]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-complex.c
Update copyright years.
[thirdparty/gcc.git] / gcc / tree-complex.c
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-dfa.h"
38 #include "tree-ssa.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-hasher.h"
41 #include "cfgloop.h"
42
43
44 /* For each complex ssa name, a lattice value. We're interested in finding
45 out whether a complex number is degenerate in some way, having only real
46 or only complex parts. */
47
48 enum
49 {
50 UNINITIALIZED = 0,
51 ONLY_REAL = 1,
52 ONLY_IMAG = 2,
53 VARYING = 3
54 };
55
56 /* The type complex_lattice_t holds combinations of the above
57 constants. */
58 typedef int complex_lattice_t;
59
60 #define PAIR(a, b) ((a) << 2 | (b))
61
62
63 static vec<complex_lattice_t> complex_lattice_values;
64
65 /* For each complex variable, a pair of variables for the components exists in
66 the hashtable. */
67 static int_tree_htab_type *complex_variable_components;
68
69 /* For each complex SSA_NAME, a pair of ssa names for the components. */
70 static vec<tree> complex_ssa_name_components;
71
72 /* Lookup UID in the complex_variable_components hashtable and return the
73 associated tree. */
74 static tree
75 cvc_lookup (unsigned int uid)
76 {
77 struct int_tree_map in;
78 in.uid = uid;
79 return complex_variable_components->find_with_hash (in, uid).to;
80 }
81
82 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
83
84 static void
85 cvc_insert (unsigned int uid, tree to)
86 {
87 int_tree_map h;
88 int_tree_map *loc;
89
90 h.uid = uid;
91 loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
92 loc->uid = uid;
93 loc->to = to;
94 }
95
96 /* Return true if T is not a zero constant. In the case of real values,
97 we're only interested in +0.0. */
98
99 static int
100 some_nonzerop (tree t)
101 {
102 int zerop = false;
103
104 /* Operations with real or imaginary part of a complex number zero
105 cannot be treated the same as operations with a real or imaginary
106 operand if we care about the signs of zeros in the result. */
107 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
108 zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
109 else if (TREE_CODE (t) == FIXED_CST)
110 zerop = fixed_zerop (t);
111 else if (TREE_CODE (t) == INTEGER_CST)
112 zerop = integer_zerop (t);
113
114 return !zerop;
115 }
116
117
118 /* Compute a lattice value from the components of a complex type REAL
119 and IMAG. */
120
121 static complex_lattice_t
122 find_lattice_value_parts (tree real, tree imag)
123 {
124 int r, i;
125 complex_lattice_t ret;
126
127 r = some_nonzerop (real);
128 i = some_nonzerop (imag);
129 ret = r * ONLY_REAL + i * ONLY_IMAG;
130
131 /* ??? On occasion we could do better than mapping 0+0i to real, but we
132 certainly don't want to leave it UNINITIALIZED, which eventually gets
133 mapped to VARYING. */
134 if (ret == UNINITIALIZED)
135 ret = ONLY_REAL;
136
137 return ret;
138 }
139
140
141 /* Compute a lattice value from gimple_val T. */
142
143 static complex_lattice_t
144 find_lattice_value (tree t)
145 {
146 tree real, imag;
147
148 switch (TREE_CODE (t))
149 {
150 case SSA_NAME:
151 return complex_lattice_values[SSA_NAME_VERSION (t)];
152
153 case COMPLEX_CST:
154 real = TREE_REALPART (t);
155 imag = TREE_IMAGPART (t);
156 break;
157
158 default:
159 gcc_unreachable ();
160 }
161
162 return find_lattice_value_parts (real, imag);
163 }
164
165 /* Determine if LHS is something for which we're interested in seeing
166 simulation results. */
167
168 static bool
169 is_complex_reg (tree lhs)
170 {
171 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
172 }
173
174 /* Mark the incoming parameters to the function as VARYING. */
175
176 static void
177 init_parameter_lattice_values (void)
178 {
179 tree parm, ssa_name;
180
181 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
182 if (is_complex_reg (parm)
183 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
184 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
185 }
186
187 /* Initialize simulation state for each statement. Return false if we
188 found no statements we want to simulate, and thus there's nothing
189 for the entire pass to do. */
190
191 static bool
192 init_dont_simulate_again (void)
193 {
194 basic_block bb;
195 bool saw_a_complex_op = false;
196
197 FOR_EACH_BB_FN (bb, cfun)
198 {
199 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
200 gsi_next (&gsi))
201 {
202 gphi *phi = gsi.phi ();
203 prop_set_simulate_again (phi,
204 is_complex_reg (gimple_phi_result (phi)));
205 }
206
207 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
208 gsi_next (&gsi))
209 {
210 gimple *stmt;
211 tree op0, op1;
212 bool sim_again_p;
213
214 stmt = gsi_stmt (gsi);
215 op0 = op1 = NULL_TREE;
216
217 /* Most control-altering statements must be initially
218 simulated, else we won't cover the entire cfg. */
219 sim_again_p = stmt_ends_bb_p (stmt);
220
221 switch (gimple_code (stmt))
222 {
223 case GIMPLE_CALL:
224 if (gimple_call_lhs (stmt))
225 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
226 break;
227
228 case GIMPLE_ASSIGN:
229 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
230 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
231 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
232 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
233 else
234 op0 = gimple_assign_rhs1 (stmt);
235 if (gimple_num_ops (stmt) > 2)
236 op1 = gimple_assign_rhs2 (stmt);
237 break;
238
239 case GIMPLE_COND:
240 op0 = gimple_cond_lhs (stmt);
241 op1 = gimple_cond_rhs (stmt);
242 break;
243
244 default:
245 break;
246 }
247
248 if (op0 || op1)
249 switch (gimple_expr_code (stmt))
250 {
251 case EQ_EXPR:
252 case NE_EXPR:
253 case PLUS_EXPR:
254 case MINUS_EXPR:
255 case MULT_EXPR:
256 case TRUNC_DIV_EXPR:
257 case CEIL_DIV_EXPR:
258 case FLOOR_DIV_EXPR:
