]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-complex.c
* tree-complex.c (expand_complex_div_wide): update profile.
[thirdparty/gcc.git] / gcc / tree-complex.c
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-dfa.h"
38 #include "tree-ssa.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-hasher.h"
41 #include "cfgloop.h"
42 #include "cfganal.h"
43
44
45 /* For each complex ssa name, a lattice value. We're interested in finding
46 out whether a complex number is degenerate in some way, having only real
47 or only complex parts. */
48
49 enum
50 {
51 UNINITIALIZED = 0,
52 ONLY_REAL = 1,
53 ONLY_IMAG = 2,
54 VARYING = 3
55 };
56
57 /* The type complex_lattice_t holds combinations of the above
58 constants. */
59 typedef int complex_lattice_t;
60
61 #define PAIR(a, b) ((a) << 2 | (b))
62
63
64 static vec<complex_lattice_t> complex_lattice_values;
65
66 /* For each complex variable, a pair of variables for the components exists in
67 the hashtable. */
68 static int_tree_htab_type *complex_variable_components;
69
70 /* For each complex SSA_NAME, a pair of ssa names for the components. */
71 static vec<tree> complex_ssa_name_components;
72
73 /* Vector of PHI triplets (original complex PHI and corresponding real and
74 imag PHIs if real and/or imag PHIs contain temporarily
75 non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
76 static vec<gphi *> phis_to_revisit;
77
78 /* Lookup UID in the complex_variable_components hashtable and return the
79 associated tree. */
80 static tree
81 cvc_lookup (unsigned int uid)
82 {
83 struct int_tree_map in;
84 in.uid = uid;
85 return complex_variable_components->find_with_hash (in, uid).to;
86 }
87
88 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
89
90 static void
91 cvc_insert (unsigned int uid, tree to)
92 {
93 int_tree_map h;
94 int_tree_map *loc;
95
96 h.uid = uid;
97 loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
98 loc->uid = uid;
99 loc->to = to;
100 }
101
102 /* Return true if T is not a zero constant. In the case of real values,
103 we're only interested in +0.0. */
104
105 static int
106 some_nonzerop (tree t)
107 {
108 int zerop = false;
109
110 /* Operations with real or imaginary part of a complex number zero
111 cannot be treated the same as operations with a real or imaginary
112 operand if we care about the signs of zeros in the result. */
113 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
114 zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
115 else if (TREE_CODE (t) == FIXED_CST)
116 zerop = fixed_zerop (t);
117 else if (TREE_CODE (t) == INTEGER_CST)
118 zerop = integer_zerop (t);
119
120 return !zerop;
121 }
122
123
124 /* Compute a lattice value from the components of a complex type REAL
125 and IMAG. */
126
127 static complex_lattice_t
128 find_lattice_value_parts (tree real, tree imag)
129 {
130 int r, i;
131 complex_lattice_t ret;
132
133 r = some_nonzerop (real);
134 i = some_nonzerop (imag);
135 ret = r * ONLY_REAL + i * ONLY_IMAG;
136
137 /* ??? On occasion we could do better than mapping 0+0i to real, but we
138 certainly don't want to leave it UNINITIALIZED, which eventually gets
139 mapped to VARYING. */
140 if (ret == UNINITIALIZED)
141 ret = ONLY_REAL;
142
143 return ret;
144 }
145
146
147 /* Compute a lattice value from gimple_val T. */
148
149 static complex_lattice_t
150 find_lattice_value (tree t)
151 {
152 tree real, imag;
153
154 switch (TREE_CODE (t))
155 {
156 case SSA_NAME:
157 return complex_lattice_values[SSA_NAME_VERSION (t)];
158
159 case COMPLEX_CST:
160 real = TREE_REALPART (t);
161 imag = TREE_IMAGPART (t);
162 break;
163
164 default:
165 gcc_unreachable ();
166 }
167
168 return find_lattice_value_parts (real, imag);
169 }
170
171 /* Determine if LHS is something for which we're interested in seeing
172 simulation results. */
173
174 static bool
175 is_complex_reg (tree lhs)
176 {
177 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
178 }
179
180 /* Mark the incoming parameters to the function as VARYING. */
181
182 static void
183 init_parameter_lattice_values (void)
184 {
185 tree parm, ssa_name;
186
187 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
188 if (is_complex_reg (parm)
189 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
190 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
191 }
192
193 /* Initialize simulation state for each statement. Return false if we
194 found no statements we want to simulate, and thus there's nothing
195 for the entire pass to do. */
196
197 static bool
198 init_dont_simulate_again (void)
199 {
200 basic_block bb;
201 bool saw_a_complex_op = false;
202
203 FOR_EACH_BB_FN (bb, cfun)
204 {
205 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
206 gsi_next (&gsi))
207 {
208 gphi *phi = gsi.phi ();
209 prop_set_simulate_again (phi,
210 is_complex_reg (gimple_phi_result (phi)));
211 }
212
213 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
214 gsi_next (&gsi))
215 {
216 gimple *stmt;
217 tree op0, op1;
218 bool sim_again_p;
219
220 stmt = gsi_stmt (gsi);
221 op0 = op1 = NULL_TREE;
222
223 /* Most control-altering statements must be initially
224 simulated, else we won't cover the entire cfg. */
225 sim_again_p = stmt_ends_bb_p (stmt);
226
227 switch (gimple_code (stmt))
228 {
229 case GIMPLE_CALL:
230 if (gimple_call_lhs (stmt))
231 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
232 break;
233
234 case GIMPLE_ASSIGN:
235 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
236 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
237 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
238 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
239 else
240 op0 = gimple_assign_rhs1 (stmt);
241 if (gimple_num_ops (stmt) > 2)
242 op1 = gimple_assign_rhs2 (stmt);
243 break;
244
245 case GIMPLE_COND:
246 op0 = gimple_cond_lhs (stmt);
247 op1 = gimple_cond_rhs (stmt);
248 break;
249
250 default:
251 break;
252 }
253
254 if (op0 || op1)
255 switch (gimple_expr_code (stmt))
256 {
257 case EQ_EXPR:
258 case NE_EXPR:
259 case PLUS_EXPR:
260 case MINUS_EXPR:
261 case MULT_EXPR:
262 case TRUNC_DIV_EXPR:
263 case CEIL_DIV_EXPR:
264 case FLOOR_DIV_EXPR:
265 case ROUND_DIV_EXPR:
266 case RDIV_EXPR:
267 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
268 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
269 saw_a_complex_op = true;
270 break;
271
272 case NEGATE_EXPR:
273 case CONJ_EXPR:
274 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
275 saw_a_complex_op = true;
276 break;
277
278 case REALPART_EXPR:
279 case IMAGPART_EXPR:
280 /* The total store transformation performed during
281 gimplification creates such uninitialized loads
282 and we need to lower the statement to be able
283 to fix things up. */
284 if (TREE_CODE (op0) == SSA_NAME
285 && ssa_undefined_value_p (op0))
286 saw_a_complex_op = true;
287 break;
288
289 default:
290 break;
291 }
292
293 prop_set_simulate_again (stmt, sim_again_p);
294 }
295 }
296
297 return saw_a_complex_op;
298 }
299
300
301 /* Evaluate statement STMT against the complex lattice defined above. */
302
303 static enum ssa_prop_result
