if (TREE_CODE (t) == PARM_DECL
7115 && gimple_in_ssa_p (cfun))
7116 *tp = *(p->vars_map->get (t));
7117 else if (TREE_CODE (t) == LABEL_DECL)
7118 {
7119 if (p->new_label_map)
7120 {
7121 struct tree_map in, *out;
7122 in.base.from = t;
7123 out = (struct tree_map *)
7124 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
7125 if (out)
7126 *tp = t = out->to;
7127 }
7128
7129 /* For FORCED_LABELs we can end up with references from other
7130 functions if some SESE regions are outlined. It is UB to
7131 jump in between them, but they could be used just for printing
7132 addresses etc. In that case, DECL_CONTEXT on the label should
7133 be the function containing the glabel stmt with that LABEL_DECL,
7134 rather than whatever function a reference to the label was seen
7135 last time. */
7136 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
7137 DECL_CONTEXT (t) = p->to_context;
7138 }
7139 else if (p->remap_decls_p)
7140 {
7141 /* Replace T with its duplicate. T should no longer appear in the
7142 parent function, so this looks wasteful; however, it may appear
7143 in referenced_vars, and more importantly, as virtual operands of
7144 statements, and in alias lists of other variables. It would be
7145 quite difficult to expunge it from all those places. ??? It might
7146 suffice to do this for addressable variables. */
7147 if ((VAR_P (t) && !is_global_var (t))
7148 || TREE_CODE (t) == CONST_DECL)
7149 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
7150 }
7151 *walk_subtrees = 0;
7152 }
7153 else if (TYPE_P (t))
7154 *walk_subtrees = 0;
7155
7156 return NULL_TREE;
7157 }
7158
7159 /* Helper for move_stmt_r. Given an EH region number for the source
7160 function, map that to the duplicate EH regio number in the dest. */
7161
7162 static int
7163 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
7164 {
7165 eh_region old_r, new_r;
7166
7167 old_r = get_eh_region_from_number (old_nr);
7168 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
7169
7170 return new_r->index;
7171 }
7172
7173 /* Similar, but operate on INTEGER_CSTs. */
7174
7175 static tree
7176 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
7177 {
7178 int old_nr, new_nr;
7179
7180 old_nr = tree_to_shwi (old_t_nr);
7181 new_nr = move_stmt_eh_region_nr (old_nr, p);
7182
7183 return build_int_cst (integer_type_node, new_nr);
7184 }
7185
7186 /* Like move_stmt_op, but for gimple statements.
7187
7188 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
7189 contained in the current statement in *GSI_P and change the
7190 DECL_CONTEXT of every local variable referenced in the current
7191 statement. */
7192
7193 static tree
7194 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
7195 struct walk_stmt_info *wi)
7196 {
7197 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
7198 gimple *stmt = gsi_stmt (*gsi_p);
7199 tree block = gimple_block (stmt);
7200
7201 if (block == p->orig_block
7202 || (p->orig_block == NULL_TREE
7203 && block != NULL_TREE))
7204 gimple_set_block (stmt, p->new_block);
7205
7206 switch (gimple_code (stmt))
7207 {
7208 case GIMPLE_CALL:
7209 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
7210 {
7211 tree r, fndecl = gimple_call_fndecl (stmt);
7212 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
7213 switch (DECL_FUNCTION_CODE (fndecl))
7214 {
7215 case BUILT_IN_EH_COPY_VALUES:
7216 r = gimple_call_arg (stmt, 1);
7217 r = move_stmt_eh_region_tree_nr (r, p);
7218 gimple_call_set_arg (stmt, 1, r);
7219 /* FALLTHRU */
7220
7221 case BUILT_IN_EH_POINTER:
7222 case BUILT_IN_EH_FILTER:
7223 r = gimple_call_arg (stmt, 0);
7224 r = move_stmt_eh_region_tree_nr (r, p);
7225 gimple_call_set_arg (stmt, 0, r);
7226 break;
7227
7228 default:
7229 break;
7230 }
7231 }
7232 break;
7233
7234 case GIMPLE_RESX:
7235 {
7236 gresx *resx_stmt = as_a <gresx *> (stmt);
7237 int r = gimple_resx_region (resx_stmt);
7238 r = move_stmt_eh_region_nr (r, p);
7239 gimple_resx_set_region (resx_stmt, r);
7240 }
7241 break;
7242
7243 case GIMPLE_EH_DISPATCH:
7244 {
7245 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
7246 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
7247 r = move_stmt_eh_region_nr (r, p);
7248 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
7249 }
7250 break;
7251
7252 case GIMPLE_OMP_RETURN:
7253 case GIMPLE_OMP_CONTINUE:
7254 break;
7255
7256 case GIMPLE_LABEL:
7257 {
7258 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
7259 so that such labels can be referenced from other regions.
7260 Make sure to update it when seeing a GIMPLE_LABEL though,
7261 that is the owner of the label. */
7262 walk_gimple_op (stmt, move_stmt_op, wi);
7263 *handled_ops_p = true;
7264 tree label = gimple_label_label (as_a <glabel *> (stmt));
7265 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
7266 DECL_CONTEXT (label) = p->to_context;
7267 }
7268 break;
7269
7270 default:
7271 if (is_gimple_omp (stmt))
7272 {
7273 /* Do not remap variables inside OMP directives. Variables
7274 referenced in clauses and directive header belong to the
7275 parent function and should not be moved into the child
7276 function. */
7277 bool save_remap_decls_p = p->remap_decls_p;
7278 p->remap_decls_p = false;
7279 *handled_ops_p = true;
7280
7281 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
7282 move_stmt_op, wi);
7283
7284 p->remap_decls_p = save_remap_decls_p;
7285 }
7286 break;
7287 }
7288
7289 return NULL_TREE;
7290 }
7291
7292 /* Move basic block BB from function CFUN to function DEST_FN. The
7293 block is moved out of the original linked list and placed after
7294 block AFTER in the new list. Also, the block is removed from the
7295 original array of blocks and placed in DEST_FN's array of blocks.
7296 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7297 updated to reflect the moved edges.
7298
7299 The local variables are remapped to new instances, VARS_MAP is used
7300 to record the mapping. */
7301
7302 static void
7303 move_block_to_fn (struct function *dest_cfun, basic_block bb,
7304 basic_block after, bool update_edge_count_p,
7305 struct move_stmt_d *d)
7306 {
7307 struct control_flow_graph *cfg;
7308 edge_iterator ei;
7309 edge e;
7310 gimple_stmt_iterator si;
7311 unsigned old_len;
7312
7313 /* Remove BB from dominance structures. */
7314 delete_from_dominance_info (CDI_DOMINATORS, bb);
7315
7316 /* Move BB from its current loop to the copy in the new function. */
7317 if (current_loops)
7318 {
7319 class loop *new_loop = (class loop *)bb->loop_father->aux;
7320 if (new_loop)
7321 bb->loop_father = new_loop;
7322 }
7323
7324 /* Link BB to the new linked list. */
7325 move_block_after (bb, after);
7326
7327 /* Update the edge count in the corresponding flowgraphs. */
7328 if (update_edge_count_p)
7329 FOR_EACH_EDGE (e, ei, bb->succs)
7330 {
7331 cfun->cfg->x_n_edges--;
7332 dest_cfun->cfg->x_n_edges++;
7333 }
7334
7335 /* Remove BB from the original basic block array. */
7336 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
7337 cfun->cfg->x_n_basic_blocks--;
7338
7339 /* Grow DEST_CFUN's basic block array if needed. */
7340 cfg = dest_cfun->cfg;
7341 cfg->x_n_basic_blocks++;
7342 if (bb->index >= cfg->x_last_basic_block)
7343 cfg->x_last_basic_block = bb->index + 1;
7344
7345 old_len = vec_safe_length (cfg->x_basic_block_info);
7346 if ((unsigned) cfg->x_last_basic_block >= old_len)
7347 vec_safe_grow_cleared (cfg->x_basic_block_info,
7348 cfg->x_last_basic_block + 1);
7349
7350 (*cfg->x_basic_block_info)[bb->index] = bb;
7351
7352 /* Remap the variables in phi nodes. */
7353 for (gphi_iterator psi = gsi_start_phis (bb);
7354 !gsi_end_p (psi); )
7355 {
7356 gphi *phi = psi.phi ();
7357 use_operand_p use;
7358 tree op = PHI_RESULT (phi);
7359 ssa_op_iter oi;
7360 unsigned i;
7361
7362 if (virtual_operand_p (op))
7363 {
7364 /* Remove the phi nodes for virtual operands (alias analysis will be
7365 run for the new function, anyway). But replace all uses that
7366 might be outside of the region we move. */
7367 use_operand_p use_p;
7368 imm_use_iterator iter;
7369 gimple *use_stmt;
7370 FOR_EACH_IMM_USE_STMT (use_stmt, iter, op)
7371 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7372 SET_USE (use_p, SSA_NAME_VAR (op));
7373 remove_phi_node (&psi, true);
7374 continue;
7375 }
7376
7377 SET_PHI_RESULT (phi,
7378 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7379 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7380 {
7381 op = USE_FROM_PTR (use);
7382 if (TREE_CODE (op) == SSA_NAME)
7383 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7384 }
7385
7386 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7387 {
7388 location_t locus = gimple_phi_arg_location (phi, i);
7389 tree block = LOCATION_BLOCK (locus);
7390
7391 if (locus == UNKNOWN_LOCATION)
7392 continue;
7393 if (d->orig_block == NULL_TREE || block == d->orig_block)
7394 {
7395 locus = set_block (locus, d->new_block);
7396 gimple_phi_arg_set_location (phi, i, locus);
7397 }
7398 }
7399
7400 gsi_next (&psi);
7401 }
7402
7403 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7404 {
7405 gimple *stmt = gsi_stmt (si);
7406 struct walk_stmt_info wi;
7407
7408 memset (&wi, 0, sizeof (wi));
7409 wi.info = d;
7410 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7411
7412 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7413 {
7414 tree label = gimple_label_label (label_stmt);
7415 int uid = LABEL_DECL_UID (label);
7416
7417 gcc_assert (uid > -1);
7418
7419 old_len = vec_safe_length (cfg->x_label_to_block_map);
7420 if (old_len <= (unsigned) uid)
7421 vec_safe_grow_cleared (cfg->x_label_to_block_map, uid + 1);
7422
7423 (*cfg->x_label_to_block_map)[uid] = bb;
7424 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7425
7426 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7427
7428 if (uid >= dest_cfun->cfg->last_label_uid)
7429 dest_cfun->cfg->last_label_uid = uid + 1;
7430 }
7431
7432 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7433 remove_stmt_from_eh_lp_fn (cfun, stmt);
7434
7435 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7436 gimple_remove_stmt_histograms (cfun, stmt);
7437
7438 /* We cannot leave any operands allocated from the operand caches of
7439 the current function. */
7440 free_stmt_operands (cfun, stmt);
7441 push_cfun (dest_cfun);
7442 update_stmt (stmt);
7443 if (is_gimple_call (stmt))
7444 notice_special_calls (as_a <gcall *> (stmt));
7445 pop_cfun ();
7446 }
7447
7448 FOR_EACH_EDGE (e, ei, bb->succs)
7449 if (e->goto_locus != UNKNOWN_LOCATION)
7450 {
7451 tree block = LOCATION_BLOCK (e->goto_locus);
7452 if (d->orig_block == NULL_TREE
7453 || block == d->orig_block)
7454 e->goto_locus = set_block (e->goto_locus, d->new_block);
7455 }
7456 }
7457
7458 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7459 the outermost EH region. Use REGION as the incoming base EH region.
