]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-complex.c
Update copyright years in gcc/
[thirdparty/gcc.git] / gcc / tree-complex.c
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "flags.h"
26 #include "tree-flow.h"
27 #include "gimple.h"
28 #include "tree-iterator.h"
29 #include "tree-pass.h"
30 #include "tree-ssa-propagate.h"
31
32
33 /* For each complex ssa name, a lattice value. We're interested in finding
34 out whether a complex number is degenerate in some way, having only real
35 or only complex parts. */
36
37 enum
38 {
39 UNINITIALIZED = 0,
40 ONLY_REAL = 1,
41 ONLY_IMAG = 2,
42 VARYING = 3
43 };
44
45 /* The type complex_lattice_t holds combinations of the above
46 constants. */
47 typedef int complex_lattice_t;
48
49 #define PAIR(a, b) ((a) << 2 | (b))
50
51
52 static vec<complex_lattice_t> complex_lattice_values;
53
54 /* For each complex variable, a pair of variables for the components exists in
55 the hashtable. */
56 static htab_t complex_variable_components;
57
58 /* For each complex SSA_NAME, a pair of ssa names for the components. */
59 static vec<tree> complex_ssa_name_components;
60
61 /* Lookup UID in the complex_variable_components hashtable and return the
62 associated tree. */
63 static tree
64 cvc_lookup (unsigned int uid)
65 {
66 struct int_tree_map *h, in;
67 in.uid = uid;
68 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
69 return h ? h->to : NULL;
70 }
71
72 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
73
74 static void
75 cvc_insert (unsigned int uid, tree to)
76 {
77 struct int_tree_map *h;
78 void **loc;
79
80 h = XNEW (struct int_tree_map);
81 h->uid = uid;
82 h->to = to;
83 loc = htab_find_slot_with_hash (complex_variable_components, h,
84 uid, INSERT);
85 *(struct int_tree_map **) loc = h;
86 }
87
88 /* Return true if T is not a zero constant. In the case of real values,
89 we're only interested in +0.0. */
90
91 static int
92 some_nonzerop (tree t)
93 {
94 int zerop = false;
95
96 /* Operations with real or imaginary part of a complex number zero
97 cannot be treated the same as operations with a real or imaginary
98 operand if we care about the signs of zeros in the result. */
99 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
100 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
101 else if (TREE_CODE (t) == FIXED_CST)
102 zerop = fixed_zerop (t);
103 else if (TREE_CODE (t) == INTEGER_CST)
104 zerop = integer_zerop (t);
105
106 return !zerop;
107 }
108
109
110 /* Compute a lattice value from the components of a complex type REAL
111 and IMAG. */
112
113 static complex_lattice_t
114 find_lattice_value_parts (tree real, tree imag)
115 {
116 int r, i;
117 complex_lattice_t ret;
118
119 r = some_nonzerop (real);
120 i = some_nonzerop (imag);
121 ret = r * ONLY_REAL + i * ONLY_IMAG;
122
123 /* ??? On occasion we could do better than mapping 0+0i to real, but we
124 certainly don't want to leave it UNINITIALIZED, which eventually gets
125 mapped to VARYING. */
126 if (ret == UNINITIALIZED)
127 ret = ONLY_REAL;
128
129 return ret;
130 }
131
132
133 /* Compute a lattice value from gimple_val T. */
134
135 static complex_lattice_t
136 find_lattice_value (tree t)
137 {
138 tree real, imag;
139
140 switch (TREE_CODE (t))
141 {
142 case SSA_NAME:
143 return complex_lattice_values[SSA_NAME_VERSION (t)];
144
145 case COMPLEX_CST:
146 real = TREE_REALPART (t);
147 imag = TREE_IMAGPART (t);
148 break;
149
150 default:
151 gcc_unreachable ();
152 }
153
154 return find_lattice_value_parts (real, imag);
155 }
156
157 /* Determine if LHS is something for which we're interested in seeing
158 simulation results. */
159
160 static bool
161 is_complex_reg (tree lhs)
162 {
163 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
164 }
165
166 /* Mark the incoming parameters to the function as VARYING. */
167
168 static void
169 init_parameter_lattice_values (void)
170 {
171 tree parm, ssa_name;
172
173 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
174 if (is_complex_reg (parm)
175 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
176 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
177 }
178
179 /* Initialize simulation state for each statement. Return false if we
180 found no statements we want to simulate, and thus there's nothing
181 for the entire pass to do. */
182
183 static bool
184 init_dont_simulate_again (void)
185 {
186 basic_block bb;
187 gimple_stmt_iterator gsi;
188 gimple phi;
189 bool saw_a_complex_op = false;
190
191 FOR_EACH_BB (bb)
192 {
193 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
194 {
195 phi = gsi_stmt (gsi);
196 prop_set_simulate_again (phi,
197 is_complex_reg (gimple_phi_result (phi)));
198 }
199
200 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
201 {
202 gimple stmt;
203 tree op0, op1;
204 bool sim_again_p;
205
206 stmt = gsi_stmt (gsi);
207 op0 = op1 = NULL_TREE;
208
209 /* Most control-altering statements must be initially
210 simulated, else we won't cover the entire cfg. */
211 sim_again_p = stmt_ends_bb_p (stmt);
212
213 switch (gimple_code (stmt))
214 {
215 case GIMPLE_CALL:
216 if (gimple_call_lhs (stmt))
217 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
218 break;
219
220 case GIMPLE_ASSIGN:
221 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