304 complex_visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
305 tree *result_p)
306 {
307 complex_lattice_t new_l, old_l, op1_l, op2_l;
308 unsigned int ver;
309 tree lhs;
310
311 lhs = gimple_get_lhs (stmt);
312 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
313 if (!lhs)
314 return SSA_PROP_VARYING;
315
316 /* These conditions should be satisfied due to the initial filter
317 set up in init_dont_simulate_again. */
318 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
319 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
320
321 *result_p = lhs;
322 ver = SSA_NAME_VERSION (lhs);
323 old_l = complex_lattice_values[ver];
324
325 switch (gimple_expr_code (stmt))
326 {
327 case SSA_NAME:
328 case COMPLEX_CST:
329 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
330 break;
331
332 case COMPLEX_EXPR:
333 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
334 gimple_assign_rhs2 (stmt));
335 break;
336
337 case PLUS_EXPR:
338 case MINUS_EXPR:
339 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
340 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
341
342 /* We've set up the lattice values such that IOR neatly
343 models addition. */
344 new_l = op1_l | op2_l;
345 break;
346
347 case MULT_EXPR:
348 case RDIV_EXPR:
349 case TRUNC_DIV_EXPR:
350 case CEIL_DIV_EXPR:
351 case FLOOR_DIV_EXPR:
352 case ROUND_DIV_EXPR:
353 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
354 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
355
356 /* Obviously, if either varies, so does the result. */
357 if (op1_l == VARYING || op2_l == VARYING)
358 new_l = VARYING;
359 /* Don't prematurely promote variables if we've not yet seen
360 their inputs. */
361 else if (op1_l == UNINITIALIZED)
362 new_l = op2_l;
363 else if (op2_l == UNINITIALIZED)
364 new_l = op1_l;
365 else
366 {
367 /* At this point both numbers have only one component. If the
368 numbers are of opposite kind, the result is imaginary,
369 otherwise the result is real. The add/subtract translates
370 the real/imag from/to 0/1; the ^ performs the comparison. */
371 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
372
373 /* Don't allow the lattice value to flip-flop indefinitely. */
374 new_l |= old_l;
375 }
376 break;
377
378 case NEGATE_EXPR:
379 case CONJ_EXPR:
380 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
381 break;
382
383 default:
384 new_l = VARYING;
385 break;
386 }
387
388 /* If nothing changed this round, let the propagator know. */
389 if (new_l == old_l)
390 return SSA_PROP_NOT_INTERESTING;
391
392 complex_lattice_values[ver] = new_l;
393 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
394 }
395
396 /* Evaluate a PHI node against the complex lattice defined above. */
397
398 static enum ssa_prop_result
399 complex_visit_phi (gphi *phi)
400 {
401 complex_lattice_t new_l, old_l;
402 unsigned int ver;
403 tree lhs;
404 int i;
405
406 lhs = gimple_phi_result (phi);
407
408 /* This condition should be satisfied due to the initial filter
409 set up in init_dont_simulate_again. */
410 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
411
412 /* We've set up the lattice values such that IOR neatly models PHI meet. */
413 new_l = UNINITIALIZED;
414 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
415 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
416
417 ver = SSA_NAME_VERSION (lhs);
418 old_l = complex_lattice_values[ver];
419
420 if (new_l == old_l)
421 return SSA_PROP_NOT_INTERESTING;
422
423 complex_lattice_values[ver] = new_l;
424 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
425 }
426
427 /* Create one backing variable for a complex component of ORIG. */
428
429 static tree
430 create_one_component_var (tree type, tree orig, const char *prefix,
431 const char *suffix, enum tree_code code)
432 {
433 tree r = create_tmp_var (type, prefix);
434
435 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
436 DECL_ARTIFICIAL (r) = 1;
437
438 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
439 {
440 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
441 name = ACONCAT ((name, suffix, NULL));
442 DECL_NAME (r) = get_identifier (name);
443
444 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
445 DECL_HAS_DEBUG_EXPR_P (r) = 1;
446 DECL_IGNORED_P (r) = 0;
447 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
448 }
449 else
450 {
451 DECL_IGNORED_P (r) = 1;
452 TREE_NO_WARNING (r) = 1;
453 }
454
455 return r;
456 }
457
458 /* Retrieve a value for a complex component of VAR. */
459
460 static tree
461 get_component_var (tree var, bool imag_p)
462 {
463 size_t decl_index = DECL_UID (var) * 2 + imag_p;
464 tree ret = cvc_lookup (decl_index);
465
466 if (ret == NULL)
467 {
468 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
469 imag_p ? "CI" : "CR",
470 imag_p ? "$imag" : "$real",
471 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
472 cvc_insert (decl_index, ret);
473 }
474
475 return ret;
476 }
477
478 /* Retrieve a value for a complex component of SSA_NAME. */
479
480 static tree
481 get_component_ssa_name (tree ssa_name, bool imag_p)
482 {
483 complex_lattice_t lattice = find_lattice_value (ssa_name);
484 size_t ssa_name_index;
485 tree ret;
486
487 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
488 {
489 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
490 if (SCALAR_FLOAT_TYPE_P (inner_type))
491 return build_real (inner_type, dconst0);
492 else
493 return build_int_cst (inner_type, 0);
494 }
495
496 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
497 ret = complex_ssa_name_components[ssa_name_index];
498 if (ret == NULL)
499 {
500 if (SSA_NAME_VAR (ssa_name))
501 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
502 else
503 ret = TREE_TYPE (TREE_TYPE (ssa_name));
504 ret = make_ssa_name (ret);
505
506 /* Copy some properties from the original. In particular, whether it
507 is used in an abnormal phi, and whether it's uninitialized. */
508 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
509 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
510 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
511 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
512 {
513 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
514 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
515 }
516
517 complex_ssa_name_components[ssa_name_index] = ret;
518 }
519
520 return ret;
521 }
522
523 /* Set a value for a complex component of SSA_NAME, return a
524 gimple_seq of stuff that needs doing. */
525
526 static gimple_seq
527 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
528 {
529 complex_lattice_t lattice = find_lattice_value (ssa_name);
530 size_t ssa_name_index;
531 tree comp;
532 gimple *last;
533 gimple_seq list;
534
535 /* We know the value must be zero, else there's a bug in our lattice
536 analysis. But the value may well be a variable known to contain
537 zero. We should be safe ignoring it. */
538 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
539 return NULL;
540
541 /* If we've already assigned an SSA_NAME to this component, then this
542 means that our walk of the basic blocks found a use before the set.