7460 If there is no single outermost region, return NULL and set *ALL to
7461 true. */
7462
7463 static eh_region
7464 find_outermost_region_in_block (struct function *src_cfun,
7465 basic_block bb, eh_region region,
7466 bool *all)
7467 {
7468 gimple_stmt_iterator si;
7469
7470 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7471 {
7472 gimple *stmt = gsi_stmt (si);
7473 eh_region stmt_region;
7474 int lp_nr;
7475
7476 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7477 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7478 if (stmt_region)
7479 {
7480 if (region == NULL)
7481 region = stmt_region;
7482 else if (stmt_region != region)
7483 {
7484 region = eh_region_outermost (src_cfun, stmt_region, region);
7485 if (region == NULL)
7486 {
7487 *all = true;
7488 return NULL;
7489 }
7490 }
7491 }
7492 }
7493
7494 return region;
7495 }
7496
7497 static tree
7498 new_label_mapper (tree decl, void *data)
7499 {
7500 htab_t hash = (htab_t) data;
7501 struct tree_map *m;
7502 void **slot;
7503
7504 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7505
7506 m = XNEW (struct tree_map);
7507 m->hash = DECL_UID (decl);
7508 m->base.from = decl;
7509 m->to = create_artificial_label (UNKNOWN_LOCATION);
7510 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7511 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7512 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7513
7514 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7515 gcc_assert (*slot == NULL);
7516
7517 *slot = m;
7518
7519 return m->to;
7520 }
7521
7522 /* Tree walker to replace the decls used inside value expressions by
7523 duplicates. */
7524
7525 static tree
7526 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7527 {
7528 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7529
7530 switch (TREE_CODE (*tp))
7531 {
7532 case VAR_DECL:
7533 case PARM_DECL:
7534 case RESULT_DECL:
7535 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7536 break;
7537 default:
7538 break;
7539 }
7540
7541 if (IS_TYPE_OR_DECL_P (*tp))
7542 *walk_subtrees = false;
7543
7544 return NULL;
7545 }
7546
7547 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7548 subblocks. */
7549
7550 static void
7551 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7552 tree to_context)
7553 {
7554 tree *tp, t;
7555
7556 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7557 {
7558 t = *tp;
7559 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7560 continue;
7561 replace_by_duplicate_decl (&t, vars_map, to_context);
7562 if (t != *tp)
7563 {
7564 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7565 {
7566 tree x = DECL_VALUE_EXPR (*tp);
7567 struct replace_decls_d rd = { vars_map, to_context };
7568 unshare_expr (x);
7569 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7570 SET_DECL_VALUE_EXPR (t, x);
7571 DECL_HAS_VALUE_EXPR_P (t) = 1;
7572 }
7573 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7574 *tp = t;
7575 }
7576 }
7577
7578 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7579 replace_block_vars_by_duplicates (block, vars_map, to_context);
7580 }
7581
7582 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7583 from FN1 to FN2. */
7584
7585 static void
7586 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7587 class loop *loop)
7588 {
7589 /* Discard it from the old loop array. */
7590 (*get_loops (fn1))[loop->num] = NULL;
7591
7592 /* Place it in the new loop array, assigning it a new number. */
7593 loop->num = number_of_loops (fn2);
7594 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7595
7596 /* Recurse to children. */
7597 for (loop = loop->inner; loop; loop = loop->next)
7598 fixup_loop_arrays_after_move (fn1, fn2, loop);
7599 }
7600
7601 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7602 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7603
7604 DEBUG_FUNCTION void
7605 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7606 {
7607 basic_block bb;
7608 edge_iterator ei;
7609 edge e;
7610 bitmap bbs = BITMAP_ALLOC (NULL);
7611 int i;
7612
7613 gcc_assert (entry != NULL);
7614 gcc_assert (entry != exit);
7615 gcc_assert (bbs_p != NULL);
7616
7617 gcc_assert (bbs_p->length () > 0);
7618
7619 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7620 bitmap_set_bit (bbs, bb->index);
7621
7622 gcc_assert (bitmap_bit_p (bbs, entry->index));
7623 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7624
7625 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7626 {
7627 if (bb == entry)
7628 {
7629 gcc_assert (single_pred_p (entry));
7630 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7631 }
7632 else
7633 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7634 {
7635 e = ei_edge (ei);
7636 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7637 }
7638
7639 if (bb == exit)
7640 {
7641 gcc_assert (single_succ_p (exit));
7642 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7643 }
7644 else
7645 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7646 {
7647 e = ei_edge (ei);
7648 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7649 }
7650 }
7651
7652 BITMAP_FREE (bbs);
7653 }
7654
7655 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7656
7657 bool
7658 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7659 {
7660 bitmap release_names = (bitmap)data;
7661
7662 if (TREE_CODE (from) != SSA_NAME)
7663 return true;
7664
7665 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7666 return true;
7667 }
7668
7669 /* Return LOOP_DIST_ALIAS call if present in BB. */
7670
7671 static gimple *
7672 find_loop_dist_alias (basic_block bb)
7673 {
7674 gimple_stmt_iterator gsi = gsi_last_bb (bb);
7675 if (!safe_is_a <gcond *> (*gsi))
7676 return NULL;
7677
7678 gsi_prev (&gsi);
7679 if (gsi_end_p (gsi))
7680 return NULL;
7681
7682 gimple *g = gsi_stmt (gsi);
7683 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7684 return g;
7685 return NULL;
7686 }
7687
7688 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7689 to VALUE and update any immediate uses of it's LHS. */
7690
7691 void
7692 fold_loop_internal_call (gimple *g, tree value)
7693 {
7694 tree lhs = gimple_call_lhs (g);
7695 use_operand_p use_p;
7696 imm_use_iterator iter;
7697 gimple *use_stmt;
7698 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7699
7700 replace_call_with_value (&gsi, value);
7701 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7702 {
7703 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7704 SET_USE (use_p, value);
7705 update_stmt (use_stmt);
7706 }
7707 }
7708
7709 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7710 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7711 single basic block in the original CFG and the new basic block is
7712 returned. DEST_CFUN must not have a CFG yet.
7713
7714 Note that the region need not be a pure SESE region. Blocks inside
7715 the region may contain calls to abort/exit. The only restriction
7716 is that ENTRY_BB should be the only entry point and it must
7717 dominate EXIT_BB.
7718
7719 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7720 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7721 to the new function.
7722
7723 All local variables referenced in the region are assumed to be in
7724 the corresponding BLOCK_VARS and unexpanded variable lists
7725 associated with DEST_CFUN.
7726
7727 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7728 reimplement move_sese_region_to_fn by duplicating the region rather than
7729 moving it. */
7730
7731 basic_block
7732 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7733 basic_block exit_bb, tree orig_block)
7734 {
7735 vec<basic_block> bbs;
7736 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7737 basic_block after, bb, *entry_pred, *exit_succ, abb;
7738 struct function *saved_cfun = cfun;
7739 int *entry_flag, *exit_flag;
7740 profile_probability *entry_prob, *exit_prob;
7741 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7742 edge e;
7743 edge_iterator ei;
7744 htab_t new_label_map;
7745 hash_map<void *, void *> *eh_map;
7746 class loop *loop = entry_bb->loop_father;
7747 class loop *loop0 = get_loop (saved_cfun, 0);
7748 struct move_stmt_d d;
7749
7750 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7751 region. */
7752 gcc_assert (entry_bb != exit_bb
7753 && (!exit_bb
7754 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7755
7756 /* Collect all the blocks in the region. Manually add ENTRY_BB
7757 because it won't be added by dfs_enumerate_from. */
7758 bbs.create (0);
7759 bbs.safe_push (entry_bb);
7760 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7761
7762 if (flag_checking)
7763 verify_sese (entry_bb, exit_bb, &bbs);
7764
7765 /* The blocks that used to be dominated by something in BBS will now be
7766 dominated by the new block. */
7767 auto_vec<basic_block> dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7768 bbs.address (),
7769 bbs.length ());
7770
7771 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7772 the predecessor edges to ENTRY_BB and the successor edges to
7773 EXIT_BB so that we can re-attach them to the new basic block that
7774 will replace the region. */
7775 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7776 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7777 entry_flag = XNEWVEC (int, num_entry_edges);
7778 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7779 i = 0;
7780 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7781 {
7782 entry_prob[i] = e->probability;
7783 entry_flag[i] = e->flags;
7784 entry_pred[i++] = e->src;
7785 remove_edge (e);
7786 }
7787
7788 if (exit_bb)
7789 {
7790 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7791 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7792 exit_flag = XNEWVEC (int, num_exit_edges);
7793 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7794 i = 0;
7795 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7796 {
7797 exit_prob[i] = e->probability;
7798 exit_flag[i] = e->flags;
7799 exit_succ[i++] = e->dest;
7800 remove_edge (e);
7801 }
7802 }
7803 else
7804 {
7805 num_exit_edges = 0;
7806 exit_succ = NULL;
7807 exit_flag = NULL;
7808 exit_prob = NULL;
7809 }
7810
7811 /* Switch context to the child function to initialize DEST_FN's CFG. */
7812 gcc_assert (dest_cfun->cfg == NULL);
7813 push_cfun (dest_cfun);
7814
7815 init_empty_tree_cfg ();
7816
7817 /* Initialize EH information for the new function. */
7818 eh_map = NULL;
7819 new_label_map = NULL;
7820 if (saved_cfun->eh)
7821 {
7822 eh_region region = NULL;
7823 bool all = false;
7824
7825 FOR_EACH_VEC_ELT (bbs, i, bb)
7826 {
7827 region = find_outermost_region_in_block (saved_cfun, bb, region, &all);
7828 if (all)
7829 break;
7830 }
7831
7832 init_eh_for_function ();
7833 if (region != NULL || all)
7834 {
7835 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7836 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7837 new_label_mapper, new_label_map);
7838 }
7839 }
7840
7841 /* Initialize an empty loop tree. */
7842 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7843 init_loops_structure (dest_cfun, loops, 1);
7844 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7845 set_loops_for_fn (dest_cfun, loops);
7846
7847 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7848
7849 /* Move the outlined loop tree part. */
7850 num_nodes = bbs.length ();
7851 FOR_EACH_VEC_ELT (bbs, i, bb)
7852 {
7853 if (bb->loop_father->header == bb)
7854 {
7855 class loop *this_loop = bb->loop_father;
7856 /* Avoid the need to remap SSA names used in nb_iterations. */
7857 free_numbers_of_iterations_estimates (this_loop);
7858 class loop *outer = loop_outer (this_loop);
7859 if (outer == loop
7860 /* If the SESE region contains some bbs ending with
7861 a noreturn call, those are considered to belong
7862 to the outermost loop in saved_cfun, rather than
7863 the entry_bb's loop_father. */
7864 || outer == loop0)
7865 {
7866 if (outer != loop)
7867 num_nodes -= this_loop->num_nodes;
7868 flow_loop_tree_node_remove (bb->loop_father);
7869 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7870 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7871 }
7872 }
7873 else if (bb->loop_father == loop0 && loop0 != loop)
7874 num_nodes--;
7875
7876 /* Remove loop exits from the outlined region. */
7877 if (loops_for_fn (saved_cfun)->exits)
7878 FOR_EACH_EDGE (e, ei, bb->succs)
7879 {
7880 struct loops *l = loops_for_fn (saved_cfun);
7881 loop_exit **slot
7882 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7883 NO_INSERT);
7884 if (slot)
7885 l->exits->clear_slot (slot);
7886 }
7887 }
7888
7889 /* Adjust the number of blocks in the tree root of the outlined part. */
7890 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7891
7892 /* Setup a mapping to be used by move_block_to_fn. */
7893 loop->aux = current_loops->tree_root;
7894 loop0->aux = current_loops->tree_root;
7895
7896 /* Fix up orig_loop_num. If the block referenced in it has been moved
7897 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7898 signed char *moved_orig_loop_num = NULL;
7899 for (auto dloop : loops_list (dest_cfun, 0))
7900 if (dloop->orig_loop_num)
7901 {
7902 if (moved_orig_loop_num == NULL)
7903 moved_orig_loop_num
7904 = XCNEWVEC (signed char, vec_safe_length (larray));
7905 if ((*larray)[dloop->orig_loop_num] != NULL
7906 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7907 {
7908 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7909 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7910 moved_orig_loop_num[dloop->orig_loop_num]++;
7911 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7912 }
7913 else
7914 {
7915 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7916 dloop->orig_loop_num = 0;
7917 }
7918 }
7919 pop_cfun ();
7920
7921 if (moved_orig_loop_num)
7922 {
7923 FOR_EACH_VEC_ELT (bbs, i, bb)
7924 {
7925 gimple *g = find_loop_dist_alias (bb);
7926 if (g == NULL)
7927 continue;
7928
7929 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7930 gcc_assert (orig_loop_num
7931 && (unsigned) orig_loop_num < vec_safe_length (larray));
7932 if (moved_orig_loop_num[orig_loop_num] == 2)
7933 {
7934 /* If we have moved both loops with this orig_loop_num into
7935 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7936 too, update the first argument. */
7937 gcc_assert ((*larray)[orig_loop_num] != NULL
7938 && (get_loop (saved_cfun, orig_loop_num) == NULL));
7939 tree t = build_int_cst (integer_type_node,
7940 (*larray)[orig_loop_num]->num);
7941 gimple_call_set_arg (g, 0, t);
7942 update_stmt (g);
7943 /* Make sure the following loop will not update it. */
7944 moved_orig_loop_num[orig_loop_num] = 0;
7945 }
7946 else
7947 /* Otherwise at least one of the loops stayed in saved_cfun.