222 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
223 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
224 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
225 else
226 op0 = gimple_assign_rhs1 (stmt);
227 if (gimple_num_ops (stmt) > 2)
228 op1 = gimple_assign_rhs2 (stmt);
229 break;
230
231 case GIMPLE_COND:
232 op0 = gimple_cond_lhs (stmt);
233 op1 = gimple_cond_rhs (stmt);
234 break;
235
236 default:
237 break;
238 }
239
240 if (op0 || op1)
241 switch (gimple_expr_code (stmt))
242 {
243 case EQ_EXPR:
244 case NE_EXPR:
245 case PLUS_EXPR:
246 case MINUS_EXPR:
247 case MULT_EXPR:
248 case TRUNC_DIV_EXPR:
249 case CEIL_DIV_EXPR:
250 case FLOOR_DIV_EXPR:
251 case ROUND_DIV_EXPR:
252 case RDIV_EXPR:
253 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
254 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
255 saw_a_complex_op = true;
256 break;
257
258 case NEGATE_EXPR:
259 case CONJ_EXPR:
260 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
261 saw_a_complex_op = true;
262 break;
263
264 case REALPART_EXPR:
265 case IMAGPART_EXPR:
266 /* The total store transformation performed during
267 gimplification creates such uninitialized loads
268 and we need to lower the statement to be able
269 to fix things up. */
270 if (TREE_CODE (op0) == SSA_NAME
271 && ssa_undefined_value_p (op0))
272 saw_a_complex_op = true;
273 break;
274
275 default:
276 break;
277 }
278
279 prop_set_simulate_again (stmt, sim_again_p);
280 }
281 }
282
283 return saw_a_complex_op;
284 }
285
286
287 /* Evaluate statement STMT against the complex lattice defined above. */
288
289 static enum ssa_prop_result
290 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
291 tree *result_p)
292 {
293 complex_lattice_t new_l, old_l, op1_l, op2_l;
294 unsigned int ver;
295 tree lhs;
296
297 lhs = gimple_get_lhs (stmt);
298 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
299 if (!lhs)
300 return SSA_PROP_VARYING;
301
302 /* These conditions should be satisfied due to the initial filter
303 set up in init_dont_simulate_again. */
304 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
305 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
306
307 *result_p = lhs;
308 ver = SSA_NAME_VERSION (lhs);
309 old_l = complex_lattice_values[ver];
310
311 switch (gimple_expr_code (stmt))
312 {
313 case SSA_NAME:
314 case COMPLEX_CST:
315 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
316 break;
317
318 case COMPLEX_EXPR:
319 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
320 gimple_assign_rhs2 (stmt));
321 break;
322
323 case PLUS_EXPR:
324 case MINUS_EXPR:
325 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
326 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
327
328 /* We've set up the lattice values such that IOR neatly
329 models addition. */
330 new_l = op1_l | op2_l;
331 break;
332
333 case MULT_EXPR:
334 case RDIV_EXPR:
335 case TRUNC_DIV_EXPR:
336 case CEIL_DIV_EXPR:
337 case FLOOR_DIV_EXPR:
338 case ROUND_DIV_EXPR:
339 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
340 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
341
342 /* Obviously, if either varies, so does the result. */
343 if (op1_l == VARYING || op2_l == VARYING)
344 new_l = VARYING;
345 /* Don't prematurely promote variables if we've not yet seen
346 their inputs. */
347 else if (op1_l == UNINITIALIZED)
348 new_l = op2_l;
349 else if (op2_l == UNINITIALIZED)
350 new_l = op1_l;
351 else
352 {
353 /* At this point both numbers have only one component. If the
354 numbers are of opposite kind, the result is imaginary,
355 otherwise the result is real. The add/subtract translates
356 the real/imag from/to 0/1; the ^ performs the comparison. */
357 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
358
359 /* Don't allow the lattice value to flip-flop indefinitely. */
360 new_l |= old_l;
361 }
362 break;
363
364 case NEGATE_EXPR:
365 case CONJ_EXPR:
366 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
367 break;
368
369 default:
370 new_l = VARYING;
371 break;
372 }
373
374 /* If nothing changed this round, let the propagator know. */
375 if (new_l == old_l)
376 return SSA_PROP_NOT_INTERESTING;
377
378 complex_lattice_values[ver] = new_l;
379 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
380 }
381
382 /* Evaluate a PHI node against the complex lattice defined above. */
383
384 static enum ssa_prop_result
385 complex_visit_phi (gimple phi)
386 {
387 complex_lattice_t new_l, old_l;
388 unsigned int ver;
389 tree lhs;
390 int i;
391
392 lhs = gimple_phi_result (phi);
393
394 /* This condition should be satisfied due to the initial filter
395 set up in init_dont_simulate_again. */
396 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
397
398 /* We've set up the lattice values such that IOR neatly models PHI meet. */
399 new_l = UNINITIALIZED;
400 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
401 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
402
403 ver = SSA_NAME_VERSION (lhs);
404 old_l = complex_lattice_values[ver];
405
406 if (new_l == old_l)
407 return SSA_PROP_NOT_INTERESTING;
408
409 complex_lattice_values[ver] = new_l;
410 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
411 }
412
413 /* Create one backing variable for a complex component of ORIG. */
