]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-complex.c
gimple-predict.h: New file.
[thirdparty/gcc.git] / gcc / tree-complex.c
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "rtl.h"
28 #include "ssa.h"
29 #include "alias.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
32 #include "flags.h"
33 #include "internal-fn.h"
34 #include "tree-eh.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "gimplify-me.h"
38 #include "tree-cfg.h"
39 #include "insn-config.h"
40 #include "expmed.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "emit-rtl.h"
45 #include "varasm.h"
46 #include "stmt.h"
47 #include "expr.h"
48 #include "tree-dfa.h"
49 #include "tree-ssa.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-ssa-propagate.h"
53 #include "tree-hasher.h"
54 #include "cfgloop.h"
55
56
57 /* For each complex ssa name, a lattice value. We're interested in finding
58 out whether a complex number is degenerate in some way, having only real
59 or only complex parts. */
60
61 enum
62 {
63 UNINITIALIZED = 0,
64 ONLY_REAL = 1,
65 ONLY_IMAG = 2,
66 VARYING = 3
67 };
68
69 /* The type complex_lattice_t holds combinations of the above
70 constants. */
71 typedef int complex_lattice_t;
72
73 #define PAIR(a, b) ((a) << 2 | (b))
74
75
76 static vec<complex_lattice_t> complex_lattice_values;
77
78 /* For each complex variable, a pair of variables for the components exists in
79 the hashtable. */
80 static int_tree_htab_type *complex_variable_components;
81
82 /* For each complex SSA_NAME, a pair of ssa names for the components. */
83 static vec<tree> complex_ssa_name_components;
84
85 /* Lookup UID in the complex_variable_components hashtable and return the
86 associated tree. */
87 static tree
88 cvc_lookup (unsigned int uid)
89 {
90 struct int_tree_map in;
91 in.uid = uid;
92 return complex_variable_components->find_with_hash (in, uid).to;
93 }
94
95 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
96
97 static void
98 cvc_insert (unsigned int uid, tree to)
99 {
100 int_tree_map h;
101 int_tree_map *loc;
102
103 h.uid = uid;
104 loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
105 loc->uid = uid;
106 loc->to = to;
107 }
108
109 /* Return true if T is not a zero constant. In the case of real values,
110 we're only interested in +0.0. */
111
112 static int
113 some_nonzerop (tree t)
114 {
115 int zerop = false;
116
117 /* Operations with real or imaginary part of a complex number zero
118 cannot be treated the same as operations with a real or imaginary
119 operand if we care about the signs of zeros in the result. */
120 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
121 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
122 else if (TREE_CODE (t) == FIXED_CST)
123 zerop = fixed_zerop (t);
124 else if (TREE_CODE (t) == INTEGER_CST)
125 zerop = integer_zerop (t);
126
127 return !zerop;
128 }
129
130
131 /* Compute a lattice value from the components of a complex type REAL
132 and IMAG. */
133
134 static complex_lattice_t
135 find_lattice_value_parts (tree real, tree imag)
136 {
137 int r, i;
138 complex_lattice_t ret;
139
140 r = some_nonzerop (real);
141 i = some_nonzerop (imag);
142 ret = r * ONLY_REAL + i * ONLY_IMAG;
143
144 /* ??? On occasion we could do better than mapping 0+0i to real, but we
145 certainly don't want to leave it UNINITIALIZED, which eventually gets
146 mapped to VARYING. */
147 if (ret == UNINITIALIZED)
148 ret = ONLY_REAL;
149
150 return ret;
151 }
152
153
154 /* Compute a lattice value from gimple_val T. */
155
156 static complex_lattice_t
157 find_lattice_value (tree t)
158 {
159 tree real, imag;
160
161 switch (TREE_CODE (t))
162 {
163 case SSA_NAME:
164 return complex_lattice_values[SSA_NAME_VERSION (t)];
165
166 case COMPLEX_CST:
167 real = TREE_REALPART (t);
168 imag = TREE_IMAGPART (t);
169 break;
170
171 default:
172 gcc_unreachable ();
173 }
174
175 return find_lattice_value_parts (real, imag);
176 }
177
178 /* Determine if LHS is something for which we're interested in seeing
179 simulation results. */
180
181 static bool
182 is_complex_reg (tree lhs)
183 {
184 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
185 }
186
187 /* Mark the incoming parameters to the function as VARYING. */
188
189 static void
190 init_parameter_lattice_values (void)
191 {
192 tree parm, ssa_name;
193
194 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
195 if (is_complex_reg (parm)
196 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
197 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
198 }
199
200 /* Initialize simulation state for each statement. Return false if we
201 found no statements we want to simulate, and thus there's nothing
202 for the entire pass to do. */
203
204 static bool
205 init_dont_simulate_again (void)
206 {
207 basic_block bb;
208 bool saw_a_complex_op = false;
209
210 FOR_EACH_BB_FN (bb, cfun)
211 {
212 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
213 gsi_next (&gsi))
214 {
215 gphi *phi = gsi.phi ();
216 prop_set_simulate_again (phi,
217 is_complex_reg (gimple_phi_result (phi)));
218 }
219
220 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
221 gsi_next (&gsi))
222 {
223 gimple stmt;
224 tree op0, op1;
225 bool sim_again_p;
226
227 stmt = gsi_stmt (gsi);
228 op0 = op1 = NULL_TREE;
229
230 /* Most control-altering statements must be initially
231 simulated, else we won't cover the entire cfg. */
232 sim_again_p = stmt_ends_bb_p (stmt);
233
234 switch (gimple_code (stmt))
235 {
236 case GIMPLE_CALL:
237 if (gimple_call_lhs (stmt))
238 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
239 break;
240
241 case GIMPLE_ASSIGN:
242 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
243 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
244 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
245 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
246 else
247 op0 = gimple_assign_rhs1 (stmt);
248 if (gimple_num_ops (stmt) > 2)
