]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-complex.c
basic-block.h (edge_list): Prefix member names with "m_".
[thirdparty/gcc.git] / gcc / tree-complex.c
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "flags.h"
26 #include "tree-ssa.h"
27 #include "gimple.h"
28 #include "tree-iterator.h"
29 #include "tree-pass.h"
30 #include "tree-ssa-propagate.h"
31 #include "tree-hasher.h"
32 #include "cfgloop.h"
33
34
35 /* For each complex ssa name, a lattice value. We're interested in finding
36 out whether a complex number is degenerate in some way, having only real
37 or only complex parts. */
38
39 enum
40 {
41 UNINITIALIZED = 0,
42 ONLY_REAL = 1,
43 ONLY_IMAG = 2,
44 VARYING = 3
45 };
46
47 /* The type complex_lattice_t holds combinations of the above
48 constants. */
49 typedef int complex_lattice_t;
50
51 #define PAIR(a, b) ((a) << 2 | (b))
52
53
54 static vec<complex_lattice_t> complex_lattice_values;
55
56 /* For each complex variable, a pair of variables for the components exists in
57 the hashtable. */
58 static int_tree_htab_type complex_variable_components;
59
60 /* For each complex SSA_NAME, a pair of ssa names for the components. */
61 static vec<tree> complex_ssa_name_components;
62
63 /* Lookup UID in the complex_variable_components hashtable and return the
64 associated tree. */
65 static tree
66 cvc_lookup (unsigned int uid)
67 {
68 struct int_tree_map *h, in;
69 in.uid = uid;
70 h = complex_variable_components.find_with_hash (&in, uid);
71 return h ? h->to : NULL;
72 }
73
74 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
75
76 static void
77 cvc_insert (unsigned int uid, tree to)
78 {
79 struct int_tree_map *h;
80 int_tree_map **loc;
81
82 h = XNEW (struct int_tree_map);
83 h->uid = uid;
84 h->to = to;
85 loc = complex_variable_components.find_slot_with_hash (h, uid, INSERT);
86 *loc = h;
87 }
88
89 /* Return true if T is not a zero constant. In the case of real values,
90 we're only interested in +0.0. */
91
92 static int
93 some_nonzerop (tree t)
94 {
95 int zerop = false;
96
97 /* Operations with real or imaginary part of a complex number zero
98 cannot be treated the same as operations with a real or imaginary
99 operand if we care about the signs of zeros in the result. */
100 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
101 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
102 else if (TREE_CODE (t) == FIXED_CST)
103 zerop = fixed_zerop (t);
104 else if (TREE_CODE (t) == INTEGER_CST)
105 zerop = integer_zerop (t);
106
107 return !zerop;
108 }
109
110
111 /* Compute a lattice value from the components of a complex type REAL
112 and IMAG. */
113
114 static complex_lattice_t
115 find_lattice_value_parts (tree real, tree imag)
116 {
117 int r, i;
118 complex_lattice_t ret;
119
120 r = some_nonzerop (real);
121 i = some_nonzerop (imag);
122 ret = r * ONLY_REAL + i * ONLY_IMAG;
123
124 /* ??? On occasion we could do better than mapping 0+0i to real, but we
125 certainly don't want to leave it UNINITIALIZED, which eventually gets
126 mapped to VARYING. */
127 if (ret == UNINITIALIZED)
128 ret = ONLY_REAL;
129
130 return ret;
131 }
132
133
134 /* Compute a lattice value from gimple_val T. */
135
136 static complex_lattice_t
137 find_lattice_value (tree t)
138 {
139 tree real, imag;
140
141 switch (TREE_CODE (t))
142 {
143 case SSA_NAME:
144 return complex_lattice_values[SSA_NAME_VERSION (t)];
145
146 case COMPLEX_CST:
147 real = TREE_REALPART (t);
148 imag = TREE_IMAGPART (t);
149 break;
150
151 default:
152 gcc_unreachable ();
153 }
154
155 return find_lattice_value_parts (real, imag);
156 }
157
158 /* Determine if LHS is something for which we're interested in seeing
159 simulation results. */
160
161 static bool
162 is_complex_reg (tree lhs)
163 {
164 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
165 }
166
167 /* Mark the incoming parameters to the function as VARYING. */
168
169 static void
170 init_parameter_lattice_values (void)
171 {
172 tree parm, ssa_name;
173
174 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
175 if (is_complex_reg (parm)
176 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
177 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
178 }
179
180 /* Initialize simulation state for each statement. Return false if we
181 found no statements we want to simulate, and thus there's nothing
182 for the entire pass to do. */
183
184 static bool
185 init_dont_simulate_again (void)
186 {
187 basic_block bb;
188 gimple_stmt_iterator gsi;
189 gimple phi;
190 bool saw_a_complex_op = false;
191
192 FOR_EACH_BB (bb)
193 {
194 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
195 {
196 phi = gsi_stmt (gsi);
197 prop_set_simulate_again (phi,
198 is_complex_reg (gimple_phi_result (phi)));
199 }
200
201 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
202 {
203 gimple stmt;
204 tree op0, op1;
205 bool sim_again_p;
206
207 stmt = gsi_stmt (gsi);
208 op0 = op1 = NULL_TREE;
209
210 /* Most control-altering statements must be initially
211 simulated, else we won't cover the entire cfg. */
212 sim_again_p = stmt_ends_bb_p (stmt);
213
214 switch (gimple_code (stmt))
215 {
216 case GIMPLE_CALL:
217 if (gimple_call_lhs (stmt))
218 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
219 break;
220
221 case GIMPLE_ASSIGN:
222 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
223 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
224 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
225 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
226 else
227 op0 = gimple_assign_rhs1 (stmt);
228 if (gimple_num_ops (stmt) > 2)
229 op1 = gimple_assign_rhs2 (stmt);
230 break;
231
232 case GIMPLE_COND:
233 op0 = gimple_cond_lhs (stmt);
234 op1 = gimple_cond_rhs (stmt);
235 break;
236
237 default:
238 break;
239 }
240
241 if (op0 || op1)
242 switch (gimple_expr_code (stmt))