543 This is fine. Now we should create an initialization for the value
544 we created earlier. */
545 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
546 comp = complex_ssa_name_components[ssa_name_index];
547 if (comp)
548 ;
549
550 /* If we've nothing assigned, and the value we're given is already stable,
551 then install that as the value for this SSA_NAME. This preemptively
552 copy-propagates the value, which avoids unnecessary memory allocation. */
553 else if (is_gimple_min_invariant (value)
554 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
555 {
556 complex_ssa_name_components[ssa_name_index] = value;
557 return NULL;
558 }
559 else if (TREE_CODE (value) == SSA_NAME
560 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
561 {
562 /* Replace an anonymous base value with the variable from cvc_lookup.
563 This should result in better debug info. */
564 if (SSA_NAME_VAR (ssa_name)
565 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
566 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
567 {
568 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
569 replace_ssa_name_symbol (value, comp);
570 }
571
572 complex_ssa_name_components[ssa_name_index] = value;
573 return NULL;
574 }
575
576 /* Finally, we need to stabilize the result by installing the value into
577 a new ssa name. */
578 else
579 comp = get_component_ssa_name (ssa_name, imag_p);
580
581 /* Do all the work to assign VALUE to COMP. */
582 list = NULL;
583 value = force_gimple_operand (value, &list, false, NULL);
584 last = gimple_build_assign (comp, value);
585 gimple_seq_add_stmt (&list, last);
586 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
587
588 return list;
589 }
590
591 /* Extract the real or imaginary part of a complex variable or constant.
592 Make sure that it's a proper gimple_val and gimplify it if not.
593 Emit any new code before gsi. */
594
595 static tree
596 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
597 bool gimple_p, bool phiarg_p = false)
598 {
599 switch (TREE_CODE (t))
600 {
601 case COMPLEX_CST:
602 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
603
604 case COMPLEX_EXPR:
605 gcc_unreachable ();
606
607 case BIT_FIELD_REF:
608 {
609 tree inner_type = TREE_TYPE (TREE_TYPE (t));
610 t = unshare_expr (t);
611 TREE_TYPE (t) = inner_type;
612 TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
613 if (imagpart_p)
614 TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
615 TYPE_SIZE (inner_type));
616 if (gimple_p)
617 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
618 GSI_SAME_STMT);
619 return t;
620 }
621
622 case VAR_DECL:
623 case RESULT_DECL:
624 case PARM_DECL:
625 case COMPONENT_REF:
626 case ARRAY_REF:
627 case VIEW_CONVERT_EXPR:
628 case MEM_REF:
629 {
630 tree inner_type = TREE_TYPE (TREE_TYPE (t));
631
632 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
633 inner_type, unshare_expr (t));
634
635 if (gimple_p)
636 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
637 GSI_SAME_STMT);
638
639 return t;
640 }
641
642 case SSA_NAME:
643 t = get_component_ssa_name (t, imagpart_p);
644 if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
645 gcc_assert (phiarg_p);
646 return t;
647
648 default:
649 gcc_unreachable ();
650 }
651 }
652
653 /* Update the complex components of the ssa name on the lhs of STMT. */
654
655 static void
656 update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
657 tree i)
658 {
659 tree lhs;
660 gimple_seq list;
661
662 lhs = gimple_get_lhs (stmt);
663
664 list = set_component_ssa_name (lhs, false, r);
665 if (list)
666 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
667
668 list = set_component_ssa_name (lhs, true, i);
669 if (list)
670 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
671 }
672
673 static void
674 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
675 {
676 gimple_seq list;
677
678 list = set_component_ssa_name (lhs, false, r);
679 if (list)
680 gsi_insert_seq_on_edge (e, list);
681
682 list = set_component_ssa_name (lhs, true, i);
683 if (list)
684 gsi_insert_seq_on_edge (e, list);
685 }
686
687
688 /* Update an assignment to a complex variable in place. */
689
690 static void
691 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
692 {
693 gimple *stmt;
694
695 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
696 stmt = gsi_stmt (*gsi);
697 update_stmt (stmt);
698 if (maybe_clean_eh_stmt (stmt))
699 gimple_purge_dead_eh_edges (gimple_bb (stmt));
700
701 if (gimple_in_ssa_p (cfun))
702 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
703 }
704
705
706 /* Generate code at the entry point of the function to initialize the
707 component variables for a complex parameter. */
708
709 static void
710 update_parameter_components (void)
711 {
712 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
713 tree parm;
714
715 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
716 {
717 tree type = TREE_TYPE (parm);
718 tree ssa_name, r, i;
719
720 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
721 continue;
722
723 type = TREE_TYPE (type);
724 ssa_name = ssa_default_def (cfun, parm);
725 if (!ssa_name)
726 continue;
727
728 r = build1 (REALPART_EXPR, type, ssa_name);
729 i = build1 (IMAGPART_EXPR, type, ssa_name);
730 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
731 }
732 }
733
734 /* Generate code to set the component variables of a complex variable
735 to match the PHI statements in block BB. */
736
737 static void