259 case ROUND_DIV_EXPR:
260 case RDIV_EXPR:
261 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
262 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
263 saw_a_complex_op = true;
264 break;
265
266 case NEGATE_EXPR:
267 case CONJ_EXPR:
268 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
269 saw_a_complex_op = true;
270 break;
271
272 case REALPART_EXPR:
273 case IMAGPART_EXPR:
274 /* The total store transformation performed during
275 gimplification creates such uninitialized loads
276 and we need to lower the statement to be able
277 to fix things up. */
278 if (TREE_CODE (op0) == SSA_NAME
279 && ssa_undefined_value_p (op0))
280 saw_a_complex_op = true;
281 break;
282
283 default:
284 break;
285 }
286
287 prop_set_simulate_again (stmt, sim_again_p);
288 }
289 }
290
291 return saw_a_complex_op;
292 }
293
294
295 /* Evaluate statement STMT against the complex lattice defined above. */
296
297 static enum ssa_prop_result
298 complex_visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
299 tree *result_p)
300 {
301 complex_lattice_t new_l, old_l, op1_l, op2_l;
302 unsigned int ver;
303 tree lhs;
304
305 lhs = gimple_get_lhs (stmt);
306 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
307 if (!lhs)
308 return SSA_PROP_VARYING;
309
310 /* These conditions should be satisfied due to the initial filter
311 set up in init_dont_simulate_again. */
312 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
313 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
314
315 *result_p = lhs;
316 ver = SSA_NAME_VERSION (lhs);
317 old_l = complex_lattice_values[ver];
318
319 switch (gimple_expr_code (stmt))
320 {
321 case SSA_NAME:
322 case COMPLEX_CST:
323 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
324 break;
325
326 case COMPLEX_EXPR:
327 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
328 gimple_assign_rhs2 (stmt));
329 break;
330
331 case PLUS_EXPR:
332 case MINUS_EXPR:
333 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
334 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
335
336 /* We've set up the lattice values such that IOR neatly
337 models addition. */
338 new_l = op1_l | op2_l;
339 break;
340
341 case MULT_EXPR:
342 case RDIV_EXPR:
343 case TRUNC_DIV_EXPR:
344 case CEIL_DIV_EXPR:
345 case FLOOR_DIV_EXPR:
346 case ROUND_DIV_EXPR:
347 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
348 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
349
350 /* Obviously, if either varies, so does the result. */
351 if (op1_l == VARYING || op2_l == VARYING)
352 new_l = VARYING;
353 /* Don't prematurely promote variables if we've not yet seen
354 their inputs. */
355 else if (op1_l == UNINITIALIZED)
356 new_l = op2_l;
357 else if (op2_l == UNINITIALIZED)
358 new_l = op1_l;
359 else
360 {
361 /* At this point both numbers have only one component. If the
362 numbers are of opposite kind, the result is imaginary,
363 otherwise the result is real. The add/subtract translates
364 the real/imag from/to 0/1; the ^ performs the comparison. */
365 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
366
367 /* Don't allow the lattice value to flip-flop indefinitely. */
368 new_l |= old_l;
369 }
370 break;
371
372 case NEGATE_EXPR:
373 case CONJ_EXPR:
374 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
375 break;
376
377 default:
378 new_l = VARYING;
379 break;
380 }
381
382 /* If nothing changed this round, let the propagator know. */
383 if (new_l == old_l)
384 return SSA_PROP_NOT_INTERESTING;
385
386 complex_lattice_values[ver] = new_l;
387 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
388 }
389
390 /* Evaluate a PHI node against the complex lattice defined above. */
391
392 static enum ssa_prop_result
393 complex_visit_phi (gphi *phi)
394 {
395 complex_lattice_t new_l, old_l;
396 unsigned int ver;
397 tree lhs;
398 int i;
399
400 lhs = gimple_phi_result (phi);
401
402 /* This condition should be satisfied due to the initial filter
403 set up in init_dont_simulate_again. */
404 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
405
406 /* We've set up the lattice values such that IOR neatly models PHI meet. */
407 new_l = UNINITIALIZED;
408 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
409 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
410
411 ver = SSA_NAME_VERSION (lhs);
412 old_l = complex_lattice_values[ver];
413
414 if (new_l == old_l)
415 return SSA_PROP_NOT_INTERESTING;
416
417 complex_lattice_values[ver] = new_l;
418 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
419 }
420
421 /* Create one backing variable for a complex component of ORIG. */
422
423 static tree
424 create_one_component_var (tree type, tree orig, const char *prefix,
425 const char *suffix, enum tree_code code)
426 {
427 tree r = create_tmp_var (type, prefix);
428
429 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
430 DECL_ARTIFICIAL (r) = 1;
431
432 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
433 {
434 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
435 name = ACONCAT ((name, suffix, NULL));
436 DECL_NAME (r) = get_identifier (name);
437
438 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
439 DECL_HAS_DEBUG_EXPR_P (r) = 1;
440 DECL_IGNORED_P (r) = 0;
441 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
442 }
443 else
444 {
445 DECL_IGNORED_P (r) = 1;
446 TREE_NO_WARNING (r) = 1;
447 }
448
449 return r;
450 }
451
452 /* Retrieve a value for a complex component of VAR. */
453
454 static tree
455 get_component_var (tree var, bool imag_p)
456 {
457 size_t decl_index = DECL_UID (var) * 2 + imag_p;
458 tree ret = cvc_lookup (decl_index);
459
460 if (ret == NULL)
461 {
462 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
463 imag_p ? "CI" : "CR",
464 imag_p ? "$imag" : "$real",
465 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
466 cvc_insert (decl_index, ret);