414
415 static tree
416 create_one_component_var (tree type, tree orig, const char *prefix,
417 const char *suffix, enum tree_code code)
418 {
419 tree r = create_tmp_var (type, prefix);
420
421 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
422 DECL_ARTIFICIAL (r) = 1;
423
424 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
425 {
426 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
427
428 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
429
430 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
431 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
432 DECL_IGNORED_P (r) = 0;
433 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
434 }
435 else
436 {
437 DECL_IGNORED_P (r) = 1;
438 TREE_NO_WARNING (r) = 1;
439 }
440
441 return r;
442 }
443
444 /* Retrieve a value for a complex component of VAR. */
445
446 static tree
447 get_component_var (tree var, bool imag_p)
448 {
449 size_t decl_index = DECL_UID (var) * 2 + imag_p;
450 tree ret = cvc_lookup (decl_index);
451
452 if (ret == NULL)
453 {
454 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
455 imag_p ? "CI" : "CR",
456 imag_p ? "$imag" : "$real",
457 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
458 cvc_insert (decl_index, ret);
459 }
460
461 return ret;
462 }
463
464 /* Retrieve a value for a complex component of SSA_NAME. */
465
466 static tree
467 get_component_ssa_name (tree ssa_name, bool imag_p)
468 {
469 complex_lattice_t lattice = find_lattice_value (ssa_name);
470 size_t ssa_name_index;
471 tree ret;
472
473 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
474 {
475 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
476 if (SCALAR_FLOAT_TYPE_P (inner_type))
477 return build_real (inner_type, dconst0);
478 else
479 return build_int_cst (inner_type, 0);
480 }
481
482 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
483 ret = complex_ssa_name_components[ssa_name_index];
484 if (ret == NULL)
485 {
486 if (SSA_NAME_VAR (ssa_name))
487 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
488 else
489 ret = TREE_TYPE (TREE_TYPE (ssa_name));
490 ret = make_ssa_name (ret, NULL);
491
492 /* Copy some properties from the original. In particular, whether it
493 is used in an abnormal phi, and whether it's uninitialized. */
494 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
495 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
496 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
497 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
498 {
499 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
500 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
501 }
502
503 complex_ssa_name_components[ssa_name_index] = ret;
504 }
505
506 return ret;
507 }
508
509 /* Set a value for a complex component of SSA_NAME, return a
510 gimple_seq of stuff that needs doing. */
511
512 static gimple_seq
513 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
514 {
515 complex_lattice_t lattice = find_lattice_value (ssa_name);
516 size_t ssa_name_index;
517 tree comp;
518 gimple last;
519 gimple_seq list;
520
521 /* We know the value must be zero, else there's a bug in our lattice
522 analysis. But the value may well be a variable known to contain
523 zero. We should be safe ignoring it. */
524 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
525 return NULL;
526
527 /* If we've already assigned an SSA_NAME to this component, then this
528 means that our walk of the basic blocks found a use before the set.
529 This is fine. Now we should create an initialization for the value
530 we created earlier. */
531 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
532 comp = complex_ssa_name_components[ssa_name_index];
533 if (comp)
534 ;
535
536 /* If we've nothing assigned, and the value we're given is already stable,
537 then install that as the value for this SSA_NAME. This preemptively
538 copy-propagates the value, which avoids unnecessary memory allocation. */
539 else if (is_gimple_min_invariant (value)
540 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
541 {
542 complex_ssa_name_components[ssa_name_index] = value;
543 return NULL;
544 }
545 else if (TREE_CODE (value) == SSA_NAME
546 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
547 {
548 /* Replace an anonymous base value with the variable from cvc_lookup.
549 This should result in better debug info. */
550 if (SSA_NAME_VAR (ssa_name)
551 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
552 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
553 {
554 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
555 replace_ssa_name_symbol (value, comp);
556 }
557
558 complex_ssa_name_components[ssa_name_index] = value;
559 return NULL;
560 }
561
562 /* Finally, we need to stabilize the result by installing the value into
563 a new ssa name. */
564 else
565 comp = get_component_ssa_name (ssa_name, imag_p);
566
567 /* Do all the work to assign VALUE to COMP. */
568 list = NULL;
569 value = force_gimple_operand (value, &list, false, NULL);
570 last = gimple_build_assign (comp, value);
571 gimple_seq_add_stmt (&list, last);
572 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
573
574 return list;
575 }
576
577 /* Extract the real or imaginary part of a complex variable or constant.