738 update_phi_components (basic_block bb)
739 {
740 gphi_iterator gsi;
741
742 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
743 {
744 gphi *phi = gsi.phi ();
745
746 if (is_complex_reg (gimple_phi_result (phi)))
747 {
748 gphi *p[2] = { NULL, NULL };
749 unsigned int i, j, n;
750 bool revisit_phi = false;
751
752 for (j = 0; j < 2; j++)
753 {
754 tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
755 if (TREE_CODE (l) == SSA_NAME)
756 p[j] = create_phi_node (l, bb);
757 }
758
759 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
760 {
761 tree comp, arg = gimple_phi_arg_def (phi, i);
762 for (j = 0; j < 2; j++)
763 if (p[j])
764 {
765 comp = extract_component (NULL, arg, j > 0, false, true);
766 if (TREE_CODE (comp) == SSA_NAME
767 && SSA_NAME_DEF_STMT (comp) == NULL)
768 {
769 /* For the benefit of any gimple simplification during
770 this pass that might walk SSA_NAME def stmts,
771 don't add SSA_NAMEs without definitions into the
772 PHI arguments, but put a decl in there instead
773 temporarily, and revisit this PHI later on. */
774 if (SSA_NAME_VAR (comp))
775 comp = SSA_NAME_VAR (comp);
776 else
777 comp = create_tmp_reg (TREE_TYPE (comp),
778 get_name (comp));
779 revisit_phi = true;
780 }
781 SET_PHI_ARG_DEF (p[j], i, comp);
782 }
783 }
784
785 if (revisit_phi)
786 {
787 phis_to_revisit.safe_push (phi);
788 phis_to_revisit.safe_push (p[0]);
789 phis_to_revisit.safe_push (p[1]);
790 }
791 }
792 }
793 }
794
795 /* Expand a complex move to scalars. */
796
797 static void
798 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
799 {
800 tree inner_type = TREE_TYPE (type);
801 tree r, i, lhs, rhs;
802 gimple *stmt = gsi_stmt (*gsi);
803
804 if (is_gimple_assign (stmt))
805 {
806 lhs = gimple_assign_lhs (stmt);
807 if (gimple_num_ops (stmt) == 2)
808 rhs = gimple_assign_rhs1 (stmt);
809 else
810 rhs = NULL_TREE;
811 }
812 else if (is_gimple_call (stmt))
813 {
814 lhs = gimple_call_lhs (stmt);
815 rhs = NULL_TREE;
816 }
817 else
818 gcc_unreachable ();
819
820 if (TREE_CODE (lhs) == SSA_NAME)
821 {
822 if (is_ctrl_altering_stmt (stmt))
823 {
824 edge e;
825
826 /* The value is not assigned on the exception edges, so we need not
827 concern ourselves there. We do need to update on the fallthru
828 edge. Find it. */
829 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
830 if (!e)
831 gcc_unreachable ();
832
833 r = build1 (REALPART_EXPR, inner_type, lhs);
834 i = build1 (IMAGPART_EXPR, inner_type, lhs);
835 update_complex_components_on_edge (e, lhs, r, i);
836 }
837 else if (is_gimple_call (stmt)
838 || gimple_has_side_effects (stmt)
839 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
840 {
841 r = build1 (REALPART_EXPR, inner_type, lhs);
842 i = build1 (IMAGPART_EXPR, inner_type, lhs);
843 update_complex_components (gsi, stmt, r, i);
844 }
845 else
846 {
847 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
848 {
849 r = extract_component (gsi, rhs, 0, true);
850 i = extract_component (gsi, rhs, 1, true);
851 }
852 else
853 {
854 r = gimple_assign_rhs1 (stmt);
855 i = gimple_assign_rhs2 (stmt);
856 }
857 update_complex_assignment (gsi, r, i);
858 }
859 }
860 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
861 {
862 tree x;
863 gimple *t;
864 location_t loc;
865
866 loc = gimple_location (stmt);
867 r = extract_component (gsi, rhs, 0, false);
868 i = extract_component (gsi, rhs, 1, false);
869
870 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
871 t = gimple_build_assign (x, r);
872 gimple_set_location (t, loc);
873 gsi_insert_before (gsi, t, GSI_SAME_STMT);
874
875 if (stmt == gsi_stmt (*gsi))
876 {
877 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
878 gimple_assign_set_lhs (stmt, x);
879 gimple_assign_set_rhs1 (stmt, i);
880 }
881 else
882 {
883 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
884 t = gimple_build_assign (x, i);
885 gimple_set_location (t, loc);
886 gsi_insert_before (gsi, t, GSI_SAME_STMT);
887
888 stmt = gsi_stmt (*gsi);
889 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
890 gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
891 }
892
893 update_stmt (stmt);
894 }
895 }
896
897 /* Expand complex addition to scalars:
898 a + b = (ar + br) + i(ai + bi)
899 a - b = (ar - br) + i(ai + bi)
900 */
901
902 static void
903 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
904 tree ar, tree ai, tree br, tree bi,
905 enum tree_code code,
906 complex_lattice_t al, complex_lattice_t bl)
907 {
908 tree rr, ri;
909
910 switch (PAIR (al, bl))
911 {
912 case PAIR (ONLY_REAL, ONLY_REAL):
913 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
914 ri = ai;
915 break;
916
917 case PAIR (ONLY_REAL, ONLY_IMAG):
918 rr = ar;
919 if (code == MINUS_EXPR)
920 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
921 else
922 ri = bi;
923 break;
924
925 case PAIR (ONLY_IMAG, ONLY_REAL):
926 if (code == MINUS_EXPR)
927 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
928 else
929 rr = br;
930 ri = ai;
931 break;
932
933 case PAIR (ONLY_IMAG, ONLY_IMAG):
934 rr = ar;
935 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
936 break;
937
938 case PAIR (VARYING, ONLY_REAL):
939 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
940 ri = ai;
941 break;
942
943 case PAIR (VARYING, ONLY_IMAG):
944 rr = ar;
945 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
946 break;
947
948 case PAIR (ONLY_REAL, VARYING):
949 if (code == MINUS_EXPR)
950 goto general;
951 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