467 }
468
469 return ret;
470 }
471
472 /* Retrieve a value for a complex component of SSA_NAME. */
473
474 static tree
475 get_component_ssa_name (tree ssa_name, bool imag_p)
476 {
477 complex_lattice_t lattice = find_lattice_value (ssa_name);
478 size_t ssa_name_index;
479 tree ret;
480
481 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
482 {
483 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
484 if (SCALAR_FLOAT_TYPE_P (inner_type))
485 return build_real (inner_type, dconst0);
486 else
487 return build_int_cst (inner_type, 0);
488 }
489
490 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
491 ret = complex_ssa_name_components[ssa_name_index];
492 if (ret == NULL)
493 {
494 if (SSA_NAME_VAR (ssa_name))
495 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
496 else
497 ret = TREE_TYPE (TREE_TYPE (ssa_name));
498 ret = make_ssa_name (ret);
499
500 /* Copy some properties from the original. In particular, whether it
501 is used in an abnormal phi, and whether it's uninitialized. */
502 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
503 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
504 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
505 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
506 {
507 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
508 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
509 }
510
511 complex_ssa_name_components[ssa_name_index] = ret;
512 }
513
514 return ret;
515 }
516
517 /* Set a value for a complex component of SSA_NAME, return a
518 gimple_seq of stuff that needs doing. */
519
520 static gimple_seq
521 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
522 {
523 complex_lattice_t lattice = find_lattice_value (ssa_name);
524 size_t ssa_name_index;
525 tree comp;
526 gimple *last;
527 gimple_seq list;
528
529 /* We know the value must be zero, else there's a bug in our lattice
530 analysis. But the value may well be a variable known to contain
531 zero. We should be safe ignoring it. */
532 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
533 return NULL;
534
535 /* If we've already assigned an SSA_NAME to this component, then this
536 means that our walk of the basic blocks found a use before the set.
537 This is fine. Now we should create an initialization for the value
538 we created earlier. */
539 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
540 comp = complex_ssa_name_components[ssa_name_index];
541 if (comp)
542 ;
543
544 /* If we've nothing assigned, and the value we're given is already stable,
545 then install that as the value for this SSA_NAME. This preemptively
546 copy-propagates the value, which avoids unnecessary memory allocation. */
547 else if (is_gimple_min_invariant (value)
548 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
549 {
550 complex_ssa_name_components[ssa_name_index] = value;
551 return NULL;
552 }
553 else if (TREE_CODE (value) == SSA_NAME
554 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
555 {
556 /* Replace an anonymous base value with the variable from cvc_lookup.
557 This should result in better debug info. */
558 if (SSA_NAME_VAR (ssa_name)
559 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
560 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
561 {
562 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
563 replace_ssa_name_symbol (value, comp);
564 }
565
566 complex_ssa_name_components[ssa_name_index] = value;
567 return NULL;
568 }
569
570 /* Finally, we need to stabilize the result by installing the value into
571 a new ssa name. */
572 else
573 comp = get_component_ssa_name (ssa_name, imag_p);
574
575 /* Do all the work to assign VALUE to COMP. */
576 list = NULL;
577 value = force_gimple_operand (value, &list, false, NULL);
578 last = gimple_build_assign (comp, value);
579 gimple_seq_add_stmt (&list, last);
580 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
581
582 return list;
583 }
584
585 /* Extract the real or imaginary part of a complex variable or constant.
586 Make sure that it's a proper gimple_val and gimplify it if not.
587 Emit any new code before gsi. */
588
589 static tree
590 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
591 bool gimple_p)
592 {
593 switch (TREE_CODE (t))
594 {
595 case COMPLEX_CST:
596 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
597
598 case COMPLEX_EXPR:
599 gcc_unreachable ();
600
601 case VAR_DECL:
602 case RESULT_DECL:
603 case PARM_DECL:
604 case COMPONENT_REF:
605 case ARRAY_REF:
606 case VIEW_CONVERT_EXPR:
607 case MEM_REF:
608 {
609 tree inner_type = TREE_TYPE (TREE_TYPE (t));
610
611 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
612 inner_type, unshare_expr (t));
613
614 if (gimple_p)
615 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
616 GSI_SAME_STMT);
617
618 return t;
619 }
620
621 case SSA_NAME:
622 return get_component_ssa_name (t, imagpart_p);
623
624 default:
625 gcc_unreachable ();
626 }
627 }
628
629 /* Update the complex components of the ssa name on the lhs of STMT. */
630
631 static void
632 update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
633 tree i)
634 {
635 tree lhs;
636 gimple_seq list;
637
638 lhs = gimple_get_lhs (stmt);
639
640 list = set_component_ssa_name (lhs, false, r);
641 if (list)
642 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
643
644 list = set_component_ssa_name (lhs, true, i);
645 if (list)
646 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
647 }
648
649 static void
650 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
651 {
652 gimple_seq list;
653
654 list = set_component_ssa_name (lhs, false, r);
655 if (list)
656 gsi_insert_seq_on_edge (e, list);
657
658 list = set_component_ssa_name (lhs, true, i);
659 if (list)
660 gsi_insert_seq_on_edge (e, list);
661 }
662
663
664 /* Update an assignment to a complex variable in place. */
665