243 {
244 case EQ_EXPR:
245 case NE_EXPR:
246 case PLUS_EXPR:
247 case MINUS_EXPR:
248 case MULT_EXPR:
249 case TRUNC_DIV_EXPR:
250 case CEIL_DIV_EXPR:
251 case FLOOR_DIV_EXPR:
252 case ROUND_DIV_EXPR:
253 case RDIV_EXPR:
254 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
255 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
256 saw_a_complex_op = true;
257 break;
258
259 case NEGATE_EXPR:
260 case CONJ_EXPR:
261 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
262 saw_a_complex_op = true;
263 break;
264
265 case REALPART_EXPR:
266 case IMAGPART_EXPR:
267 /* The total store transformation performed during
268 gimplification creates such uninitialized loads
269 and we need to lower the statement to be able
270 to fix things up. */
271 if (TREE_CODE (op0) == SSA_NAME
272 && ssa_undefined_value_p (op0))
273 saw_a_complex_op = true;
274 break;
275
276 default:
277 break;
278 }
279
280 prop_set_simulate_again (stmt, sim_again_p);
281 }
282 }
283
284 return saw_a_complex_op;
285 }
286
287
288 /* Evaluate statement STMT against the complex lattice defined above. */
289
290 static enum ssa_prop_result
291 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
292 tree *result_p)
293 {
294 complex_lattice_t new_l, old_l, op1_l, op2_l;
295 unsigned int ver;
296 tree lhs;
297
298 lhs = gimple_get_lhs (stmt);
299 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
300 if (!lhs)
301 return SSA_PROP_VARYING;
302
303 /* These conditions should be satisfied due to the initial filter
304 set up in init_dont_simulate_again. */
305 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
306 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
307
308 *result_p = lhs;
309 ver = SSA_NAME_VERSION (lhs);
310 old_l = complex_lattice_values[ver];
311
312 switch (gimple_expr_code (stmt))
313 {
314 case SSA_NAME:
315 case COMPLEX_CST:
316 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
317 break;
318
319 case COMPLEX_EXPR:
320 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
321 gimple_assign_rhs2 (stmt));
322 break;
323
324 case PLUS_EXPR:
325 case MINUS_EXPR:
326 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
327 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
328
329 /* We've set up the lattice values such that IOR neatly
330 models addition. */
331 new_l = op1_l | op2_l;
332 break;
333
334 case MULT_EXPR:
335 case RDIV_EXPR:
336 case TRUNC_DIV_EXPR:
337 case CEIL_DIV_EXPR:
338 case FLOOR_DIV_EXPR:
339 case ROUND_DIV_EXPR:
340 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
341 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
342
343 /* Obviously, if either varies, so does the result. */
344 if (op1_l == VARYING || op2_l == VARYING)
345 new_l = VARYING;
346 /* Don't prematurely promote variables if we've not yet seen
347 their inputs. */
348 else if (op1_l == UNINITIALIZED)
349 new_l = op2_l;
350 else if (op2_l == UNINITIALIZED)
351 new_l = op1_l;
352 else
353 {
354 /* At this point both numbers have only one component. If the
355 numbers are of opposite kind, the result is imaginary,
356 otherwise the result is real. The add/subtract translates
357 the real/imag from/to 0/1; the ^ performs the comparison. */
358 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
359
360 /* Don't allow the lattice value to flip-flop indefinitely. */
361 new_l |= old_l;
362 }
363 break;
364
365 case NEGATE_EXPR:
366 case CONJ_EXPR:
367 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
368 break;
369
370 default:
371 new_l = VARYING;
372 break;
373 }
374
375 /* If nothing changed this round, let the propagator know. */
376 if (new_l == old_l)
377 return SSA_PROP_NOT_INTERESTING;
378
379 complex_lattice_values[ver] = new_l;
380 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
381 }
382
383 /* Evaluate a PHI node against the complex lattice defined above. */
384
385 static enum ssa_prop_result
386 complex_visit_phi (gimple phi)
387 {
388 complex_lattice_t new_l, old_l;
389 unsigned int ver;
390 tree lhs;
391 int i;
392
393 lhs = gimple_phi_result (phi);
394
395 /* This condition should be satisfied due to the initial filter
396 set up in init_dont_simulate_again. */
397 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
398
399 /* We've set up the lattice values such that IOR neatly models PHI meet. */
400 new_l = UNINITIALIZED;
401 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
402 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
403
404 ver = SSA_NAME_VERSION (lhs);
405 old_l = complex_lattice_values[ver];
406
407 if (new_l == old_l)
408 return SSA_PROP_NOT_INTERESTING;
409
410 complex_lattice_values[ver] = new_l;
411 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
412 }
413
414 /* Create one backing variable for a complex component of ORIG. */
415
416 static tree
417 create_one_component_var (tree type, tree orig, const char *prefix,
418 const char *suffix, enum tree_code code)
419 {
420 tree r = create_tmp_var (type, prefix);
421
422 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
423 DECL_ARTIFICIAL (r) = 1;
424
425 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
426 {
427 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
428
429 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
430
431 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
432 DECL_HAS_DEBUG_EXPR_P (r) = 1;
433 DECL_IGNORED_P (r) = 0;
434 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
435 }
436 else
437 {
438 DECL_IGNORED_P (r) = 1;
439 TREE_NO_WARNING (r) = 1;
440 }
441
442 return r;
443 }
444
445 /* Retrieve a value for a complex component of VAR. */
446
447 static tree
448 get_component_var (tree var, bool imag_p)
449 {
450 size_t decl_index = DECL_UID (var) * 2 + imag_p;
451 tree ret = cvc_lookup (decl_index);
452
453 if (ret == NULL)
454 {
455 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