952 ri = bi;
953 break;
954
955 case PAIR (ONLY_IMAG, VARYING):
956 if (code == MINUS_EXPR)
957 goto general;
958 rr = br;
959 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
960 break;
961
962 case PAIR (VARYING, VARYING):
963 general:
964 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
965 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
966 break;
967
968 default:
969 gcc_unreachable ();
970 }
971
972 update_complex_assignment (gsi, rr, ri);
973 }
974
975 /* Expand a complex multiplication or division to a libcall to the c99
976 compliant routines. */
977
978 static void
979 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
980 tree br, tree bi, enum tree_code code)
981 {
982 machine_mode mode;
983 enum built_in_function bcode;
984 tree fn, type, lhs;
985 gimple *old_stmt;
986 gcall *stmt;
987
988 old_stmt = gsi_stmt (*gsi);
989 lhs = gimple_assign_lhs (old_stmt);
990 type = TREE_TYPE (lhs);
991
992 mode = TYPE_MODE (type);
993 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
994
995 if (code == MULT_EXPR)
996 bcode = ((enum built_in_function)
997 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
998 else if (code == RDIV_EXPR)
999 bcode = ((enum built_in_function)
1000 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
1001 else
1002 gcc_unreachable ();
1003 fn = builtin_decl_explicit (bcode);
1004
1005 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
1006 gimple_call_set_lhs (stmt, lhs);
1007 update_stmt (stmt);
1008 gsi_replace (gsi, stmt, false);
1009
1010 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1011 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
1012
1013 if (gimple_in_ssa_p (cfun))
1014 {
1015 type = TREE_TYPE (type);
1016 update_complex_components (gsi, stmt,
1017 build1 (REALPART_EXPR, type, lhs),
1018 build1 (IMAGPART_EXPR, type, lhs));
1019 SSA_NAME_DEF_STMT (lhs) = stmt;
1020 }
1021 }
1022
1023 /* Expand complex multiplication to scalars:
1024 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1025 */
1026
1027 static void
1028 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
1029 tree ar, tree ai, tree br, tree bi,
1030 complex_lattice_t al, complex_lattice_t bl)
1031 {
1032 tree rr, ri;
1033
1034 if (al < bl)
1035 {
1036 complex_lattice_t tl;
1037 rr = ar, ar = br, br = rr;
1038 ri = ai, ai = bi, bi = ri;
1039 tl = al, al = bl, bl = tl;
1040 }
1041
1042 switch (PAIR (al, bl))
1043 {
1044 case PAIR (ONLY_REAL, ONLY_REAL):
1045 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1046 ri = ai;
1047 break;
1048
1049 case PAIR (ONLY_IMAG, ONLY_REAL):
1050 rr = ar;
1051 if (TREE_CODE (ai) == REAL_CST
1052 && real_identical (&TREE_REAL_CST (ai), &dconst1))
1053 ri = br;
1054 else
1055 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1056 break;
1057
1058 case PAIR (ONLY_IMAG, ONLY_IMAG):
1059 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1060 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1061 ri = ar;
1062 break;
1063
1064 case PAIR (VARYING, ONLY_REAL):
1065 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1066 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1067 break;
1068
1069 case PAIR (VARYING, ONLY_IMAG):
1070 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1071 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1072 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1073 break;
1074
1075 case PAIR (VARYING, VARYING):
1076 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1077 {
1078 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1079 return;
1080 }
1081 else
1082 {
1083 tree t1, t2, t3, t4;
1084
1085 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1086 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1087 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1088
1089 /* Avoid expanding redundant multiplication for the common
1090 case of squaring a complex number. */
1091 if (ar == br && ai == bi)
1092 t4 = t3;
1093 else
1094 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1095
1096 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1097 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1098 }
1099 break;
1100
1101 default:
1102 gcc_unreachable ();
1103 }
1104
1105 update_complex_assignment (gsi, rr, ri);
1106 }
1107
1108 /* Keep this algorithm in sync with fold-const.c:const_binop().
1109
1110 Expand complex division to scalars, straightforward algorithm.
1111 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1112 t = br*br + bi*bi
1113 */
1114
1115 static void
1116 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1117 tree ar, tree ai, tree br, tree bi,
1118 enum tree_code code)
1119 {
1120 tree rr, ri, div, t1, t2, t3;
1121
1122 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1123 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1124 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1125
1126 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1127 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1128 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1129 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1130
1131 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1132 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1133 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1134 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1135
1136 update_complex_assignment (gsi, rr, ri);
1137 }
1138
1139 /* Keep this algorithm in sync with fold-const.c:const_binop().