249 op1 = gimple_assign_rhs2 (stmt);
250 break;
251
252 case GIMPLE_COND:
253 op0 = gimple_cond_lhs (stmt);
254 op1 = gimple_cond_rhs (stmt);
255 break;
256
257 default:
258 break;
259 }
260
261 if (op0 || op1)
262 switch (gimple_expr_code (stmt))
263 {
264 case EQ_EXPR:
265 case NE_EXPR:
266 case PLUS_EXPR:
267 case MINUS_EXPR:
268 case MULT_EXPR:
269 case TRUNC_DIV_EXPR:
270 case CEIL_DIV_EXPR:
271 case FLOOR_DIV_EXPR:
272 case ROUND_DIV_EXPR:
273 case RDIV_EXPR:
274 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
275 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
276 saw_a_complex_op = true;
277 break;
278
279 case NEGATE_EXPR:
280 case CONJ_EXPR:
281 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
282 saw_a_complex_op = true;
283 break;
284
285 case REALPART_EXPR:
286 case IMAGPART_EXPR:
287 /* The total store transformation performed during
288 gimplification creates such uninitialized loads
289 and we need to lower the statement to be able
290 to fix things up. */
291 if (TREE_CODE (op0) == SSA_NAME
292 && ssa_undefined_value_p (op0))
293 saw_a_complex_op = true;
294 break;
295
296 default:
297 break;
298 }
299
300 prop_set_simulate_again (stmt, sim_again_p);
301 }
302 }
303
304 return saw_a_complex_op;
305 }
306
307
308 /* Evaluate statement STMT against the complex lattice defined above. */
309
310 static enum ssa_prop_result
311 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
312 tree *result_p)
313 {
314 complex_lattice_t new_l, old_l, op1_l, op2_l;
315 unsigned int ver;
316 tree lhs;
317
318 lhs = gimple_get_lhs (stmt);
319 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
320 if (!lhs)
321 return SSA_PROP_VARYING;
322
323 /* These conditions should be satisfied due to the initial filter
324 set up in init_dont_simulate_again. */
325 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
326 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
327
328 *result_p = lhs;
329 ver = SSA_NAME_VERSION (lhs);
330 old_l = complex_lattice_values[ver];
331
332 switch (gimple_expr_code (stmt))
333 {
334 case SSA_NAME:
335 case COMPLEX_CST:
336 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
337 break;
338
339 case COMPLEX_EXPR:
340 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
341 gimple_assign_rhs2 (stmt));
342 break;
343
344 case PLUS_EXPR:
345 case MINUS_EXPR:
346 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
347 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
348
349 /* We've set up the lattice values such that IOR neatly
350 models addition. */
351 new_l = op1_l | op2_l;
352 break;
353
354 case MULT_EXPR:
355 case RDIV_EXPR:
356 case TRUNC_DIV_EXPR:
357 case CEIL_DIV_EXPR:
358 case FLOOR_DIV_EXPR:
359 case ROUND_DIV_EXPR:
360 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
361 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
362
363 /* Obviously, if either varies, so does the result. */
364 if (op1_l == VARYING || op2_l == VARYING)
365 new_l = VARYING;
366 /* Don't prematurely promote variables if we've not yet seen
367 their inputs. */
368 else if (op1_l == UNINITIALIZED)
369 new_l = op2_l;
370 else if (op2_l == UNINITIALIZED)
371 new_l = op1_l;
372 else
373 {
374 /* At this point both numbers have only one component. If the
375 numbers are of opposite kind, the result is imaginary,
376 otherwise the result is real. The add/subtract translates
377 the real/imag from/to 0/1; the ^ performs the comparison. */
378 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
379
380 /* Don't allow the lattice value to flip-flop indefinitely. */
381 new_l |= old_l;
382 }
383 break;
384
385 case NEGATE_EXPR:
386 case CONJ_EXPR:
387 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
388 break;
389
390 default:
391 new_l = VARYING;
392 break;
393 }
394
395 /* If nothing changed this round, let the propagator know. */
396 if (new_l == old_l)
397 return SSA_PROP_NOT_INTERESTING;
398
399 complex_lattice_values[ver] = new_l;
400 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
401 }
402
403 /* Evaluate a PHI node against the complex lattice defined above. */
404
405 static enum ssa_prop_result
406 complex_visit_phi (gphi *phi)
407 {
408 complex_lattice_t new_l, old_l;
409 unsigned int ver;
410 tree lhs;
411 int i;
412
413 lhs = gimple_phi_result (phi);
414
415 /* This condition should be satisfied due to the initial filter
416 set up in init_dont_simulate_again. */
417 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
418
419 /* We've set up the lattice values such that IOR neatly models PHI meet. */
420 new_l = UNINITIALIZED;
421 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
422 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
423
424 ver = SSA_NAME_VERSION (lhs);
425 old_l = complex_lattice_values[ver];
426
427 if (new_l == old_l)
428 return SSA_PROP_NOT_INTERESTING;
429
430 complex_lattice_values[ver] = new_l;
431 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
432 }
433
434 /* Create one backing variable for a complex component of ORIG. */
435
436 static tree
437 create_one_component_var (tree type, tree orig, const char *prefix,
438 const char *suffix, enum tree_code code)
439 {
440 tree r = create_tmp_var (type, prefix);
441
442 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
443 DECL_ARTIFICIAL (r) = 1;
444
445 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
446 {
447 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
448
449 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
450
451 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
452 DECL_HAS_DEBUG_EXPR_P (r) = 1;
453 DECL_IGNORED_P (r) = 0;
454 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
455 }
456 else
457 {
458 DECL_IGNORED_P (r) = 1;
459 TREE_NO_WARNING (r) = 1;
460 }
461
462 return r;
463 }
464
465 /* Retrieve a value for a complex component of VAR. */
466
467 static tree
468 get_component_var (tree var, bool imag_p)
469 {
470 size_t decl_index = DECL_UID (var) * 2 + imag_p;