7948 Remove the LOOP_DIST_ALIAS call. */
7949 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7950 }
7951 FOR_EACH_BB_FN (bb, saved_cfun)
7952 {
7953 gimple *g = find_loop_dist_alias (bb);
7954 if (g == NULL)
7955 continue;
7956 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7957 gcc_assert (orig_loop_num
7958 && (unsigned) orig_loop_num < vec_safe_length (larray));
7959 if (moved_orig_loop_num[orig_loop_num])
7960 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7961 of the corresponding loops was moved, remove it. */
7962 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7963 }
7964 XDELETEVEC (moved_orig_loop_num);
7965 }
7966 ggc_free (larray);
7967
7968 /* Move blocks from BBS into DEST_CFUN. */
7969 gcc_assert (bbs.length () >= 2);
7970 after = dest_cfun->cfg->x_entry_block_ptr;
7971 hash_map<tree, tree> vars_map;
7972
7973 memset (&d, 0, sizeof (d));
7974 d.orig_block = orig_block;
7975 d.new_block = DECL_INITIAL (dest_cfun->decl);
7976 d.from_context = cfun->decl;
7977 d.to_context = dest_cfun->decl;
7978 d.vars_map = &vars_map;
7979 d.new_label_map = new_label_map;
7980 d.eh_map = eh_map;
7981 d.remap_decls_p = true;
7982
7983 if (gimple_in_ssa_p (cfun))
7984 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7985 {
7986 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7987 set_ssa_default_def (dest_cfun, arg, narg);
7988 vars_map.put (arg, narg);
7989 }
7990
7991 FOR_EACH_VEC_ELT (bbs, i, bb)
7992 {
7993 /* No need to update edge counts on the last block. It has
7994 already been updated earlier when we detached the region from
7995 the original CFG. */
7996 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7997 after = bb;
7998 }
7999
8000 /* Adjust the maximum clique used. */
8001 dest_cfun->last_clique = saved_cfun->last_clique;
8002
8003 loop->aux = NULL;
8004 loop0->aux = NULL;
8005 /* Loop sizes are no longer correct, fix them up. */
8006 loop->num_nodes -= num_nodes;
8007 for (class loop *outer = loop_outer (loop);
8008 outer; outer = loop_outer (outer))
8009 outer->num_nodes -= num_nodes;
8010 loop0->num_nodes -= bbs.length () - num_nodes;
8011
8012 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
8013 {
8014 class loop *aloop;
8015 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
8016 if (aloop != NULL)
8017 {
8018 if (aloop->simduid)
8019 {
8020 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
8021 d.to_context);
8022 dest_cfun->has_simduid_loops = true;
8023 }
8024 if (aloop->force_vectorize)
8025 dest_cfun->has_force_vectorize_loops = true;
8026 }
8027 }
8028
8029 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
8030 if (orig_block)
8031 {
8032 tree block;
8033 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
8034 == NULL_TREE);
8035 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
8036 = BLOCK_SUBBLOCKS (orig_block);
8037 for (block = BLOCK_SUBBLOCKS (orig_block);
8038 block; block = BLOCK_CHAIN (block))
8039 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
8040 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
8041 }
8042
8043 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
8044 &vars_map, dest_cfun->decl);
8045
8046 if (new_label_map)
8047 htab_delete (new_label_map);
8048 if (eh_map)
8049 delete eh_map;
8050
8051 /* We need to release ssa-names in a defined order, so first find them,
8052 and then iterate in ascending version order. */
8053 bitmap release_names = BITMAP_ALLOC (NULL);
8054 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
8055 bitmap_iterator bi;
8056 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
8057 release_ssa_name (ssa_name (i));
8058 BITMAP_FREE (release_names);
8059
8060 /* Rewire the entry and exit blocks. The successor to the entry
8061 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
8062 the child function. Similarly, the predecessor of DEST_FN's
8063 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
8064 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
8065 various CFG manipulation function get to the right CFG.
8066
8067 FIXME, this is silly. The CFG ought to become a parameter to
8068 these helpers. */
8069 push_cfun (dest_cfun);
8070 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
8071 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
8072 if (exit_bb)
8073 {
8074 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
8075 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
8076 }
8077 else
8078 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
8079 pop_cfun ();
8080
8081 /* Back in the original function, the SESE region has disappeared,
8082 create a new basic block in its place. */
8083 bb = create_empty_bb (entry_pred[0]);
8084 if (current_loops)
8085 add_bb_to_loop (bb, loop);
8086 for (i = 0; i < num_entry_edges; i++)
8087 {
8088 e = make_edge (entry_pred[i], bb, entry_flag[i]);
8089 e->probability = entry_prob[i];
8090 }
8091
8092 for (i = 0; i < num_exit_edges; i++)
8093 {
8094 e = make_edge (bb, exit_succ[i], exit_flag[i]);
8095 e->probability = exit_prob[i];
8096 }
8097
8098 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
8099 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
8100 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
8101
8102 if (exit_bb)
8103 {
8104 free (exit_prob);
8105 free (exit_flag);
8106 free (exit_succ);
8107 }
8108 free (entry_prob);
8109 free (entry_flag);
8110 free (entry_pred);
8111 bbs.release ();
8112
8113 return bb;
8114 }
8115
8116 /* Dump default def DEF to file FILE using FLAGS and indentation
8117 SPC. */
8118
8119 static void
8120 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
8121 {
8122 for (int i = 0; i < spc; ++i)
8123 fprintf (file, " ");
8124 dump_ssaname_info_to_file (file, def, spc);
8125
8126 print_generic_expr (file, TREE_TYPE (def), flags);
8127 fprintf (file, " ");
8128 print_generic_expr (file, def, flags);
8129 fprintf (file, " = ");
8130 print_generic_expr (file, SSA_NAME_VAR (def), flags);
8131 fprintf (file, ";\n");
8132 }
8133
8134 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
8135
8136 static void
8137 print_no_sanitize_attr_value (FILE *file, tree value)
8138 {
8139 unsigned int flags = tree_to_uhwi (value);
8140 bool first = true;
8141 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
8142 {
8143 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
8144 {
8145 if (!first)
8146 fprintf (file, " | ");
8147 fprintf (file, "%s", sanitizer_opts[i].name);
8148 first = false;
8149 }
8150 }
8151 }
8152
8153 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
8154 */
8155
8156 void
8157 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
8158 {
8159 tree arg, var, old_current_fndecl = current_function_decl;
8160 struct function *dsf;
8161 bool ignore_topmost_bind = false, any_var = false;
8162 basic_block bb;
8163 tree chain;
8164 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
8165 && decl_is_tm_clone (fndecl));
8166 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
8167
8168 tree fntype = TREE_TYPE (fndecl);
8169 tree attrs[] = { DECL_ATTRIBUTES (fndecl), TYPE_ATTRIBUTES (fntype) };
8170
8171 for (int i = 0; i != 2; ++i)
8172 {
8173 if (!attrs[i])
8174 continue;
8175
8176 fprintf (file, "__attribute__((");
8177
8178 bool first = true;
8179 tree chain;
8180 for (chain = attrs[i]; chain; first = false, chain = TREE_CHAIN (chain))
8181 {
8182 if (!first)
8183 fprintf (file, ", ");
8184
8185 tree name = get_attribute_name (chain);
8186 print_generic_expr (file, name, dump_flags);
8187 if (TREE_VALUE (chain) != NULL_TREE)
8188 {
8189 fprintf (file, " (");
8190
8191 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
8192 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
8193 else
8194 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
8195 fprintf (file, ")");
8196 }
8197 }
8198
8199 fprintf (file, "))\n");
8200 }
8201
8202 current_function_decl = fndecl;
8203 if (flags & TDF_GIMPLE)
8204 {
8205 static bool hotness_bb_param_printed = false;
8206 if (profile_info != NULL
8207 && !hotness_bb_param_printed)
8208 {
8209 hotness_bb_param_printed = true;
8210 fprintf (file,
8211 "/* --param=gimple-fe-computed-hot-bb-threshold=%" PRId64
8212 " */\n", get_hot_bb_threshold ());
8213 }
8214
8215 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
8216 dump_flags | TDF_SLIM);
8217 fprintf (file, " __GIMPLE (%s",
8218 (fun->curr_properties & PROP_ssa) ? "ssa"
8219 : (fun->curr_properties & PROP_cfg) ? "cfg"
8220 : "");
8221
8222 if (fun && fun->cfg)
8223 {
8224 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (fun);
8225 if (bb->count.initialized_p ())
8226 fprintf (file, ",%s(%" PRIu64 ")",
8227 profile_quality_as_string (bb->count.quality ()),
8228 bb->count.value ());
8229 if (dump_flags & TDF_UID)
8230 fprintf (file, ")\n%sD_%u (", function_name (fun),
8231 DECL_UID (fndecl));
8232 else
8233 fprintf (file, ")\n%s (", function_name (fun));
8234 }
8235 }
8236 else
8237 {
8238 print_generic_expr (file, TREE_TYPE (fntype), dump_flags);
8239 if (dump_flags & TDF_UID)
8240 fprintf (file, " %sD.%u %s(", function_name (fun), DECL_UID (fndecl),
8241 tmclone ? "[tm-clone] " : "");
8242 else
8243 fprintf (file, " %s %s(", function_name (fun),
8244 tmclone ? "[tm-clone] " : "");
8245 }
8246
8247 arg = DECL_ARGUMENTS (fndecl);
8248 while (arg)
8249 {
8250 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
8251 fprintf (file, " ");
8252 print_generic_expr (file, arg, dump_flags);
8253 if (DECL_CHAIN (arg))
8254 fprintf (file, ", ");
8255 arg = DECL_CHAIN (arg);
8256 }
8257 fprintf (file, ")\n");
8258
8259 dsf = DECL_STRUCT_FUNCTION (fndecl);
8260 if (dsf && (flags & TDF_EH))
8261 dump_eh_tree (file, dsf);
8262
8263 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
8264 {
8265 dump_node (fndecl, TDF_SLIM | flags, file);
8266 current_function_decl = old_current_fndecl;
8267 return;
8268 }
8269
8270 /* When GIMPLE is lowered, the variables are no longer available in
8271 BIND_EXPRs, so display them separately. */
8272 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
8273 {
8274 unsigned ix;
8275 ignore_topmost_bind = true;
8276
8277 fprintf (file, "{\n");
8278 if (gimple_in_ssa_p (fun)
8279 && (flags & TDF_ALIAS))
8280 {
8281 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
8282 arg = DECL_CHAIN (arg))
8283 {
8284 tree def = ssa_default_def (fun, arg);
8285 if (def)
8286 dump_default_def (file, def, 2, flags);
8287 }
8288
8289 tree res = DECL_RESULT (fun->decl);
8290 if (res != NULL_TREE
8291 && DECL_BY_REFERENCE (res))
8292 {
8293 tree def = ssa_default_def (fun, res);
8294 if (def)
8295 dump_default_def (file, def, 2, flags);
8296 }
8297
8298 tree static_chain = fun->static_chain_decl;
8299 if (static_chain != NULL_TREE)
8300 {
8301 tree def = ssa_default_def (fun, static_chain);
8302 if (def)
8303 dump_default_def (file, def, 2, flags);
8304 }
8305 }
8306
8307 if (!vec_safe_is_empty (fun->local_decls))
8308 FOR_EACH_LOCAL_DECL (fun, ix, var)
8309 {
8310 print_generic_decl (file, var, flags);
8311 fprintf (file, "\n");
8312
8313 any_var = true;
8314 }
8315
8316 tree name;
8317
8318 if (gimple_in_ssa_p (fun))
8319 FOR_EACH_SSA_NAME (ix, name, fun)
8320 {
8321 if (!SSA_NAME_VAR (name)
8322 /* SSA name with decls without a name still get
8323 dumped as _N, list those explicitely as well even
8324 though we've dumped the decl declaration as D.xxx
8325 above. */
8326 || !SSA_NAME_IDENTIFIER (name))
8327 {
8328 fprintf (file, " ");
8329 print_generic_expr (file, TREE_TYPE (name), flags);
8330 fprintf (file, " ");
8331 print_generic_expr (file, name, flags);
8332 fprintf (file, ";\n");
8333
8334 any_var = true;
8335 }
8336 }
8337 }
8338
8339 if (fun && fun->decl == fndecl
8340 && fun->cfg
8341 && basic_block_info_for_fn (fun))
8342 {
8343 /* If the CFG has been built, emit a CFG-based dump. */
8344 if (!ignore_topmost_bind)
8345 fprintf (file, "{\n");
8346
8347 if (any_var && n_basic_blocks_for_fn (fun))
8348 fprintf (file, "\n");
8349
8350 FOR_EACH_BB_FN (bb, fun)
8351 dump_bb (file, bb, 2, flags);
8352
8353 fprintf (file, "}\n");
8354 }
8355 else if (fun && (fun->curr_properties & PROP_gimple_any))
8356 {
8357 /* The function is now in GIMPLE form but the CFG has not been
8358 built yet. Emit the single sequence of GIMPLE statements
8359 that make up its body. */
8360 gimple_seq body = gimple_body (fndecl);
8361
8362 if (gimple_seq_first_stmt (body)
8363 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