456 imag_p ? "CI" : "CR",
457 imag_p ? "$imag" : "$real",
458 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
459 cvc_insert (decl_index, ret);
460 }
461
462 return ret;
463 }
464
465 /* Retrieve a value for a complex component of SSA_NAME. */
466
467 static tree
468 get_component_ssa_name (tree ssa_name, bool imag_p)
469 {
470 complex_lattice_t lattice = find_lattice_value (ssa_name);
471 size_t ssa_name_index;
472 tree ret;
473
474 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
475 {
476 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
477 if (SCALAR_FLOAT_TYPE_P (inner_type))
478 return build_real (inner_type, dconst0);
479 else
480 return build_int_cst (inner_type, 0);
481 }
482
483 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
484 ret = complex_ssa_name_components[ssa_name_index];
485 if (ret == NULL)
486 {
487 if (SSA_NAME_VAR (ssa_name))
488 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
489 else
490 ret = TREE_TYPE (TREE_TYPE (ssa_name));
491 ret = make_ssa_name (ret, NULL);
492
493 /* Copy some properties from the original. In particular, whether it
494 is used in an abnormal phi, and whether it's uninitialized. */
495 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
496 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
497 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
498 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
499 {
500 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
501 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
502 }
503
504 complex_ssa_name_components[ssa_name_index] = ret;
505 }
506
507 return ret;
508 }
509
510 /* Set a value for a complex component of SSA_NAME, return a
511 gimple_seq of stuff that needs doing. */
512
513 static gimple_seq
514 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
515 {
516 complex_lattice_t lattice = find_lattice_value (ssa_name);
517 size_t ssa_name_index;
518 tree comp;
519 gimple last;
520 gimple_seq list;
521
522 /* We know the value must be zero, else there's a bug in our lattice
523 analysis. But the value may well be a variable known to contain
524 zero. We should be safe ignoring it. */
525 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
526 return NULL;
527
528 /* If we've already assigned an SSA_NAME to this component, then this
529 means that our walk of the basic blocks found a use before the set.
530 This is fine. Now we should create an initialization for the value
531 we created earlier. */
532 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
533 comp = complex_ssa_name_components[ssa_name_index];
534 if (comp)
535 ;
536
537 /* If we've nothing assigned, and the value we're given is already stable,
538 then install that as the value for this SSA_NAME. This preemptively
539 copy-propagates the value, which avoids unnecessary memory allocation. */
540 else if (is_gimple_min_invariant (value)
541 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
542 {
543 complex_ssa_name_components[ssa_name_index] = value;
544 return NULL;
545 }
546 else if (TREE_CODE (value) == SSA_NAME
547 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
548 {
549 /* Replace an anonymous base value with the variable from cvc_lookup.
550 This should result in better debug info. */
551 if (SSA_NAME_VAR (ssa_name)
552 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
553 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
554 {
555 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
556 replace_ssa_name_symbol (value, comp);
557 }
558
559 complex_ssa_name_components[ssa_name_index] = value;
560 return NULL;
561 }
562
563 /* Finally, we need to stabilize the result by installing the value into
564 a new ssa name. */
565 else
566 comp = get_component_ssa_name (ssa_name, imag_p);
567
568 /* Do all the work to assign VALUE to COMP. */
569 list = NULL;
570 value = force_gimple_operand (value, &list, false, NULL);
571 last = gimple_build_assign (comp, value);
572 gimple_seq_add_stmt (&list, last);
573 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
574
575 return list;
576 }
577
578 /* Extract the real or imaginary part of a complex variable or constant.
579 Make sure that it's a proper gimple_val and gimplify it if not.
580 Emit any new code before gsi. */
581
582 static tree
583 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
584 bool gimple_p)
585 {
586 switch (TREE_CODE (t))
587 {
588 case COMPLEX_CST:
589 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
590
591 case COMPLEX_EXPR:
592 gcc_unreachable ();
593
594 case VAR_DECL:
595 case RESULT_DECL:
596 case PARM_DECL:
597 case COMPONENT_REF:
598 case ARRAY_REF:
599 case VIEW_CONVERT_EXPR:
600 case MEM_REF:
601 {
602 tree inner_type = TREE_TYPE (TREE_TYPE (t));
603
604 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
605 inner_type, unshare_expr (t));
606
607 if (gimple_p)
608 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
609 GSI_SAME_STMT);
610
611 return t;
612 }
613
614 case SSA_NAME:
615 return get_component_ssa_name (t, imagpart_p);
616
617 default:
618 gcc_unreachable ();
619 }
620 }
621
622 /* Update the complex components of the ssa name on the lhs of STMT. */
623
624 static void
625 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
626 tree i)
627 {
628 tree lhs;
629 gimple_seq list;
630
631 lhs = gimple_get_lhs (stmt);
632
633 list = set_component_ssa_name (lhs, false, r);
634 if (list)
635 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
636
637 list = set_component_ssa_name (lhs, true, i);
638 if (list)
639 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
640 }
641
642 static void
643 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
644 {
645 gimple_seq list;
646
647 list = set_component_ssa_name (lhs, false, r);
648 if (list)
649 gsi_insert_seq_on_edge (e, list);
650
651 list = set_component_ssa_name (lhs, true, i);