578 Make sure that it's a proper gimple_val and gimplify it if not.
579 Emit any new code before gsi. */
580
581 static tree
582 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
583 bool gimple_p)
584 {
585 switch (TREE_CODE (t))
586 {
587 case COMPLEX_CST:
588 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
589
590 case COMPLEX_EXPR:
591 gcc_unreachable ();
592
593 case VAR_DECL:
594 case RESULT_DECL:
595 case PARM_DECL:
596 case COMPONENT_REF:
597 case ARRAY_REF:
598 case VIEW_CONVERT_EXPR:
599 case MEM_REF:
600 {
601 tree inner_type = TREE_TYPE (TREE_TYPE (t));
602
603 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
604 inner_type, unshare_expr (t));
605
606 if (gimple_p)
607 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
608 GSI_SAME_STMT);
609
610 return t;
611 }
612
613 case SSA_NAME:
614 return get_component_ssa_name (t, imagpart_p);
615
616 default:
617 gcc_unreachable ();
618 }
619 }
620
621 /* Update the complex components of the ssa name on the lhs of STMT. */
622
623 static void
624 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
625 tree i)
626 {
627 tree lhs;
628 gimple_seq list;
629
630 lhs = gimple_get_lhs (stmt);
631
632 list = set_component_ssa_name (lhs, false, r);
633 if (list)
634 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
635
636 list = set_component_ssa_name (lhs, true, i);
637 if (list)
638 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
639 }
640
641 static void
642 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
643 {
644 gimple_seq list;
645
646 list = set_component_ssa_name (lhs, false, r);
647 if (list)
648 gsi_insert_seq_on_edge (e, list);
649
650 list = set_component_ssa_name (lhs, true, i);
651 if (list)
652 gsi_insert_seq_on_edge (e, list);
653 }
654
655
656 /* Update an assignment to a complex variable in place. */
657
658 static void
659 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
660 {
661 gimple stmt;
662
663 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
664 stmt = gsi_stmt (*gsi);
665 update_stmt (stmt);
666 if (maybe_clean_eh_stmt (stmt))
667 gimple_purge_dead_eh_edges (gimple_bb (stmt));
668
669 if (gimple_in_ssa_p (cfun))
670 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
671 }
672
673
674 /* Generate code at the entry point of the function to initialize the
675 component variables for a complex parameter. */
676
677 static void
678 update_parameter_components (void)
679 {
680 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
681 tree parm;
682
683 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
684 {
685 tree type = TREE_TYPE (parm);
686 tree ssa_name, r, i;
687
688 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
689 continue;
690
691 type = TREE_TYPE (type);
692 ssa_name = ssa_default_def (cfun, parm);
693 if (!ssa_name)
694 continue;
695
696 r = build1 (REALPART_EXPR, type, ssa_name);
697 i = build1 (IMAGPART_EXPR, type, ssa_name);
698 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
699 }
700 }
701
702 /* Generate code to set the component variables of a complex variable
703 to match the PHI statements in block BB. */
704
705 static void
706 update_phi_components (basic_block bb)
707 {
708 gimple_stmt_iterator gsi;
709
710 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
711 {
712 gimple phi = gsi_stmt (gsi);
713
714 if (is_complex_reg (gimple_phi_result (phi)))
715 {
716 tree lr, li;
717 gimple pr = NULL, pi = NULL;
718 unsigned int i, n;
719
720 lr = get_component_ssa_name (gimple_phi_result (phi), false);
721 if (TREE_CODE (lr) == SSA_NAME)
722 pr = create_phi_node (lr, bb);
723
724 li = get_component_ssa_name (gimple_phi_result (phi), true);
725 if (TREE_CODE (li) == SSA_NAME)
726 pi = create_phi_node (li, bb);
727
728 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
729 {
730 tree comp, arg = gimple_phi_arg_def (phi, i);
731 if (pr)
732 {
733 comp = extract_component (NULL, arg, false, false);
734 SET_PHI_ARG_DEF (pr, i, comp);
735 }
736 if (pi)
737 {
738 comp = extract_component (NULL, arg, true, false);
739 SET_PHI_ARG_DEF (pi, i, comp);
740 }
741 }
742 }
743 }
744 }
745
746 /* Expand a complex move to scalars. */
747
748 static void
749 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
750 {
751 tree inner_type = TREE_TYPE (type);
752 tree r, i, lhs, rhs;
753 gimple stmt = gsi_stmt (*gsi);
754
755 if (is_gimple_assign (stmt))
756 {
757 lhs = gimple_assign_lhs (stmt);
758 if (gimple_num_ops (stmt) == 2)
759 rhs = gimple_assign_rhs1 (stmt);
760 else
761 rhs = NULL_TREE;
762 }
763 else if (is_gimple_call (stmt))
764 {
765 lhs = gimple_call_lhs (stmt);
766 rhs = NULL_TREE;
767 }
768 else
769 gcc_unreachable ();
770
771 if (TREE_CODE (lhs) == SSA_NAME)
772 {
773 if (is_ctrl_altering_stmt (stmt))
774 {
775 edge e;
776
777 /* The value is not assigned on the exception edges, so we need not
778 concern ourselves there. We do need to update on the fallthru
779 edge. Find it. */
780 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
781 if (!e)
782 gcc_unreachable ();
783
784 r = build1 (REALPART_EXPR, inner_type, lhs);
785 i = build1 (IMAGPART_EXPR, inner_type, lhs);
786 update_complex_components_on_edge (e, lhs, r, i);
787 }
788 else if (is_gimple_call (stmt)
789 || gimple_has_side_effects (stmt)
790 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
791 {
792 r = build1 (REALPART_EXPR, inner_type, lhs);
793 i = build1 (IMAGPART_EXPR, inner_type, lhs);
794 update_complex_components (gsi, stmt, r, i);
795 }
796 else
797 {
798 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
799 {
800 r = extract_component (gsi, rhs, 0, true);
801 i = extract_component (gsi, rhs, 1, true);
802 }
803 else
804 {
805 r = gimple_assign_rhs1 (stmt);
806 i = gimple_assign_rhs2 (stmt);
807 }
808 update_complex_assignment (gsi, r, i);
809 }
810 }
811 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
812 {
813 tree x;
814 gimple t;
815
816 r = extract_component (gsi, rhs, 0, false);
817 i = extract_component (gsi, rhs, 1, false);
818
819 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
820 t = gimple_build_assign (x, r);
821 gsi_insert_before (gsi, t, GSI_SAME_STMT);
822
823 if (stmt == gsi_stmt (*gsi))
824 {
825 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
826 gimple_assign_set_lhs (stmt, x);
827 gimple_assign_set_rhs1 (stmt, i);
828 }
829 else
830 {
831 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
832 t = gimple_build_assign (x, i);
833 gsi_insert_before (gsi, t, GSI_SAME_STMT);
834
835 stmt = gsi_stmt (*gsi);
836 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
837 gimple_return_set_retval (stmt, lhs);
838 }
839
840 update_stmt (stmt);
841 }
842 }
843
844 /* Expand complex addition to scalars:
845 a + b = (ar + br) + i(ai + bi)
846 a - b = (ar - br) + i(ai + bi)
847 */
848
849 static void
850 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
851 tree ar, tree ai, tree br, tree bi,
852 enum tree_code code,
853 complex_lattice_t al, complex_lattice_t bl)
854 {
855 tree rr, ri;
856
857 switch (PAIR (al, bl))
858 {
859 case PAIR (ONLY_REAL, ONLY_REAL):
860 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
861 ri = ai;
862 break;
863
864 case PAIR (ONLY_REAL, ONLY_IMAG):
865 rr = ar;
866 if (code == MINUS_EXPR)
867 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
868 else
869 ri = bi;
870 break;
871
872 case PAIR (ONLY_IMAG, ONLY_REAL):
873 if (code == MINUS_EXPR)
874 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
875 else
876 rr = br;
877 ri = ai;
878 break;
879
880 case PAIR (ONLY_IMAG, ONLY_IMAG):
881 rr = ar;
882 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
883 break;
884
885 case PAIR (VARYING, ONLY_REAL):
886 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
887 ri = ai;
888 break;
889
890 case PAIR (VARYING, ONLY_IMAG):
891 rr = ar;
892 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
893 break;
894
895 case PAIR (ONLY_REAL, VARYING):
896 if (code == MINUS_EXPR)
897 goto general;
898 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
899 ri = bi;
900 break;
901
902 case PAIR (ONLY_IMAG, VARYING):
903 if (code == MINUS_EXPR)
904 goto general;
905 rr = br;
906 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
907 break;
908
909 case PAIR (VARYING, VARYING):
910 general:
911 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
912 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
913 break;
914
915 default:
916 gcc_unreachable ();
917 }
918
919 update_complex_assignment (gsi, rr, ri);
920 }
921
922 /* Expand a complex multiplication or division to a libcall to the c99
923 compliant routines. */
924
925 static void
926 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
927 tree br, tree bi, enum tree_code code)
928 {
929 enum machine_mode mode;
930 enum built_in_function bcode;
931 tree fn, type, lhs;
932 gimple old_stmt, stmt;
933
934 old_stmt = gsi_stmt (*gsi);
935 lhs = gimple_assign_lhs (old_stmt);
936 type = TREE_TYPE (lhs);
937
938 mode = TYPE_MODE (type);
939 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
940
941 if (code == MULT_EXPR)
942 bcode = ((enum built_in_function)
943 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
944 else if (code == RDIV_EXPR)
945 bcode = ((enum built_in_function)
946 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
947 else
948 gcc_unreachable ();
949 fn = builtin_decl_explicit (bcode);
950
951 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
952 gimple_call_set_lhs (stmt, lhs);
953 update_stmt (stmt);
954 gsi_replace (gsi, stmt, false);
955
956 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
957 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
958
959 if (gimple_in_ssa_p (cfun))
960 {
961 type = TREE_TYPE (type);
962 update_complex_components (gsi, stmt,
963 build1 (REALPART_EXPR, type, lhs),
964 build1 (IMAGPART_EXPR, type, lhs));
965 SSA_NAME_DEF_STMT (lhs) = stmt;
966 }
967 }
968
969 /* Expand complex multiplication to scalars:
970 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
971 */
972
973 static void
974 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
975 tree ar, tree ai, tree br, tree bi,
976 complex_lattice_t al, complex_lattice_t bl)
977 {
978 tree rr, ri;
979
980 if (al < bl)
981 {
982 complex_lattice_t tl;
983 rr = ar, ar = br, br = rr;
984 ri = ai, ai = bi, bi = ri;
985 tl = al, al = bl, bl = tl;
986 }
987
988 switch (PAIR (al, bl))
989 {
990 case PAIR (ONLY_REAL, ONLY_REAL):
991 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
992 ri = ai;
993 break;
994
995 case PAIR (ONLY_IMAG, ONLY_REAL):
996 rr = ar;
997 if (TREE_CODE (ai) == REAL_CST
998 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
999 ri = br;
1000 else
1001 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1002 break;
1003
1004 case PAIR (ONLY_IMAG, ONLY_IMAG):
1005 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1006 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1007 ri = ar;
1008 break;
1009
1010 case PAIR (VARYING, ONLY_REAL):
1011 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1012 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1013 break;
1014
1015 case PAIR (VARYING, ONLY_IMAG):
1016 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1017 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1018 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1019 break;
1020
1021 case PAIR (VARYING, VARYING):
1022 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1023 {
1024 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1025 return;
1026 }
1027 else
1028 {
1029 tree t1, t2, t3, t4;
1030
1031 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1032 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1033 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1034
1035 /* Avoid expanding redundant multiplication for the common
1036 case of squaring a complex number. */
1037 if (ar == br && ai == bi)
1038 t4 = t3;
1039 else
1040 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1041
1042 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1043 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1044 }
1045 break;
1046
1047 default:
1048 gcc_unreachable ();
1049 }
1050
1051 update_complex_assignment (gsi, rr, ri);
1052 }
1053
1054 /* Keep this algorithm in sync with fold-const.c:const_binop().
1055
1056 Expand complex division to scalars, straightforward algorithm.
1057 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1058 t = br*br + bi*bi
1059 */
1060
1061 static void
1062 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1063 tree ar, tree ai, tree br, tree bi,
1064 enum tree_code code)
1065 {
1066 tree rr, ri, div, t1, t2, t3;
1067
1068 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1069 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1070 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1071
1072 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1073 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1074 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1075 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1076
1077 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1078 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1079 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1080 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1081
1082 update_complex_assignment (gsi, rr, ri);
1083 }
1084
1085 /* Keep this algorithm in sync with fold-const.c:const_binop().