8364 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
8365 print_gimple_seq (file, body, 0, flags);
8366 else
8367 {
8368 if (!ignore_topmost_bind)
8369 fprintf (file, "{\n");
8370
8371 if (any_var)
8372 fprintf (file, "\n");
8373
8374 print_gimple_seq (file, body, 2, flags);
8375 fprintf (file, "}\n");
8376 }
8377 }
8378 else
8379 {
8380 int indent;
8381
8382 /* Make a tree based dump. */
8383 chain = DECL_SAVED_TREE (fndecl);
8384 if (chain && TREE_CODE (chain) == BIND_EXPR)
8385 {
8386 if (ignore_topmost_bind)
8387 {
8388 chain = BIND_EXPR_BODY (chain);
8389 indent = 2;
8390 }
8391 else
8392 indent = 0;
8393 }
8394 else
8395 {
8396 if (!ignore_topmost_bind)
8397 {
8398 fprintf (file, "{\n");
8399 /* No topmost bind, pretend it's ignored for later. */
8400 ignore_topmost_bind = true;
8401 }
8402 indent = 2;
8403 }
8404
8405 if (any_var)
8406 fprintf (file, "\n");
8407
8408 print_generic_stmt_indented (file, chain, flags, indent);
8409 if (ignore_topmost_bind)
8410 fprintf (file, "}\n");
8411 }
8412
8413 if (flags & TDF_ENUMERATE_LOCALS)
8414 dump_enumerated_decls (file, flags);
8415 fprintf (file, "\n\n");
8416
8417 current_function_decl = old_current_fndecl;
8418 }
8419
8420 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8421
8422 DEBUG_FUNCTION void
8423 debug_function (tree fn, dump_flags_t flags)
8424 {
8425 dump_function_to_file (fn, stderr, flags);
8426 }
8427
8428
8429 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8430
8431 static void
8432 print_pred_bbs (FILE *file, basic_block bb)
8433 {
8434 edge e;
8435 edge_iterator ei;
8436
8437 FOR_EACH_EDGE (e, ei, bb->preds)
8438 fprintf (file, "bb_%d ", e->src->index);
8439 }
8440
8441
8442 /* Print on FILE the indexes for the successors of basic_block BB. */
8443
8444 static void
8445 print_succ_bbs (FILE *file, basic_block bb)
8446 {
8447 edge e;
8448 edge_iterator ei;
8449
8450 FOR_EACH_EDGE (e, ei, bb->succs)
8451 fprintf (file, "bb_%d ", e->dest->index);
8452 }
8453
8454 /* Print to FILE the basic block BB following the VERBOSITY level. */
8455
8456 void
8457 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8458 {
8459 char *s_indent = (char *) alloca ((size_t) indent + 1);
8460 memset ((void *) s_indent, ' ', (size_t) indent);
8461 s_indent[indent] = '\0';
8462
8463 /* Print basic_block's header. */
8464 if (verbosity >= 2)
8465 {
8466 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8467 print_pred_bbs (file, bb);
8468 fprintf (file, "}, succs = {");
8469 print_succ_bbs (file, bb);
8470 fprintf (file, "})\n");
8471 }
8472
8473 /* Print basic_block's body. */
8474 if (verbosity >= 3)
8475 {
8476 fprintf (file, "%s {\n", s_indent);
8477 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8478 fprintf (file, "%s }\n", s_indent);
8479 }
8480 }
8481
8482 /* Print loop information. */
8483
8484 void
8485 print_loop_info (FILE *file, const class loop *loop, const char *prefix)
8486 {
8487 if (loop->can_be_parallel)
8488 fprintf (file, ", can_be_parallel");
8489 if (loop->warned_aggressive_loop_optimizations)
8490 fprintf (file, ", warned_aggressive_loop_optimizations");
8491 if (loop->dont_vectorize)
8492 fprintf (file, ", dont_vectorize");
8493 if (loop->force_vectorize)
8494 fprintf (file, ", force_vectorize");
8495 if (loop->in_oacc_kernels_region)
8496 fprintf (file, ", in_oacc_kernels_region");
8497 if (loop->finite_p)
8498 fprintf (file, ", finite_p");
8499 if (loop->unroll)
8500 fprintf (file, "\n%sunroll %d", prefix, loop->unroll);
8501 if (loop->nb_iterations)
8502 {
8503 fprintf (file, "\n%sniter ", prefix);
8504 print_generic_expr (file, loop->nb_iterations);
8505 }
8506
8507 if (loop->any_upper_bound)
8508 {
8509 fprintf (file, "\n%supper_bound ", prefix);
8510 print_decu (loop->nb_iterations_upper_bound, file);
8511 }
8512 if (loop->any_likely_upper_bound)
8513 {
8514 fprintf (file, "\n%slikely_upper_bound ", prefix);
8515 print_decu (loop->nb_iterations_likely_upper_bound, file);
8516 }
8517
8518 if (loop->any_estimate)
8519 {
8520 fprintf (file, "\n%sestimate ", prefix);
8521 print_decu (loop->nb_iterations_estimate, file);
8522 }
8523 bool reliable;
8524 sreal iterations;
8525 if (loop->num && expected_loop_iterations_by_profile (loop, &iterations, &reliable))
8526 {
8527 fprintf (file, "\n%siterations by profile: %f (%s%s)", prefix,
8528 iterations.to_double (), reliable ? "reliable" : "unreliable",
8529 maybe_flat_loop_profile (loop) ? ", maybe flat" : "");
8530 }
8531
8532 }
8533
8534 static void print_loop_and_siblings (FILE *, class loop *, int, int);
8535
8536 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8537 VERBOSITY level this outputs the contents of the loop, or just its
8538 structure. */
8539
8540 static void
8541 print_loop (FILE *file, class loop *loop, int indent, int verbosity)
8542 {
8543 char *s_indent;
8544 basic_block bb;
8545
8546 if (loop == NULL)
8547 return;
8548
8549 s_indent = (char *) alloca ((size_t) indent + 1);
8550 memset ((void *) s_indent, ' ', (size_t) indent);
8551 s_indent[indent] = '\0';
8552
8553 /* Print loop's header. */
8554 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8555 if (loop->header)
8556 fprintf (file, "header = %d", loop->header->index);
8557 else
8558 {
8559 fprintf (file, "deleted)\n");
8560 return;
8561 }
8562 if (loop->latch)
8563 fprintf (file, ", latch = %d", loop->latch->index);
8564 else
8565 fprintf (file, ", multiple latches");
8566 print_loop_info (file, loop, s_indent);
8567 fprintf (file, ")\n");
8568
8569 /* Print loop's body. */
8570 if (verbosity >= 1)
8571 {
8572 fprintf (file, "%s{\n", s_indent);
8573 FOR_EACH_BB_FN (bb, cfun)
8574 if (bb->loop_father == loop)
8575 print_loops_bb (file, bb, indent, verbosity);
8576
8577 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8578 fprintf (file, "%s}\n", s_indent);
8579 }
8580 }
8581
8582 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8583 spaces. Following VERBOSITY level this outputs the contents of the
8584 loop, or just its structure. */
8585
8586 static void
8587 print_loop_and_siblings (FILE *file, class loop *loop, int indent,
8588 int verbosity)
8589 {
8590 if (loop == NULL)
8591 return;
8592
8593 print_loop (file, loop, indent, verbosity);
8594 print_loop_and_siblings (file, loop->next, indent, verbosity);
8595 }
8596
8597 /* Follow a CFG edge from the entry point of the program, and on entry
8598 of a loop, pretty print the loop structure on FILE. */
8599
8600 void
8601 print_loops (FILE *file, int verbosity)
8602 {
8603 basic_block bb;
8604
8605 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8606 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8607 if (bb && bb->loop_father)
8608 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8609 }
8610
8611 /* Dump a loop. */
8612
8613 DEBUG_FUNCTION void
8614 debug (class loop &ref)
8615 {
8616 print_loop (stderr, &ref, 0, /*verbosity*/0);
8617 }
8618
8619 DEBUG_FUNCTION void
8620 debug (class loop *ptr)
8621 {
8622 if (ptr)
8623 debug (*ptr);
8624 else
8625 fprintf (stderr, "<nil>\n");
8626 }
8627
8628 /* Dump a loop verbosely. */
8629
8630 DEBUG_FUNCTION void
8631 debug_verbose (class loop &ref)
8632 {
8633 print_loop (stderr, &ref, 0, /*verbosity*/3);
8634 }
8635
8636 DEBUG_FUNCTION void
8637 debug_verbose (class loop *ptr)
8638 {
8639 if (ptr)
8640 debug (*ptr);
8641 else
8642 fprintf (stderr, "<nil>\n");
8643 }
8644
8645
8646 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8647
8648 DEBUG_FUNCTION void
8649 debug_loops (int verbosity)
8650 {
8651 print_loops (stderr, verbosity);
8652 }
8653
8654 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8655
8656 DEBUG_FUNCTION void
8657 debug_loop (class loop *loop, int verbosity)
8658 {
8659 print_loop (stderr, loop, 0, verbosity);
8660 }
8661
8662 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8663 level. */
8664
8665 DEBUG_FUNCTION void
8666 debug_loop_num (unsigned num, int verbosity)
8667 {
8668 debug_loop (get_loop (cfun, num), verbosity);
8669 }
8670
8671 /* Return true if BB ends with a call, possibly followed by some
8672 instructions that must stay with the call. Return false,
8673 otherwise. */
8674
8675 static bool
8676 gimple_block_ends_with_call_p (basic_block bb)
8677 {
8678 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8679 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8680 }
8681
8682
8683 /* Return true if BB ends with a conditional branch. Return false,
8684 otherwise. */
8685
8686 static bool
8687 gimple_block_ends_with_condjump_p (const_basic_block bb)
8688 {
8689 return safe_is_a <gcond *> (*gsi_last_bb (const_cast <basic_block> (bb)));
8690 }
8691
8692
8693 /* Return true if statement T may terminate execution of BB in ways not
8694 explicitly represtented in the CFG. */
8695
8696 bool
8697 stmt_can_terminate_bb_p (gimple *t)
8698 {
8699 tree fndecl = NULL_TREE;
8700 int call_flags = 0;
8701
8702 /* Eh exception not handled internally terminates execution of the whole
8703 function. */
8704 if (stmt_can_throw_external (cfun, t))
8705 return true;
8706
8707 /* NORETURN and LONGJMP calls already have an edge to exit.
8708 CONST and PURE calls do not need one.
8709 We don't currently check for CONST and PURE here, although
8710 it would be a good idea, because those attributes are
8711 figured out from the RTL in mark_constant_function, and
8712 the counter incrementation code from -fprofile-arcs
8713 leads to different results from -fbranch-probabilities. */
8714 if (is_gimple_call (t))
8715 {
8716 fndecl = gimple_call_fndecl (t);
8717 call_flags = gimple_call_flags (t);
8718 }
8719
8720 if (is_gimple_call (t)
8721 && fndecl
8722 && fndecl_built_in_p (fndecl)
8723 && (call_flags & ECF_NOTHROW)
8724 && !(call_flags & ECF_RETURNS_TWICE)
8725 /* fork() doesn't really return twice, but the effect of
8726 wrapping it in __gcov_fork() which calls __gcov_dump() and
8727 __gcov_reset() and clears the counters before forking has the same
8728 effect as returning twice. Force a fake edge. */
8729 && !fndecl_built_in_p (fndecl, BUILT_IN_FORK))
8730 return false;
8731
8732 if (is_gimple_call (t))
8733 {
8734 edge_iterator ei;
8735 edge e;
8736 basic_block bb;
8737
8738 if (call_flags & (ECF_PURE | ECF_CONST)
8739 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8740 return false;
8741
8742 /* Function call may do longjmp, terminate program or do other things.
8743 Special case noreturn that have non-abnormal edges out as in this case
8744 the fact is sufficiently represented by lack of edges out of T. */
8745 if (!(call_flags & ECF_NORETURN))
8746 return true;
8747
8748 bb = gimple_bb (t);
8749 FOR_EACH_EDGE (e, ei, bb->succs)
8750 if ((e->flags & EDGE_FAKE) == 0)
8751 return true;
8752 }
8753
8754 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8755 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8756 return true;
8757
8758 return false;
8759 }
8760
8761
8762 /* Add fake edges to the function exit for any non constant and non
8763 noreturn calls (or noreturn calls with EH/abnormal edges),
8764 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8765 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8766 that were split.
8767
8768 The goal is to expose cases in which entering a basic block does
8769 not imply that all subsequent instructions must be executed. */
8770
8771 static int
8772 gimple_flow_call_edges_add (sbitmap blocks)
8773 {
8774 int i;
8775 int blocks_split = 0;
8776 int last_bb = last_basic_block_for_fn (cfun);
8777 bool check_last_block = false;
8778
8779 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8780 return 0;
8781
8782 if (! blocks)
8783 check_last_block = true;
8784 else
8785 check_last_block = bitmap_bit_p (blocks,
8786 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8787
8788 /* In the last basic block, before epilogue generation, there will be
8789 a fallthru edge to EXIT. Special care is required if the last insn
8790 of the last basic block is a call because make_edge folds duplicate
8791 edges, which would result in the fallthru edge also being marked
8792 fake, which would result in the fallthru edge being removed by
8793 remove_fake_edges, which would result in an invalid CFG.
8794
8795 Moreover, we can't elide the outgoing fake edge, since the block
8796 profiler needs to take this into account in order to solve the minimal
8797 spanning tree in the case that the call doesn't return.