666 static void
667 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
668 {
669 gimple *stmt;
670
671 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
672 stmt = gsi_stmt (*gsi);
673 update_stmt (stmt);
674 if (maybe_clean_eh_stmt (stmt))
675 gimple_purge_dead_eh_edges (gimple_bb (stmt));
676
677 if (gimple_in_ssa_p (cfun))
678 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
679 }
680
681
682 /* Generate code at the entry point of the function to initialize the
683 component variables for a complex parameter. */
684
685 static void
686 update_parameter_components (void)
687 {
688 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
689 tree parm;
690
691 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
692 {
693 tree type = TREE_TYPE (parm);
694 tree ssa_name, r, i;
695
696 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
697 continue;
698
699 type = TREE_TYPE (type);
700 ssa_name = ssa_default_def (cfun, parm);
701 if (!ssa_name)
702 continue;
703
704 r = build1 (REALPART_EXPR, type, ssa_name);
705 i = build1 (IMAGPART_EXPR, type, ssa_name);
706 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
707 }
708 }
709
710 /* Generate code to set the component variables of a complex variable
711 to match the PHI statements in block BB. */
712
713 static void
714 update_phi_components (basic_block bb)
715 {
716 gphi_iterator gsi;
717
718 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
719 {
720 gphi *phi = gsi.phi ();
721
722 if (is_complex_reg (gimple_phi_result (phi)))
723 {
724 tree lr, li;
725 gimple *pr = NULL, *pi = NULL;
726 unsigned int i, n;
727
728 lr = get_component_ssa_name (gimple_phi_result (phi), false);
729 if (TREE_CODE (lr) == SSA_NAME)
730 pr = create_phi_node (lr, bb);
731
732 li = get_component_ssa_name (gimple_phi_result (phi), true);
733 if (TREE_CODE (li) == SSA_NAME)
734 pi = create_phi_node (li, bb);
735
736 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
737 {
738 tree comp, arg = gimple_phi_arg_def (phi, i);
739 if (pr)
740 {
741 comp = extract_component (NULL, arg, false, false);
742 SET_PHI_ARG_DEF (pr, i, comp);
743 }
744 if (pi)
745 {
746 comp = extract_component (NULL, arg, true, false);
747 SET_PHI_ARG_DEF (pi, i, comp);
748 }
749 }
750 }
751 }
752 }
753
754 /* Expand a complex move to scalars. */
755
756 static void
757 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
758 {
759 tree inner_type = TREE_TYPE (type);
760 tree r, i, lhs, rhs;
761 gimple *stmt = gsi_stmt (*gsi);
762
763 if (is_gimple_assign (stmt))
764 {
765 lhs = gimple_assign_lhs (stmt);
766 if (gimple_num_ops (stmt) == 2)
767 rhs = gimple_assign_rhs1 (stmt);
768 else
769 rhs = NULL_TREE;
770 }
771 else if (is_gimple_call (stmt))
772 {
773 lhs = gimple_call_lhs (stmt);
774 rhs = NULL_TREE;
775 }
776 else
777 gcc_unreachable ();
778
779 if (TREE_CODE (lhs) == SSA_NAME)
780 {
781 if (is_ctrl_altering_stmt (stmt))
782 {
783 edge e;
784
785 /* The value is not assigned on the exception edges, so we need not
786 concern ourselves there. We do need to update on the fallthru
787 edge. Find it. */
788 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
789 if (!e)
790 gcc_unreachable ();
791
792 r = build1 (REALPART_EXPR, inner_type, lhs);
793 i = build1 (IMAGPART_EXPR, inner_type, lhs);
794 update_complex_components_on_edge (e, lhs, r, i);
795 }
796 else if (is_gimple_call (stmt)
797 || gimple_has_side_effects (stmt)
798 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
799 {
800 r = build1 (REALPART_EXPR, inner_type, lhs);
801 i = build1 (IMAGPART_EXPR, inner_type, lhs);
802 update_complex_components (gsi, stmt, r, i);
803 }
804 else
805 {
806 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
807 {
808 r = extract_component (gsi, rhs, 0, true);
809 i = extract_component (gsi, rhs, 1, true);
810 }
811 else
812 {
813 r = gimple_assign_rhs1 (stmt);
814 i = gimple_assign_rhs2 (stmt);
815 }
816 update_complex_assignment (gsi, r, i);
817 }
818 }
819 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
820 {
821 tree x;
822 gimple *t;
823 location_t loc;
824
825 loc = gimple_location (stmt);
826 r = extract_component (gsi, rhs, 0, false);
827 i = extract_component (gsi, rhs, 1, false);
828
829 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
830 t = gimple_build_assign (x, r);
831 gimple_set_location (t, loc);
832 gsi_insert_before (gsi, t, GSI_SAME_STMT);
833
834 if (stmt == gsi_stmt (*gsi))
835 {
836 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
837 gimple_assign_set_lhs (stmt, x);
838 gimple_assign_set_rhs1 (stmt, i);
839 }
840 else
841 {
842 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
843 t = gimple_build_assign (x, i);
844 gimple_set_location (t, loc);
845 gsi_insert_before (gsi, t, GSI_SAME_STMT);
846
847 stmt = gsi_stmt (*gsi);
848 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
849 gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
850 }
851
852 update_stmt (stmt);
853 }
854 }
855
856 /* Expand complex addition to scalars:
857 a + b = (ar + br) + i(ai + bi)
858 a - b = (ar - br) + i(ai + bi)
859 */
860
861 static void
862 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
863 tree ar, tree ai, tree br, tree bi,
864 enum tree_code code,
865 complex_lattice_t al, complex_lattice_t bl)
866 {
867 tree rr, ri;
868
869 switch (PAIR (al, bl))
870 {
871 case PAIR (ONLY_REAL, ONLY_REAL):
872 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
873 ri = ai;
874 break;
875
876 case PAIR (ONLY_REAL, ONLY_IMAG):
877 rr = ar;
878 if (code == MINUS_EXPR)
879 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
880 else
881 ri = bi;
882 break;
883
884 case PAIR (ONLY_IMAG, ONLY_REAL):
885 if (code == MINUS_EXPR)
886 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
887 else
888 rr = br;
889 ri = ai;
890 break;
891
892 case PAIR (ONLY_IMAG, ONLY_IMAG):
893 rr = ar;