471 tree ret = cvc_lookup (decl_index);
472
473 if (ret == NULL)
474 {
475 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
476 imag_p ? "CI" : "CR",
477 imag_p ? "$imag" : "$real",
478 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
479 cvc_insert (decl_index, ret);
480 }
481
482 return ret;
483 }
484
485 /* Retrieve a value for a complex component of SSA_NAME. */
486
487 static tree
488 get_component_ssa_name (tree ssa_name, bool imag_p)
489 {
490 complex_lattice_t lattice = find_lattice_value (ssa_name);
491 size_t ssa_name_index;
492 tree ret;
493
494 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
495 {
496 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
497 if (SCALAR_FLOAT_TYPE_P (inner_type))
498 return build_real (inner_type, dconst0);
499 else
500 return build_int_cst (inner_type, 0);
501 }
502
503 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
504 ret = complex_ssa_name_components[ssa_name_index];
505 if (ret == NULL)
506 {
507 if (SSA_NAME_VAR (ssa_name))
508 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
509 else
510 ret = TREE_TYPE (TREE_TYPE (ssa_name));
511 ret = make_ssa_name (ret);
512
513 /* Copy some properties from the original. In particular, whether it
514 is used in an abnormal phi, and whether it's uninitialized. */
515 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
516 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
517 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
518 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
519 {
520 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
521 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
522 }
523
524 complex_ssa_name_components[ssa_name_index] = ret;
525 }
526
527 return ret;
528 }
529
530 /* Set a value for a complex component of SSA_NAME, return a
531 gimple_seq of stuff that needs doing. */
532
533 static gimple_seq
534 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
535 {
536 complex_lattice_t lattice = find_lattice_value (ssa_name);
537 size_t ssa_name_index;
538 tree comp;
539 gimple last;
540 gimple_seq list;
541
542 /* We know the value must be zero, else there's a bug in our lattice
543 analysis. But the value may well be a variable known to contain
544 zero. We should be safe ignoring it. */
545 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
546 return NULL;
547
548 /* If we've already assigned an SSA_NAME to this component, then this
549 means that our walk of the basic blocks found a use before the set.
550 This is fine. Now we should create an initialization for the value
551 we created earlier. */
552 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
553 comp = complex_ssa_name_components[ssa_name_index];
554 if (comp)
555 ;
556
557 /* If we've nothing assigned, and the value we're given is already stable,
558 then install that as the value for this SSA_NAME. This preemptively
559 copy-propagates the value, which avoids unnecessary memory allocation. */
560 else if (is_gimple_min_invariant (value)
561 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
562 {
563 complex_ssa_name_components[ssa_name_index] = value;
564 return NULL;
565 }
566 else if (TREE_CODE (value) == SSA_NAME
567 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
568 {
569 /* Replace an anonymous base value with the variable from cvc_lookup.
570 This should result in better debug info. */
571 if (SSA_NAME_VAR (ssa_name)
572 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
573 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
574 {
575 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
576 replace_ssa_name_symbol (value, comp);
577 }
578
579 complex_ssa_name_components[ssa_name_index] = value;
580 return NULL;
581 }
582
583 /* Finally, we need to stabilize the result by installing the value into
584 a new ssa name. */
585 else
586 comp = get_component_ssa_name (ssa_name, imag_p);
587
588 /* Do all the work to assign VALUE to COMP. */
589 list = NULL;
590 value = force_gimple_operand (value, &list, false, NULL);
591 last = gimple_build_assign (comp, value);
592 gimple_seq_add_stmt (&list, last);
593 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
594
595 return list;
596 }
597
598 /* Extract the real or imaginary part of a complex variable or constant.
599 Make sure that it's a proper gimple_val and gimplify it if not.
600 Emit any new code before gsi. */
601
602 static tree
603 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
604 bool gimple_p)
605 {
606 switch (TREE_CODE (t))
607 {
608 case COMPLEX_CST:
609 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
610
611 case COMPLEX_EXPR:
612 gcc_unreachable ();
613
614 case VAR_DECL:
615 case RESULT_DECL:
616 case PARM_DECL:
617 case COMPONENT_REF:
618 case ARRAY_REF:
619 case VIEW_CONVERT_EXPR:
620 case MEM_REF:
621 {
622 tree inner_type = TREE_TYPE (TREE_TYPE (t));
623
624 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
625 inner_type, unshare_expr (t));
626
627 if (gimple_p)
628 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
629 GSI_SAME_STMT);
630
631 return t;
632 }
633
634 case SSA_NAME:
635 return get_component_ssa_name (t, imagpart_p);
636
637 default:
638 gcc_unreachable ();
639 }
640 }
641
642 /* Update the complex components of the ssa name on the lhs of STMT. */
643
644 static void
645 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
646 tree i)
647 {
648 tree lhs;
649 gimple_seq list;
650
651 lhs = gimple_get_lhs (stmt);
652
653 list = set_component_ssa_name (lhs, false, r);
654 if (list)
655 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
656
657 list = set_component_ssa_name (lhs, true, i);
658 if (list)
659 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
660 }
661
662 static void
663 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
664 {
665 gimple_seq list;
666
667 list = set_component_ssa_name (lhs, false, r);
668 if (list)
669 gsi_insert_seq_on_edge (e, list);
670