8798
8799 Handle this by adding a dummy instruction in a new last basic block. */
8800 if (check_last_block)
8801 {
8802 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8803 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8804 gimple *t = NULL;
8805
8806 if (!gsi_end_p (gsi))
8807 t = gsi_stmt (gsi);
8808
8809 if (t && stmt_can_terminate_bb_p (t))
8810 {
8811 edge e;
8812
8813 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8814 if (e)
8815 {
8816 gsi_insert_on_edge (e, gimple_build_nop ());
8817 gsi_commit_edge_inserts ();
8818 }
8819 }
8820 }
8821
8822 /* Now add fake edges to the function exit for any non constant
8823 calls since there is no way that we can determine if they will
8824 return or not... */
8825 for (i = 0; i < last_bb; i++)
8826 {
8827 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8828 gimple_stmt_iterator gsi;
8829 gimple *stmt, *last_stmt;
8830
8831 if (!bb)
8832 continue;
8833
8834 if (blocks && !bitmap_bit_p (blocks, i))
8835 continue;
8836
8837 gsi = gsi_last_nondebug_bb (bb);
8838 if (!gsi_end_p (gsi))
8839 {
8840 last_stmt = gsi_stmt (gsi);
8841 do
8842 {
8843 stmt = gsi_stmt (gsi);
8844 if (stmt_can_terminate_bb_p (stmt))
8845 {
8846 edge e;
8847
8848 /* The handling above of the final block before the
8849 epilogue should be enough to verify that there is
8850 no edge to the exit block in CFG already.
8851 Calling make_edge in such case would cause us to
8852 mark that edge as fake and remove it later. */
8853 if (flag_checking && stmt == last_stmt)
8854 {
8855 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8856 gcc_assert (e == NULL);
8857 }
8858
8859 /* Note that the following may create a new basic block
8860 and renumber the existing basic blocks. */
8861 if (stmt != last_stmt)
8862 {
8863 e = split_block (bb, stmt);
8864 if (e)
8865 blocks_split++;
8866 }
8867 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8868 e->probability = profile_probability::guessed_never ();
8869 }
8870 gsi_prev (&gsi);
8871 }
8872 while (!gsi_end_p (gsi));
8873 }
8874 }
8875
8876 if (blocks_split)
8877 checking_verify_flow_info ();
8878
8879 return blocks_split;
8880 }
8881
8882 /* Removes edge E and all the blocks dominated by it, and updates dominance
8883 information. The IL in E->src needs to be updated separately.
8884 If dominance info is not available, only the edge E is removed.*/
8885
8886 void
8887 remove_edge_and_dominated_blocks (edge e)
8888 {
8889 vec<basic_block> bbs_to_fix_dom = vNULL;
8890 edge f;
8891 edge_iterator ei;
8892 bool none_removed = false;
8893 unsigned i;
8894 basic_block bb, dbb;
8895 bitmap_iterator bi;
8896
8897 /* If we are removing a path inside a non-root loop that may change
8898 loop ownership of blocks or remove loops. Mark loops for fixup. */
8899 if (current_loops
8900 && loop_outer (e->src->loop_father) != NULL
8901 && e->src->loop_father == e->dest->loop_father)
8902 loops_state_set (LOOPS_NEED_FIXUP);
8903
8904 if (!dom_info_available_p (CDI_DOMINATORS))
8905 {
8906 remove_edge (e);
8907 return;
8908 }
8909
8910 /* No updating is needed for edges to exit. */
8911 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8912 {
8913 if (cfgcleanup_altered_bbs)
8914 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8915 remove_edge (e);
8916 return;
8917 }
8918
8919 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8920 that is not dominated by E->dest, then this set is empty. Otherwise,
8921 all the basic blocks dominated by E->dest are removed.
8922
8923 Also, to DF_IDOM we store the immediate dominators of the blocks in
8924 the dominance frontier of E (i.e., of the successors of the
8925 removed blocks, if there are any, and of E->dest otherwise). */
8926 FOR_EACH_EDGE (f, ei, e->dest->preds)
8927 {
8928 if (f == e)
8929 continue;
8930
8931 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8932 {
8933 none_removed = true;
8934 break;
8935 }
8936 }
8937
8938 auto_bitmap df, df_idom;
8939 auto_vec<basic_block> bbs_to_remove;
8940 if (none_removed)
8941 bitmap_set_bit (df_idom,
8942 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8943 else
8944 {
8945 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8946 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8947 {
8948 FOR_EACH_EDGE (f, ei, bb->succs)
8949 {
8950 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8951 bitmap_set_bit (df, f->dest->index);
8952 }
8953 }
8954 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8955 bitmap_clear_bit (df, bb->index);
8956
8957 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8958 {
8959 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8960 bitmap_set_bit (df_idom,
8961 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8962 }
8963 }
8964
8965 if (cfgcleanup_altered_bbs)
8966 {
8967 /* Record the set of the altered basic blocks. */
8968 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8969 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8970 }
8971
8972 /* Remove E and the cancelled blocks. */
8973 if (none_removed)
8974 remove_edge (e);
8975 else
8976 {
8977 /* Walk backwards so as to get a chance to substitute all
8978 released DEFs into debug stmts. See
8979 eliminate_unnecessary_stmts() in tree-ssa-dce.cc for more
8980 details. */
8981 for (i = bbs_to_remove.length (); i-- > 0; )
8982 delete_basic_block (bbs_to_remove[i]);
8983 }
8984
8985 /* Update the dominance information. The immediate dominator may change only
8986 for blocks whose immediate dominator belongs to DF_IDOM:
8987
8988 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8989 removal. Let Z the arbitrary block such that idom(Z) = Y and
8990 Z dominates X after the removal. Before removal, there exists a path P
8991 from Y to X that avoids Z. Let F be the last edge on P that is
8992 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8993 dominates W, and because of P, Z does not dominate W), and W belongs to
8994 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8995 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8996 {
8997 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8998 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8999 dbb;
9000 dbb = next_dom_son (CDI_DOMINATORS, dbb))
9001 bbs_to_fix_dom.safe_push (dbb);
9002 }
9003
9004 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
9005
9006 bbs_to_fix_dom.release ();
9007 }
9008
9009 /* Purge dead EH edges from basic block BB. */
9010
9011 bool
9012 gimple_purge_dead_eh_edges (basic_block bb)
9013 {
9014 bool changed = false;
9015 edge e;
9016 edge_iterator ei;
9017 gimple *stmt = *gsi_last_bb (bb);
9018
9019 if (stmt && stmt_can_throw_internal (cfun, stmt))
9020 return false;
9021
9022 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
9023 {
9024 if (e->flags & EDGE_EH)
9025 {
9026 remove_edge_and_dominated_blocks (e);
9027 changed = true;
9028 }
9029 else
9030 ei_next (&ei);
9031 }
9032
9033 return changed;
9034 }
9035
9036 /* Purge dead EH edges from basic block listed in BLOCKS. */
9037
9038 bool
9039 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
9040 {
9041 bool changed = false;
9042 unsigned i;
9043 bitmap_iterator bi;
9044
9045 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
9046 {
9047 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
9048
9049 /* Earlier gimple_purge_dead_eh_edges could have removed
9050 this basic block already. */
9051 gcc_assert (bb || changed);
9052 if (bb != NULL)
9053 changed |= gimple_purge_dead_eh_edges (bb);
9054 }
9055
9056 return changed;
9057 }
9058
9059 /* Purge dead abnormal call edges from basic block BB. */
9060
9061 bool
9062 gimple_purge_dead_abnormal_call_edges (basic_block bb)
9063 {
9064 bool changed = false;
9065 edge e;
9066 edge_iterator ei;
9067 gimple *stmt = *gsi_last_bb (bb);
9068
9069 if (stmt && stmt_can_make_abnormal_goto (stmt))
9070 return false;
9071
9072 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
9073 {
9074 if (e->flags & EDGE_ABNORMAL)
9075 {
9076 if (e->flags & EDGE_FALLTHRU)
9077 e->flags &= ~EDGE_ABNORMAL;
9078 else
9079 remove_edge_and_dominated_blocks (e);
9080 changed = true;
9081 }
9082 else
9083 ei_next (&ei);
9084 }
9085
9086 return changed;
9087 }
9088
9089 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
9090
9091 bool
9092 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
9093 {
9094 bool changed = false;
9095 unsigned i;
9096 bitmap_iterator bi;
9097
9098 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
9099 {
9100 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
9101
9102 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
9103 this basic block already. */
9104 gcc_assert (bb || changed);
9105 if (bb != NULL)
9106 changed |= gimple_purge_dead_abnormal_call_edges (bb);
9107 }
9108
9109 return changed;
9110 }
9111
9112 /* This function is called whenever a new edge is created or
9113 redirected. */
9114
9115 static void
9116 gimple_execute_on_growing_pred (edge e)
9117 {
9118 basic_block bb = e->dest;
9119
9120 if (!gimple_seq_empty_p (phi_nodes (bb)))
9121 reserve_phi_args_for_new_edge (bb);
9122 }
9123
9124 /* This function is called immediately before edge E is removed from
9125 the edge vector E->dest->preds. */
9126
9127 static void
9128 gimple_execute_on_shrinking_pred (edge e)
9129 {
9130 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
9131 remove_phi_args (e);
9132 }
9133
9134 /*---------------------------------------------------------------------------
9135 Helper functions for Loop versioning
9136 ---------------------------------------------------------------------------*/
9137
9138 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
9139 of 'first'. Both of them are dominated by 'new_head' basic block. When
9140 'new_head' was created by 'second's incoming edge it received phi arguments
9141 on the edge by split_edge(). Later, additional edge 'e' was created to
9142 connect 'new_head' and 'first'. Now this routine adds phi args on this
9143 additional edge 'e' that new_head to second edge received as part of edge
9144 splitting. */
9145
9146 static void
9147 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
9148 basic_block new_head, edge e)
9149 {
9150 gphi *phi1, *phi2;
9151 gphi_iterator psi1, psi2;
9152 tree def;
9153 edge e2 = find_edge (new_head, second);
9154
9155 /* Because NEW_HEAD has been created by splitting SECOND's incoming
9156 edge, we should always have an edge from NEW_HEAD to SECOND. */
9157 gcc_assert (e2 != NULL);
9158
9159 /* Browse all 'second' basic block phi nodes and add phi args to
9160 edge 'e' for 'first' head. PHI args are always in correct order. */
9161
9162 for (psi2 = gsi_start_phis (second),
9163 psi1 = gsi_start_phis (first);
9164 !gsi_end_p (psi2) && !gsi_end_p (psi1);
9165 gsi_next (&psi2), gsi_next (&psi1))
9166 {
9167 phi1 = psi1.phi ();
9168 phi2 = psi2.phi ();
9169 def = PHI_ARG_DEF (phi2, e2->dest_idx);
9170 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
9171 }
9172 }
9173
9174
9175 /* Adds a if else statement to COND_BB with condition COND_EXPR.
9176 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
9177 the destination of the ELSE part. */
9178
9179 static void
9180 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
9181 basic_block second_head ATTRIBUTE_UNUSED,
9182 basic_block cond_bb, void *cond_e)
9183 {
9184 gimple_stmt_iterator gsi;
9185 gimple *new_cond_expr;
9186 tree cond_expr = (tree) cond_e;
9187 edge e0;
9188
9189 /* Build new conditional expr */
9190 gsi = gsi_last_bb (cond_bb);
9191
9192 cond_expr = force_gimple_operand_gsi_1 (&gsi, cond_expr,
9193 is_gimple_condexpr_for_cond,
9194 NULL_TREE, false,
9195 GSI_CONTINUE_LINKING);
9196 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
9197 NULL_TREE, NULL_TREE);
9198
9199 /* Add new cond in cond_bb. */
9200 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
9201
9202 /* Adjust edges appropriately to connect new head with first head
9203 as well as second head. */
9204 e0 = single_succ_edge (cond_bb);
9205 e0->flags &= ~EDGE_FALLTHRU;
9206 e0->flags |= EDGE_FALSE_VALUE;
9207 }
9208
9209
9210 /* Do book-keeping of basic block BB for the profile consistency checker.