1140
1141 Expand complex division to scalars, modified algorithm to minimize
1142 overflow with wide input ranges. */
1143
1144 static void
1145 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1146 tree ar, tree ai, tree br, tree bi,
1147 enum tree_code code)
1148 {
1149 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1150 basic_block bb_cond, bb_true, bb_false, bb_join;
1151 gimple *stmt;
1152
1153 /* Examine |br| < |bi|, and branch. */
1154 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1155 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1156 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1157 LT_EXPR, boolean_type_node, t1, t2);
1158 STRIP_NOPS (compare);
1159
1160 bb_cond = bb_true = bb_false = bb_join = NULL;
1161 rr = ri = tr = ti = NULL;
1162 if (TREE_CODE (compare) != INTEGER_CST)
1163 {
1164 edge e;
1165 gimple *stmt;
1166 tree cond, tmp;
1167
1168 tmp = create_tmp_var (boolean_type_node);
1169 stmt = gimple_build_assign (tmp, compare);
1170 if (gimple_in_ssa_p (cfun))
1171 {
1172 tmp = make_ssa_name (tmp, stmt);
1173 gimple_assign_set_lhs (stmt, tmp);
1174 }
1175
1176 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1177
1178 cond = fold_build2_loc (gimple_location (stmt),
1179 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1180 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1181 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1182
1183 /* Split the original block, and create the TRUE and FALSE blocks. */
1184 e = split_block (gsi_bb (*gsi), stmt);
1185 bb_cond = e->src;
1186 bb_join = e->dest;
1187 bb_true = create_empty_bb (bb_cond);
1188 bb_false = create_empty_bb (bb_true);
1189 bb_true->frequency = bb_false->frequency = bb_cond->frequency / 2;
1190 bb_true->count = bb_false->count
1191 = bb_cond->count.apply_probability (profile_probability::even ());
1192
1193 /* Wire the blocks together. */
1194 e->flags = EDGE_TRUE_VALUE;
1195 e->count = bb_true->count;
1196 /* TODO: With value profile we could add an historgram to determine real
1197 branch outcome. */
1198 e->probability = profile_probability::even ();
1199 redirect_edge_succ (e, bb_true);
1200 edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1201 e2->count = bb_false->count;
1202 e2->probability = profile_probability::even ();
1203 make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
1204 make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
1205 add_bb_to_loop (bb_true, bb_cond->loop_father);
1206 add_bb_to_loop (bb_false, bb_cond->loop_father);
1207
1208 /* Update dominance info. Note that bb_join's data was
1209 updated by split_block. */
1210 if (dom_info_available_p (CDI_DOMINATORS))
1211 {
1212 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1213 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1214 }
1215
1216 rr = create_tmp_reg (inner_type);
1217 ri = create_tmp_reg (inner_type);
1218 }
1219
1220 /* In the TRUE branch, we compute
1221 ratio = br/bi;
1222 div = (br * ratio) + bi;
1223 tr = (ar * ratio) + ai;
1224 ti = (ai * ratio) - ar;
1225 tr = tr / div;
1226 ti = ti / div; */
1227 if (bb_true || integer_nonzerop (compare))
1228 {
1229 if (bb_true)
1230 {
1231 *gsi = gsi_last_bb (bb_true);
1232 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1233 }
1234
1235 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1236
1237 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1238 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1239
1240 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1241 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1242
1243 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1244 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1245
1246 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1247 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1248
1249 if (bb_true)
1250 {
1251 stmt = gimple_build_assign (rr, tr);
1252 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1253 stmt = gimple_build_assign (ri, ti);
1254 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1255 gsi_remove (gsi, true);
1256 }
1257 }
1258
1259 /* In the FALSE branch, we compute
1260 ratio = d/c;
1261 divisor = (d * ratio) + c;
1262 tr = (b * ratio) + a;
1263 ti = b - (a * ratio);
1264 tr = tr / div;
1265 ti = ti / div; */
1266 if (bb_false || integer_zerop (compare))
1267 {
1268 if (bb_false)
1269 {
1270 *gsi = gsi_last_bb (bb_false);
1271 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1272 }
1273
1274 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1275
1276 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1277 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1278
1279 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1280 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1281
1282 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1283 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1284
1285 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1286 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1287
1288 if (bb_false)
1289 {
1290 stmt = gimple_build_assign (rr, tr);
1291 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1292 stmt = gimple_build_assign (ri, ti);
1293 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1294 gsi_remove (gsi, true);
1295 }
1296 }
1297
1298 if (bb_join)
1299 *gsi = gsi_start_bb (bb_join);
1300 else
1301 rr = tr, ri = ti;
1302
1303 update_complex_assignment (gsi, rr, ri);
1304 }
1305
1306 /* Expand complex division to scalars. */
1307
1308 static void
1309 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1310 tree ar, tree ai, tree br, tree bi,
1311 enum tree_code code,
1312 complex_lattice_t al, complex_lattice_t bl)
1313 {
1314 tree rr, ri;
1315
1316 switch (PAIR (al, bl))
1317 {
1318 case PAIR (ONLY_REAL, ONLY_REAL):
1319 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1320 ri = ai;
1321 break;
1322
1323 case PAIR (ONLY_REAL, ONLY_IMAG):
1324 rr = ai;
1325 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1326 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1327 break;
1328
1329 case PAIR (ONLY_IMAG, ONLY_REAL):
1330 rr = ar;
1331 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1332 break;
1333
1334 case PAIR (ONLY_IMAG, ONLY_IMAG):
1335 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1336 ri = ar;