894 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
895 break;
896
897 case PAIR (VARYING, ONLY_REAL):
898 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
899 ri = ai;
900 break;
901
902 case PAIR (VARYING, ONLY_IMAG):
903 rr = ar;
904 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
905 break;
906
907 case PAIR (ONLY_REAL, VARYING):
908 if (code == MINUS_EXPR)
909 goto general;
910 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
911 ri = bi;
912 break;
913
914 case PAIR (ONLY_IMAG, VARYING):
915 if (code == MINUS_EXPR)
916 goto general;
917 rr = br;
918 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
919 break;
920
921 case PAIR (VARYING, VARYING):
922 general:
923 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
924 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
925 break;
926
927 default:
928 gcc_unreachable ();
929 }
930
931 update_complex_assignment (gsi, rr, ri);
932 }
933
934 /* Expand a complex multiplication or division to a libcall to the c99
935 compliant routines. */
936
937 static void
938 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
939 tree br, tree bi, enum tree_code code)
940 {
941 machine_mode mode;
942 enum built_in_function bcode;
943 tree fn, type, lhs;
944 gimple *old_stmt;
945 gcall *stmt;
946
947 old_stmt = gsi_stmt (*gsi);
948 lhs = gimple_assign_lhs (old_stmt);
949 type = TREE_TYPE (lhs);
950
951 mode = TYPE_MODE (type);
952 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
953
954 if (code == MULT_EXPR)
955 bcode = ((enum built_in_function)
956 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
957 else if (code == RDIV_EXPR)
958 bcode = ((enum built_in_function)
959 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
960 else
961 gcc_unreachable ();
962 fn = builtin_decl_explicit (bcode);
963
964 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
965 gimple_call_set_lhs (stmt, lhs);
966 update_stmt (stmt);
967 gsi_replace (gsi, stmt, false);
968
969 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
970 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
971
972 if (gimple_in_ssa_p (cfun))
973 {
974 type = TREE_TYPE (type);
975 update_complex_components (gsi, stmt,
976 build1 (REALPART_EXPR, type, lhs),
977 build1 (IMAGPART_EXPR, type, lhs));
978 SSA_NAME_DEF_STMT (lhs) = stmt;
979 }
980 }
981
982 /* Expand complex multiplication to scalars:
983 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
984 */
985
986 static void
987 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
988 tree ar, tree ai, tree br, tree bi,
989 complex_lattice_t al, complex_lattice_t bl)
990 {
991 tree rr, ri;
992
993 if (al < bl)
994 {
995 complex_lattice_t tl;
996 rr = ar, ar = br, br = rr;
997 ri = ai, ai = bi, bi = ri;
998 tl = al, al = bl, bl = tl;
999 }
1000
1001 switch (PAIR (al, bl))
1002 {
1003 case PAIR (ONLY_REAL, ONLY_REAL):
1004 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1005 ri = ai;
1006 break;
1007
1008 case PAIR (ONLY_IMAG, ONLY_REAL):
1009 rr = ar;
1010 if (TREE_CODE (ai) == REAL_CST
1011 && real_identical (&TREE_REAL_CST (ai), &dconst1))
1012 ri = br;
1013 else
1014 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1015 break;
1016
1017 case PAIR (ONLY_IMAG, ONLY_IMAG):
1018 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1019 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1020 ri = ar;
1021 break;
1022
1023 case PAIR (VARYING, ONLY_REAL):
1024 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1025 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1026 break;
1027
1028 case PAIR (VARYING, ONLY_IMAG):
1029 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1030 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1031 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1032 break;
1033
1034 case PAIR (VARYING, VARYING):
1035 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1036 {
1037 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1038 return;
1039 }
1040 else
1041 {
1042 tree t1, t2, t3, t4;
1043
1044 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1045 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1046 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1047
1048 /* Avoid expanding redundant multiplication for the common
1049 case of squaring a complex number. */
1050 if (ar == br && ai == bi)
1051 t4 = t3;
1052 else
1053 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1054
1055 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1056 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1057 }
1058 break;
1059
1060 default:
1061 gcc_unreachable ();
1062 }
1063
1064 update_complex_assignment (gsi, rr, ri);
1065 }
1066
1067 /* Keep this algorithm in sync with fold-const.c:const_binop().
1068
1069 Expand complex division to scalars, straightforward algorithm.
1070 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1071 t = br*br + bi*bi
1072 */
1073
1074 static void
1075 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1076 tree ar, tree ai, tree br, tree bi,
1077 enum tree_code code)
1078 {
1079 tree rr, ri, div, t1, t2, t3;
1080
1081 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1082 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1083 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1084
1085 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1086 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1087 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1088 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1089
1090 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1091 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1092 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1093 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1094
1095 update_complex_assignment (gsi, rr, ri);
1096 }
1097
1098 /* Keep this algorithm in sync with fold-const.c:const_binop().