9211 Store the counting in RECORD. */
9212 static void
9213 gimple_account_profile_record (basic_block bb,
9214 struct profile_record *record)
9215 {
9216 gimple_stmt_iterator i;
9217 for (i = gsi_start_nondebug_after_labels_bb (bb); !gsi_end_p (i);
9218 gsi_next_nondebug (&i))
9219 {
9220 record->size
9221 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
9222 if (profile_info)
9223 {
9224 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ().initialized_p ()
9225 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ().nonzero_p ()
9226 && bb->count.ipa ().initialized_p ())
9227 record->time
9228 += estimate_num_insns (gsi_stmt (i),
9229 &eni_time_weights)
9230 * bb->count.ipa ().to_gcov_type ();
9231 }
9232 else if (bb->count.initialized_p ()
9233 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.initialized_p ())
9234 record->time
9235 += estimate_num_insns
9236 (gsi_stmt (i),
9237 &eni_time_weights)
9238 * bb->count.to_sreal_scale
9239 (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count).to_double ();
9240 else
9241 record->time
9242 += estimate_num_insns (gsi_stmt (i), &eni_time_weights);
9243 }
9244 }
9245
9246 struct cfg_hooks gimple_cfg_hooks = {
9247 "gimple",
9248 gimple_verify_flow_info,
9249 gimple_dump_bb, /* dump_bb */
9250 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
9251 create_bb, /* create_basic_block */
9252 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
9253 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
9254 gimple_can_remove_branch_p, /* can_remove_branch_p */
9255 remove_bb, /* delete_basic_block */
9256 gimple_split_block, /* split_block */
9257 gimple_move_block_after, /* move_block_after */
9258 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
9259 gimple_merge_blocks, /* merge_blocks */
9260 gimple_predict_edge, /* predict_edge */
9261 gimple_predicted_by_p, /* predicted_by_p */
9262 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
9263 gimple_duplicate_bb, /* duplicate_block */
9264 gimple_split_edge, /* split_edge */
9265 gimple_make_forwarder_block, /* make_forward_block */
9266 NULL, /* tidy_fallthru_edge */
9267 NULL, /* force_nonfallthru */
9268 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
9269 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
9270 gimple_flow_call_edges_add, /* flow_call_edges_add */
9271 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
9272 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
9273 gimple_duplicate_loop_body_to_header_edge, /* duplicate loop for trees */
9274 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
9275 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
9276 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
9277 flush_pending_stmts, /* flush_pending_stmts */
9278 gimple_empty_block_p, /* block_empty_p */
9279 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
9280 gimple_account_profile_record,
9281 };
9282
9283
9284 /* Split all critical edges. Split some extra (not necessarily critical) edges
9285 if FOR_EDGE_INSERTION_P is true. */
9286
9287 unsigned int
9288 split_critical_edges (bool for_edge_insertion_p /* = false */)
9289 {
9290 basic_block bb;
9291 edge e;
9292 edge_iterator ei;
9293
9294 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
9295 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
9296 mappings around the calls to split_edge. */
9297 start_recording_case_labels ();
9298 FOR_ALL_BB_FN (bb, cfun)
9299 {
9300 FOR_EACH_EDGE (e, ei, bb->succs)
9301 {
9302 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
9303 split_edge (e);
9304 /* PRE inserts statements to edges and expects that
9305 since split_critical_edges was done beforehand, committing edge
9306 insertions will not split more edges. In addition to critical
9307 edges we must split edges that have multiple successors and
9308 end by control flow statements, such as RESX.
9309 Go ahead and split them too. This matches the logic in
9310 gimple_find_edge_insert_loc. */
9311 else if (for_edge_insertion_p
9312 && (!single_pred_p (e->dest)
9313 || !gimple_seq_empty_p (phi_nodes (e->dest))
9314 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
9315 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
9316 && !(e->flags & EDGE_ABNORMAL))
9317 {
9318 gimple_stmt_iterator gsi;
9319
9320 gsi = gsi_last_bb (e->src);
9321 if (!gsi_end_p (gsi)
9322 && stmt_ends_bb_p (gsi_stmt (gsi))
9323 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
9324 && !gimple_call_builtin_p (gsi_stmt (gsi),
9325 BUILT_IN_RETURN)))
9326 split_edge (e);
9327 }
9328 }
9329 }
9330 end_recording_case_labels ();
9331 return 0;
9332 }
9333
9334 namespace {
9335
9336 const pass_data pass_data_split_crit_edges =
9337 {
9338 GIMPLE_PASS, /* type */
9339 "crited", /* name */
9340 OPTGROUP_NONE, /* optinfo_flags */
9341 TV_TREE_SPLIT_EDGES, /* tv_id */
9342 PROP_cfg, /* properties_required */
9343 PROP_no_crit_edges, /* properties_provided */
9344 0, /* properties_destroyed */
9345 0, /* todo_flags_start */
9346 0, /* todo_flags_finish */
9347 };
9348
9349 class pass_split_crit_edges : public gimple_opt_pass
9350 {
9351 public:
9352 pass_split_crit_edges (gcc::context *ctxt)
9353 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
9354 {}
9355
9356 /* opt_pass methods: */
9357 unsigned int execute (function *) final override
9358 {
9359 return split_critical_edges ();
9360 }
9361
9362 opt_pass * clone () final override
9363 {
9364 return new pass_split_crit_edges (m_ctxt);
9365 }
9366 }; // class pass_split_crit_edges
9367
9368 } // anon namespace
9369
9370 gimple_opt_pass *
9371 make_pass_split_crit_edges (gcc::context *ctxt)
9372 {
9373 return new pass_split_crit_edges (ctxt);
9374 }
9375
9376
9377 /* Insert COND expression which is GIMPLE_COND after STMT
9378 in basic block BB with appropriate basic block split
9379 and creation of a new conditionally executed basic block.
9380 Update profile so the new bb is visited with probability PROB.
9381 Return created basic block. */
9382 basic_block
9383 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
9384 profile_probability prob)
9385 {
9386 edge fall = split_block (bb, stmt);
9387 gimple_stmt_iterator iter = gsi_last_bb (bb);
9388 basic_block new_bb;
9389
9390 /* Insert cond statement. */
9391 gcc_assert (gimple_code (cond) == GIMPLE_COND);
9392 if (gsi_end_p (iter))
9393 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
9394 else
9395 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
9396
9397 /* Create conditionally executed block. */
9398 new_bb = create_empty_bb (bb);
9399 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
9400 e->probability = prob;
9401 new_bb->count = e->count ();
9402 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
9403
9404 /* Fix edge for split bb. */
9405 fall->flags = EDGE_FALSE_VALUE;
9406 fall->probability -= e->probability;
9407
9408 /* Update dominance info. */
9409 if (dom_info_available_p (CDI_DOMINATORS))
9410 {
9411 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
9412 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
9413 }
9414
9415 /* Update loop info. */
9416 if (current_loops)
9417 add_bb_to_loop (new_bb, bb->loop_father);
9418
9419 return new_bb;
9420 }
9421
9422
9423 \f
9424 /* Given a basic block B which ends with a conditional and has
9425 precisely two successors, determine which of the edges is taken if
9426 the conditional is true and which is taken if the conditional is
9427 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9428
9429 void
9430 extract_true_false_edges_from_block (basic_block b,
9431 edge *true_edge,
9432 edge *false_edge)
9433 {
9434 edge e = EDGE_SUCC (b, 0);
9435
9436 if (e->flags & EDGE_TRUE_VALUE)
9437 {
9438 *true_edge = e;
9439 *false_edge = EDGE_SUCC (b, 1);
9440 }
9441 else
9442 {
9443 *false_edge = e;
9444 *true_edge = EDGE_SUCC (b, 1);
9445 }
9446 }
9447
9448
9449 /* From a controlling predicate in the immediate dominator DOM of
9450 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9451 predicate evaluates to true and false and store them to
9452 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9453 they are non-NULL. Returns true if the edges can be determined,
9454 else return false. */
9455
9456 bool
9457 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9458 edge *true_controlled_edge,
9459 edge *false_controlled_edge)
9460 {
9461 basic_block bb = phiblock;
9462 edge true_edge, false_edge, tem;
9463 edge e0 = NULL, e1 = NULL;
9464
9465 /* We have to verify that one edge into the PHI node is dominated
9466 by the true edge of the predicate block and the other edge
9467 dominated by the false edge. This ensures that the PHI argument
9468 we are going to take is completely determined by the path we
9469 take from the predicate block.
9470 We can only use BB dominance checks below if the destination of
9471 the true/false edges are dominated by their edge, thus only
9472 have a single predecessor. */
9473 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9474 tem = EDGE_PRED (bb, 0);
9475 if (tem == true_edge
9476 || (single_pred_p (true_edge->dest)
9477 && (tem->src == true_edge->dest
9478 || dominated_by_p (CDI_DOMINATORS,
9479 tem->src, true_edge->dest))))
9480 e0 = tem;
9481 else if (tem == false_edge
9482 || (single_pred_p (false_edge->dest)
9483 && (tem->src == false_edge->dest
9484 || dominated_by_p (CDI_DOMINATORS,
9485 tem->src, false_edge->dest))))
9486 e1 = tem;
9487 else
9488 return false;
9489 tem = EDGE_PRED (bb, 1);
9490 if (tem == true_edge
9491 || (single_pred_p (true_edge->dest)
9492 && (tem->src == true_edge->dest
9493 || dominated_by_p (CDI_DOMINATORS,
9494 tem->src, true_edge->dest))))
9495 e0 = tem;
9496 else if (tem == false_edge
9497 || (single_pred_p (false_edge->dest)
9498 && (tem->src == false_edge->dest
9499 || dominated_by_p (CDI_DOMINATORS,
9500 tem->src, false_edge->dest))))
9501 e1 = tem;
9502 else
9503 return false;
9504 if (!e0 || !e1)
9505 return false;
9506
9507 if (true_controlled_edge)
9508 *true_controlled_edge = e0;
9509 if (false_controlled_edge)
9510 *false_controlled_edge = e1;
9511
9512 return true;
9513 }
9514
9515 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9516 range [low, high]. Place associated stmts before *GSI. */
9517
9518 void
9519 generate_range_test (basic_block bb, tree index, tree low, tree high,
9520 tree *lhs, tree *rhs)
9521 {
9522 tree type = TREE_TYPE (index);
9523 tree utype = range_check_type (type);
9524
9525 low = fold_convert (utype, low);
9526 high = fold_convert (utype, high);
9527
9528 gimple_seq seq = NULL;
9529 index = gimple_convert (&seq, utype, index);
9530 *lhs = gimple_build (&seq, MINUS_EXPR, utype, index, low);
9531 *rhs = const_binop (MINUS_EXPR, utype, high, low);
9532
9533 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9534 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
9535 }
9536
9537 /* Return the basic block that belongs to label numbered INDEX
9538 of a switch statement. */
9539
9540 basic_block
9541 gimple_switch_label_bb (function *ifun, gswitch *gs, unsigned index)
9542 {
9543 return label_to_block (ifun, CASE_LABEL (gimple_switch_label (gs, index)));
9544 }
9545
9546 /* Return the default basic block of a switch statement. */
9547
9548 basic_block
9549 gimple_switch_default_bb (function *ifun, gswitch *gs)
9550 {
9551 return gimple_switch_label_bb (ifun, gs, 0);
9552 }
9553
9554 /* Return the edge that belongs to label numbered INDEX
9555 of a switch statement. */
9556
9557 edge
9558 gimple_switch_edge (function *ifun, gswitch *gs, unsigned index)
9559 {
9560 return find_edge (gimple_bb (gs), gimple_switch_label_bb (ifun, gs, index));
9561 }
9562
9563 /* Return the default edge of a switch statement. */
9564
9565 edge
9566 gimple_switch_default_edge (function *ifun, gswitch *gs)
9567 {
9568 return gimple_switch_edge (ifun, gs, 0);
9569 }
9570
9571 /* Return true if the only executable statement in BB is a GIMPLE_COND. */
9572
9573 bool
9574 cond_only_block_p (basic_block bb)
9575 {
9576 /* BB must have no executable statements. */
9577 gimple_stmt_iterator gsi = gsi_after_labels (bb);
9578 if (phi_nodes (bb))
9579 return false;
9580 while (!gsi_end_p (gsi))
9581 {
9582 gimple *stmt = gsi_stmt (gsi);
9583 if (is_gimple_debug (stmt))
9584 ;
9585 else if (gimple_code (stmt) == GIMPLE_NOP
9586 || gimple_code (stmt) == GIMPLE_PREDICT
9587 || gimple_code (stmt) == GIMPLE_COND)
9588 ;
9589 else
9590 return false;
9591 gsi_next (&gsi);
9592 }
9593 return true;
9594 }
9595
9596
9597 /* Emit return warnings. */
9598
9599 namespace {
9600
9601 const pass_data pass_data_warn_function_return =
9602 {
9603 GIMPLE_PASS, /* type */
9604 "*warn_function_return", /* name */
9605 OPTGROUP_NONE, /* optinfo_flags */
9606 TV_NONE, /* tv_id */
9607 PROP_cfg, /* properties_required */
9608 0, /* properties_provided */
9609 0, /* properties_destroyed */
9610 0, /* todo_flags_start */
9611 0, /* todo_flags_finish */
9612 };
9613
9614 class pass_warn_function_return : public gimple_opt_pass
9615 {
9616 public:
9617 pass_warn_function_return (gcc::context *ctxt)
9618 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9619 {}
9620
9621 /* opt_pass methods: */
9622 unsigned int execute (function *) final override;
9623
9624 }; // class pass_warn_function_return
9625
9626 unsigned int
9627 pass_warn_function_return::execute (function *fun)
9628 {
9629 location_t location;
9630 gimple *last;
9631 edge e;
9632 edge_iterator ei;
9633
9634 if (!targetm.warn_func_return (fun->decl))
9635 return 0;
9636
9637 /* If we have a path to EXIT, then we do return. */
9638 if (TREE_THIS_VOLATILE (fun->decl)
9639 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9640 {
9641 location = UNKNOWN_LOCATION;
9642 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9643 (e = ei_safe_edge (ei)); )
9644 {
9645 last = *gsi_last_bb (e->src);
9646 if ((gimple_code (last) == GIMPLE_RETURN
9647 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9648 && location == UNKNOWN_LOCATION
9649 && ((location = LOCATION_LOCUS (gimple_location (last)))
9650 != UNKNOWN_LOCATION)
9651 && !optimize)
9652 break;
9653 /* When optimizing, replace return stmts in noreturn functions
9654 with __builtin_unreachable () call. */
9655 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9656 {
9657 location_t loc = gimple_location (last);
9658 gimple *new_stmt = gimple_build_builtin_unreachable (loc);
9659 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9660 gsi_replace (&gsi, new_stmt, true);
9661 remove_edge (e);
9662 }
9663 else
9664 ei_next (&ei);
9665 }
9666 if (location == UNKNOWN_LOCATION)
9667 location = cfun->function_end_locus;
9668 warning_at (location, 0, "%<noreturn%> function does return");
9669 }
9670
9671 /* If we see "return;" in some basic block, then we do reach the end
9672 without returning a value. */
9673 else if (warn_return_type > 0
9674 && !warning_suppressed_p (fun->decl, OPT_Wreturn_type)
9675 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9676 {
9677 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9678 {
9679 greturn *return_stmt = dyn_cast <greturn *> (*gsi_last_bb (e->src));
9680 if (return_stmt
9681 && gimple_return_retval (return_stmt) == NULL
9682 && !warning_suppressed_p (return_stmt, OPT_Wreturn_type))
9683 {
9684 location = gimple_location (return_stmt);
9685 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9686 location = fun->function_end_locus;
9687 if (warning_at (location, OPT_Wreturn_type,
9688 "control reaches end of non-void function"))
9689 suppress_warning (fun->decl, OPT_Wreturn_type);
9690 break;
9691 }
9692 }
9693 /* The C++ FE turns fallthrough from the end of non-void function
9694 into __builtin_unreachable () call with BUILTINS_LOCATION.