652 if (list)
653 gsi_insert_seq_on_edge (e, list);
654 }
655
656
657 /* Update an assignment to a complex variable in place. */
658
659 static void
660 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
661 {
662 gimple stmt;
663
664 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
665 stmt = gsi_stmt (*gsi);
666 update_stmt (stmt);
667 if (maybe_clean_eh_stmt (stmt))
668 gimple_purge_dead_eh_edges (gimple_bb (stmt));
669
670 if (gimple_in_ssa_p (cfun))
671 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
672 }
673
674
675 /* Generate code at the entry point of the function to initialize the
676 component variables for a complex parameter. */
677
678 static void
679 update_parameter_components (void)
680 {
681 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
682 tree parm;
683
684 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
685 {
686 tree type = TREE_TYPE (parm);
687 tree ssa_name, r, i;
688
689 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
690 continue;
691
692 type = TREE_TYPE (type);
693 ssa_name = ssa_default_def (cfun, parm);
694 if (!ssa_name)
695 continue;
696
697 r = build1 (REALPART_EXPR, type, ssa_name);
698 i = build1 (IMAGPART_EXPR, type, ssa_name);
699 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
700 }
701 }
702
703 /* Generate code to set the component variables of a complex variable
704 to match the PHI statements in block BB. */
705
706 static void
707 update_phi_components (basic_block bb)
708 {
709 gimple_stmt_iterator gsi;
710
711 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
712 {
713 gimple phi = gsi_stmt (gsi);
714
715 if (is_complex_reg (gimple_phi_result (phi)))
716 {
717 tree lr, li;
718 gimple pr = NULL, pi = NULL;
719 unsigned int i, n;
720
721 lr = get_component_ssa_name (gimple_phi_result (phi), false);
722 if (TREE_CODE (lr) == SSA_NAME)
723 pr = create_phi_node (lr, bb);
724
725 li = get_component_ssa_name (gimple_phi_result (phi), true);
726 if (TREE_CODE (li) == SSA_NAME)
727 pi = create_phi_node (li, bb);
728
729 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
730 {
731 tree comp, arg = gimple_phi_arg_def (phi, i);
732 if (pr)
733 {
734 comp = extract_component (NULL, arg, false, false);
735 SET_PHI_ARG_DEF (pr, i, comp);
736 }
737 if (pi)
738 {
739 comp = extract_component (NULL, arg, true, false);
740 SET_PHI_ARG_DEF (pi, i, comp);
741 }
742 }
743 }
744 }
745 }
746
747 /* Expand a complex move to scalars. */
748
749 static void
750 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
751 {
752 tree inner_type = TREE_TYPE (type);
753 tree r, i, lhs, rhs;
754 gimple stmt = gsi_stmt (*gsi);
755
756 if (is_gimple_assign (stmt))
757 {
758 lhs = gimple_assign_lhs (stmt);
759 if (gimple_num_ops (stmt) == 2)
760 rhs = gimple_assign_rhs1 (stmt);
761 else
762 rhs = NULL_TREE;
763 }
764 else if (is_gimple_call (stmt))
765 {
766 lhs = gimple_call_lhs (stmt);
767 rhs = NULL_TREE;
768 }
769 else
770 gcc_unreachable ();
771
772 if (TREE_CODE (lhs) == SSA_NAME)
773 {
774 if (is_ctrl_altering_stmt (stmt))
775 {
776 edge e;
777
778 /* The value is not assigned on the exception edges, so we need not
779 concern ourselves there. We do need to update on the fallthru
780 edge. Find it. */
781 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
782 if (!e)
783 gcc_unreachable ();
784
785 r = build1 (REALPART_EXPR, inner_type, lhs);
786 i = build1 (IMAGPART_EXPR, inner_type, lhs);
787 update_complex_components_on_edge (e, lhs, r, i);
788 }
789 else if (is_gimple_call (stmt)
790 || gimple_has_side_effects (stmt)
791 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
792 {
793 r = build1 (REALPART_EXPR, inner_type, lhs);
794 i = build1 (IMAGPART_EXPR, inner_type, lhs);
795 update_complex_components (gsi, stmt, r, i);
796 }
797 else
798 {
799 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
800 {
801 r = extract_component (gsi, rhs, 0, true);
802 i = extract_component (gsi, rhs, 1, true);
803 }
804 else
805 {
806 r = gimple_assign_rhs1 (stmt);
807 i = gimple_assign_rhs2 (stmt);
808 }
809 update_complex_assignment (gsi, r, i);
810 }
811 }
812 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
813 {
814 tree x;
815 gimple t;
816
817 r = extract_component (gsi, rhs, 0, false);
818 i = extract_component (gsi, rhs, 1, false);
819
820 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
821 t = gimple_build_assign (x, r);
822 gsi_insert_before (gsi, t, GSI_SAME_STMT);
823
824 if (stmt == gsi_stmt (*gsi))
825 {
826 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
827 gimple_assign_set_lhs (stmt, x);
828 gimple_assign_set_rhs1 (stmt, i);
829 }
830 else
831 {
832 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
833 t = gimple_build_assign (x, i);
834 gsi_insert_before (gsi, t, GSI_SAME_STMT);
835
836 stmt = gsi_stmt (*gsi);
837 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
838 gimple_return_set_retval (stmt, lhs);
839 }
840
841 update_stmt (stmt);
842 }
843 }
844
845 /* Expand complex addition to scalars:
846 a + b = (ar + br) + i(ai + bi)
847 a - b = (ar - br) + i(ai + bi)
848 */
849
850 static void
851 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
852 tree ar, tree ai, tree br, tree bi,
853 enum tree_code code,
854 complex_lattice_t al, complex_lattice_t bl)
855 {
856 tree rr, ri;
857
858 switch (PAIR (al, bl))
859 {
860 case PAIR (ONLY_REAL, ONLY_REAL):
861 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
862 ri = ai;
863 break;
864
865 case PAIR (ONLY_REAL, ONLY_IMAG):
866 rr = ar;
867 if (code == MINUS_EXPR)
868 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
869 else
870 ri = bi;
871 break;
872
873 case PAIR (ONLY_IMAG, ONLY_REAL):
874 if (code == MINUS_EXPR)
875 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
876 else
877 rr = br;
878 ri = ai;
879 break;
880
881 case PAIR (ONLY_IMAG, ONLY_IMAG):
882 rr = ar;
