]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-complex.c
gimple.h (gimple_phi_set_result): Adjust SSA_NAME_DEF_STMT.
[thirdparty/gcc.git] / gcc / tree-complex.c
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tree-flow.h"
28 #include "gimple.h"
29 #include "tree-iterator.h"
30 #include "tree-pass.h"
31 #include "tree-ssa-propagate.h"
32
33
34 /* For each complex ssa name, a lattice value. We're interested in finding
35 out whether a complex number is degenerate in some way, having only real
36 or only complex parts. */
37
38 enum
39 {
40 UNINITIALIZED = 0,
41 ONLY_REAL = 1,
42 ONLY_IMAG = 2,
43 VARYING = 3
44 };
45
46 /* The type complex_lattice_t holds combinations of the above
47 constants. */
48 typedef int complex_lattice_t;
49
50 #define PAIR(a, b) ((a) << 2 | (b))
51
52 DEF_VEC_I(complex_lattice_t);
53 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
54
55 static VEC(complex_lattice_t, heap) *complex_lattice_values;
56
57 /* For each complex variable, a pair of variables for the components exists in
58 the hashtable. */
59 static htab_t complex_variable_components;
60
61 /* For each complex SSA_NAME, a pair of ssa names for the components. */
62 static VEC(tree, heap) *complex_ssa_name_components;
63
64 /* Lookup UID in the complex_variable_components hashtable and return the
65 associated tree. */
66 static tree
67 cvc_lookup (unsigned int uid)
68 {
69 struct int_tree_map *h, in;
70 in.uid = uid;
71 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
72 return h ? h->to : NULL;
73 }
74
75 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
76
77 static void
78 cvc_insert (unsigned int uid, tree to)
79 {
80 struct int_tree_map *h;
81 void **loc;
82
83 h = XNEW (struct int_tree_map);
84 h->uid = uid;
85 h->to = to;
86 loc = htab_find_slot_with_hash (complex_variable_components, h,
87 uid, INSERT);
88 *(struct int_tree_map **) loc = h;
89 }
90
91 /* Return true if T is not a zero constant. In the case of real values,
92 we're only interested in +0.0. */
93
94 static int
95 some_nonzerop (tree t)
96 {
97 int zerop = false;
98
99 /* Operations with real or imaginary part of a complex number zero
100 cannot be treated the same as operations with a real or imaginary
101 operand if we care about the signs of zeros in the result. */
102 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
103 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
104 else if (TREE_CODE (t) == FIXED_CST)
105 zerop = fixed_zerop (t);
106 else if (TREE_CODE (t) == INTEGER_CST)
107 zerop = integer_zerop (t);
108
109 return !zerop;
110 }
111
112
113 /* Compute a lattice value from the components of a complex type REAL
114 and IMAG. */
115
116 static complex_lattice_t
117 find_lattice_value_parts (tree real, tree imag)
118 {
119 int r, i;
120 complex_lattice_t ret;
121
122 r = some_nonzerop (real);
123 i = some_nonzerop (imag);
124 ret = r * ONLY_REAL + i * ONLY_IMAG;
125
126 /* ??? On occasion we could do better than mapping 0+0i to real, but we
127 certainly don't want to leave it UNINITIALIZED, which eventually gets
128 mapped to VARYING. */
129 if (ret == UNINITIALIZED)
130 ret = ONLY_REAL;
131
132 return ret;
133 }
134
135
136 /* Compute a lattice value from gimple_val T. */
137
138 static complex_lattice_t
139 find_lattice_value (tree t)
140 {
141 tree real, imag;
142
143 switch (TREE_CODE (t))
144 {
145 case SSA_NAME:
146 return VEC_index (complex_lattice_t, complex_lattice_values,
147 SSA_NAME_VERSION (t));
148
149 case COMPLEX_CST:
150 real = TREE_REALPART (t);
151 imag = TREE_IMAGPART (t);
152 break;
153
154 default:
155 gcc_unreachable ();
156 }
157
158 return find_lattice_value_parts (real, imag);
159 }
160
161 /* Determine if LHS is something for which we're interested in seeing
162 simulation results. */
163
164 static bool
165 is_complex_reg (tree lhs)
166 {
167 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
168 }
169
170 /* Mark the incoming parameters to the function as VARYING. */
171
172 static void
173 init_parameter_lattice_values (void)
174 {
175 tree parm, ssa_name;
176
177 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
178 if (is_complex_reg (parm)
179 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
180 VEC_replace (complex_lattice_t, complex_lattice_values,
181 SSA_NAME_VERSION (ssa_name), VARYING);
182 }
183
184 /* Initialize simulation state for each statement. Return false if we
185 found no statements we want to simulate, and thus there's nothing
186 for the entire pass to do. */
187
188 static bool
189 init_dont_simulate_again (void)
190 {
191 basic_block bb;
192 gimple_stmt_iterator gsi;
193 gimple phi;
194 bool saw_a_complex_op = false;
195
196 FOR_EACH_BB (bb)
197 {
198 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
199 {
200 phi = gsi_stmt (gsi);
201 prop_set_simulate_again (phi,
202 is_complex_reg (gimple_phi_result (phi)));
203 }
204
205 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
206 {
207 gimple stmt;
208 tree op0, op1;
209 bool sim_again_p;
210
211 stmt = gsi_stmt (gsi);
212 op0 = op1 = NULL_TREE;
213
214 /* Most control-altering statements must be initially
215 simulated, else we won't cover the entire cfg. */
216 sim_again_p = stmt_ends_bb_p (stmt);
217
218 switch (gimple_code (stmt))
219 {
220 case GIMPLE_CALL:
221 if (gimple_call_lhs (stmt))