1099
1100 Expand complex division to scalars, modified algorithm to minimize
1101 overflow with wide input ranges. */
1102
1103 static void
1104 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1105 tree ar, tree ai, tree br, tree bi,
1106 enum tree_code code)
1107 {
1108 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1109 basic_block bb_cond, bb_true, bb_false, bb_join;
1110 gimple *stmt;
1111
1112 /* Examine |br| < |bi|, and branch. */
1113 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1114 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1115 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1116 LT_EXPR, boolean_type_node, t1, t2);
1117 STRIP_NOPS (compare);
1118
1119 bb_cond = bb_true = bb_false = bb_join = NULL;
1120 rr = ri = tr = ti = NULL;
1121 if (TREE_CODE (compare) != INTEGER_CST)
1122 {
1123 edge e;
1124 gimple *stmt;
1125 tree cond, tmp;
1126
1127 tmp = create_tmp_var (boolean_type_node);
1128 stmt = gimple_build_assign (tmp, compare);
1129 if (gimple_in_ssa_p (cfun))
1130 {
1131 tmp = make_ssa_name (tmp, stmt);
1132 gimple_assign_set_lhs (stmt, tmp);
1133 }
1134
1135 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1136
1137 cond = fold_build2_loc (gimple_location (stmt),
1138 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1139 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1140 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1141
1142 /* Split the original block, and create the TRUE and FALSE blocks. */
1143 e = split_block (gsi_bb (*gsi), stmt);
1144 bb_cond = e->src;
1145 bb_join = e->dest;
1146 bb_true = create_empty_bb (bb_cond);
1147 bb_false = create_empty_bb (bb_true);
1148
1149 /* Wire the blocks together. */
1150 e->flags = EDGE_TRUE_VALUE;
1151 redirect_edge_succ (e, bb_true);
1152 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1153 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1154 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1155 add_bb_to_loop (bb_true, bb_cond->loop_father);
1156 add_bb_to_loop (bb_false, bb_cond->loop_father);
1157
1158 /* Update dominance info. Note that bb_join's data was
1159 updated by split_block. */
1160 if (dom_info_available_p (CDI_DOMINATORS))
1161 {
1162 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1163 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1164 }
1165
1166 rr = create_tmp_reg (inner_type);
1167 ri = create_tmp_reg (inner_type);
1168 }
1169
1170 /* In the TRUE branch, we compute
1171 ratio = br/bi;
1172 div = (br * ratio) + bi;
1173 tr = (ar * ratio) + ai;
1174 ti = (ai * ratio) - ar;
1175 tr = tr / div;
1176 ti = ti / div; */
1177 if (bb_true || integer_nonzerop (compare))
1178 {
1179 if (bb_true)
1180 {
1181 *gsi = gsi_last_bb (bb_true);
1182 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1183 }
1184
1185 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1186
1187 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1188 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1189
1190 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1191 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1192
1193 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1194 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1195
1196 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1197 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1198
1199 if (bb_true)
1200 {
1201 stmt = gimple_build_assign (rr, tr);
1202 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1203 stmt = gimple_build_assign (ri, ti);
1204 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1205 gsi_remove (gsi, true);
1206 }
1207 }
1208
1209 /* In the FALSE branch, we compute
1210 ratio = d/c;
1211 divisor = (d * ratio) + c;
1212 tr = (b * ratio) + a;
1213 ti = b - (a * ratio);
1214 tr = tr / div;
1215 ti = ti / div; */
1216 if (bb_false || integer_zerop (compare))
1217 {
1218 if (bb_false)
1219 {
1220 *gsi = gsi_last_bb (bb_false);
1221 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1222 }
1223
1224 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1225
1226 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1227 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1228
1229 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1230 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1231
1232 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1233 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1234
1235 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1236 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1237
1238 if (bb_false)
1239 {
1240 stmt = gimple_build_assign (rr, tr);
1241 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1242 stmt = gimple_build_assign (ri, ti);
1243 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1244 gsi_remove (gsi, true);
1245 }
1246 }
1247
1248 if (bb_join)
1249 *gsi = gsi_start_bb (bb_join);
1250 else
1251 rr = tr, ri = ti;
1252
1253 update_complex_assignment (gsi, rr, ri);
1254 }
1255
1256 /* Expand complex division to scalars. */
1257
1258 static void
1259 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1260 tree ar, tree ai, tree br, tree bi,
1261 enum tree_code code,
1262 complex_lattice_t al, complex_lattice_t bl)
1263 {
1264 tree rr, ri;
1265
1266 switch (PAIR (al, bl))
1267 {
1268 case PAIR (ONLY_REAL, ONLY_REAL):
1269 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1270 ri = ai;
1271 break;
1272
1273 case PAIR (ONLY_REAL, ONLY_IMAG):
1274 rr = ai;
1275 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1276 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1277 break;
1278
1279 case PAIR (ONLY_IMAG, ONLY_REAL):
1280 rr = ar;
1281 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1282 break;
1283
1284 case PAIR (ONLY_IMAG, ONLY_IMAG):
1285 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1286 ri = ar;
1287 break;
1288
1289 case PAIR (VARYING, ONLY_REAL):