671 list = set_component_ssa_name (lhs, true, i);
672 if (list)
673 gsi_insert_seq_on_edge (e, list);
674 }
675
676
677 /* Update an assignment to a complex variable in place. */
678
679 static void
680 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
681 {
682 gimple stmt;
683
684 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
685 stmt = gsi_stmt (*gsi);
686 update_stmt (stmt);
687 if (maybe_clean_eh_stmt (stmt))
688 gimple_purge_dead_eh_edges (gimple_bb (stmt));
689
690 if (gimple_in_ssa_p (cfun))
691 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
692 }
693
694
695 /* Generate code at the entry point of the function to initialize the
696 component variables for a complex parameter. */
697
698 static void
699 update_parameter_components (void)
700 {
701 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
702 tree parm;
703
704 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
705 {
706 tree type = TREE_TYPE (parm);
707 tree ssa_name, r, i;
708
709 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
710 continue;
711
712 type = TREE_TYPE (type);
713 ssa_name = ssa_default_def (cfun, parm);
714 if (!ssa_name)
715 continue;
716
717 r = build1 (REALPART_EXPR, type, ssa_name);
718 i = build1 (IMAGPART_EXPR, type, ssa_name);
719 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
720 }
721 }
722
723 /* Generate code to set the component variables of a complex variable
724 to match the PHI statements in block BB. */
725
726 static void
727 update_phi_components (basic_block bb)
728 {
729 gphi_iterator gsi;
730
731 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
732 {
733 gphi *phi = gsi.phi ();
734
735 if (is_complex_reg (gimple_phi_result (phi)))
736 {
737 tree lr, li;
738 gimple pr = NULL, pi = NULL;
739 unsigned int i, n;
740
741 lr = get_component_ssa_name (gimple_phi_result (phi), false);
742 if (TREE_CODE (lr) == SSA_NAME)
743 pr = create_phi_node (lr, bb);
744
745 li = get_component_ssa_name (gimple_phi_result (phi), true);
746 if (TREE_CODE (li) == SSA_NAME)
747 pi = create_phi_node (li, bb);
748
749 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
750 {
751 tree comp, arg = gimple_phi_arg_def (phi, i);
752 if (pr)
753 {
754 comp = extract_component (NULL, arg, false, false);
755 SET_PHI_ARG_DEF (pr, i, comp);
756 }
757 if (pi)
758 {
759 comp = extract_component (NULL, arg, true, false);
760 SET_PHI_ARG_DEF (pi, i, comp);
761 }
762 }
763 }
764 }
765 }
766
767 /* Expand a complex move to scalars. */
768
769 static void
770 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
771 {
772 tree inner_type = TREE_TYPE (type);
773 tree r, i, lhs, rhs;
774 gimple stmt = gsi_stmt (*gsi);
775
776 if (is_gimple_assign (stmt))
777 {
778 lhs = gimple_assign_lhs (stmt);
779 if (gimple_num_ops (stmt) == 2)
780 rhs = gimple_assign_rhs1 (stmt);
781 else
782 rhs = NULL_TREE;
783 }
784 else if (is_gimple_call (stmt))
785 {
786 lhs = gimple_call_lhs (stmt);
787 rhs = NULL_TREE;
788 }
789 else
790 gcc_unreachable ();
791
792 if (TREE_CODE (lhs) == SSA_NAME)
793 {
794 if (is_ctrl_altering_stmt (stmt))
795 {
796 edge e;
797
798 /* The value is not assigned on the exception edges, so we need not
799 concern ourselves there. We do need to update on the fallthru
800 edge. Find it. */
801 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
802 if (!e)
803 gcc_unreachable ();
804
805 r = build1 (REALPART_EXPR, inner_type, lhs);
806 i = build1 (IMAGPART_EXPR, inner_type, lhs);
807 update_complex_components_on_edge (e, lhs, r, i);
808 }
809 else if (is_gimple_call (stmt)
810 || gimple_has_side_effects (stmt)
811 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
812 {
813 r = build1 (REALPART_EXPR, inner_type, lhs);
814 i = build1 (IMAGPART_EXPR, inner_type, lhs);
815 update_complex_components (gsi, stmt, r, i);
816 }
817 else
818 {
819 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
820 {
821 r = extract_component (gsi, rhs, 0, true);
822 i = extract_component (gsi, rhs, 1, true);
823 }
824 else
825 {
826 r = gimple_assign_rhs1 (stmt);
827 i = gimple_assign_rhs2 (stmt);
828 }
829 update_complex_assignment (gsi, r, i);
830 }
831 }
832 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
833 {
834 tree x;
835 gimple t;
836 location_t loc;
837
838 loc = gimple_location (stmt);
839 r = extract_component (gsi, rhs, 0, false);
840 i = extract_component (gsi, rhs, 1, false);
841
842 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
843 t = gimple_build_assign (x, r);
844 gimple_set_location (t, loc);
845 gsi_insert_before (gsi, t, GSI_SAME_STMT);
846
847 if (stmt == gsi_stmt (*gsi))
848 {
849 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
850 gimple_assign_set_lhs (stmt, x);
851 gimple_assign_set_rhs1 (stmt, i);
852 }
853 else
854 {
855 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
856 t = gimple_build_assign (x, i);
857 gimple_set_location (t, loc);
858 gsi_insert_before (gsi, t, GSI_SAME_STMT);
859
860 stmt = gsi_stmt (*gsi);
861 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
862 gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
863 }
864
865 update_stmt (stmt);
866 }
867 }
868
869 /* Expand complex addition to scalars:
870 a + b = (ar + br) + i(ai + bi)
871 a - b = (ar - br) + i(ai + bi)
872 */
873
874 static void
875 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
876 tree ar, tree ai, tree br, tree bi,
877 enum tree_code code,
878 complex_lattice_t al, complex_lattice_t bl)
879 {
880 tree rr, ri;
881
882 switch (PAIR (al, bl))
883 {
884 case PAIR (ONLY_REAL, ONLY_REAL):
885 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
886 ri = ai;
887 break;
888
889 case PAIR (ONLY_REAL, ONLY_IMAG):
890 rr = ar;
891 if (code == MINUS_EXPR)
892 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
893 else
894 ri = bi;
895 break;
896
897 case PAIR (ONLY_IMAG, ONLY_REAL):
898 if (code == MINUS_EXPR)
899 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
900 else
901 rr = br;
902 ri = ai;