222 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
223 break;
224
225 case GIMPLE_ASSIGN:
226 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
227 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
228 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
229 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
230 else
231 op0 = gimple_assign_rhs1 (stmt);
232 if (gimple_num_ops (stmt) > 2)
233 op1 = gimple_assign_rhs2 (stmt);
234 break;
235
236 case GIMPLE_COND:
237 op0 = gimple_cond_lhs (stmt);
238 op1 = gimple_cond_rhs (stmt);
239 break;
240
241 default:
242 break;
243 }
244
245 if (op0 || op1)
246 switch (gimple_expr_code (stmt))
247 {
248 case EQ_EXPR:
249 case NE_EXPR:
250 case PLUS_EXPR:
251 case MINUS_EXPR:
252 case MULT_EXPR:
253 case TRUNC_DIV_EXPR:
254 case CEIL_DIV_EXPR:
255 case FLOOR_DIV_EXPR:
256 case ROUND_DIV_EXPR:
257 case RDIV_EXPR:
258 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
259 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
260 saw_a_complex_op = true;
261 break;
262
263 case NEGATE_EXPR:
264 case CONJ_EXPR:
265 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
266 saw_a_complex_op = true;
267 break;
268
269 case REALPART_EXPR:
270 case IMAGPART_EXPR:
271 /* The total store transformation performed during
272 gimplification creates such uninitialized loads
273 and we need to lower the statement to be able
274 to fix things up. */
275 if (TREE_CODE (op0) == SSA_NAME
276 && ssa_undefined_value_p (op0))
277 saw_a_complex_op = true;
278 break;
279
280 default:
281 break;
282 }
283
284 prop_set_simulate_again (stmt, sim_again_p);
285 }
286 }
287
288 return saw_a_complex_op;
289 }
290
291
292 /* Evaluate statement STMT against the complex lattice defined above. */
293
294 static enum ssa_prop_result
295 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
296 tree *result_p)
297 {
298 complex_lattice_t new_l, old_l, op1_l, op2_l;
299 unsigned int ver;
300 tree lhs;
301
302 lhs = gimple_get_lhs (stmt);
303 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
304 if (!lhs)
305 return SSA_PROP_VARYING;
306
307 /* These conditions should be satisfied due to the initial filter
308 set up in init_dont_simulate_again. */
309 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
310 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
311
312 *result_p = lhs;
313 ver = SSA_NAME_VERSION (lhs);
314 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
315
316 switch (gimple_expr_code (stmt))
317 {
318 case SSA_NAME:
319 case COMPLEX_CST:
320 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
321 break;
322
323 case COMPLEX_EXPR:
324 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
325 gimple_assign_rhs2 (stmt));
326 break;
327
328 case PLUS_EXPR:
329 case MINUS_EXPR:
330 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
331 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
332
333 /* We've set up the lattice values such that IOR neatly
334 models addition. */
335 new_l = op1_l | op2_l;
336 break;
337
338 case MULT_EXPR:
339 case RDIV_EXPR:
340 case TRUNC_DIV_EXPR:
341 case CEIL_DIV_EXPR:
342 case FLOOR_DIV_EXPR:
343 case ROUND_DIV_EXPR:
344 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
345 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
346
347 /* Obviously, if either varies, so does the result. */
348 if (op1_l == VARYING || op2_l == VARYING)
349 new_l = VARYING;
350 /* Don't prematurely promote variables if we've not yet seen
351 their inputs. */
352 else if (op1_l == UNINITIALIZED)
353 new_l = op2_l;
354 else if (op2_l == UNINITIALIZED)
355 new_l = op1_l;
356 else
357 {
358 /* At this point both numbers have only one component. If the
359 numbers are of opposite kind, the result is imaginary,
360 otherwise the result is real. The add/subtract translates
361 the real/imag from/to 0/1; the ^ performs the comparison. */
362 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
363
364 /* Don't allow the lattice value to flip-flop indefinitely. */
365 new_l |= old_l;
366 }
367 break;
368
369 case NEGATE_EXPR:
370 case CONJ_EXPR:
371 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
372 break;
373
374 default:
375 new_l = VARYING;
376 break;
377 }
378
379 /* If nothing changed this round, let the propagator know. */
380 if (new_l == old_l)
381 return SSA_PROP_NOT_INTERESTING;
382
383 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
384 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
385 }
386
387 /* Evaluate a PHI node against the complex lattice defined above. */
388
389 static enum ssa_prop_result
390 complex_visit_phi (gimple phi)
391 {
392 complex_lattice_t new_l, old_l;
393 unsigned int ver;
394 tree lhs;
395 int i;
396
397 lhs = gimple_phi_result (phi);
398
399 /* This condition should be satisfied due to the initial filter
400 set up in init_dont_simulate_again. */
401 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
402
403 /* We've set up the lattice values such that IOR neatly models PHI meet. */
404 new_l = UNINITIALIZED;
405 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
406 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
407
408 ver = SSA_NAME_VERSION (lhs);
409 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
410
411 if (new_l == old_l)
412 return SSA_PROP_NOT_INTERESTING;
413