1290 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1291 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1292 break;
1293
1294 case PAIR (VARYING, ONLY_IMAG):
1295 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1296 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1297 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1298
1299 case PAIR (ONLY_REAL, VARYING):
1300 case PAIR (ONLY_IMAG, VARYING):
1301 case PAIR (VARYING, VARYING):
1302 switch (flag_complex_method)
1303 {
1304 case 0:
1305 /* straightforward implementation of complex divide acceptable. */
1306 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1307 break;
1308
1309 case 2:
1310 if (SCALAR_FLOAT_TYPE_P (inner_type))
1311 {
1312 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1313 break;
1314 }
1315 /* FALLTHRU */
1316
1317 case 1:
1318 /* wide ranges of inputs must work for complex divide. */
1319 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1320 break;
1321
1322 default:
1323 gcc_unreachable ();
1324 }
1325 return;
1326
1327 default:
1328 gcc_unreachable ();
1329 }
1330
1331 update_complex_assignment (gsi, rr, ri);
1332 }
1333
1334 /* Expand complex negation to scalars:
1335 -a = (-ar) + i(-ai)
1336 */
1337
1338 static void
1339 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1340 tree ar, tree ai)
1341 {
1342 tree rr, ri;
1343
1344 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1345 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1346
1347 update_complex_assignment (gsi, rr, ri);
1348 }
1349
1350 /* Expand complex conjugate to scalars:
1351 ~a = (ar) + i(-ai)
1352 */
1353
1354 static void
1355 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1356 tree ar, tree ai)
1357 {
1358 tree ri;
1359
1360 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1361
1362 update_complex_assignment (gsi, ar, ri);
1363 }
1364
1365 /* Expand complex comparison (EQ or NE only). */
1366
1367 static void
1368 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1369 tree br, tree bi, enum tree_code code)
1370 {
1371 tree cr, ci, cc, type;
1372 gimple *stmt;
1373
1374 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1375 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1376 cc = gimplify_build2 (gsi,
1377 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1378 boolean_type_node, cr, ci);
1379
1380 stmt = gsi_stmt (*gsi);
1381
1382 switch (gimple_code (stmt))
1383 {
1384 case GIMPLE_RETURN:
1385 {
1386 greturn *return_stmt = as_a <greturn *> (stmt);
1387 type = TREE_TYPE (gimple_return_retval (return_stmt));
1388 gimple_return_set_retval (return_stmt, fold_convert (type, cc));
1389 }
1390 break;
1391
1392 case GIMPLE_ASSIGN:
1393 type = TREE_TYPE (gimple_assign_lhs (stmt));
1394 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1395 stmt = gsi_stmt (*gsi);
1396 break;
1397
1398 case GIMPLE_COND:
1399 {
1400 gcond *cond_stmt = as_a <gcond *> (stmt);
1401 gimple_cond_set_code (cond_stmt, EQ_EXPR);
1402 gimple_cond_set_lhs (cond_stmt, cc);
1403 gimple_cond_set_rhs (cond_stmt, boolean_true_node);
1404 }
1405 break;
1406
1407 default:
1408 gcc_unreachable ();
1409 }
1410
1411 update_stmt (stmt);
1412 }
1413
1414 /* Expand inline asm that sets some complex SSA_NAMEs. */
1415
1416 static void
1417 expand_complex_asm (gimple_stmt_iterator *gsi)
1418 {
1419 gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
1420 unsigned int i;
1421
1422 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1423 {
1424 tree link = gimple_asm_output_op (stmt, i);
1425 tree op = TREE_VALUE (link);
1426 if (TREE_CODE (op) == SSA_NAME
1427 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1428 {
1429 tree type = TREE_TYPE (op);
1430 tree inner_type = TREE_TYPE (type);
1431 tree r = build1 (REALPART_EXPR, inner_type, op);
1432 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1433 gimple_seq list = set_component_ssa_name (op, false, r);
1434
1435 if (list)
1436 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1437
1438 list = set_component_ssa_name (op, true, i);
1439 if (list)
1440 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1441 }
1442 }
1443 }
1444
1445 /* Process one statement. If we identify a complex operation, expand it. */
1446
1447 static void
1448 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1449 {
1450 gimple *stmt = gsi_stmt (*gsi);
1451 tree type, inner_type, lhs;
1452 tree ac, ar, ai, bc, br, bi;
1453 complex_lattice_t al, bl;
1454 enum tree_code code;
1455
1456 if (gimple_code (stmt) == GIMPLE_ASM)
1457 {
1458 expand_complex_asm (gsi);
1459 return;
1460 }
1461
1462 lhs = gimple_get_lhs (stmt);
1463 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1464 return;
1465
1466 type = TREE_TYPE (gimple_op (stmt, 0));
1467 code = gimple_expr_code (stmt);
1468
1469 /* Initial filter for operations we handle. */
1470 switch (code)
1471 {
1472 case PLUS_EXPR:
1473 case MINUS_EXPR:
1474 case MULT_EXPR:
1475 case TRUNC_DIV_EXPR:
1476 case CEIL_DIV_EXPR:
1477 case FLOOR_DIV_EXPR:
1478 case ROUND_DIV_EXPR:
1479 case RDIV_EXPR:
1480 case NEGATE_EXPR:
1481 case CONJ_EXPR:
1482 if (TREE_CODE (type) != COMPLEX_TYPE)
1483 return;
1484 inner_type = TREE_TYPE (type);
1485 break;
1486
1487 case EQ_EXPR:
1488 case NE_EXPR:
1489 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1490 subcode, so we need to access the operands using gimple_op. */
1491 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1492 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1493 return;
1494 break;
1495
1496 default:
1497 {
1498 tree rhs;
1499
1500 /* GIMPLE_COND may also fallthru here, but we do not need to
1501 do anything with it. */
1502 if (gimple_code (stmt) == GIMPLE_COND)
1503 return;
1504
1505 if (TREE_CODE (type) == COMPLEX_TYPE)
1506 expand_complex_move (gsi, type);
1507 else if (is_gimple_assign (stmt)