883 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
884 break;
885
886 case PAIR (VARYING, ONLY_REAL):
887 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
888 ri = ai;
889 break;
890
891 case PAIR (VARYING, ONLY_IMAG):
892 rr = ar;
893 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
894 break;
895
896 case PAIR (ONLY_REAL, VARYING):
897 if (code == MINUS_EXPR)
898 goto general;
899 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
900 ri = bi;
901 break;
902
903 case PAIR (ONLY_IMAG, VARYING):
904 if (code == MINUS_EXPR)
905 goto general;
906 rr = br;
907 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
908 break;
909
910 case PAIR (VARYING, VARYING):
911 general:
912 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
913 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
914 break;
915
916 default:
917 gcc_unreachable ();
918 }
919
920 update_complex_assignment (gsi, rr, ri);
921 }
922
923 /* Expand a complex multiplication or division to a libcall to the c99
924 compliant routines. */
925
926 static void
927 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
928 tree br, tree bi, enum tree_code code)
929 {
930 enum machine_mode mode;
931 enum built_in_function bcode;
932 tree fn, type, lhs;
933 gimple old_stmt, stmt;
934
935 old_stmt = gsi_stmt (*gsi);
936 lhs = gimple_assign_lhs (old_stmt);
937 type = TREE_TYPE (lhs);
938
939 mode = TYPE_MODE (type);
940 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
941
942 if (code == MULT_EXPR)
943 bcode = ((enum built_in_function)
944 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
945 else if (code == RDIV_EXPR)
946 bcode = ((enum built_in_function)
947 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
948 else
949 gcc_unreachable ();
950 fn = builtin_decl_explicit (bcode);
951
952 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
953 gimple_call_set_lhs (stmt, lhs);
954 update_stmt (stmt);
955 gsi_replace (gsi, stmt, false);
956
957 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
958 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
959
960 if (gimple_in_ssa_p (cfun))
961 {
962 type = TREE_TYPE (type);
963 update_complex_components (gsi, stmt,
964 build1 (REALPART_EXPR, type, lhs),
965 build1 (IMAGPART_EXPR, type, lhs));
966 SSA_NAME_DEF_STMT (lhs) = stmt;
967 }
968 }
969
970 /* Expand complex multiplication to scalars:
971 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
972 */
973
974 static void
975 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
976 tree ar, tree ai, tree br, tree bi,
977 complex_lattice_t al, complex_lattice_t bl)
978 {
979 tree rr, ri;
980
981 if (al < bl)
982 {
983 complex_lattice_t tl;
984 rr = ar, ar = br, br = rr;
985 ri = ai, ai = bi, bi = ri;
986 tl = al, al = bl, bl = tl;
987 }
988
989 switch (PAIR (al, bl))
990 {
991 case PAIR (ONLY_REAL, ONLY_REAL):
992 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
993 ri = ai;
994 break;
995
996 case PAIR (ONLY_IMAG, ONLY_REAL):
997 rr = ar;
998 if (TREE_CODE (ai) == REAL_CST
999 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1000 ri = br;
1001 else
1002 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1003 break;
1004
1005 case PAIR (ONLY_IMAG, ONLY_IMAG):
1006 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1007 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1008 ri = ar;
1009 break;
1010
1011 case PAIR (VARYING, ONLY_REAL):
1012 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1013 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1014 break;
1015
1016 case PAIR (VARYING, ONLY_IMAG):
1017 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1018 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1019 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1020 break;
1021
1022 case PAIR (VARYING, VARYING):
1023 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1024 {
1025 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1026 return;
1027 }
1028 else
1029 {
1030 tree t1, t2, t3, t4;
1031
1032 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1033 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1034 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1035
1036 /* Avoid expanding redundant multiplication for the common
1037 case of squaring a complex number. */
1038 if (ar == br && ai == bi)
1039 t4 = t3;
1040 else
1041 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1042
1043 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1044 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1045 }
1046 break;
1047
1048 default:
1049 gcc_unreachable ();
1050 }
1051
1052 update_complex_assignment (gsi, rr, ri);
1053 }
1054
1055 /* Keep this algorithm in sync with fold-const.c:const_binop().
1056
1057 Expand complex division to scalars, straightforward algorithm.
1058 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1059 t = br*br + bi*bi
1060 */
1061
1062 static void
1063 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1064 tree ar, tree ai, tree br, tree bi,
1065 enum tree_code code)
1066 {
1067 tree rr, ri, div, t1, t2, t3;
1068
1069 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1070 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1071 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1072
1073 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1074 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1075 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1076 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1077
1078 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1079 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1080 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1081 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1082
1083 update_complex_assignment (gsi, rr, ri);
1084 }
1085
1086 /* Keep this algorithm in sync with fold-const.c:const_binop().