414 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
415 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
416 }
417
418 /* Create one backing variable for a complex component of ORIG. */
419
420 static tree
421 create_one_component_var (tree type, tree orig, const char *prefix,
422 const char *suffix, enum tree_code code)
423 {
424 tree r = create_tmp_var (type, prefix);
425
426 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
427 DECL_ARTIFICIAL (r) = 1;
428
429 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
430 {
431 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
432
433 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
434
435 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
436 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
437 DECL_IGNORED_P (r) = 0;
438 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
439 }
440 else
441 {
442 DECL_IGNORED_P (r) = 1;
443 TREE_NO_WARNING (r) = 1;
444 }
445
446 return r;
447 }
448
449 /* Retrieve a value for a complex component of VAR. */
450
451 static tree
452 get_component_var (tree var, bool imag_p)
453 {
454 size_t decl_index = DECL_UID (var) * 2 + imag_p;
455 tree ret = cvc_lookup (decl_index);
456
457 if (ret == NULL)
458 {
459 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
460 imag_p ? "CI" : "CR",
461 imag_p ? "$imag" : "$real",
462 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
463 cvc_insert (decl_index, ret);
464 }
465
466 return ret;
467 }
468
469 /* Retrieve a value for a complex component of SSA_NAME. */
470
471 static tree
472 get_component_ssa_name (tree ssa_name, bool imag_p)
473 {
474 complex_lattice_t lattice = find_lattice_value (ssa_name);
475 size_t ssa_name_index;
476 tree ret;
477
478 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
479 {
480 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
481 if (SCALAR_FLOAT_TYPE_P (inner_type))
482 return build_real (inner_type, dconst0);
483 else
484 return build_int_cst (inner_type, 0);
485 }
486
487 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
488 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
489 if (ret == NULL)
490 {
491 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
492 ret = make_ssa_name (ret, NULL);
493
494 /* Copy some properties from the original. In particular, whether it
495 is used in an abnormal phi, and whether it's uninitialized. */
496 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
497 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
498 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
499 && SSA_NAME_IS_DEFAULT_DEF (ssa_name))
500 {
501 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
502 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
503 }
504
505 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
506 }
507
508 return ret;
509 }
510
511 /* Set a value for a complex component of SSA_NAME, return a
512 gimple_seq of stuff that needs doing. */
513
514 static gimple_seq
515 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
516 {
517 complex_lattice_t lattice = find_lattice_value (ssa_name);
518 size_t ssa_name_index;
519 tree comp;
520 gimple last;
521 gimple_seq list;
522
523 /* We know the value must be zero, else there's a bug in our lattice
524 analysis. But the value may well be a variable known to contain
525 zero. We should be safe ignoring it. */
526 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
527 return NULL;
528
529 /* If we've already assigned an SSA_NAME to this component, then this
530 means that our walk of the basic blocks found a use before the set.
531 This is fine. Now we should create an initialization for the value
532 we created earlier. */
533 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
534 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
535 if (comp)
536 ;
537
538 /* If we've nothing assigned, and the value we're given is already stable,
539 then install that as the value for this SSA_NAME. This preemptively
540 copy-propagates the value, which avoids unnecessary memory allocation. */
541 else if (is_gimple_min_invariant (value)
542 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
543 {
544 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
545 return NULL;
546 }
547 else if (TREE_CODE (value) == SSA_NAME
548 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
549 {
550 /* Replace an anonymous base value with the variable from cvc_lookup.
551 This should result in better debug info. */
552 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
553 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
554 {
555 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
556 replace_ssa_name_symbol (value, comp);
557 }
558
559 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
560 return NULL;
561 }
562
563 /* Finally, we need to stabilize the result by installing the value into
564 a new ssa name. */
565 else
566 comp = get_component_ssa_name (ssa_name, imag_p);
567
568 /* Do all the work to assign VALUE to COMP. */
569 list = NULL;
570 value = force_gimple_operand (value, &list, false, NULL);
571 last = gimple_build_assign (comp, value);
572 gimple_seq_add_stmt (&list, last);
573 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
574
575 return list;
576 }
577
578 /* Extract the real or imaginary part of a complex variable or constant.