903 break;
904
905 case PAIR (ONLY_IMAG, ONLY_IMAG):
906 rr = ar;
907 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
908 break;
909
910 case PAIR (VARYING, ONLY_REAL):
911 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
912 ri = ai;
913 break;
914
915 case PAIR (VARYING, ONLY_IMAG):
916 rr = ar;
917 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
918 break;
919
920 case PAIR (ONLY_REAL, VARYING):
921 if (code == MINUS_EXPR)
922 goto general;
923 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
924 ri = bi;
925 break;
926
927 case PAIR (ONLY_IMAG, VARYING):
928 if (code == MINUS_EXPR)
929 goto general;
930 rr = br;
931 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
932 break;
933
934 case PAIR (VARYING, VARYING):
935 general:
936 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
937 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
938 break;
939
940 default:
941 gcc_unreachable ();
942 }
943
944 update_complex_assignment (gsi, rr, ri);
945 }
946
947 /* Expand a complex multiplication or division to a libcall to the c99
948 compliant routines. */
949
950 static void
951 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
952 tree br, tree bi, enum tree_code code)
953 {
954 machine_mode mode;
955 enum built_in_function bcode;
956 tree fn, type, lhs;
957 gimple old_stmt;
958 gcall *stmt;
959
960 old_stmt = gsi_stmt (*gsi);
961 lhs = gimple_assign_lhs (old_stmt);
962 type = TREE_TYPE (lhs);
963
964 mode = TYPE_MODE (type);
965 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
966
967 if (code == MULT_EXPR)
968 bcode = ((enum built_in_function)
969 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
970 else if (code == RDIV_EXPR)
971 bcode = ((enum built_in_function)
972 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
973 else
974 gcc_unreachable ();
975 fn = builtin_decl_explicit (bcode);
976
977 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
978 gimple_call_set_lhs (stmt, lhs);
979 update_stmt (stmt);
980 gsi_replace (gsi, stmt, false);
981
982 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
983 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
984
985 if (gimple_in_ssa_p (cfun))
986 {
987 type = TREE_TYPE (type);
988 update_complex_components (gsi, stmt,
989 build1 (REALPART_EXPR, type, lhs),
990 build1 (IMAGPART_EXPR, type, lhs));
991 SSA_NAME_DEF_STMT (lhs) = stmt;
992 }
993 }
994
995 /* Expand complex multiplication to scalars:
996 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
997 */
998
999 static void
1000 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
1001 tree ar, tree ai, tree br, tree bi,
1002 complex_lattice_t al, complex_lattice_t bl)
1003 {
1004 tree rr, ri;
1005
1006 if (al < bl)
1007 {
1008 complex_lattice_t tl;
1009 rr = ar, ar = br, br = rr;
1010 ri = ai, ai = bi, bi = ri;
1011 tl = al, al = bl, bl = tl;
1012 }
1013
1014 switch (PAIR (al, bl))
1015 {
1016 case PAIR (ONLY_REAL, ONLY_REAL):
1017 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1018 ri = ai;
1019 break;
1020
1021 case PAIR (ONLY_IMAG, ONLY_REAL):
1022 rr = ar;
1023 if (TREE_CODE (ai) == REAL_CST
1024 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1025 ri = br;
1026 else
1027 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1028 break;
1029
1030 case PAIR (ONLY_IMAG, ONLY_IMAG):
1031 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1032 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1033 ri = ar;
1034 break;
1035
1036 case PAIR (VARYING, ONLY_REAL):
1037 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1038 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1039 break;
1040
1041 case PAIR (VARYING, ONLY_IMAG):
1042 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1043 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1044 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1045 break;
1046
1047 case PAIR (VARYING, VARYING):
1048 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1049 {
1050 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1051 return;
1052 }
1053 else
1054 {
1055 tree t1, t2, t3, t4;
1056
1057 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1058 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1059 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1060
1061 /* Avoid expanding redundant multiplication for the common
1062 case of squaring a complex number. */
1063 if (ar == br && ai == bi)
1064 t4 = t3;
1065 else
1066 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1067
1068 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1069 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1070 }
1071 break;
1072
1073 default:
1074 gcc_unreachable ();
1075 }
1076
1077 update_complex_assignment (gsi, rr, ri);
1078 }
1079
1080 /* Keep this algorithm in sync with fold-const.c:const_binop().
1081
1082 Expand complex division to scalars, straightforward algorithm.
1083 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1084 t = br*br + bi*bi
1085 */
1086
1087 static void
1088 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1089 tree ar, tree ai, tree br, tree bi,
1090 enum tree_code code)
1091 {
1092 tree rr, ri, div, t1, t2, t3;
1093
1094 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1095 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1096 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1097
1098 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1099 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1100 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1101 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1102
1103 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1104 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1105 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1106 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1107
1108 update_complex_assignment (gsi, rr, ri);
1109 }
1110
1111 /* Keep this algorithm in sync with fold-const.c:const_binop().