1086
1087 Expand complex division to scalars, modified algorithm to minimize
1088 overflow with wide input ranges. */
1089
1090 static void
1091 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1092 tree ar, tree ai, tree br, tree bi,
1093 enum tree_code code)
1094 {
1095 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1096 basic_block bb_cond, bb_true, bb_false, bb_join;
1097 gimple stmt;
1098
1099 /* Examine |br| < |bi|, and branch. */
1100 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1101 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1102 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1103 LT_EXPR, boolean_type_node, t1, t2);
1104 STRIP_NOPS (compare);
1105
1106 bb_cond = bb_true = bb_false = bb_join = NULL;
1107 rr = ri = tr = ti = NULL;
1108 if (TREE_CODE (compare) != INTEGER_CST)
1109 {
1110 edge e;
1111 gimple stmt;
1112 tree cond, tmp;
1113
1114 tmp = create_tmp_var (boolean_type_node, NULL);
1115 stmt = gimple_build_assign (tmp, compare);
1116 if (gimple_in_ssa_p (cfun))
1117 {
1118 tmp = make_ssa_name (tmp, stmt);
1119 gimple_assign_set_lhs (stmt, tmp);
1120 }
1121
1122 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1123
1124 cond = fold_build2_loc (gimple_location (stmt),
1125 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1126 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1127 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1128
1129 /* Split the original block, and create the TRUE and FALSE blocks. */
1130 e = split_block (gsi_bb (*gsi), stmt);
1131 bb_cond = e->src;
1132 bb_join = e->dest;
1133 bb_true = create_empty_bb (bb_cond);
1134 bb_false = create_empty_bb (bb_true);
1135
1136 /* Wire the blocks together. */
1137 e->flags = EDGE_TRUE_VALUE;
1138 redirect_edge_succ (e, bb_true);
1139 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1140 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1141 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1142
1143 /* Update dominance info. Note that bb_join's data was
1144 updated by split_block. */
1145 if (dom_info_available_p (CDI_DOMINATORS))
1146 {
1147 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1148 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1149 }
1150
1151 rr = create_tmp_reg (inner_type, NULL);
1152 ri = create_tmp_reg (inner_type, NULL);
1153 }
1154
1155 /* In the TRUE branch, we compute
1156 ratio = br/bi;
1157 div = (br * ratio) + bi;
1158 tr = (ar * ratio) + ai;
1159 ti = (ai * ratio) - ar;
1160 tr = tr / div;
1161 ti = ti / div; */
1162 if (bb_true || integer_nonzerop (compare))
1163 {
1164 if (bb_true)
1165 {
1166 *gsi = gsi_last_bb (bb_true);
1167 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1168 }
1169
1170 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1171
1172 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1173 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1174
1175 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1176 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1177
1178 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1179 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1180
1181 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1182 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1183
1184 if (bb_true)
1185 {
1186 stmt = gimple_build_assign (rr, tr);
1187 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1188 stmt = gimple_build_assign (ri, ti);
1189 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1190 gsi_remove (gsi, true);
1191 }
1192 }
1193
1194 /* In the FALSE branch, we compute
1195 ratio = d/c;
1196 divisor = (d * ratio) + c;
1197 tr = (b * ratio) + a;
1198 ti = b - (a * ratio);
1199 tr = tr / div;
1200 ti = ti / div; */
1201 if (bb_false || integer_zerop (compare))
1202 {
1203 if (bb_false)
1204 {
1205 *gsi = gsi_last_bb (bb_false);
1206 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1207 }
1208
1209 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1210
1211 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1212 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1213
1214 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1215 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1216
1217 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1218 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1219
1220 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1221 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1222
1223 if (bb_false)
1224 {
1225 stmt = gimple_build_assign (rr, tr);
1226 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1227 stmt = gimple_build_assign (ri, ti);
1228 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1229 gsi_remove (gsi, true);
1230 }
1231 }
1232
1233 if (bb_join)
1234 *gsi = gsi_start_bb (bb_join);
1235 else
1236 rr = tr, ri = ti;
1237
1238 update_complex_assignment (gsi, rr, ri);
1239 }
1240
1241 /* Expand complex division to scalars. */
1242
1243 static void
1244 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1245 tree ar, tree ai, tree br, tree bi,
1246 enum tree_code code,
1247 complex_lattice_t al, complex_lattice_t bl)
1248 {
1249 tree rr, ri;
1250
1251 switch (PAIR (al, bl))
1252 {
1253 case PAIR (ONLY_REAL, ONLY_REAL):
1254 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1255 ri = ai;
1256 break;
1257
1258 case PAIR (ONLY_REAL, ONLY_IMAG):
1259 rr = ai;
1260 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1261 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1262 break;
1263
1264 case PAIR (ONLY_IMAG, ONLY_REAL):