579 Make sure that it's a proper gimple_val and gimplify it if not.
580 Emit any new code before gsi. */
581
582 static tree
583 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
584 bool gimple_p)
585 {
586 switch (TREE_CODE (t))
587 {
588 case COMPLEX_CST:
589 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
590
591 case COMPLEX_EXPR:
592 gcc_unreachable ();
593
594 case VAR_DECL:
595 case RESULT_DECL:
596 case PARM_DECL:
597 case COMPONENT_REF:
598 case ARRAY_REF:
599 case VIEW_CONVERT_EXPR:
600 case MEM_REF:
601 {
602 tree inner_type = TREE_TYPE (TREE_TYPE (t));
603
604 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
605 inner_type, unshare_expr (t));
606
607 if (gimple_p)
608 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
609 GSI_SAME_STMT);
610
611 return t;
612 }
613
614 case SSA_NAME:
615 return get_component_ssa_name (t, imagpart_p);
616
617 default:
618 gcc_unreachable ();
619 }
620 }
621
622 /* Update the complex components of the ssa name on the lhs of STMT. */
623
624 static void
625 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
626 tree i)
627 {
628 tree lhs;
629 gimple_seq list;
630
631 lhs = gimple_get_lhs (stmt);
632
633 list = set_component_ssa_name (lhs, false, r);
634 if (list)
635 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
636
637 list = set_component_ssa_name (lhs, true, i);
638 if (list)
639 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
640 }
641
642 static void
643 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
644 {
645 gimple_seq list;
646
647 list = set_component_ssa_name (lhs, false, r);
648 if (list)
649 gsi_insert_seq_on_edge (e, list);
650
651 list = set_component_ssa_name (lhs, true, i);
652 if (list)
653 gsi_insert_seq_on_edge (e, list);
654 }
655
656
657 /* Update an assignment to a complex variable in place. */
658
659 static void
660 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
661 {
662 gimple stmt;
663
664 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
665 stmt = gsi_stmt (*gsi);
666 update_stmt (stmt);
667 if (maybe_clean_eh_stmt (stmt))
668 gimple_purge_dead_eh_edges (gimple_bb (stmt));
669
670 if (gimple_in_ssa_p (cfun))
671 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
672 }
673
674
675 /* Generate code at the entry point of the function to initialize the
676 component variables for a complex parameter. */
677
678 static void
679 update_parameter_components (void)
680 {
681 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
682 tree parm;
683
684 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
685 {
686 tree type = TREE_TYPE (parm);
687 tree ssa_name, r, i;
688
689 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
690 continue;
691
692 type = TREE_TYPE (type);
693 ssa_name = ssa_default_def (cfun, parm);
694 if (!ssa_name)
695 continue;
696
697 r = build1 (REALPART_EXPR, type, ssa_name);
698 i = build1 (IMAGPART_EXPR, type, ssa_name);
699 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
700 }
701 }
702
703 /* Generate code to set the component variables of a complex variable
704 to match the PHI statements in block BB. */
705
706 static void
707 update_phi_components (basic_block bb)
708 {
709 gimple_stmt_iterator gsi;
710
711 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
712 {
713 gimple phi = gsi_stmt (gsi);
714
715 if (is_complex_reg (gimple_phi_result (phi)))
716 {
717 tree lr, li;
718 gimple pr = NULL, pi = NULL;
719 unsigned int i, n;
720
721 lr = get_component_ssa_name (gimple_phi_result (phi), false);
722 if (TREE_CODE (lr) == SSA_NAME)
723 pr = create_phi_node (lr, bb);
724
725 li = get_component_ssa_name (gimple_phi_result (phi), true);
726 if (TREE_CODE (li) == SSA_NAME)
727 pi = create_phi_node (li, bb);
728
729 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
730 {
731 tree comp, arg = gimple_phi_arg_def (phi, i);
732 if (pr)
733 {
734 comp = extract_component (NULL, arg, false, false);
735 SET_PHI_ARG_DEF (pr, i, comp);
736 }
737 if (pi)
738 {
739 comp = extract_component (NULL, arg, true, false);
740 SET_PHI_ARG_DEF (pi, i, comp);
741 }
742 }
743 }
744 }
745 }
746
747 /* Expand a complex move to scalars. */
748
749 static void
750 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
751 {
752 tree inner_type = TREE_TYPE (type);
753 tree r, i, lhs, rhs;
754 gimple stmt = gsi_stmt (*gsi);
755
756 if (is_gimple_assign (stmt))
757 {
758 lhs = gimple_assign_lhs (stmt);
759 if (gimple_num_ops (stmt) == 2)
760 rhs = gimple_assign_rhs1 (stmt);
761 else
762 rhs = NULL_TREE;
763 }
764 else if (is_gimple_call (stmt))
765 {
766 lhs = gimple_call_lhs (stmt);
767 rhs = NULL_TREE;
768 }
769 else
770 gcc_unreachable ();
771
772 if (TREE_CODE (lhs) == SSA_NAME)
773 {
774 if (is_ctrl_altering_stmt (stmt))
775 {
776 edge e;
777
778 /* The value is not assigned on the exception edges, so we need not
779 concern ourselves there. We do need to update on the fallthru
780 edge. Find it. */
781 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
782 if (!e)
783 gcc_unreachable ();
784
785 r = build1 (REALPART_EXPR, inner_type, lhs);
786 i = build1 (IMAGPART_EXPR, inner_type, lhs);
787 update_complex_components_on_edge (e, lhs, r, i);
788 }
789 else if (is_gimple_call (stmt)
790 || gimple_has_side_effects (stmt)
791 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
792 {
793 r = build1 (REALPART_EXPR, inner_type, lhs);
794 i = build1 (IMAGPART_EXPR, inner_type, lhs);
795 update_complex_components (gsi, stmt, r, i);
796 }
797 else
798 {
799 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
800 {
801 r = extract_component (gsi, rhs, 0, true);
802 i = extract_component (gsi, rhs, 1, true);
803 }
804 else
805 {
806 r = gimple_assign_rhs1 (stmt);
807 i = gimple_assign_rhs2 (stmt);
808 }
809 update_complex_assignment (gsi, r, i);
810 }
811 }
812 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
813 {
814 tree x;
815 gimple t;
816
817 r = extract_component (gsi, rhs, 0, false);
818 i = extract_component (gsi, rhs, 1, false);
819
820 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
821 t = gimple_build_assign (x, r);
822 gsi_insert_before (gsi, t, GSI_SAME_STMT);