9695 Recognize those as well as calls from ubsan_instrument_return. */
9696 basic_block bb;
9697 if (!warning_suppressed_p (fun->decl, OPT_Wreturn_type))
9698 FOR_EACH_BB_FN (bb, fun)
9699 if (EDGE_COUNT (bb->succs) == 0)
9700 {
9701 gimple *last = *gsi_last_bb (bb);
9702 const enum built_in_function ubsan_missing_ret
9703 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9704 if (last
9705 && ((LOCATION_LOCUS (gimple_location (last))
9706 == BUILTINS_LOCATION
9707 && (gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE)
9708 || gimple_call_builtin_p (last,
9709 BUILT_IN_UNREACHABLE_TRAP)
9710 || gimple_call_builtin_p (last, BUILT_IN_TRAP)))
9711 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9712 {
9713 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9714 gsi_prev_nondebug (&gsi);
9715 gimple *prev = gsi_stmt (gsi);
9716 if (prev == NULL)
9717 location = UNKNOWN_LOCATION;
9718 else
9719 location = gimple_location (prev);
9720 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9721 location = fun->function_end_locus;
9722 if (warning_at (location, OPT_Wreturn_type,
9723 "control reaches end of non-void function"))
9724 suppress_warning (fun->decl, OPT_Wreturn_type);
9725 break;
9726 }
9727 }
9728 }
9729 return 0;
9730 }
9731
9732 } // anon namespace
9733
9734 gimple_opt_pass *
9735 make_pass_warn_function_return (gcc::context *ctxt)
9736 {
9737 return new pass_warn_function_return (ctxt);
9738 }
9739
9740 /* Walk a gimplified function and warn for functions whose return value is
9741 ignored and attribute((warn_unused_result)) is set. This is done before
9742 inlining, so we don't have to worry about that. */
9743
9744 static void
9745 do_warn_unused_result (gimple_seq seq)
9746 {
9747 tree fdecl, ftype;
9748 gimple_stmt_iterator i;
9749
9750 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9751 {
9752 gimple *g = gsi_stmt (i);
9753
9754 switch (gimple_code (g))
9755 {
9756 case GIMPLE_BIND:
9757 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9758 break;
9759 case GIMPLE_TRY:
9760 do_warn_unused_result (gimple_try_eval (g));
9761 do_warn_unused_result (gimple_try_cleanup (g));
9762 break;
9763 case GIMPLE_CATCH:
9764 do_warn_unused_result (gimple_catch_handler (
9765 as_a <gcatch *> (g)));
9766 break;
9767 case GIMPLE_EH_FILTER:
9768 do_warn_unused_result (gimple_eh_filter_failure (g));
9769 break;
9770
9771 case GIMPLE_CALL:
9772 if (gimple_call_lhs (g))
9773 break;
9774 if (gimple_call_internal_p (g))
9775 break;
9776
9777 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9778 LHS. All calls whose value is ignored should be
9779 represented like this. Look for the attribute. */
9780 fdecl = gimple_call_fndecl (g);
9781 ftype = gimple_call_fntype (g);
9782
9783 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9784 {
9785 location_t loc = gimple_location (g);
9786
9787 if (fdecl)
9788 warning_at (loc, OPT_Wunused_result,
9789 "ignoring return value of %qD "
9790 "declared with attribute %<warn_unused_result%>",
9791 fdecl);
9792 else
9793 warning_at (loc, OPT_Wunused_result,
9794 "ignoring return value of function "
9795 "declared with attribute %<warn_unused_result%>");
9796 }
9797 break;
9798
9799 default:
9800 /* Not a container, not a call, or a call whose value is used. */
9801 break;
9802 }
9803 }
9804 }
9805
9806 namespace {
9807
9808 const pass_data pass_data_warn_unused_result =
9809 {
9810 GIMPLE_PASS, /* type */
9811 "*warn_unused_result", /* name */
9812 OPTGROUP_NONE, /* optinfo_flags */
9813 TV_NONE, /* tv_id */
9814 PROP_gimple_any, /* properties_required */
9815 0, /* properties_provided */
9816 0, /* properties_destroyed */
9817 0, /* todo_flags_start */
9818 0, /* todo_flags_finish */
9819 };
9820
9821 class pass_warn_unused_result : public gimple_opt_pass
9822 {
9823 public:
9824 pass_warn_unused_result (gcc::context *ctxt)
9825 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9826 {}
9827
9828 /* opt_pass methods: */
9829 bool gate (function *) final override { return flag_warn_unused_result; }
9830 unsigned int execute (function *) final override
9831 {
9832 do_warn_unused_result (gimple_body (current_function_decl));
9833 return 0;
9834 }
9835
9836 }; // class pass_warn_unused_result
9837
9838 } // anon namespace
9839
9840 gimple_opt_pass *
9841 make_pass_warn_unused_result (gcc::context *ctxt)
9842 {
9843 return new pass_warn_unused_result (ctxt);
9844 }
9845
9846 /* Maybe Remove stores to variables we marked write-only.
9847 Return true if a store was removed. */
9848 static bool
9849 maybe_remove_writeonly_store (gimple_stmt_iterator &gsi, gimple *stmt,
9850 bitmap dce_ssa_names)
9851 {
9852 /* Keep access when store has side effect, i.e. in case when source
9853 is volatile. */
9854 if (!gimple_store_p (stmt)
9855 || gimple_has_side_effects (stmt)
9856 || optimize_debug)
9857 return false;
9858
9859 tree lhs = get_base_address (gimple_get_lhs (stmt));
9860
9861 if (!VAR_P (lhs)
9862 || (!TREE_STATIC (lhs) && !DECL_EXTERNAL (lhs))
9863 || !varpool_node::get (lhs)->writeonly)
9864 return false;
9865
9866 if (dump_file && (dump_flags & TDF_DETAILS))
9867 {
9868 fprintf (dump_file, "Removing statement, writes"
9869 " to write only var:\n");
9870 print_gimple_stmt (dump_file, stmt, 0,
9871 TDF_VOPS|TDF_MEMSYMS);
9872 }
9873
9874 /* Mark ssa name defining to be checked for simple dce. */
9875 if (gimple_assign_single_p (stmt))
9876 {
9877 tree rhs = gimple_assign_rhs1 (stmt);
9878 if (TREE_CODE (rhs) == SSA_NAME
9879 && !SSA_NAME_IS_DEFAULT_DEF (rhs))
9880 bitmap_set_bit (dce_ssa_names, SSA_NAME_VERSION (rhs));
9881 }
9882 unlink_stmt_vdef (stmt);
9883 gsi_remove (&gsi, true);
9884 release_defs (stmt);
9885 return true;
9886 }
9887
9888 /* IPA passes, compilation of earlier functions or inlining
9889 might have changed some properties, such as marked functions nothrow,
9890 pure, const or noreturn.
9891 Remove redundant edges and basic blocks, and create new ones if necessary. */
9892
9893 unsigned int
9894 execute_fixup_cfg (void)
9895 {
9896 basic_block bb;
9897 gimple_stmt_iterator gsi;
9898 int todo = 0;
9899 cgraph_node *node = cgraph_node::get (current_function_decl);
9900 /* Same scaling is also done by ipa_merge_profiles. */
9901 profile_count num = node->count;
9902 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9903 bool scale = num.initialized_p () && !(num == den);
9904 auto_bitmap dce_ssa_names;
9905
9906 if (scale)
9907 {
9908 profile_count::adjust_for_ipa_scaling (&num, &den);
9909 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9910 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9911 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9912 }
9913
9914 FOR_EACH_BB_FN (bb, cfun)
9915 {
9916 if (scale)
9917 bb->count = bb->count.apply_scale (num, den);
9918 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9919 {
9920 gimple *stmt = gsi_stmt (gsi);
9921 tree decl = is_gimple_call (stmt)
9922 ? gimple_call_fndecl (stmt)
9923 : NULL;
9924 if (decl)
9925 {
9926 int flags = gimple_call_flags (stmt);
9927 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9928 {
9929 if (gimple_in_ssa_p (cfun))
9930 {
9931 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9932 update_stmt (stmt);
9933 }
9934 }
9935 if (flags & ECF_NORETURN
9936 && fixup_noreturn_call (stmt))
9937 todo |= TODO_cleanup_cfg;
9938 }
9939
9940 /* Remove stores to variables we marked write-only. */
9941 if (maybe_remove_writeonly_store (gsi, stmt, dce_ssa_names))
9942 {
9943 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9944 continue;
9945 }
9946
9947 /* For calls we can simply remove LHS when it is known
9948 to be write-only. */
9949 if (is_gimple_call (stmt)
9950 && gimple_get_lhs (stmt))
9951 {
9952 tree lhs = get_base_address (gimple_get_lhs (stmt));
9953
9954 if (VAR_P (lhs)
9955 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9956 && varpool_node::get (lhs)->writeonly)
9957 {
9958 gimple_call_set_lhs (stmt, NULL);
9959 update_stmt (stmt);
9960 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9961 }
9962 }
9963
9964 gsi_next (&gsi);
9965 }
9966 if (gimple *last = *gsi_last_bb (bb))
9967 {
9968 if (maybe_clean_eh_stmt (last)
9969 && gimple_purge_dead_eh_edges (bb))
9970 todo |= TODO_cleanup_cfg;
9971 if (gimple_purge_dead_abnormal_call_edges (bb))
9972 todo |= TODO_cleanup_cfg;
9973 }
9974
9975 /* If we have a basic block with no successors that does not
9976 end with a control statement or a noreturn call end it with
9977 a call to __builtin_unreachable. This situation can occur
9978 when inlining a noreturn call that does in fact return. */
9979 if (EDGE_COUNT (bb->succs) == 0)
9980 {
9981 gimple *stmt = last_nondebug_stmt (bb);
9982 if (!stmt
9983 || (!is_ctrl_stmt (stmt)
9984 && (!is_gimple_call (stmt)
9985 || !gimple_call_noreturn_p (stmt))))
9986 {
9987 if (stmt && is_gimple_call (stmt))
9988 gimple_call_set_ctrl_altering (stmt, false);
9989 stmt = gimple_build_builtin_unreachable (UNKNOWN_LOCATION);
9990 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9991 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9992 if (!cfun->after_inlining)
9993 if (tree fndecl = gimple_call_fndecl (stmt))
9994 {
9995 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9996 node->create_edge (cgraph_node::get_create (fndecl),
9997 call_stmt, bb->count);
9998 }
9999 }
10000 }
10001 }
10002 if (scale)
10003 {
10004 update_max_bb_count ();
10005 compute_function_frequency ();
10006 }
10007
10008 if (current_loops
10009 && (todo & TODO_cleanup_cfg))
10010 loops_state_set (LOOPS_NEED_FIXUP);
10011
10012 simple_dce_from_worklist (dce_ssa_names);
10013
10014 return todo;
10015 }
10016
10017 namespace {
10018
10019 const pass_data pass_data_fixup_cfg =
10020 {
10021 GIMPLE_PASS, /* type */
10022 "fixup_cfg", /* name */
10023 OPTGROUP_NONE, /* optinfo_flags */
10024 TV_NONE, /* tv_id */
10025 PROP_cfg, /* properties_required */
10026 0, /* properties_provided */
10027 0, /* properties_destroyed */
10028 0, /* todo_flags_start */
10029 0, /* todo_flags_finish */
10030 };
10031
10032 class pass_fixup_cfg : public gimple_opt_pass
10033 {
10034 public:
10035 pass_fixup_cfg (gcc::context *ctxt)
10036 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
10037 {}
10038
10039 /* opt_pass methods: */
10040 opt_pass * clone () final override { return new pass_fixup_cfg (m_ctxt); }
10041 unsigned int execute (function *) final override
10042 {
10043 return execute_fixup_cfg ();
10044 }
10045
10046 }; // class pass_fixup_cfg
10047
10048 } // anon namespace
10049
10050 gimple_opt_pass *
10051 make_pass_fixup_cfg (gcc::context *ctxt)
10052 {
10053 return new pass_fixup_cfg (ctxt);
10054 }
10055
10056 /* Garbage collection support for edge_def. */
10057
10058 extern void gt_ggc_mx (tree&);
10059 extern void gt_ggc_mx (gimple *&);
10060 extern void gt_ggc_mx (rtx&);
10061 extern void gt_ggc_mx (basic_block&);
10062
10063 static void
10064 gt_ggc_mx (rtx_insn *& x)
10065 {
10066 if (x)
10067 gt_ggc_mx_rtx_def ((void *) x);
10068 }
10069
10070 void
10071 gt_ggc_mx (edge_def *e)
10072 {
10073 tree block = LOCATION_BLOCK (e->goto_locus);