1265 rr = ar;
1266 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1267 break;
1268
1269 case PAIR (ONLY_IMAG, ONLY_IMAG):
1270 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1271 ri = ar;
1272 break;
1273
1274 case PAIR (VARYING, ONLY_REAL):
1275 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1276 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1277 break;
1278
1279 case PAIR (VARYING, ONLY_IMAG):
1280 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1281 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1282 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1283
1284 case PAIR (ONLY_REAL, VARYING):
1285 case PAIR (ONLY_IMAG, VARYING):
1286 case PAIR (VARYING, VARYING):
1287 switch (flag_complex_method)
1288 {
1289 case 0:
1290 /* straightforward implementation of complex divide acceptable. */
1291 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1292 break;
1293
1294 case 2:
1295 if (SCALAR_FLOAT_TYPE_P (inner_type))
1296 {
1297 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1298 break;
1299 }
1300 /* FALLTHRU */
1301
1302 case 1:
1303 /* wide ranges of inputs must work for complex divide. */
1304 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1305 break;
1306
1307 default:
1308 gcc_unreachable ();
1309 }
1310 return;
1311
1312 default:
1313 gcc_unreachable ();
1314 }
1315
1316 update_complex_assignment (gsi, rr, ri);
1317 }
1318
1319 /* Expand complex negation to scalars:
1320 -a = (-ar) + i(-ai)
1321 */
1322
1323 static void
1324 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1325 tree ar, tree ai)
1326 {
1327 tree rr, ri;
1328
1329 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1330 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1331
1332 update_complex_assignment (gsi, rr, ri);
1333 }
1334
1335 /* Expand complex conjugate to scalars:
1336 ~a = (ar) + i(-ai)
1337 */
1338
1339 static void
1340 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1341 tree ar, tree ai)
1342 {
1343 tree ri;
1344
1345 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1346
1347 update_complex_assignment (gsi, ar, ri);
1348 }
1349
1350 /* Expand complex comparison (EQ or NE only). */
1351
1352 static void
1353 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1354 tree br, tree bi, enum tree_code code)
1355 {
1356 tree cr, ci, cc, type;
1357 gimple stmt;
1358
1359 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1360 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1361 cc = gimplify_build2 (gsi,
1362 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1363 boolean_type_node, cr, ci);
1364
1365 stmt = gsi_stmt (*gsi);
1366
1367 switch (gimple_code (stmt))
1368 {
1369 case GIMPLE_RETURN:
1370 type = TREE_TYPE (gimple_return_retval (stmt));
1371 gimple_return_set_retval (stmt, fold_convert (type, cc));
1372 break;
1373
1374 case GIMPLE_ASSIGN:
1375 type = TREE_TYPE (gimple_assign_lhs (stmt));
1376 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1377 stmt = gsi_stmt (*gsi);
1378 break;
1379
1380 case GIMPLE_COND:
1381 gimple_cond_set_code (stmt, EQ_EXPR);
1382 gimple_cond_set_lhs (stmt, cc);
1383 gimple_cond_set_rhs (stmt, boolean_true_node);
1384 break;
1385
1386 default:
1387 gcc_unreachable ();
1388 }
1389
1390 update_stmt (stmt);
1391 }
1392
1393 /* Expand inline asm that sets some complex SSA_NAMEs. */
1394
1395 static void
1396 expand_complex_asm (gimple_stmt_iterator *gsi)
1397 {
1398 gimple stmt = gsi_stmt (*gsi);
1399 unsigned int i;
1400
1401 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1402 {
1403 tree link = gimple_asm_output_op (stmt, i);
1404 tree op = TREE_VALUE (link);
1405 if (TREE_CODE (op) == SSA_NAME
1406 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1407 {
1408 tree type = TREE_TYPE (op);
1409 tree inner_type = TREE_TYPE (type);
1410 tree r = build1 (REALPART_EXPR, inner_type, op);
1411 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1412 gimple_seq list = set_component_ssa_name (op, false, r);
1413
1414 if (list)
1415 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1416
1417 list = set_component_ssa_name (op, true, i);
1418 if (list)
1419 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1420 }
1421 }
1422 }
1423
1424 /* Process one statement. If we identify a complex operation, expand it. */
1425
1426 static void
1427 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1428 {
1429 gimple stmt = gsi_stmt (*gsi);
1430 tree type, inner_type, lhs;
1431 tree ac, ar, ai, bc, br, bi;
1432 complex_lattice_t al, bl;
1433 enum tree_code code;
1434
1435 if (gimple_code (stmt) == GIMPLE_ASM)
1436 {
1437 expand_complex_asm (gsi);
1438 return;
1439 }
1440
1441 lhs = gimple_get_lhs (stmt);
1442 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1443 return;
1444
1445 type = TREE_TYPE (gimple_op (stmt, 0));
1446 code = gimple_expr_code (stmt);
1447
1448 /* Initial filter for operations we handle. */
1449 switch (code)
1450 {
1451 case PLUS_EXPR:
1452 case MINUS_EXPR:
1453 case MULT_EXPR:
1454 case TRUNC_DIV_EXPR:
1455 case CEIL_DIV_EXPR:
1456 case FLOOR_DIV_EXPR:
1457 case ROUND_DIV_EXPR:
1458 case RDIV_EXPR:
1459 case NEGATE_EXPR:
1460 case CONJ_EXPR:
1461 if (TREE_CODE (type) != COMPLEX_TYPE)
1462 return;
1463 inner_type = TREE_TYPE (type);
1464 break;
1465
1466 case EQ_EXPR:
1467 case NE_EXPR:
1468 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1469 subocde, so we need to access the operands using gimple_op. */
1470 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1471 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1472 return;