823
824 if (stmt == gsi_stmt (*gsi))
825 {
826 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
827 gimple_assign_set_lhs (stmt, x);
828 gimple_assign_set_rhs1 (stmt, i);
829 }
830 else
831 {
832 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
833 t = gimple_build_assign (x, i);
834 gsi_insert_before (gsi, t, GSI_SAME_STMT);
835
836 stmt = gsi_stmt (*gsi);
837 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
838 gimple_return_set_retval (stmt, lhs);
839 }
840
841 update_stmt (stmt);
842 }
843 }
844
845 /* Expand complex addition to scalars:
846 a + b = (ar + br) + i(ai + bi)
847 a - b = (ar - br) + i(ai + bi)
848 */
849
850 static void
851 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
852 tree ar, tree ai, tree br, tree bi,
853 enum tree_code code,
854 complex_lattice_t al, complex_lattice_t bl)
855 {
856 tree rr, ri;
857
858 switch (PAIR (al, bl))
859 {
860 case PAIR (ONLY_REAL, ONLY_REAL):
861 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
862 ri = ai;
863 break;
864
865 case PAIR (ONLY_REAL, ONLY_IMAG):
866 rr = ar;
867 if (code == MINUS_EXPR)
868 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
869 else
870 ri = bi;
871 break;
872
873 case PAIR (ONLY_IMAG, ONLY_REAL):
874 if (code == MINUS_EXPR)
875 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
876 else
877 rr = br;
878 ri = ai;
879 break;
880
881 case PAIR (ONLY_IMAG, ONLY_IMAG):
882 rr = ar;
883 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
884 break;
885
886 case PAIR (VARYING, ONLY_REAL):
887 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
888 ri = ai;
889 break;
890
891 case PAIR (VARYING, ONLY_IMAG):
892 rr = ar;
893 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
894 break;
895
896 case PAIR (ONLY_REAL, VARYING):
897 if (code == MINUS_EXPR)
898 goto general;
899 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
900 ri = bi;
901 break;
902
903 case PAIR (ONLY_IMAG, VARYING):
904 if (code == MINUS_EXPR)
905 goto general;
906 rr = br;
907 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
908 break;
909
910 case PAIR (VARYING, VARYING):
911 general:
912 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
913 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
914 break;
915
916 default:
917 gcc_unreachable ();
918 }
919
920 update_complex_assignment (gsi, rr, ri);
921 }
922
923 /* Expand a complex multiplication or division to a libcall to the c99
924 compliant routines. */
925
926 static void
927 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
928 tree br, tree bi, enum tree_code code)
929 {
930 enum machine_mode mode;
931 enum built_in_function bcode;
932 tree fn, type, lhs;
933 gimple old_stmt, stmt;
934
935 old_stmt = gsi_stmt (*gsi);
936 lhs = gimple_assign_lhs (old_stmt);
937 type = TREE_TYPE (lhs);
938
939 mode = TYPE_MODE (type);
940 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
941
942 if (code == MULT_EXPR)
943 bcode = ((enum built_in_function)
944 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
945 else if (code == RDIV_EXPR)
946 bcode = ((enum built_in_function)
947 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
948 else
949 gcc_unreachable ();
950 fn = builtin_decl_explicit (bcode);
951
952 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
953 gimple_call_set_lhs (stmt, lhs);
954 update_stmt (stmt);
955 gsi_replace (gsi, stmt, false);
956
957 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
958 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
959
960 if (gimple_in_ssa_p (cfun))
961 {
962 type = TREE_TYPE (type);
963 update_complex_components (gsi, stmt,
964 build1 (REALPART_EXPR, type, lhs),
965 build1 (IMAGPART_EXPR, type, lhs));
966 SSA_NAME_DEF_STMT (lhs) = stmt;
967 }
968 }
969
970 /* Expand complex multiplication to scalars:
971 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
972 */
973
974 static void
975 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
976 tree ar, tree ai, tree br, tree bi,
977 complex_lattice_t al, complex_lattice_t bl)
978 {
979 tree rr, ri;
980
981 if (al < bl)
982 {
983 complex_lattice_t tl;
984 rr = ar, ar = br, br = rr;
985 ri = ai, ai = bi, bi = ri;
986 tl = al, al = bl, bl = tl;
987 }
988
989 switch (PAIR (al, bl))
990 {
991 case PAIR (ONLY_REAL, ONLY_REAL):
992 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
993 ri = ai;
994 break;
995
996 case PAIR (ONLY_IMAG, ONLY_REAL):
997 rr = ar;
998 if (TREE_CODE (ai) == REAL_CST
999 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1000 ri = br;
1001 else
1002 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1003 break;
1004
1005 case PAIR (ONLY_IMAG, ONLY_IMAG):
1006 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1007 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1008 ri = ar;
1009 break;
1010
1011 case PAIR (VARYING, ONLY_REAL):
1012 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1013 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1014 break;
1015
1016 case PAIR (VARYING, ONLY_IMAG):
1017 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1018 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1019 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1020 break;
1021
1022 case PAIR (VARYING, VARYING):
1023 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1024 {
1025 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1026 return;
1027 }
1028 else
1029 {
1030 tree t1, t2, t3, t4;
1031
1032 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1033 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1034 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1035
1036 /* Avoid expanding redundant multiplication for the common
1037 case of squaring a complex number. */
1038 if (ar == br && ai == bi)
1039 t4 = t3;
1040 else
1041 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1042
1043 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1044 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1045 }
1046 break;
1047
1048 default:
1049 gcc_unreachable ();
1050 }
1051
1052 update_complex_assignment (gsi, rr, ri);
1053 }
1054
1055 /* Keep this algorithm in sync with fold-const.c:const_binop().