1087
1088 Expand complex division to scalars, modified algorithm to minimize
1089 overflow with wide input ranges. */
1090
1091 static void
1092 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1093 tree ar, tree ai, tree br, tree bi,
1094 enum tree_code code)
1095 {
1096 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1097 basic_block bb_cond, bb_true, bb_false, bb_join;
1098 gimple stmt;
1099
1100 /* Examine |br| < |bi|, and branch. */
1101 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1102 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1103 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1104 LT_EXPR, boolean_type_node, t1, t2);
1105 STRIP_NOPS (compare);
1106
1107 bb_cond = bb_true = bb_false = bb_join = NULL;
1108 rr = ri = tr = ti = NULL;
1109 if (TREE_CODE (compare) != INTEGER_CST)
1110 {
1111 edge e;
1112 gimple stmt;
1113 tree cond, tmp;
1114
1115 tmp = create_tmp_var (boolean_type_node, NULL);
1116 stmt = gimple_build_assign (tmp, compare);
1117 if (gimple_in_ssa_p (cfun))
1118 {
1119 tmp = make_ssa_name (tmp, stmt);
1120 gimple_assign_set_lhs (stmt, tmp);
1121 }
1122
1123 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1124
1125 cond = fold_build2_loc (gimple_location (stmt),
1126 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1127 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1128 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1129
1130 /* Split the original block, and create the TRUE and FALSE blocks. */
1131 e = split_block (gsi_bb (*gsi), stmt);
1132 bb_cond = e->src;
1133 bb_join = e->dest;
1134 bb_true = create_empty_bb (bb_cond);
1135 bb_false = create_empty_bb (bb_true);
1136
1137 /* Wire the blocks together. */
1138 e->flags = EDGE_TRUE_VALUE;
1139 redirect_edge_succ (e, bb_true);
1140 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1141 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1142 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1143 if (current_loops)
1144 {
1145 add_bb_to_loop (bb_true, bb_cond->loop_father);
1146 add_bb_to_loop (bb_false, bb_cond->loop_father);
1147 }
1148
1149 /* Update dominance info. Note that bb_join's data was
1150 updated by split_block. */
1151 if (dom_info_available_p (CDI_DOMINATORS))
1152 {
1153 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1154 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1155 }
1156
1157 rr = create_tmp_reg (inner_type, NULL);
1158 ri = create_tmp_reg (inner_type, NULL);
1159 }
1160
1161 /* In the TRUE branch, we compute
1162 ratio = br/bi;
1163 div = (br * ratio) + bi;
1164 tr = (ar * ratio) + ai;
1165 ti = (ai * ratio) - ar;
1166 tr = tr / div;
1167 ti = ti / div; */
1168 if (bb_true || integer_nonzerop (compare))
1169 {
1170 if (bb_true)
1171 {
1172 *gsi = gsi_last_bb (bb_true);
1173 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1174 }
1175
1176 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1177
1178 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1179 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1180
1181 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1182 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1183
1184 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1185 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1186
1187 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1188 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1189
1190 if (bb_true)
1191 {
1192 stmt = gimple_build_assign (rr, tr);
1193 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1194 stmt = gimple_build_assign (ri, ti);
1195 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1196 gsi_remove (gsi, true);
1197 }
1198 }
1199
1200 /* In the FALSE branch, we compute
1201 ratio = d/c;
1202 divisor = (d * ratio) + c;
1203 tr = (b * ratio) + a;
1204 ti = b - (a * ratio);
1205 tr = tr / div;
1206 ti = ti / div; */
1207 if (bb_false || integer_zerop (compare))
1208 {
1209 if (bb_false)
1210 {
1211 *gsi = gsi_last_bb (bb_false);
1212 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1213 }
1214
1215 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1216
1217 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1218 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1219
1220 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1221 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1222
1223 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1224 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1225
1226 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1227 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1228
1229 if (bb_false)
1230 {
1231 stmt = gimple_build_assign (rr, tr);
1232 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1233 stmt = gimple_build_assign (ri, ti);
1234 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1235 gsi_remove (gsi, true);
1236 }
1237 }
1238
1239 if (bb_join)
1240 *gsi = gsi_start_bb (bb_join);
1241 else
1242 rr = tr, ri = ti;
1243
1244 update_complex_assignment (gsi, rr, ri);
1245 }
1246
1247 /* Expand complex division to scalars. */
1248
1249 static void
1250 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1251 tree ar, tree ai, tree br, tree bi,
1252 enum tree_code code,
1253 complex_lattice_t al, complex_lattice_t bl)
1254 {
1255 tree rr, ri;
1256
1257 switch (PAIR (al, bl))
1258 {
1259 case PAIR (ONLY_REAL, ONLY_REAL):
1260 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1261 ri = ai;
1262 break;
1263
1264 case PAIR (ONLY_REAL, ONLY_IMAG):
1265 rr = ai;
1266 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1267 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1268 break;
1269
1270 case PAIR (ONLY_IMAG, ONLY_REAL):
1271 rr = ar;
1272 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1273 break;
1274
1275 case PAIR (ONLY_IMAG, ONLY_IMAG):
1276 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1277 ri = ar;