1473 break;
1474
1475 default:
1476 {
1477 tree rhs;
1478
1479 /* GIMPLE_COND may also fallthru here, but we do not need to
1480 do anything with it. */
1481 if (gimple_code (stmt) == GIMPLE_COND)
1482 return;
1483
1484 if (TREE_CODE (type) == COMPLEX_TYPE)
1485 expand_complex_move (gsi, type);
1486 else if (is_gimple_assign (stmt)
1487 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1488 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1489 && TREE_CODE (lhs) == SSA_NAME)
1490 {
1491 rhs = gimple_assign_rhs1 (stmt);
1492 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1493 gimple_assign_rhs_code (stmt)
1494 == IMAGPART_EXPR,
1495 false);
1496 gimple_assign_set_rhs_from_tree (gsi, rhs);
1497 stmt = gsi_stmt (*gsi);
1498 update_stmt (stmt);
1499 }
1500 }
1501 return;
1502 }
1503
1504 /* Extract the components of the two complex values. Make sure and
1505 handle the common case of the same value used twice specially. */
1506 if (is_gimple_assign (stmt))
1507 {
1508 ac = gimple_assign_rhs1 (stmt);
1509 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1510 }
1511 /* GIMPLE_CALL can not get here. */
1512 else
1513 {
1514 ac = gimple_cond_lhs (stmt);
1515 bc = gimple_cond_rhs (stmt);
1516 }
1517
1518 ar = extract_component (gsi, ac, false, true);
1519 ai = extract_component (gsi, ac, true, true);
1520
1521 if (ac == bc)
1522 br = ar, bi = ai;
1523 else if (bc)
1524 {
1525 br = extract_component (gsi, bc, 0, true);
1526 bi = extract_component (gsi, bc, 1, true);
1527 }
1528 else
1529 br = bi = NULL_TREE;
1530
1531 if (gimple_in_ssa_p (cfun))
1532 {
1533 al = find_lattice_value (ac);
1534 if (al == UNINITIALIZED)
1535 al = VARYING;
1536
1537 if (TREE_CODE_CLASS (code) == tcc_unary)
1538 bl = UNINITIALIZED;
1539 else if (ac == bc)
1540 bl = al;
1541 else
1542 {
1543 bl = find_lattice_value (bc);
1544 if (bl == UNINITIALIZED)
1545 bl = VARYING;
1546 }
1547 }
1548 else
1549 al = bl = VARYING;
1550
1551 switch (code)
1552 {
1553 case PLUS_EXPR:
1554 case MINUS_EXPR:
1555 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1556 break;
1557
1558 case MULT_EXPR:
1559 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1560 break;
1561
1562 case TRUNC_DIV_EXPR:
1563 case CEIL_DIV_EXPR:
1564 case FLOOR_DIV_EXPR:
1565 case ROUND_DIV_EXPR:
1566 case RDIV_EXPR:
1567 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1568 break;
1569
1570 case NEGATE_EXPR:
1571 expand_complex_negation (gsi, inner_type, ar, ai);
1572 break;
1573
1574 case CONJ_EXPR:
1575 expand_complex_conjugate (gsi, inner_type, ar, ai);
1576 break;
1577
1578 case EQ_EXPR:
1579 case NE_EXPR:
1580 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1581 break;
1582
1583 default:
1584 gcc_unreachable ();
1585 }
1586 }
1587
1588 \f
1589 /* Entry point for complex operation lowering during optimization. */
1590
1591 static unsigned int
1592 tree_lower_complex (void)
1593 {
1594 int old_last_basic_block;
1595 gimple_stmt_iterator gsi;
1596 basic_block bb;
1597
1598 if (!init_dont_simulate_again ())
1599 return 0;
1600
1601 complex_lattice_values.create (num_ssa_names);
1602 complex_lattice_values.safe_grow_cleared (num_ssa_names);
1603
1604 init_parameter_lattice_values ();
1605 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1606
1607 complex_variable_components = htab_create (10, int_tree_map_hash,
1608 int_tree_map_eq, free);
1609
1610 complex_ssa_name_components.create (2 * num_ssa_names);
1611 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1612
1613 update_parameter_components ();
1614
1615 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1616 old_last_basic_block = last_basic_block;
1617 FOR_EACH_BB (bb)
1618 {
1619 if (bb->index >= old_last_basic_block)
1620 continue;
1621
1622 update_phi_components (bb);
1623 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1624 expand_complex_operations_1 (&gsi);
1625 }
1626
1627 gsi_commit_edge_inserts ();
1628
1629 htab_delete (complex_variable_components);
1630 complex_ssa_name_components.release ();
1631 complex_lattice_values.release ();
1632 return 0;
1633 }
1634
1635 struct gimple_opt_pass pass_lower_complex =
1636 {
1637 {
1638 GIMPLE_PASS,
1639 "cplxlower", /* name */
1640 OPTGROUP_NONE, /* optinfo_flags */
1641 0, /* gate */
1642 tree_lower_complex, /* execute */
1643 NULL, /* sub */
1644 NULL, /* next */
1645 0, /* static_pass_number */
1646 TV_NONE, /* tv_id */
1647 PROP_ssa, /* properties_required */
1648 PROP_gimple_lcx, /* properties_provided */
1649 0, /* properties_destroyed */
1650 0, /* todo_flags_start */
1651 TODO_ggc_collect
1652 | TODO_update_ssa
1653 | TODO_verify_stmts /* todo_flags_finish */
1654 }
1655 };
1656
1657 \f
1658 static bool
1659 gate_no_optimization (void)
1660 {
1661 /* With errors, normal optimization passes are not run. If we don't
1662 lower complex operations at all, rtl expansion will abort. */
1663 return !(cfun->curr_properties & PROP_gimple_lcx);
1664 }
1665
1666 struct gimple_opt_pass pass_lower_complex_O0 =
1667 {
1668 {
1669 GIMPLE_PASS,
1670 "cplxlower0", /* name */
1671 OPTGROUP_NONE, /* optinfo_flags */
1672 gate_no_optimization, /* gate */
1673 tree_lower_complex, /* execute */
1674 NULL, /* sub */
1675 NULL, /* next */
1676 0, /* static_pass_number */
1677 TV_NONE, /* tv_id */
1678 PROP_cfg, /* properties_required */
1679 PROP_gimple_lcx, /* properties_provided */
1680 0, /* properties_destroyed */
1681 0, /* todo_flags_start */
1682 TODO_ggc_collect
1683 | TODO_update_ssa
1684 | TODO_verify_stmts /* todo_flags_finish */
1685 }
1686 };