1056
1057 Expand complex division to scalars, straightforward algorithm.
1058 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1059 t = br*br + bi*bi
1060 */
1061
1062 static void
1063 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1064 tree ar, tree ai, tree br, tree bi,
1065 enum tree_code code)
1066 {
1067 tree rr, ri, div, t1, t2, t3;
1068
1069 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1070 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1071 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1072
1073 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1074 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1075 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1076 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1077
1078 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1079 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1080 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1081 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1082
1083 update_complex_assignment (gsi, rr, ri);
1084 }
1085
1086 /* Keep this algorithm in sync with fold-const.c:const_binop().
1087
1088 Expand complex division to scalars, modified algorithm to minimize
1089 overflow with wide input ranges. */
1090
1091 static void
1092 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1093 tree ar, tree ai, tree br, tree bi,
1094 enum tree_code code)
1095 {
1096 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1097 basic_block bb_cond, bb_true, bb_false, bb_join;
1098 gimple stmt;
1099
1100 /* Examine |br| < |bi|, and branch. */
1101 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1102 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1103 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1104 LT_EXPR, boolean_type_node, t1, t2);
1105 STRIP_NOPS (compare);
1106
1107 bb_cond = bb_true = bb_false = bb_join = NULL;
1108 rr = ri = tr = ti = NULL;
1109 if (TREE_CODE (compare) != INTEGER_CST)
1110 {
1111 edge e;
1112 gimple stmt;
1113 tree cond, tmp;
1114
1115 tmp = create_tmp_var (boolean_type_node, NULL);
1116 stmt = gimple_build_assign (tmp, compare);
1117 if (gimple_in_ssa_p (cfun))
1118 {
1119 tmp = make_ssa_name (tmp, stmt);
1120 gimple_assign_set_lhs (stmt, tmp);
1121 }
1122
1123 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1124
1125 cond = fold_build2_loc (gimple_location (stmt),
1126 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1127 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1128 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1129
1130 /* Split the original block, and create the TRUE and FALSE blocks. */
1131 e = split_block (gsi_bb (*gsi), stmt);
1132 bb_cond = e->src;
1133 bb_join = e->dest;
1134 bb_true = create_empty_bb (bb_cond);
1135 bb_false = create_empty_bb (bb_true);
1136
1137 /* Wire the blocks together. */
1138 e->flags = EDGE_TRUE_VALUE;
1139 redirect_edge_succ (e, bb_true);
1140 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1141 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1142 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1143
1144 /* Update dominance info. Note that bb_join's data was
1145 updated by split_block. */
1146 if (dom_info_available_p (CDI_DOMINATORS))
1147 {
1148 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1149 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1150 }
1151
1152 rr = create_tmp_reg (inner_type, NULL);
1153 ri = create_tmp_reg (inner_type, NULL);
1154 }
1155
1156 /* In the TRUE branch, we compute
1157 ratio = br/bi;
1158 div = (br * ratio) + bi;
1159 tr = (ar * ratio) + ai;
1160 ti = (ai * ratio) - ar;
1161 tr = tr / div;
1162 ti = ti / div; */
1163 if (bb_true || integer_nonzerop (compare))
1164 {
1165 if (bb_true)
1166 {
1167 *gsi = gsi_last_bb (bb_true);
1168 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1169 }
1170
1171 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1172
1173 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1174 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1175
1176 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1177 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1178
1179 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1180 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1181
1182 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1183 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1184
1185 if (bb_true)
1186 {
1187 stmt = gimple_build_assign (rr, tr);
1188 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1189 stmt = gimple_build_assign (ri, ti);
1190 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1191 gsi_remove (gsi, true);
1192 }
1193 }
1194
1195 /* In the FALSE branch, we compute
1196 ratio = d/c;
1197 divisor = (d * ratio) + c;
1198 tr = (b * ratio) + a;
1199 ti = b - (a * ratio);
1200 tr = tr / div;
1201 ti = ti / div; */
1202 if (bb_false || integer_zerop (compare))
1203 {
1204 if (bb_false)
1205 {
1206 *gsi = gsi_last_bb (bb_false);
1207 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1208 }
1209
1210 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1211
1212 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1213 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1214
1215 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1216 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1217
1218 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1219 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1220
1221 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1222 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1223