1337 break;
1338
1339 case PAIR (VARYING, ONLY_REAL):
1340 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1341 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1342 break;
1343
1344 case PAIR (VARYING, ONLY_IMAG):
1345 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1346 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1347 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1348 break;
1349
1350 case PAIR (ONLY_REAL, VARYING):
1351 case PAIR (ONLY_IMAG, VARYING):
1352 case PAIR (VARYING, VARYING):
1353 switch (flag_complex_method)
1354 {
1355 case 0:
1356 /* straightforward implementation of complex divide acceptable. */
1357 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1358 break;
1359
1360 case 2:
1361 if (SCALAR_FLOAT_TYPE_P (inner_type))
1362 {
1363 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1364 break;
1365 }
1366 /* FALLTHRU */
1367
1368 case 1:
1369 /* wide ranges of inputs must work for complex divide. */
1370 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1371 break;
1372
1373 default:
1374 gcc_unreachable ();
1375 }
1376 return;
1377
1378 default:
1379 gcc_unreachable ();
1380 }
1381
1382 update_complex_assignment (gsi, rr, ri);
1383 }
1384
1385 /* Expand complex negation to scalars:
1386 -a = (-ar) + i(-ai)
1387 */
1388
1389 static void
1390 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1391 tree ar, tree ai)
1392 {
1393 tree rr, ri;
1394
1395 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1396 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1397
1398 update_complex_assignment (gsi, rr, ri);
1399 }
1400
1401 /* Expand complex conjugate to scalars:
1402 ~a = (ar) + i(-ai)
1403 */
1404
1405 static void
1406 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1407 tree ar, tree ai)
1408 {
1409 tree ri;
1410
1411 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1412
1413 update_complex_assignment (gsi, ar, ri);
1414 }
1415
1416 /* Expand complex comparison (EQ or NE only). */
1417
1418 static void
1419 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1420 tree br, tree bi, enum tree_code code)
1421 {
1422 tree cr, ci, cc, type;
1423 gimple *stmt;
1424
1425 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1426 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1427 cc = gimplify_build2 (gsi,
1428 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1429 boolean_type_node, cr, ci);
1430
1431 stmt = gsi_stmt (*gsi);
1432
1433 switch (gimple_code (stmt))
1434 {
1435 case GIMPLE_RETURN:
1436 {
1437 greturn *return_stmt = as_a <greturn *> (stmt);
1438 type = TREE_TYPE (gimple_return_retval (return_stmt));
1439 gimple_return_set_retval (return_stmt, fold_convert (type, cc));
1440 }
1441 break;
1442
1443 case GIMPLE_ASSIGN:
1444 type = TREE_TYPE (gimple_assign_lhs (stmt));
1445 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1446 stmt = gsi_stmt (*gsi);
1447 break;
1448
1449 case GIMPLE_COND:
1450 {
1451 gcond *cond_stmt = as_a <gcond *> (stmt);
1452 gimple_cond_set_code (cond_stmt, EQ_EXPR);
1453 gimple_cond_set_lhs (cond_stmt, cc);
1454 gimple_cond_set_rhs (cond_stmt, boolean_true_node);
1455 }
1456 break;
1457
1458 default:
1459 gcc_unreachable ();
1460 }
1461
1462 update_stmt (stmt);
1463 }
1464
1465 /* Expand inline asm that sets some complex SSA_NAMEs. */
1466
1467 static void
1468 expand_complex_asm (gimple_stmt_iterator *gsi)
1469 {
1470 gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
1471 unsigned int i;
1472
1473 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1474 {
1475 tree link = gimple_asm_output_op (stmt, i);
1476 tree op = TREE_VALUE (link);
1477 if (TREE_CODE (op) == SSA_NAME
1478 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1479 {
1480 tree type = TREE_TYPE (op);
1481 tree inner_type = TREE_TYPE (type);
1482 tree r = build1 (REALPART_EXPR, inner_type, op);
1483 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1484 gimple_seq list = set_component_ssa_name (op, false, r);
1485
1486 if (list)
1487 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1488
1489 list = set_component_ssa_name (op, true, i);
1490 if (list)
1491 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1492 }
1493 }
1494 }
1495
1496 /* Process one statement. If we identify a complex operation, expand it. */
1497
1498 static void
1499 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1500 {
1501 gimple *stmt = gsi_stmt (*gsi);
1502 tree type, inner_type, lhs;
1503 tree ac, ar, ai, bc, br, bi;
1504 complex_lattice_t al, bl;
1505 enum tree_code code;
1506
1507 if (gimple_code (stmt) == GIMPLE_ASM)
1508 {
1509 expand_complex_asm (gsi);
1510 return;
1511 }
1512
1513 lhs = gimple_get_lhs (stmt);
1514 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1515 return;
1516
1517 type = TREE_TYPE (gimple_op (stmt, 0));
1518 code = gimple_expr_code (stmt);
1519
1520 /* Initial filter for operations we handle. */
1521 switch (code)
1522 {
1523 case PLUS_EXPR:
1524 case MINUS_EXPR:
1525 case MULT_EXPR:
1526 case TRUNC_DIV_EXPR:
1527 case CEIL_DIV_EXPR:
1528 case FLOOR_DIV_EXPR:
1529 case ROUND_DIV_EXPR:
1530 case RDIV_EXPR:
1531 case NEGATE_EXPR:
1532 case CONJ_EXPR:
1533 if (TREE_CODE (type) != COMPLEX_TYPE)
1534 return;
1535 inner_type = TREE_TYPE (type);
1536 break;
1537
1538 case EQ_EXPR:
1539 case NE_EXPR:
1540 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1541 subcode, so we need to access the operands using gimple_op. */
1542 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1543 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1544 return;
1545 break;
1546
1547 default:
1548 {
1549 tree rhs;
1550
1551 /* GIMPLE_COND may also fallthru here, but we do not need to
1552 do anything with it. */
1553 if (gimple_code (stmt) == GIMPLE_COND)
1554 return;
1555
1556 if (TREE_CODE (type) == COMPLEX_TYPE)
1557 expand_complex_move (gsi, type);
1558 else if (is_gimple_assign (stmt)
1559 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1560 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1561 && TREE_CODE (lhs) == SSA_NAME)
1562 {
1563 rhs = gimple_assign_rhs1 (stmt);
1564 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1565 gimple_assign_rhs_code (stmt)
1566 == IMAGPART_EXPR,
1567 false);