1112
1113 Expand complex division to scalars, modified algorithm to minimize
1114 overflow with wide input ranges. */
1115
1116 static void
1117 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1118 tree ar, tree ai, tree br, tree bi,
1119 enum tree_code code)
1120 {
1121 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1122 basic_block bb_cond, bb_true, bb_false, bb_join;
1123 gimple stmt;
1124
1125 /* Examine |br| < |bi|, and branch. */
1126 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1127 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1128 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1129 LT_EXPR, boolean_type_node, t1, t2);
1130 STRIP_NOPS (compare);
1131
1132 bb_cond = bb_true = bb_false = bb_join = NULL;
1133 rr = ri = tr = ti = NULL;
1134 if (TREE_CODE (compare) != INTEGER_CST)
1135 {
1136 edge e;
1137 gimple stmt;
1138 tree cond, tmp;
1139
1140 tmp = create_tmp_var (boolean_type_node);
1141 stmt = gimple_build_assign (tmp, compare);
1142 if (gimple_in_ssa_p (cfun))
1143 {
1144 tmp = make_ssa_name (tmp, stmt);
1145 gimple_assign_set_lhs (stmt, tmp);
1146 }
1147
1148 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1149
1150 cond = fold_build2_loc (gimple_location (stmt),
1151 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1152 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1153 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1154
1155 /* Split the original block, and create the TRUE and FALSE blocks. */
1156 e = split_block (gsi_bb (*gsi), stmt);
1157 bb_cond = e->src;
1158 bb_join = e->dest;
1159 bb_true = create_empty_bb (bb_cond);
1160 bb_false = create_empty_bb (bb_true);
1161
1162 /* Wire the blocks together. */
1163 e->flags = EDGE_TRUE_VALUE;
1164 redirect_edge_succ (e, bb_true);
1165 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1166 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1167 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1168 add_bb_to_loop (bb_true, bb_cond->loop_father);
1169 add_bb_to_loop (bb_false, bb_cond->loop_father);
1170
1171 /* Update dominance info. Note that bb_join's data was
1172 updated by split_block. */
1173 if (dom_info_available_p (CDI_DOMINATORS))
1174 {
1175 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1176 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1177 }
1178
1179 rr = create_tmp_reg (inner_type);
1180 ri = create_tmp_reg (inner_type);
1181 }
1182
1183 /* In the TRUE branch, we compute
1184 ratio = br/bi;
1185 div = (br * ratio) + bi;
1186 tr = (ar * ratio) + ai;
1187 ti = (ai * ratio) - ar;
1188 tr = tr / div;
1189 ti = ti / div; */
1190 if (bb_true || integer_nonzerop (compare))
1191 {
1192 if (bb_true)
1193 {
1194 *gsi = gsi_last_bb (bb_true);
1195 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1196 }
1197
1198 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1199
1200 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1201 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1202
1203 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1204 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1205
1206 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1207 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1208
1209 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1210 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1211
1212 if (bb_true)
1213 {
1214 stmt = gimple_build_assign (rr, tr);
1215 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1216 stmt = gimple_build_assign (ri, ti);
1217 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1218 gsi_remove (gsi, true);
1219 }
1220 }
1221
1222 /* In the FALSE branch, we compute
1223 ratio = d/c;
1224 divisor = (d * ratio) + c;
1225 tr = (b * ratio) + a;
1226 ti = b - (a * ratio);
1227 tr = tr / div;
1228 ti = ti / div; */
1229 if (bb_false || integer_zerop (compare))
1230 {
1231 if (bb_false)
1232 {
1233 *gsi = gsi_last_bb (bb_false);
1234 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1235 }
1236
1237 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1238
1239 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1240 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1241
1242 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1243 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1244
1245 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1246 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1247
1248 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1249 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1250
1251 if (bb_false)
1252 {
1253 stmt = gimple_build_assign (rr, tr);
1254 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1255 stmt = gimple_build_assign (ri, ti);
1256 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1257 gsi_remove (gsi, true);
1258 }
1259 }
1260
1261 if (bb_join)
1262 *gsi = gsi_start_bb (bb_join);
1263 else
1264 rr = tr, ri = ti;
1265
1266 update_complex_assignment (gsi, rr, ri);
1267 }
1268
1269 /* Expand complex division to scalars. */
1270
1271 static void
1272 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1273 tree ar, tree ai, tree br, tree bi,
1274 enum tree_code code,
1275 complex_lattice_t al, complex_lattice_t bl)
1276 {
1277 tree rr, ri;
1278
1279 switch (PAIR (al, bl))
1280 {
1281 case PAIR (ONLY_REAL, ONLY_REAL):
1282 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1283 ri = ai;
1284 break;
1285
1286 case PAIR (ONLY_REAL, ONLY_IMAG):
1287 rr = ai;
1288 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1289 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1290 break;
1291
1292 case PAIR (ONLY_IMAG, ONLY_REAL):
1293 rr = ar;
1294 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1295 break;
1296
1297 case PAIR (ONLY_IMAG, ONLY_IMAG):
1298 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1299 ri = ar;
1300 break;
1301
1302 case PAIR (VARYING, ONLY_REAL):