1278 break;
1279
1280 case PAIR (VARYING, ONLY_REAL):
1281 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1282 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1283 break;
1284
1285 case PAIR (VARYING, ONLY_IMAG):
1286 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1287 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1288 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1289
1290 case PAIR (ONLY_REAL, VARYING):
1291 case PAIR (ONLY_IMAG, VARYING):
1292 case PAIR (VARYING, VARYING):
1293 switch (flag_complex_method)
1294 {
1295 case 0:
1296 /* straightforward implementation of complex divide acceptable. */
1297 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1298 break;
1299
1300 case 2:
1301 if (SCALAR_FLOAT_TYPE_P (inner_type))
1302 {
1303 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1304 break;
1305 }
1306 /* FALLTHRU */
1307
1308 case 1:
1309 /* wide ranges of inputs must work for complex divide. */
1310 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1311 break;
1312
1313 default:
1314 gcc_unreachable ();
1315 }
1316 return;
1317
1318 default:
1319 gcc_unreachable ();
1320 }
1321
1322 update_complex_assignment (gsi, rr, ri);
1323 }
1324
1325 /* Expand complex negation to scalars:
1326 -a = (-ar) + i(-ai)
1327 */
1328
1329 static void
1330 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1331 tree ar, tree ai)
1332 {
1333 tree rr, ri;
1334
1335 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1336 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1337
1338 update_complex_assignment (gsi, rr, ri);
1339 }
1340
1341 /* Expand complex conjugate to scalars:
1342 ~a = (ar) + i(-ai)
1343 */
1344
1345 static void
1346 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1347 tree ar, tree ai)
1348 {
1349 tree ri;
1350
1351 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1352
1353 update_complex_assignment (gsi, ar, ri);
1354 }
1355
1356 /* Expand complex comparison (EQ or NE only). */
1357
1358 static void
1359 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1360 tree br, tree bi, enum tree_code code)
1361 {
1362 tree cr, ci, cc, type;
1363 gimple stmt;
1364
1365 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1366 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1367 cc = gimplify_build2 (gsi,
1368 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1369 boolean_type_node, cr, ci);
1370
1371 stmt = gsi_stmt (*gsi);
1372
1373 switch (gimple_code (stmt))
1374 {
1375 case GIMPLE_RETURN:
1376 type = TREE_TYPE (gimple_return_retval (stmt));
1377 gimple_return_set_retval (stmt, fold_convert (type, cc));
1378 break;
1379
1380 case GIMPLE_ASSIGN:
1381 type = TREE_TYPE (gimple_assign_lhs (stmt));
1382 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1383 stmt = gsi_stmt (*gsi);
1384 break;
1385
1386 case GIMPLE_COND:
1387 gimple_cond_set_code (stmt, EQ_EXPR);
1388 gimple_cond_set_lhs (stmt, cc);
1389 gimple_cond_set_rhs (stmt, boolean_true_node);
1390 break;
1391
1392 default:
1393 gcc_unreachable ();
1394 }
1395
1396 update_stmt (stmt);
1397 }
1398
1399 /* Expand inline asm that sets some complex SSA_NAMEs. */
1400
1401 static void
1402 expand_complex_asm (gimple_stmt_iterator *gsi)
1403 {
1404 gimple stmt = gsi_stmt (*gsi);
1405 unsigned int i;
1406
1407 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1408 {
1409 tree link = gimple_asm_output_op (stmt, i);
1410 tree op = TREE_VALUE (link);
1411 if (TREE_CODE (op) == SSA_NAME
1412 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1413 {
1414 tree type = TREE_TYPE (op);
1415 tree inner_type = TREE_TYPE (type);
1416 tree r = build1 (REALPART_EXPR, inner_type, op);
1417 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1418 gimple_seq list = set_component_ssa_name (op, false, r);
1419
1420 if (list)
1421 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1422
1423 list = set_component_ssa_name (op, true, i);
1424 if (list)
1425 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1426 }
1427 }
1428 }
1429
1430 /* Process one statement. If we identify a complex operation, expand it. */
1431
1432 static void
1433 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1434 {
1435 gimple stmt = gsi_stmt (*gsi);
1436 tree type, inner_type, lhs;
1437 tree ac, ar, ai, bc, br, bi;
1438 complex_lattice_t al, bl;
1439 enum tree_code code;
1440
1441 if (gimple_code (stmt) == GIMPLE_ASM)
1442 {
1443 expand_complex_asm (gsi);
1444 return;
1445 }
1446
1447 lhs = gimple_get_lhs (stmt);
1448 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1449 return;
1450
1451 type = TREE_TYPE (gimple_op (stmt, 0));
1452 code = gimple_expr_code (stmt);
1453
1454 /* Initial filter for operations we handle. */
1455 switch (code)
1456 {
1457 case PLUS_EXPR:
1458 case MINUS_EXPR:
1459 case MULT_EXPR:
1460 case TRUNC_DIV_EXPR:
1461 case CEIL_DIV_EXPR:
1462 case FLOOR_DIV_EXPR:
1463 case ROUND_DIV_EXPR:
1464 case RDIV_EXPR:
1465 case NEGATE_EXPR:
1466 case CONJ_EXPR:
1467 if (TREE_CODE (type) != COMPLEX_TYPE)
1468 return;
1469 inner_type = TREE_TYPE (type);
1470 break;
1471
1472 case EQ_EXPR:
1473 case NE_EXPR:
1474 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1475 subcode, so we need to access the operands using gimple_op. */
1476 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1477 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1478 return;
1479 break;
1480
1481 default:
1482 {
1483 tree rhs;
1484
1485 /* GIMPLE_COND may also fallthru here, but we do not need to
1486 do anything with it. */
1487 if (gimple_code (stmt) == GIMPLE_COND)
1488 return;
1489
1490 if (TREE_CODE (type) == COMPLEX_TYPE)
1491 expand_complex_move (gsi, type);
1492 else if (is_gimple_assign (stmt)
1493 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1494 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1495 && TREE_CODE (lhs) == SSA_NAME)
1496 {