1508 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1509 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1510 && TREE_CODE (lhs) == SSA_NAME)
1511 {
1512 rhs = gimple_assign_rhs1 (stmt);
1513 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1514 gimple_assign_rhs_code (stmt)
1515 == IMAGPART_EXPR,
1516 false);
1517 gimple_assign_set_rhs_from_tree (gsi, rhs);
1518 stmt = gsi_stmt (*gsi);
1519 update_stmt (stmt);
1520 }
1521 }
1522 return;
1523 }
1524
1525 /* Extract the components of the two complex values. Make sure and
1526 handle the common case of the same value used twice specially. */
1527 if (is_gimple_assign (stmt))
1528 {
1529 ac = gimple_assign_rhs1 (stmt);
1530 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1531 }
1532 /* GIMPLE_CALL can not get here. */
1533 else
1534 {
1535 ac = gimple_cond_lhs (stmt);
1536 bc = gimple_cond_rhs (stmt);
1537 }
1538
1539 ar = extract_component (gsi, ac, false, true);
1540 ai = extract_component (gsi, ac, true, true);
1541
1542 if (ac == bc)
1543 br = ar, bi = ai;
1544 else if (bc)
1545 {
1546 br = extract_component (gsi, bc, 0, true);
1547 bi = extract_component (gsi, bc, 1, true);
1548 }
1549 else
1550 br = bi = NULL_TREE;
1551
1552 if (gimple_in_ssa_p (cfun))
1553 {
1554 al = find_lattice_value (ac);
1555 if (al == UNINITIALIZED)
1556 al = VARYING;
1557
1558 if (TREE_CODE_CLASS (code) == tcc_unary)
1559 bl = UNINITIALIZED;
1560 else if (ac == bc)
1561 bl = al;
1562 else
1563 {
1564 bl = find_lattice_value (bc);
1565 if (bl == UNINITIALIZED)
1566 bl = VARYING;
1567 }
1568 }
1569 else
1570 al = bl = VARYING;
1571
1572 switch (code)
1573 {
1574 case PLUS_EXPR:
1575 case MINUS_EXPR:
1576 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1577 break;
1578
1579 case MULT_EXPR:
1580 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1581 break;
1582
1583 case TRUNC_DIV_EXPR:
1584 case CEIL_DIV_EXPR:
1585 case FLOOR_DIV_EXPR:
1586 case ROUND_DIV_EXPR:
1587 case RDIV_EXPR:
1588 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1589 break;
1590
1591 case NEGATE_EXPR:
1592 expand_complex_negation (gsi, inner_type, ar, ai);
1593 break;
1594
1595 case CONJ_EXPR:
1596 expand_complex_conjugate (gsi, inner_type, ar, ai);
1597 break;
1598
1599 case EQ_EXPR:
1600 case NE_EXPR:
1601 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1602 break;
1603
1604 default:
1605 gcc_unreachable ();
1606 }
1607 }
1608
1609 \f
1610 /* Entry point for complex operation lowering during optimization. */
1611
1612 static unsigned int
1613 tree_lower_complex (void)
1614 {
1615 int old_last_basic_block;
1616 gimple_stmt_iterator gsi;
1617 basic_block bb;
1618
1619 if (!init_dont_simulate_again ())
1620 return 0;
1621
1622 complex_lattice_values.create (num_ssa_names);
1623 complex_lattice_values.safe_grow_cleared (num_ssa_names);
1624
1625 init_parameter_lattice_values ();
1626 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1627
1628 complex_variable_components = new int_tree_htab_type (10);
1629
1630 complex_ssa_name_components.create (2 * num_ssa_names);
1631 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1632
1633 update_parameter_components ();
1634
1635 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1636 old_last_basic_block = last_basic_block_for_fn (cfun);
1637 FOR_EACH_BB_FN (bb, cfun)
1638 {
1639 if (bb->index >= old_last_basic_block)
1640 continue;
1641
1642 update_phi_components (bb);
1643 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1644 expand_complex_operations_1 (&gsi);
1645 }
1646
1647 gsi_commit_edge_inserts ();
1648
1649 delete complex_variable_components;
1650 complex_variable_components = NULL;
1651 complex_ssa_name_components.release ();
1652 complex_lattice_values.release ();
1653 return 0;
1654 }
1655
1656 namespace {
1657
1658 const pass_data pass_data_lower_complex =
1659 {
1660 GIMPLE_PASS, /* type */
1661 "cplxlower", /* name */
1662 OPTGROUP_NONE, /* optinfo_flags */
1663 TV_NONE, /* tv_id */
1664 PROP_ssa, /* properties_required */
1665 PROP_gimple_lcx, /* properties_provided */
1666 0, /* properties_destroyed */
1667 0, /* todo_flags_start */
1668 TODO_update_ssa, /* todo_flags_finish */
1669 };
1670
1671 class pass_lower_complex : public gimple_opt_pass
1672 {
1673 public:
1674 pass_lower_complex (gcc::context *ctxt)
1675 : gimple_opt_pass (pass_data_lower_complex, ctxt)
1676 {}
1677
1678 /* opt_pass methods: */
1679 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
1680 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1681
1682 }; // class pass_lower_complex
1683
1684 } // anon namespace
1685
1686 gimple_opt_pass *
1687 make_pass_lower_complex (gcc::context *ctxt)
1688 {
1689 return new pass_lower_complex (ctxt);
1690 }
1691
1692 \f
1693 namespace {
1694
1695 const pass_data pass_data_lower_complex_O0 =
1696 {
1697 GIMPLE_PASS, /* type */
1698 "cplxlower0", /* name */
1699 OPTGROUP_NONE, /* optinfo_flags */
1700 TV_NONE, /* tv_id */
1701 PROP_cfg, /* properties_required */
1702 PROP_gimple_lcx, /* properties_provided */
1703 0, /* properties_destroyed */
1704 0, /* todo_flags_start */
1705 TODO_update_ssa, /* todo_flags_finish */
1706 };
1707
1708 class pass_lower_complex_O0 : public gimple_opt_pass
1709 {
1710 public:
1711 pass_lower_complex_O0 (gcc::context *ctxt)
1712 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1713 {}
1714
1715 /* opt_pass methods: */
1716 virtual bool gate (function *fun)
1717 {
1718 /* With errors, normal optimization passes are not run. If we don't
1719 lower complex operations at all, rtl expansion will abort. */
1720 return !(fun->curr_properties & PROP_gimple_lcx);
1721 }
1722
1723 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1724
1725 }; // class pass_lower_complex_O0
1726
1727 } // anon namespace
1728
1729 gimple_opt_pass *
1730 make_pass_lower_complex_O0 (gcc::context *ctxt)
1731 {
1732 return new pass_lower_complex_O0 (ctxt);
1733 }