1568 gimple_assign_set_rhs_from_tree (gsi, rhs);
1569 stmt = gsi_stmt (*gsi);
1570 update_stmt (stmt);
1571 }
1572 }
1573 return;
1574 }
1575
1576 /* Extract the components of the two complex values. Make sure and
1577 handle the common case of the same value used twice specially. */
1578 if (is_gimple_assign (stmt))
1579 {
1580 ac = gimple_assign_rhs1 (stmt);
1581 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1582 }
1583 /* GIMPLE_CALL can not get here. */
1584 else
1585 {
1586 ac = gimple_cond_lhs (stmt);
1587 bc = gimple_cond_rhs (stmt);
1588 }
1589
1590 ar = extract_component (gsi, ac, false, true);
1591 ai = extract_component (gsi, ac, true, true);
1592
1593 if (ac == bc)
1594 br = ar, bi = ai;
1595 else if (bc)
1596 {
1597 br = extract_component (gsi, bc, 0, true);
1598 bi = extract_component (gsi, bc, 1, true);
1599 }
1600 else
1601 br = bi = NULL_TREE;
1602
1603 if (gimple_in_ssa_p (cfun))
1604 {
1605 al = find_lattice_value (ac);
1606 if (al == UNINITIALIZED)
1607 al = VARYING;
1608
1609 if (TREE_CODE_CLASS (code) == tcc_unary)
1610 bl = UNINITIALIZED;
1611 else if (ac == bc)
1612 bl = al;
1613 else
1614 {
1615 bl = find_lattice_value (bc);
1616 if (bl == UNINITIALIZED)
1617 bl = VARYING;
1618 }
1619 }
1620 else
1621 al = bl = VARYING;
1622
1623 switch (code)
1624 {
1625 case PLUS_EXPR:
1626 case MINUS_EXPR:
1627 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1628 break;
1629
1630 case MULT_EXPR:
1631 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1632 break;
1633
1634 case TRUNC_DIV_EXPR:
1635 case CEIL_DIV_EXPR:
1636 case FLOOR_DIV_EXPR:
1637 case ROUND_DIV_EXPR:
1638 case RDIV_EXPR:
1639 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1640 break;
1641
1642 case NEGATE_EXPR:
1643 expand_complex_negation (gsi, inner_type, ar, ai);
1644 break;
1645
1646 case CONJ_EXPR:
1647 expand_complex_conjugate (gsi, inner_type, ar, ai);
1648 break;
1649
1650 case EQ_EXPR:
1651 case NE_EXPR:
1652 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1653 break;
1654
1655 default:
1656 gcc_unreachable ();
1657 }
1658 }
1659
1660 \f
1661 /* Entry point for complex operation lowering during optimization. */
1662
1663 static unsigned int
1664 tree_lower_complex (void)
1665 {
1666 gimple_stmt_iterator gsi;
1667 basic_block bb;
1668 int n_bbs, i;
1669 int *rpo;
1670
1671 if (!init_dont_simulate_again ())
1672 return 0;
1673
1674 complex_lattice_values.create (num_ssa_names);
1675 complex_lattice_values.safe_grow_cleared (num_ssa_names);
1676
1677 init_parameter_lattice_values ();
1678 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1679
1680 complex_variable_components = new int_tree_htab_type (10);
1681
1682 complex_ssa_name_components.create (2 * num_ssa_names);
1683 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1684
1685 update_parameter_components ();
1686
1687 rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1688 n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
1689 for (i = 0; i < n_bbs; i++)
1690 {
1691 bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
1692 update_phi_components (bb);
1693 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1694 expand_complex_operations_1 (&gsi);
1695 }
1696
1697 free (rpo);
1698
1699 if (!phis_to_revisit.is_empty ())
1700 {
1701 unsigned int n = phis_to_revisit.length ();
1702 for (unsigned int j = 0; j < n; j += 3)
1703 for (unsigned int k = 0; k < 2; k++)
1704 if (gphi *phi = phis_to_revisit[j + k + 1])
1705 {
1706 unsigned int m = gimple_phi_num_args (phi);
1707 for (unsigned int l = 0; l < m; ++l)
1708 {
1709 tree op = gimple_phi_arg_def (phi, l);
1710 if (TREE_CODE (op) == SSA_NAME
1711 || is_gimple_min_invariant (op))
1712 continue;
1713 tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
1714 op = extract_component (NULL, arg, k > 0, false, false);
1715 SET_PHI_ARG_DEF (phi, l, op);
1716 }
1717 }
1718 phis_to_revisit.release ();
1719 }
1720
1721 gsi_commit_edge_inserts ();
1722
1723 delete complex_variable_components;
1724 complex_variable_components = NULL;
1725 complex_ssa_name_components.release ();
1726 complex_lattice_values.release ();
1727 return 0;
1728 }
1729
1730 namespace {
1731
1732 const pass_data pass_data_lower_complex =
1733 {
1734 GIMPLE_PASS, /* type */
1735 "cplxlower", /* name */
1736 OPTGROUP_NONE, /* optinfo_flags */
1737 TV_NONE, /* tv_id */
1738 PROP_ssa, /* properties_required */
1739 PROP_gimple_lcx, /* properties_provided */
1740 0, /* properties_destroyed */
1741 0, /* todo_flags_start */
1742 TODO_update_ssa, /* todo_flags_finish */
1743 };
1744
1745 class pass_lower_complex : public gimple_opt_pass
1746 {
1747 public:
1748 pass_lower_complex (gcc::context *ctxt)
1749 : gimple_opt_pass (pass_data_lower_complex, ctxt)
1750 {}
1751
1752 /* opt_pass methods: */
1753 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
1754 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1755
1756 }; // class pass_lower_complex
1757
1758 } // anon namespace
1759
1760 gimple_opt_pass *
1761 make_pass_lower_complex (gcc::context *ctxt)
1762 {
1763 return new pass_lower_complex (ctxt);
1764 }
1765
1766 \f
1767 namespace {
1768
1769 const pass_data pass_data_lower_complex_O0 =
1770 {
1771 GIMPLE_PASS, /* type */
1772 "cplxlower0", /* name */
1773 OPTGROUP_NONE, /* optinfo_flags */
1774 TV_NONE, /* tv_id */
1775 PROP_cfg, /* properties_required */
1776 PROP_gimple_lcx, /* properties_provided */
1777 0, /* properties_destroyed */
1778 0, /* todo_flags_start */
1779 TODO_update_ssa, /* todo_flags_finish */
1780 };
1781
1782 class pass_lower_complex_O0 : public gimple_opt_pass
1783 {
1784 public:
1785 pass_lower_complex_O0 (gcc::context *ctxt)
1786 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1787 {}
1788
1789 /* opt_pass methods: */
1790 virtual bool gate (function *fun)
1791 {
1792 /* With errors, normal optimization passes are not run. If we don't
1793 lower complex operations at all, rtl expansion will abort. */
1794 return !(fun->curr_properties & PROP_gimple_lcx);
1795 }
1796
1797 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1798
1799 }; // class pass_lower_complex_O0
1800
1801 } // anon namespace
1802
1803 gimple_opt_pass *
1804 make_pass_lower_complex_O0 (gcc::context *ctxt)
1805 {
1806 return new pass_lower_complex_O0 (ctxt);
1807 }