1497 rhs = gimple_assign_rhs1 (stmt);
1498 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1499 gimple_assign_rhs_code (stmt)
1500 == IMAGPART_EXPR,
1501 false);
1502 gimple_assign_set_rhs_from_tree (gsi, rhs);
1503 stmt = gsi_stmt (*gsi);
1504 update_stmt (stmt);
1505 }
1506 }
1507 return;
1508 }
1509
1510 /* Extract the components of the two complex values. Make sure and
1511 handle the common case of the same value used twice specially. */
1512 if (is_gimple_assign (stmt))
1513 {
1514 ac = gimple_assign_rhs1 (stmt);
1515 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1516 }
1517 /* GIMPLE_CALL can not get here. */
1518 else
1519 {
1520 ac = gimple_cond_lhs (stmt);
1521 bc = gimple_cond_rhs (stmt);
1522 }
1523
1524 ar = extract_component (gsi, ac, false, true);
1525 ai = extract_component (gsi, ac, true, true);
1526
1527 if (ac == bc)
1528 br = ar, bi = ai;
1529 else if (bc)
1530 {
1531 br = extract_component (gsi, bc, 0, true);
1532 bi = extract_component (gsi, bc, 1, true);
1533 }
1534 else
1535 br = bi = NULL_TREE;
1536
1537 if (gimple_in_ssa_p (cfun))
1538 {
1539 al = find_lattice_value (ac);
1540 if (al == UNINITIALIZED)
1541 al = VARYING;
1542
1543 if (TREE_CODE_CLASS (code) == tcc_unary)
1544 bl = UNINITIALIZED;
1545 else if (ac == bc)
1546 bl = al;
1547 else
1548 {
1549 bl = find_lattice_value (bc);
1550 if (bl == UNINITIALIZED)
1551 bl = VARYING;
1552 }
1553 }
1554 else
1555 al = bl = VARYING;
1556
1557 switch (code)
1558 {
1559 case PLUS_EXPR:
1560 case MINUS_EXPR:
1561 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1562 break;
1563
1564 case MULT_EXPR:
1565 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1566 break;
1567
1568 case TRUNC_DIV_EXPR:
1569 case CEIL_DIV_EXPR:
1570 case FLOOR_DIV_EXPR:
1571 case ROUND_DIV_EXPR:
1572 case RDIV_EXPR:
1573 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1574 break;
1575
1576 case NEGATE_EXPR:
1577 expand_complex_negation (gsi, inner_type, ar, ai);
1578 break;
1579
1580 case CONJ_EXPR:
1581 expand_complex_conjugate (gsi, inner_type, ar, ai);
1582 break;
1583
1584 case EQ_EXPR:
1585 case NE_EXPR:
1586 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1587 break;
1588
1589 default:
1590 gcc_unreachable ();
1591 }
1592 }
1593
1594 \f
1595 /* Entry point for complex operation lowering during optimization. */
1596
1597 static unsigned int
1598 tree_lower_complex (void)
1599 {
1600 int old_last_basic_block;
1601 gimple_stmt_iterator gsi;
1602 basic_block bb;
1603
1604 if (!init_dont_simulate_again ())
1605 return 0;
1606
1607 complex_lattice_values.create (num_ssa_names);
1608 complex_lattice_values.safe_grow_cleared (num_ssa_names);
1609
1610 init_parameter_lattice_values ();
1611 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1612
1613 complex_variable_components.create (10);
1614
1615 complex_ssa_name_components.create (2 * num_ssa_names);
1616 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1617
1618 update_parameter_components ();
1619
1620 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1621 old_last_basic_block = last_basic_block;
1622 FOR_EACH_BB (bb)
1623 {
1624 if (bb->index >= old_last_basic_block)
1625 continue;
1626
1627 update_phi_components (bb);
1628 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1629 expand_complex_operations_1 (&gsi);
1630 }
1631
1632 gsi_commit_edge_inserts ();
1633
1634 complex_variable_components.dispose ();
1635 complex_ssa_name_components.release ();
1636 complex_lattice_values.release ();
1637 return 0;
1638 }
1639
1640 namespace {
1641
1642 const pass_data pass_data_lower_complex =
1643 {
1644 GIMPLE_PASS, /* type */
1645 "cplxlower", /* name */
1646 OPTGROUP_NONE, /* optinfo_flags */
1647 false, /* has_gate */
1648 true, /* has_execute */
1649 TV_NONE, /* tv_id */
1650 PROP_ssa, /* properties_required */
1651 PROP_gimple_lcx, /* properties_provided */
1652 0, /* properties_destroyed */
1653 0, /* todo_flags_start */
1654 ( TODO_update_ssa | TODO_verify_stmts ), /* todo_flags_finish */
1655 };
1656
1657 class pass_lower_complex : public gimple_opt_pass
1658 {
1659 public:
1660 pass_lower_complex (gcc::context *ctxt)
1661 : gimple_opt_pass (pass_data_lower_complex, ctxt)
1662 {}
1663
1664 /* opt_pass methods: */
1665 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
1666 unsigned int execute () { return tree_lower_complex (); }
1667
1668 }; // class pass_lower_complex
1669
1670 } // anon namespace
1671
1672 gimple_opt_pass *
1673 make_pass_lower_complex (gcc::context *ctxt)
1674 {
1675 return new pass_lower_complex (ctxt);
1676 }
1677
1678 \f
1679 static bool
1680 gate_no_optimization (void)
1681 {
1682 /* With errors, normal optimization passes are not run. If we don't
1683 lower complex operations at all, rtl expansion will abort. */
1684 return !(cfun->curr_properties & PROP_gimple_lcx);
1685 }
1686
1687 namespace {
1688
1689 const pass_data pass_data_lower_complex_O0 =
1690 {
1691 GIMPLE_PASS, /* type */
1692 "cplxlower0", /* name */
1693 OPTGROUP_NONE, /* optinfo_flags */
1694 true, /* has_gate */
1695 true, /* has_execute */
1696 TV_NONE, /* tv_id */
1697 PROP_cfg, /* properties_required */
1698 PROP_gimple_lcx, /* properties_provided */
1699 0, /* properties_destroyed */
1700 0, /* todo_flags_start */
1701 ( TODO_update_ssa | TODO_verify_stmts ), /* todo_flags_finish */
1702 };
1703
1704 class pass_lower_complex_O0 : public gimple_opt_pass
1705 {
1706 public:
1707 pass_lower_complex_O0 (gcc::context *ctxt)
1708 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1709 {}
1710
1711 /* opt_pass methods: */
1712 bool gate () { return gate_no_optimization (); }
1713 unsigned int execute () { return tree_lower_complex (); }
1714
1715 }; // class pass_lower_complex_O0
1716
1717 } // anon namespace
1718
1719 gimple_opt_pass *
1720 make_pass_lower_complex_O0 (gcc::context *ctxt)
1721 {
1722 return new pass_lower_complex_O0 (ctxt);
1723 }