1224 if (bb_false)
1225 {
1226 stmt = gimple_build_assign (rr, tr);
1227 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1228 stmt = gimple_build_assign (ri, ti);
1229 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1230 gsi_remove (gsi, true);
1231 }
1232 }
1233
1234 if (bb_join)
1235 *gsi = gsi_start_bb (bb_join);
1236 else
1237 rr = tr, ri = ti;
1238
1239 update_complex_assignment (gsi, rr, ri);
1240 }
1241
1242 /* Expand complex division to scalars. */
1243
1244 static void
1245 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1246 tree ar, tree ai, tree br, tree bi,
1247 enum tree_code code,
1248 complex_lattice_t al, complex_lattice_t bl)
1249 {
1250 tree rr, ri;
1251
1252 switch (PAIR (al, bl))
1253 {
1254 case PAIR (ONLY_REAL, ONLY_REAL):
1255 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1256 ri = ai;
1257 break;
1258
1259 case PAIR (ONLY_REAL, ONLY_IMAG):
1260 rr = ai;
1261 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1262 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1263 break;
1264
1265 case PAIR (ONLY_IMAG, ONLY_REAL):
1266 rr = ar;
1267 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1268 break;
1269
1270 case PAIR (ONLY_IMAG, ONLY_IMAG):
1271 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1272 ri = ar;
1273 break;
1274
1275 case PAIR (VARYING, ONLY_REAL):
1276 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1277 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1278 break;
1279
1280 case PAIR (VARYING, ONLY_IMAG):
1281 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1282 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1283 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1284
1285 case PAIR (ONLY_REAL, VARYING):
1286 case PAIR (ONLY_IMAG, VARYING):
1287 case PAIR (VARYING, VARYING):
1288 switch (flag_complex_method)
1289 {
1290 case 0:
1291 /* straightforward implementation of complex divide acceptable. */
1292 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1293 break;
1294
1295 case 2:
1296 if (SCALAR_FLOAT_TYPE_P (inner_type))
1297 {
1298 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1299 break;
1300 }
1301 /* FALLTHRU */
1302
1303 case 1:
1304 /* wide ranges of inputs must work for complex divide. */
1305 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1306 break;
1307
1308 default:
1309 gcc_unreachable ();
1310 }
1311 return;
1312
1313 default:
1314 gcc_unreachable ();
1315 }
1316
1317 update_complex_assignment (gsi, rr, ri);
1318 }
1319
1320 /* Expand complex negation to scalars:
1321 -a = (-ar) + i(-ai)
1322 */
1323
1324 static void
1325 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1326 tree ar, tree ai)
1327 {
1328 tree rr, ri;
1329
1330 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1331 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1332
1333 update_complex_assignment (gsi, rr, ri);
1334 }
1335
1336 /* Expand complex conjugate to scalars:
1337 ~a = (ar) + i(-ai)
1338 */
1339
1340 static void
1341 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1342 tree ar, tree ai)
1343 {
1344 tree ri;
1345
1346 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1347
1348 update_complex_assignment (gsi, ar, ri);
1349 }
1350
1351 /* Expand complex comparison (EQ or NE only). */
1352
1353 static void
1354 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1355 tree br, tree bi, enum tree_code code)
1356 {
1357 tree cr, ci, cc, type;
1358 gimple stmt;
1359
1360 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1361 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1362 cc = gimplify_build2 (gsi,
1363 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1364 boolean_type_node, cr, ci);
1365
1366 stmt = gsi_stmt (*gsi);
1367
1368 switch (gimple_code (stmt))
1369 {
1370 case GIMPLE_RETURN:
1371 type = TREE_TYPE (gimple_return_retval (stmt));
1372 gimple_return_set_retval (stmt, fold_convert (type, cc));
1373 break;
1374
1375 case GIMPLE_ASSIGN:
1376 type = TREE_TYPE (gimple_assign_lhs (stmt));
1377 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1378 stmt = gsi_stmt (*gsi);
1379 break;
1380
1381 case GIMPLE_COND:
1382 gimple_cond_set_code (stmt, EQ_EXPR);
1383 gimple_cond_set_lhs (stmt, cc);
1384 gimple_cond_set_rhs (stmt, boolean_true_node);
1385 break;
1386
1387 default:
1388 gcc_unreachable ();
1389 }
1390
1391 update_stmt (stmt);
1392 }
1393
1394
1395 /* Process one statement. If we identify a complex operation, expand it. */
1396
1397 static void
1398 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1399 {
1400 gimple stmt = gsi_stmt (*gsi);
1401 tree type, inner_type, lhs;
1402 tree ac, ar, ai, bc, br, bi;
1403 complex_lattice_t al, bl;
1404 enum tree_code code;
1405
1406 lhs = gimple_get_lhs (stmt);
1407 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1408 return;
1409
1410 type = TREE_TYPE (gimple_op (stmt, 0));
1411 code = gimple_expr_code (stmt);
1412
1413 /* Initial filter for operations we handle. */
1414 switch (code)
1415 {
1416 case PLUS_EXPR:
1417 case MINUS_EXPR:
1418 case MULT_EXPR:
1419 case TRUNC_DIV_EXPR:
1420 case CEIL_DIV_EXPR:
1421 case FLOOR_DIV_EXPR:
1422 case ROUND_DIV_EXPR:
1423 case RDIV_EXPR:
1424 case NEGATE_EXPR:
1425 case CONJ_EXPR:
1426 if (TREE_CODE (type) != COMPLEX_TYPE)
1427 return;
1428 inner_type = TREE_TYPE (type);
1429 break;
1430
1431 case EQ_EXPR:
1432 case NE_EXPR:
1433 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1434 subocde, so we need to access the operands using gimple_op. */
1435 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1436 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1437 return;