10074 gt_ggc_mx (e->src);
10075 gt_ggc_mx (e->dest);
10076 if (current_ir_type () == IR_GIMPLE)
10077 gt_ggc_mx (e->insns.g);
10078 else
10079 gt_ggc_mx (e->insns.r);
10080 gt_ggc_mx (block);
10081 }
10082
10083 /* PCH support for edge_def. */
10084
10085 extern void gt_pch_nx (tree&);
10086 extern void gt_pch_nx (gimple *&);
10087 extern void gt_pch_nx (rtx&);
10088 extern void gt_pch_nx (basic_block&);
10089
10090 static void
10091 gt_pch_nx (rtx_insn *& x)
10092 {
10093 if (x)
10094 gt_pch_nx_rtx_def ((void *) x);
10095 }
10096
10097 void
10098 gt_pch_nx (edge_def *e)
10099 {
10100 tree block = LOCATION_BLOCK (e->goto_locus);
10101 gt_pch_nx (e->src);
10102 gt_pch_nx (e->dest);
10103 if (current_ir_type () == IR_GIMPLE)
10104 gt_pch_nx (e->insns.g);
10105 else
10106 gt_pch_nx (e->insns.r);
10107 gt_pch_nx (block);
10108 }
10109
10110 void
10111 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
10112 {
10113 tree block = LOCATION_BLOCK (e->goto_locus);
10114 op (&(e->src), NULL, cookie);
10115 op (&(e->dest), NULL, cookie);
10116 if (current_ir_type () == IR_GIMPLE)
10117 op (&(e->insns.g), NULL, cookie);
10118 else
10119 op (&(e->insns.r), NULL, cookie);
10120 op (&(block), &(block), cookie);
10121 }
10122
10123 #if CHECKING_P
10124
10125 namespace selftest {
10126
10127 /* Helper function for CFG selftests: create a dummy function decl
10128 and push it as cfun. */
10129
10130 static tree
10131 push_fndecl (const char *name)
10132 {
10133 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
10134 /* FIXME: this uses input_location: */
10135 tree fndecl = build_fn_decl (name, fn_type);
10136 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
10137 NULL_TREE, integer_type_node);
10138 DECL_RESULT (fndecl) = retval;
10139 push_struct_function (fndecl);
10140 function *fun = DECL_STRUCT_FUNCTION (fndecl);
10141 ASSERT_TRUE (fun != NULL);
10142 init_empty_tree_cfg_for_function (fun);
10143 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
10144 ASSERT_EQ (0, n_edges_for_fn (fun));
10145 return fndecl;
10146 }
10147
10148 /* These tests directly create CFGs.
10149 Compare with the static fns within tree-cfg.cc:
10150 - build_gimple_cfg
10151 - make_blocks: calls create_basic_block (seq, bb);
10152 - make_edges. */
10153
10154 /* Verify a simple cfg of the form:
10155 ENTRY -> A -> B -> C -> EXIT. */
10156
10157 static void
10158 test_linear_chain ()
10159 {
10160 gimple_register_cfg_hooks ();
10161
10162 tree fndecl = push_fndecl ("cfg_test_linear_chain");
10163 function *fun = DECL_STRUCT_FUNCTION (fndecl);
10164
10165 /* Create some empty blocks. */
10166 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
10167 basic_block bb_b = create_empty_bb (bb_a);
10168 basic_block bb_c = create_empty_bb (bb_b);
10169
10170 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
10171 ASSERT_EQ (0, n_edges_for_fn (fun));
10172
10173 /* Create some edges: a simple linear chain of BBs. */
10174 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
10175 make_edge (bb_a, bb_b, 0);
10176 make_edge (bb_b, bb_c, 0);
10177 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
10178
10179 /* Verify the edges. */
10180 ASSERT_EQ (4, n_edges_for_fn (fun));
10181 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
10182 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
10183 ASSERT_EQ (1, bb_a->preds->length ());
10184 ASSERT_EQ (1, bb_a->succs->length ());
10185 ASSERT_EQ (1, bb_b->preds->length ());
10186 ASSERT_EQ (1, bb_b->succs->length ());
10187 ASSERT_EQ (1, bb_c->preds->length ());
10188 ASSERT_EQ (1, bb_c->succs->length ());
10189 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
10190 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
10191
10192 /* Verify the dominance information
10193 Each BB in our simple chain should be dominated by the one before
10194 it. */
10195 calculate_dominance_info (CDI_DOMINATORS);
10196 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
10197 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
10198 auto_vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
10199 ASSERT_EQ (1, dom_by_b.length ());
10200 ASSERT_EQ (bb_c, dom_by_b[0]);
10201 free_dominance_info (CDI_DOMINATORS);
10202
10203 /* Similarly for post-dominance: each BB in our chain is post-dominated
10204 by the one after it. */
10205 calculate_dominance_info (CDI_POST_DOMINATORS);
10206 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
10207 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
10208 auto_vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
10209 ASSERT_EQ (1, postdom_by_b.length ());
10210 ASSERT_EQ (bb_a, postdom_by_b[0]);
10211 free_dominance_info (CDI_POST_DOMINATORS);
10212
10213 pop_cfun ();
10214 }
10215
10216 /* Verify a simple CFG of the form:
10217 ENTRY
10218 |
10219 A
10220 / \
10221 /t \f
10222 B C
10223 \ /
10224 \ /
10225 D
10226 |
10227 EXIT. */
10228
10229 static void
10230 test_diamond ()
10231 {
10232 gimple_register_cfg_hooks ();
10233
10234 tree fndecl = push_fndecl ("cfg_test_diamond");
10235 function *fun = DECL_STRUCT_FUNCTION (fndecl);
10236
10237 /* Create some empty blocks. */
10238 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
10239 basic_block bb_b = create_empty_bb (bb_a);
10240 basic_block bb_c = create_empty_bb (bb_a);
10241 basic_block bb_d = create_empty_bb (bb_b);
10242
10243 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
10244 ASSERT_EQ (0, n_edges_for_fn (fun));
10245
10246 /* Create the edges. */
10247 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
10248 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
10249 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
10250 make_edge (bb_b, bb_d, 0);
10251 make_edge (bb_c, bb_d, 0);
10252 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
10253
10254 /* Verify the edges. */
10255 ASSERT_EQ (6, n_edges_for_fn (fun));
10256 ASSERT_EQ (1, bb_a->preds->length ());
10257 ASSERT_EQ (2, bb_a->succs->length ());
10258 ASSERT_EQ (1, bb_b->preds->length ());
10259 ASSERT_EQ (1, bb_b->succs->length ());
10260 ASSERT_EQ (1, bb_c->preds->length ());
10261 ASSERT_EQ (1, bb_c->succs->length ());
10262 ASSERT_EQ (2, bb_d->preds->length ());
10263 ASSERT_EQ (1, bb_d->succs->length ());
10264
10265 /* Verify the dominance information. */
10266 calculate_dominance_info (CDI_DOMINATORS);
10267 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
10268 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
10269 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
10270 auto_vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
10271 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
10272 dom_by_a.release ();
10273 auto_vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
10274 ASSERT_EQ (0, dom_by_b.length ());
10275 dom_by_b.release ();
10276 free_dominance_info (CDI_DOMINATORS);
10277
10278 /* Similarly for post-dominance. */
10279 calculate_dominance_info (CDI_POST_DOMINATORS);
10280 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
10281 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
10282 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
10283 auto_vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
10284 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
10285 postdom_by_d.release ();
10286 auto_vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
10287 ASSERT_EQ (0, postdom_by_b.length ());
10288 postdom_by_b.release ();
10289 free_dominance_info (CDI_POST_DOMINATORS);
10290
10291 pop_cfun ();
10292 }
10293
10294 /* Verify that we can handle a CFG containing a "complete" aka
10295 fully-connected subgraph (where A B C D below all have edges
10296 pointing to each other node, also to themselves).
10297 e.g.:
10298 ENTRY EXIT
10299 | ^
10300 | /
10301 | /
10302 | /
10303 V/
10304 A<--->B
10305 ^^ ^^
10306 | \ / |
10307 | X |
10308 | / \ |
10309 VV VV
10310 C<--->D
10311 */
10312
10313 static void
10314 test_fully_connected ()
10315 {
10316 gimple_register_cfg_hooks ();
10317
10318 tree fndecl = push_fndecl ("cfg_fully_connected");
10319 function *fun = DECL_STRUCT_FUNCTION (fndecl);
10320
10321 const int n = 4;
10322
10323 /* Create some empty blocks. */
10324 auto_vec <basic_block> subgraph_nodes;
10325 for (int i = 0; i < n; i++)
10326 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
10327
10328 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
10329 ASSERT_EQ (0, n_edges_for_fn (fun));
10330
10331 /* Create the edges. */
10332 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
10333 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
10334 for (int i = 0; i < n; i++)
10335 for (int j = 0; j < n; j++)
10336 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
10337
10338 /* Verify the edges. */
10339 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
10340 /* The first one is linked to ENTRY/EXIT as well as itself and
10341 everything else. */
10342 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
10343 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
10344 /* The other ones in the subgraph are linked to everything in
10345 the subgraph (including themselves). */
10346 for (int i = 1; i < n; i++)
10347 {
10348 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
10349 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
10350 }
10351
10352 /* Verify the dominance information. */
10353 calculate_dominance_info (CDI_DOMINATORS);
10354 /* The initial block in the subgraph should be dominated by ENTRY. */
10355 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
10356 get_immediate_dominator (CDI_DOMINATORS,
10357 subgraph_nodes[0]));
10358 /* Every other block in the subgraph should be dominated by the
10359 initial block. */
10360 for (int i = 1; i < n; i++)
10361 ASSERT_EQ (subgraph_nodes[0],
10362 get_immediate_dominator (CDI_DOMINATORS,
10363 subgraph_nodes[i]));
10364 free_dominance_info (CDI_DOMINATORS);
10365
10366 /* Similarly for post-dominance. */
10367 calculate_dominance_info (CDI_POST_DOMINATORS);
10368 /* The initial block in the subgraph should be postdominated by EXIT. */
10369 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
10370 get_immediate_dominator (CDI_POST_DOMINATORS,
10371 subgraph_nodes[0]));
10372 /* Every other block in the subgraph should be postdominated by the
10373 initial block, since that leads to EXIT. */
10374 for (int i = 1; i < n; i++)
10375 ASSERT_EQ (subgraph_nodes[0],
10376 get_immediate_dominator (CDI_POST_DOMINATORS,
10377 subgraph_nodes[i]));
10378 free_dominance_info (CDI_POST_DOMINATORS);
10379
10380 pop_cfun ();
10381 }
10382
10383 /* Run all of the selftests within this file. */
10384
10385 void
10386 tree_cfg_cc_tests ()
10387 {
10388 test_linear_chain ();
10389 test_diamond ();
10390 test_fully_connected ();
10391 }
10392
10393 } // namespace selftest
10394
10395 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
10396 - loop
10397 - nested loops
10398 - switch statement (a block with many out-edges)
10399 - something that jumps to itself
10400 - etc */
10401
10402 #endif /* CHECKING_P */