1303 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1304 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1305 break;
1306
1307 case PAIR (VARYING, ONLY_IMAG):
1308 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1309 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1310 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1311
1312 case PAIR (ONLY_REAL, VARYING):
1313 case PAIR (ONLY_IMAG, VARYING):
1314 case PAIR (VARYING, VARYING):
1315 switch (flag_complex_method)
1316 {
1317 case 0:
1318 /* straightforward implementation of complex divide acceptable. */
1319 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1320 break;
1321
1322 case 2:
1323 if (SCALAR_FLOAT_TYPE_P (inner_type))
1324 {
1325 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1326 break;
1327 }
1328 /* FALLTHRU */
1329
1330 case 1:
1331 /* wide ranges of inputs must work for complex divide. */
1332 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1333 break;
1334
1335 default:
1336 gcc_unreachable ();
1337 }
1338 return;
1339
1340 default:
1341 gcc_unreachable ();
1342 }
1343
1344 update_complex_assignment (gsi, rr, ri);
1345 }
1346
1347 /* Expand complex negation to scalars:
1348 -a = (-ar) + i(-ai)
1349 */
1350
1351 static void
1352 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1353 tree ar, tree ai)
1354 {
1355 tree rr, ri;
1356
1357 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1358 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1359
1360 update_complex_assignment (gsi, rr, ri);
1361 }
1362
1363 /* Expand complex conjugate to scalars:
1364 ~a = (ar) + i(-ai)
1365 */
1366
1367 static void
1368 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1369 tree ar, tree ai)
1370 {
1371 tree ri;
1372
1373 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1374
1375 update_complex_assignment (gsi, ar, ri);
1376 }
1377
1378 /* Expand complex comparison (EQ or NE only). */
1379
1380 static void
1381 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1382 tree br, tree bi, enum tree_code code)
1383 {
1384 tree cr, ci, cc, type;
1385 gimple stmt;
1386
1387 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1388 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1389 cc = gimplify_build2 (gsi,
1390 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1391 boolean_type_node, cr, ci);
1392
1393 stmt = gsi_stmt (*gsi);
1394
1395 switch (gimple_code (stmt))
1396 {
1397 case GIMPLE_RETURN:
1398 {
1399 greturn *return_stmt = as_a <greturn *> (stmt);
1400 type = TREE_TYPE (gimple_return_retval (return_stmt));
1401 gimple_return_set_retval (return_stmt, fold_convert (type, cc));
1402 }
1403 break;
1404
1405 case GIMPLE_ASSIGN:
1406 type = TREE_TYPE (gimple_assign_lhs (stmt));
1407 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1408 stmt = gsi_stmt (*gsi);
1409 break;
1410
1411 case GIMPLE_COND:
1412 {
1413 gcond *cond_stmt = as_a <gcond *> (stmt);
1414 gimple_cond_set_code (cond_stmt, EQ_EXPR);
1415 gimple_cond_set_lhs (cond_stmt, cc);
1416 gimple_cond_set_rhs (cond_stmt, boolean_true_node);
1417 }
1418 break;
1419
1420 default:
1421 gcc_unreachable ();
1422 }
1423
1424 update_stmt (stmt);
1425 }
1426
1427 /* Expand inline asm that sets some complex SSA_NAMEs. */
1428
1429 static void
1430 expand_complex_asm (gimple_stmt_iterator *gsi)
1431 {
1432 gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
1433 unsigned int i;
1434
1435 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1436 {
1437 tree link = gimple_asm_output_op (stmt, i);
1438 tree op = TREE_VALUE (link);
1439 if (TREE_CODE (op) == SSA_NAME
1440 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1441 {
1442 tree type = TREE_TYPE (op);
1443 tree inner_type = TREE_TYPE (type);
1444 tree r = build1 (REALPART_EXPR, inner_type, op);
1445 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1446 gimple_seq list = set_component_ssa_name (op, false, r);
1447
1448 if (list)
1449 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1450
1451 list = set_component_ssa_name (op, true, i);
1452 if (list)
1453 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1454 }
1455 }
1456 }
1457
1458 /* Process one statement. If we identify a complex operation, expand it. */
1459
1460 static void
1461 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1462 {
1463 gimple stmt = gsi_stmt (*gsi);
1464 tree type, inner_type, lhs;
1465 tree ac, ar, ai, bc, br, bi;
1466 complex_lattice_t al, bl;
1467 enum tree_code code;
1468
1469 if (gimple_code (stmt) == GIMPLE_ASM)
1470 {
1471 expand_complex_asm (gsi);
1472 return;
1473 }
1474
1475 lhs = gimple_get_lhs (stmt);
1476 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1477 return;
1478
1479 type = TREE_TYPE (gimple_op (stmt, 0));
1480 code = gimple_expr_code (stmt);
1481
1482 /* Initial filter for operations we handle. */
1483 switch (code)
1484 {
1485 case PLUS_EXPR:
1486 case MINUS_EXPR:
1487 case MULT_EXPR:
1488 case TRUNC_DIV_EXPR:
1489 case CEIL_DIV_EXPR:
1490 case FLOOR_DIV_EXPR:
1491 case ROUND_DIV_EXPR:
1492 case RDIV_EXPR:
1493 case NEGATE_EXPR:
1494 case CONJ_EXPR:
1495 if (TREE_CODE (type) != COMPLEX_TYPE)
1496 return;
1497 inner_type = TREE_TYPE (type);
1498 break;
1499
1500 case EQ_EXPR:
1501 case NE_EXPR:
1502 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1503 subcode, so we need to access the operands using gimple_op. */
1504 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1505 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1506 return;
1507 break;
1508
1509 default:
1510 {
1511 tree rhs;
1512
1513 /* GIMPLE_COND may also fallthru here, but we do not need to
1514 do anything with it. */
1515 if (gimple_code (stmt) == GIMPLE_COND)
1516 return;
1517
1518 if (TREE_CODE (type) == COMPLEX_TYPE)
1519 expand_complex_move (gsi, type);
1520 else if (is_gimple_assign (stmt)