1438 break;
1439
1440 default:
1441 {
1442 tree rhs;
1443
1444 /* GIMPLE_COND may also fallthru here, but we do not need to
1445 do anything with it. */
1446 if (gimple_code (stmt) == GIMPLE_COND)
1447 return;
1448
1449 if (TREE_CODE (type) == COMPLEX_TYPE)
1450 expand_complex_move (gsi, type);
1451 else if (is_gimple_assign (stmt)
1452 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1453 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1454 && TREE_CODE (lhs) == SSA_NAME)
1455 {
1456 rhs = gimple_assign_rhs1 (stmt);
1457 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1458 gimple_assign_rhs_code (stmt)
1459 == IMAGPART_EXPR,
1460 false);
1461 gimple_assign_set_rhs_from_tree (gsi, rhs);
1462 stmt = gsi_stmt (*gsi);
1463 update_stmt (stmt);
1464 }
1465 }
1466 return;
1467 }
1468
1469 /* Extract the components of the two complex values. Make sure and
1470 handle the common case of the same value used twice specially. */
1471 if (is_gimple_assign (stmt))
1472 {
1473 ac = gimple_assign_rhs1 (stmt);
1474 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1475 }
1476 /* GIMPLE_CALL can not get here. */
1477 else
1478 {
1479 ac = gimple_cond_lhs (stmt);
1480 bc = gimple_cond_rhs (stmt);
1481 }
1482
1483 ar = extract_component (gsi, ac, false, true);
1484 ai = extract_component (gsi, ac, true, true);
1485
1486 if (ac == bc)
1487 br = ar, bi = ai;
1488 else if (bc)
1489 {
1490 br = extract_component (gsi, bc, 0, true);
1491 bi = extract_component (gsi, bc, 1, true);
1492 }
1493 else
1494 br = bi = NULL_TREE;
1495
1496 if (gimple_in_ssa_p (cfun))
1497 {
1498 al = find_lattice_value (ac);
1499 if (al == UNINITIALIZED)
1500 al = VARYING;
1501
1502 if (TREE_CODE_CLASS (code) == tcc_unary)
1503 bl = UNINITIALIZED;
1504 else if (ac == bc)
1505 bl = al;
1506 else
1507 {
1508 bl = find_lattice_value (bc);
1509 if (bl == UNINITIALIZED)
1510 bl = VARYING;
1511 }
1512 }
1513 else
1514 al = bl = VARYING;
1515
1516 switch (code)
1517 {
1518 case PLUS_EXPR:
1519 case MINUS_EXPR:
1520 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1521 break;
1522
1523 case MULT_EXPR:
1524 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1525 break;
1526
1527 case TRUNC_DIV_EXPR:
1528 case CEIL_DIV_EXPR:
1529 case FLOOR_DIV_EXPR:
1530 case ROUND_DIV_EXPR:
1531 case RDIV_EXPR:
1532 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1533 break;
1534
1535 case NEGATE_EXPR:
1536 expand_complex_negation (gsi, inner_type, ar, ai);
1537 break;
1538
1539 case CONJ_EXPR:
1540 expand_complex_conjugate (gsi, inner_type, ar, ai);
1541 break;
1542
1543 case EQ_EXPR:
1544 case NE_EXPR:
1545 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1546 break;
1547
1548 default:
1549 gcc_unreachable ();
1550 }
1551 }
1552
1553 \f
1554 /* Entry point for complex operation lowering during optimization. */
1555
1556 static unsigned int
1557 tree_lower_complex (void)
1558 {
1559 int old_last_basic_block;
1560 gimple_stmt_iterator gsi;
1561 basic_block bb;
1562
1563 if (!init_dont_simulate_again ())
1564 return 0;
1565
1566 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1567 VEC_safe_grow_cleared (complex_lattice_t, heap,
1568 complex_lattice_values, num_ssa_names);
1569
1570 init_parameter_lattice_values ();
1571 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1572
1573 complex_variable_components = htab_create (10, int_tree_map_hash,
1574 int_tree_map_eq, free);
1575
1576 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1577 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1578 2 * num_ssa_names);
1579
1580 update_parameter_components ();
1581
1582 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1583 old_last_basic_block = last_basic_block;
1584 FOR_EACH_BB (bb)
1585 {
1586 if (bb->index >= old_last_basic_block)
1587 continue;
1588
1589 update_phi_components (bb);
1590 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1591 expand_complex_operations_1 (&gsi);
1592 }
1593
1594 gsi_commit_edge_inserts ();
1595
1596 htab_delete (complex_variable_components);
1597 VEC_free (tree, heap, complex_ssa_name_components);
1598 VEC_free (complex_lattice_t, heap, complex_lattice_values);
1599 return 0;
1600 }
1601
1602 struct gimple_opt_pass pass_lower_complex =
1603 {
1604 {
1605 GIMPLE_PASS,
1606 "cplxlower", /* name */
1607 0, /* gate */
1608 tree_lower_complex, /* execute */
1609 NULL, /* sub */
1610 NULL, /* next */
1611 0, /* static_pass_number */
1612 TV_NONE, /* tv_id */
1613 PROP_ssa, /* properties_required */
1614 PROP_gimple_lcx, /* properties_provided */
1615 0, /* properties_destroyed */
1616 0, /* todo_flags_start */
1617 TODO_ggc_collect
1618 | TODO_update_ssa
1619 | TODO_verify_stmts /* todo_flags_finish */
1620 }
1621 };
1622
1623 \f
1624 static bool
1625 gate_no_optimization (void)
1626 {
1627 /* With errors, normal optimization passes are not run. If we don't
1628 lower complex operations at all, rtl expansion will abort. */
1629 return !(cfun->curr_properties & PROP_gimple_lcx);
1630 }
1631
1632 struct gimple_opt_pass pass_lower_complex_O0 =
1633 {
1634 {
1635 GIMPLE_PASS,
1636 "cplxlower0", /* name */
1637 gate_no_optimization, /* gate */
1638 tree_lower_complex, /* execute */
1639 NULL, /* sub */
1640 NULL, /* next */
1641 0, /* static_pass_number */
1642 TV_NONE, /* tv_id */
1643 PROP_cfg, /* properties_required */
1644 PROP_gimple_lcx, /* properties_provided */
1645 0, /* properties_destroyed */
1646 0, /* todo_flags_start */
1647 TODO_ggc_collect
1648 | TODO_update_ssa
1649 | TODO_verify_stmts /* todo_flags_finish */
1650 }
1651 };