1521 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1522 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1523 && TREE_CODE (lhs) == SSA_NAME)
1524 {
1525 rhs = gimple_assign_rhs1 (stmt);
1526 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1527 gimple_assign_rhs_code (stmt)
1528 == IMAGPART_EXPR,
1529 false);
1530 gimple_assign_set_rhs_from_tree (gsi, rhs);
1531 stmt = gsi_stmt (*gsi);
1532 update_stmt (stmt);
1533 }
1534 }
1535 return;
1536 }
1537
1538 /* Extract the components of the two complex values. Make sure and
1539 handle the common case of the same value used twice specially. */
1540 if (is_gimple_assign (stmt))
1541 {
1542 ac = gimple_assign_rhs1 (stmt);
1543 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1544 }
1545 /* GIMPLE_CALL can not get here. */
1546 else
1547 {
1548 ac = gimple_cond_lhs (stmt);
1549 bc = gimple_cond_rhs (stmt);
1550 }
1551
1552 ar = extract_component (gsi, ac, false, true);
1553 ai = extract_component (gsi, ac, true, true);
1554
1555 if (ac == bc)
1556 br = ar, bi = ai;
1557 else if (bc)
1558 {
1559 br = extract_component (gsi, bc, 0, true);
1560 bi = extract_component (gsi, bc, 1, true);
1561 }
1562 else
1563 br = bi = NULL_TREE;
1564
1565 if (gimple_in_ssa_p (cfun))
1566 {
1567 al = find_lattice_value (ac);
1568 if (al == UNINITIALIZED)
1569 al = VARYING;
1570
1571 if (TREE_CODE_CLASS (code) == tcc_unary)
1572 bl = UNINITIALIZED;
1573 else if (ac == bc)
1574 bl = al;
1575 else
1576 {
1577 bl = find_lattice_value (bc);
1578 if (bl == UNINITIALIZED)
1579 bl = VARYING;
1580 }
1581 }
1582 else
1583 al = bl = VARYING;
1584
1585 switch (code)
1586 {
1587 case PLUS_EXPR:
1588 case MINUS_EXPR:
1589 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1590 break;
1591
1592 case MULT_EXPR:
1593 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1594 break;
1595
1596 case TRUNC_DIV_EXPR:
1597 case CEIL_DIV_EXPR:
1598 case FLOOR_DIV_EXPR:
1599 case ROUND_DIV_EXPR:
1600 case RDIV_EXPR:
1601 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1602 break;
1603
1604 case NEGATE_EXPR:
1605 expand_complex_negation (gsi, inner_type, ar, ai);
1606 break;
1607
1608 case CONJ_EXPR:
1609 expand_complex_conjugate (gsi, inner_type, ar, ai);
1610 break;
1611
1612 case EQ_EXPR:
1613 case NE_EXPR:
1614 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1615 break;
1616
1617 default:
1618 gcc_unreachable ();
1619 }
1620 }
1621
1622 \f
1623 /* Entry point for complex operation lowering during optimization. */
1624
1625 static unsigned int
1626 tree_lower_complex (void)
1627 {
1628 int old_last_basic_block;
1629 gimple_stmt_iterator gsi;
1630 basic_block bb;
1631
1632 if (!init_dont_simulate_again ())
1633 return 0;
1634
1635 complex_lattice_values.create (num_ssa_names);
1636 complex_lattice_values.safe_grow_cleared (num_ssa_names);
1637
1638 init_parameter_lattice_values ();
1639 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1640
1641 complex_variable_components = new int_tree_htab_type (10);
1642
1643 complex_ssa_name_components.create (2 * num_ssa_names);
1644 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1645
1646 update_parameter_components ();
1647
1648 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1649 old_last_basic_block = last_basic_block_for_fn (cfun);
1650 FOR_EACH_BB_FN (bb, cfun)
1651 {
1652 if (bb->index >= old_last_basic_block)
1653 continue;
1654
1655 update_phi_components (bb);
1656 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1657 expand_complex_operations_1 (&gsi);
1658 }
1659
1660 gsi_commit_edge_inserts ();
1661
1662 delete complex_variable_components;
1663 complex_variable_components = NULL;
1664 complex_ssa_name_components.release ();
1665 complex_lattice_values.release ();
1666 return 0;
1667 }
1668
1669 namespace {
1670
1671 const pass_data pass_data_lower_complex =
1672 {
1673 GIMPLE_PASS, /* type */
1674 "cplxlower", /* name */
1675 OPTGROUP_NONE, /* optinfo_flags */
1676 TV_NONE, /* tv_id */
1677 PROP_ssa, /* properties_required */
1678 PROP_gimple_lcx, /* properties_provided */
1679 0, /* properties_destroyed */
1680 0, /* todo_flags_start */
1681 TODO_update_ssa, /* todo_flags_finish */
1682 };
1683
1684 class pass_lower_complex : public gimple_opt_pass
1685 {
1686 public:
1687 pass_lower_complex (gcc::context *ctxt)
1688 : gimple_opt_pass (pass_data_lower_complex, ctxt)
1689 {}
1690
1691 /* opt_pass methods: */
1692 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
1693 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1694
1695 }; // class pass_lower_complex
1696
1697 } // anon namespace
1698
1699 gimple_opt_pass *
1700 make_pass_lower_complex (gcc::context *ctxt)
1701 {
1702 return new pass_lower_complex (ctxt);
1703 }
1704
1705 \f
1706 namespace {
1707
1708 const pass_data pass_data_lower_complex_O0 =
1709 {
1710 GIMPLE_PASS, /* type */
1711 "cplxlower0", /* name */
1712 OPTGROUP_NONE, /* optinfo_flags */
1713 TV_NONE, /* tv_id */
1714 PROP_cfg, /* properties_required */
1715 PROP_gimple_lcx, /* properties_provided */
1716 0, /* properties_destroyed */
1717 0, /* todo_flags_start */
1718 TODO_update_ssa, /* todo_flags_finish */
1719 };
1720
1721 class pass_lower_complex_O0 : public gimple_opt_pass
1722 {
1723 public:
1724 pass_lower_complex_O0 (gcc::context *ctxt)
1725 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1726 {}
1727
1728 /* opt_pass methods: */
1729 virtual bool gate (function *fun)
1730 {
1731 /* With errors, normal optimization passes are not run. If we don't
1732 lower complex operations at all, rtl expansion will abort. */
1733 return !(fun->curr_properties & PROP_gimple_lcx);
1734 }
1735
1736 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1737
1738 }; // class pass_lower_complex_O0
1739
1740 } // anon namespace
1741
1742 gimple_opt_pass *
1743 make_pass_lower_complex_O0 (gcc::context *ctxt)
1744 {
1745 return new pass_lower_complex_O0 (ctxt);
1746 }